Sample records for factor receptor anti-egfr

  1. Anti-epidermal growth factor receptor (anti-EGFR) antibody conjugated fluorescent nanoparticles probe for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Hun, Xu; Zhang, Zhujun

    2009-10-01

    Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.

  2. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody.

    PubMed

    Nagaya, Tadanobu; Okuyama, Shuhei; Ogata, Fusa; Maruoka, Yasuhiro; Knapp, Deborah W; Karagiannis, Sophia N; Fazekas-Singer, Judit; Choyke, Peter L; LeBlanc, Amy K; Jensen-Jarolim, Erika; Kobayashi, Hisataka

    2018-04-10

    Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro . In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups ( p < 0.001), and significantly prolonged survival was achieved ( p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans.

  3. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody

    PubMed Central

    Nagaya, Tadanobu; Okuyama, Shuhei; Ogata, Fusa; Maruoka, Yasuhiro; Knapp, Deborah W.; Karagiannis, Sophia N.; Fazekas-Singer, Judit; Choyke, Peter L.; LeBlanc, Amy K.; Jensen-Jarolim, Erika; Kobayashi, Hisataka

    2018-01-01

    Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro. In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups (p < 0.001), and significantly prolonged survival was achieved (p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans. PMID:29721181

  4. Anti-EGFR Agents: Current Status, Forecasts and Future Directions.

    PubMed

    Kwapiszewski, Radoslaw; Pawlak, Sebastian D; Adamkiewicz, Karolina

    2016-12-01

    The epidermal growth factor receptor (EGFR) is one of the most important and attractive targets for specific anticancer therapies. It is a robust regulator of pathways involved in cancer pathogenesis and progression. Thus far, clinical trials have demonstrated the benefits of monoclonal antibodies and synthetic tyrosine kinase inhibitors in targeting this receptor; however, novel strategies are still being developed. This article reviews the current state of efforts in targeting the EGFR in cancer therapy. Following a brief characterization of EGFR, we will present a complete list of anti-EGFR agents that are already approved, and available in clinical practice. Aside from the indications, we will present the sales forecasts and expiry dates of product patents for the selected agents. Finally, we discuss the novel anti-EGFR strategies that are currently in preclinical development.

  5. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  6. Radionuclide therapy using ¹³¹I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression.

    PubMed

    Li, Wei; Liu, Zhongyun; Li, Chengxia; Li, Ning; Fang, Lei; Chang, Jin; Tan, Jian

    2016-03-01

    Anti-epidermal growth factor receptor (EGFR)-targeted nanoparticles can be used to deliver a therapeutic and imaging agent to EGFR-overexpressing tumor cells. (131)I-labeled anti-EGFR nanoparticles derived from cetuximab were used as a tumor-targeting vehicle in radionuclide therapy. This paper describes the construction of the anti-EGFR nanoparticle EGFR-BSA-PCL. This nanoparticle was characterized for EGFR-targeted binding and cellular uptake in EGFR-overexpressing cancer cells by using flow cytometry and confocal microscopy. Anti-EGFR and non-targeted nanoparticles were labeled with (131)I using the chloramine-T method. Analyses of cytotoxicity and targeted cell killing with (131)I were performed using the MTT assay. The time-dependent cellular uptake of (131)I-labeled anti-EGFR nanoparticles proved the slow-release effects of nanoparticles. A radioiodine therapy study was also performed in mice. The EGFR-targeted nanoparticle EGFR-BSA-PCL and the non-targeted nanoparticle BSA-PCL were constructed; the effective diameters were approximately 100 nm. The results from flow cytometry and confocal microscopy revealed significant uptake of EGFR-BSA-PCL in EGFR-overexpressing tumor cells. Compared with EGFR-BSA-PCL, BSA-PCL could also bind to cells, but tumor cell retention was minimal and weak. In MTT assays, the EGFR-targeted radioactive nanoparticle (131)I-EGFR-BSA-PCL showed greater cytotoxicity and targeted cell killing than the non-targeted nanoparticle (131)I-BSA-PCL. The radioiodine uptake of both (131)I-labeled nanoparticles, (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL, was rapid and reached maximal levels 4 h after incubation, but the (131)I uptake of (131)I-EGFR-BSA-PCL was higher than that of (131)I-BSA-PCL. On day 15, the average tumor volumes of the (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL groups showed a slow growth relationship compared with that of the control group. The EGFR-targeted nanoparticle EGFR-BSA-PCL demonstrated superior cellular binding and uptake

  7. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    PubMed

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  8. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  9. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer.

    PubMed

    Yamada, Tadaaki; Takeuchi, Shinji; Kita, Kenji; Bando, Hideaki; Nakamura, Takahiro; Matsumoto, Kunio; Yano, Seiji

    2012-02-01

    Epidermal growth factor receptor (EGFR) is an attractive drug target in lung cancer, with several anti-EGFR antibodies and small-molecule inhibitors showing efficacy in lung cancer patients. Patients, however, may develop resistance to EGFR inhibitors. We demonstrated previously that hepatocyte growth factor (HGF) induced resistance to EGFR tyrosine kinase inhibitors in lung cancers harboring EGFR mutations. We therefore determined whether HGF could induce resistance to the anti-EGFR antibody (EGFR Ab) cetuximab in lung cancer cells, regardless of EGFR gene status. Cetuximab sensitivity and signal transduction in lung cancer cells were examined in the presence or absence of HGF, HGF-producing fibroblasts, and cells tranfected with the HGF gene in vitro and in vivo. HGF induced resistance to cetuximab in H292 (EGFR wild) and Ma-1(EGFR mutant) cells. Western blotting showed that HGF-induced resistance was mediated by the Met/Gab1/Akt signaling pathway. Resistance of H292 and Ma-1 cells to cetuximab was also induced by coculture with lung fibroblasts producing high levels of HGF and by cells stably transfected with the HGF gene. This resistance was abrogated by treatment with anti-HGF neutralizing antibody. HGF-mediated resistance is a novel mechanism of resistance to EGFR Ab in lung cancers, with fibroblast-derived HGF inducing cetuximab resistance in H292 tumors in vivo. The involvement of HGF-Met-mediated signaling should be assessed in acquired resistance to EGFR Ab in lung cancer, regardless of EGFR gene status.

  10. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer

    NASA Astrophysics Data System (ADS)

    Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei

    2017-03-01

    Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR-TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure-activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR.

  11. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer

    PubMed Central

    Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei

    2017-01-01

    Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR–tyrosine kinase inhibitors (EGFR–TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR–TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure–activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR. PMID:28287083

  12. Elucidation of the critical epitope of an anti-EGFR monoclonal antibody EMab-134.

    PubMed

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Kato, Yukinari

    2018-07-01

    The epidermal growth factor receptor (EGFR) is a type-1 transmembrane receptor tyrosine kinase, which activates the downstream signaling cascades in many tumors, such as oral and lung cancers. We previously developed EMab-134, a novel anti-EGFR monoclonal antibody (mAb), which reacts with endogenous EGFR-expressing cancer cell lines and normal cells independent of glycosylation in Western blotting, flow cytometry, and immunohistochemical analysis. EMab-134 showed very high sensitivity (94.7%) to oral squamous cell carcinomas in immunohistochemical analysis. In this study, we performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunohistochemical analysis to determine the epitope of EMab-134. A blocking peptide (375-394 amino acids of EGFR) neutralized the EMab-134 reaction against oral cancer cells in flow cytometry and immunohistochemistry. The minimum epitope of EMab-134 was found to be the 377- RGDSFTHTPP -386 sequence. Our findings can be applied for the production of more functional anti-EGFR mAbs that in turn can be used for antitumor treatments.

  13. Receptor-Mediated Uptake and Intracellular Sorting of Multivalent Lipid Nanoparticles Against the Epidermal Growth Factor Receptor (EGFR) and the Human EGFR 2 (HER2)

    NASA Astrophysics Data System (ADS)

    Tran, David Tu

    In the area of receptor-targeted lipid nanoparticles for drug delivery, efficiency has been mainly focused on cell-specificity, endocytosis, and subsequently effects on bioactivity such as cell growth inhibition. Aspects of targeted liposomal uptake and intracellular sorting are not well defined. This dissertation assessed a series of ligands as targeted functional groups against HER2 and EGFR for liposomal drug delivery. Receptor-mediated uptake, both mono-targeted and dual-targeted to multiple receptors of different ligand valence, and the intracellular sorting of lipid nanoparticles were investigated to improve the delivery of drugs to cancer cells. Lipid nanoparticles were functionalized through a new sequential micelle transfer---conjugation method, while the micelle transfer method was extended to growth factors. Through a combination of both techniques, anti-HER2 and anti-EGFR dual-targeted immunoliposomes with different combinations of ligand valence were developed for comparative studies. With the array of lipid nanoparticles, the uptake and cytotoxicity of lipid nanoparticles in relationship to ligand valence, both mono-targeting and dual-targeting, were evaluated on a small panel of breast cancer cell lines that express HER2 and EGFR of varying levels. Comparable uptake ratios of ligand to expressed receptor and apparent cooperativity were observed. For cell lines that express both receptors, additive dose-uptake effects were also observed with dual-targeted immunoliposomes, which translated to marginal improvements in cell growth inhibition with doxorubicin delivery. Colocalization analysis revealed that ligand-conjugated lipid nanoparticles settle to endosomal compartments similar to their attached ligands. Pathway transregulation and pathway saturation were also observed to affect trafficking. In the end, liposomes routed to the recycling endosomes were never observed to traffic beyond the endosomes nor to be exocytose like recycled ligands. Based on

  14. Balancing Selectivity and Efficacy of Bispecific Epidermal Growth Factor Receptor (EGFR) × c-MET Antibodies and Antibody-Drug Conjugates*

    PubMed Central

    Sellmann, Carolin; Doerner, Achim; Knuehl, Christine; Rasche, Nicolas; Sood, Vanita; Krah, Simon; Rhiel, Laura; Messemer, Annika; Wesolowski, John; Schuette, Mark; Becker, Stefan; Toleikis, Lars; Kolmar, Harald; Hock, Bjoern

    2016-01-01

    Bispecific antibodies (bsAbs) and antibody-drug conjugates (ADCs) have already demonstrated benefits for the treatment of cancer in several clinical studies, showing improved drug selectivity and efficacy. In particular, simultaneous targeting of prominent cancer antigens, such as EGF receptor (EGFR) and c-MET, by bsAbs has raised increasing interest for potentially circumventing receptor cross-talk and c-MET-mediated acquired resistance during anti-EGFR monotherapy. In this study, we combined the selectivity of EGFR × c-MET bsAbs with the potency of cytotoxic agents via bispecific antibody-toxin conjugation. Affinity-attenuated bispecific EGFR × c-MET antibody-drug conjugates demonstrated high in vitro selectivity toward tumor cells overexpressing both antigens and potent anti-tumor efficacy. Due to basal EGFR expression in the skin, ADCs targeting EGFR in general warrant early safety assessments. Reduction in EGFR affinity led to decreased toxicity in keratinocytes. Thus, the combination of bsAb affinity engineering with the concept of toxin conjugation may be a viable route to improve the safety profile of ADCs targeting ubiquitously expressed antigens. PMID:27694443

  15. Epitope mapping of epidermal growth factor receptor (EGFR) monoclonal antibody and induction of growth-inhibitory polyclonal antibodies by vaccination with EGFR mimotope.

    PubMed

    Navari, Mohsen; Zare, Mehrak; Javanmardi, Masoud; Asadi-Ghalehni, Majid; Modjtahedi, Helmout; Rasaee, Mohammad Javed

    2014-10-01

    One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.

  16. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    PubMed

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  17. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast,more » amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.« less

  18. Dexamethasone-(C21-phosphoramide)-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549).

    PubMed

    Coyne, Cody P; Narayanan, Lakshmi

    2016-01-01

    Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma), autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively "target" delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR)-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide)-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549) known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide)-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10(-9) M and 10(-5) M. Rapid increases in

  19. Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation.

    PubMed

    Tanaka, Tomohiro; Zhou, Yue; Ozawa, Tatsuhiko; Okizono, Ryuya; Banba, Ayako; Yamamura, Tomohiro; Oga, Eiji; Muraguchi, Atsushi; Sakurai, Hiroaki

    2018-02-16

    The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Dexamethasone-(C21-phosphoramide)-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549)

    PubMed Central

    Coyne, Cody P; Narayanan, Lakshmi

    2016-01-01

    Purpose Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma), autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively “target” delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. Materials and methods The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR)-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide)-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549) known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. Results The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide)-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10

  1. Development of EMab-51, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in Flow Cytometry, Western Blot, and Immunohistochemistry.

    PubMed

    Itai, Shunsuke; Kaneko, Mika K; Fujii, Yuki; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Chang, Yao-Wen; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-10-01

    The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG 1 , kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.

  2. A novel anti-EGFR monoclonal antibody inhibiting tumor cell growth by recognizing different epitopes from cetuximab.

    PubMed

    Hong, Kwang-Won; Kim, Chang-Goo; Lee, Seung-Hyun; Chang, Ki-Hwan; Shin, Yong Won; Ryoo, Kyung-Hwan; Kim, Se-Ho; Kim, Yong-Sung

    2010-01-01

    The epidermal growth factor receptor (EGFR) overexpressed in many epithelial tumors is an attractive target for tumor therapy since numerous blocking agents of EGFR signaling have proven their anti-tumor activity. Here we report a novel monoclonal antibody (mAb), A13, which was generated from mice immunized with human cervical carcinoma A431 cells. In addition to binding to soluble EGFR with affinity of K(D) approximately 5.8nM, mAb A13 specifically bound to a variety of tumor cells and human placenta tissues expressing EGFR. A13 efficiently inhibited both EGF-dependant EGFR tyrosine phosphorylation in cervical and breast tumor cells and also in vitro colony formation of EGFR-overexpressing lung tumors. Competition and sandwich ELISAs, competitive surface plasmon resonance, and domain-level epitope mapping analyses demonstrated that mAb A13 competitively bound to the domain III (amino acids 302-503) of EGFR with EGF, but recognized distinct epitopes from those of cetuximab (Erbitux). Our results demonstrated that anti-EGFR mAb A13 interfered with EGFR proliferation signaling by blocking EGF binding to EGFR with different epitopes from those of cetuximab, suggesting that combination therapies of mAb A13 with cetuximab may prove beneficial for anti-tumor therapy.

  3. Anti-EGFR Antibody Conjugation of Fucoidan-Coated Gold Nanorods as Novel Photothermal Ablation Agents for Cancer Therapy.

    PubMed

    Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Oh, Yun-Ok; Song, Kyeongeun; Seo, Hansu; Oh, Junghwan

    2017-05-03

    The development of novel photothermal ablation agents as cancer nanotheranostics has received a great deal of attention in recent decades. Biocompatible fucoidan (Fu) is used as the coating material for gold nanorods (AuNRs) and subsequently conjugated with monoclonal antibodies against epidermal growth factor receptor (anti-EGFR) as novel photothermal ablation agents for cancer nanotheranostics because of their excellent biocompatibility, biodegradability, nontoxicity, water solubility, photostability, ease of surface modification, strongly enhanced absorption in near-infrared (NIR) regions, target specificity, minimal invasiveness, fast recovery, and prevention of damage to normal tissues. Anti-EGFR Fu-AuNRs have an average particle size of 96.37 ± 3.73 nm. Under 808 nm NIR laser at 2 W/cm 2 for 5 min, the temperature of the solution containing anti-EGFR Fu-AuNRs (30 μg/mL) increased by 52.1 °C. The anti-EGFR Fu-AuNRs exhibited high efficiency for the ablation of MDA-MB-231 cells in vitro. In vivo photothermal ablation exhibited that tumor tissues fully recovered without recurrence and finally were reconstructed with normal tissues by the 808 nm NIR laser irradiation after injection of anti-EGFR Fu-AuNRs. These results suggest that the anti-EGFR Fu-AuNRs would be novel photoablation agents for future cancer nanotheranostics.

  4. Coupling Gd-DTPA with a bispecific, recombinant protein anti-EGFR-iRGD complex improves tumor targeting in MRI

    PubMed Central

    XIN, XIAOYAN; SHA, HUIZI; SHEN, JINGTAO; ZHANG, BING; ZHU, BIN; LIU, BAORUI

    2016-01-01

    Recombinant anti-epidermal growth factor receptor-internalizing arginine-glycine-aspartic acid (anti-EGFR single-domain antibody fused with iRGD peptide) protein efficiently targets the EGFR extracellular domain and integrin αvβ/β5, and shows a high penetration into cells. Thus, this protein may improve penetration of conjugated drugs into the deep zone of gastric cancer multicellular 3D spheroids. In the present study, a novel tumor-targeting contrast agent for magnetic resonance imaging (MRI) was developed, by coupling gadolinium-diethylene triamine pentaacetate (Gd-DTPA) with the bispecific recombinant anti-EGFR-iRGD protein. The anti-EGFR-iRGD protein was extracted from Escherichia coli and Gd was loaded onto the recombinant protein by chelation using DTPA anhydride. Single-targeting agent anti-EGFR-DTPA-Gd, which served as the control, was also prepared. The results of the present study showed that anti-EGFR-iRGD-DTPA-Gd exhibited no significant cyto toxicity to human gastric carcinoma cells (BGC-823) under the experimental conditions used. Compared with a conventional contrast agent (Magnevist), anti-EGFR-iRGD-DTPA-Gd showed higher T1 relaxivity (10.157/mM/sec at 3T) and better tumor-targeting ability. In addition, the signal intensity and the area under curve for the enhanced signal time in tumor, in vivo, were stronger than Gd-DTPA alone or the anti-EGFR-Gd control. Thus, Gd-labelled anti-EGFR-iRGD has potential as a tumor-targeting contrast agent for improved MRI. PMID:27035336

  5. Biomarkers of skin toxicity induced by anti-epidermal growth factor receptor antibody treatment in colorectal cancer.

    PubMed

    Kubo, Akiko; Hashimoto, Hironobu; Takahashi, Naoki; Yamada, Yasuhide

    2016-01-14

    Skin toxicity is a common symptom of anti-epidermal growth factor receptor (EGFR) antibody treatment and is also a predictive marker of its efficacy in colorectal cancer patients. However, severe skin disorders induced by such antibodies negatively impact on the quality of life of patients and decreases drug compliance during treatment. If we can predict the high-risk group susceptible to severe skin toxicity before treatment, we can undertake the early management of any arising skin disorders and formulate a more accurate prognosis for anti-EGFR antibody treatment. Previous studies have identified molecular markers of skin toxicity induced by anti-EGFR antibody, such as EGFR polymorphisms, the expression of inflammatory chemokines and serum levels of EGFR ligands. A clinical trial was undertaken involving the escalation of cetuximab doses, guided by the grade of skin toxicity observed, such as no or low-grade, in metastatic colorectal cancer (the EVEREST study). The dose escalation of cetuximab was confirmed by a safety profile and had the tendency to achieve a higher response rate in KRAS wild-type patients. A large, prospective randomized trial is now ongoing (EVEREST 2) and the results of this trial may contribute to personalized medicine in KRAS wild-type colorectal cancer patients.

  6. Biomarkers of skin toxicity induced by anti-epidermal growth factor receptor antibody treatment in colorectal cancer

    PubMed Central

    Kubo, Akiko; Hashimoto, Hironobu; Takahashi, Naoki; Yamada, Yasuhide

    2016-01-01

    Skin toxicity is a common symptom of anti-epidermal growth factor receptor (EGFR) antibody treatment and is also a predictive marker of its efficacy in colorectal cancer patients. However, severe skin disorders induced by such antibodies negatively impact on the quality of life of patients and decreases drug compliance during treatment. If we can predict the high-risk group susceptible to severe skin toxicity before treatment, we can undertake the early management of any arising skin disorders and formulate a more accurate prognosis for anti-EGFR antibody treatment. Previous studies have identified molecular markers of skin toxicity induced by anti-EGFR antibody, such as EGFR polymorphisms, the expression of inflammatory chemokines and serum levels of EGFR ligands. A clinical trial was undertaken involving the escalation of cetuximab doses, guided by the grade of skin toxicity observed, such as no or low-grade, in metastatic colorectal cancer (the EVEREST study). The dose escalation of cetuximab was confirmed by a safety profile and had the tendency to achieve a higher response rate in KRAS wild-type patients. A large, prospective randomized trial is now ongoing (EVEREST 2) and the results of this trial may contribute to personalized medicine in KRAS wild-type colorectal cancer patients. PMID:26811634

  7. Anti-EGFR monoclonal antibody in cancer treatment: in vitro and in vivo evidence

    PubMed

    Quatrale, Anna Elisa; Petriella, Daniela; Porcelli, Letizia; Tommasi, Stefania; Silvestris, Nicola; Colucci, Giuseppe; Angelo, Angelo; Azzariti, Amalia

    2011-01-01

    The complexity of EGFR signaling network suggests that the receptor could be promising targets for new personalised therapy. In clinical practice two strategies targeting the receptor are available; they utilise monoclonal antibodies, directed towards the extracellular domain of EGFR, and small molecule tyrosine kinase inhibitors, which bind the catalytic kinase domain of the receptor. In this review, we summarise currently known pre-clinical data on the antitumor effects of monoclonal antibodies, which bind to EGFR in its inactive configuration, competing for ligand binding and thereby blocking ligand-induced EGFR tyrosine kinase activation. As a consequence of treatment, key EGFR-dependent intracellular signals in cancer cells are affected. Data explaining the mechanisms of action of anti-EGFR monoclonal antibodies, currently used in clinical setting and under development for the treatment of solid tumors, are revised with the aim to provide an overview of the most important preclinical studies showing the impact of this class of EGFR targeted agents on tumor biology.

  8. Epidermal growth factor receptor (EGFR) density may not be the only determinant for the efficacy of EGFR-targeted photoimmunotherapy in human head and neck cancer cell lines.

    PubMed

    Peng, Wei; de Bruijn, Henriette S; Farrell, Eric; Sioud, Mouldy; Mashayekhi, Vida; Oliveira, Sabrina; van Dam, Go M; Roodenburg, Jan L N; Witjes, Max J H; Robinson, Dominic J

    2018-05-19

    The aim of this study was to investigate the effects of targeted photoimmunotherapy (PIT) in vitro on cell lines with various expression levels of epidermal growth factor receptor (EGFR) using an anti-EGFR targeted conjugate composed of Cetuximab and IR700DX, phthalocyanine dye. Relative EGFR density and cell binding assay was conducted in three human head & neck cancer cell lines (scc-U2, scc-U8, and OSC19) and one reference cell line A431. After incubation with the conjugate for 1 or 24 hours, cellular uptake and localization were investigated by confocal laser scanning microscopy and quantified by image analysis. Cell survival was determined using the MTS assay and alamarBlue assay after PIT with a 690 nm laser to a dose of 7 J.cm -2 (at 5 mW.cm -2 ). The mode of cell death was examined with flow cytometry using apoptosis/necrosis staining by Annexin V/propidium iodide, together with immunoblots of anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL. A431 cells had the highest EGFR density followed by OSC19, and then scc-U2 and scc-U8. The conjugates were localized both on the surface and in the cytosol of the cells after 1- and 24-hour incubation. After 24-hour incubation the granular pattern was more pronounced and in a similar pattern of a lysosomal probe, suggesting that the uptake of conjugates by cells was via receptor-mediated endocytosis. The results obtained from the quantitative imaging analysis correlate with the level of EGFR expression. Targeted PIT killed scc-U8 and A431 cells efficiently; while scc-U2 and OSC19 were less sensitive to this treatment, despite having similar EGFR density, uptake and localization pattern. Scc-U2 cells showed less apoptotic cell dealth than in A431 after 24-hour targeted PIT. Immunoblots showed significantly higher expression of anti-apoptotic Bcl-2 and Bcl-xL proteins in scc-U2 cell lines compared to scc-U8. Our study suggests that the effectiveness of EGFR targeted PIT is not only dependent upon EGFR density

  9. Role of Epidermal Growth Factor Receptor (EGFR) Inhibitors and Radiation in the Management of Brain Metastases from EGFR Mutant Lung Cancers.

    PubMed

    Khandekar, Melin J; Piotrowska, Zofia; Willers, Henning; Sequist, Lecia V

    2018-04-27

    The growth of genotype-directed targeted therapies, such as inhibitors of the epidermal growth factor receptor (EGFR), has revolutionized treatment for some patients with oncogene-addicted lung cancer. However, as systemic control for these patients has improved, brain metastases remain an important source of morbidity and mortality. Traditional treatment for brain metastases has been radiotherapy, either whole-brain radiation or stereotactic radiosurgery. The growing availability of drugs that can cross the blood-brain barrier and have activity in the central nervous system (CNS) has led to many studies investigating whether targeted therapy can be used in combination with or in lieu of radiation. In this review, we summarize the key literature about the incidence and nature of EGFR-mutant brain metastases (EGFR BMs), the data about the activity of EGFR inhibitors in the CNS, and whether they can be used as front-line therapy for brain metastases. Although initial use of tyrosine kinase inhibitors for EGFR BMs can often be an effective treatment strategy, multidisciplinary evaluation is critical, and prospective studies are needed to clarify which patients may benefit from early radiotherapy. Management of brain metastases in epidermal growth factor receptor (EGFR) mutant lung cancer is a common clinical problem. The question of whether to start initial therapy with an EGFR inhibitor or radiotherapy (either whole-brain radiotherapy or stereotactic radiosurgery) is controversial. The development of novel EGFR inhibitors with enhanced central nervous system (CNS) penetration is an important advance in the treatment of CNS disease. Multidisciplinary evaluation and evaluation of extracranial disease status are critical to choosing the best treatment option for each patient. © AlphaMed Press 2018.

  10. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies.

    PubMed

    Roovers, Rob C; Laeremans, Toon; Huang, Lieven; De Taeye, Severine; Verkleij, Arie J; Revets, Hilde; de Haard, Hans J; van Bergen en Henegouwen, Paul M P

    2007-03-01

    The development of a number of different solid tumours is associated with over-expression of ErbB1, or the epidermal growth factor receptor (EGFR), and this over-expression is often correlated with poor prognosis of patients. Therefore, this receptor tyrosine kinase is considered to be an attractive target for antibody-based therapy. Indeed, antibodies to the EGFR have already proven their value for the treatment of several solid tumours, especially in combination with chemotherapeutic treatment regimens. Variable domains of camelid heavy chain-only antibodies (called Nanobodies) have superior properties compared with classical antibodies in that they are small, very stable, easy to produce in large quantities and easy to re-format into multi-valent or multi-specific proteins. Furthermore, they can specifically be selected for a desired function by phage antibody display. In this report, we describe the successful selection and the characterisation of antagonistic anti-EGFR Nanobodies. By using a functional selection strategy, Nanobodies that specifically competed for EGF binding to the EGFR were isolated from "immune" phage Nanobody repertoires. The selected antibody fragments were found to efficiently inhibit EGF binding to the EGFR without acting as receptor agonists themselves. In addition, they blocked EGF-mediated signalling and EGF-induced cell proliferation. In an in vivo murine xenograft model, the Nanobodies were effective in delaying the outgrowth of A431-derived solid tumours. This is the first report describing the successful use of untagged Nanobodies for the in vivo treatment of solid tumours. The results show that functional phage antibody selection, coupled to the rational design of Nanobodies, permits the rapid development of novel anti-cancer antibody-based therapeutics.

  11. Quantum-Dot-Based Theranostic Micelles Conjugated with an Anti-EGFR Nanobody for Triple-Negative Breast Cancer Therapy.

    PubMed

    Wang, Yuyuan; Wang, Yidan; Chen, Guojun; Li, Yitong; Xu, Wei; Gong, Shaoqin

    2017-09-13

    A quantum-dot (QD)-based micelle conjugated with an anti-epidermal growth factor receptor (EGFR) nanobody (Nb) and loaded with an anticancer drug, aminoflavone (AF), has been engineered for EGFR-overexpressing cancer theranostics. The near-infrared (NIR) fluorescence of the indium phosphate core/zinc sulfide shell QDs (InP/ZnS QDs) allowed for in vivo nanoparticle biodistribution studies. The anti-EGFR nanobody 7D12 conjugation improved the cellular uptake and cytotoxicity of the QD-based micelles in EGFR-overexpressing MDA-MB-468 triple-negative breast cancer (TNBC) cells. In comparison with the AF-encapsulated nontargeted (i.e., without Nb conjugation) micelles, the AF-encapsulated Nb-conjugated (i.e., targeted) micelles accumulated in tumors at higher concentrations, leading to more effective tumor regression in an orthotopic triple-negative breast cancer xenograft mouse model. Furthermore, there was no systemic toxicity observed with the treatments. Thus, this QD-based Nb-conjugated micelle may serve as an effective theranostic nanoplatform for EGFR-overexpressing cancers such as TNBCs.

  12. Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaramillo, Maria L.; Leon, Zully; Grothe, Suzanne

    The anti-receptor antibody, 225 mAb, is known to block binding of ligand to the epidermal growth factor receptor (EGFR). However, the effect of this neutralizing antibody on EGFR endocytosis, trafficking and degradation remains unclear. Here, we demonstrate that endocytosis of {sup 125}I-225 mAb occurs, albeit with a slower rate than that of EGF. Using pulse chase assays, we show that internalized {sup 125}I-225 mAb is recycled to the surface much more efficiently than internalized {sup 125}I-EGF. Also, we found that internalization of {sup 125}I-225 mAb, in contrast to that of EGF, is independent of receptor tyrosine kinase activity, as evidencedmore » by its insensitivity to AG1478, a specific EGFR tyrosine kinase inhibitor. Analysis of the levels of cell surface and total EGFR showed that treatment with 225 mAb results in a 30-40% decrease in surface EGFR and a relatively slow downregulation of total EGFR. Taken together, these data indicate that 225 mAb induces internalization and downregulation of EGFR via a mechanism distinct from that underlying EGF-induced EGFR internalization and downregulation.« less

  13. Anti-EGFR-Conjugated Hollow Gold Nanospheres Enhance Radiocytotoxic Targeting of Cervical Cancer at Megavoltage Radiation Energies

    NASA Astrophysics Data System (ADS)

    Liu, Jiao; Liang, Ying; Liu, Ting; Li, Dengke; Yang, Xingsheng

    2015-05-01

    The study aimed to confirm that anti-epidermal growth factor receptor (EGFR) monoclonal antibody-conjugated hollow gold nanospheres (anti-EGFR/HGNs) can be selectively uptaken by cervical cancer cells and induce its apoptosis when combined with radiotherapy, as a result enhancing radiosensitivity of cervical cancer cells. HGNs with a mean diameter of 54.6 ± 7.11 nm and wall thickness of 5.01 ± 2.23 nm were viewed by transmission electron microscopy (TEM). Cell uptake was assayed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The cytotoxicity on HeLa cells, which were used in our experiment, was assessed by CCK-8 assay. Cell cycle and apoptosis were examined by an Annexin V-FITC/propidium iodide (PI) kit with flow cytometry (FCM). The expression of several critical apoptosis-related proteins, including Bcl-2, Bax, Bad, and active caspase 3, was tested by western blot analysis. Cells treated by anti-EGFR/HGNs showed an obvious increase in nanoparticle uptake compared to naked HGNs. Anti-EGFR/HGNs combined with radiation resulted in a significant growth inhibition, compared with radiation combined with naked HGNs. Anti-EGFR/HGNs remarkably increased the ratio of HeLa cells in the G2/M phase and induced more apoptosis by an obvious deregulation of Bcl-2 and upregulation of Bax, Bad, and caspase 3 when combined with radiation. Therefore, anti-EGFR/HGNs can increase the targeted uptake of HGNs by HeLa cells and enhance radiocytotoxic targeting of cervical cancer at megavoltage radiation energies.

  14. A blood biomarker for monitoring response to anti-EGFR therapy.

    PubMed

    Hughes, Nicholas P; Xu, Lingyun; Nielsen, Carsten H; Chang, Edwin; Hori, Sharon S; Natarajan, Arutselvan; Lee, Samantha; Kjær, Andreas; Kani, Kian; Wang, Shan X; Mallick, Parag; Gambhir, Sanjiv Sam

    2018-04-13

    To monitor therapies targeted to epidermal growth factor receptors (EGFR) in non-small cell lung cancer (NSCLC), we investigated Peroxiredoxin 6 (PRDX6) as a biomarker of response to anti-EGFR agents. We studied cells that are sensitive (H3255, HCC827) or resistant (H1975, H460) to gefitinib. PRDX6 was examined with either gefitinib or vehicle treatment using enzyme-linked immunosorbent assays. We created xenograft models from one sensitive (HCC827) and one resistant cell line (H1975) and monitored serum PRDX6 levels during treatment. PRDX6 levels in cell media from sensitive cell lines increased significantly after gefitinib treatment vs. vehicle, whereas there was no significant difference for resistant lines. PRDX6 accumulation over time correlated positively with gefitinib sensitivity. Serum PRDX6 levels in gefitinib-sensitive xenograft models increased markedly during the first 24 hours of treatment and then decreased dramatically during the following 48 hours. Differences in serum PRDX6 levels between vehicle and gefitinib-treated animals could not be explained by differences in tumor burden. Our results show that changes in serum PRDX6 during the course of gefitinib treatment of xenograft models provide insight into tumor response and such an approach offers several advantages over imaging-based strategies for monitoring response to anti-EGFR agents.

  15. The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells.

    PubMed

    Eierhoff, Thorsten; Hrincius, Eike R; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina

    2010-09-09

    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake.

  16. The Epidermal Growth Factor Receptor (EGFR) Promotes Uptake of Influenza A Viruses (IAV) into Host Cells

    PubMed Central

    Eierhoff, Thorsten; Hrincius, Eike R.; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina

    2010-01-01

    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake. PMID:20844577

  17. MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

    EPA Science Inventory

    MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
    James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

  18. Modification of cytokine-induced killer cells with chimeric antigen receptors (CARs) enhances antitumor immunity to epidermal growth factor receptor (EGFR)-positive malignancies.

    PubMed

    Ren, Xuequn; Ma, Wanli; Lu, Hong; Yuan, Lei; An, Lei; Wang, Xicai; Cheng, Guanchang; Zuo, Shuguang

    2015-12-01

    Epidermal growth factor receptor (EGFR, ErbB1, Her-1) is a cell surface molecule overexpressing in a variety of human malignancies and, thus, is an excellent target for immunotherapy. Immunotherapy targeting EGFR-overexpressing malignancies using genetically modified immune effector cells is a novel and promising approach. In the present study, we have developed an adoptive cellular immunotherapy strategy based on the chimeric antigen receptor (CAR)-modified cytokine-induced killer (CAR-CIK) cells specific for the tumor cells expressing EGFR. To generate CAR-CIK cells, a lentiviral vector coding the EGFR-specific CAR was constructed and transduced into the CIK cells. The CAR-CIK cells showed significantly enhanced cytotoxicity and increased production of cytokines IFN-γ and IL-2 when co-cultured with EGFR-positive cancer cells. In tumor xenografts, adoptive immunotherapy of CAR-CIK cells could inhibit tumor growth and prolong the survival of EGFR-overexpressing human tumor xenografts. Moreover, tumor growth inhibition and prolonged survival in mice with EGFR(+) human cancer were associated with the increased persistence of CAR-CIK cells in vivo. Our study indicates that modification with EGFR-specific CAR strongly enhances the antitumor activity of the CIK cells against EGFR-positive malignancies.

  19. Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer

    PubMed Central

    Sforza, Vincenzo; Martinelli, Erika; Ciardiello, Fortunato; Gambardella, Valentina; Napolitano, Stefania; Martini, Giulia; della Corte, Carminia; Cardone, Claudia; Ferrara, Marianna L; Reginelli, Alfonso; Liguori, Giuseppina; Belli, Giulio; Troiani, Teresa

    2016-01-01

    The prognosis of patients with metastatic colorectal cancer (mCRC) remain poor despite the impressive improvement of treatments observed over the last 20 years that led to an increase in median overall survival from 6 mo, with the only best supportive care, to approximately 30 mo with the introduction of active chemotherapy drugs and targeted agents. The monoclonal antibodies (moAbs) cetuximab and panitumumab, directed against the epidermal growth factor receptor (EGFR), undoubtedly represent a major step forward in the treatment of mCRC, given the relevant efficacy in terms of progression-free survival, overall survival, response rate, and quality of life observed in several phase III clinical trials among different lines of treatment. However, the anti-EGFR moAbs were shown only to be effective in a subset of patients. For instance, KRAS and NRAS mutations have been identified as biomarkers of resistance to these drugs, improving the selection of patients who might derive a benefit from these treatments. Nevertheless, several other alterations might affect the response to these drugs, and unfortunately, even the responders eventually become resistant by developing secondary (or acquired) resistance in approximately 13-18 mo. Several studies highlighted that the landscape of responsible alterations of both primary and acquired resistance to anti-EGFR drugs biochemically converge into MEK-ERK and PIK3CA-AKT pathways. In this review, we describe the currently known mechanisms of primary and acquired resistance to anti-EGFR moAbs together with the various strategies evaluated to prevent, overcame or revert them. PMID:27605871

  20. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    PubMed Central

    2011-01-01

    Background Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Methods Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. Results EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Conclusions Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series. PMID:21266046

  1. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer.

    PubMed

    Peraldo-Neia, Caterina; Migliardi, Giorgia; Mello-Grand, Maurizia; Montemurro, Filippo; Segir, Raffaella; Pignochino, Ymera; Cavalloni, Giuliana; Torchio, Bruno; Mosso, Luciano; Chiorino, Giovanna; Aglietta, Massimo

    2011-01-25

    Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.

  2. Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer

    PubMed Central

    Herrmann, Amanda C.; Bernatchez, Chantale; Haymaker, Cara; Molldrem, Jeffrey J.; Hong, Waun Ki; Perez-Soler, Roman

    2016-01-01

    Skin toxicity is the most common toxicity caused by Epidermal Growth Factor Receptor (EGFR) inhibitors, and has been associated with clinical efficacy. As EGFR inhibitors enhance the expression of antigen presenting molecules in affected skin keratinocytes, they may concurrently facilitate neo-antigen presentation in lung cancer tumor cells contributing to anti-tumor immunity. Here, we investigated the modulatory effect of the EGFR inhibitor, erlotinib on antigen presenting molecules and PD-L1, prominent immune checkpoint protein, of skin keratinocytes and lung cancer cell lines to delineate the link between EGFR signaling pathway inhibition and potential anti-tumor immunity. Erlotinib up-regulated MHC-I and MHC-II proteins on IFNγ treated keratinocytes but abrogated IFNγ-induced expression of PD-L1, suggesting the potential role of infiltrating autoreactive T cells in the damage of keratinocytes in affected skin. Interestingly, the surface expression of MHC-I, MHC-II, and PD-L1 was up-regulated in response to IFNγ more often in lung cancer cell lines sensitive to erlotinib, but only expression of PD-L1 was inhibited by erlotinib. Further, erlotinib significantly increased T cell mediated cytotoxicity on lung cancer cells. Lastly, the analysis of gene expression dataset of 186 lung cancer cell lines from Cancer Cell Line Encyclopedia demonstrated that overexpression of PD-L1 was associated with sensitivity to erlotinib and higher expression of genes related to antigen presenting pathways and IFNγ signaling pathway. Our findings suggest that the EGFR inhibitors can facilitate anti-tumor adaptive immune responses by breaking tolerance especially in EGFR driven lung cancer that are associated with overexpression of PD-L1 and genes related to antigen presentation and inflammation. PMID:27467256

  3. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    PubMed

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  4. Location of Primary Tumor and Benefit From Anti-Epidermal Growth Factor Receptor Monoclonal Antibodies in Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer.

    PubMed

    Moretto, Roberto; Cremolini, Chiara; Rossini, Daniele; Pietrantonio, Filippo; Battaglin, Francesca; Mennitto, Alessia; Bergamo, Francesca; Loupakis, Fotios; Marmorino, Federica; Berenato, Rosa; Marsico, Valentina Angela; Caporale, Marta; Antoniotti, Carlotta; Masi, Gianluca; Salvatore, Lisa; Borelli, Beatrice; Fontanini, Gabriella; Lonardi, Sara; De Braud, Filippo; Falcone, Alfredo

    2016-08-01

    Right- and left-sided colorectal cancers (CRCs) differ in clinical and molecular characteristics. Some retrospective analyses suggested that patients with right-sided tumors derive less benefit from anti-epidermal growth factor receptor (EGFR) antibodies; however, molecular selection in those studies was not extensive. Patients with RAS and BRAF wild-type metastatic CRC (mCRC) who were treated with single-agent anti-EGFRs or with cetuximab-irinotecan (if refractory to previous irinotecan) were included in the study. Differences in outcome between patients with right- and left-sided tumors were investigated. Of 75 patients, 14 and 61 had right- and left-sided tumors, respectively. None of the right-sided tumors responded according to RECIST, compared with 24 left-sided tumors (overall response rate: 0% vs. 41%; p = .0032), and only 2 patients with right-sided tumors (15%) versus 47 patients with left-sided tumors (80%) achieved disease control (p < .0001). The median duration of progression-free survival was 2.3 and 6.6 months in patients with right-sided and left-sided tumors, respectively (hazard ratio: 3.97; 95% confidence interval: 2.09-7.53; p < .0001). Patients with right-sided RAS and BRAF wild-type mCRC seemed to derive no benefit from single-agent anti-EGFRs. Right- and left-sided colorectal tumors have peculiar epidemiological and clinicopathological characteristics, distinct gene expression profiles and genetic alterations, and different prognoses. This study assessed the potential predictive impact of primary tumor site with regard to anti-epidermal growth factor receptor (EGFR) monoclonal antibody treatment in patients with RAS and BRAF wild-type metastatic colorectal cancer. The results demonstrated the lack of activity of anti-EGFRs in RAS and BRAF wild-type, right-sided tumors, thus suggesting a potential role for primary tumor location in driving treatment choices. ©AlphaMed Press.

  5. Prediction of response to anti-EGFR antibody-based therapies by multigene sequencing in colorectal cancer patients.

    PubMed

    Lupini, Laura; Bassi, Cristian; Mlcochova, Jitka; Musa, Gentian; Russo, Marta; Vychytilova-Faltejskova, Petra; Svoboda, Marek; Sabbioni, Silvia; Nemecek, Radim; Slaby, Ondrej; Negrini, Massimo

    2015-10-27

    The anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (moAbs) cetuximab or panitumumab are administered to colorectal cancer (CRC) patients who harbor wild-type RAS proto-oncogenes. However, a percentage of patients do not respond to this treatment. In addition to mutations in the RAS genes, mutations in other genes, such as BRAF, PI3KCA, or PTEN, could be involved in the resistance to anti-EGFR moAb therapy. In order to develop a comprehensive approach for the detection of mutations and to eventually identify other genes responsible for resistance to anti-EGFR moAbs, we investigated a panel of 21 genes by parallel sequencing on the Ion Torrent Personal Genome Machine platform. We sequenced 65 CRCs that were treated with cetuximab or panitumumab. Among these, 37 samples were responsive and 28 were resistant. We confirmed that mutations in EGFR-pathway genes (KRAS, NRAS, BRAF, PI3KCA) were relevant for conferring resistance to therapy and could predict response (p = 0.001). After exclusion of KRAS, NRAS, BRAF and PI3KCA combined mutations could still significantly associate to resistant phenotype (p = 0.045, by Fisher exact test). In addition, mutations in FBXW7 and SMAD4 were prevalent in cases that were non-responsive to anti-EGFR moAb. After we combined the mutations of all genes (excluding KRAS), the ability to predict response to therapy improved significantly (p = 0.002, by Fisher exact test). The combination of mutations at KRAS and at the five gene panel demonstrates the usefulness and feasibility of multigene sequencing to assess response to anti-EGFR moAbs. The application of parallel sequencing technology in clinical practice, in addition to its innate ability to simultaneously examine the genetic status of several cancer genes, proved to be more accurate and sensitive than the presently in use traditional approaches.

  6. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    PubMed Central

    Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against the epidermal growth factor receptor (EGFR) is one of the most promising molecular therapeutics for head and neck squamous cell carcinoma (HNSCC). EGFR is overexpressed in a wide range of malignancies, including HNSCC, and initiates important signal transduction pathways in HNSCC carcinogenesis. However, primary and acquired resistance are serious problems and are responsible for low single-agent response rate and tumor recurrence. Therefore, an improved understanding of the molecular mechanisms of resistance to EGFR inhibitors may provide valuable indications to identify biomarkers that can be used clinically to predict response to EGFR blockade and to establish new treatment options to overcome resistance. To date, no predictive biomarker for HNSCC is available in the clinic. Therapeutic resistance to anti-EGFR therapy may arise from mechanisms that can compensate for reduced EGFR signaling and/or mechanisms that can modulate EGFR-dependent signaling. In this review, we will summarize some of these molecular mechanisms and describe strategies to overcome that resistance. PMID:23821327

  7. Direct interaction between surface β1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wenqing; Weng, Shuqiang; Zhang, Si

    2013-05-10

    Highlights: •β1,4GT1 interacts with EGFR both in vitro and in vivo. •β1,4GT1 co-localizes with EGFR on the cell surface. •β1,4GT1 inhibits {sup 125}I-EGF binding to EGFR. •β1,4GT1 inhibits EGF induced EGFR dimerization and phosphorylation. -- Abstract: Our previous studies showed that cell surface β1,4-galactosyltransferase 1 (β1,4GT1) negatively regulated cell survival through inhibition and modulation of the epidermal growth factor receptor (EGFR) signaling pathway in human hepatocellular carcinoma (HCC) SMMC-7721 cells. However, the underlying mechanism remains unclear. Here we demonstrated that β1,4-galactosyltransferase 1 (β1,4GT1) interacted with EGFR in vitro by GST pull-down analysis. Furthermore, we demonstrated that β1,4GT1 bound to EGFRmore » in vivo by co-immunoprecipitation and determined the co-localization of β1,4GT1 and EGFR on the cell surface via confocal laser scanning microscopy analysis. Finally, using {sup 125}I-EGF binding experiments and Western blot analysis, we found that overexpression of β1,4GT1 inhibited {sup 125}I-EGF binding to EGFR, and consequently reduced the levels of EGFR dimerization and phosphorylation. In contrast, RNAi-mediated knockdown of β1,4GT1 increased the levels of EGFR dimerization and phosphorylation. These data suggest that cell surface β1,4GT1 interacts with EGFR and inhibits EGFR activation.« less

  8. Soluble Epidermal Growth Factor Receptors (sEGFRs) in Cancer: Biological Aspects and Clinical Relevance.

    PubMed

    Maramotti, Sally; Paci, Massimiliano; Manzotti, Gloria; Rapicetta, Cristian; Gugnoni, Mila; Galeone, Carla; Cesario, Alfredo; Lococo, Filippo

    2016-04-19

    The identification of molecules that can reliably detect the presence of a tumor or predict its behavior is one of the biggest challenges of research in cancer biology. Biological fluids are intriguing mediums, containing many molecules that express the individual health status and, accordingly, may be useful in establishing the potential risk of cancer, defining differential diagnosis and prognosis, predicting the response to treatment, and monitoring the disease progression. The existence of circulating soluble growth factor receptors (sGFRs) deriving from their membrane counterparts has stimulated the interest of researchers to investigate the use of such molecules as potential cancer biomarkers. But what are the origins of circulating sGFRs? Are they naturally occurring molecules or tumor-derived products? Among these, the epidermal growth factor receptor (EGFR) is a cell-surface molecule significantly involved in cancer development and progression; it can be processed into biological active soluble isoforms (sEGFR). We have carried out an extensive review of the currently available literature on the sEGFRs and their mechanisms of regulation and biological function, with the intent to clarify the role of these molecules in cancer (and other pathological conditions) and, on the basis of the retrieved evidences, speculate about their potential use in the clinical setting.

  9. Proteomic Analysis of the Epidermal Growth Factor Receptor (EGFR) Interactome and Post-translational Modifications Associated with Receptor Endocytosis in Response to EGF and Stress*

    PubMed Central

    Tong, Jiefei; Taylor, Paul; Moran, Michael F.

    2014-01-01

    Aberrant expression, activation, and stabilization of epidermal growth factor receptor (EGFR) are causally associated with several human cancers. Post-translational modifications and protein-protein interactions directly modulate the signaling and trafficking of the EGFR. Activated EGFR is internalized by endocytosis and then either recycled back to the cell surface or degraded in the lysosome. EGFR internalization and recycling also occur in response to stresses that activate p38 MAP kinase. Mass spectrometry was applied to comprehensively analyze the phosphorylation, ubiquitination, and protein-protein interactions of wild type and endocytosis-defective EGFR variants before and after internalization in response to EGF ligand and stress. Prior to internalization, EGF-stimulated EGFR accumulated ubiquitin at 7 K residues and phosphorylation at 7 Y sites and at S1104. Following internalization, these modifications diminished and there was an accumulation of S/T phosphorylations. EGFR internalization and many but not all of the EGF-induced S/T phosphorylations were also stimulated by anisomycin-induced cell stress, which was not associated with receptor ubiquitination or elevated Y phosphorylation. EGFR protein interactions were dramatically modulated by ligand, internalization, and stress. In response to EGF, different E3 ubiquitin ligases became maximally associated with EGFR before (CBL, HUWE1, and UBR4) or after (ITCH) internalization, whereas CBLB was distinctively most highly EGFR associated following anisomycin treatment. Adaptin subunits of AP-1 and AP-2 clathrin adaptor complexes also became EGFR associated in response to EGF and anisomycin stress. Mutations preventing EGFR phosphorylation at Y998 or in the S1039 region abolished or greatly reduced EGFR interactions with AP-2 and AP-1, and impaired receptor trafficking. These results provide new insight into spatial, temporal, and mechanistic aspects of EGFR regulation. PMID:24797263

  10. Establishment of EMab-134, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody for Detecting Squamous Cell Carcinoma Cells of the Oral Cavity.

    PubMed

    Itai, Shunsuke; Yamada, Shinji; Kaneko, Mika K; Chang, Yao-Wen; Harada, Hiroyuki; Kato, Yukinari

    2017-12-01

    Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, activates downstream signaling cascades in many tumors. In this study, we established novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. We immunized mice with a combination of the extracellular domain of EGFR and EGFR-overexpressing LN229 glioblastoma cells (LN229/EGFR) and performed the first screening using enzyme-linked immunosorbent assay. Next, we selected mAbs using flow cytometry. Among 156 established clones, two mAbs, EMab-51 (IgG 1 , kappa) and EMab-134 (IgG 1 , kappa), reacted with EGFR in Western blot analysis; EMab-134 showed a much higher sensitivity compared with EMab-51. We compared the binding affinities of EMab-51 and EMab-134 using flow cytometry; the calculated K D values for EMab-51 and EMab-134 against SAS cells/HSC-2 cells were 9.2 × 10 -9 M/9.9 × 10 -9 M and 2.6 × 10 -9 M/8.3 × 10 -9 M, respectively, indicating that EMab-134 has a higher affinity to EGFR-expressing cells. Immunohistochemical analysis of EMab-51 and EMab-134 showed sensitive and specific reactions against oral cancer cells; EMab-134 demonstrated a much higher sensitivity (36/38 cases; 94.7%) to oral squamous cell carcinomas compared with EMab-51 (6/38 cases; 15.8%). This novel anti-EGFR mAb, EMab-134, could be advantageous for detecting EGFR in the pathological analysis of EGFR-expressing cancers.

  11. Prognostic significance of epidermal growth factor receptor (EGFR) over expression in urothelial carcinoma of urinary bladder.

    PubMed

    Hashmi, Atif Ali; Hussain, Zubaida Fida; Irfan, Muhammad; Khan, Erum Yousuf; Faridi, Naveen; Naqvi, Hanna; Khan, Amir; Edhi, Muhammad Muzzammil

    2018-06-07

    Epidermal growth factor receptor (EGFR) has been shown to have abnormal expression in many human cancers and is considered as a marker of poor prognosis. Frequency of over expression in bladder cancer has not been studied in our population; therefore we aimed to evaluate the frequency and prognostic significance of EGFR immunohistochemical expression in locoregional population. We performed EGFR immunohistochemistry on 126 cases of bladder cancer and association of EGFR expression with tumor grade, lamina propria invasion, deep muscle invasion and recurrence of disease was evaluated. High EGFR expression was noted in 26.2% (33 cases), 15.1% (19 cases) and 58.7% (74 cases) revealed low and no EGFR expression respectively. Significant association of EGFR expression was noted with tumor grade, lamina propria invasion, deep muscle invasion and recurrence status while no significant association was seen with age, gender and overall survival. Kaplan- Meier curves revealed significant association of EGFR expression with recurrence while no significant association was seen with overall survival. Significant association of EGFR overexpression with tumor grade, muscularis propria invasion and recurrence signifies its prognostic value; therefore EGFR can be used as a prognostic biomarker in Urothelial bladder carcinoma.

  12. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer.

    PubMed

    Filardo, Edward J

    2002-02-01

    The biological and biochemical effects of estrogen have been ascribed to its known receptors, which function as ligand-inducible transcription factors. However, estrogen also triggers rapid activation of classical second messengers (cAMP, calcium, and inositol triphosphate) and stimulation of intracellular signaling cascades mitogen-activated protein kinase (MAP K), PI3K and eNOS. These latter events are commonly activated by membrane receptors that either possess intrinsic tyrosine kinase activity or couple to heterotrimeric G-proteins. We have shown that estrogen transactivates the epidermal growth factor receptor (EGFR) to MAP K signaling axis via the G-protein-coupled receptor (GPCR), GPR30, through the release of surface-bound proHB-EGF from estrogen receptor (ER)-negative human breast cancer cells [Molecular Endocrinology 14 (2000) 1649]. This finding is consistent with a growing body of evidence suggesting that transactivation of EGFRs by GPCRs is a recurrent theme in cell signaling. GPCR-mediated transactivation of EGFRs by estrogen provides a previously unappreciated mechanism of cross-talk between estrogen and serum growth factors, and explains prior data reporting the EGF-like effects of estrogen. This novel mechanism by which estrogen activates growth factor-dependent signaling and its implications for breast cancer biology are discussed further in this review.

  13. Glioma Specific Extracellular Missense Mutations in the First Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand Independent Activation

    PubMed Central

    Ymer, Susie I.; Greenall, Sameer A.; Cvrljevic, Anna; Cao, Diana X.; Donoghue, Jacqui F.; Epa, V. Chandana; Scott, Andrew M.; Adams, Timothy E.; Johns, Terrance G.

    2011-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed or mutated in glioma. Recently, a series of missense mutations in the extracellular domain (ECD) of EGFR were reported in glioma patients. Some of these mutations clustered within a cysteine-rich region of the EGFR targeted by the therapeutic antibody mAb806. This region is only exposed when EGFR activates and appears to locally misfold during activation. We expressed two of these mutations (R324L and E330K) in NR6 mouse fibroblasts, as they do not express any EGFR-related receptors. Both mutants were autophosphorylated in the absence of ligand and enhanced cell survival and anchorage-independent and xenograft growth. The ECD truncation that produces the de2-7EGFR (or EGFRvIII), the most common EGFR mutation in glioma, generates a free cysteine in this same region. Using a technique optimized for detecting disulfide-bonded dimers, we definitively demonstrated that the de2-7EGFR is robustly dimerized and that ablation of the free cysteine prevents dimerization and activation. Modeling of the R324L mutation suggests it may cause transient breaking of disulfide bonds, leading to similar disulfide-bonded dimers as seen for the de2-7EGFR. These ECD mutations confirm that the cysteine-rich region of EGFR around the mAb806 epitope has a significant role in receptor activation. PMID:24212795

  14. The strange connection between epidermal growth factor receptor tyrosine kinase inhibitors and dapsone: from rash mitigation to the increase in anti-tumor activity.

    PubMed

    Boccellino, Mariarosaria; Quagliuolo, Lucio; Alaia, Concetta; Grimaldi, Anna; Addeo, Raffaele; Nicoletti, Giovanni Francesco; Kast, Richard Eric; Caraglia, Michele

    2016-11-01

    The presence of an aberrantly activated epidermal growth factor receptor (EGFR) in many epithelial tumors, due to its overexpression, activating mutations, gene amplification and/or overexpression of receptor ligands, represent the fundamental basis underlying the use of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Drugs inhibiting the EGFR have different mechanisms of action; while erlotinib and gefitinib inhibit the intracellular tyrosine kinase, monoclonal antibodies like cetuximab and panitumumab bind the extracellular domain of the EGFR both activating immunomediated anti-cancer effect and inhibiting receptor function. On the other hand, interleukin-8 has tumor promoting as well as neo-angiogenesis enhancing effects and several attempts have been made to inhibit its activity. One of these is based on the use of the old sulfone antibiotic dapsone that has demonstrated several interleukin-8 system inhibiting actions. Erlotinib typically gives a rash that has recently been proven to come out via up-regulated keratinocyte interleukin-8 synthesis with histological features reminiscent of typical neutrophilic dermatoses. In this review, we report experimental evidence that shows the use of dapsone to improve quality of life in erlotinib-treated patients by ameliorating rash as well as short-circuiting a growth-enhancing aspect of erlotinib based on increased interleukin-8 secretion.

  15. Congestive Heart Failure During Osimertinib Treatment for Epidermal Growth Factor Receptor (EGFR)-mutant Non-small Cell Lung Cancer (NSCLC).

    PubMed

    Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki

    2017-08-15

    We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity.

  16. Congestive Heart Failure During Osimertinib Treatment for Epidermal Growth Factor Receptor (EGFR)-mutant Non-small Cell Lung Cancer (NSCLC)

    PubMed Central

    Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki

    2017-01-01

    We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity. PMID:28781309

  17. Association between serum ligands and the skin toxicity of anti-epidermal growth factor receptor antibody in metastatic colorectal cancer.

    PubMed

    Takahashi, Naoki; Yamada, Yasuhide; Furuta, Koh; Nagashima, Kengo; Kubo, Akiko; Sasaki, Yusuke; Shoji, Hirokazu; Honma, Yoshitaka; Iwasa, Satoru; Okita, Natsuko; Takashima, Atsuo; Kato, Ken; Hamaguchi, Tetsuya; Shimada, Yasuhiro

    2015-05-01

    Skin toxicity is a known clinical signature used to predict the prognosis of anti-epidermal growth factor receptor (EGFR) antibody treatment in metastatic colorectal cancer (mCRC). There are no biological markers to predict skin toxicity before anti-EGFR antibody treatment in mCRC patients. Between August 2008 and August 2011, pretreatment serum samples were obtained from KRAS wild-type (WT) patients who received anti-EGFR antibody treatment. Serum levels of ligands were measured by ELISA. A total of 103 KRAS WT patients were enrolled in the study. Progression-free survival and overall survival of patients with a high grade (grade 2-3) of skin toxicity were significantly longer than those with a low grade (grade 0-1) of skin toxicity (median progression-free survival, 6.4 months vs 2.4 months, P < 0.001; median overall survival, 14.6 months vs 7.1 months, P = 0.006). There were significant differences in distribution of serum levels of epiregulin (EREG), amphiregulin (AREG), and hepatocyte growth factor (HGF) between groups of low/high grade of skin toxicity (P < 0.048, P < 0.012, P < 0.012, respectively). In addition, serum levels of HGF, EREG, and AREG were inversely proportional to grades of skin toxicity as determined by the Cochran-Armitage test (P = 0.019, P = 0.047, P = 0.021, respectively). Our study indicated that serum levels such as HGF, EREG, and AREG may be significant markers to predict the grade of skin toxicity and the prognosis of anti-EGFR antibody treatment, which contribute to improvement of the management of skin toxicity and survival time in mCRC patients. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  18. In Vivo Evidence for Epidermal Growth Factor Receptor (EGFR)-mediated Release of Prolactin from the Pituitary Gland

    PubMed Central

    Dahlhoff, Maik; Blutke, Andreas; Wanke, Rüdiger; Wolf, Eckhard; Schneider, Marlon R.

    2011-01-01

    Members of the epidermal growth factor receptor (EGFR/ERBB) system are essential local regulators of mammary gland development and function. Emerging evidence suggests that EGFR signaling may also influence mammary gland activity indirectly by promoting the release of prolactin from the pituitary gland in a MAPK and estrogen receptor-α (ERα)-dependent manner. Here, we report that overexpression of the EGFR ligand betacellulin (BTC) causes a lactating-like phenotype in the mammary gland of virgin female mice including the major hallmarks of lactogenesis. BTC transgenic (BTC-tg) females showed reduced levels of prolactin in the pituitary gland and increased levels of the hormone in the circulation. Furthermore, treatment of BTC-tg females with bromocriptine, an inhibitor of prolactin secretion, blocked the development of the lactation-like phenotype, suggesting that it is caused by central release of prolactin rather than by local actions of BTC in the mammary gland. Introduction of the antimorphic Egfr allele Wa5 also blocked the appearance of the mammary gland alterations, revealing that the phenotype is EGFR-dependent. We detected an increase in MAPK activity, but unchanged phosphorylation of ERα in the pituitary gland of BTC-tg females as compared with control mice. These results provide the first functional evidence in vivo for a role of the EGFR system in regulating mammary gland activity by modulating prolactin release from the pituitary gland. PMID:21914800

  19. Risk of fatigue in cancer patients receiving anti-EGFR monoclonal antibodies: results from a systematic review and meta-analysis of randomized controlled trial.

    PubMed

    Zhu, Jianhong; Zhao, Wenxia; Liang, Dan; Li, Guocheng; Qiu, Kaifeng; Wu, Junyan; Li, Jianfang

    2018-04-01

    To evaluate the association between fatigue and anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR MAbs), we conducted the first meta-analysis to access the incidence and risk of fatigue associated with anti-EGFR MAbs. Electronic databases were searched for randomized controlled trials (RCTs) published up to February 2017. Eligible studies were selected according to PRISMA statement. Incidence rates, risk ratio (RRs), and 95% confidence intervals (CIs) were calculated using fixed-effects or random-effects models. Outcomes of quality were summarized in accordance with the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) methodology. Thirty-five RCTs (including 15,622 patients) were included; median follow-up ranged from 8.1 to 71.4 months, and the fatigue events were recorded and graded according to the Common Toxicity Criteria for Adverse Events version 2.0 or 3.0 in most of the included trials. For patients receiving anti-EGFR MAbs, the overall incidence of all-grade and high-grade fatigue was 54.1% and 10.5%, respectively. Compared with control, anti-EGFR MAbs significantly increased the risk of all-grade fatigue (RR 1.10, 95% CI, 1.05-1.14, moderate-quality evidence) and high-grade fatigue (RR 1.31, 95% CI, 1.19-1.45, moderate-quality evidence). No significant differences among subgroup analyses (anti-EGFR MAbs, tumor type, and median follow-up) on high-grade fatigue were observed. No evidence of publication bias was observed. The present study suggested that anti-EGFR MAbs may increase the risk of fatigue in cancer patients.

  20. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C4-amide)-[anti-EGFR] in Dual-combination with Epirubicin-(C3-amide)-[anti-HER2/neu] against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3) and the Complementary Effect of Mebendazole

    PubMed Central

    Coyne, CP; Jones, Toni; Bear, Ryan

    2015-01-01

    Aims Delineate the feasibility of simultaneous, dual selective “targeted” chemotherapeutic delivery and determine if this molecular strategy can promote higher levels anti-neoplastic cytotoxicity than if only one covalent immunochemotherapeutic is selectively “targeted” for delivery at a single membrane associated receptor over-expressed by chemotherapeutic-resistant mammary adenocarcinoma. Methodology Gemcitabine and epirubicin were covalently bond to anti-EGFR and anti-HER2/neu utilizing a rapid multi-phase synthetic organic chemistry reaction scheme. Determination that 96% or greater gemcitabine or epirubicin content was covalently bond to immunoglobulin fractions following size separation by micro-scale column chromatography was established by methanol precipitation analysis. Residual binding-avidity of gemcitabine-(C4-amide)-[anti-EG-FR] applied in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu] was determined by cell-ELIZA utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) populations. Lack of fragmentation or polymerization was validated by SDS-PAGE/immunodetection/chemiluminescent autoradiography. Anti-neoplastic cytotoxic potency was determined by vitality stain analysis of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) monolayers known to uniquely over-express EGFR (2 × 105/cell) and HER2/neu (1 × 106/cell) receptor complexes. The covalent immunochemotherapeutics gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] were applied simultaneously in dual-combination to determine their capacity to collectively evoke elevated levels of anti-neoplastic cytotoxicity. Lastly, the tubulin/microtubule inhibitor mebendazole evaluated to determine if it’s potential to complemented the anti-neoplastic cytotoxic properties of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. Results Dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with

  1. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    PubMed Central

    Chen, Hongwei; Wang, Liya; Yu, Qiqi; Qian, Weiping; Tiwari, Diana; Yi, Hong; Wang, Andrew Y; Huang, Jing; Yang, Lily; Mao, Hui

    2013-01-01

    Antifouling magnetic iron oxide nanoparticles (IONPs) coated with block copolymer poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS) were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv) of antibody against epidermal growth factor receptor (ScFvEGFR) to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs). The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours) in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs. PMID:24124366

  2. Triple Inhibition of EGFR, Met, and VEGF Suppresses Regrowth of HGF-Triggered, Erlotinib-Resistant Lung Cancer Harboring an EGFR Mutation

    PubMed Central

    Nakade, Junya; Takeuchi, Shinji; Nakagawa, Takayuki; Ishikawa, Daisuke; Sano, Takako; Nanjo, Shigeki; Yamada, Tadaaki; Ebi, Hiromichi; Zhao, Lu; Yasumoto, Kazuo; Matsumoto, Kunio; Yonekura, Kazuhiko

    2014-01-01

    Introduction: Met activation by gene amplification and its ligand, hepatocyte growth factor (HGF), imparts resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer. We recently reported that Met activation by HGF stimulates the production of vascular endothelial growth factor (VEGF) and facilitates angiogenesis, which indicates that HGF induces EGFR-TKI resistance and angiogenesis. This study aimed to determine the effect of triple inhibition of EGFR, Met, and angiogenesis on HGF-triggered EGFR-TKI resistance in EGFR-mutant lung cancer. Methods: Three clinically approved drugs, erlotinib (an EGFR inhibitor), crizotinib (an inhibitor of anaplastic lymphoma kinase and Met), and bevacizumab (anti-VEGF antibody), and TAS-115, a novel dual TKI for Met and VEGF receptor 2, were used in this study. EGFR-mutant lung cancer cell lines PC-9, HCC827, and HGF-gene–transfected PC-9 (PC-9/HGF) cells were examined. Results: Crizotinib and TAS-115 inhibited Met phosphorylation and reversed erlotinib resistance and VEGF production triggered by HGF in PC-9 and HCC827 cells in vitro. Bevacizumab and TAS-115 inhibited angiogenesis in PC-9/HGF tumors in vivo. Moreover, the triplet erlotinib, crizotinib, and bevacizumab, or the doublet erlotinib and TAS-115 successfully inhibited PC-9/HGF tumor growth and delayed tumor regrowth associated with sustained tumor vasculature inhibition even after cessation of the treatment. Conclusion: These results suggest that triple inhibition of EGFR, HGF/Met, and VEGF/VEGF receptor 2, by either a triplet of clinical drugs or TAS-115 combined with erlotinib, may be useful for controlling progression of EGFR-mutant lung cancer by reversing EGFR-TKI resistance and for inhibiting angiogenesis. PMID:24828661

  3. EGFR Amplification as a Target in Gastroesophageal Adenocarcinoma: Do Anti-EGFR Therapies Deserve a Second Chance?

    PubMed

    Strickler, John H

    2018-06-01

    Anti-EGFR therapies have failed to improve survival for unselected patients with metastatic gastroesophageal cancer, but in a subset of patients, EGFR amplification may predict treatment benefit. Maron and colleagues report the clinical activity of anti-EGFR therapies in a cohort of patients with EGFR -amplified metastatic gastroesophageal cancer and utilize serial blood and tumor tissue collection to identify molecular drivers of treatment sensitivity and resistance. Their insights offer a path to overcome technical limitations associated with EGFR amplification and facilitate molecularly targeted therapeutic strategies. Cancer Discov; 8(6); 679-81. ©2018 AACR See related article by Maron et al., p. 696 . ©2018 American Association for Cancer Research.

  4. Development of an affinity-matured humanized anti-epidermal growth factor receptor antibody for cancer immunotherapy.

    PubMed

    Nakanishi, Takeshi; Maru, Takamitsu; Tahara, Kazuhiro; Sanada, Hideaki; Umetsu, Mitsuo; Asano, Ryutaro; Kumagai, Izumi

    2013-02-01

    We showed previously that humanization of 528, a murine anti-epidermal growth factor receptor (EGFR) antibody, causes reduced affinity for its target. Here, to improve the affinity of the humanized antibody for use in cancer immunotherapy, we constructed phage display libraries focused on the complementarity-determining regions (CDRs) of the antibody and carried out affinity selection. Two-step selections using libraries constructed in a stepwise manner enabled a 32-fold affinity enhancement of humanized 528 (h528). Thermodynamic analysis of the interactions between the variable domain fragment of h528 (h528Fv) mutants and the soluble extracellular domain of EGFR indicated that the h528Fv mutants obtained from the first selection showed a large increase in negative enthalpy change due to binding, resulting in affinity enhancement. Furthermore, mutants from the second selection showed a decrease in entropy loss, which led to further affinity maturation. These results suggest that a single mutation in the heavy chain variable domain (i.e. Tyr(52) to Trp) enthalpically contributed for overcoming the energetic barrier to the antigen-antibody interaction, which was a major hurdle for the in vitro affinity maturation of h528. We reported previously that the humanized bispecific diabody hEx3 Db, which targets EGFR and CD3, shows strong anti-tumor activity. hEx3 Db mutants, in which the variable domains of h528 were replaced with those of the affinity-enhanced mutants, were prepared and characterized. In a growth inhibition assay of tumor cells, the hEx3 Db mutants showed stronger anti-tumor activity than that of hEx3 Db, suggesting that affinity enhancement of h528Fv enhances the anti-tumor activity of the bispecific diabody.

  5. Expression of Epidermal Growth Factor Receptor and Transforming Growth Factor Alpha in Cancer Bladder: Schistosomal and Non-Schistosomal

    PubMed Central

    Badawy, Afkar A.; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Helal, Noha S.; Kamel, Amira

    2017-01-01

    Introduction Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand-receptor combination constitutes an important event in multistep tumorigenesis. Methods This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immuohistochemically stained with EGFR and TGFα antibodies. Results EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy. PMID:28413380

  6. Epidermal growth factor receptor inhibition by anti-CD147 therapy in cutaneous squamous cell carcinoma.

    PubMed

    Frederick, John W; Sweeny, Larissa; Hartman, Yolanda; Zhou, Tong; Rosenthal, Eben L

    2016-02-01

    Advanced cutaneous squamous cell carcinoma (SCC) is an uncommon and aggressive malignancy. As a result, there is limited understanding of its biology and pathogenesis. CD147 and epidermal growth factor receptor (EGFR) have been identified as oncologically important targets, but their relationship remains undefined in cutaneous SCC. Multiple cutaneous SCC cell lines (Colo-16, SRB-1, and SRB-12), were treated in vitro with a range of chimeric anti-CD147 monoclonal antibody (mAb) (0, 50, 100, and 200 µg/mL) or transfected with a small interfering RNA against CD147 (SiCD147). Cell proliferation, migration (scratch wound healing assay), and protein expression was then assessed. In vivo, Colo-16 flank xenografts were treated anti-CD147 mAb (150 µg i.p. triweekly). After treatment with anti-CD147 (200 µg/mL), there was a significant decrease in proliferation for all cell lines relative to controls (p < .005). In addition, treatment with anti-CD147 (200 µg/mL) resulted in decreased cell migration for all cell lines, with an average of 43% reduction in closure compared to controls (p < .001). Colo-16 SiCD147 expression demonstrated similar reduction in proliferation and wound closure. Anti-CD147 antibody therapy and siRNA mediated reduction in CD147 expression were both found to decrease protein expression of EGFR, which correlated with a reduction in downstream total and phosphorylated protein kinase B (pAKT). Tumor growth in vivo was reduced for both the anti-CD147 treatment group and the SiCD147 group relative to controls. Inhibition and downregulation of CD147 in cutaneous SCC resulted in suppression of the malignant phenotype in vitro and in vivo, which may be mediated in part by an alteration in EGFR expression. As a result, CD147 may serve as a potential therapeutic target for advanced cutaneous SCC. © 2014 Wiley Periodicals, Inc.

  7. Anti-MUC1 antibody inhibits EGF receptor signaling in cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hisatsune, Akinori, E-mail: hisatsun@kumamoto-u.ac.jp; Nakayama, Hideki; Kawasaki, Mitsuru

    2011-02-18

    Research highlights: {yields} We identified changes in the expression and function of EGFR by anti-MUC1 antibody. {yields} An anti-MUC1 antibody GP1.4 decreased EGFR from cell surface by internalization. {yields} GP1.4 specifically inhibited ERK signaling triggered EGF-EGFR signaling pathway. {yields} Internalization of EGFR was dependent on the presence of MUC1 on cell surface. {yields} GP1.4 significantly inhibited EGF-dependent cancer cell proliferation and migration. -- Abstract: MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. High expression of MUC1 is closely associated with cancer progression and metastasis, leading to poor prognosis. We previously reported that MUC1 is internalizedmore » by the binding of the anti-MUC1 antibody, from the cell surface to the intracellular region via the macropinocytotic pathway. Since MUC1 is closely associated with ErbBs, such as EGF receptor (EGFR) in cancer cells, we examined the effect of the anti-MUC1 antibody on EGFR trafficking. Our results show that: (1) anti-MUC1 antibody GP1.4, but not another anti-MUC1 antibody C595, triggered the internalization of EGFR in pancreatic cancer cells; (2) internalization of EGFR by GP1.4 resulted in the inhibition of ERK phosphorylation by EGF stimulation, in a MUC1 dependent manner; (3) inhibition of ERK phosphorylation by GP1.4 resulted in the suppression of proliferation and migration of pancreatic cancer cells. We conclude that the internalization of EGFR by anti-MUC1 antibody GP1.4 inhibits the progression of cancer cells via the inhibition of EGFR signaling.« less

  8. Acquired resistance to an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) in an uncommon G719S EGFR mutation.

    PubMed

    Osoegawa, Atsushi; Hashimoto, Takafumi; Takumi, Yohei; Abe, Miyuki; Yamada, Tomonori; Kobayashi, Ryoji; Miyawaki, Michiyo; Takeuchi, Hideya; Okamoto, Tatsuro; Sugio, Kenji

    2018-03-28

    Background Acquired resistance (AR) to an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is a common event, and several underlying mechanisms, including T790 M, MET amplification and PTEN downregulation, have been reported for the common EGFR mutations. EGFR G719X is an uncommon mutation that has been reported to show sensitivity to EGFR-TKIs. However, no established cell lines harboring the EGFR G719X have been reported in the literature. Materials and Methods G719S-GR cells were established from malignant pleural effusion of a patient whose tumor developed AR from gefitinib treatment. G719S-GR cells were then genotyped and tested for drug sensitivities. Multiplex ligation-dependent probe amplification (MLPA) was used to compare the clinical tumor samples with G719S-GR. Results G719S-GR cells were resistant to EGFR-TKIs with an LC50 of around 10 μM. A genomic analysis showed that G719S-GR cells harbor the EGFR G719S mutation as well as the amplification of EGFR locus. The homozygous deletion of CDKN2A and the loss of PTEN and TSC1 were also detected. On comparing the copy number of tumor suppressor genes using MLPA, G719S-GR cells were found to lack one copy of PTEN, which was not observed in a tumor obtained before gefitinib treatment. Loss of PTEN may result in AKT activation. The mTORC1/2 inhibitor Torin-1 was able to inhibit the downstream signaling when combined with osimertinib. Discussion The newly established G719S-GR cell line may be useful for investigating the mechanism underlying the development of AR in the G719X mutation; the loss of PTEN may be one such mechanism.

  9. Transforming growth factor-{alpha} enhances corneal epithelial cell migration by promoting EGFR recycling.

    PubMed

    McClintock, Jennifer L; Ceresa, Brian P

    2010-07-01

    PURPOSE. The goal of this study was to determine the molecular mechanism by which transforming growth factor-alpha (TGF-alpha) is a more potent activator of epidermal growth factor receptor (EGFR)-mediated corneal wound healing than epidermal growth factor (EGF). METHODS. Telomerase immortalized human corneal epithelial (hTCEpi) cells and primary human corneal epithelial cells were tested for their ability to migrate in response to EGF and TGF-alpha. In parallel, the endocytic trafficking of the EGFR in response to these same ligands was examined using indirect immunofluorescence, immunoblots, and radioligand binding. RESULTS. TGF-alpha, compared with EGF, is a more potent activator of corneal epithelial cell migration. Although both TGF-alpha and EGF were able to induce EGFR internalization and phosphorylation, only those receptors that were stimulated with EGF progressed to lysosomal degradation. EGFRs stimulated with TGF-alpha recycled back to the plasma membrane, where they could be reactivated with ligand. CONCLUSIONS. This study reveals that EGFR-mediated cell migration is limited by ligand-stimulated downregulation of the EGFR. This limitation can be overcome by treating cells with TGF-alpha because TGF-alpha stimulates EGFR endocytosis, but not degradation. After internalization of the TGF-alpha/EGFR complex, EGFR recycles back to the plasma membrane, where it can be restimulated. This sequence of events provides the receptor multiple opportunities for stimulation. Thus, stimulation with TGF-alpha prolongs EGFR signaling compared with EGF.

  10. Epidermal Growth Factor Receptor (EGFR) and its Cross-Talks with Topoisomerases: Challenges and Opportunities for Multi-Target Anticancer Drugs.

    PubMed

    Chauhan, Monika; Sharma, Gourav; Joshi, Gaurav; Kumar, Raj

    2016-01-01

    The interactions of Epidermal Growth Factor Receptor (EGFR) and topoisomerases have been seen in various cancer including brain, breast, ovarian, colorectal, gastric, etc. The studies in adenocarcinoma patients, chromogenic in situ hybridization, western blotting, receptor binding assay and electromobility shift assays, etc. threw light on the biophysical and biochemical features of EGFR and Topoisomerase cross-talks. It has been revealed that both the isomers of topoisomerase (Topo I and Topo II) interact via different mechanisms with EGFR. Topo II and HER2 share the same location i.e. 17q12-21 regions which could be a possible cause of predominant interactions seen between them. Topo I and EGFR interactions are mechanically related to the nucleolar translocation of heparenase by EGF and c-Jun. We compiled literature findings including the mechanistic interventions, signaling pathways, patents, in vitro and in vivo data of tested inhibitors and combinations in clinical trials, which provide convincing confirmations for the interactions of EGFR and topoisomerases. These interactions may be used for deriving a consistent route of mechanism, design and development of standard drug combinations and dual or multi inhibitors.

  11. A novel recombinant anti-epidermal growth factor receptor peptide vaccine capable of active immunization and reduction of tumor volume in a mouse model.

    PubMed

    Asadi-Ghalehni, Majid; Rasaee, Mohamad Javad; RajabiBazl, Masoumeh; Khosravani, Masood; Motaghinejad, Majid; Javanmardi, Masoud; Khalili, Saeed; Modjtahedi, Helmout; Sadroddiny, Esmaeil

    2017-12-01

    Over-expression of epidermal growth factor receptor (EGFR) has been reported in a number of human malignancies. Strong expression of this receptor has been associated with poor survival in many such patients. Active immunizations that elicit antibodies of the desired type could be an appealing alternative to conventional passive immunization. In this regard, a novel recombinant peptide vaccine capable of prophylactic and therapeutic effects was constructed. A novel fusion recombinant peptide base vaccine consisting of L2 domain of murine extra-cellular domain-EGFR and EGFR mimotope (EM-L2) was constructed and its prophylactic and therapeutic effects in a Lewis lung carcinoma mouse (C57/BL6) model evaluated. Constructed recombinant peptide vaccine is capable of reacting with anti-EGFR antibodies. Immunization of mice with EM-L2 peptide resulted in antibody production against EM-L2. The constructed recombinant peptide vaccine reduced tumor growth and increased the survival rate. Designing effective peptide vaccines could be an encouraging strategy in contemporary cancer immunotherapy. Investigating the efficacy of such cancer immunotherapy approaches may open exciting possibilities concerning hyperimmunization, leading to more promising effects on tumor regression and proliferation. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  12. Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer.

    PubMed

    Ali, Azhar; Levantini, Elena; Teo, Jun Ting; Goggi, Julian; Clohessy, John G; Wu, Chan Shuo; Chen, Leilei; Yang, Henry; Krishnan, Indira; Kocher, Olivier; Zhang, Junyan; Soo, Ross A; Bhakoo, Kishore; Chin, Tan Min; Tenen, Daniel G

    2018-02-15

    Metabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In this report, we describe a novel oncogenic signaling pathway exclusively acting in mutated epidermal growth factor receptor (EGFR) non-small cell lung cancer (NSCLC) with acquired tyrosine kinase inhibitor (TKI) resistance. Mutated EGFR mediates TKI resistance through regulation of the fatty acid synthase (FASN), which produces 16-C saturated fatty acid palmitate. Our work shows that the persistent signaling by mutated EGFR in TKI-resistant tumor cells relies on EGFR palmitoylation and can be targeted by Orlistat, an FDA-approved anti-obesity drug. Inhibition of FASN with Orlistat induces EGFR ubiquitination and abrogates EGFR mutant signaling, and reduces tumor growths both in culture systems and in vivo Together, our data provide compelling evidence on the functional interrelationship between mutated EGFR and FASN and that the fatty acid metabolism pathway is a candidate target for acquired TKI-resistant EGFR mutant NSCLC patients. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Molecular biomarkers of resistance to anti-EGFR treatment in metastatic colorectal cancer, from classical to innovation.

    PubMed

    Giampieri, Riccardo; Scartozzi, Mario; Del Prete, Michela; Maccaroni, Elena; Bittoni, Alessandro; Faloppi, Luca; Bianconi, Maristella; Cecchini, Luca; Cascinu, Stefano

    2013-11-01

    Systematic dissection of the EGFR pathway was considered as the best way to identify putative markers of resistance to anti-EGFR therapies. This kind of approach leaves other, less known but by no means less important, putative mechanisms of resistance. We tried to shed some light on these mechanisms of resistance. We performed a research through Pubmed database of all published articles highlighting mechanisms of resistance to Cetuximab and Panitumumab based therapies, published in 2000-2012 period. We reviewed the "classical" molecular factors, extensively analyzed as predictive factors for efficacy to anti-EGFR therapy, such as K-ras, B-raf, and PI3K-mTOR-Akt, focusing on their predictive or prognostic value and on the controversial aspects of the biomarker analysis for clinical practice. On the second part we will then move on to other less known molecular markers, for the future understanding of biological mechanisms underlying anti-EGFR therapy resistance, such as non-canonical heterodimer candidates, microRNA, IGF1-IGF1R, HGF-cMET and secondary mutations of EGFR. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. EGFR-TKIs resistance via EGFR-independent signaling pathways.

    PubMed

    Liu, Qian; Yu, Shengnan; Zhao, Weiheng; Qin, Shuang; Chu, Qian; Wu, Kongming

    2018-02-19

    Tyrosine kinase inhibitors (TKIs)-treatments bring significant benefit for patients harboring epidermal growth factor receptor (EGFR) mutations, especially for those with lung cancer. Unfortunately, the majority of these patients ultimately develop to the acquired resistance after a period of treatment. Two central mechanisms are involved in the resistant process: EGFR secondary mutations and bypass signaling activations. In an EGFR-dependent manner, acquired mutations, such as T790 M, interferes the interaction between TKIs and the kinase domain of EGFR. While in an EGFR-independent manner, dysregulation of other receptor tyrosine kinases (RTKs) or abnormal activation of downstream compounds both have compensatory functions against the inhibition of EGFR through triggering phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling axes. Nowadays, many clinical trials aiming to overcome and prevent TKIs resistance in various cancers are ongoing or completed. EGFR-TKIs in accompany with the targeted agents for resistance-related factors afford a promising first-line strategy to further clinical application.

  15. UBE4B Protein Couples Ubiquitination and Sorting Machineries to Enable Epidermal Growth Factor Receptor (EGFR) Degradation*

    PubMed Central

    Sirisaengtaksin, Natalie; Gireud, Monica; Yan, Qing; Kubota, Yoshihisa; Meza, Denisse; Waymire, Jack C.; Zage, Peter E.; Bean, Andrew J.

    2014-01-01

    The signaling of plasma membrane proteins is tuned by internalization and sorting in the endocytic pathway prior to recycling or degradation in lysosomes. Ubiquitin modification allows recognition and association of cargo with endosomally associated protein complexes, enabling sorting of proteins to be degraded from those to be recycled. The mechanism that provides coordination between the cellular machineries that mediate ubiquitination and endosomal sorting is unknown. We report that the ubiquitin ligase UBE4B is recruited to endosomes in response to epidermal growth factor receptor (EGFR) activation by binding to Hrs, a key component of endosomal sorting complex required for transport (ESCRT) 0. We identify the EGFR as a substrate for UBE4B, establish UBE4B as a regulator of EGFR degradation, and describe a mechanism by which UBE4B regulates endosomal sorting, affecting cellular levels of the EGFR and its downstream signaling. We propose a model in which the coordinated action of UBE4B, ESCRT-0, and the deubiquitinating enzyme USP8 enable the endosomal sorting and lysosomal degradation of the EGFR. PMID:24344129

  16. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunetto de Farias, Caroline; Children's Cancer Institute, 90420-140 Porto Alegre, RS; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling canmore » protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.« less

  17. The expression of epidermal growth factor (EGF) and its receptor (EGFR) during post-natal testes development in the yak.

    PubMed

    Pan, Y; Cui, Y; Yu, S; Zhang, Q; Fan, J; Abdul Rasheed, B; Yang, K

    2014-12-01

    Growth factors play critical role in cell proliferation, regulate tissue differentiation and modulate organogenesis. Several growth factors have been identified in the testes of various mammalian species in last few years. In present investigation, the objective was to determine the expression of epidermal growth factor (EGF) and the epidermal growth factor receptor (EGFR) in yak testicular tissue by relative quantitative real time polymerase chain reaction (RT-PCR), Western blot (WB) and immunohistochemistry (IHC) from mRNA and protein levels. The testicular tissues were collected from male yak at 6 and 24 months old. Results of RT-PCR and WB showed that the expression quantity of EGF and EGFR at 24 months of age was higher than at 6 months, and the increase rate of EGFR on mRNA and protein levels was higher than the increase rate EGF during post-natal testes development. Positive staining for EGF and EGFR was very low and mainly localized to Leydig cells testes at 6 months of age with immunohistochemistry, and seminiferous tubules were not observed. At 24 month of age, both the EGF and EGFR could be detected in Leydig cells, peritubular myoid cells, sertoli cells and germ cells of the yak testes. However, EGF and EGFR were localized to preferential adluminal compartment and basal compartment in the seminiferous tubules, respectively. In conclusion, the findings in present studies suggest that EGF and EGFR as important paracrine and/or autocrine regulators in yak testes development and spermatogenesis. © 2014 Blackwell Verlag GmbH.

  18. Redirecting T-Cell Specificity to EGFR Using mRNA to Self-limit Expression of Chimeric Antigen Receptor.

    PubMed

    Caruso, Hillary G; Torikai, Hiroki; Zhang, Ling; Maiti, Sourindra; Dai, Jianliang; Do, Kim-Anh; Singh, Harjeet; Huls, Helen; Lee, Dean A; Champlin, Richard E; Heimberger, Amy B; Cooper, Laurence J N

    2016-06-01

    Potential for on-target, but off-tissue toxicity limits therapeutic application of genetically modified T cells constitutively expressing chimeric antigen receptors (CARs) from tumor-associated antigens expressed in normal tissue, such as epidermal growth factor receptor (EGFR). Curtailing expression of CAR through modification of T cells by in vitro-transcribed mRNA species is one strategy to mitigate such toxicity. We evaluated expression of an EGFR-specific CAR coded from introduced mRNA in human T cells numerically expanded ex vivo to clinically significant numbers through coculture with activating and propagating cells (AaPC) derived from K562 preloaded with anti-CD3 antibody. The density of AaPC could be adjusted to affect phenotype of T cells such that reduced ratio of AaPC resulted in higher proportion of CD8 and central memory T cells that were more conducive to electrotransfer of mRNA than T cells expanded with high ratios of AaPC. RNA-modified CAR T cells produced less cytokine, but demonstrated similar cytolytic capacity as DNA-modified CAR T cells in response to EGFR-expressing glioblastoma cells. Expression of CAR by mRNA transfer was transient and accelerated by stimulation with cytokine and antigen. Loss of CAR abrogated T-cell function in response to tumor and normal cells expressing EGFR. We describe a clinically applicable method to propagate and modify T cells to transiently express EGFR-specific CAR to target EGFR-expressing tumor cells that may be used to limit on-target, off-tissue toxicity to normal tissue.

  19. Large-scale manufacturing of GMP-compliant anti-EGFR targeted nanocarriers: production of doxorubicin-loaded anti-EGFR-immunoliposomes for a first-in-man clinical trial.

    PubMed

    Wicki, Andreas; Ritschard, Reto; Loesch, Uli; Deuster, Stefanie; Rochlitz, Christoph; Mamot, Christoph

    2015-04-30

    We describe the large-scale, GMP-compliant production process of doxorubicin-loaded and anti-EGFR-coated immunoliposomes (anti-EGFR-ILs-dox) used in a first-in-man, dose escalation clinical trial. 10 batches of this nanoparticle have been produced in clean room facilities. Stability data from the pre-GMP and the GMP batch indicate that the anti-EGFR-ILs-dox nanoparticle was stable for at least 18 months after release. Release criteria included visual inspection, sterility testing, as well as measurements of pH (pH 5.0-7.0), doxorubicin HCl concentration (0.45-0.55 mg/ml), endotoxin concentration (<1.21 IU/ml), leakage (<10%), particle size (Z-average of Caelyx ± 20 nm), and particle uptake (uptake absolute: >0.50 ng doxorubicin/μg protein; uptake relatively to PLD: >5 fold). All batches fulfilled the defined release criteria, indicating a high reproducibility as well as batch-to-batch uniformity of the main physico-chemical features of the nanoparticles in the setting of the large-scale GMP process. In the clinical trial, 29 patients were treated with this nanoparticle between 2007 and 2010. Pharmacokinetic data of anti-EGFR-ILs-dox collected during the clinical study revealed stability of the nanocarrier in vivo. Thus, reliable and GMP-compliant production of anti-EGFR-targeted nanoparticles for clinical application is feasible. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    PubMed

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  1. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    PubMed

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01). The overall survival (OS) of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  2. Anti-epidermal or anti-vascular endothelial growth factor as first-line metastatic colorectal cancer in modified Glasgow prognostic score 2' patients

    PubMed Central

    Dréanic, Johann; Dhooge, Marion; Barret, Maximilien; Brezault, Catherine; Mir, Olivier; Chaussade, Stanislas; Coriat, Romain

    2015-01-01

    Background In metastatic colorectal cancer, the modified Glasgow prognostic score (mGPS) has been approved as an independent prognostic indicator of survival. No data existed on poor prognosis patients treated with molecular-targeted agents. Methods From January 2007 to February 2012, patients with metastatic colorectal cancer and poor predictive survival score (mGPS = 2), treated with 5-fluorouracil-based chemotherapy in addition to an anti-epidermal growth factor receptor (EGFR) or anti-vascular epidermal growth factor (VEGF) therapy, were included to assess the interest of targeted therapy within mGPS = 2' patients. Results A total of 27 mGPS = 2' patients were included and received a 5-fluorouracil-based systemic chemotherapy in addition to an anti-EGFR treatment (cetuximab; n = 18) or an anti-VEGF treatment (bevacizumab; n = 9). Median follow-up was 12.1 months (interquartile range 4.9–22). Patients were Eastern Cooperative Oncology Group (ECOG) Performance Status 1, 2, and 3 in 66% (n = 18), 26% (n = 7), and 8% (n = 2), respectively. Comparing anti-EGFR and anti-VEGF groups, median progression-free survival was 3.9 and 15.4 months, respectively, and was significantly different (P = 0.046). Conversely, the median overall survival was not significantly different between the two groups (P = 0.15). Conclusion Our study confirmed the poor survival of patients with mGPS = 2 despite the use of targeted therapy and identified the superiority of an anti-VEGF treatment in progression-free survival, without a significant benefit in the overall survival compared with the anti-EGFR therapy. Our results deserved confirmation by a prospective clinical trial. PMID:26401469

  3. Targeting epidermal growth factor receptor in the treatment of non-small-cell lung cancer.

    PubMed

    Kotsakis, Athanasios; Georgoulias, Vassilis

    2010-10-01

    The management of non-small-cell lung cancer (NSCLC) has undergone a paradigm shift in the last decade, with the survival advantage demonstrated by the incorporation of anti-epidermal growth factor receptor (EGFR) agents to the standard treatment of advanced/metastatic NSCLC. We review the existing data regarding the distinct anti-EGFR agents in the NSCLC treatment and the potential role of the investigated biomarkers in the clinical outcome. Tyrosine kinase inhibitors have been used in first-line, second-line and more settings with extremely good results in a subgroup of patients. Cetuximab remains the only anti-EGFR monoclonal antibody to show survival benefit when combined with a cytotoxic agent in the front-line setting. Anti-EGFR treatment is associated with a dramatic clinical benefit in a subgroup of patients, emphasizing the importance of customizing treatment. Several biomarkers have been investigated for their predictive or prognostic value. Validation of identification of biomarkers remains a focus of intense research that may ultimately guide therapeutic decision making, as none of these is considered ideal to discriminate responding from non-responding patients. However, the current evidence of the EGFR mutation analysis from a recent randomised trial suggests that EGFR mutation analysis is quite a good predictive marker for responsiveness to anti-EGFR TKIs. Moreover, the identification of surrogate markers to indicate optimal activity of the anti-EGFR agent is also needed. This review article provides data from large clinical trials using anti-EGFR agents and correlates these results with the tested biomarkers. EGFR inhibition has shown very encouraging results and has improved the outcome of the NSCLC treatment. However, a plateau of significant clinical benefit seems to have been reached and we believe that the time to move away from the traditional treatment approach to more individualizing therapies has come.

  4. Anti-EGFR Peptide-Conjugated Triangular Gold Nanoplates for Computed Tomography/Photoacoustic Imaging-Guided Photothermal Therapy of Non-Small Cell Lung Cancer.

    PubMed

    Zhao, Ying; Liu, Wenfei; Tian, Ying; Yang, Zhenlu; Wang, Xiaofen; Zhang, Yunlei; Tang, Yuxia; Zhao, Shuang; Wang, Chunyan; Liu, Ying; Sun, Jing; Teng, Zhaogang; Wang, Shouju; Lu, Guangming

    2018-05-23

    Non-small cell lung cancer (NSCLC) is difficult to cure because of the high recurrence rate and the side effects of current treatments. It is urgent to develop a new treatment that is safer and more effective than current treatments against NSCLC. Herein, we constructed anti-epidermal growth factor receptor (EGFR) peptide-conjugated PEGylated triangular gold nanoplates (TGN-PEG-P75) as a targeting photothermal therapy (PTT) agent to treat NSCLC under the guidance of computed tomography (CT) and photoacoustic (PA) imaging. The surface of TGNs is successfully conjugated with a novel peptide P75 that has the specific affinity to epidermal growth factor receptor (EGFR). It is found that the EGFR is overexpressed in NSCLC cells. The TGN-PEG-P75 has uniform edge length (77.9 ± 7.0 nm) and neutrally charged surface. The cell uptake experiments demonstrate remarkable affinity of the TGN-PEG-P75 to high EGFR expression cells than low EGFR expression cells (5.1-fold). Thanks to the strong near-infrared absorbance, high photothermal conversion efficiency, and the increased accumulation in tumor cells via the interaction of P75 and EGFR, TGN-PEG-P75 exhibits 3.8-fold superior therapeutic efficacy on HCC827 cells than TGN-PEG. The in vivo CT/PA dual-modal imaging of the TGN-PEG-P75 is helpful in selecting the optimal treatment time and providing real-time visual guidance of PTT. Furthermore, treatments on HCC827 tumor-bearing mouse model demonstrate that the growth of NSCLC cells can be effectively inhibited by the TGN-PEG-P75 through PTT, indicating the great promise of the nanoplatform for treating NSCLC in vivo.

  5. Structure-Directed and Tailored Diversity Synthetic Antibody Libraries Yield Novel Anti-EGFR Antagonists.

    PubMed

    Miersch, Shane; Maruthachalam, Bharathikumar Vellalore; Geyer, C Ronald; Sidhu, Sachdev S

    2017-05-19

    We tested whether grafting an interaction domain into the hypervariable loop of a combinatorial antibody library could promote targeting to a specific epitope. Formation of the epidermal growth factor receptor (EGFR) signaling heterodimer involves extensive contacts mediated by a "dimerization loop." We grafted the dimerization loop into the third hypervariable loop of a synthetic antigen-binding fragment (Fab) library and diversified other loops using a tailored diversity strategy. This structure-directed Fab library and a naı̈ve synthetic Fab library were used to select Fabs against EGFR. Both libraries yielded high affinity Fabs that bound to overlapping epitopes on cell-surface EGFR, inhibited receptor activation, and targeted epitopes distinct from those of cetuximab and panitumumab. Epitope mapping experiments revealed complex sites of interaction, comprised of domains I and II but not exclusively localized to the receptor dimerization loop. These results validate the grafting approach for designing Fab libraries and also underscore the versatility of naı̈ve synthetic libraries.

  6. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Christian; Madshus, Inger Helene; Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo

    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and inducedmore » ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: Black-Right-Pointing-Pointer Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. Black-Right-Pointing-Pointer Antibody combination causes internalization of EGFR by macropinocytosis. Black-Right-Pointing-Pointer Antibody-induced internalization of EGFR is independent of EGFR kinase activity. Black-Right-Pointing-Pointer Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.« less

  7. Transforming growth factor-alpha short-circuits downregulation of the epidermal growth factor receptor.

    PubMed

    Ouyang, X; Gulliford, T; Huang, G; Epstein, R J

    1999-04-01

    Transforming growth factor-alpha (TGFalpha) is an epidermal growth factor receptor (EGFR) ligand which is distinguished from EGF by its acid-labile structure and potent transforming function. We recently reported that TGFalpha induces less efficient EGFR heterodimerization and downregulation than does EGF (Gulliford et al., 1997, Oncogene, 15:2219-2223). Here we use isoform-specific EGFR and ErbB2 antibodies to show that the duration of EGFR signalling induced by a single TGFalpha exposure is less than that induced by equimolar EGF. The protein trafficking inhibitor brefeldin A (BFA) reduces the duration of EGF signalling to an extent similar to that seen with TGFalpha alone; the effects of TGFalpha and BFA on EGFR degradation are opposite, however, with TGFalpha sparing EGFR from downregulation but BFA accelerating EGF-dependent receptor loss. This suggests that BFA blocks EGFR recycling and thus shortens EGF-dependent receptor signalling, whereas TGFalpha shortens receptor signalling and thus blocks EGFR downregulation. Consistent with this, repeated application of TGFalpha is accompanied by prolonged EGFR expression and signalling, whereas similar application of EGF causes receptor downregulation and signal termination. These findings indicate that constitutive secretion of pH-labile TGFalpha may perpetuate EGFR signalling by permitting early oligomer dissociation and dephosphorylation within acidic endosomes, thereby extinguishing a phosphotyrosine-based downregulation signal and creating an irreversible autocrine growth loop.

  8. EZH2 expression is a prognostic biomarker in patients with colorectal cancer treated with anti-EGFR therapeutics.

    PubMed

    Yamamoto, Itaru; Nosho, Katsuhiko; Kanno, Shinichi; Igarashi, Hisayoshi; Kurihara, Hiroyoshi; Ishigami, Keisuke; Ishiguro, Kazuya; Mitsuhashi, Kei; Maruyama, Reo; Koide, Hideyuki; Okuda, Hiroyuki; Hasegawa, Tadashi; Sukawa, Yasutaka; Okita, Kenji; Takemasa, Ichiro; Yamamoto, Hiroyuki; Shinomura, Yasuhisa; Nakase, Hiroshi

    2017-03-14

    The polycomb group protein enhancer of zeste homolog 2 (EZH2) is a methyltransferase that suppresses microRNA-31 (miR-31) in various human malignancies including colorectal cancer. We recently suggested that miR-31 regulates the signaling pathway downstream of epidermal growth factor receptor (EGFR) in colorectal cancer. Therefore, we conducted this study for assessing the relationship between EZH2 expression and clinical outcomes in patients with colorectal cancer treated with anti-EGFR therapeutics. We immunohistochemically evaluated EZH2 expression and assessed miR-31 and gene mutations [KRAS (codon 61/146), NRAS (codon 12/13/61), and BRAF (codon 600)] in 109 patients with colorectal cancer harboring KRAS (codon 12/13) wild-type. We also evaluated the progression-free survival (PFS) and overall survival (OS). In the result, low EZH2 expression was significantly associated with shorter PFS (log-rank test: P = 0.023) and OS (P = 0.036) in patients with colorectal cancer. In the low-miR-31-expression group and the KRAS (codon 61/146), NRAS, and BRAF wild-type groups, a significantly shorter PFS (P = 0.022, P = 0.039, P = 0.021, and P = 0.036, respectively) was observed in the EZH2 low-expression groups than in the high-expression groups. In the multivariate analysis, low EZH2 expression was associated with a shorter PFS (P = 0.046), independent of the mutational status and miR-31. In conclusion, EZH2 expression was associated with survival in patients with colorectal cancer who were treated with anti-EGFR therapeutics. Moreover, low EZH2 expression was independently associated with shorter PFS in patients with cancer, suggesting that EZH2 expression is a useful additional prognostic biomarker for anti-EGFR therapy.

  9. Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer.

    PubMed

    Koustas, Evangelos; Karamouzis, Michalis V; Mihailidou, Chrysovalantou; Schizas, Dimitrios; Papavassiliou, Athanasios G

    2017-06-28

    The epidermal growth factor receptor (EGFR) and its associated pathway is a critical key regulator of CRC development and progression. The monoclonal antibodies (MoAbs) cetuximab and panitumumab, directed against EGFR, represent a major step forward in the treatment of metastatic colorectal cancer (mCRC), in terms of progression-free survival and overall survival in several clinical trials. However, the activity of anti-EGFR MoAbs appears to be limited to a subset of patients with mCRC. Studies have highlighted that acquired-resistance to anti-EGFR MoAbs biochemically converge into Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways. Recent data also suggest that acquired-resistance to anti-EGFR MoAbs is accompanied by inhibition of EGFR internalization, ubiqutinization, degradation and prolonged downregulation. It is well established that autophagy, a self-cannibalization process, is considered to be associated with resistance to the anti-EGFR MoAbs therapy. Additionally, autophagy induced by anti-EGFR MoAbs acts as a protective response in cancer cells. Thus, inhibition of autophagy after treatment with EGFR MoAbs can result in autophagic cell death. A combination therapy comprising of anti-EGFR MoAbs and autophagy inhibitors would represent a multi-pronged approach that could be evolved into an active therapeutic strategy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach

    PubMed Central

    Samkoe, Kimberley S.; Tichauer, Kenneth M.; Gunn, Jason R.; Wells, Wendy A.; Hasan, Tayyaba; Pogue, Brian W.

    2014-01-01

    As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant, therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry. Using multiple xenograft tumor models with varying epidermal growth factor receptor (EGFR) expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored immunohistochemistry and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot or in vitro flow cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immuno-staining, with implications for use in non-invasive monitoring of therapy or therapeutic guidance during surgery. PMID:25344226

  11. A view on EGFR-targeted therapies from the oncogene-addiction perspective.

    PubMed

    Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto

    2013-01-01

    Tumor cell growth and survival can often be impaired by inactivating a single oncogen- a phenomenon that has been called as "oncogene addiction." It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the "EGFR addiction" phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  12. ROLE OF GRB2-ASSOCIATED BINDER 1 (GAB1) IN EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)-INDUCED SIGNALING IN HEAD AND NECK SQUAMOUS CELL CARCINOMA

    PubMed Central

    Hoeben, A.; Martin, D.; Clement, P. M.; Cools, J.; Gutkind, J. S.

    2012-01-01

    The Epidermal Growth Factor Receptor (EGFR) plays an important role in the pathogenesis of head and neck squamous cell carcinoma (HNSCC). Despite the high expression of EGFR in HNSCC, EGFR inhibitors have only limited success as monotherapy. The Grb2-associated binder (GAB) family of adaptor proteins acts as docking/scaffolding molecules downstream of tyrosine kinase receptors. We hypothesized that GAB1 may amplify EGFR-induced signaling in HNSCCs and therefore could play a role in the reduced sensitivity of HNSCC to EGFR inhibitors. We used representative human HNSCC cell lines overexpressing wild type EGFR, and expressing GAB1 but not GAB2. We demonstrated that baseline Akt and MAPK signaling were reduced in HNSCC cells in which GAB1 expression was reduced. Furthermore, the maximal EGF-induced activation of the Akt and MAPK pathway was reduced and delayed, and the duration of the EGF-induced activation of these pathways was reduced in cells with GAB1 knock-down. In agreement with this, HNSCC cells in which GAB1 levels were reduced showed an increased sensitivity to the EGFR inhibitor gefitinib. Our work demonstrates that GAB1 plays an important role as part of the mechanism of by which EGFR induces induced activation of the MAPK and AKT pathway. Our results identify GAB1 as an amplifier of the EGFR-initiated signaling, which may also interfere with EGFR degradation. These findings support the emerging notion that reducing GAB1 function may sensitize HNSCC to EGFR inhibitors, hence representing a new therapeutic target HNSCC treatment in combination with EGFR targeting agents. PMID:22865653

  13. Toxicity and Pharmacokinetic Profile for Single-Dose Injection of ABY-029: a Fluorescent Anti-EGFR Synthetic Affibody Molecule for Human Use.

    PubMed

    Samkoe, Kimberley S; Gunn, Jason R; Marra, Kayla; Hull, Sally M; Moodie, Karen L; Feldwisch, Joachim; Strong, Theresa V; Draney, Daniel R; Hoopes, P Jack; Roberts, David W; Paulsen, Keith; Pogue, Brian W

    2017-08-01

    ABY-029, a synthetic Affibody peptide, Z03115-Cys, labeled with a near-infrared fluorophore, IRDye® 800CW, targeting epidermal growth factor receptor (EGFR) has been produced under good manufacturing practices for a US Food and Drug Administration-approved first-in-use human study during surgical resection of glioma, as well as other tumors. Here, the pharmacology, phototoxicity, receptor activity, and biodistribution studies of ABY-029 were completed in rats, prior to the intended human use. Male and female Sprague Dawley rats were administered a single intravenous dose of varying concentrations (0, 245, 2449, and 24,490 μg/kg corresponding to 10×, 100×, and 1000× an equivalent human microdose level) of ABY-029 and observed for up to 14 days. Histopathological assessment of organs and tissues, clinical chemistry, and hematology were performed. In addition, pharmacokinetic clearance and biodistribution of ABY-029 were studied in subgroups of the animals. Phototoxicity and ABY-029 binding to human and rat EGFR were assessed in cell culture and on immobilized receptors, respectively. Histopathological assessment and hematological and clinical chemistry analysis demonstrated that single-dose ABY-029 produced no pathological evidence of toxicity at any dose level. No phototoxicity was observed in EGFR-positive and EGFR-negative glioma cell lines. Binding strength and pharmacokinetics of the anti-EGFR Affibody molecules were retained after labeling with the dye. Based on the successful safety profile of ABY-029, the 1000× human microdose 24.5 mg/kg was identified as the no observed adverse effect level following intravenous administration. Conserved binding strength and no observed light toxicity also demonstrated ABY-029 safety for human use.

  14. A phase I study evaluating the role of the anti-epidermal growth factor receptor (EGFR) antibody cetuximab as a radiosensitizer with chemoradiation for locally advanced pancreatic cancer

    PubMed Central

    Arnoletti, J. P.; Frolov, A.; Eloubeidi, M.; Keene, K.; Posey, J.; Wood, T.; Greeno, Edward; Jhala, N.; Varadarajulu, S.; Russo, S.; Christein, J.; Oster, R.; Buchsbaum, D. J.; Vickers, S. M.

    2012-01-01

    Purpose (1) To determine the safety of the epidermal growth factor receptor (EGFR) antibody cetuximab with concurrent gemcitabine and abdominal radiation in the treatment of patients with locally advanced adenocarcinoma of the pancreas. (2) To evaluate the feasibility of pancreatic cancer cell epithelial–mesenchymal transition (EMT) molecular profiling as a potential predictor of response to anti-EGFR treatment. Methods Patients with non-metastatic, locally advanced pancreatic cancer were treated in this dose escalation study with gemcitabine (0–300 mg/m2/week) given concurrently with cetuximab (400 mg/m2 loading dose, 250 mg/m2 weekly maintenance dose) and abdominal irradiation (50.4 Gy). Expression of E-cadherin and vimentin was assessed by immunohistochemistry in diagnostic endoscopic ultrasound fine-needle aspiration (EUS-FNA) specimens. Results Sixteen patients were enrolled in 4 treatment cohorts with escalating doses of gemcitabine. Incidence of grade 1–2 adverse events was 96%, and incidence of 3–4 adverse events was 9%. There were no treatment-related mortalities. Two patients who exhibited favorable treatment response underwent surgical exploration and were intraoperatively confirmed to have unresectable tumors. Median overall survival was 10.5 months. Pancreatic cancer cell expression of E-cadherin and vimentin was successfully determined in EUS-FNA specimens from 4 patients. Conclusions Cetuximab can be safely administered with abdominal radiation and concurrent gemcitabine (up to 300 mg/m2/week) in patients with locally advanced adenocarcinoma of the pancreas. This combined therapy modality exhibited limited activity. Diagnostic EUS-FNA specimens could be analyzed for molecular markers of EMT in a minority of patients with pancreatic cancer. PMID:20589377

  15. Anti-Epidermal Growth Factor Vaccine Antibodies Enhance the Efficacy of Tyrosine Kinase Inhibitors and Delay the Emergence of Resistance in EGFR Mutant Lung Cancer Cells.

    PubMed

    Codony-Servat, Jordi; García-Roman, Silvia; Molina-Vila, Miguel Ángel; Bertran-Alamillo, Jordi; Giménez-Capitán, Ana; Viteri, Santiago; Cardona, Andrés F; d'Hondt, Erik; Karachaliou, Niki; Rosell, Rafael

    2018-05-08

    Mutations in EGFR correlate with impaired response to immune checkpoint inhibitors and the development of novel immunotherapeutic approaches for EGFR mutant non-small cell lung cancer (NSCLC) is of particular interest. Immunization against EGF has demonstrated efficacy in a phase III trial including unselected NSCLC patients, but little was known about the mechanisms involved in the effects of the anti-EGF antibodies generated by vaccination (anti-EGF VacAbs) or their activity in tumor cells with EGFR mutations. The EGFR-mutant, NSCLC cell lines H1975 and PC9, together with several gefitinib and osimertinib-resistant cells derived from PC9, were treated with anti-EGF VacAbs and/or EGFR tyrosine kinase inhibitors (TKIs). Cell viability was analyzed by proliferation assays, cell cycle by fluorescence-activated cell sorting analysis and levels of RNA and proteins by quantitative retro-transcription PCR and Western blotting. Anti-EGF VacAbs generated in rabbits suppressed EGF-induced cell proliferation and cycle progression and inhibited downstream EGFR signaling in EGFR-mutant cells. Sera from patients immunized with an EGF vaccine were also able to block activation of EGFR effectors. In combination, the anti-EGF VacAbs significantly enhanced the antitumor activity of all TKIs tested, suppressed Erk1/2 phosphorylation, blocked the activation of signal transducer and activator of transcription 3 (STAT3) and downregulated the expression of AXL. Finally, anti-EGF VacAbs significantly delayed the emergence in vitro of EGFR TKI resistant clones. EGFR-mutant patients can derive benefit from immunization against EGF, particularly if combined with EGFR TKIs. A Phase I trial of an EGF vaccine in combination with afatinib has been initiated. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  16. EGFR, HER2 and VEGF pathways: validated targets for cancer treatment.

    PubMed

    Press, Michael F; Lenz, Heinz-Josef

    2007-01-01

    Targeted therapies are rationally designed to interfere with specific molecular events that are important in tumour growth, progression or survival. Several targeted therapies with anti-tumour activity in human cancer cell lines and xenograft models have now been shown to produce objective responses, delay disease progression and, in some cases, improve survival of patients with advanced malignancies. These targeted therapies include cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody; gefitinib and erlotinib, EGFR-specific tyrosine kinase inhibitors; trastuzumab, an anti-human EGFR type 2 (HER2)-related monoclonal antibody; lapatinib, a dual inhibitor of both EGFR- and HER2-associated tyrosine kinases; and bevacizumab, an anti-vascular endothelial growth factor (VEGF) monoclonal antibody. On the basis of preclinical and clinical evidence, EGFR, HER2 and VEGF represent validated targets for cancer therapy and remain the subject of intensive investigation. Both EGFR and HER2 are targets found on cancer cells, whereas VEGF is a target that acts in the tumour microenvironment. Clinical studies are focusing on how to best incorporate targeted therapy into current treatment regimens and other studies are exploring whether different strategies for inhibiting these targets will offer greater benefit. It is clear that optimal use of targeted therapy will depend on understanding how these drugs work mechanistically, and recognising that their activities may differ across patient populations, tumour types and disease stages, as well as when and how they are used in cancer treatment. The results achieved with targeted therapies to date are promising, although they illustrate the need for additional preclinical and clinical study.

  17. Huntingtin interacting protein 1 is a novel brain tumor marker that associates with epidermal growth factor receptor.

    PubMed

    Bradley, Sarah V; Holland, Eric C; Liu, Grace Y; Thomas, Dafydd; Hyun, Teresa S; Ross, Theodora S

    2007-04-15

    Huntingtin interacting protein 1 (HIP1) is a multidomain oncoprotein whose expression correlates with increased epidermal growth factor receptor (EGFR) levels in certain tumors. For example, HIP1-transformed fibroblasts and HIP1-positive breast cancers have elevated EGFR protein levels. The combined association of HIP1 with huntingtin, the protein that is mutated in Huntington's disease, and the known overexpression of EGFR in glial brain tumors prompted us to explore HIP1 expression in a group of patients with different types of brain cancer. We report here that HIP1 is overexpressed with high frequency in brain cancers and that this overexpression correlates with EGFR and platelet-derived growth factor beta receptor expression. Furthermore, serum samples from patients with brain cancer contained anti-HIP1 antibodies more frequently than age-matched brain cancer-free controls. Finally, we report that HIP1 physically associates with EGFR and that this association is independent of the lipid, clathrin, and actin interacting domains of HIP1. These findings suggest that HIP1 may up-regulate or maintain EGFR overexpression in primary brain tumors by directly interacting with the receptor. This novel HIP1-EGFR interaction may work with or independent of HIP1 modulation of EGFR degradation via clathrin-mediated membrane trafficking pathways. Further investigation of HIP1 function in brain cancer biology and validation of its use as a prognostic or predictive brain tumor marker are now warranted.

  18. GPCRs and EGFR - Cross-talk of membrane receptors in cancer.

    PubMed

    Köse, Meryem

    2017-08-15

    G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) are two important classes of cell surface receptors proven to be highly tractable as drug targets. Both receptor classes are involved in various complex (patho-) physiological processes in the human body including cellular growth and differentiation. More recently, accumulating data suggest that GPCR-induced activation of EGFR, the prototyp of RTKs represents a major mechanism in various cancers. The present review will focus on this cross-talk with particular emphasis on intracellular scaffold proteins regulating EGFR transactivation. It will give an overview about the current status of the research and future directions, highlight recent trends in the field, and discuss the potential of therapeutic strategies combining GPCR and EGFR targeting on the one hand and specific targeting of the cross-talk on the other hand in cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antiglioma effects of N6-isopentenyladenosine, an endogenous isoprenoid end product, through the downregulation of epidermal growth factor receptor.

    PubMed

    Ciaglia, Elena; Abate, Mario; Laezza, Chiara; Pisanti, Simona; Vitale, Mario; Seneca, Vincenzo; Torelli, Giovanni; Franceschelli, Silvia; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2017-02-15

    Malignant gliomas are highly dependent on the isoprenoid pathway for the synthesis of lipid moieties critical for cell proliferation. The isoprenoid derivative N6-isopentenyladenosine (iPA) displays pleiotropic biological effects, including a direct anti-tumor activity in several tumor models. The antiglioma effects of iPA was then explored in U87MG cells both in vitro and grafted in mice and the related molecular mechanism confirmed in primary derived patients' glioma cells. iPA powerfully inhibited tumor cell growth and induced caspase-dependent apoptosis through a mechanism involving a marked accumulation of the pro-apoptotic BIM protein and inhibition of EGFR. Indeed, activating AMPK following conversion into its iPAMP active form, iPA stimulated EGFR phosphorylation and ubiquitination along a proteasome-mediated pathway which was responsible for receptor degradation and its downstream signaling pathways inhibition, including the STAT3, ERK and AKT cascade. The inhibition of AMPK by compound C prevented iPA-mediated phosphorylation of EGFR, known to precede receptor loss. As expected the block of EGFR degradation, by exposure to the proteasome inhibitor MG132, significantly reduced iPA-induced cell death. Given the importance of receptor degradation in iPA-mediated cytotoxicity, we also documented that the EGFR expression levels in a panel of primary glioma cells confers them a high sensitivity to iPA treatment. In conclusion our study provides the first evidence of iPA antiglioma effect. Indeed, as glioma is driven by aberrant signaling of growth factor receptors, particularly the EGFR, iPA, alone or in association with EGFR targeted therapies, might be a promising therapeutic tool to achieve a potent anti-tumoral effect. © 2016 UICC.

  20. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    EPA Science Inventory

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
    Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
    Center fo...

  1. Effect of verteporfin-PDT on epithelial growth factor receptor (EGFR) signaling pathway in cholangiocarcinoma cell lines

    NASA Astrophysics Data System (ADS)

    Andreola, Fausto; Cerec, Virginie; Pereira, Stephen P.

    2009-06-01

    EGFR, a member of the ERBB family, plays a pivotal role in carcinogenesis. EGFR overexpression is implicated in DNA repair and synergistic interactions between EGFR-targeting drugs and conventional chemo/radiotherapy have been reported in preclinical studies for different cancers but not cholangiocarcinoma (CCA). To date there are no in vitro data available on the cellular response and effect of either photodynamic therapy (PDT) or EGFR-targeting drugs on CCA. Therefore, we aimed to study the: (i) response to Verteporfin PDT and to EGFR-targeting drugs, as single agents; (ii) effect of PDT on ERBBs expression, phosporylation status and activation of its signaling pathways; (iii) response to combination of PDT and EGFR-targeting agents. We showed that two cholangiocarcinoma cell lines (HuCCT1 and TFK1 cells, intra- and extrahepatic, respectively) differentially respond to verteporfin-PDT treatment and are resistant to EGFR-targeting agents. A constitutive activation of EGFR in both cell lines was also observed, which could partly account for the observed resistance to EGFR-targeting drugs. In addition, verteporfin-PDT induced further phosphorylation of both EGFR and other Receptor Tyrosine Kinases. Mitochondria-independent apoptosis was induced by PDT in both CCA cell lines; in particular, PDT modulated the expression of members of the Inhibitor of Apoptosis (IAP) family of proteins. Interestingly, there was a PDT-induced EGFR nuclear translocation in both cell lines; co-treatment with either an EGFR-inhibitor (Cetuximab) or a nuclear import blocking agent (Wheat Germ Agglutinin) had an additive effect on PDT cell killing, thus implying a role of EGFR in repairing the potential PDT-induced DNA damage.

  2. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent anti-tumor activity

    PubMed Central

    Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.

    2015-01-01

    Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164

  3. Epidermal Growth Factor Receptor Expression Modulates Antitumor Efficacy of Vandetanib or Cediranib Combined With Radiotherapy in Human Glioblastoma Xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachsberger, Phyllis R., E-mail: Phyllis.wachsberger@jeffersonhospital.org; Lawrence, Yaacov R.; Liu Yi

    2012-01-01

    Purpose: The purpose of this study was to determine the ability of radiation therapy (RT) combined with the tyrosine kinase inhibitors (TKI) vandetanib (antiepidermal growth factor receptor [EGFR] plus antivascular endothelial growth factor receptor [anti-VEGFR]) and cediranib (anti-VEGFR) to inhibit glioblastoma multiforme (GBM) growth. A secondary aim was to investigate how this regimen is modulated by tumor EGFR expression. Methods and Materials: Radiosensitivity was assessed by clonogenic cell survival assay. VEGF secretion was quantified by enzyme-linked immunosorbent assay. GBM (U87MG wild-type EGFR [wtEGFR] and U87MG EGFR-null) xenografts were treated with vandetanib, cediranib, and RT, alone or in combinations. Excised tumormore » sections were stained for proliferative and survival biomarkers. Results: In vitro, U87MG wtEGFR and U87 EGFR-null cells had similar growth kinetics. Neither TKI affected clonogenic cell survival following RT. However, in vivo, exogenous overexpression of wtEGFR decreased tumor doubling time (T2x) in U87MG xenografts (2.70 vs. 4.41 days for U87MG wtEGFR vs. U87MG vector, respectively). In U87MG EGFR-null cells, TKI combined with radiation was no better than radiation therapy alone. In U87MG wtEGFR, RT in combination with vandetanib (but not with cediranib) significantly increased tumor T2x compared with RT alone (T2x, 10.4 days vs. 4.8 days; p < 0.001). In vivo, growth delay correlated with suppression of pAkt, survivin, and Ki67 expression in tumor samples. The presence of EGFR augmented RT-stimulated VEGF release; this effect was inhibited by vandetanib. Conclusions: EGFR expression promoted tumor growth in vivo but not in vitro, suggesting a microenvironmental effect. GBM xenografts expressing EGFR exhibited greater sensitivity to both cediranib and vandetanib than EGFR-null tumors. Hence EGFR status plays a major role in determining a tumor's in vivo response to radiation combined with TKI, supporting a 'personalized

  4. Confirmation of the immunoreactivity of monoclonal anti-human C-terminal EGFR antibodies in bronze Corydoras Corydoras aeneus (Callichthyidae Teleostei) by Western Blot method.

    PubMed

    Mytych, Jennifer; Satora, Leszek; Kozioł, Katarzyna

    2018-02-01

    Bronze corydoras (Corydoras aeneus) uses the distal part of the intestine as accessory respiratory organ. Our previous study showed the presence of epidermal growth factor receptor (EGFR) cytoplasmic domain in the digestive tract of the bronze corydoras. In this study, using Western Blot method, we validated the results presented in the previous research. In detail, results of Western Blot analysis on digestive and respiratory part of bronze corydoras intestine homogenates confirmed the immunoreactivity of anti-cytoplasmic domain (C-terminal) human EGFR antibodies with protein band of approximately 180kDa (EGFR molecular weight). This indicates a high homology of EGFR domain between these species and the possibility of such antibody use in bronze corydoras. Statistically significantly higher EGFR expression was observed in the respiratory part of intestine when compared to the digestive part. This implies higher proliferation activity and angiogenesis of epithelium in this part of intestine, creating conditions for air respiration. Therefore, Corydoras aeneus may be considered as a model organism for the molecular studies of the mechanisms of epithelial proliferation initiation and inhibition depending on hypoxia and normoxia. Copyright © 2017. Published by Elsevier GmbH.

  5. Bispecific light T-cell engagers for gene-based immunotherapy of epidermal growth factor receptor (EGFR)-positive malignancies.

    PubMed

    Mølgaard, Kasper; Harwood, Seandean L; Compte, Marta; Merino, Nekane; Bonet, Jaume; Alvarez-Cienfuegos, Ana; Mikkelsen, Kasper; Nuñez-Prado, Natalia; Alvarez-Mendez, Ana; Sanz, Laura; Blanco, Francisco J; Alvarez-Vallina, Luis

    2018-06-04

    The recruitment of T-cells by bispecific antibodies secreted from adoptively transferred, gene-modified autologous cells has shown satisfactory results in preclinical cancer models. Even so, the approach's translation into the clinic will require incremental improvements to its efficacy and reduction of its toxicity. Here, we characterized a tandem T-cell recruiting bispecific antibody intended to benefit gene-based immunotherapy approaches, which we call the light T-cell engager (LiTE), consisting of an EGFR-specific single-domain V HH antibody fused to a CD3-specific scFv. We generated two LiTEs with the anti-EGFR V HH and the anti-CD3 scFv arranged in both possible orders. Both constructs were well expressed in mammalian cells as highly homogenous monomers in solution with molecular weights of 43 and 41 kDa, respectively. In situ secreted LiTEs bound the cognate antigens of both parental antibodies and triggered the specific cytolysis of EGFR-expressing cancer cells without inducing T-cell activation and cytotoxicity spontaneously or against EGFR-negative cells. Light T-cell engagers are, therefore, suitable for future applications in gene-based immunotherapy approaches.

  6. Characterization of 7A7, an anti-mouse EGFR monoclonal antibody proposed to be the mouse equivalent of cetuximab.

    PubMed

    He, Xuzhi; Cruz, Jazmina L; Joseph, Shannon; Pett, Nicola; Chew, Hui Yi; Tuong, Zewen K; Okano, Satomi; Kelly, Gabrielle; Veitch, Margaret; Simpson, Fiona; Wells, James W

    2018-02-23

    The Epidermal Growth Factor Receptor (EGFR) is selectively expressed on the surface of numerous tumours, such as non-small cell lung, ovarian, colorectal and head and neck carcinomas. EGFR has therefore become a target for cancer therapy. Cetuximab is a chimeric human/mouse monoclonal antibody (mAb) that binds to EGFR, where it both inhibits signaling and induces cell death by antibody-dependent cell mediated cytotoxicity (ADCC). Cetuximab has been approved for clinical use in patients with head and neck squamous cell carcinoma (HNSCC) and colorectal cancer. However, only 15-20% patients benefit from this drug, thus new strategies to improve cetuximab efficiency are required. We aimed to develop a reliable and easy preclinical mouse model to evaluate the efficacy of EGFR-targeted antibodies and examine the immune mechanisms involved in tumour regression. We selected an anti-mouse EGFR mAb, 7A7, which has been reported to be "mouse cetuximab" and to exhibit similar properties to its human counterpart. Unfortunately, we were unable to reproduce previous results obtained with the 7A7 mAb. In our hands, 7A7 failed to recognize mouse EGFR, both in native and reducing conditions. Moreover, in vivo administration of 7A7 in an EGFR-expressing HPV38 tumour model did not have any impact on tumour regression or animal survival. We conclude that 7A7 does not recognize mouse EGFR and therefore cannot be used as the mouse equivalent of cetuximab use in humans. As a number of groups have spent effort and resources with similar issues we feel that publication is a responsible approach.

  7. Brk/PTK6 Sustains Activated EGFR Signaling through Inhibiting EGFR Degradation and Transactivating EGFR

    PubMed Central

    Li, X; Lu, Y; Liang, K; Hsu, J -M.; Albarracin, C; Mills, G B; Hung, M-C; Fan, Z

    2011-01-01

    Epidermal growth factor receptor (EGFR)-mediated cell signaling is critical for mammary epithelial cell growth and survival; however, targeting EGFR has shown no or only minimal therapeutic benefit in patients with breast cancer. Here, we report a novel regulatory mechanism of EGFR signaling that may explain the low response rates. We found that breast tumor kinase (Brk)/protein-tyrosine kinase 6 (PTK6), a nonreceptor protein tyrosine kinase highly expressed in most human breast tumors, interacted with EGFR and sustained ligand-induced EGFR signaling. We demonstrate that Brk inhibits ligand-induced EGFR degradation through uncoupling activated EGFR from Cbl-mediated EGFR ubiquitination. In addition, upon activation by EGFR, Brk directly phosphorylated Y845 in the EGFR kinase domain, thereby further potentiating EGFR kinase activity. Experimental elevation of Brk conferred resistance of breast cancer cells to cetuximab (an EGFR-blocking antibody)-induced inhibition of cell signaling and proliferation, whereas knockdown of Brk sensitized the cells to cetuximab by inducing apoptosis. Our findings reveal a previously unknown role of Brk in EGFR-targeted therapy. PMID:22231447

  8. Antitumor efficacy of triple monoclonal antibody inhibition of epidermal growth factor receptor (EGFR) with MM151 in EGFR-dependent and in cetuximab-resistant human colorectal cancer cells

    PubMed Central

    Napolitano, Stefania; Martini, Giulia; Martinelli, Erika; Della Corte, Carminia Maria; Morgillo, Floriana; Belli, Valentina; Cardone, Claudia; Matrone, Nunzia; Ciardiello, Fortunato; Troiani, Teresa

    2017-01-01

    Purpose We investigated the effect of triple monoclonal antibody inhibition of EGFR to overcome acquired resistance to first generation of anti-EGFR inhibitors. Experimental design MM151 is a mixture of three different monoclonal IgG1 antibodies directed toward three different, non-overlapping, epitopes of the EGFR. We performed an in vivo study by using human CRC cell lines (SW48, LIM 1215 and CACO2) which are sensitive to EGFR inhibitors, in order to evaluate the activity of MM151 as compared to standard anti-EGFR mAbs, such as cetuximab, as single agent or in a sequential strategy of combination MM151 with irinotecan (induction therapy) followed by MM151 with a selective MEK1/2 inhibitor (MEKi) (maintenance therapy). Furthermore, the ability of MM151 to overcome acquired resistance to cetuximab has been also evaluated in cetuximab-refractory CRC models. Results MM151 shown stronger antitumor activity as compared to cetuximab. The maintenance treatment with MM151 plus MEKi resulted the most effective therapeutic modality. In fact, this combination caused an almost complete suppression of tumor growth in SW48, LIM 1215 and CACO2 xenografts model at 30 week. Moreover, in this treatment group, mice with no evidence of tumor were more than double as compared to single agent treated mice. Its superior activity has also been demonstrated, in cetuximab-refractory CRC models. Conclusions These results provide experimental evidence that more efficient and complete EGFR blockade may determine better antitumor activity and could contribute to prevent and/or overcome acquired resistance to EGFR inhibitors. PMID:29137301

  9. The epidermal growth factor receptor (EGF-R) is present on the basolateral, but not the apical, surface of enterocytes in the human gastrointestinal tract.

    PubMed Central

    Playford, R J; Hanby, A M; Gschmeissner, S; Peiffer, L P; Wright, N A; McGarrity, T

    1996-01-01

    BACKGROUND: While it is clear that luminal epidermal growth factor (EGF) stimulates repair of the damaged bowel, its significance in maintaining normal gut growth remains uncertain. If EGF is important in maintaining normal gut growth, the EGF receptor (EGF-R) should be present on the apical (luminal) surface in addition to the basolateral surface. AIMS/SUBJECTS/METHODS: This study examined the distribution of the EGF-R in the epithelium throughout the human gastro-intestinal tract using immunohistochemistry, electron microscopy, and western blotting of brush border preparations. RESULTS: Immunostaining of the oesophagus showed circumferential EGF-R positivity in the cells of the basal portions of the stratified squamous epithelium but surface cells were EGF-R negative. In the normal stomach, small intestine, and colon, immunostaining localised the receptor to the basolateral surface with the apical membranes being consistently negative. EGF-R positivity within the small intestine appeared to be almost entirely restricted to the proliferative (crypt) region. Western blotting demonstrated a 170 kDa protein in whole tissue homogenates but not in the brush border vesicle preparations. CONCLUSIONS: As the EGF-R is located only on the basolateral surfaces in the normal adult gastrointestinal tract, the major role of luminal EGF is probably to stimulate repair rather than to maintain normal gut growth. Images Figure 1 Figure 2 Figure 3 PMID:8977341

  10. Detection of epidermal growth factor receptor gene T790M mutation in cytology samples using the cobas® EGFR mutation test.

    PubMed

    Satouchi, Miyako; Tanaka, Hiroshi; Yoshioka, Hiroshige; Shimokawaji, Tadasuke; Mizuno, Keiko; Takeda, Koji; Yoshino, Ichiro; Seto, Takashi; Kurata, Takayasu; Tashiro, Naoki; Hagiwara, Koichi

    2017-09-01

    Detection of epidermal growth factor receptor (EGFR) gene mutations is essential in deciding therapeutic strategy in non-small cell lung cancer (NSCLC) patients at initial diagnosis. Moreover, in EGFR mutation-positive (EGFRm) NSCLC patients, re-biopsy at disease progression to clarify resistance mechanisms is also important. However, collecting histology samples is often difficult because of inaccessibility and invasiveness. In some cases, only cytology samples can be collected, and studies have reported that cytology samples are appropriate for EGFR gene mutation testing. The cobas ® EGFR Mutation Test (Roche Molecular Systems Inc., Branchburg, New Jersey, USA) is approved as a companion diagnostic for osimertinib, a third-generation EGFR-tyrosine kinase inhibitor approved in Japan. However, it is not clear whether the EGFR T790M mutation can be detected in cytology samples using this test. The primary objective of this study was to assess concordance of EGFR T790M gene mutation detection between histology and matched cytology samples using the cobas ® EGFR Mutation Test. We conducted a multicenter, observational study in Japan. Overall, 41 EGFRm NSCLC patients who had both histology and cytology samples collected at the same time at re-biopsy and with the results of EGFR mutation test using histology samples were enrolled. The EGFR mutation status of both sample types was tested using the cobas ® EGFR Mutation Test and the concordance rates were calculated. The EGFR T790M mutation detection rate in histology and cytology samples was 42.5% and 37.5%, respectively. The overall percent agreement between the histology and cytology samples was 91.7%. These data demonstrate that the cobas ® EGFR Mutation Test can detect the EGFR T790M mutation in both cytology and histology samples. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blotmore » and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.« less

  12. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab.

    PubMed

    Zhang, Kai-Liang; Zhou, Xuan; Han, Lei; Chen, Lu-Yue; Chen, Ling-Chao; Shi, Zhen-Dong; Yang, Ming; Ren, Yu; Yang, Jing-Xuan; Frank, Thomas S; Zhang, Chuan-Bao; Zhang, Jun-Xia; Pu, Pei-Yu; Zhang, Jian-Ning; Jiang, Tao; Wagner, Eric J; Li, Min; Kang, Chun-Sheng

    2014-03-20

    Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the β-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy.

  13. Epidermal growth factor receptor (EGFr); results of a 6 year follow-up study in operable breast cancer with emphasis on the node negative subgroup.

    PubMed Central

    Nicholson, S.; Richard, J.; Sainsbury, C.; Halcrow, P.; Kelly, P.; Angus, B.; Wright, C.; Henry, J.; Farndon, J. R.; Harris, A. L.

    1991-01-01

    More accurate criteria are required for the selection of patients with node-negative breast cancer for systemic adjuvant therapy. Expression of epidermal growth factor receptor (EGFr) has been shown previously to be inversely related to oestrogen receptor (ER) in patients with operable breast cancer and to be associated with a poorer prognosis. Analysis of EGFr and ER was performed on tumour samples from 231 patients with operable breast cancer followed for up to 6 years after surgery. The median duration of follow-up in patients still alive at the time of analysis was 45 months. Thirty-five percent of patients (82) had tumours with greater than 10 fmol mg-1 I125-EGF binding (EGFr+) and 47% (109) and cystolic ER concentrations greater than 5 fmol mg-1 (ER+), with a marked inverse relationship between EGFr and ER (P less than 0.00001). In a univariate analysis EGFr was second only to axillary node status as a prognostic marker for all patients both in terms of relapse-free and overall survival (P less than 0.001, log rank). For patients with histologically negative axillary nodes EGFr was superior to ER in predicting relapse and survival (P less than 0.01 and P less than 0.005 respectively compared to P less than 0.1 and P less than 0.1, log rank). In a multivariate (Cox model) analysis only EGFr, out of EGFr, ER, size and grade, was predictive for either relapse-free or overall survival for patients with node-negative disease (P = 0.05 and P = 0.026 respectively). EGFr has been shown to be a marker of poor prognosis for patients with node-negative breast cancer. Since patients with EGFr+ tumours are unlikely to respond to hormone therapy it may be possible to select them for trials of systemic adjuvant chemotherapy. PMID:1846551

  14. Epidermal growth factor receptor (EGFr); results of a 6 year follow-up study in operable breast cancer with emphasis on the node negative subgroup.

    PubMed

    Nicholson, S; Richard, J; Sainsbury, C; Halcrow, P; Kelly, P; Angus, B; Wright, C; Henry, J; Farndon, J R; Harris, A L

    1991-01-01

    More accurate criteria are required for the selection of patients with node-negative breast cancer for systemic adjuvant therapy. Expression of epidermal growth factor receptor (EGFr) has been shown previously to be inversely related to oestrogen receptor (ER) in patients with operable breast cancer and to be associated with a poorer prognosis. Analysis of EGFr and ER was performed on tumour samples from 231 patients with operable breast cancer followed for up to 6 years after surgery. The median duration of follow-up in patients still alive at the time of analysis was 45 months. Thirty-five percent of patients (82) had tumours with greater than 10 fmol mg-1 I125-EGF binding (EGFr+) and 47% (109) and cystolic ER concentrations greater than 5 fmol mg-1 (ER+), with a marked inverse relationship between EGFr and ER (P less than 0.00001). In a univariate analysis EGFr was second only to axillary node status as a prognostic marker for all patients both in terms of relapse-free and overall survival (P less than 0.001, log rank). For patients with histologically negative axillary nodes EGFr was superior to ER in predicting relapse and survival (P less than 0.01 and P less than 0.005 respectively compared to P less than 0.1 and P less than 0.1, log rank). In a multivariate (Cox model) analysis only EGFr, out of EGFr, ER, size and grade, was predictive for either relapse-free or overall survival for patients with node-negative disease (P = 0.05 and P = 0.026 respectively). EGFr has been shown to be a marker of poor prognosis for patients with node-negative breast cancer. Since patients with EGFr+ tumours are unlikely to respond to hormone therapy it may be possible to select them for trials of systemic adjuvant chemotherapy.

  15. Efficacy and safety of anti-EGFR agents administered concurrently with standard therapies for patients with head and neck squamous cell carcinoma: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Tian, Yunhong; Lin, Jie; Tian, Yunming; Zhang, Guoqian; Zeng, Xing; Zheng, Ronghui; Zhang, Weijun; Yuan, Yawei

    2018-06-01

    Agents targeting epidermal growth factor receptor (EGFR) are used to treat head and neck squamous cell carcinoma (HNSCC); however, their efficacy and safety is poorly understood. Here we evaluated the efficacy and safety of anti-EGFR agents administered concurrently with standard therapies for HNSCC. Randomized controlled trials that evaluated addition of EGFR targeted therapy versus standard therapy alone were included. The primary outcome was overall survival (OS). Secondary outcomes were progression-free survival (PFS), overall response rate (ORR), locoregional control, and severe adverse events (SAEs, grade ≥ 3). Sixteen eligible trials with 4031 patients were included. Addition of anti-EGFR regimens to standard therapy significantly improved OS of patients with HNSCC (HR = 0.89; 95% CI, 0.82-0.96), with a moderately elevated rate of SAEs (RR = 1.08; 95% CI, 1.03-1.13). Subgroup analysis indicated that the survival benefit was observed when cetuximab was administered concurrently with radiotherapy (RT) for stage III/IV patients (HR = 0.76; 95% CI, 0.61-0.94; p = 0.01), or with chemotherapy for recurrent or metastatic (R/M) HNSCC (HR = 0.86; 95% CI, 0.78-0.95; p = 0.005). Significantly increased ORR (RR = 1.51; 95% CI 1.05-2.18) and PFS (HR = 0.72; 95% CI, 0.59-0.88) were found in R/M HNSCC patients treated with anti-EGFR plus chemotherapy, while no significant improvements were found in stage III/IV patients treated with anti-EGFR plus standard therapy. In conclusion, addition of cetuximab to standard therapy may improve outcomes for R/M HNSCC patients, while causing a moderate increase in SAEs. For stage III/IV patients, anti-EGFR mAb plus RT can improve OS compared with RT alone, while replacement of chemotherapy with EGFR mAb or adding EGFR mAb to combined chemotherapy and RT did not improve outcomes. © 2017 UICC.

  16. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    PubMed Central

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  17. Sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in males, smokers, and non-adenocarcinoma lung cancer in patients with EGFR mutations.

    PubMed

    Zeng, Zhu; Chen, Hua-Jun; Yan, Hong-Hong; Yang, Jin-Ji; Zhang, Xu-Chao; Wu, Yi-Long

    2013-09-27

    The demographical/clinical characteristics of being Asian, having an adenocarcinoma, being female, and being a "never-smoker" are regarded as favorable predictors for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) efficacy in non-small cell lung cancer (NSCLC) with unknown EGFR gene status. In this study, we examined the effects of the supposedly unfavorable clinical variables in EGFR-mutant patients. In total, 159 EGFR-mutant NSCLC patients' clinical features were correlated with progression-free survival (PFS), response rate (RR), and overall survival (OS). Multivariate analysis of clinical characteristics was performed using the Cox and logistic regression methods. There were 90 females (56.6%), 112 never-smokers (70.4%), and 153 patients with adenocarcinomas (96.2%). All patients were treated with EGFR-TKI, and 52.8% received TKI in a first-line setting. The median PFS of patients receiving first-line TKI was similar, regardless of gender (males vs females: 9.1 vs 9.7 months, p=0.793), smoking status (never-smokers vs smokers: 9.9 vs 9.1 months, p=0.570), or histology (adenocarcinoma vs non-adenocarcinoma: 9.7 vs 9.2 months, p=0.644). OS curves of first-line TKI-treated patients were also not associated with gender (p=0.722), smoking status (p=0.579), or histology (p=0.480). Similar results of PFS and OS were obtained for patients who received TKI beyond first-line. Multivariate analysis indicated that none of these clinical factors was an independent predictor of survival. The supposedly 'favorable' clinical factors of female gender, non-smoking status, and adenocarcinoma were not independent predictive factors for PFS or OS in this population of EGFR-mutant NSCLC patients.

  18. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Scoble, Judith A.; Li, Nan; Lovrecz, George; Waddington, Lynne J.; Tran, Nhiem; Muir, Benjamin W.; Coia, Gregory; Kirby, Nigel; Drummond, Calum J.; Mulet, Xavier

    2015-02-01

    Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles

  19. Nanobiophotonics for molecular imaging of cancer: Au- and Ag-based Epidermal Growth Factor receptor (EGFR) specific nanoprobes

    NASA Astrophysics Data System (ADS)

    Lucas, Leanne J.; Hewitt, Kevin C.

    2012-03-01

    Our aim is to create and validate a novel SERS-based nanoprobe for optical imaging of the epidermal growth factor receptor (EGFR). Gold and silver nanoparticles (Au/AgNPs) of various sizes were synthesized and coupled to epidermal growth factor (EGF) via a short ligand, α-lipoic acid (206 g/mol), which binds strongly to both Au and Ag nanoparticles via its disulfide end group. We used carbodiimide chemistry to couple EGF to α-lipoic acid. These nanoprobes were tested for binding affinity using Enzyme Linked ImmunoSorbent Assay (ELISA) and, in-vitro, using EGFRoverexpressing A431 cells. The nanoprobes show excellent EGFR-specific binding. Time of Flight Mass Spectrometry demonstrate the carbodiimide based linking of the carboxylic acid end-group of α-lipoic acid to one or more of the three (terminal, or 2 lysine) amine groups on EGF. ELISA confirms that the linked EGF is active by itself, and following conjugation with gold or silver nanoparticles. Compared with bare nanoparticles, UV-Vis spectroscopy of Ag-based nanoprobes exhibit significant plasmon red-shift, while there was no discernable shift for Au-based ones. Dark field microscopy shows abundant uptake by EGFR overexpressing A431 cells, and serves to further confirm the excellent binding affinity. Nanoprobe internalization and consequent aggregation is thought to be the basis of enhanced light scattering in the dark field images, supporting the notion that these nanoprobes should provide excellent SERS signals at all nanoprobe sizes. In summary, novel EGFR-specific nanoprobes have been synthesized and validated by standard assay and in cell culture for use as SERS optical imaging probes.

  20. Cross-talk between EGFR and IL-6 drives oncogenic signaling and offers therapeutic opportunities in cancer.

    PubMed

    Ray, Kriti; Ujvari, Beata; Ramana, Venkata; Donald, John

    2018-04-07

    Epidermal growth factor receptor (EGFR) is a known target in cancer therapy and targeting the receptor has proven to be extremely successful in treating cancers that are dependent on EGFR signaling. To that effect, targeted therapies to EGFR such as Cetuximab, Panitumumab-monoclonal antibodies and Gefitinib, Erlotinib-tyrosine kinase inhibitors have had success in therapeutic scenarios. However, the development of resistance to these drugs makes it necessary to combine anti- EGFR therapies with other inhibitors, so that resistance can be overcome by the targeting of alternate signaling pathways. On the other hand, components of the inflammatory pathway, within and around a tumor, provide a conducive environment for tumor growth by supplying numerous cytokines and chemokines that foster carcinogenesis. Interleukin 6 (IL-6) is one such cytokine that is found to be associated with inflammation-driven cancers and which also plays a crucial role in acquired resistance to anti-EGFR drugs. The EGFR and IL-6 signaling pathways crosstalk in multiple ways, through various mediators and downstream signaling pathways driving resistance and hence co-targeting them has potential for future cancer treatments. Here we provide an overview on the crosstalk between the EGFR and IL-6 pathways, and discuss how co-targeting these two pathways could be a promising combination therapy of the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Epidermal Growth Factor Receptor (EGFR) Kinase Inhibitors and Non-Small Cell Lung Cancer (NSCLC) - Advances in Molecular Diagnostic Techniques to Facilitate Targeted Therapy.

    PubMed

    Ghafoor, Qamar; Baijal, Shobhit; Taniere, Phillipe; O'Sullivan, Brendan; Evans, Matthew; Middleton, Gary

    2017-12-21

    A subset of patients with non-small cell lung cancer (NSCLC) respond well to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs), due to the presence of sensitising mutations in the gene encoding EGFR. Mutations associated with resistance to first generation EGFR TKIs have also been identified, which lead to therapeutic failure and the requirement for new drugs. Three generations of EGFR TKIs have been developed and either have been, or are being, evaluated as first and/or second line therapeutic agents. In this review, we consider the advances in molecular diagnostic techniques that are used, or are in development, to facilitate the targeted EGFR TKI therapy of patients with NSCLC. A literature search was conducted in May 2017 using PubMed, and spanning the period September 2005 (EU approval date of erlotinib) to May 2017. Search terms used were: EGFR TKI, NSCLC, clinical trial, erlotinib, gefitinib, afatinib, EGFR mutations, Exon 19 deletion, and Leu858Arg. The use of molecular data, in conjunction with other clinical and diagnostic information, will assist physicians to make the best therapeutic choice for each patient with advanced NSCLC. Personalized medicine and a rapidly developing therapy landscape will enable these patients to achieve optimal responses to EGFR TKIs.

  2. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling

    PubMed Central

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2017-01-01

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr52, which then promoted the dephosphorylation of CAR at Thr38 by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR. PMID:23652203

  3. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    PubMed

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  4. EGFR-mediated interleukin enhancer-binding factor 3 contributes to formation and survival of cancer stem-like tumorspheres as a therapeutic target against EGFR-positive non-small cell lung cancer.

    PubMed

    Cheng, Chun-Chia; Chou, Kuei-Fang; Wu, Cheng-Wen; Su, Nai-Wen; Peng, Cheng-Liang; Su, Ying-Wen; Chang, Jungshan; Ho, Ai-Sheng; Lin, Huan-Chau; Chen, Caleb Gon-Shen; Yang, Bi-Ling; Chang, Yu-Cheng; Chiang, Ya-Wen; Lim, Ken-Hong; Chang, Yi-Fang

    2018-02-01

    YM155, an inhibitor of interleukin enhancer-binding factor 3 (ILF3), significantly suppresses cancer stemness property, implying that ILF3 contributes to cell survival of cancer stem cells. However, the molecular function of ILF3 inhibiting cancer stemness remains unclear. This study aimed to uncover the potential function of ILF3 involving in cell survival of epidermal growth factor receptor (EGFR)-positive lung stem-like cancer, and to investigate the potential role to improve the efficacy of anti-EGFR therapeutics. The association of EGFR and ILF3 in expression and regulations was first investigated in this study. Lung cancer A549 cells with deprivation of ILF3 were created by the gene-knockdown method and then RNAseq was applied to identify the putative genes regulated by ILF3. Meanwhile, HCC827- and A549-derived cancer stem-like cells were used to investigate the role of ILF3 in the formation of cancer stem-like tumorspheres. We found that EGFR induced ILF3 expression, and YM155 reduced EGFR expression. The knockdown of ILF3 reduced not only EGFR expression in mRNA and protein levels, but also cell proliferation in vitro and in vivo, demonstrating that ILF3 may play an important role in contributing to cancer cell survival. Moreover, the knockdown and inhibition of ILF3 by shRNA and YM155, respectively, reduced the formation and survival of HCC827- and A549-derived tumorspheres through inhibiting ErbB3 (HER3) expression, and synergized the therapeutic efficacy of afatinib, a tyrosine kinase inhibitor, against EGFR-positive A549 lung cells. This study demonstrated that ILF3 plays an oncogenic like role in maintaining the EGFR-mediated cellular pathway, and can be a therapeutic target to improve the therapeutic efficacy of afatinib. Our results suggested that YM155, an ILF3 inhibitor, has the potential for utilization in cancer therapy against EGFR-positive lung cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells.

    PubMed

    Sangar, Vineet; Funk, Cory C; Kusebauch, Ulrike; Campbell, David S; Moritz, Robert L; Price, Nathan D

    2014-10-01

    Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Next-Generation EGFR Tyrosine Kinase Inhibitors for Treating EGFR-Mutant Lung Cancer beyond First Line

    PubMed Central

    Sullivan, Ivana; Planchard, David

    2017-01-01

    Tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (EGFR) are now standard treatment in the clinic for patients with advanced EGFR mutant non-small-cell lung cancer (NSCLC). First-generation EGFR TKIs, binding competitively and reversibly to the ATP-binding site of the EGFR tyrosine kinase domain, have resulted in a significant improvement in outcome for NSCLC patients with activating EGFR mutations (L858R and Del19). However, after a median duration of response of ~12 months, all patients develop tumor resistance, and in over half of these patients this is due to the emergence of the EGFR T790M resistance mutation. The second-generation EGFR/HER TKIs were developed to treat resistant disease, targeting not only T790M but EGFR-activating mutations and wild-type EGFR. Although they exhibited promising anti-T790M activity in the laboratory, their clinical activity among T790M+ NSCLC was poor mainly because of dose-limiting toxicity due to simultaneous inhibition of wild-type EGFR. The third-generation EGFR TKIs selectively and irreversibly target EGFR T790M and activating EGFR mutations, showing promising efficacy in NSCLC resistant to the first- and second-generation EGFR TKIs. They also appear to have lower incidences of toxicity due to the limited inhibitory effect on wild-type EGFR. Currently, the first-generation gefitinib and erlotinib and second-generation afatinib have been approved for first-line treatment of metastatic NSCLC with activating EGFR mutations. Among the third-generation EGFR TKIs, osimertinib is today the only drug approved by the Food and Drug Administration and the European Medicines Agency to treat metastatic EGFR T790M NSCLC patients who have progressed on or after EGFR TKI therapy. In this review, we summarize the available post-progression therapies including third-generation EGFR inhibitors and combination treatment strategies for treating patients with NSCLC harboring EGFR mutations and address the

  7. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptors for photothermal ablation therapy

    PubMed Central

    Melancon, Marites P.; Lu, Wei; Yang, Zhi; Zhang, Rui; Cheng, Zhi; Elliot, Andrew M.; Stafford, Jason; Olson, Tammy; Zhang, Jin Z.; Li, Chun

    2009-01-01

    Laser-induced phototherapy is a new therapeutic use of electromagnetic radiation for cancer treatment. The use of targeted plasmonic gold nanoparticles can reduce the laser energy necessary for selective tumor cell destruction. However, the ability for targeted delivery of the currently used gold nanoparticles to tumor cells is limited. Here, we describe a new class of molecular specific photothermal coupling agents based on hollow gold nanoshells (HAuNS, average diameter ~30 nm) covalently attached to monoclonal antibody directed at epidermal growth factor receptor (EGFR). The resulting anti-EGFR-HAuNS exhibited excellent colloidal stability and efficient photothermal effect in the near-infrared region. EGFR-mediated, selective uptake of anti-EGFR-HAuNS in EGFR-positive A431 tumor cells but not IgG-HAuNS control was demonstrated in vitro by imaging scattered light from the nanoshells. Irradiation of A431 cells treated with anti-EGFR-HAuNS with near-infrared laser resulted in selective destruction of these cells. In contrast, cells treated with anti-EGFR-HAuNS alone, laser alone, or IgG-HAuNS plus laser did not show observable effect on cell viability. Using 111In-labeled HAuNS, we showed that anti-EGFR-HAuNS could be delivered to EGFR-positive tumors at 6.8% of injected dose per gram of tissue, and the microscopic image of excised tumor with scattering signal from nanoshells confirmed preferential delivery to A431 tumor of anti-EGFR-HAuNS compared with IgG-HAuNS. The absence of silica core, the relatively small particle size and high tumor uptake, and the absence of cytotoxic surfactant required to stabilize other gold nanoparticles suggest that immuno-hollow gold nanoshells have the potential to extend to in vivo molecular therapy. PMID:18566244

  8. Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence.

    PubMed

    Troiani, Teresa; Napolitano, Stefania; Della Corte, Carminia Maria; Martini, Giulia; Martinelli, Erika; Morgillo, Floriana; Ciardiello, Fortunato

    2016-01-01

    Epidermal growth factor receptor (EGFR) plays a key role in tumour evolution, proliferation and immune evasion, and is one of the most important targets for biological therapy, especially for non-small-cell lung cancer (NSCLC) and colorectal cancer (CRC). In the past 15 years, several EGFR antagonists have been approved for the treatment of NSCLC and metastatic CRC (mCRC). To optimise the use of anti-EGFR agents in clinical practice, various clinical and molecular biomarkers have been investigated, thus moving their indication from unselected to selected populations. Nowadays, anti-EGFR drugs represent a gold-standard therapy for metastatic NSCLC harbouring EGFR activating mutation and for RAS wild-type mCRC. Their clinical efficacy is limited by the presence of intrinsic resistance or the onset of acquired resistance. In this review, we provide an overview of the antitumour activity of EGFR inhibitors in NSCLC and CRC and of mechanisms of resistance, focusing on the development of a personalised approach through 15 years of preclinical and clinical research.

  9. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer.

    PubMed

    Misale, Sandra; Yaeger, Rona; Hobor, Sebastijan; Scala, Elisa; Janakiraman, Manickam; Liska, David; Valtorta, Emanuele; Schiavo, Roberta; Buscarino, Michela; Siravegna, Giulia; Bencardino, Katia; Cercek, Andrea; Chen, Chin-Tung; Veronese, Silvio; Zanon, Carlo; Sartore-Bianchi, Andrea; Gambacorta, Marcello; Gallicchio, Margherita; Vakiani, Efsevia; Boscaro, Valentina; Medico, Enzo; Weiser, Martin; Siena, Salvatore; Di Nicolantonio, Federica; Solit, David; Bardelli, Alberto

    2012-06-28

    A main limitation of therapies that selectively target kinase signalling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), is effective in a subset of KRAS wild-type metastatic colorectal cancers. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood. Here we show that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance, but resistant cells remained sensitive to combinatorial inhibition of EGFR and mitogen-activated protein-kinase kinase (MEK). Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6 out of 10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab-treated patients as early as 10 months before radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.

  10. Polyethylene Glycol Mediated Colorectal Cancer Chemoprevention: Roles of Epidermal Growth Factor Receptor and Snail

    PubMed Central

    Wali, Ramesh K.; Kunte, Dhananjay P.; Koetsier, Jennifer L.; Bissonnette, Marc; Roy, Hemant K.

    2008-01-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We previously reported that Snail/β-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overepressed in ~80% of human colorectal cancers (CRC), on PEG-mediated anti-proliferative and hence anti-neoplastic effects in azoxymethane (AOM)-rats and HT-29 colon cancer cells. AOM-rats were randomized to either standard diet or one with 10% PEG 3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (p<0.001). Similar PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pre-treating cells with gefitinib or stably transfecting with EGFR-shRNA and measured the effect of PEG on proliferation. In either case PEG effect was blunted suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-shRNA cells, besides having reduced membrane EGFR also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/β-catenin pathway playing the central intermediary function. PMID:18790788

  11. Isolation of a human anti-epidermal growth factor receptor Fab antibody, EG-19-11, with subnanomolar affinity from naïve immunoglobulin repertoires using a hierarchical antibody library system.

    PubMed

    Hur, Byung-ung; Yoon, Jae-bong; Liu, Li-Kun; Cha, Sang-hoon

    2010-11-30

    Specific antibodies that possess a subnanomolar affinity are very difficult to obtain from human naïve immunoglobulin repertoires without the use of lengthy affinity optimization procedures. Here, we designed a hierarchical phage-displayed antibody library system to generate an enormous diversity of combinatorial Fab fragments (6×10(17)) and attempted to isolate high-affinity Fabs against the human epidermal growth factor receptor (EGFR). A primary antibody library, designated HuDVFab-8L, comprising 4.5×10(9) human naïve heavy chains and eight unspecified human naïve light chains was selected against the EGFR-Fc protein by biopanning, and four anti-EGFR Fab clones were isolated. Because one of the Fab clones, denoted EG-L2-11, recognized a native EGFR expressed on A431 cells, the heavy chain of the Fab was shuffled with a human naïve light chain repertoire with a diversity of 1.4×10(8) and selected a second time against the EGFR-Fc protein again. One EG-L2-11 variant, denoted EG-19-11, recognized an EGFR epitope that was almost the same as that bound by cetuximab and had a K(D) of approximately 540 pM for soluble EGFR, which is about 7-fold higher than that of the FabC225 derived from cetuximab. This variant was also internalized by A431 cells, likely via receptor-mediated endocytosis, and it efficiently inhibited EGF-mediated tyrosine phosphorylation of the EGFR. These results demonstrate that the use of our hierarchical antibody library system is advantageous in generating fully human antibodies especially with a therapeutic purpose. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. DNA methylation down-regulates EGFR expression in chicken

    USDA-ARS?s Scientific Manuscript database

    The epidermal growth factor receptor (EGFR), a growth-factor-receptor tyrosine kinase, was found up-regulated in numerous tumors, which provides a good target for cancer therapy. Although it was documented that oncoviruses are responsible for the activation of EGFR in tumors, the impact of Marek’s d...

  13. Epidermal growth factor receptor inhibitors in cancer treatment: advances, challenges and opportunities.

    PubMed

    Modjtahedi, Helmout; Essapen, Sharadah

    2009-11-01

    Aberrant expression of the epidermal growth factor receptor (EGFR) system has been reported in a wide range of epithelial cancers. In some studies, this has also been associated with a poor prognosis and resistance to the conventional forms of therapies. These discoveries have led to the strategic development of several kinds of EGFR inhibitors, five of which have gained US Food and Drug Administration approval for the treatment of patients with non-small-cell lung cancer (gefitinib and erlotinib), metastatic colorectal cancer (cetuximab and panitumumab), head and neck (cetuximab), pancreatic cancer (erlotinib) and breast (lapatinib) cancer. Despite these advances and recent studies on the predictive value of activating EGFR mutation and KRAS mutations with response in non-small-cell lung cancer and colon cancer patients, there is currently no reliable predictive marker for response to therapy with the anti-EGFR monoclonal antibodies cetuximab and panitumumab or the small molecule EGFR tyrosine kinase inhibitors gefitinib and erlotinib. In particular, there has been no clear association between the expression of EGFR, determined by the US Food and Drug Administration-approved EGFR PharmDX kit, and response to the EGFR inhibitors. Here, we discuss some of the controversial data and explanatory factors as well as future studies for the establishment of more reliable markers for response to therapy with EGFR inhibitors. Such investigations should lead to the selection of a more specific subpopulation of cancer patients who benefit from therapy with EGFR inhibitors, but equally to spare those who will receive no benefit or a detrimental effect from such biological agents.

  14. EGFR-driven up-regulation of decoy receptor 3 in keratinocytes contributes to the pathogenesis of psoriasis.

    PubMed

    Wu, Nan-Lin; Huang, Duen-Yi; Hsieh, Shie-Liang; Hsiao, Cheng-Hsiang; Lee, Te-An; Lin, Wan-Wan

    2013-10-01

    Decoy receptor 3 (DcR3) is a soluble receptor of Fas ligand (FasL), LIGHT (TNFSF14) and TNF-like molecule 1A (TL1A) and plays pleiotropic roles in many inflammatory and autoimmune disorders and malignant diseases. In cutaneous biology, DcR3 is expressed in primary human epidermal keratinocytes and is upregulated in skin lesions in psoriasis, which is characterized by chronic inflammation and angiogenesis. However, the regulatory mechanisms of DcR3 over-expression in skin lesions of psoriasis are unknown. Here, we demonstrate that DcR3 can be detected in both dermal blood vessels and epidermal layers of psoriatic skin lesions. Analysis of serum samples showed that DcR3 was elevated, but FasL was downregulated in psoriatic patients compared with normal individuals. Additional cell studies revealed a central role of epidermal growth factor receptor (EGFR) in controlling the basal expression of DcR3 in keratinocytes. Activation of EGFR by epidermal growth factor (EGF) and transforming growth factor (TGF)-α strikingly upregulated DcR3 production. TNF-αenhanced DcR3 expression in both keratinocytes and endothelial cells compared with various inflammatory cytokines involved in psoriasis. Additionally, TNF-α-enhanced DcR3 expression in keratinocytes was inhibited when EGFR was knocked down or EGFR inhibitor was used. The NF-κB pathway was critically involved in the molecular mechanisms underlying the action of EGFR and inflammatory cytokines. Collectively, the novel regulatory mechanisms of DcR3 expression in psoriasis, particularly in keratinocytes and endothelial cells, provides new insight into the pathogenesis of psoriasis and may also contribute to the understanding of other diseases that involve DcR3 overexpression. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFRmore » (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.« less

  16. Ligand-Independent Epidermal Growth Factor Receptor Overexpression Correlates with Poor Prognosis in Colorectal Cancer.

    PubMed

    Yun, Sumi; Kwak, Yoonjin; Nam, Soo Kyung; Seo, An Na; Oh, Heung-Kwon; Kim, Duck-Woo; Kang, Sung-Bum; Lee, Hye Seung

    2018-01-17

    Molecular treatments targeting epidermal growth factor receptors (EGFRs) are important strategies for advanced colorectal cancer (CRC). However, clinicopathologic implications of EGFRs and EGFR ligand signaling have not been fully evaluated. We evaluated the expression of EGFR ligands and correlation with their receptors, clinicopathologic factors, and patients' survival with CRC. The expression of EGFR ligands, including heparin binding epidermal growth factor like growth factor (HBEGF), transforming growth factor (TGF), betacellulin, and epidermal growth factor (EGF), were evaluated in 331 consecutive CRC samples using mRNA in situ hybridization (ISH). We also evaluated the expression status of EGFR, human epidermal growth factor receptor 2 (HER2), HER3, and HER4 using immunohistochemistry and/or silver ISH. Unlike low incidences of TGF (38.1%), betacellulin (7.9%), and EGF (2.1%), HBEGF expression was noted in 62.2% of CRC samples. However, the expression of each EGFR ligand did not reveal significant correlations with survival. The combined analyses of EGFR ligands and EGFR expression indicated that the ligands‒/EGFR+ group showed a significant association with the worst disease-free survival (DFS, p=0.018) and overall survival (OS, p=0.005). It was also an independent, unfavorable prognostic factor for DFS (p=0.026) and OS (p=0.007). Additionally, HER4 nuclear expression, regardless of ligand expression, was an independent, favorable prognostic factor for DFS (p=0.034) and OS (p=0.049), by multivariate analysis. Ligand-independent EGFR overexpression was suggested to have a significant prognostic impact; thus, the expression status of EGFR ligands, in addition to EGFR, might be necessary for predicting patients' outcome in CRC.

  17. 3D-QSAR and docking studies on 4-anilinoquinazoline and 4-anilinoquinoline epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors

    NASA Astrophysics Data System (ADS)

    Assefa, Haregewein; Kamath, Shantaram; Buolamwini, John K.

    2003-08-01

    The overexpression and/or mutation of the epidermal growth factor receptor (EGFR) tyrosine kinase has been observed in many human solid tumors, and is under intense investigation as a novel anticancer molecular target. Comparative 3D-QSAR analyses using different alignments were undertaken employing comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) for 122 anilinoquinazoline and 50 anilinoquinoline inhibitors of EGFR kinase. The SYBYL multifit alignment rule was applied to three different conformational templates, two obtained from a MacroModel Monte Carlo conformational search, and one from the bound conformation of erlotinib in complex with EGFR in the X-ray crystal structure. In addition, a flexible ligand docking alignment obtained with the GOLD docking program, and a novel flexible receptor-guided consensus dynamics alignment obtained with the DISCOVER program in the INSIGHTII modeling package were also investigated. 3D-QSAR models with q2 values up to 0.70 and r2 values up to 0.97 were obtained. Among the 4-anilinoquinazoline set, the q2 values were similar, but the ability of the different conformational models to predict the activities of an external test set varied considerably. In this regard, the model derived using the X-ray crystallographically determined bioactive conformation of erlotinib afforded the best predictive model. Electrostatic, hydrophobic and H-bond donor descriptors contributed the most to the QSAR models of the 4-anilinoquinazolines, whereas electrostatic, hydrophobic and H-bond acceptor descriptors contributed the most to the 4-anilinoquinoline QSAR, particularly the H-bond acceptor descriptor. A novel receptor-guided consensus dynamics alignment has also been introduced for 3D-QSAR studies. This new alignment method may incorporate to some extent ligand-receptor induced fit effects into 3D-QSAR models.

  18. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system.

    PubMed

    Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A

    2004-08-01

    In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.

  19. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    PubMed

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  20. CD147, CD44, and the Epidermal Growth Factor Receptor (EGFR) Signaling Pathway Cooperate to Regulate Breast Epithelial Cell Invasiveness*

    PubMed Central

    Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.

    2013-01-01

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049

  1. Predictive biomarkers for response to EGFR-directed monoclonal antibodies for advanced squamous cell lung cancer.

    PubMed

    Bonomi, P D; Gandara, D; Hirsch, F R; Kerr, K M; Obasaju, C; Paz-Ares, L; Bellomo, C; Bradley, J D; Bunn, P A; Culligan, M; Jett, J R; Kim, E S; Langer, C J; Natale, R B; Novello, S; Pérol, M; Ramalingam, S S; Reck, M; Reynolds, C H; Smit, E F; Socinski, M A; Spigel, D R; Vansteenkiste, J F; Wakelee, H; Thatcher, N

    2018-06-14

    Upregulated expression and aberrant activation of the epidermal growth-factor receptor (EGFR) are found in lung cancer, making EGFR a relevant target for non-small-cell lung cancer (NSCLC). Treatment with anti-EGFR monoclonal antibodies (mAbs) is associated with modest improvement in overall survival in patients with squamous cell lung cancer (SqCLC) who have a significant unmet need for effective treatment options. While there is evidence that using EGFR gene copy number, EGFR mutation, and EGFR protein expression as biomarkers can help select patients who respond to treatment, it is important to consider biomarkers for response in patients treated with combination therapies that include EGFR mAbs. Randomized trials of EGFR-directed mAbs cetuximab and necitumumab in combination with chemotherapy, immunotherapy, or anti-angiogenic therapy in patients with advanced NSCLC, including SqCLC, were searched in the literature. Results of associations of potential biomarkers and outcomes were summarized. Results. Data from phase III clinical trials indicate that patients with NSCLC, including SqCLC, whose tumors express high levels of EGFR protein (H-score of ≥ 200) and/or gene copy numbers of EGFR (e.g., ≥40% cells with ≥4 EGFR copies as detected by fluorescence in situ hybridization; gene amplification in ≥ 10% of analyzed cells) derive greater therapeutic benefits from EGFR-directed mAbs. Biomarker data are limited for EGFR mAbs used in combination with immunotherapy and are absent when used in combination with anti-angiogenic agents. Therapy with EGFR-directed mAbs in combination with chemotherapy is associated with greater clinical benefits in patients with NSCLC, including SqCLC, whose tumors express high levels of EGFR protein and/or have increased EGFR gene copy number. These data support validating the role of these as biomarkers to identify those patients who derive the greatest clinical benefit from EGFR mAb therapy. However, data on biomarkers

  2. Predicting response to EGFR inhibitors in metastatic colorectal cancer: current practice and future directions.

    PubMed

    Shankaran, Veena; Obel, Jennifer; Benson, Al B

    2010-01-01

    The identification of KRAS mutational status as a predictive marker of response to antibodies against the epidermal growth factor receptor (EGFR) has been one of the most significant and practice-changing recent advances in colorectal cancer research. Recently, data suggesting a potential role for other markers (including BRAF mutations, loss of phosphatase and tension homologue deleted on chromosome ten expression, and phosphatidylinositol-3-kinase-AKT pathway mutations) in predicting response to anti-EGFR therapy have emerged. Ongoing clinical trials and correlative analyses are essential to definitively identify predictive markers and develop therapeutic strategies for patients who may not derive benefit from anti-EGFR therapy. This article reviews recent clinical trials supporting the predictive role of KRAS, recent changes to clinical guidelines and pharmaceutical labeling, investigational predictive molecular markers, and newer clinical trials targeting patients with mutated KRAS.

  3. Cytotoxic chemotherapy may overcome the development of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) therapy.

    PubMed

    Kanda, Shintaro; Horinouchi, Hidehito; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru; Sekine, Ikuo; Kunitoh, Hideo; Kubota, Kaoru; Tamura, Tomohide; Ohe, Yuichiro

    2015-09-01

    In the first-line treatment of non-small cell lung cancer (NSCLC) harboring EGFR mutations, epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has been shown to yield a longer progression-free survival (PFS) rate than platinum-doublet chemotherapy; however, after the initial response, most patients develop resistance to the EGFR-TKIs. We hypothesized that the insertion of platinum-doublet chemotherapy after the initial response to EGFR-TKIs might prevent the emergence of acquired resistance to EGFR-TKIs and prolong survival. We carried out a phase II study of the following first-line treatment for patients with advanced NSCLC harboring EGFR mutations. Gefitinib (250 mg) was administered on days 1-56. Then, after a two-week drug-free period, three cycles of cisplatin (80 mg/m2) and docetaxel (60 mg/m2) were administered on days 71, 92, and 113. Thereafter, gefitinib was re-started on day 134 and continued until disease progression. The primary endpoint was the two-year PFS rate. A total of 34 patients were enrolled. Of the 33 eligible patients and 12 achieved a two-year PFS. Thus, this therapeutic strategy met the criterion for usefulness. The 1-, 2-, 3-, and 5-year PFS rates were 67.0%, 40.2%, 36.9%, and 22.0%, respectively, and the median PFS was 19.5 months. The 1-, 2-, 3- and 5-year survival rates were 90.6%, 71.9%, 64.8%, and 36.5% respectively, and the median survival time was 48.0 months. These results indicate that the insertion of platinum-doublet chemotherapy might prevent the development of acquired resistance to EGFR-TKIs in patients with advanced NSCLC harboring EGFR mutations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Decreased Phosphorylated Protein Kinase B (Akt) in Individuals with Autism Associated with High Epidermal Growth Factor Receptor (EGFR) and Low Gamma-Aminobutyric Acid (GABA).

    PubMed

    Russo, Anthony J

    2015-01-01

    Dysregulation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway could contribute to the pathogenesis of autism spectrum disorders. In this study, phosphorylated Akt concentration was measured in 37 autistic children and 12, gender and age similar neurotypical, controls using an enzyme-linked immunosorbent assay. Akt levels were compared to biomarkers known to be associated with epidermal growth factor receptor (EGFR) and c-Met (hepatocyte growth factor (HGF) receptor) pathways and severity levels of 19 autism-related symptoms. We found phosphorylated Akt levels significantly lower in autistic children and low Akt levels correlated with high EGFR and HGF and low gamma-aminobutyric acid, but not other biomarkers. Low Akt levels also correlated significantly with increased severity of receptive language, conversational language, hypotonia, rocking and pacing, and stimming, These results suggest a relationship between decreased phosphorylated Akt and selected symptom severity in autistic children and support the suggestion that the AKT pathways may be associated with the etiology of autism.

  5. Targeting the fibroblast growth factor receptors for the treatment of cancer.

    PubMed

    Lemieux, Steven M; Hadden, M Kyle

    2013-06-01

    Receptor tyrosine kinases (RTKs) are transmembrane proteins that play a critical role in stimulating signal transduction cascades to influence cell proliferation, growth, and differentiation and they have also been shown to promote angiogenesis when they are up-regulated or mutated. For this reason, their dysfunction has been implicated in the development of human cancer. Over the past decade, much attention has been devoted to developing inhibitors and antibodies against several classes of RTKs, including vascular endothelial growth factor receptors (VEGFRs), epidermal growth factor receptors (EGFRs), and platelet-derived growth factor receptors (PDGFRs). More recently, interest in the fibroblast growth factor receptor (FGFR) class of RTKs as a drug target for the treatment of cancer has emerged. Signaling through FGFRs is critical for normal cellular function and their dysregulation has been linked to various malignancies such as breast and prostate cancer. This review will focus on the current state of both small molecules and antibodies as FGFR inhibitors to provide insight into their development and future potential as anti-cancer agents.

  6. Inhibiting the Epidermal Growth Factor Receptor | Center for Cancer Research

    Cancer.gov

    The Epidermal Growth Factor Receptor (EGFR) is a widely distributed cell surface receptor that responds to several extracellular signaling molecules through an intracellular tyrosine kinase, which phosphorylates target enzymes to trigger a downstream molecular cascade. Since the discovery that EGFR mutations and amplifications are critical in a number of cancers, efforts have

  7. Vorinostat and metformin sensitize EGFR-TKI resistant NSCLC cells via BIM-dependent apoptosis induction.

    PubMed

    Chen, Hengyi; Wang, Yubo; Lin, Caiyu; Lu, Conghua; Han, Rui; Jiao, Lin; Li, Li; He, Yong

    2017-11-07

    There is a close relationship between low expression of BIM and resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Vorinostat is a pan-histone deacetylase inhibitor (HDACi) that augments BIM expression in various types of tumor cells, however, this effect is attenuated by the high expression of anti-apoptotic proteins in EGFR-TKI resistant non-small cell lung cancer (NSCLC) cells. Vorinostat in combination with metformin - a compound that can inhibit anti-apoptotic proteins expression, might cooperate to activate apoptotic signaling and overcome EGFR-TKI resistance. This study aimed to investigate the cooperative effect and evaluate possible molecular mechanisms. The results showed that vorinostat combined with gefitinib augmented BIM expression and increased the sensitivity of EGFR-TKI resistant NSCLC cells to gefitinib, adding metformin simultaneously could obviously inhibit the expression of anti-apoptotic proteins, and further increased expression levels of BIM and BAX, and as a result, further improved the sensitivity of gefitinib both on the NSCLC cells with intrinsic and acquired resistance to EGFR-TKI. In addition, autophagy induced by gefitinib and vorinostat could be significantly suppressed by metformin, which might also contribute to enhance apoptosis and improve sensitivity of gefitinib. These results suggested that the combination of vorinostat and metformin might represent a novel strategy to overcome EGFR-TKI resistance associated with BIM-dependent apoptosis in larger heterogeneous populations.

  8. Smoking History as a Predictor of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Non-Small Cell Lung Cancer Harboring EGFR Mutations.

    PubMed

    Nishinarita, Noriko; Igawa, Satoshi; Kasajima, Masashi; Kusuhara, Seiichiro; Harada, Shinya; Okuma, Yuriko; Sugita, Keisuke; Ozawa, Takahiro; Fukui, Tomoya; Mitsufuji, Hisashi; Yokoba, Masanori; Katagiri, Masato; Kubota, Masaru; Sasaki, Jiichiro; Naoki, Katsuhiko

    2018-04-26

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKIs) therapy has been recognized as the standard treatment for patients with non-small cell lung cancer (NSCLC) harboring EGFR mutations. However, resistance to EGFR-TKIs has been observed in certain subpopulations of these patients. We aimed to evaluate the impact of smoking history on the efficacy of EGFR-TKIs. The records of patients (n = 248) with NSCLC harboring activating EGFR mutations who were treated with gefitinib or erlotinib at our institution between March 2010 and June 2016 were retrospectively reviewed, and the treatment outcomes were evaluated. The overall response rate and median progression-free survival (PFS) were 59.7% and 10.7 months, respectively. The overall response rate was significantly higher in the ex- and nonsmokers than in the current smokers (64.6 vs. 51.1%, p = 0.038). PFS also differed significantly between the current smokers and the ex- and nonsmokers (12.4 vs. 7.4 months, p = 0.016). Multivariate analysis identified smoking history as an independent predictor of PFS and overall survival. The clinical data obtained in this study provide a valuable rationale for considering smoking history as a predictor of the efficacy of EGFR-TKI in NSCLC patients harboring activating EGFR mutations. © 2018 S. Karger AG, Basel.

  9. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    PubMed

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n

  10. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma.

    PubMed

    Johnson, Laura A; Scholler, John; Ohkuri, Takayuki; Kosaka, Akemi; Patel, Prachi R; McGettigan, Shannon E; Nace, Arben K; Dentchev, Tzvete; Thekkat, Pramod; Loew, Andreas; Boesteanu, Alina C; Cogdill, Alexandria P; Chen, Taylor; Fraietta, Joseph A; Kloss, Christopher C; Posey, Avery D; Engels, Boris; Singh, Reshma; Ezell, Tucker; Idamakanti, Neeraja; Ramones, Melissa H; Li, Na; Zhou, Li; Plesa, Gabriela; Seykora, John T; Okada, Hideho; June, Carl H; Brogdon, Jennifer L; Maus, Marcela V

    2015-02-18

    Chimeric antigen receptors (CARs) are synthetic molecules designed to redirect T cells to specific antigens. CAR-modified T cells can mediate long-term durable remissions in B cell malignancies, but expanding this platform to solid tumors requires the discovery of surface targets with limited expression in normal tissues. The variant III mutation of the epidermal growth factor receptor (EGFRvIII) results from an in-frame deletion of a portion of the extracellular domain, creating a neoepitope. We chose a vector backbone encoding a second-generation CAR based on efficacy of a murine scFv-based CAR in a xenograft model of glioblastoma. Next, we generated a panel of humanized scFvs and tested their specificity and function as soluble proteins and in the form of CAR-transduced T cells; a low-affinity scFv was selected on the basis of its specificity for EGFRvIII over wild-type EGFR. The lead candidate scFv was tested in vitro for its ability to direct CAR-transduced T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. We further evaluated the specificity of the lead CAR candidate in vitro against EGFR-expressing keratinocytes and in vivo in a model of mice grafted with normal human skin. EGFRvIII-directed CAR T cells were also able to control tumor growth in xenogeneic subcutaneous and orthotopic models of human EGFRvIII(+) glioblastoma. On the basis of these results, we have designed a phase 1 clinical study of CAR T cells transduced with humanized scFv directed to EGFRvIII in patients with either residual or recurrent glioblastoma (NCT02209376). Copyright © 2015, American Association for the Advancement of Science.

  11. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis.

    PubMed

    Venkataraman, Thiagarajan; Frieman, Matthew B

    2017-07-01

    Many survivors of the 2003 outbreak of severe acute respiratory syndrome (SARS) developed residual pulmonary fibrosis with increased severity seen in older patients. Autopsies of patients that died from SARS also showed fibrosis to varying extents. Pulmonary fibrosis can be occasionally seen as a consequence to several respiratory viral infections but is much more common after a SARS coronavirus (SARS-CoV) infection. Given the threat of future outbreaks of severe coronavirus disease, including Middle East respiratory syndrome (MERS), it is important to understand the mechanisms responsible for pulmonary fibrosis, so as to support the development of therapeutic countermeasures and mitigate sequelae of infection. In this article, we summarize pulmonary fibrotic changes observed after a SARS-CoV infection, discuss the extent to which other respiratory viruses induce fibrosis, describe available animal models to study the development of SARS-CoV induced fibrosis and review evidence that pulmonary fibrosis is caused by a hyperactive host response to lung injury mediated by epidermal growth factor receptor (EGFR) signaling. We summarize work from our group and others indicating that inhibiting EGFR signaling may prevent an excessive fibrotic response to SARS-CoV and other respiratory viral infections and propose directions for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Inhibiting the Epidermal Growth Factor Receptor | Center for Cancer Research

    Cancer.gov

    The Epidermal Growth Factor Receptor (EGFR) is a widely distributed cell surface receptor that responds to several extracellular signaling molecules through an intracellular tyrosine kinase, which phosphorylates target enzymes to trigger a downstream molecular cascade. Since the discovery that EGFR mutations and amplifications are critical in a number of cancers, efforts have been under way to develop and use targeted EGFR inhibitors. These efforts have met with some spectacular successes, but many patients have not responded as expected, have subsequently developed drug-resistant tumors, or have suffered serious side effects from the therapies to date. CCR Investigators are studying EGFR from multiple vantage points with the goal of developing even better strategies to defeat EGFR-related cancers.

  13. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice1

    PubMed Central

    Sasaki, Takamitsu; Kitadai, Yasuhiko; Nakamura, Toru; Kim, Jang-Seong; Tsan, Rachel Z; Kuwai, Toshio; Langley, Robert R; Fan, Dominic; Kim, Sun-Jin; Fidler, Isaiah J

    2007-01-01

    The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α) and vascular endothelial growth factor (VEGF) but were negative for EGFR, human epidermal growth factor receptor 2 (HER2), and VEGFR. Double immunofluorescence staining revealed that tumor-associated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR), and phosphorylated VEGFR (pVEGFR). Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase) or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01); this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001). AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, and increased the level of apoptosis in both tumor-associated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer. PMID:18084614

  14. Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma

    PubMed Central

    Ng, Kimberly; Futalan, Diahnn; Shen, Ying; Akers, Johnny C.; Steed, Tyler; Kushwaha, Deepa; Schlabach, Michael; Carter, Bob S.; Kwon, Chang-Hyuk; Furnari, Frank; Cavenee, Webster; Elledge, Stephen; Chen, Clark C.

    2014-01-01

    Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment. PMID:24658464

  15. Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma.

    PubMed

    Li, Jie; Zhu, Shan; Kozono, David; Ng, Kimberly; Futalan, Diahnn; Shen, Ying; Akers, Johnny C; Steed, Tyler; Kushwaha, Deepa; Schlabach, Michael; Carter, Bob S; Kwon, Chang-Hyuk; Furnari, Frank; Cavenee, Webster; Elledge, Stephen; Chen, Clark C

    2014-02-28

    Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment.

  16. Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR.

    PubMed

    Watanabe, Masaru; Kawaguchi, Tomoya; Isa, Shun-Ichi; Ando, Masahiko; Tamiya, Akihiro; Kubo, Akihito; Saka, Hideo; Takeo, Sadanori; Adachi, Hirofumi; Tagawa, Tsutomu; Kawashima, Osamu; Yamashita, Motohiro; Kataoka, Kazuhiko; Ichinose, Yukito; Takeuchi, Yukiyasu; Watanabe, Katsuya; Matsumura, Akihide; Koh, Yasuhiro

    2017-07-01

    Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy. Here, we developed a multiplex picodroplet digital PCR (ddPCR) assay to detect 3 common EGFR mutations in 1 reaction. Serial-dilution experiments with genomic DNA harboring EGFR mutations revealed linear performance, with analytical sensitivity ~0.01% for each mutation. All 33 EGFR-activating mutations detected in formalin-fixed paraffin-embedded (FFPE) tissue samples by the conventional method were also detected by this multiplex assay. Owing to the higher sensitivity, an additional mutation (T790M; including an ultra-low-level mutation, <0.1%) was detected in the same reaction. Regression analysis of the duplex assay and multiplex assay showed a correlation coefficient (R 2 ) of 0.9986 for L858R, 0.9844 for an exon 19 deletion, and 0.9959 for T790M. Using ddPCR, we designed a multiplex ultrasensitive genotyping platform for 3 common EGFR mutations. Results of this proof-of-principle study on clinical samples indicate clinical utility of multiplex ddPCR for screening for multiple EGFR mutations concurrently with an ultra-rare pretreatment mutation (T790M). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer.

    PubMed

    Gu, Jincui; Xu, Siqi; Huang, Lixia; Li, Shaoli; Wu, Jian; Xu, Junwen; Feng, Jinlun; Liu, Baomo; Zhou, Yanbin

    2018-02-01

    We sought to investigate the associations between pretreatment serum Carcinoembryonic antigen (CEA) level, 18 F-Fluoro-2-deoxyglucose ( 18 F-FDG) uptake value of primary tumor and epidermal growth factor receptor ( EGFR ) mutation status in non-small cell lung cancer (NSCLC). We retrospectively reviewed medical records of 210 NSCLC patients who underwent EGFR mutation test and 18 F-FDG positron emission tomography/computed tomography (PET/CT) scan before anti-tumor therapy. The associations between EGFR mutations and patients' characteristics, serum CEA, PET/CT imaging characteristics maximal standard uptake value (SUVmax) of the primary tumor were analyzed. Receiver-operating characteristic (ROC) curve was used to assess the predictive value of these factors. EGFR mutations were found in 70 patients (33.3%). EGFR mutations were more common in high CEA group (CEA ≥7.0 ng/mL) than in low CEA group (CEA <7.0 ng/mL) (40.4% vs . 27.6%; P=0.05). Females (P<0.001), non-smokers (P<0.001), patients with adenocarcinoma (P<0.001) and SUVmax <9.0 (P=0.001) were more likely to be EGFR mutation-positive. Multivariate analysis revealed that gender, tumor histology, pretreatment serum CEA level, and SUVmax were the most significant predictors for EGFR mutations. The ROC curve revealed that combining these four factors yielded a higher calculated AUC (0.80). Gender, histology, pretreatment serum CEA level and SUVmax are significant predictors for EGFR mutations in NSCLC. Combining these factors in predicting EGFR mutations has a moderate diagnostic accuracy, and is helpful in guiding anti-tumor treatment.

  18. A regional analysis of epidermal growth factor receptor (EGFR) mutated lung cancer for HSE South.

    PubMed

    Kelly, D; Mc Sorley, L; O'Shea, E; Mc Carthy, E; Bowe, S; Brady, C; Sui, J; Dawod, M A; O'Brien, O; Graham, D; McCarthy, J; Burke, L; Power, D; O'Reilly, S; Bambury, R M; Mahony, D O

    2017-11-01

    EGFR mutated lung cancer represents a subgroup with distinct clinical presentations, prognosis, and management requirements. We investigated the survival, prognostic factors, and real-world treatment of NSCLC patients with EGFR mutation in clinical practice. A retrospective review of all specimens sent for EGFR analysis from December 2009 to September 2015 was performed. Patient demographics, specimen type, EGFR mutation status/type, stage at diagnosis, treatment, response rate, and survival data were recorded. 27/334 (8%) patient specimens sent for EGFR testing tested positive for a sensitising EGFR mutation. The median age was 65 years (40-85 years). Exon 19 deletion represented the most commonly detected alteration, accounting for 39% (n = 11). First-line treatment for those with Exon 18, 19, or 21 alterations (n = 24) was with an EGFR tyrosine kinase inhibitor (TKI) in 79% (n = 19). Objective response rate among these patients was 74% and median duration of response was 13 months (range 7-35 months). The incidence of EGFR mutation in our cohort of NSCLC is 9% which is consistent with mutation incidence reported in other countries. The rate of EGFR mutation in our population is slightly below that reported internationally, but treatment outcomes are consistent with published data. Real-world patient data have important contributions to make with regard to quality measurement, incorporating patient experience into guidelines and identifying safety signals.

  19. Structure- and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR).

    PubMed

    Ward, Richard A; Anderton, Mark J; Ashton, Susan; Bethel, Paul A; Box, Matthew; Butterworth, Sam; Colclough, Nicola; Chorley, Christopher G; Chuaqui, Claudio; Cross, Darren A E; Dakin, Les A; Debreczeni, Judit É; Eberlein, Cath; Finlay, M Raymond V; Hill, George B; Grist, Matthew; Klinowska, Teresa C M; Lane, Clare; Martin, Scott; Orme, Jonathon P; Smith, Peter; Wang, Fengjiang; Waring, Michael J

    2013-09-12

    A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.

  20. The combi-targeting concept: synthesis of stable nitrosoureas designed to inhibit the epidermal growth factor receptor (EGFR).

    PubMed

    Domarkas, Juozas; Dudouit, Fabienne; Williams, Christopher; Qiyu, Qiu; Banerjee, Ranjita; Brahimi, Fouad; Jean-Claude, Bertrand Jacques

    2006-06-15

    According to the "combi-targeting" concept, the EGFR tyrosine kinase (TK) inhibitory potency of compounds termed "combi-molecules" is critical for selective growth inhibition of tumor cells with disordered expression of EGFR or its closest family member erbB2. Here we report on the optimization of the EGFR TK inhibitory potency of the combi-molecules of the nitrosourea class by comparison with their aminoquinazoline and ureidoquinazoline precursors. This led to the discovery of a new structural parameter that influences their EGFR TK inhibitory potency, i.e., the torsion angle between the plane of the quinazoline ring and the ureido or the nitrosoureido moiety of the synthesized drugs. Compounds (3'-Cl and Br series) with small angles (0.5-3 degrees ) were generally stronger EGFR TK inhibitors than those with large angles (18-21 degrees ). This was further corroborated by ligand-receptor van der Waals interaction calculations that showed significant binding hindrance imposed by large torsion angles in the narrow ATP cleft of EGFR. Selective antiproliferative studies in a pair of mouse fibroblast NIH3T3 cells, one of which NIH3T3/neu being transfected with the erbB2 oncogene, showed that IC(50) values for inhibition of EGFR TK could be good predictors of their selective potency against the serum-stimulated growth of the erbB2-tranfected cell line (Pearson r = 0.8). On the basis of stability (t(1/2)), EGFR TK inhibitory potency (IC(50)), and selective erbB2 targeting, compound 23, a stable nitrosourea, was considered to have the structural requirements for further development.

  1. Hinokitiol inhibits vasculogenic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor

    PubMed Central

    TU, DOM-GENE; YU, YUN; LEE, CHE-HSIN; KUO, YU-LIANG; LU, YIN-CHE; TU, CHI-WEN; CHANG, WEN-WEI

    2016-01-01

    Hinokitiol, alternatively known as β-thujaplicin, is a tropolone-associated natural compound with antimicrobial, anti-inflammatory and antitumor activity. Breast cancer stem/progenitor cells (BCSCs) are a subpopulation of breast cancer cells associated with tumor initiation, chemoresistance and metastatic behavior, and may be enriched by mammosphere cultivation. Previous studies have demonstrated that BCSCs exhibit vasculogenic mimicry (VM) activity via the epidermal growth factor receptor (EGFR) signaling pathway. The present study investigated the anti-VM activity of hinokitiol in BCSCs. At a concentration below the half maximal inhibitory concentration, hinokitiol inhibited VM formation of mammosphere cells derived from two human breast cancer cell lines. Hinokitiol was additionally indicated to downregulate EGFR protein expression in mammosphere-forming BCSCs without affecting the expression of messenger RNA. The protein stability of EGFR in BCSCs was also decreased by hinokitiol. The EGFR protein expression and VM formation capability of hinokitiol-treated BCSCs were restored by co-treatment with MG132, a proteasome inhibitor. In conclusion, the present study indicated that hinokitiol may inhibit the VM activity of BCSCs through stimulating proteasome-mediated EGFR degradation. Hinokitiol may act as an anti-VM agent, and may be useful for the development of novel breast cancer therapeutic agents. PMID:27073579

  2. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells.

    PubMed

    Xie, Guofeng; Cheng, Kunrong; Shant, Jasleen; Raufman, Jean-Pierre

    2009-04-01

    Previously, we showed that ACh-induced proliferation of human colon cancer cells is mediated by transactivation of epidermal growth factor (EGF) receptors (EGFRs). In the present study, we elucidate the molecular mechanism underlying this action. ACh-induced proliferation of H508 colon cancer cells, which express exclusively M3 muscarinic receptors (M3Rs), was attenuated by anti-EGFR ligand binding domain antibody, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, anti-MMP7 antibody, a diphtheria toxin analog that blocks release of an EGFR ligand [heparin-binding EGF-like growth factor (HBEGF)], and anti-HBEGF antibody. Conditioned media from ACh-treated H508 cells induced proliferation of SNU-C4 colon cancer cells that express EGFR but not M3R. These actions were attenuated by an EGFR inhibitor and by anti-EGFR and anti-HBEGF antibodies. In H508, but not SNU-C4, colon cancer cells, ACh caused a striking dose- and time-dependent increase in levels of MMP7 mRNA and MMP7 protein. Similarly, ACh induced robust MMP1 and MMP10 gene transcription. ACh-induced MMP1, MMP7, and MMP10 gene transcription was attenuated by atropine, anti-EGFR antibody, and chemical inhibitors of EGFR and ERK activation. In contrast, inhibitors of phosphatidylinositol 3-kinase and NF-kappaB activation did not alter MMP gene transcription. Collectively, these findings indicate that MMP7-catalyzed release of HBEGF mediates ACh-induced transactivation of EGFR and consequent proliferation of colon cancer cells. ACh-induced activation of EGFR and downstream ERK signaling also regulates transcriptional activation of MMP7, thereby identifying a novel feed-forward mechanism for neoplastic cell proliferation.

  3. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells

    PubMed Central

    Xie, Guofeng; Cheng, Kunrong; Shant, Jasleen; Raufman, Jean-Pierre

    2009-01-01

    Previously, we showed that ACh-induced proliferation of human colon cancer cells is mediated by transactivation of epidermal growth factor (EGF) receptors (EGFRs). In the present study, we elucidate the molecular mechanism underlying this action. ACh-induced proliferation of H508 colon cancer cells, which express exclusively M3 muscarinic receptors (M3Rs), was attenuated by anti-EGFR ligand binding domain antibody, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, anti-MMP7 antibody, a diphtheria toxin analog that blocks release of an EGFR ligand [heparin-binding EGF-like growth factor (HBEGF)], and anti-HBEGF antibody. Conditioned media from ACh-treated H508 cells induced proliferation of SNU-C4 colon cancer cells that express EGFR but not M3R. These actions were attenuated by an EGFR inhibitor and by anti-EGFR and anti-HBEGF antibodies. In H508, but not SNU-C4, colon cancer cells, ACh caused a striking dose- and time-dependent increase in levels of MMP7 mRNA and MMP7 protein. Similarly, ACh induced robust MMP1 and MMP10 gene transcription. ACh-induced MMP1, MMP7, and MMP10 gene transcription was attenuated by atropine, anti-EGFR antibody, and chemical inhibitors of EGFR and ERK activation. In contrast, inhibitors of phosphatidylinositol 3-kinase and NF-κB activation did not alter MMP gene transcription. Collectively, these findings indicate that MMP7-catalyzed release of HBEGF mediates ACh-induced transactivation of EGFR and consequent proliferation of colon cancer cells. ACh-induced activation of EGFR and downstream ERK signaling also regulates transcriptional activation of MMP7, thereby identifying a novel feed-forward mechanism for neoplastic cell proliferation. PMID:19221016

  4. Pemetrexed Singlet Versus Nonpemetrexed-Based Platinum Doublet as Second-Line Chemotherapy after First-Line Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor Failure in Non-small Cell Lung Cancer Patients with EGFR Mutations.

    PubMed

    Park, Sehhoon; Keam, Bhumsuk; Kim, Se Hyun; Kim, Ki Hwan; Kim, Yu Jung; Kim, Jin-Soo; Kim, Tae Min; Lee, Se-Hoon; Kim, Dong-Wan; Lee, Jong Seok; Heo, Dae Seog

    2015-10-01

    Platinum-based doublet chemotherapy is the treatment of choice for patients with non-small cell lung cancer (NSCLC); however, the role of a platinum-based doublet as second-line therapy after failure of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) for NSCLC patients has not yet been elucidated. The purpose of this study was to compare the clinical efficacy of pemetrexed versus a platinum-based doublet as second-line therapy after failure of EGFR TKI used as first-line therapy for NSCLC patients with EGFR mutations. We designed a multicenter retrospective cohort study of 314 NSCLC patients with EGFR mutations who received an EGFR TKI as first-line palliative chemotherapy. Our analysis included 83 patients who failed EGFR TKI therapy and received second-line cytotoxic chemotherapy. Forty-six patients were treated using a platinum-based doublet and 37 patients were treated using singlet pemetrexed. The overall response rates of patients receiving a platinum-based doublet and patients receiving pemetrexed were17.4% and 32.4%, respectively (p=0.111). The median progression-free survival (PFS) of patients receiving pemetrexed was significantly longer than that of patients receiving a platinum-based doublet (4.2 months vs. 2.7 months, respectively; p=0.008). The hazard ratio was 0.54 (95% confidence interval, 0.34 to 0.86; p=0.009). Our retrospective analysis found that second-line pemetrexed singlet therapy provided significantly prolonged PFS compared to second-line platinum-based doublet chemotherapy for NSCLC patients with EGFR mutations who failed first-line EGFR TKI. Conduct of prospective studies for confirmation of our results is warranted.

  5. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer.

    PubMed

    Takeuchi, Shinji; Wang, Wei; Li, Qi; Yamada, Tadaaki; Kita, Kenji; Donev, Ivan S; Nakamura, Takahiro; Matsumoto, Kunio; Shimizu, Eiji; Nishioka, Yasuhiko; Sone, Saburo; Nakagawa, Takayuki; Uenaka, Toshimitsu; Yano, Seiji

    2012-09-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a serious problem in the management of EGFR mutant lung cancer. We recently reported that hepatocyte growth factor (HGF) induces resistance to EGFR-TKIs by activating the Met/PI3K pathway. HGF is also known to induce angiogenesis in cooperation with vascular endothelial growth factor (VEGF), which is an important therapeutic target in lung cancer. Therefore, we hypothesized that dual inhibition of HGF and VEGF may be therapeutically useful for controlling HGF-induced EGFR-TKI-resistant lung cancer. We found that a dual Met/VEGF receptor 2 kinase inhibitor, E7050, circumvented HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer cell lines by inhibiting the Met/Gab1/PI3K/Akt pathway in vitro. HGF stimulated VEGF production by activation of the Met/Gab1 signaling pathway in EGFR mutant lung cancer cell lines, and E7050 showed an inhibitory effect. In a xenograft model, tumors produced by HGF-transfected Ma-1 (Ma-1/HGF) cells were more angiogenic than vector control tumors and showed resistance to gefitinib. E7050 alone inhibited angiogenesis and retarded growth of Ma-1/HGF tumors. E7050 combined with gefitinib induced marked regression of tumor growth. Moreover, dual inhibition of HGF and VEGF by neutralizing antibodies combined with gefitinib also markedly regressed tumor growth. These results indicate the therapeutic rationale of dual targeting of HGF-Met and VEGF-VEGF receptor 2 for overcoming HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    USDA-ARS?s Scientific Manuscript database

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  7. Nanofitin as a New Molecular-Imaging Agent for the Diagnosis of Epidermal Growth Factor Receptor Over-Expressing Tumors.

    PubMed

    Goux, Marine; Becker, Guillaume; Gorré, Harmony; Dammicco, Sylvestre; Desselle, Ariane; Egrise, Dominique; Leroi, Natacha; Lallemand, François; Bahri, Mohamed Ali; Doumont, Gilles; Plenevaux, Alain; Cinier, Mathieu; Luxen, André

    2017-09-20

    Epidermal growth-factor receptor (EGFR) is involved in cell growth and proliferation and is over-expressed in malignant tissues. Although anti-EGFR-based immunotherapy became a standard of care for patients with EGFR-positive tumors, this strategy of addressing cancer tumors by targeting EGFR with monoclonal antibodies is less-developed for patient diagnostic and monitoring. Indeed, antibodies exhibit a slow blood clearance, which is detrimental for positron emission tomography (PET) imaging. New molecular probes are proposed to overcome such limitations for patient monitoring, making use of low-molecular-weight protein scaffolds as alternatives to antibodies, such as Nanofitins with better pharmacokinetic profiles. Anti-EGFR Nanofitin B10 was reformatted by genetic engineering to exhibit a unique cysteine moiety at its C-terminus, which allows the development of a fast and site-specific radiolabeling procedure with 18 F-4-fluorobenzamido-N-ethylamino-maleimide ( 18 F-FBEM). The in vivo tumor targeting and imaging profile of the anti-EGFR Cys-B10 Nanofitin was investigated in a double-tumor xenograft model by static small-animal PET at 2 h after tail-vein injection of the radiolabeled Nanofitin 18 F-FBEM-Cys-B10. The image showed that the EGFR-positive tumor (A431) is clearly delineated in comparison to the EGFR-negative tumor (H520) with a significant tumor-to-background contrast. 18 F-FBEM-Cys-B10 demonstrated a significantly higher retention in A431 tumors than in H520 tumors at 2.5 h post-injection with a A431-to-H520 uptake ratio of 2.53 ± 0.18 and a tumor-to-blood ratio of 4.55 ± 0.63. This study provides the first report of Nanofitin scaffold used as a targeted PET radiotracer for in vivo imaging of EGFR-positive tumor, with the anti-EGFR B10 Nanofitin used as proof-of-concept. The fast generation of specific Nanofitins via a fully in vitro selection process, together with the excellent imaging features of the Nanofitin scaffold, could facilitate the

  8. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms

    PubMed Central

    Needham, Sarah R.; Roberts, Selene K.; Arkhipov, Anton; Mysore, Venkatesh P.; Tynan, Christopher J.; Zanetti-Domingues, Laura C.; Kim, Eric T.; Losasso, Valeria; Korovesis, Dimitrios; Hirsch, Michael; Rolfe, Daniel J.; Clarke, David T.; Winn, Martyn D.; Lajevardipour, Alireza; Clayton, Andrew H. A.; Pike, Linda J.; Perani, Michela; Parker, Peter J.; Shan, Yibing; Shaw, David E.; Martin-Fernandez, Marisa L.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling. PMID:27796308

  9. PGE2/EP3/SRC signaling induces EGFR nuclear translocation and growth through EGFR ligands release in lung adenocarcinoma cells

    PubMed Central

    Bazzani, Lorenzo; Donnini, Sandra; Finetti, Federica; Christofori, Gerhard; Ziche, Marina

    2017-01-01

    Prostaglandin E2 (PGE2) interacts with tyrosine kinases receptor signaling in both tumor and stromal cells supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, A549 and GLC82, PGE2 promotes nuclear translocation of epidermal growth factor receptor (nEGFR), affects gene expression and induces cell growth. Indeed, cyclin D1, COX-2, iNOS and c-Myc mRNA levels are upregulated following PGE2 treatment. The nuclear localization sequence (NLS) of EGFR as well as its tyrosine kinase activity are required for the effect of PGE2 on nEGFR and downstream signaling activities. PGE2 binds its bona fide receptor EP3 which by activating SRC family kinases, induces ADAMs activation which, in turn, releases EGFR-ligands from the cell membrane and promotes nEGFR. Amphiregulin (AREG) and Epiregulin (EREG) appear to be involved in nEGFR promoted by the PGE2/EP3-SRC axis. Pharmacological inhibition or silencing of the PGE2/EP3/SRC-ADAMs signaling axis or EGFR ligands i.e. AREG and EREG expression abolishes nEGFR induced by PGE2. In conclusion, PGE2 induces NSCLC cell proliferation by EP3 receptor, SRC-ADAMs activation, EGFR ligands shedding and finally, phosphorylation and nEGFR. Since nuclear EGFR is a hallmark of cancer aggressiveness, our findings reveal a novel mechanism for the contribution of PGE2 to tumor progression. PMID:28415726

  10. Development of a Novel Human scFv Against EGFR L2 Domain by Phage Display Technology.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Khosroshahi, Shiva Ahdi; Tanomand, Asghar

    2017-01-01

    Epidermal growth factor receptor (EGFR) as a transmembrane tyrosine kinase receptor frequently overexpresses in tumors with epithelial origin. The L2 domain from extracellular part of EGFR is involved in ligand binding and the blockage of this domain prevents activation of related signaling pathways. This study was aimed to develop a novel human scFv against EGFR L2 domain as a promising target for cancer therapy. The L2 recombinant protein was purified and used for panning a human scFv phage library (Tomlinson I). In this study, a novel screening strategy was applied to select clones with high binding and enrichment of rare specific phage clones of the L2 protein. After five biopanning rounds several specific clones were isolated which among them one phage clone with high binding was purified for further analysis. The specific interaction of selected clone against target antigen was confirmed by ELISA and western blotting. Immunofluorescence staining showed that purified scFv binds to A431 cells surface, displaying EGFR surface receptor. In the present study, we isolated for the first time a novel human scFv against EGFR L2 domain. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFR overexpressing cancers using this novel human anti-L2 ScFv. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Osimertinib-induced interstitial lung disease after treatment with anti-PD1 antibody.

    PubMed

    Mamesaya, Nobuaki; Kenmotsu, Hirotsugu; Katsumata, Mineo; Nakajima, Takashi; Endo, Masahiro; Takahashi, Toshiaki

    2017-02-01

    We report a case of a 38-year-old woman who was diagnosed with stage IV lung adenocarcinoma, harboring an epidermal growth factor receptor (EGFR) L858R mutation on exon 21 and a T790 M mutation on exon 20. The patient was treated with osimertinib, a third-generation EGFR tyrosine kinase inhibitor (EGFR-TKI) following treatment with nivolumab, an anti-Programmed Cell Death 1 (anti-PD1) antibody. After initiating osimertinib treatment, the patient began to complain of low-grade fever and shortness of breath without hypoxemia, and her chest radiograph and a CT scan revealed a remarkable antitumor response, although faint infiltrations were observed in the bilateral lung field. Bronchoalveolar lavage fluid mainly contained lymphocytes (CD4+/CD8+ ratio of 0.3), and a transbronchial lung biopsy specimen showed lymphocytic alveolitis with partial organization in several alveolar spaces. Therefore we diagnosed the patient with osimertinib-induced interstitial lung disease (ILD) after treatment with anti-PD1 antibody. We considered anti-PD1 therapies may be the risk factor of EGFR-TKI-induced ILD.

  12. STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics.

    PubMed

    Zulkifli, Ahmad A; Tan, Fiona H; Putoczki, Tracy L; Stylli, Stanley S; Luwor, Rodney B

    2017-08-15

    Several EGFR inhibitors are currently undergoing clinical assessment or are approved for the clinical management of patients with varying tumour types. However, treatment often results in a lack of response in many patients. The majority of patients that initially respond eventually present with tumours that display acquired resistance to the original therapy. A large number of receptor tyrosine and intracellular kinases have been implicated in driving signaling that mediates this tumour resistance to anti-EGFR targeted therapy, and in a few cases these discoveries have led to overall changes in prospective tumour screening and clinical practice (K-RAS in mCRC and EGFR T790M in NSCLC). In this mini-review, we specifically focus on the role of the STAT3 signaling axis in providing both intrinsic and acquired resistance to inhibitors of the EGFR. We also focus on STAT3 pathway targeting in an attempt to overcome resistance to anti-EGFR therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eung-Yoon; Choi, Young-Jin; Innopharmascreen, Inc., Asan 336-795

    2009-11-20

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these datamore » suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.« less

  14. Is MPP a good prognostic factor in stage III lung adenocarcinoma with EGFR exon 19 mutation?

    PubMed

    Zhang, Tian; Wang, Jing; Su, Yanjun; Chen, Xi; Yan, Qingna; Li, Qi; Sun, Leina; Wang, Yuwen; Er, Puchun; Pang, Qingsong; Wang, Ping

    2017-06-20

    Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein encoded by a gene located in the short arm of chromosome 7. This study aimed to investigate the clinicopathologic characteristics of classic EGFR exon mutation in Chinese patients with TMN stage III lung adenocarcinoma who received radical surgery. A total of 1,801 lung adenocarcinomas were analyzed for mutations in EGFR; 35% exhibited mutation of classic EGFR exons. Clinical and pathologic characteristics of patients with EGFR exon 19 mutation were compared with those who harbored EGFR exon 21 mutation. Patients with EGFR exon 19 mutation had a higher overall survival (OS, p=0.023) than those harboring EGFR exon 21 mutation. Our results demonstrated that patients with a micropapillary pattern (MPP) pathologic type in EGFR exon 19 mutation had a higher OS (p=0.022), and patients with exon 19 mutation were more sensitive to EGFR-tyrosine kinase inhibitors (p=0.032). The results of the current study can be used in decision-making regarding the treatment of patients with classic EGFR exon mutations.

  15. EGFR mutant allelic-specific imbalance assessment in routine samples of non-small cell lung cancer.

    PubMed

    Malapelle, Umberto; Vatrano, Simona; Russo, Stefania; Bellevicine, Claudio; de Luca, Caterina; Sgariglia, Roberta; Rocco, Danilo; de Pietro, Livia; Riccardi, Fernando; Gobbini, Elisa; Righi, Luisella; Troncone, Giancarlo

    2015-09-01

    In non-small cell lung cancer (NSCLC), the epidermal growth factor receptor (EGFR) gene may undergo both mutations and copy number gains. EGFR mutant allele-specific imbalance (MASI) occurs when the ratio of mutant-to-wild-type alleles increases significantly. In this study, by using a previously validated microfluidic-chip-based technology, EGFR-MASI occurred in 25/67 mutant cases (37%), being more frequently associated with EGFR exon 19 deletions (p=0.033). In a subset of 49 treated patients, we assessed whether MASI is a modifier of anti-EGFR treatment benefit. The difference in progression-free survival and overall survival between EGFR-MASI-positive and EGFR-MASI-negative groups of patients did not show a statistical significance. In conclusion, EGFR-MASI is a significant event in NSCLC, specifically associated with EGFR exon 19 deletions. However, EGFR-MASI does not seem to play a role in predicting the response to first-generation EGFR small molecules inhibitors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Apatinib enhances antitumour activity of EGFR-TKIs in non-small cell lung cancer with EGFR-TKI resistance.

    PubMed

    Li, Fang; Zhu, Tengjiao; Cao, Baoshan; Wang, Jiadong; Liang, Li

    2017-10-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs)-rechallenged therapy for EGFR-mutant non-small cell lung cancer (NSCLC) patients who acquired resistance showed moderate efficacy. Considering the high interrelation between EGFR and vascular endothelial growth factor/vascular endothelial growth factor receptor (VEGF/VEGFR) pathways, we firstly evaluated EGFR-TKI combined with apatinib (a highly selective VEGFR2 inhibitor) in EGFR-TKI-resistant model and patients. Effects of apatinib, gefitinib and gefitinib plus apatinib were assessed on four NSCLC cell lines (A549 with wild-type EGFR, H1975 harbouring L858R and T790M, H1650 and HCC827 harbouring E746_A750 deletion) and xenograft model of acquired resistance that was established by injecting H1975 cells. Furthermore, we retrospectively evaluated EGFR-TKI rechallenge with apatinib in 16 patients. Gefitinib plus apatinib strengthened the effect of gefitinib and apatinib alone on the four NSCLC cell lines, and H1975 was the most susceptible one. Co-administration delayed the tumour growth than mono-therapy in the xenograft model and had better effect on inhibiting the activation of EGFR and VEGFR2 and expression of CD31 (an angiogenesis marker) and vascular endothelial growth factor A (an important pro-angiogenesis factor in the tumour microenvironment). Changes in protein expression of protein kinase B/mammalian target of rapamycin and extracellular signal-regulated kinase pathways demonstrated the potent inhibitory effect on the pro-survival signalling pathways by combined therapy. EGFR-TKI rechallenge with apatinib achieved a median progression-free survival of 4.60 months (95% confidence interval, 2.23-12.52 months) in the patients. Apatinib significantly potentiated the antitumour effect of gefitinib in NSCLC with T790M-related EGFR-TKI resistance both in vivo and vitro. EGFR-TKI rechallenge with apatinib might represent a new option for NSCLC with T790M or unknown resistance mechanism

  17. Anti-EGFR Targeted Monoclonal Antibody Isotype Influences Antitumor Cellular Immunity in Head and Neck Cancer Patients.

    PubMed

    Trivedi, Sumita; Srivastava, Raghvendra M; Concha-Benavente, Fernando; Ferrone, Soldano; Garcia-Bates, Tatiana M; Li, Jing; Ferris, Robert L

    2016-11-01

    EGF receptor (EGFR) is highly overexpressed on several cancers and two targeted anti-EGFR antibodies which differ by isotype are FDA-approved for clinical use. Cetuximab (IgG1 isotype) inhibits downstream signaling of EGFR and activates antitumor, cellular immune mechanisms. As panitumumab (IgG2 isotype) may inhibit downstream EGFR signaling similar to cetuximab, it might also induce adaptive immunity. We measured in vitro activation of cellular components of the innate and adaptive immune systems. We also studied the in vivo activation of components of the adaptive immune system in patient specimens from two recent clinical trials using cetuximab or panitumumab. Both monoclonal antibodies (mAb) primarily activate natural killer (NK) cells, although cetuximab is significantly more potent than panitumumab. Cetuximab-activated neutrophils mediate antibody-dependent cellular cytotoxicity (ADCC) against head and neck squamous cell carcinomas (HNSCC) tumor cells, and interestingly, this effect was FcγRIIa- and FcγRIIIa genotype-dependent. Panitumumab may activate monocytes through CD32 (FcγRIIa); however, monocytes activated by either mAb are not able to mediate ADCC. Cetuximab enhanced dendritic cell (DC) maturation to a greater extent than panitumumab, which was associated with improved tumor antigen cross-presentation by cetuximab compared with panitumumab. This correlated with increased EGFR-specific cytotoxic CD8 + T cells in patients treated with cetuximab compared with those treated with panitumumab. Although panitumumab effectively inhibits EGFR signaling to a similar extent as cetuximab, it is less effective at triggering antitumor, cellular immune mechanisms which may be crucial for effective therapy of HNSCC. Clin Cancer Res; 22(21); 5229-37. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. EGFR Targeted Therapies and Radiation: Optimizing Efficacy by Appropriate Drug Scheduling and Patient Selection

    PubMed Central

    Cuneo, Kyle C.; Nyati, Mukesh K.; Ray, Dipankar; Lawrence, Theodore S.

    2015-01-01

    The epidermal growth factor receptor (EGFR) plays an important role in tumor progression and treatment resistance for many types of malignancies including head and neck, colorectal, and nonsmall cell lung cancer. Several EGFR targeted therapies are efficacious as single agents or in combination with chemotherapy. Given the toxicity associated with chemoradiation and poor outcomes seen in several types of cancers, combinations of EGFR targeted agents with or without chemotherapy have been tested in patients receiving radiation. To date, the only FDA approved use of an anti-EGFR therapy in combination with radiation therapy is for locally advanced head and neck cancer. Given the important role EGFR plays in lung and colorectal cancer and the benefit of EGFR inhibition combined with chemotherapy in these disease sites, it is perplexing why EGFR targeted therapies in combination with radiation or chemoradiation have not been more successful. In this review we summarize the clinical findings of EGFR targeted therapies combined with radiation and chemoradiation regimens. We then discuss the interaction between EGFR and radiation including radiation induced EGFR signaling, the effect of EGFR on DNA damage repair, and potential mechanisms of radiosensitization. Finally, we examine the potential pitfalls with scheduling EGFR targeted therapies with chemoradiation and the use of predictive biomarkers to improve patient selection. PMID:26205191

  19. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    PubMed

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  20. Role of G protein-coupled receptors (GPCR), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), heparin-binding epidermal growth factor-like growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) in trenbolone acetate-stimulated bovine satellite cell proliferation.

    PubMed

    Thornton, K J; Kamange-Sollo, E; White, M E; Dayton, W R

    2015-09-01

    Implanting cattle with steroids significantly enhances feed efficiency, rate of gain, and muscle growth. However, the mechanisms responsible for these improvements in muscle growth have not been fully elucidated. Trenbolone acetate (TBA), a testosterone analog, has been shown to increase proliferation rate in bovine satellite cell (BSC) cultures. The classical genomic actions of testosterone have been well characterized; however, our results indicate that TBA may also initiate a quicker, nongenomic response that involves activation of G protein-coupled receptors (GPCR) resulting in activation of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) that release membrane-bound heparin-binding epidermal growth factor-like growth factor (hbEGF), which then binds to and activates the epidermal growth factor receptor (EGFR) and/or erbB2. Furthermore, the EGFR has been shown to regulate expression of the IGF-1 receptor (IGF-1R), which is well known for its role in modulating muscle growth. To determine whether this nongenomic pathway is potentially involved in TBA-stimulated BSC proliferation, we analyzed the effects of treating BSC with guanosine 5'-O-2-thiodiphosphate (GDPβS), an inhibitor of all GPCR; a MMP2 and MMP9 inhibitor (MMPI); CRM19, a specific inhibitor of hbEGF; AG1478, a specific EGFR tyrosine kinase inhibitor; AG879, a specific erbB2 kinase inhibitor; and AG1024, an IGF-1R tyrosine kinase inhibitor on TBA-stimulated proliferation rate (H-thymidine incorporation). Assays were replicated at least 9 times for each inhibitor experiment using BSC cultures obtained from at least 3 different animals. Bovine satellite cell cultures were obtained from yearling steers that had no previous exposure to androgenic or estrogenic compounds. As expected, BSC cultures treated with 10 n TBA showed ( < 0.05) increased proliferation rate when compared with control cultures. Additionally, treatment with 5 ng hbEGF/mL stimulated proliferation in BSC cultures ( < 0.05). Treatment

  1. Dimerization drives EGFR endocytosis through two sets of compatible endocytic codes.

    PubMed

    Wang, Qian; Chen, Xinmei; Wang, Zhixiang

    2015-03-01

    We have shown previously that epidermal growth factor (EGF) receptor (EGFR) endocytosis is controlled by EGFR dimerization. However, it is not clear how the dimerization drives receptor internalization. We propose that EGFR endocytosis is driven by dimerization, bringing two sets of endocytic codes, one contained in each receptor monomer, in close proximity. Here, we tested this hypothesis by generating specific homo- or hetero-dimers of various receptors and their mutants. We show that ErbB2 and ErbB3 homodimers are endocytosis deficient owing to the lack of endocytic codes. Interestingly, EGFR-ErbB2 or EGFR-ErbB3 heterodimers are also endocytosis deficient. Moreover, the heterodimer of EGFR and the endocytosis-deficient mutant EGFRΔ1005-1017 is also impaired in endocytosis. These results indicate that two sets of endocytic codes are required for receptor endocytosis. We found that an EGFR-PDGFRβ heterodimer is endocytosis deficient, although both EGFR and PDGFRβ homodimers are endocytosis-competent, indicating that two compatible sets of endocytic codes are required. Finally, we found that to mediate the endocytosis of the receptor dimer, the two sets of compatible endocytic codes, one contained in each receptor molecule, have to be spatially coordinated. © 2015. Published by The Company of Biologists Ltd.

  2. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    PubMed

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  3. EGFR trans-activation mediates pleiotrophin-induced activation of Akt and Erk in cultured osteoblasts.

    PubMed

    Fan, Jian-Bo; Liu, Wei; Yuan, Kun; Zhu, Xin-Hui; Xu, Da-Wei; Chen, Jia-Jia; Cui, Zhi-Ming

    2014-05-09

    Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts' functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration

    PubMed Central

    Wodziak, Dariusz; Dong, Aiwen; Basin, Michael F.; Lowe, Anson W.

    2016-01-01

    A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/- null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/- null mouse. AG1478-treated and AGR2-/- null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis. PMID:27764193

  5. Epidermal growth factor receptor (EGFr) status associated with failure of primary endocrine therapy in elderly postmenopausal patients with breast cancer.

    PubMed Central

    Nicholson, S.; Halcrow, P.; Sainsbury, J. R.; Angus, B.; Chambers, P.; Farndon, J. R.; Harris, A. L.

    1988-01-01

    We have used primary endocrine therapy for 61 elderly women with operable breast cancer (median age 77 years). Eleven patients (18%) had complete and 24 (39%) partial tumour regression, 12 (20%) had stable disease for a minimum of six months and 14 (23%) no response. Salvage surgery was undertaken in the 14 with no response and 8/9 with progressive disease following initial response, thus samples were available from relapse patients only. Assays for EGFr (two point radioreceptor assay) and oestrogen receptors (ER) (dextran coated charcoal method and an immunohistochemical method) were performed on 20/22 patients. Ten of these 20 tumours were EGFr+ (greater than 10 fmol mg-1 binding) and 9/13 patients progressing within six months had EGFr+ tumours. 15/22 were available for ER evaluation and there was no such association with ER status. EGFr status was also associated with early recurrence after surgery and death in the endocrine failure group (P less than 0.005 and P less than 0.05 respectively). Of a control population of 33 patients (median age 72 years) treated by primary surgery, only 6 were EGFr+. In this group early relapse was predicted by EGFr status, but not by ER status (median disease free survival for EGFr+ patients 15 months, and for EGFr- patients 40 months, P less than 0.01, logrank test). There was a significantly higher proportion of EGFr+ tumours in the endocrine failure group compared with the control population (P less than 0.001). EGFr status is a marker for rapid early progression on primary endocrine therapy and the development of non-excisional methods of EGFr analysis would allow better directed therapeutic decisions. PMID:3224082

  6. Cytotoxic Effects of PEGylated Anti-EGFR Immunoliposomes Combined with Doxorubicin and Rhenium-188 Against Cancer Cells.

    PubMed

    Hsu, Wei-Chuan; Cheng, Chu-Nian; Lee, Te-Wei; Hwang, Jeng-Jong

    2015-09-01

    We aimed to construct epidermal growth factor receptor (EGFR)-targeting cetuximab-immunoliposomes (IL-C225) for targeted delivery of doxorubicin and rhenium-188 (Re-188) to EGFR(+) cancer cells. Synthesized IL-C225 was analyzed by dynamic light scattering, transmission electron microscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. Cell binding and internalization were examined using doxorubicin-loaded IL-C225 (DXR-IL-C225) with confocal microscopy. IL-C225 combined with doxorubicin and Re-188 ((188)Re-DXR-IL-C225) was synthesized, and the cytotoxic effects of (188)Re-DXR-IL-C225 were analyzed in EGFR(+) cancer cells using cell viability assays. IL-C225 bound to EGFR on A431 cancer cells and was rapidly internalized. Furthermore, IL-C225 localized within the tumor cells efficiently. (188)Re-DXR-IL-C225 exhibited outstanding cytotoxic effects against EGFR(+) cancer cells in vitro and showed superior cytotoxic effects compared to DXR-IL-C225 or (188)Re-IL-C225 alone. The new formulation of (188)Re-DXR-IL-C225 may be a potential theranostic vehicle for delivery of drugs in the treatment of EGFR-overexpressing human cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Transformation-specific interaction of the bovine papillomavirus E5 oncoprotein with the platelet-derived growth factor receptor transmembrane domain and the epidermal growth factor receptor cytoplasmic domain.

    PubMed Central

    Cohen, B D; Goldstein, D J; Rutledge, L; Vass, W C; Lowy, D R; Schlegel, R; Schiller, J T

    1993-01-01

    The bovine papillomavirus E5 transforming protein appears to activate both the epidermal growth factor receptor (EGF-R) and the platelet-derived growth factor receptor (PDGF-R) by a ligand-independent mechanism. To further investigate the ability of E5 to activate receptors of different classes and to determine whether this stimulation occurs through the extracellular domain required for ligand activation, we constructed chimeric genes encoding PDGF-R and EGF-R by interchanging the extracellular, membrane, and cytoplasmic coding domains. Chimeras were transfected into NIH 3T3 and CHO(LR73) cells. All chimeras expressed stable protein which, upon addition of the appropriate ligand, could be activated as assayed by tyrosine autophosphorylation and biological transformation. Cotransfection of E5 with the wild-type and chimeric receptors resulted in the ligand-independent activation of receptors, provided that a receptor contained either the transmembrane domain of the PDGF-R or the cytoplasmic domain of the EGF-R. Chimeric receptors that contained both of these domains exhibited the highest level of E5-induced biochemical and biological stimulation. These results imply that E5 activates the PDGF-R and EGR-R by two distinct mechanisms, neither of which specifically involves the extracellular domain of the receptor. Consistent with the biochemical and biological activation data, coimmunoprecipitation studies demonstrated that E5 formed a complex with any chimera that contained a PDGF-R transmembrane domain or an EGF-R cytoplasmic domain, with those chimeras containing both domains demonstrating the greatest efficiency of complex formation. These results suggest that although different domains of the PDGF-R and EGF-R are required for E5 activation, both receptors are activated directly by formation of an E5-containing complex. Images PMID:8394451

  8. Measurement of Epidermal Growth Factor Receptor-Derived Signals Within Plasma Membrane Clathrin Structures.

    PubMed

    Lucarelli, Stefanie; Delos Santos, Ralph Christian; Antonescu, Costin N

    2017-01-01

    The epidermal growth factor (EGF) receptor (EGFR) is an important regulator of cell growth, proliferation, survival, migration, and metabolism. EGF binding to EGFR triggers the activation of the receptor's intrinsic kinase activity, in turn eliciting the recruitment of many secondary signaling proteins and activation of downstream signals, such as the activation of phosphatidylinositol-3-kinase (PI3K) and Akt, a process requiring the phosphorylation of Gab1. While the identity of many signals that can be activated by EGFR has been revealed, how the spatiotemporal organization of EGFR signaling within cells controls receptor outcome remains poorly understood. Upon EGF binding at the plasma membrane, EGFR is internalized by clathrin-mediated endocytosis following recruitment to clathrin-coated pits (CCPs). Further, plasma membrane CCPs, but not EGFR internalization, are required for EGF-stimulated Akt phosphorylation. Signaling intermediates such as phosphorylated Gab1, which lead to Akt phosphorylation, are enriched within CCPs upon EGF stimulation. These findings indicate that some plasma membrane CCPs also serve as signaling microdomains required for certain facets of EGFR signaling and are enriched in key EGFR signaling intermediates. Understanding how the spatiotemporal organization of EGFR signals within CCP microdomains controls receptor signaling outcome requires imaging methods that can systematically resolve and analyze the properties of CCPs, EGFR and key signaling intermediates. Here, we describe methods using total internal reflection fluorescence microscopy imaging and analysis to systematically study the enrichment of EGFR and key EGFR-derived signals within CCPs.

  9. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenjun; Ercan, Dalia; Chen, Liang

    2010-01-12

    The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potentmore » against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.« less

  10. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer.

    PubMed

    Elbaz, Mohamad; Ahirwar, Dinesh; Ravi, Janani; Nasser, Mohd W; Ganju, Ramesh K

    2017-05-02

    Breast cancer is the second leading cause of cancer deaths among women. Cannabinoid receptor 2 (CNR2 or CB2) is an integral part of the endocannabinoid system. Although CNR2 is highly expressed in the breast cancer tissues as well as breast cancer cell lines, its functional role in breast tumorigenesis is not well understood. We observed that estrogen receptor-α negative (ERα-) breast cancer cells highly express epidermal growth factor receptor (EGFR) as well as insulin-like growth factor-I receptor (IGF-IR). We also observed IGF-IR upregulation in ERα+ breast cancer cells. In addition, we found that higher CNR2 expression correlates with better recurrence free survival in ERα- and ERα+ breast cancer patients. Therefore, we analyzed the role of CNR2 specific agonist (JWH-015) on EGF and/or IGF-I-induced tumorigenic events in ERα- and ERα+ breast cancers. Our studies showed that CNR2 activation inhibited EGF and IGF-I-induced migration and invasion of ERα+ and ERα- breast cancer cells. At the molecular level, JWH-015 inhibited EGFR and IGF-IR activation and their downstream targets STAT3, AKT, ERK, NF-kB and matrix metalloproteinases (MMPs). In vivo studies showed that JWH-015 significantly reduced breast cancer growth in ERα+ and ERα- breast cancer mouse models. Furthermore, we found that the tumors derived from JWH-015-treated mice showed reduced activation of EGFR and IGF-IR and their downstream targets. In conclusion, we show that CNR2 activation suppresses breast cancer through novel mechanisms by inhibiting EGF/EGFR and IGF-I/IGF-IR signaling axes.

  11. Comparative experimental/theoretical studies on the EGFR dimerization under the effect of EGF/EGF analogues binding: Highlighting the importance of EGF/EGFR interactions at site III interface.

    PubMed

    Mehrabi, Masomeh; Mahdiuni, Hamid; Rasouli, Hassan; Mansouri, Kamran; Shahlaei, Mohsen; Khodarahmi, Reza

    2018-04-14

    Epidermal growth factor receptors (EGFRs) and their cytoplasmic tyrosine kinases play significant roles in cell proliferation and signaling. All the members of the EGFR/ErbB family are primary goals for cancer therapy, particularly for tumors of breast, cervix, ovaries, kidney, esophagus, prostate and non-small-cell lung carcinoma and head and neck tumors. However, the therapeutic ability of accessible anti-ErbB agents is limited. Therefore, recognizing EGF analogues or small organic molecules with high affinity for the extracellular domain of the EGFR is a critical target on cancer research. An effective EGF analogue should have a comparable binding affinity for EGFR in order to create an effective ligand competitive inhibition against circulating wild EGF while fails to transduce appropriate downstream signaling into the cancer cell. In our earlier study we have developed a mutant form of human EGF (mEGF, lacking the four critical amino acid residues; Gln 43 , Tyr 44 , Arg 45 and Asp 46 at the C-terminal of the protein) and its binding properties and mitogenic activity were assessed. The mEGF showed high affinity for EGFR binding domains but caused poor EGFR dimerization and phosphorylation and especially, mEGF induced EGFR internalization. However, underlying mechanism of action of EGF analogues is still unclear and thus considered to be worthwhile for further study. With regard to different effects of the EGF analogue on EGFR activating process, computational analysis of wild EGF/EGFR and mEGF/EGFR complexes (along with EGFt/EGFR complex) were done. Results of the protein dissection identified several interactions within "ligand/EGFR" that are common among EGF and EGFt/mEGF. These results disclose that while several interactions are conserved within EGF/EGFR interfaces, EGF/EGFR interactions on site III interface controls the affinity, EGFR dimerization and subsequent downstream signaling through a heterogeneous set of non-covalent interactions. These findings

  12. The EGFR family of receptors sensitizes cancer cells towards UV light

    NASA Astrophysics Data System (ADS)

    Petersen, Steffen; Neves-Petersen, Maria Teresa; Olsen, Birgitte

    2008-02-01

    A combination of bioinformatics, biophysical, advanced laser studies and cell biology lead to the realization that laser-pulsed UV light stops cancer growth and induces apoptosis. We have previously shown that laser-pulsed UV (LP-UV) illumination of two different skin-derived cancer cell lines both over expressing the EGF receptor, lead to arrest of the EGFR signaling pathway. We have investigated the available sequence and experimental 3D structures available in the Protein Data Bank. The EGF receptor contains a Furin like cystein rich extracellular domain. The cystein content is highly unusual, 25 disulphide bridges supports the 621 amino acid extracellular protein domain scaffold (1mb6.pdb). In two cases a tryptophan is neighboring a cystein in the primary sequence, which in itself is a rare observation. Aromatic residues is observed to be spatially close to all observed 25 disulphide bridges. The EGF receptor is often overexpressed in cancers and other proliferative skin disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV-light treatment. The discovery that UV light can be used to open disulphide bridges in proteins upon illumination of nearby aromatic amino acids was the first step that lead to the hypothesis that UV light could modulate the structure and therefore the function of these key receptor proteins. The observation that membrane receptors (EGFR) contained exactly the motifs that are sensitive to UV light lead to the prediction that UV light could modify these receptors permanently and stop cancer proliferation. We hereby show that the EGFR family of receptors has the necessary structural motifs that make this family of proteins highly sensitive to UV light.

  13. Novel Mechanism for Regulation of Epidermal Growth Factor Receptor Endocytosis Revealed by Protein Kinase A Inhibition

    PubMed Central

    Salazar, Gloria; González, Alfonso

    2002-01-01

    Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40–60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and μ-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of “endocytic evasion,” modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function

  14. Suppressors for Human Epidermal Growth Factor Receptor 2/4 (HER2/4): A New Family of Anti-Toxoplasmic Agents in ARPE-19 Cells

    PubMed Central

    Kim, Yeong Hoon; Bhatt, Lokraj; Ahn, Hye-Jin; Yang, Zhaoshou; Lee, Won-Kyu; Nam, Ho-Woo

    2017-01-01

    The effects of tyrosine kinase inhibitors (TKIs) were evaluated on growth inhibition of intracellular Toxoplasma gondii in host ARPE-19 cells. The number of tachyzoites per parasitophorous vacuolar membrane (PVM) was counted after treatment with TKIs. T. gondii protein expression was assessed by western blot. Immunofluorescence assay was performed using Programmed Cell Death 4 (PDCD4) and T. gondii GRA3 antibodies. The TKIs were divided into 3 groups; non-epidermal growth factor receptor (non-EGFR), anti-human EGFR 2 (anti-HER2), and anti-HER2/4 TKIs, respectively. Group I TKIs (nintedanib, AZD9291, and sunitinib) were unable to inhibit proliferation without destroying host cells. Group II TKIs (lapatinib, gefitinib, erlotinib, and AG1478) inhibited proliferation up to 98% equivalent to control pyrimethamine (5 μM) at 20 μM and higher, without affecting host cells. Group III TKIs (neratinib, dacomitinib, afatinib, and pelitinib) inhibited proliferation up to 98% equivalent to pyrimethamine at 1–5 μM, but host cells were destroyed at 10–20 μM. In Group I, TgHSP90 and SAG1 inhibitions were weak, and GRA3 expression was moderately inhibited. In Group II, TgHSP90 and SAG1 expressions seemed to be slightly enhanced, while GRA3 showed none to mild inhibition; however, AG1478 inhibited all proteins moderately. Protein expression was blocked in Group III, comparable to pyrimethamine. PDCD4 and GRA3 were well localized inside the nuclei in Group I, mildly disrupted in Group II, and were completely disrupted in Group III. This study suggests the possibility of a vital T. gondii TK having potential HER2/4 properties, thus anti-HER2/4 TKIs may inhibit intracellular parasite proliferation with minimal adverse effects on host cells. PMID:29103264

  15. Suppressors for Human Epidermal Growth Factor Receptor 2/4 (HER2/4): A New Family of Anti-Toxoplasmic Agents in ARPE-19 Cells.

    PubMed

    Kim, Yeong Hoon; Bhatt, Lokraj; Ahn, Hye-Jin; Yang, Zhaoshou; Lee, Won-Kyu; Nam, Ho-Woo

    2017-10-01

    The effects of tyrosine kinase inhibitors (TKIs) were evaluated on growth inhibition of intracellular Toxoplasma gondii in host ARPE-19 cells. The number of tachyzoites per parasitophorous vacuolar membrane (PVM) was counted after treatment with TKIs. T. gondii protein expression was assessed by western blot. Immunofluorescence assay was performed using Programmed Cell Death 4 (PDCD4) and T. gondii GRA3 antibodies. The TKIs were divided into 3 groups; non-epidermal growth factor receptor (non-EGFR), anti-human EGFR 2 (anti-HER2), and anti-HER2/4 TKIs, respectively. Group I TKIs (nintedanib, AZD9291, and sunitinib) were unable to inhibit proliferation without destroying host cells. Group II TKIs (lapatinib, gefitinib, erlotinib, and AG1478) inhibited proliferation up to 98% equivalent to control pyrimethamine (5 μM) at 20 μM and higher, without affecting host cells. Group III TKIs (neratinib, dacomitinib, afatinib, and pelitinib) inhibited proliferation up to 98% equivalent to pyrimethamine at 1-5 μM, but host cells were destroyed at 10-20 μM. In Group I, TgHSP90 and SAG1 inhibitions were weak, and GRA3 expression was moderately inhibited. In Group II, TgHSP90 and SAG1 expressions seemed to be slightly enhanced, while GRA3 showed none to mild inhibition; however, AG1478 inhibited all proteins moderately. Protein expression was blocked in Group III, comparable to pyrimethamine. PDCD4 and GRA3 were well localized inside the nuclei in Group I, mildly disrupted in Group II, and were completely disrupted in Group III. This study suggests the possibility of a vital T. gondii TK having potential HER2/4 properties, thus anti-HER2/4 TKIs may inhibit intracellular parasite proliferation with minimal adverse effects on host cells.

  16. N-methyl-N'-nitro-N-nitrosoguanidine interferes with the epidermal growth factor receptor-mediated signaling pathway.

    PubMed

    Gao, Zhihua; Yang, Jun; Huang, Yun; Yu, Yingnian

    2005-03-01

    Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.

  17. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression.

    PubMed

    Pangburn, Heather A; Kraus, Hanna; Ahnen, Dennis J; Rice, Pamela L

    2005-09-02

    Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a decreased mortality from colorectal cancer (CRC). NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2) signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF) receptor (EGFR). HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068), total EGFR, phosphorylated ERK1/2 (pERK1/2), total ERK1/2, activated caspase-3, and alpha-tubulin. EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. These results suggest that downregulation of EGFR signaling by sulindac metabolites may

  18. In vivo fluorescence imaging of hepatocellular carcinoma xenograft using near-infrared labeled epidermal growth factor receptor (EGFR) peptide

    PubMed Central

    Li, Z.; Zhou, Q.; Zhou, J.; Duan, X.; Zhu, J.; Wang, T. D.

    2016-01-01

    Minimally-invasive surgery of hepatocellular carcinoma (HCC) can be limited by poor tumor visualization with white light. We demonstrate systemic administration of a Cy5.5-labeled peptide specific for epidermal growth factor receptor (EGFR) to target HCC in vivo in a mouse xenograft model. We attached a compact imaging module to the proximal end of a medical laparoscope to collect near-infrared fluorescence and reflectance images concurrently at 15 frames/sec. We measured a mean target-to-background ratio of 2.99 ± 0.22 from 13 surgically exposed subcutaneous human HCC tumors in vivo in 5 mice. This integrated imaging methodology is promising to guide laparoscopic resection of HCC. PMID:27699089

  19. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    PubMed Central

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  20. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    PubMed

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. Gefitinib and EGFR Gene Copy Number Aberrations in Esophageal Cancer.

    PubMed

    Petty, Russell D; Dahle-Smith, Asa; Stevenson, David A J; Osborne, Aileen; Massie, Doreen; Clark, Caroline; Murray, Graeme I; Dutton, Susan J; Roberts, Corran; Chong, Irene Y; Mansoor, Wasat; Thompson, Joyce; Harrison, Mark; Chatterjee, Anirban; Falk, Stephen J; Elyan, Sean; Garcia-Alonso, Angel; Fyfe, David Walter; Wadsley, Jonathan; Chau, Ian; Ferry, David R; Miedzybrodzka, Zosia

    2017-07-10

    Purpose The Cancer Esophagus Gefitinib trial demonstrated improved progression-free survival with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib relative to placebo in patients with advanced esophageal cancer who had disease progression after chemotherapy. Rapid and durable responses were observed in a minority of patients. We hypothesized that genetic aberration of the EGFR pathway would identify patients benefitting from gefitinib. Methods A prespecified, blinded molecular analysis of Cancer Esophagus Gefitinib trial tumors was conducted to compare efficacy of gefitinib with that of placebo according to EGFR copy number gain (CNG) and EGFR, KRAS, BRAF, and PIK3CA mutation status. EGFR CNG was determined by fluorescent in situ hybridization (FISH) using prespecified criteria and EGFR FISH-positive status was defined as high polysomy or amplification. Results Biomarker data were available for 340 patients. In EGFR FISH-positive tumors (20.2%), overall survival was improved with gefitinib compared with placebo (hazard ratio [HR] for death, 0.59; 95% CI, 0.35 to 1.00; P = .05). In EGFR FISH-negative tumors, there was no difference in overall survival with gefitinib compared with placebo (HR for death, 0.90; 95% CI, 0.69 to 1.18; P = .46). Patients with EGFR amplification (7.2%) gained greatest benefit from gefitinib (HR for death, 0.21; 95% CI, 0.07 to 0.64; P = .006). There was no difference in overall survival for gefitinib versus placebo for patients with EGFR, KRAS, BRAF, and PIK3CA mutations, or for any mutation versus none. Conclusion EGFR CNG assessed by FISH appears to identify a subgroup of patients with esophageal cancer who may benefit from gefitinib as a second-line treatment. Results of this study suggest that anti-EGFR therapies should be investigated in prospective clinical trials in different settings in EGFR FISH-positive and, in particular, EGFR-amplified esophageal cancer.

  2. Cardio-oncology Related to Heart Failure: Epidermal Growth Factor Receptor Target-Based Therapy.

    PubMed

    Kenigsberg, Benjamin; Jain, Varun; Barac, Ana

    2017-04-01

    Cancer therapy targeting the epidermal growth factor receptor (EGFR)/erythroblastic leukemia viral oncogene B (ErbB)/human EGFR receptor (HER) family of tyrosine kinases has been successfully used in treatment of several malignancies. The ErbB pathways play a role in the maintenance of cardiac homeostasis. This article summarizes current knowledge about EGFR/ErbB/HER receptor-targeted cancer therapeutics focusing on their cardiotoxicity profiles, molecular mechanisms, and implications in clinical cardio-oncology. The article discusses challenges in predicting, monitoring, and treating cardiac dysfunction and heart failure associated with ErbB-targeted cancer therapeutics and highlights opportunities for researchers and clinical investigators. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death.

    PubMed

    Britain, Colleen M; Holdbrooks, Andrew T; Anderson, Joshua C; Willey, Christopher D; Bellis, Susan L

    2018-02-05

    The ST6Gal-I sialyltransferase is upregulated in numerous cancers, and high expression of this enzyme correlates with poor patient prognosis in various malignancies, including ovarian cancer. Through its sialylation of a select cohort of cell surface receptors, ST6Gal-I modulates cell signaling to promote tumor cell survival. The goal of the present study was to investigate the influence of ST6Gal-I on another important receptor that controls cancer cell behavior, EGFR. Additionally, the effect of ST6Gal-I on cancer cells treated with the common EGFR inhibitor, gefitinib, was evaluated. Using the OV4 ovarian cancer cell line, which lacks endogenous ST6Gal-I expression, a kinomics assay revealed that cells with forced overexpression of ST6Gal-I exhibited increased global tyrosine kinase activity, a finding confirmed by immunoblotting whole cell lysates with an anti-phosphotyrosine antibody. Interestingly, the kinomics assay suggested that one of the most highly activated tyrosine kinases in ST6Gal-I-overexpressing OV4 cells was EGFR. Based on these findings, additional analyses were performed to investigate the effect of ST6Gal-I on EGFR activation. To this end, we utilized, in addition to OV4 cells, the SKOV3 ovarian cancer cell line, engineered with both ST6Gal-I overexpression and knockdown, as well as the BxPC3 pancreatic cancer cell line with knockdown of ST6Gal-I. In all three cell lines, we determined that EGFR is a substrate of ST6Gal-I, and that the sialylation status of EGFR directly correlates with ST6Gal-I expression. Cells with differential ST6Gal-I expression were subsequently evaluated for EGFR tyrosine phosphorylation. Cells with high ST6Gal-I expression were found to have elevated levels of basal and EGF-induced EGFR activation. Conversely, knockdown of ST6Gal-I greatly attenuated EGFR activation, both basally and post EGF treatment. Finally, to illustrate the functional importance of ST6Gal-I in regulating EGFR-dependent survival, cells were

  4. High early growth response 1 (EGR1) expression correlates with resistance to anti-EGFR treatment in vitro and with poorer outcome in metastatic colorectal cancer patients treated with cetuximab.

    PubMed

    Kumar, S S; Tomita, Y; Wrin, J; Bruhn, M; Swalling, A; Mohammed, M; Price, T J; Hardingham, J E

    2017-06-01

    Biomarkers, such as mutant RAS, predict resistance to anti-EGFR therapy in only a proportion of patients, and hence, other predictive biomarkers are needed. The aims were to identify candidate genes upregulated in colorectal cancer cell lines resistant to anti-EGFR monoclonal antibody treatment, to knockdown (KD) these genes in the resistant cell lines to determine if sensitivity to anti-EGFR antibody was restored, and finally to perform a pilot correlative study of EGR1 expression and outcomes in a cohort of metastatic colorectal cancer (mCRC) patients given cetuximab therapy. Comparative expression array analysis of resistant cell lines (SW48, COLO-320DM, and SNU-C1) vs sensitive cell lines (LIM1215, CaCo2, and SW948) was performed. The highest up-regulated gene in each resistant cell line was knocked down (KD) using RNA interference, and effect on proliferation was assessed with and without anti-EGFR treatment. Expression of the candidate genes in patients' tumours treated with cetuximab was assessed by immunohistochemistry; survival analyses were performed comparing high vs low expression. Genes significantly upregulated in resistant cell lines were EGR1 (early growth response protein 1), HBEGF (heparin-binding epidermal growth factor-like growth factor), and AKT3 (AKT serine/threonine kinase 3). KD of each gene resulted in the respective cells being more sensitive to anti-EGFR treatment, suggesting that the resistant phenotype was reversed. In the pilot study of mCRC patients treated with cetuximab, both median PFS (1.38 months vs 6.79 months; HR 2.77 95% CI 1.2-19.4) and median OS (2.59 months vs 9.82 months; HR 3.0 95% CI 1.3-23.2) were significantly worse for those patients with high EGR1 expression. High EGR1 expression may be a candidate biomarker of resistance to anti-EGFR therapy.

  5. Epidermal Growth Factor-Dependent Transformation by a Human EGF Receptor Proto-Oncogene

    NASA Astrophysics Data System (ADS)

    Velu, Thierry J.; Beguinot, Laura; Vass, William C.; Willingham, Mark C.; Merlino, Glenn T.; Pastan, Ira; Lowy, Douglas R.

    1987-12-01

    The epidermal growth factor (EGF) receptor gene EGFR has been placed in a retrovirus vector to examine the growth properties of cells that experimentally overproduce a full-length EGF receptor. NIH 3T3 cells transfected with the viral DNA or infected with the corresponding rescued retrovirus developed a fully transformed phenotype in vitro that required both functional EGFR expression and the presence of EGF in the growth medium. Cells expressing 4 × 105 EGF receptors formed tumors in nude mice, while control cells did not. Therefore, the EGFR retrovirus, which had a titer on NIH 3T3 cells that was greater than 107 focus-forming units per milliliter, can efficiently transfer and express this gene, and increased numbers of EGF receptors can contribute to the transformed phenotype.

  6. Recommendations for the Prophylactic Management of Skin Reactions Induced by Epidermal Growth Factor Receptor Inhibitors in Patients With Solid Tumors

    PubMed Central

    Deplanque, Gaël; Komatsu, Yoshito; Kobayashi, Yoshimitsu; Ocvirk, Janja; Racca, Patrizia; Guenther, Silke; Zhang, Jun; Lacouture, Mario E.; Jatoi, Aminah

    2016-01-01

    Inhibition of the epidermal growth factor receptor (EGFR) is an established treatment that extends patient survival across a variety of tumor types. EGFR inhibitors fall into two main categories: anti-EGFR monoclonal antibodies, such as cetuximab and panitumumab, and first-generation tyrosine kinase inhibitors, such as afatinib, gefitinib, and erlotinib. Skin reactions are the most common EGFR inhibitor-attributable adverse event, resulting in papulopustular (acneiform) eruptions that can be painful and debilitating, and which may potentially have a negative impact on patients’ quality of life and social functioning, as well as a negative impact on treatment duration. Shortened treatment duration can, in turn, compromise antineoplastic efficacy. Similarly, appropriate management of skin reactions is dependent on their accurate grading; however, conventional means for grading skin reactions are inadequate, particularly within the context of clinical trials. Treating a skin reaction only once it occurs (reactive treatment strategies) may not be the most effective management approach; instead, prophylactic approaches may be preferable. Indeed, we support the viewpoint that prophylactic management of skin reactions should be recommended for all patients treated with EGFR inhibitors. Appropriate prophylactic management could effectively reduce the severity of skin reactions in patients treated with EGFR inhibitors and therefore has the potential to directly benefit patients and improve drug adherence. Accordingly, here we review published and still-emerging data, and provide practical and evidence-based recommendations and algorithms regarding the optimal prophylactic management of EGFR inhibitor-attributable skin reactions. Implications for Practice: Epidermal growth factor receptor (EGFR) inhibitors extend patient survival across a variety of tumor types. The most common EGFR inhibitor-attributable adverse events are skin reactions. Prophylactic—rather than

  7. Redox Regulation of EGFR Signaling Through Cysteine Oxidation1

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2012-01-01

    Epidermal growth factor receptor (EGFR) exemplifies the family of receptor tyrosine kinases that mediate numerous cellular processes including growth, proliferation and differentiation. Moreover, gene amplification and EGFR mutations have been identified in a number of human malignancies, making this receptor an important target for the development of anticancer drugs. In addition to ligand-dependent activation and concomitant tyrosine phosphorylation, EGFR stimulation results in the localized generation of H2O2 by NADPH-dependent oxidases. In turn, H2O2 functions as a secondary messenger to regulate intracellular signaling cascades, largely through the modification of specific cysteine residues within redox-sensitive protein targets, including Cys797 in the EGFR active site. In this review, we highlight recent advances in our understanding of the mechanisms that underlie redox regulation of EGFR signaling and how these discoveries may form the basis for development of new therapeutic strategies to target this and other H2O2-modulated pathways. PMID:23186290

  8. Filamin A Modulates Kinase Activation and Intracellular Trafficking of Epidermal Growth Factor Receptors in Human Melanoma Cells

    PubMed Central

    Fiori, Jennifer L.; Zhu, Tie-Nian; O'Connell, Michael P.; Hoek, Keith S.; Indig, Fred E.; Frank, Brittany P.; Morris, Christa; Kole, Sutapa; Hasskamp, Joanne; Elias, George; Weeraratna, Ashani T.; Bernier, Michel

    2009-01-01

    The actin-binding protein filamin A (FLNa) affects the intracellular trafficking of various classes of receptors and has a potential role in oncogenesis. However, it is unclear whether FLNa regulates the signaling capacity and/or down-regulation of the activated epidermal growth factor receptor (EGFR). Here it is shown that partial knockdown of FLNa gene expression blocked ligand-induced EGFR responses in metastatic human melanomas. To gain greater insights into the role of FLNa in EGFR activation and intracellular sorting, we used M2 melanoma cells that lack endogenous FLNa and a subclone in which human FLNa cDNA has been stably reintroduced (M2A7 cells). Both tyrosine phosphorylation and ubiquitination of EGFR were significantly lower in epidermal growth factor (EGF)-stimulated M2 cells when compared with M2A7 cells. Moreover, the lack of FLNa interfered with EGFR interaction with the ubiquitin ligase c-Cbl. M2 cells exhibited marked resistance to EGF-induced receptor degradation, which was very active in M2A7 cells. Despite comparable rates of EGF-mediated receptor endocytosis, internalized EGFR colocalized with the lysosomal marker lysosome-associated membrane protein-1 in M2A7 cells but not M2 cells, in which EGFR was found to be sequestered in large vesicles and subsequently accumulated in punctated perinuclear structures after EGF stimulation. These results suggest the requirement of FLNa for efficient EGFR kinase activation and the sorting of endocytosed receptors into the degradation pathway. PMID:19213840

  9. Cancer immunotherapy by a recombinant phage vaccine displaying EGFR mimotope: an in vivo study.

    PubMed

    Asadi-Ghalehni, Majid; Ghaemmaghami, Mohamad; Klimka, Alexander; Javanmardi, Masoud; Navari, Mohsen; Rasaee, Mohammad Javad

    2015-06-01

    To date, several small molecule inhibitors and monoclonal-antibodies (like ICR-62) have been used to treat tumors over-expressing epidermal growth factor receptor (EGFR). However, the limitations associated with these conventional applications accentuate the necessity of alternative approaches. Mimotopes as compelling molecular tools could rationally be employed to circumvent these drawbacks. In the present study, an M13 phage displaying ICR-62 binding peptide mimotope is exploited as a vaccine candidate. It exhibited high affinity towards ICR62 and polyclonal anti-P-BSA antibodies. Following the mice immunization, phage-based mimotope vaccine induced humoral immunity. Elicited anti-EGFR mimotope antibodies were detected using ELISA method. Moreover, the phage vaccine was tested on the Lewis lung carcinoma mice model to investigate the prophylactic and therapeutic effects. The tumor volume was measured and recorded in different animal groups to evaluate the anti-tumor effects of the vaccine. Our data indicate that the reported phage-based mimotope could potentially elicit specific antibodies resulting in low titers of EGFR-specific antibodies and reduced tumor growth. However, in vivo experiments of prophylactic or therapeutic vaccination showed no specific advantage. Furthermore, phage-mimotope vaccine might be a promising approach in the field of cancer immunotherapy.

  10. Structural considerations for functional anti-EGFR × anti-CD3 bispecific diabodies in light of domain order and binding affinity.

    PubMed

    Asano, Ryutaro; Nagai, Keisuke; Makabe, Koki; Takahashi, Kento; Kumagai, Takashi; Kawaguchi, Hiroko; Ogata, Hiromi; Arai, Kyoko; Umetsu, Mitsuo; Kumagai, Izumi

    2018-03-02

    We previously reported a functional humanized bispecific diabody (bsDb) that targeted EGFR and CD3 (hEx3-Db) and enhancement of its cytotoxicity by rearranging the domain order in the V domain. Here, we further dissected the effect of domain order in bsDbs on their cross-linking ability and binding kinetics to elucidate general rules regarding the design of functional bsDbs. Using Ex3-Db as a model system, we first classified the four possible domain orders as anti-parallel (where both chimeric single-chain components are variable heavy domain (VH)-variable light domain (VL) or VL-VH order) and parallel types (both chimeric single-chain components are mixed with VH-VL and VL-VH order). Although anti-parallel Ex3-Dbs could cross-link the soluble target antigens, their cross-linking ability between soluble targets had no correlation with their growth inhibitory effects. In contrast, the binding affinity of one of the two constructs with a parallel-arrangement V domain was particularly low, and structural modeling supported this phenomenon. Similar results were observed with E2x3-Dbs, in which the V region of the anti-EGFR antibody clone in hEx3 was replaced with that of another anti-EGFR clone. Only anti-parallel types showed affinity-dependent cancer inhibitory effects in each molecule, and E2x3-LH (both components in VL-VH order) showed the most intense anti-tumor activity in vitro and in vivo . Our results showed that, in addition to rearranging the domain order of bsDbs, increasing their binding affinity may be an ideal strategy for enhancing the cytotoxicity of anti-parallel constructs and that E2x3-LH is particularly attractive as a candidate next-generation anti-cancer drug.

  11. Impact of epidermal growth factor receptor gene expression level on clinical outcomes in epidermal growth factor receptor mutant lung adenocarcinoma patients taking first-line epidermal growth factor receptor-tyrosine kinase inhibitors.

    PubMed

    Chang, Huang-Chih; Chen, Yu-Mu; Tseng, Chia-Cheng; Huang, Kuo-Tung; Wang, Chin-Chou; Chen, Yung-Che; Lai, Chien-Hao; Fang, Wen-Feng; Kao, Hsu-Ching; Lin, Meng-Chih

    2017-03-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are first-choice treatments for advanced non-small-cell lung cancer patients harboring EGFR mutations. Although EGFR mutations are strongly predictive of patients' outcomes and their response to treatment with EGFR-TKIs, early failure of first-line therapy with EGFR-TKIs in patients with EGFR mutations is not rare. Besides several clinical factors influencing EGFR-TKI efficacies studied earlier such as the Eastern Cooperative Oncology Group performance status or uncommon mutation, we would like to see whether semi-quantify EGFR mutation gene expression calculated by 2 -ΔΔct was a prognostic factor in EGFR-mutant non-small cell lung cancer patients receiving first-line EGFR-TKIs. This retrospective study reviews 926 lung cancer patients diagnosed from January 2011 to October 2013 at the Kaohsiung Chang Gung Memorial Hospital in Taiwan. Of 224 EGFR-mutant adenocarcinoma patients, 148 patients who had 2 -ΔΔct data were included. The best cutoff values of 2 -ΔΔct for in-frame deletions in exon 19 (19 deletion) and a position 858 substituted from leucine (L) to an arginine (R) in exon 21 (L858R) were determined using receiver operating characteristic curves. Patients were divided into high and low 2 -ΔΔct expression based on the above cutoff level. The best cutoff point of 2 -ΔΔct value of 19 deletion and L858R was 31.1 and 104.7, respectively. In all, 92 (62.1%) patients showed high 2 -ΔΔct expression and 56 patients (37.9%) low 2 -ΔΔct expression. The mean age was 65.6 years. Progression-free survival of 19 deletion mutant patients with low versus high expression level was 17.07 versus 12.04 months (P = 0.004), respectively. Progression-free survival of L858 mutant patients was 13.75 and 7.96 months (P = 0.008), respectively. EGFR-mutant lung adenocarcinoma patients with lower EGFR gene expression had longer progression-free survival duration without interfering

  12. Simultaneous EGFR and VEGF Alterations in Non-Small Cell Lung Carcinoma Based on Tissue Microarrays

    PubMed Central

    Tsiambas, Evangelos; Stamatelopoulos, Athanasios; Karameris, Andreas; Panagiotou, Ioannis; Rigopoulos, Dimitrios; Chatzimichalis, Antonios; Bouros, Demosthenes; Patsouris, Efstratios

    2007-01-01

    Background: Epidermal growth factor receptor (EGFR) overexpression is observed in significant proportions of non-small cell lung carcinomas (NSCLC). Furthermore, overactivation of vascular endothelial growth factor (VEGF) leads to increased angiogenesis implicated as an important factor in vascularization of those tumors. Patients and Methods: Using tissue microarray technology, forty-paraffin (n = 40) embedded, histologically confirmed primary NSCLCs were cored and re-embedded into a recipient block. Immunohistochemistry was performed for the determination of EGFR and VEGF protein levels which were evaluated by the performance of computerized image analysis. EGFR gene amplification was studied by chromogenic in situ hybridization based on the use of EGFR gene and chromosome 7 centromeric probes. Results: EGFR overexpression was observed in 23/40 (57.5%) cases and was correlated to the stage of the tumors (p = 0.001), whereas VEGF was overexpressed in 35/40 (87.5%) cases and was correlated to the stage of the tumors (p = 0.005) and to the smoking history of the patients (p = 0.016). Statistical significance was assessed comparing the protein levels of EGFR and VEGF (p = 0.043, k = 0.846). EGFR gene amplification was identified in 2/40 (5%) cases demonstrating no association to its overall protein levels (p = 0.241), whereas chromosome 7 aneuploidy was detected in 7/40 (17.5%) cases correlating to smoking history of the patients (p = 0.013). Conclusions: A significant subset of NSCLC is characterized by EGFR and VEGF simultaneous overexpression and maybe this is the eligible target group for the application of combined anti-EGFR/VEGF targeted therapies at the basis of genetic deregulation (especially gene amplification for EGFR). PMID:19455247

  13. Guide to detecting epidermal growth factor receptor (EGFR) mutations in ctDNA of patients with advanced non-small-cell lung cancer

    PubMed Central

    Normanno, Nicola; Denis, Marc G.; Thress, Kenneth S.; Ratcliffe, Marianne; Reck, Martin

    2017-01-01

    Cancer treatment is evolving towards therapies targeted at specific molecular abnormalities that drive tumor growth. Consequently, to determine which patients are eligible, accurate assessment of molecular aberrations within tumors is required. Obtaining sufficient tumor tissue for molecular testing can present challenges; therefore, circulating free tumor-derived DNA (ctDNA) found in blood plasma has been proposed as an alternative source of tumor DNA. The diagnostic utility of ctDNA for the detection of epidermal growth factor receptor (EGFR) mutations harbored in tumors of patients with advanced non-small-cell lung cancer (NSCLC) is supported by the results of several large studies/meta-analyses. However, recent real-world studies suggest that the performance of ctDNA testing varies between geographic regions/laboratories, demonstrating the need for standardized guidance. In this review, we outline recommendations for obtaining an accurate result using ctDNA, relating to pre-analytical plasma processing, ctDNA extraction, and appropriate EGFR mutation detection methods, based on clinical trial results. We conclude that there are several advantages associated with ctDNA, including the potential for repeated sampling particularly following progression after first-line tyrosine kinase inhibitor (TKI) therapy, as TKIs targeting resistance mutations (eg T790M) are now approved for use in the USA/EU/Japan (at time of writing). However, evidence suggests that ctDNA does not allow detection of EGFR mutations in all patients with known mutation-positive NSCLC. Therefore, although tumor tissue should be the first sample choice for EGFR testing at diagnosis, ctDNA is a promising alternative diagnostic approach. PMID:27980215

  14. Molecular assays in detecting EGFR gene aberrations: an updated HER2-dependent algorithm for interpreting gene signals; a short technical report.

    PubMed

    Tsiambas, Evangelos; Ragos, Vasileios; Lefas, Alicia Y; Georgiannos, Stavros N; Rigopoulos, Dimitrios N; Georgakopoulos, Georgios; Stamatelopoulos, Athanasios; Grapsa, Dimitra; Syrigos, Konstantinos

    2016-01-01

    Purpose: Among oncogenes that have already been identified and cloned, Epidermal Growth Factor Receptor (EGFR) remains one of the most significant. Understanding its deregulation mechanisms improves critically patients' selection for personalized therapies based on modern molecular biology and oncology guidelines. Anti-EGFR targeted therapeutic strategies have been developed based on specific genetic profiles and applied in subgroups of patients suffering by solid cancers of different histogenetic origin. Detection of specific EGFR somatic mutations leads to tyrosine kinase inhibitors (TKIs) application in subsets of them. Concerning EGFR gene numerical imbalances, identification of pure gene amplification is critical for targeting the molecule via monoclonal antibodies (mAbs). In the current technical paper we demonstrate the main molecular methods applied in EGFR analyses focused also on new data in interpreting numerical imbalances based on ASCO/ACAP guidelines for HER2 in situ hybridization (ISH) clarifications.

  15. Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Angelis Campos, Ana Carolina; Rodrigues, Michele Angela; Andrade, Carolina de

    2011-08-26

    Highlights: {yields} EGF and its receptor translocates to the nucleus in liver cells. {yields} Real time imaging shows that EGF moves to the nucleus. {yields} EGF moves with its receptor to the nucleus. {yields} Dynamin and clathrin are necessary for EGFR nuclear translocation. -- Abstract: The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and realmore » time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.« less

  16. Characterization of the expression and clinical features of epidermal growth factor receptor and vascular endothelial growth factor receptor-2 in esophageal carcinoma

    PubMed Central

    NIYAZ, MADINIYAT; ANWER, JURAT; LIU, HUI; ZHANG, LIWEI; SHAYHEDIN, ILYAR; AWUT, IDIRIS

    2015-01-01

    The present study aimed to understand the expression characteristics of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-2 (VEGFR-2) in individuals of Uygur, Han and Kazak ethnicity with esophageal carcinoma in Xinjiang (China) and their interrelation analysis, and to investigate the expression differences in these genes between esophageal carcinoma and pericarcinoma tissue samples, and between the three ethnic groups. The expression levels of EGFR and VEGFR-2 from 119 pairs of esophageal carcinoma tissue and corresponding pericarcinoma tissue from Uygur, Han and Kazak patients with esophageal carcinoma were detected by immunohistochemistry following surgical resection, and an additional five carcinoma in situ specimens were also tested. The relative expression was analyzed among the ethnic groups and clinicopathological parameters. The positive rate of EGFR in esophageal carcinoma tissue from patients of Uygur, Han and Kazak heritage was 70.73, 68.42 and 67.5%, respectively. For VEGFR-2 the positive rate was 73.17, 68.42 and 67.5%, respectively. No significant difference was detected in their expression between the three ethnic groups (P>0.05); however, EGFR and VEGFR-2 overexpression were correlated with lymph node metastasis (P<0.05). VEGF expression was also correlated with the expression of VEGFR-2 in esophageal carcinoma tissues. EGFR was positive in carcinoma in situ samples, while VEGFR-2 was negative. The overexpression of EGFR is therefore an early event and may have a significant role in the progression of esophageal carcinoma pathogenesis. EGFR overexpression may correlate with the expression of VEGFR-2 in esophageal cancer. These results may aid the early diagnosis of esophageal cancer, and the development of individual target treatment in the future. PMID:26788193

  17. Characterization of the diffusion of epidermal growth factor receptor clusters by single particle tracking.

    PubMed

    Boggara, Mohan; Athmakuri, Krishna; Srivastava, Sunit; Cole, Richard; Kane, Ravi S

    2013-02-01

    A number of studies have shown that receptors of the epidermal growth factor receptor family (ErbBs) exist as higher-order oligomers (clusters) in cell membranes in addition to their monomeric and dimeric forms. Characterizing the lateral diffusion of such clusters may provide insights into their dynamics and help elucidate their functional relevance. To that end, we used single particle tracking to study the diffusion of clusters of the epidermal growth factor (EGF) receptor (EGFR; ErbB1) containing bound fluorescently-labeled ligand, EGF. EGFR clusters had a median diffusivity of 6.8×10(-11)cm(2)/s and were found to exhibit different modes of transport (immobile, simple, confined, and directed) similar to that previously reported for single EGFR molecules. Disruption of actin filaments increased the median diffusivity of EGFR clusters to 10.3×10(-11)cm(2)/s, while preserving the different modes of diffusion. Interestingly, disruption of microtubules rendered EGFR clusters nearly immobile. Our data suggests that microtubules may play an important role in the diffusion of EGFR clusters either directly or perhaps indirectly via other mechanisms. To our knowledge, this is the first report probing the effect of the cytoskeleton on the diffusion of EGFR clusters in the membranes of live cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Epidermal growth factor receptor (EGFR) is overexpressed in high-grade dysplasia and adenocarcinoma of the esophagus and may represent a biomarker of histological progression in Barrett's esophagus (BE).

    PubMed

    Cronin, James; McAdam, Elizabeth; Danikas, Antonios; Tselepis, Chris; Griffiths, Paul; Baxter, John; Thomas, Linzi; Manson, James; Jenkins, Gareth

    2011-01-01

    The assessment of cancer risk in patients with Barrett's esophagus (BE) is currently fraught with difficulty. The current gold standard method of assessing cancer risk is histological assessment, with the appearance of high-grade dysplasia (HGD) as the key event monitored. Sampling error during endoscopy limits the usefulness of this approach, and there has been much recent interest in supplementing histological assessment with molecular markers, which may aid in patient stratification. No molecular marker has been yet validated to accurately correlate with esophageal histological progression. Here, we assessed the suitability of several membranous proteins as biomarkers by correlating their abundance with histological progression. In all, 107 patient samples, from 100 patients, were arranged on a tissue microarray (TMA) and represented the various stages of histological progression in BE. This TMA was probed with antibodies for eight receptor proteins (mostly membranous). Epidermal growth factor receptor (EGFR) staining was found to be the most promising biomarker identified with clear increases in staining accompanying histological progression. Further, immunohistochemistry was performed using the full-tissue sections from BE, HGD, and adenocarcinoma tissues, which confirmed the stepwise increase in EGFR abundance. Using a robust H-score analysis, EGFR abundance was shown to increase 13-fold in the adenocarcinoma tissues compared to the BE tissues. EGFR was "overexpressed" in 35% of HGD specimens and 80% of adenocarcinoma specimens when using the H-score of the BE patients (plus 3 s.d.) as the threshold to define overexpression. EGFR staining was also noted to be higher in BE tissues adjacent to HGD/adenocarcinoma. Western blotting, although showing more EGFR protein in the adenocarcinomas compared to the BE tissue, was highly variable. EGFR overexpression was accompanied by aneuploidy (gain) of chromosome 7, plus amplification of the EGFR locus. Finally, the

  19. Intratumoral heterogeneity in EGFR mutant NSCLC results in divergent resistance mechanisms in response to EGFR tyrosine kinase inhibition

    PubMed Central

    Soucheray, Margaret; Capelletti, Marzia; Pulido, Inés; Kuang, Yanan; Paweletz, Cloud P.; Becker, Jeffrey H.; Kikuchi, Eiki; Xu, Chunxiao; Patel, Tarun B.; Al-shahrour, Fatima; Carretero, Julián; Wong, Kwok-Kin; Jänne, Pasi A.; Shapiro, Geoffrey I.; Shimamura, Takeshi

    2015-01-01

    Non-small cell lung cancers (NSCLC) that have developed resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib, are clinically linked to an epithelial-to-mesenchymal transition (EMT) phenotype. Here we examined whether modulating EMT maintains the responsiveness of EGFR-mutated NSCLCs to EGFR TKI therapy. Using human NSCLC cell lines harboring mutated-EGFR and a transgenic mouse model of lung cancer driven by mutant EGFR (EGFR-Del19-T790M), we demonstrate that EGFR inhibition induces TGFβ secretion followed by SMAD pathway activation, an event that promotes EMT. Chronic exposure of EGFR-mutated NSCLC cells to TGFβ was sufficient to induce EMT and resistance to EGFR TKI treatment. Furthermore, NSCLC HCC4006 cells with acquired resistance to gefitinib were characterized by a mesenchymal phenotype and displayed a higher prevalence of the EGFR T790M mutated allele. Notably, combined inhibition of EGFR and the TGFβ receptor in HCC4006 cells prevented EMT, but was not sufficient to prevent acquired gefitinib resistance because of an increased emergence of the EGFR T790M allele compared to cells treated with gefitinib alone. Conversely, another independent NSCLC cell line, PC9, reproducibly develops EGFR T790M mutations as the primary mechanism underlying EGFR TKI resistance, even though the prevalence of the mutant allele is lower than that in HCC4006 cells. Thus, our findings underscore heterogeneity within NSCLC cells lines harboring EGFR kinase domain mutations that give rise to divergent resistance mechanisms in response to treatment and anticipate the complexity of EMT suppression as a therapeutic strategy. PMID:26282169

  20. Continuation of epidermal growth factor receptor tyrosine kinase inhibitor treatment prolongs disease control in non-small-cell lung cancers with acquired resistance to EGFR tyrosine kinase inhibitors

    PubMed Central

    Chen, Qi; Quan, Qi; Ding, Lingyu; Hong, Xiangchan; Zhou, Ningning; Liang, Ying; Wu, Haiying

    2015-01-01

    Objectives Patients with non-small-cell lung cancer (NSCLC) develop acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) after tumor regression. No approved targeted therapies are currently available after initial EGFR TKI treatment. This study investigated the efficacy of continuing EGFR TKI therapy with local treatments for patients with NSCLC and local progression or minimal/slow progression on TKI therapy. Materials and Methods Fifty-five patients with NSCLC treated with EGFR TKIs and developed acquired resistance to the drug were included. Initial response to target therapy, median progression free survival (PFS1), progression pattern, and first progression site were assessed. Median progression free survival to physician assessment progression (PFS2) and difference between PFS1 and PFS2 (PFS difference) were also recorded. Results and Conclusion PFS1 was 11.2 months, PFS2 was 20.3 months, and PFS difference was 8.3 months. Nineteen patients (34.5%) who manifested progression received local therapy, and 16 (28.6%) underwent rebiopsy after progression with six positive EGFR T790M mutations detected. Cox proportional hazards regression model showed that only the first line of treatment was significantly correlated with PFS difference. NSCLC patients with acquired resistance to EGFR TKIs could benefit from the same TKI therapy through months to years of disease control. PMID:26172562

  1. Anti-epidermal growth factor receptor skin toxicity: a matter of topical hydration.

    PubMed

    Ferrari, Daris; Codecà, Carla; Bocci, Barbara; Crepaldi, Francesca; Violati, Martina; Viale, Giulia; Careri, Carmela; Caldiera, Sarah; Bordin, Veronica; Luciani, Andrea; Zonato, Sabrina; Cassinelli, Gabriela; Foa, Paolo

    2016-02-01

    Skin toxicity is a frequent complication of anti-epidermal growth factor receptor therapy, which can be an obstacle in maintaining the dose intensity and may negatively impact on the clinical outcome of cancer patients. Skin lesions depend on the disruption of the keratinocyte development pathways and no treatment is clearly effective in resolving the cutaneous alterations frequently found during anti-epidermal growth factor receptor therapy. Among systemic treatments, oral tetracycline proved to be useful in preventing skin manifestations. We describe the case of a patient affected by metastatic colorectal cancer, for whom a combination of chemotherapy and cetuximab was used as second-line treatment. The patient developed a symptomatic papulopustular skin rash that disappeared completely after a twice-daily application of a hydrating and moisturizing cream, mainly consisting of a mixture of paraffin, silicone compounds, and macrogol. The marked cutaneous amelioration allowed the patient to continue cetuximab without any further symptoms and was associated with a partial radiological response.

  2. Prognostic value of plasma EGFR ctDNA in NSCLC patients treated with EGFR-TKIs.

    PubMed

    Zhang, Chengjuan; Wei, Bing; Li, Peng; Yang, Ke; Wang, Zhizhong; Ma, Jie; Guo, Yongjun

    2017-01-01

    Epidermal growth factor receptor (EGFR) specific mutations have been known to improve survival of patients with non-small-cell lung carcinoma (NSCLC). However, whether there are any changes of EGFR mutations after targeted therapy and its clinical significance is unclear. This study was to identify the status of EGFR mutations after targeted therapy and predict the prognostic significance for NSCLC patients. A total of forty-five (45) NSCLC patients who received EGFR-TKI therapy were enrolled. We identified the changes of EGFR mutations in plasma ctDNA by Amplification Refractory Mutation System (ARMS) PCR technology. In the 45 cases of NSCLC with EGFR mutations, the EGFR mutation status changed in 26 cases, in which, 12 cases (26.7%) from positive to negative, and 14 cases (31.1%) from T790M mutation negative to positive after TKI targeted therapy. The T790M occurance group had a shorter Progression -Free-Survival (PFS) than the groups of EGFR mutation undetected and EGFR mutation turned out to have no change after EGFR-TKI therapy (p < 0.05). According to this study, it's necessary to closely monitor EGFR mutations during follow-up to predict the prognosis of NSCLC patients who are to receive the TKI targeted therapy.

  3. Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions Through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes.

    PubMed

    Fitzgerald, Amanda C; Peyton, Candace; Dong, Jing; Thomas, Peter

    2015-12-01

    Xenobiotic estrogens, such as bisphenol A (BPA), disrupt a wide variety of genomic estrogen actions, but their nongenomic estrogen actions remain poorly understood. We investigated nongenomic estrogenic effects of low concentrations of BPA and three related alkylphenols on the inhibition of zebrafish oocye maturation (OM) mediated through a G protein-coupled estrogen receptor 1 (Gper)-dependent epidermal growth factor receptor (Egfr) pathway. BPA (10-100 nM) treatment for 3 h mimicked the effects of estradiol-17beta (E2) and EGF, decreasing spontaneous maturation of defolliculated zebrafish oocytes, an effect not blocked by coincubation with actinomycin D, but blocked by coincubation with a Gper antibody. BPA displayed relatively high binding affinity (15.8% that of E2) for recombinant zebrafish Gper. The inhibitory effects of BPA were attenuated by inhibition of upstream regulators of Egfr, intracellular tyrosine kinase (Src) with PP2, and matrix metalloproteinase with ilomastat. Treatment with an inhibitor of Egfr transactivation, AG1478, and an inhibitor of the mitogen-activated protein kinase (MAPK) 3/1 pathway, U0126, increased spontaneous OM and blocked the inhibitory effects of BPA, E2, and the selective GPER agonist, G-1. Western blot analysis showed that BPA (10-200 nM) mimicked the stimulatory effects of E2 and EGF on Mapk3/1 phosphorylation. Tetrabromobisphenol A, 4-nonylphenol, and tetrachlorobisphenol A (5-100 nM) also inhibited OM, an effect blocked by cotreatment with AG1478, as well as with the GPER antagonist, G-15, and displayed similar binding affinities as BPA to zebrafish Gper. The results suggest that BPA and related alkylphenols disrupt zebrafish OM by a novel nongenomic estrogenic mechanism involving activation of the Gper/Egfr/Mapk3/1 pathway. © 2015 by the Society for the Study of Reproduction, Inc.

  4. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    PubMed

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  5. Exisulind in combination with celecoxib modulates epidermal growth factor receptor, cyclooxygenase-2, and cyclin D1 against prostate carcinogenesis: in vivo evidence.

    PubMed

    Narayanan, Bhagavathi A; Reddy, Bandaru S; Bosland, Maarten C; Nargi, Dominick; Horton, Lori; Randolph, Carla; Narayanan, Narayanan K

    2007-10-01

    Nonsteroidal anti-inflammatory drugs mediate anticancer effects by modulating cyclooxygenase-2 (COX-2)-dependent and/or COX-2-independent mechanism(s); however, the toxicity issue is a concern with single agents at higher doses. In this study, we determined the combined effect of celecoxib, a COX-2 inhibitor, along with exisulind (sulindac sulfone/Aptosyn) at low doses in prostate cancer. We used a sequential regimen of N-methyl-N-nitrosourea + testosterone to induce prostate cancer in Wistar-Unilever rats. Following carcinogen treatment, celecoxib and exisulind individually and their combination at low doses were given in NIH-07 diet for 52 weeks. We determined the incidence of prostatic intraepithelial neoplasia, adenocarcinomas, rate of tumor cell proliferation, and apoptosis. Immunohistochemical and Western blot analysis were done to determine COX-2, epidermal growth factor receptor (EGFR), Akt, androgen receptor, and cyclin D1 expression. Serum prostaglandin E2 and tumor necrosis factor-alpha levels were determined using enzyme immunoassay/ELISA assays. The rats that received celecoxib in combination with exisulind at low doses showed a significant decrease in prostatic intraepithelial neoplasia and adenocarcinomas as well as an enhanced rate of apoptosis. An overall decrease in COX-2, EGFR, Akt, androgen receptor, and cyclin D1 expression was found associated with tumor growth inhibition. Reduced serum levels of COX-2 protein, prostaglandin E2, and tumor necrosis factor-alpha indicated anti-inflammatory effects. A strong inhibition of total and phosphorylated form of EGFR (Tyr(992) and Tyr(845)) and Akt (Ser(473)) was significant in rats given with these agents in combination. In this study, we show for the first time that the combination of celecoxib with exisulind at low doses could prevent prostate carcinogenesis by altering key molecular events.

  6. Epidermal growth factor receptor expression in primary cultured human colorectal carcinoma cells.

    PubMed Central

    Tong, W. M.; Ellinger, A.; Sheinin, Y.; Cross, H. S.

    1998-01-01

    In situ hybridization on human colon tissue demonstrates that epidermal growth factor receptor (EGFR) mRNA expression is strongly increased during tumour progression. To obtain test systems to evaluate the relevance of growth factor action during carcinogenesis, primary cultures from human colorectal carcinomas were established. EGFR distribution was determined in 2 of the 27 primary cultures and was compared with that in well-defined subclones derived from the Caco-2 cell line, which has the unique property to differentiate spontaneously in vitro in a manner similar to normal enterocytes. The primary carcinoma-derived cells had up to three-fold higher total EGFR levels than the Caco-2 subclones and a basal mitotic rate at least fourfold higher. The EGFR affinity constant is 0.26 nmol l(-1), which is similar to that reported in Caco-2 cells. The proliferation rate of Caco-2 cells is mainly induced by EGF from the basolateral cell surface where the majority of receptors are located, whereas primary cultures are strongly stimulated from the apical side also. This corresponds to a three- to fivefold higher level of EGFR at the apical cell surface. This redistribution of EGFR to apical plasma membranes in advanced colon carcinoma cells suggests that autocrine growth factors in the colon lumen may play a significant role during tumour progression. Images Figure 1 Figure 2 PMID:9667648

  7. Protein Phosphorylation Profiling Using an In Situ Proximity Ligation Assay: Phosphorylation of AURKA-Elicited EGFR-Thr654 and EGFR-Ser1046 in Lung Cancer Cells

    PubMed Central

    Chen, Tzu-Chi; Liu, Yu-Wen; Huang, Yei-Hsuan; Yeh, Yi-Chen; Chou, Teh-Ying; Wu, Yu-Chung; Wu, Chun-Chi; Chen, Yi-Rong; Cheng, Hui-Chuan; Lu, Pei-Jung; Lai, Jin-Mei; Huang, Chi-Ying F.

    2013-01-01

    The epidermal growth factor receptor (EGFR), which is up-regulated in lung cancer, involves the activation of mitogenic signals and triggers multiple signaling cascades. To dissect these EGFR cascades, we used 14 different phospho-EGFR antibodies to quantify protein phosphorylation using an in situ proximity ligation assay (in situ PLA). Phosphorylation at EGFR-Thr654 and -Ser1046 was EGF-dependent in the wild-type (WT) receptor but EGF-independent in a cell line carrying the EGFR-L858R mutation. Using a ProtoAarray™ containing ∼5000 recombinant proteins on the protein chip, we found that AURKA interacted with the EGFR-L861Q mutant. Moreover, overexpression of EGFR could form a complex with AURKA, and the inhibitors of AURKA and EGFR decreased EGFR-Thr654 and -Ser1046 phosphorylation. Immunohistochemical staining of stage I lung adenocarcinoma tissues demonstrated a positive correlation between AURKA expression and phosphorylation of EGFR at Thr654 and Ser1046 in EGFR-mutant specimens, but not in EGFR-WT specimens. The interplay between EGFR and AURKA provides an explanation for the difference in EGF dependency between EGFR-WT and EGFR-mutant cells and may provide a new therapeutic strategy for lung cancer patients carrying EGFR mutations. PMID:23520446

  8. Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyatt, Dustin C.; Ceresa, Brian P.

    2008-11-01

    The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads canmore » stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.« less

  9. Chemotherapeutic Potential of 2-[Piperidinoethoxyphenyl]-3-Phenyl-2H-Benzo(b)pyran in Estrogen Receptor- Negative Breast Cancer Cells: Action via Prevention of EGFR Activation and Combined Inhibition of PI-3-K/Akt/FOXO and MEK/Erk/AP-1 Pathways

    PubMed Central

    Saxena, Ruchi; Chandra, Vishal; Manohar, Murli; Hajela, Kanchan; Debnath, Utsab; Prabhakar, Yenamandra S.; Saini, Karan Singh; Konwar, Rituraj; Kumar, Sandeep; Megu, Kaling; Roy, Bal Gangadhar; Dwivedi, Anila

    2013-01-01

    Inhibition of epidermal growth factor receptor (EGFR) signaling is considered to be a promising treatment strategy for estrogen receptor (ER)-negative breast tumors. We have investigated here the anti-breast cancer properties of a novel anti-proliferative benzopyran compound namely, 2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzo(b)pyran (CDRI-85/287) in ER- negative and EGFR- overexpressing breast cancer cells. The benzopyran compound selectively inhibited the EGF-induced growth of MDA-MB 231 cells and ER-negative primary breast cancer cell culture. The compound significantly reduced tumor growth in xenograft of MDA-MB 231 cells in nude mice. The compound displayed better binding affinity for EGFR than inhibitor AG1478 as demonstrated by molecular docking studies. CDRI-85/287 significantly inhibited the activation of EGFR and downstream effectors MEK/Erk and PI-3-K/Akt. Subsequent inhibition of AP-1 promoter activity resulted in decreased transcription activation and expression of c-fos and c-jun. Dephosphorylation of downstream effectors FOXO-3a and NF-κB led to increased expression of p27 and decreased expression of cyclin D1 which was responsible for decreased phosphorylation of Rb and prevented the transcription of E2F- dependent genes involved in cell cycle progression from G1/S phase. The compound induced apoptosis via mitochondrial pathway and it also inhibited EGF-induced invasion of MDA-MB 231 cells as evidenced by decreased activity of MMP-9 and expression of CTGF. These results indicate that benzopyran compound CDRI-85/287 could constitute a powerful new chemotherapeutic agent against ER-negative and EGFR over-expressing breast tumors. PMID:23840429

  10. InsR/IGF1R pathway mediates resistance to EGFR inhibitors in glioblastoma

    PubMed Central

    Ma, Yufang; Tang, Nan; Thompson, Reid; Mobley, Bret C.; Clark, Steven W.; Sarkaria, Jann N.; Wang, Jialiang

    2015-01-01

    Purpose Aberrant activation of epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. However, EGFR inhibitors exhibit at best modest efficacy in glioblastoma. This is in sharp contrast to the observations in EGFR-mutant lung cancer. We examined whether activation of functionally redundant receptor tyrosine kinases (RTKs) conferred resistance to EGFR inhibitors in glioblastoma. Experimental Design We collected a panel of patient-derived glioblastoma xenograft (PDX) lines that maintained expression of wild type or mutant EGFR in serial xenotransplantation and tissue cultures. Using this physiologically relevant platform, we tested the abilities of several RTK ligands to protect glioblastoma cells against an EGFR inhibitor, gefitinib. Based on the screening results, we further developed a combination therapy co-targeting EGFR and insulin receptor (InsR)/insulin-like growth factor 1 receptor (IGF1R). Results Insulin and IGF1 induced significant protection against gefitinib in the majority of EGFR-dependent PDX lines with one exception that did not expression InsR or IGF1R. Blockade of the InsR/IGF1R pathway synergistically improved sensitivity to gefitinib or dacomitinib. Gefitinib alone effectively attenuated EGFR activities and the downstream MEK/ERK pathway. However, repression of AKT and induction of apoptosis required concurrent inhibition of both EGFR and InsR/IGF1R. A combination of gefitinib and OSI-906, a dual InsR/IGF1R inhibitor, was more effective than either agent alone to treat subcutaneous glioblastoma xenograft tumors. Conclusions Our results suggest that activation of the InsR/IGF1R pathway confers resistance to EGFR inhibitors in EGFR-dependent glioblastoma through AKT regulation. Concurrent blockade of these two pathways holds promise to treat EGFR-dependent glioblastoma. PMID:26561558

  11. Expression of epidermal growth factor receptor and vascular endothelial growth factor in malignant canine epithelial nasal tumours.

    PubMed

    Shiomitsu, K; Johnson, C L; Malarkey, D E; Pruitt, A F; Thrall, D E

    2009-06-01

    Epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) signalling pathways play a role in carcinogenesis. Inhibition of EGF receptor (EGFR) and of VEGF is effective in increasing the radiation responsiveness of neoplastic cells both in vitro and in human trials. In this study, immunohistochemical evaluation was employed to determine and characterize the potential protein expression levels and patterns of EGFR and VEGF in a variety of canine malignant epithelial nasal tumours. Of 24 malignant canine nasal tumours, 13 (54.2%) were positive for EGFR staining and 22 (91.7%) were positive for VEGF staining. The intensity and percentage of immunohistochemically positive neoplastic cells for EGFR varied. These findings indicate that EGFR and VEGF proteins were present in some malignant epithelial nasal tumours in the dogs, and therefore, it may be beneficial to treat canine patients with tumours that overexpress EGFR and VEGF with specific inhibitors in conjunction with radiation.

  12. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    PubMed

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  13. Epidermal growth factor receptor mutation in gastric cancer.

    PubMed

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  14. Targeted Antiepidermal Growth Factor Receptor (Cetuximab) Immunoliposomes Enhance Cellular Uptake In Vitro and Exhibit Increased Accumulation in an Intracranial Model of Glioblastoma Multiforme

    PubMed Central

    Mortensen, Joachim Høg

    2013-01-01

    Therapeutic advances do not circumvent the devastating fact that the survival rate in glioblastoma multiforme (GBM) is less than 5%. Nanoparticles consisting of liposome-based therapeutics are provided against a variety of cancer types including GBM, but available liposomal formulations are provided without targeting moieties, which increases the dosing demands to reach therapeutic concentrations with risks of side effects. We prepared PEGylated immunoliposomes (ILs) conjugated with anti-human epidermal growth factor receptor (EGFR) antibodies Cetuximab (α-hEGFR-ILs). The affinity of the α-hEGFR-ILs for the EGF receptor was evaluated in vitro using U87 mg and U251 mg cells and in vivo using an intracranial U87 mg xenograft model. The xenograft model was additionally analyzed with respect to permeability to endogenous albumin, tumor size, and vascularization. The in vitro studies revealed significantly higher binding of α-hEGFR-ILs when compared with liposomes conjugated with isotypic nonimmune immunoglobulin. The uptake and internalization of the α-hEGFR-ILs by U87 mg cells were further confirmed by 3D deconvolution analyses. In vivo, the α-hEGFR-ILs accumulated to a higher extent inside the tumor when compared to nonimmune liposomes. The data show that α-hEGFR-ILs significantly enhance the uptake and accumulation of liposomes in this experimental model of GBM suggestive of improved specific nanoparticle-based delivery. PMID:24175095

  15. Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions Through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes1

    PubMed Central

    Fitzgerald, Amanda C.; Peyton, Candace; Dong, Jing; Thomas, Peter

    2015-01-01

    Xenobiotic estrogens, such as bisphenol A (BPA), disrupt a wide variety of genomic estrogen actions, but their nongenomic estrogen actions remain poorly understood. We investigated nongenomic estrogenic effects of low concentrations of BPA and three related alkylphenols on the inhibition of zebrafish oocye maturation (OM) mediated through a G protein-coupled estrogen receptor 1 (Gper)-dependent epidermal growth factor receptor (Egfr) pathway. BPA (10–100 nM) treatment for 3 h mimicked the effects of estradiol-17beta (E2) and EGF, decreasing spontaneous maturation of defolliculated zebrafish oocytes, an effect not blocked by coincubation with actinomycin D, but blocked by coincubation with a Gper antibody. BPA displayed relatively high binding affinity (15.8% that of E2) for recombinant zebrafish Gper. The inhibitory effects of BPA were attenuated by inhibition of upstream regulators of Egfr, intracellular tyrosine kinase (Src) with PP2, and matrix metalloproteinase with ilomastat. Treatment with an inhibitor of Egfr transactivation, AG1478, and an inhibitor of the mitogen-activated protein kinase (MAPK) 3/1 pathway, U0126, increased spontaneous OM and blocked the inhibitory effects of BPA, E2, and the selective GPER agonist, G-1. Western blot analysis showed that BPA (10–200 nM) mimicked the stimulatory effects of E2 and EGF on Mapk3/1 phosphorylation. Tetrabromobisphenol A, 4-nonylphenol, and tetrachlorobisphenol A (5–100 nM) also inhibited OM, an effect blocked by cotreatment with AG1478, as well as with the GPER antagonist, G-15, and displayed similar binding affinities as BPA to zebrafish Gper. The results suggest that BPA and related alkylphenols disrupt zebrafish OM by a novel nongenomic estrogenic mechanism involving activation of the Gper/Egfr/Mapk3/1 pathway. PMID:26490843

  16. [Construction and screening of phage antibody libraries against epidermal growth factor receptor and soluble expression of single chain Fv].

    PubMed

    Sheng, Wei-Jin; Miao, Qing-Fang; Zhen, Yong-Su

    2009-06-01

    Recent studies have shown that epidermal growth factor receptor (EGFR) is an important target for cancer therapy. The present study prepared single chain Fv (scFv) directed against EGFR. Balb/c mice were immunized by human carcinoma A431 cells, and total RNA of the splenic cells was extracted. VH and VL gene fragments were amplified by RT-PCR and further joined into scFv gene with a linker, then scFv gene fragments were ligated into the phagemid vector pCANTAB 5E. The phagemid containing scFv were transformed into electro-competent E. coli TG1 cells. The recombinant phage antibody library was constructed through rescuing the transformed cells with help phage M13K07. The specified recombinant phages were enriched through 5 rounds of affinity panning and the anti-EGFR phage scFv clones were screened and identified with ELISA. A total of 48 clones from the library were selected randomly and 45 clones were identified positive. After infecting E. coli HB2151 cells with one positive clone, soluble recombinant antibodies about 27 kD were produced and located in the periplasm and the supernatant. The result of sequencing showed that the scFv gene was 768 bp, which encoded 256 amino acid residues. VH and VL including 3 CDRs and 4 FRs, respectively, were all homologous to mouse Ig. The soluble scFv showed the specific binding activity to purified EGFR and EGFR located in carcinoma cell membrane. The successful preparation of anti-EGFR scFv will provide an EGFR targeted molecule for the development of antibody-based drugs and biological therapy of cancer.

  17. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells.

    PubMed

    Kang, Minyong; Lee, Kyoung-Hwa; Lee, Hye Sun; Jeong, Chang Wook; Kwak, Cheol; Kim, Hyeon Hoe; Ku, Ja Hyeon

    2017-02-04

    Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR) inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1), chloroquine (CQ) and 3-methyladenine (3-MA) were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8) assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI) was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA) remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating a novel

  18. Involvement of lipid rafts in adhesion-induced activation of Met and EGFR.

    PubMed

    Lu, Ying-Che; Chen, Hong-Chen

    2011-10-27

    Cell adhesion has been shown to induce activation of certain growth factor receptors in a ligand-independent manner. However, the mechanism for such activation remains obscure. Human epidermal carcinoma A431 cells were used as a model to examine the mechanism for adhesion-induced activation of hepatocyte growth factor receptor Met and epidermal growth factor receptor (EGFR). The cells were suspended and replated on culture dishes under various conditions. The phosphorylation of Met at Y1234/1235 and EGFR at Y1173 were used as indicators for their activation. The distribution of the receptors and lipid rafts on the plasma membrane were visualized by confocal fluorescent microscopy and total internal reflection microscopy. We demonstrate that Met and EGFR are constitutively activated in A431 cells, which confers proliferative and invasive potentials to the cells. The ligand-independent activation of Met and EGFR in A431 cells relies on cell adhesion to a substratum, but is independent of cell spreading, extracellular matrix proteins, and substratum stiffness. This adhesion-induced activation of Met and EGFR cannot be attributed to Src activation, production of reactive oxygen species, and the integrity of the cytoskeleton. In addition, we demonstrate that Met and EGFR are independently activated upon cell adhesion. However, partial depletion of Met and EGFR prevents their activation upon cell adhesion, suggesting that overexpression of the receptors is a prerequisite for their self-activation upon cell adhesion. Although Met and EGFR are largely distributed in 0.04% Triton-insoluble fractions (i.e. raft fraction), their activated forms are detected mainly in 0.04% Triton-soluble fractions (i.e. non-raft fraction). Upon cell adhesion, lipid rafts are accumulated at the cell surface close to the cell-substratum interface, while Met and EGFR are mostly excluded from the membrane enriched by lipid rafts. Our results suggest for the first time that cell adhesion to a

  19. The efficacy of anti-PD-1/PD-L1 therapy and its comparison with EGFR-TKIs for advanced non-small-cell lung cancer.

    PubMed

    Sheng, Zhixin; Zhu, Xu; Sun, Yanhua; Zhang, Yanxia

    2017-08-22

    To better understand the efficacy and safety of anti-PD-1/PD-L1 therapy (atezolizumab, pembrolizumab, nivolumab) in patients with previously treated advanced non-small-cell lung cancer (NSCLC). The Cochrane Controlled Trial Register, Embase, Medline, and the Science Citation Index were searched for prospective published reports of atezolizumab, pembrolizumab, nivolumab in previously treated patients with advanced NSCLC. Finally, we identified 14 prospective published reports including four trials of atezolizumab covering 542 subjects, three trials of pembrolizumab covering 1566 subjects, seven trials of nivolumab covering 1678 subjects. When compared to docetaxel, anti-PD-1/PD-L1 therapy could significantly improve overall survival (hazard ratio [HR] 0.67, P<0.001) and progression-free survival (HR 0.83, P=0.002) for previously treated patients with advanced NSCLC. Anti-PD-1/PD-L1 therapy produced an overall response rate of 19% in the 2374 evaluable patients. When using docetaxel as the common comparator, indirect comparison of anti-PD-1/PD-L1 therapy versus EGFR-TKIs showed progression-free survival benefit (HR 0.62, P<0.001) and overall survival benefit (HR 0.60, P<0.001) for those patients with EGFR wild-type. Meanwhile, for those EGFR mutant patients, indirect comparison indicated that anti-PD-1/PD-L1 therapy was inferior to EGFR-TKIs therapy in terms of progression-free survival (HR 3.20, P<0.001), but no survival difference (HR 1.30, P=0.18). Anti-PD-1/PD-L1 therapy could produce progression-free survival and overall survival improvement over docetaxel for patients with previously treated NSCLC. For EGFR wild-type patients, anti-PD-1/PD-L1 therapy seemed to prolong progression-free survival and overall survival when compared to EGFR-TKIs. Meanwhile, for these EGFR mutant patients, anti-PD-1/PD-L1 therapy was inferior to EGFR-TKIs therapy in terms of progression-free survival.

  20. Emerging functions of the EGFR in cancer.

    PubMed

    Sigismund, Sara; Avanzato, Daniele; Lanzetti, Letizia

    2018-01-01

    The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as 'noncanonical') functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand-induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress-induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  1. Clinical Factors Predicting Detection of T790M Mutation in Rebiopsy for EGFR-Mutant Non-small-cell Lung Cancer.

    PubMed

    Kawamura, Takahisa; Kenmotsu, Hirotsugu; Omori, Shota; Nakashima, Kazuhisa; Wakuda, Kazushige; Ono, Akira; Naito, Tateaki; Murakami, Haruyasu; Omae, Katsuhiro; Mori, Keita; Tanigawara, Yusuke; Nakajima, Takashi; Ohde, Yasuhisa; Endo, Masahiro; Takahashi, Toshiaki

    2018-03-01

    T790M, a secondary epidermal growth factor receptor (EGFR) mutation, accounts for approximately 50% of acquired resistance to EGFR-tyrosine kinase inhibitors (TKIs). To facilitate the use of third-generation EGFR-TKIs to potentially overcome T790M-mediated resistance, we evaluated the clinical factors influencing the incidence of T790M mutation. We retrospectively screened patients with non-small-cell lung cancer harboring EGFR mutations with progressive disease who were rebiopsied between January 2013 and December 2016. Factors influencing T790M status were evaluated by univariate and multivariate analysis. Among 131 rebiopsied patients for whom EGFR mutation status was available, 58 (44%) had T790M mutations. Patient characteristics at rebiopsy were not significantly different between T790M-positive and -negative groups, except for surgical history (postsurgery recurrence). Total duration of EGFR-TKI treatment before rebiopsy, TKI-free interval, EGFR-TKI treatment history immediately before rebiopsy, continuation of initial EGFR-TKI beyond progressive disease, progression-free survival after initial TKI treatment, and rebiopsy site (other than fluid samples) significantly influenced T790M status. The incidence of T790M mutation was shown by multivariate analysis to be significantly higher in patients with postsurgery recurrence and total duration of EGFR-TKI treatment ≥ 1 year before rebiopsy (odds ratio, 4.2; 95% confidence interval, 1.3-15.7 and odds ratio, 4.4; 95% confidence interval, 1.1-19.8, respectively). Postsurgery recurrence and longer total duration of EGFR-TKI treatment before rebiopsy may represent useful predictive markers for T790M detection. In patients with these clinical factors, rebiopsies are more recommended to detect T790M mutation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Epidermal growth factor receptor is required for estradiol-stimulated bovine satellite cell proliferation.

    PubMed

    Reiter, B C; Kamanga-Sollo, E; Pampusch, M S; White, M E; Dayton, W R

    2014-07-01

    The objective of this study was to assess the role of the epidermal growth factor receptor (EGFR) in estradiol-17β (E2)-stimulated proliferation of cultured bovine satellite cells (BSCs). Treatment of BSC cultures with AG1478 (a specific inhibitor of EGFR tyrosine kinase activity) suppresses E2-stimulated BSC proliferation (P < 0.05). In addition, E2-stimulated proliferation is completely suppressed (P < 0.05) in BSCs in which EGFR expression is silenced by treatment with EGFR small interfering RNA (siRNA). These results indicate that EGFR is required for E2 to stimulate proliferation in BSC cultures. Both AG1478 treatment and EGFR silencing also suppress proliferation stimulated by LR3-IGF-1 (an IGF1 analogue that binds normally to the insulin-like growth factor receptor (IGFR)-1 but has little or no affinity for IGF binding proteins) in cultured BSCs (P < 0.05). Even though EGFR siRNA treatment has no effect on IGFR-1β mRNA expression in cultured BSCs, IGFR-1β protein level is substantially reduced in BSCs treated with EGFR siRNA. These data suggest that EGFR silencing results in post-transcriptional modifications that result in decreased IGFR-1β protein levels. Although it is clear that functional EGFR is necessary for E2-stimulated proliferation of BSCs, the role of EGFR is not clear. Transactivation of EGFR may directly stimulate proliferation, or EGFR may function to maintain the level of IGFR-1β which is necessary for E2-stimulated proliferation. It also is possible that the role of EGFR in E2-stimulated BSC proliferation may involve both of these mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway.

    PubMed

    Li, Wei-Hua; Qiu, Ying; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2015-01-01

    As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.

  4. Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells

    PubMed Central

    Zhang, Weina; Chen, Lechuang; Ma, Kai; Zhao, Yahui; Liu, Xianghe; Wang, Yu; Liu, Mei; Liang, Shufang; Zhu, Hongxia; Xu, Ningzhi

    2016-01-01

    Epidermal growth factor receptor (EGFR) is a target of colon cancer therapy, but the effects of this therapy on the tumor microenvironment remain poorly understood. Our in vivo studies showed that cetuximab, an anti-EGFR monoclonal antibody, effectively inhibited AOM/DSS-induced, colitis-associated tumorigenesis, downregulated M2-related markers, and decreased F4/80+/CD206+ macrophage populations. Treatment with conditioned medium of colon cancer cells increased macrophage expression of the M2-related markers arginase-1 (Arg1), CCL17, CCL22, IL-10 and IL-4. By contrast, conditioned medium of EGFR knockout colon cancer cells inhibited expression of these M2-related markers and induced macrophage expression of the M1-related markers inducible nitric oxide synthase (iNOS), IL-12, TNF-α and CCR7. EGFR knockout in colon cancer cells inhibited macrophage-induced promotion of xenograft tumor growth. Moreover, colon cancer-derived insulin-like growth factor-1 (IGF-1) increased Arg1 expression, and treatment with the IGF1R inhibitor AG1024 inhibited that increase. These results suggest that inhibition of EGFR signaling in colon cancer cells modulates cytokine secretion (e.g. IGF-1) and prevents M1-to-M2 macrophage polarization, thereby inhibiting cancer cell growth. PMID:27683110

  5. NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest.

    PubMed

    Diluvio, Giulia; Del Gaudio, Francesca; Giuli, Maria Valeria; Franciosa, Giulia; Giuliani, Eugenia; Palermo, Rocco; Besharat, Zein Mersini; Pignataro, Maria Gemma; Vacca, Alessandra; d'Amati, Giulia; Maroder, Marella; Talora, Claudio; Capalbo, Carlo; Bellavia, Diana; Checquolo, Saula

    2018-05-25

    Notch dysregulation has been implicated in numerous tumors, including triple-negative breast cancer (TNBC), which is the breast cancer subtype with the worst clinical outcome. However, the importance of individual receptors in TNBC and their specific mechanism of action remain to be elucidated, even if recent findings suggested a specific role of activated-Notch3 in a subset of TNBCs. Epidermal growth factor receptor (EGFR) is overexpressed in TNBCs but the use of anti-EGFR agents (including tyrosine kinase inhibitors, TKIs) has not been approved for the treatment of these patients, as clinical trials have shown disappointing results. Resistance to EGFR blockers is commonly reported. Here we show that Notch3-specific inhibition increases TNBC sensitivity to the TKI-gefitinib in TNBC-resistant cells. Mechanistically, we demonstrate that Notch3 is able to regulate the activated EGFR membrane localization into lipid rafts microdomains, as Notch3 inhibition, such as rafts depletion, induces the EGFR internalization and its intracellular arrest, without involving receptor degradation. Interestingly, these events are associated with the EGFR tyrosine dephosphorylation at Y1173 residue (but not at Y1068) by the protein tyrosine phosphatase H1 (PTPH1), thus suggesting its possible involvement in the observed Notch3-dependent TNBC sensitivity response to gefitinib. Consistent with this notion, a nuclear localization defect of phospho-EGFR is observed after combined blockade of EGFR and Notch3, which results in a decreased TNBC cell survival. Notably, we observed a significant correlation between EGFR and NOTCH3 expression levels by in silico gene expression and immunohistochemical analysis of human TNBC primary samples. Our findings strongly suggest that combined therapies of TKI-gefitinib with Notch3-specific suppression may be exploited as a drug combination advantage in TNBC treatment.

  6. Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: An Evidence-Based Analysis.

    PubMed

    2010-01-01

    In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenetics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.THE FOLLOWING REPORTS CAN BE PUBLICLY ACCESSED AT THE MAS WEBSITE AT: http://www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlGENE EXPRESSION PROFILING FOR GUIDING ADJUVANT CHEMOTHERAPY DECISIONS IN WOMEN WITH EARLY BREAST CANCER: An Evidence-Based AnalysisEpidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based AnalysisK-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based Analysis The Medical Advisory Secretariat undertook a systematic review of the evidence on the clinical effectiveness and cost-effectiveness of epidermal growth factor receptor (EGFR) mutation testing compared with no EGFR mutation testing to predict response to tyrosine kinase inhibitors (TKIs), gefitinib (Iressa(®)) or erlotinib (Tarceva(®)) in patients with advanced non-small cell lung cancer (NSCLC). TARGET POPULATION AND CONDITION With an estimated 7,800 new cases and 7,000 deaths last year, lung cancer is the leading cause of cancer

  7. Recruitment of the Adaptor Protein Grb2 to EGFR Tetramers

    PubMed Central

    2015-01-01

    Adaptor protein Grb2 binds phosphotyrosines in the epidermal growth factor (EGF) receptor (EGFR) and thereby links receptor activation to intracellular signaling cascades. Here, we investigated how recruitment of Grb2 to EGFR is affected by the spatial organization and quaternary state of activated EGFR. We used the techniques of image correlation spectroscopy (ICS) and lifetime-detected Förster resonance energy transfer (also known as FLIM-based FRET or FLIM–FRET) to measure ligand-induced receptor clustering and Grb2 binding to activated EGFR in BaF/3 cells. BaF/3 cells were stably transfected with fluorescently labeled forms of Grb2 (Grb2–mRFP) and EGFR (EGFR–eGFP). Following stimulation of the cells with EGF, we detected nanometer-scale association of Grb2–mRFP with EGFR–eGFP clusters, which contained, on average, 4 ± 1 copies of EGFR–eGFP per cluster. In contrast, the pool of EGFR–eGFP without Grb2–mRFP had an average cluster size of 1 ± 0.3 EGFR molecules per punctum. In the absence of EGF, there was no association between EGFR–eGFP and Grb2–mRFP. To interpret these data, we extended our recently developed model for EGFR activation, which considers EGFR oligomerization up to tetramers, to include recruitment of Grb2 to phosphorylated EGFR. The extended model, with adjustment of one new parameter (the ratio of the Grb2 and EGFR copy numbers), is consistent with a cluster size distribution where 2% of EGFR monomers, 5% of EGFR dimers, <1% of EGFR trimers, and 94% of EGFR tetramers are associated with Grb2. Together, our experimental and modeling results further implicate tetrameric EGFR as the key signaling unit and call into question the widely held view that dimeric EGFR is the predominant signaling unit. PMID:24697349

  8. EGFR gene copy number alterations are not a useful screening tool for predicting EGFR mutation status in lung adenocarcinoma.

    PubMed

    Russell, Prudence A; Yu, Yong; Do, Hongdo; Clay, Timothy D; Moore, Melissa M; Wright, Gavin M; Conron, Matthew; Wainer, Zoe; Dobrovic, Alexander; McLachlan, Sue-Anne

    2014-01-01

    We investigated if gene copy number (GCN) alterations of the epidermal growth factor receptor (EGFR), as detected by silver enhanced in situ hybridisation (SISH), could be used to select patients for EGFR mutation testing. Resected lung adenocarcinoma specimens with adequate tumour were identified. EGFR SISH was performed using the Ventana Benchmark Ultra platform. EGFR GCN was classified according to the Colorado Classification System. EGFR mutations were scanned by high resolution melting and confirmed by Sanger sequencing. Thirty-four of 96 tumours were EGFR SISH positive (35%), and 31 of 96 tumours harboured one or more EGFR mutations (32%). Of 31 EGFR-mutant tumours, 18 were EGFR SISH positive (58%). There was a statistically significant relationship between the presence of an EGFR mutation and EGFR GCN (p = 0.003). Thirteen of 31 EGFR-mutant tumours were EGFR SISH negative (42%), and 16 of 65 EGFR-wild type tumours were EGFR SISH positive (24%). The sensitivity, specificity, positive predictive value and negative predictive value were 58%, 75%, 52.9% and 79%, respectively. Despite a significant relationship between EGFR GCN alterations and EGFR mutations, our results indicate that EGFR GCN as detected by SISH is not a suitable way to select patients for EGFR mutation testing.

  9. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Da-min; Lu, Pei-Hua, E-mail: lphty1_1@163.com; Zhang, Ke

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 throughmore » lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.« less

  10. Antibiotic prophylaxis for skin toxicity induced by antiepidermal growth factor receptor agents: a systematic review and meta-analysis.

    PubMed

    Petrelli, F; Borgonovo, K; Cabiddu, M; Coinu, A; Ghilardi, M; Lonati, V; Barni, S

    2016-12-01

    Topical and systemic prophylactic measures, which are administered before the development of epidermal growth factor receptor (EGFR)-related acneiform rash, are appropriate interventions to mitigate the intensity of skin toxicity. We have performed a systematic review and meta-analysis to evaluate whether prophylactic antibiotics may reduce the occurrence and severity of anti-EGFR drug-related skin rashes. A systematic review was performed by searching Medline, Scopus, Embase, CINAHL, LILACS, Web of Science and the Cochrane Library from inception until March 2016 for publications regarding the pre-emptive role of antibiotics for EGFR-induced skin rashes. Fixed- or random-effects meta-analyses, according to heterogeneity, were used to summarize odds ratios of skin toxicity with antibiotic use. Of the 827 citations found in the search, 13 studies comprising 1073 patients were included in the analysis. In 12 studies, patients in the prophylactic antibiotic arms had a lower risk of developing a skin rash (odds ratio 0·53, 95% confidence interval 0·39-0·72, P < 0·01) than patients without antibiotic prophylaxis. In particular, moderate-to-severe toxicities (grades 2-4) were reduced by nearly two-thirds (odds ratio 0·36, 95% confidence interval 0·22-0·60, P < 0·01) in 13 studies. This translated to a 26% absolute difference of high-grade skin rash compared with the control arms (from 50% to 24%). The results of this meta-analysis show that the risk of skin rash after treatment with anti-EGFR agents for solid tumours was significantly lower in patients taking prophylaxis with antibiotics than in those who were not. Therefore, taking pre-emptive tetracyclines for several weeks at the start of anti-EGFR treatment can significantly reduce the incidence and severity of cutaneous acneiform rash. © 2016 British Association of Dermatologists.

  11. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  12. EGFR transactivation: mechanisms, pathophysiology and potential therapies in cardiovascular system

    PubMed Central

    Forrester, Steven J.; Kawai, Tatsuo; Elliott, Katherine J.; O’Brien, Shannon; Thomas, Walter; Harris, Raymond C.; Eguchi, Satoru

    2017-01-01

    Accumulating studies suggest that the epidermal growth factor receptor (EGFR) activation is associated with the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases, including hypertension, cardiac hypertrophy, renal fibrosis and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is well described – a process termed EGFR “transactivation” – yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight the recent advancement of the signaling cascades and downstream consequences of EGFR transactivation within the cardiovascular renal system in vitro and in vivo. We will also focus on linking EGFR transactivation to animal models of the disease as well as the potential therapeutic applications. PMID:26566153

  13. EGFR ligands drive multipotential stromal cells to produce multiple growth factors and cytokines via early growth response-1.

    PubMed

    Kerpedjieva, Svetoslava S; Kim, Duk Soo; Barbeau, Dominique J; Tamama, Kenichi

    2012-09-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)-EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase-extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands.

  14. Exogenous Restoration of TUSC2 Expression Induces Responsiveness to Erlotinib in Wildtype Epidermal Growth Factor Receptor (EGFR) Lung Cancer Cells through Context Specific Pathways Resulting in Enhanced Therapeutic Efficacy

    PubMed Central

    Lara-Guerra, Humberto; Kawashima, Hiroyuki; Sakai, Ryo; Jayachandran, Gitanjali; Majidi, Mourad; Mehran, Reza; Wang, Jing; Bekele, B. Nebiyou; Baladandayuthapani, Veerabhadran; Yoo, Suk-Young; Wang, Ying; Ying, Jun; Meng, Feng; Ji, Lin; Roth, Jack A.

    2015-01-01

    Expression of the tumor suppressor gene TUSC2 is reduced or absent in most lung cancers and is associated with worse overall survival. In this study, we restored TUSC2 gene expression in several wild type EGFR non-small cell lung cancer (NSCLC) cell lines resistant to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib and analyzed their sensitivity to erlotinib in vitro and in vivo. A significant inhibition of cell growth and colony formation was observed with TUSC2 transient and stable expression. TUSC2-erlotinib cooperativity in vitro could be reproduced in vivo in subcutaneous tumor growth and lung metastasis formation lung cancer xenograft mouse models. Combination treatment with intravenous TUSC2 nanovesicles and erlotinib synergistically inhibited tumor growth and metastasis, and increased apoptotic activity. High-throughput qRT-PCR array analysis enabling multi-parallel expression profile analysis of eighty six receptor and non-receptor tyrosine kinase genes revealed a significant decrease of FGFR2 expression level, suggesting a potential role of FGFR2 in TUSC2-enhanced sensitivity to erlotinib. Western blots showed inhibition of FGFR2 by TUSC2 transient transfection, and marked increase of PARP, an apoptotic marker, cleavage level after TUSC2-erlotinb combined treatment. Suppression of FGFR2 by AZD4547 or gene knockdown enhanced sensitivity to erlotinib in some but not all tested cell lines. TUSC2 inhibits mTOR activation and the latter cell lines were responsive to the mTOR inhibitor rapamycin combined with erlotinib. These results suggest that TUSC2 restoration in wild type EGFR NSCLC may overcome erlotinib resistance, and identify FGFR2 and mTOR as critical regulators of this activity in varying cellular contexts. The therapeutic activity of TUSC2 could extend the use of erlotinib to lung cancer patients with wildtype EGFR. PMID:26053020

  15. Trefoil factors: Tumor progression markers and mitogens via EGFR/MAPK activation in cholangiocarcinoma

    PubMed Central

    Kosriwong, Kanuengnuch; Menheniott, Trevelyan R; Giraud, Andrew S; Jearanaikoon, Patcharee; Sripa, Banchob; Limpaiboon, Temduang

    2011-01-01

    AIM: To investigate trefoil factor (TFF) gene copy number, mRNA and protein expression as potential biomarkers in cholangiocarcinoma (CCA). METHODS: TFF mRNA levels, gene copy number and protein expression were determined respectively by quantitative reverse transcription polymerase chain reaction (PCR), quantitative PCR and immunohistochemistry in bile duct epithelium biopsies collected from individuals with CCA, precancerous bile duct dysplasia and from disease-free controls. The functional impact of recombinant human (rh)TFF2 peptide treatment on proliferation and epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling was assessed in the CCA cell line, KMBC, by viable cell counting and immunoblotting, respectively. RESULTS: TFF1, TFF2 and TFF3 mRNA expression was significantly increased in CCA tissue compared to disease-free controls, and was unrelated to gene copy number. TFF1 immunoreactivity was strongly increased in both dysplasia and CCA, whereas TFF2 immunoreactivity was increased only in CCA compared to disease-free controls. By contrast, TFF3 immunoreactivity was moderately decreased in dysplasia and further decreased in CCA. Kaplan-Meier analysis found no association of TFF mRNA, protein and copy number with age, gender, histological subtype, and patient survival time. Treatment of KMBC cells with rhTFF2 stimulated proliferation, triggered phosphorylation of EGFR and downstream extracellular signal related kinase (ERK), whereas co-incubation with the EGFR tyrosine kinase inhibitor, PD153035, blocked rhTFF2-dependent proliferation and EGFR/ERK responses. CONCLUSION: TFF mRNA/protein expression is indicative of CCA tumor progression, but not predictive for histological sub-type or survival time. TFF2 is mitogenic in CCA via EGFR/MAPK activation. PMID:21472131

  16. Association of the membrane estrogen receptor, GPR30, with breast tumor metastasis and transactivation of the epidermal growth factor receptor.

    PubMed

    Filardo, Edward J; Quinn, Jeffrey A; Sabo, Edmond

    2008-10-01

    The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases function as a common signaling conduit for membrane receptors that lack intrinsic enzymatic activity, such as G-protein coupled receptors and integrins. GPR30, an orphan member of the seven transmembrane receptor (7TMR) superfamily has been linked to specific estrogen binding, rapid estrogen-mediated activation of adenylyl cyclase and the release of membrane-tethered proHB-EGF. More recently, GPR30 expression in primary breast adenocarcinoma has been associated with pathological parameters commonly used to assess breast cancer progression, including the development of extramammary metastases. This newly appreciated mechanism of cross communication between estrogen and EGF is consistent with the observation that 7TMR-mediated transactivation of the EGFR is a recurrent signaling paradigm and may explain prior data reporting the EGF-like effects of estrogen. The molecular details surrounding GPR30-mediated release of proHB-EGF, the involvement of integrin beta1 as a signaling intermediary in estrogen-dependent EGFR action, and the possible implications of these data for breast cancer progression are discussed herein.

  17. HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR.

    PubMed

    Ingthorsson, S; Andersen, K; Hilmarsdottir, B; Maelandsmo, G M; Magnusson, M K; Gudjonsson, T

    2016-08-11

    The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492(HER2)) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492(HER2) (D492(HER2/EGFR)) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492(HER2/EGFR) xenografts grow slower than the D492(HER2) tumors, while overexpression of EGFR alone (D492(EGFR)) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492(HER2) xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492

  18. HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR

    PubMed Central

    Ingthorsson, S; Andersen, K; Hilmarsdottir, B; Maelandsmo, G M; Magnusson, M K; Gudjonsson, T

    2016-01-01

    The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492HER2) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492HER2 (D492HER2/EGFR) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492HER2/EGFR xenografts grow slower than the D492HER2 tumors, while overexpression of EGFR alone (D492EGFR) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492HER2 xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492 cells, EGFR can

  19. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. | Office of Cancer Genomics

    Cancer.gov

    Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.

  20. EGFR-SGLT1 interaction does not respond to EGFR modulators, but inhibition of SGLT1 sensitizes prostate cancer cells to EGFR tyrosine kinase inhibitors.

    PubMed

    Ren, Jiangong; Bollu, Lakshmi R; Su, Fei; Gao, Guang; Xu, Lei; Huang, Wei-Chien; Hung, Mien-Chie; Weihua, Zhang

    2013-09-01

    Overexpression of epidermal growth factor receptor (EGFR) is associated with poor prognosis in malignant tumors. Sodium/glucose co-transporter 1 (SGLT1) is an active glucose transporter that is overexpressed in many cancers including prostate cancer. Previously, we found that EGFR interacts with and stabilizes SGLT1 in cancer cells. In this study, we determined the micro-domain of EGFR that is required for its interaction with SGLT1 and the effects of activation/inactivation of EGFR on EGFR-SGLT1 interaction, measured the expression of EGFR and SGLT1 in prostate cancer tissues, and tested the effect of inhibition of SGLT1 on the sensitivity of prostate cancer cells to EGFR tyrosine inhibitors. We found that the autophosphorylation region (978-1210 amino acids) of EGFR was required for its sufficient interaction with SGLT1 and that this interaction was independent of EGFR's tyrosine kinase activity. Most importantly, the EGFR-SGLT1 interaction does not respond to EGFR tyrosine kinase modulators (EGF and tyrosine kinase inhibitors). EGFR and SGLT1 co-localized in prostate cancer tissues, and inhibition of SGLT1 by a SGLT1 inhibitor (Phlorizin) sensitized prostate cancer cells to EGFR inhibitors (Gefitinib and Erlotinib). These data suggest that EGFR in cancer cells can exist as either a tyrosine kinase modulator responsive status or an irresponsive status. SGLT1 is a protein involved in EGFR's functions that are irresponsive to EGFR tyrosine kinase inhibitors and, therefore, the EGFR-SGLT1 interaction might be a novel target for prostate cancer therapy. © 2013 Wiley Periodicals, Inc. This article is a U.S. Government work and is in the public domain in the USA.

  1. Progesterone receptor (PR) polyproline domain (PPD) mediates inhibition of epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer cells.

    PubMed

    Kawprasertsri, Sornsawan; Pietras, Richard J; Marquez-Garban, Diana C; Boonyaratanakornkit, Viroj

    2016-05-01

    Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The Epidermal Growth Factor Receptor Critically Regulates Endometrial Function during Early Pregnancy

    PubMed Central

    Large, Michael J.; Wetendorf, Margeaux; Lanz, Rainer B.; Hartig, Sean M.; Creighton, Chad J.; Mancini, Michael A.; Kovanci, Ertug; Lee, Kuo-Fen; Threadgill, David W.; Lydon, John P.; Jeong, Jae-Wook; DeMayo, Francesco J.

    2014-01-01

    Infertility and adverse gynecological outcomes such as preeclampsia and miscarriage represent significant female reproductive health concerns. The spatiotemporal expression of growth factors indicates that they play an important role in pregnancy. The goal of this study is to define the role of the ERBB family of growth factor receptors in endometrial function. Using conditional ablation in mice and siRNA in primary human endometrial stromal cells, we identified the epidermal growth factor receptor (Egfr) to be critical for endometrial function during early pregnancy. While ablation of Her2 or Erbb3 led to only a modest reduction in litter size, mice lacking Egfr expression are severely subfertile. Pregnancy demise occurred shortly after blastocyst implantation due to defects in decidualization including decreased proliferation, cell survival, differentiation and target gene expression. To place Egfr in a genetic regulatory hierarchy, transcriptome analyses was used to compare the gene signatures from mice with conditional ablation of Egfr, wingless-related MMTV integration site 4 (Wnt4) or boneless morphogenic protein 2 (Bmp2); revealing that not only are Bmp2 and Wnt4 key downstream effectors of Egfr, but they also regulate distinct physiological functions. In primary human endometrial stromal cells, marker gene expression, a novel high content image-based approach and phosphokinase array analysis were used to demonstrate that EGFR is a critical regulator of human decidualization. Furthermore, inhibition of EGFR signaling intermediaries WNK1 and AKT1S1, members identified in the kinase array and previously unreported to play a role in the endometrium, also attenuate decidualization. These results demonstrate that EGFR plays an integral role in establishing the cellular context necessary for successful pregnancy via the activation of intricate signaling and transcriptional networks, thereby providing valuable insight into potential therapeutic targets. PMID

  3. Chemovirotherapy for head and neck squamous cell carcinoma with EGFR-targeted and CD/UPRT-armed oncolytic measles virus.

    PubMed

    Zaoui, K; Bossow, S; Grossardt, C; Leber, M F; Springfeld, C; Plinkert, P K; Kalle, C von; Ungerechts, G

    2012-03-01

    First-line treatment of recurrent and/or refractory head and neck squamous cell carcinoma (HNSCC) is based on platinum, 5-fluorouracil (5-FU) and the monoclonal antiEGFR antibody cetuximab. However, in most cases this chemoimmunotherapy does not cure the disease, and more than 50% of HNSCC patients are dying because of local recurrence of the tumors. In the majority of cases, HNSCC overexpress the epidermal growth factor receptor (EGFR), and its presence is associated with a poor outcome. In this study, we engineered an EGFR-targeted oncolytic measles virus (MV), armed with the bifunctional enzyme cytosine deaminase/uracil phosphoribosyltransferase (CD/UPRT). CD/UPRT converts 5-fluorocytosine (5-FC) into the chemotherapeutic 5-FU, a mainstay of HNSCC chemotherapy. This virus efficiently replicates in and lyses primary HNSCC cells in vitro. Arming with CD/UPRT mediates efficient prodrug activation with high bystander killing of non-infected tumor cells. In mice bearing primary HNSCC xenografts, intratumoral administration of MV-antiEGFR resulted in statistically significant tumor growth delay and prolongation of survival. Importantly, combination with 5-FC is superior to virus-only treatment leading to significant tumor growth inhibition. Thus, chemovirotherapy with EGFR-targeted and CD/UPRT-armed MV is highly efficacious in preclinical settings with direct translational implications for a planned Phase I clinical trial of MV for locoregional treatment of HNSCC.

  4. Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications

    PubMed Central

    Tan, Xiaojun; Lambert, Paul F.; Rapraeger, Alan C.; Anderson, Richard A.

    2016-01-01

    Epidermal growth factor receptor (EGFR) has fundamental roles in normal physiology and in cancer, making it a rational target for cancer therapy. Surprisingly, however, inhibitors that target canonical, ligand-stimulated EGFR signaling have proven to be largely ineffective in treating many EGFR-dependent cancers. Recent evidence indicates that both intrinsic and therapy-induced cellular stress triggers robust, non-canonical pathways of ligand-independent EGFR trafficking and signaling, which provides cancer cells with a survival advantage and resistance to therapeutics. Here we review the mechanistic regulation of non-canonical EGFR trafficking and signaling, the pathological and therapeutic stresses that activate it, and discuss the implications of this pathway in clinical treatment of EGFR-overexpressing cancers. PMID:26827089

  5. Phenytoin enhances the phosphorylation of epidermal growth factor receptor and fibroblast growth factor receptor in the subventricular zone and promotes the proliferation of neural precursor cells and oligodendrocyte differentiation.

    PubMed

    Galvez-Contreras, Alma Y; Gonzalez-Castaneda, Rocio E; Campos-Ordonez, Tania; Luquin, Sonia; Gonzalez-Perez, Oscar

    2016-01-01

    Phenytoin is a widely used antiepileptic drug that induces cell proliferation in several tissues, such as heart, bone, skin, oral mucosa and neural precursors. Some of these effects are mediated via fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR). These receptors are strongly expressed in the adult ventricular-subventricular zone (V-SVZ), the main neurogenic niche in the adult brain. The aim of this study was to determine the cell lineage and cell fate of V-SVZ neural progenitors expanded by phenytoin, as well as the effects of this drug on EGFR/FGFR phosphorylation. Male BALB/C mice received 10 mg/kg phenytoin by oral cannula for 30 days. We analysed the proliferation of V-SVZ neural progenitors by immunohistochemistry and western blot. Our findings indicate that phenytoin enhanced twofold the phosphorylation of EGFR and FGFR in the V-SVZ, increased the number of bromodeoxyuridine (BrdU)+/Sox2+ and BrdU+/doublecortin+ cells in the V-SVZ, and expanded the population of Olig2-expressing cells around the lateral ventricles. After phenytoin removal, a large number of BrdU+/Receptor interacting protein (RIP)+ cells were observed in the olfactory bulb. In conclusion, phenytoin enhanced the phosphorylation of FGFR and EGFR, and promoted the expression of neural precursor markers in the V-SVZ. In parallel, the number of oligodendrocytes increased significantly after phenytoin removal. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Biomarkers that currently affect clinical practice: EGFR, ALK, MET, KRAS

    PubMed Central

    Vincent, M.D.; Kuruvilla, M.S.; Leighl, N.B.; Kamel–Reid, S.

    2012-01-01

    New drugs such as pemetrexed, the epidermal growth factor receptor (egfr) tyrosine kinase inhibitors, and the Alk inhibitor crizotinib have recently enabled progress in the management of advanced non-small-cell lung cancer (nsclc). More drugs, especially Met inhibitors, will follow. However, the benefits of these agents are not uniform across the spectrum of nsclc, and optimizing their utility requires some degree of subgrouping of nsclc by the presence or absence of certain biomarkers. The biomarkers of current or imminent value are EGFR and KRAS mutational status, ALK rearrangements, and MET immunohistochemistry. As a predictor of benefit for anti-egfr monoclonal antibodies, EGFR immunohistochemistry is also of potential interest. Some of the foregoing biomarkers (EGFR, ALK, MET) are direct drivers of the malignant phenotype. As such, they are, quite rationally, the direct targets of inhibitory drugs. However, KRAS, while definitely a driver, has resisted attempts at direct pharmacologic manipulation, and its main value might lie in its role as part of an efficient testing algorithm, because KRAS mutations appear to exclude EGFR and ALK mutations. The indirect value of KRAS in determining sensitivity to other targeted agents or to pemetrexed remains controversial. The other biomarkers (EGFR, ALK, MET) may also have indirect value as predictors of sensitivity to chemotherapy in general, to pemetrexed specifically, and to radiotherapy and molecularly targeted agents. These biomarkers have all enabled the co-development of new drugs with companion diagnostics, and they illustrate the paradigm that will govern progress in oncology in the immediate future. However, in nsclc, the acquisition of sufficient biopsy material remains a stubborn obstacle to the evolution of novel targeted therapies. PMID:22787409

  7. Epidermal growth factor receptor and AKT1 gene copy numbers by multi-gene fluorescence in situ hybridization impact on prognosis in breast cancer.

    PubMed

    Li, Jiao; Su, Wei; Zhang, Sheng; Hu, Yunhui; Liu, Jingjing; Zhang, Xiaobei; Bai, Jingchao; Yuan, Weiping; Hu, Linping; Cheng, Tao; Zetterberg, Anders; Lei, Zhenmin; Zhang, Jin

    2015-05-01

    The epidermal growth factor receptor (EGFR)/PI3K/AKT signaling pathway aberrations play significant roles in breast cancer occurrence and development. However, the status of EGFR and AKT1 gene copy numbers remains unclear. In this study, we showed that the rates of EGFR and AKT1 gene copy number alterations were associated with the prognosis of breast cancer. Among 205 patients, high EGFR and AKT1 gene copy numbers were observed in 34.6% and 27.8% of cases by multi-gene fluorescence in situ hybridization, respectively. Co-heightened EGFR/AKT1 gene copy numbers were identified in 11.7% cases. No changes were found in 49.3% of patients. Although changes in EGFR and AKT1 gene copy numbers had no correlation with patients' age, tumor stage, histological grade and the expression status of other molecular makers, high EGFR (P = 0.0002) but not AKT1 (P = 0.1177) gene copy numbers correlated with poor 5-year overall survival. The patients with co-heightened EGFR/AKT1 gene copy numbers displayed a poorer prognosis than those with tumors with only high EGFR gene copy numbers (P = 0.0383). Both Univariate (U) and COX multivariate (C) analyses revealed that high EGFR and AKT1 gene copy numbers (P = 0.000 [U], P = 0.0001 [C]), similar to histological grade (P = 0.001 [U], P = 0.012 [C]) and lymph node metastasis (P = 0.046 [U], P = 0.158 [C]), were independent prognostic indicators of 5-year overall survival. These results indicate that high EGFR and AKT1 gene copy numbers were relatively frequent in breast cancer. Co-heightened EGFR/AKT1 gene copy numbers had a worse outcome than those with only high EGFR gene copy numbers, suggesting that evaluation of these two genes together may be useful for selecting patients for anti-EGFR-targeted therapy or anti-EGFR/AKT1-targeted therapy and for predicting outcomes. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  8. In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe

    NASA Astrophysics Data System (ADS)

    Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong

    2018-02-01

    Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.

  9. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment V(HH) against EGFR.

    PubMed

    Okazaki, Fumiyoshi; Aoki, Jun-ichi; Tabuchi, Soichiro; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2012-10-01

    We have constructed a filamentous fungus Aspergillus oryzae that secretes a llama variable heavy-chain antibody fragment (V(HH)) that binds specifically to epidermal growth factor receptor (EGFR) in a culture medium. A major improvement in yield was achieved by fusing the V(HH) with a Taka-amylase A signal sequence (sTAA) and a segment of 28 amino acids from the N-terminal region of Rhizopus oryzae lipase (N28). The yields of secreted, immunologically active anti-EGFR V(HH) reached 73.8 mg/1 in a Sakaguchi flask. The V(HH) fragments were released from the sTAA or N28 proteins by an indigenous A. oryzae protease during cultivation. The purified recombinant V(HH) fragment was specifically recognized and could bind to the EGFR with a high affinity.

  10. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    PubMed Central

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2017-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P < 0.05). Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P < 0.05), an indication of reduced microvessel density in tumor xenografts. Moreover, high-dose icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073

  11. Impact of Weight Loss at Presentation on Survival in Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKI) Sensitive Mutant Advanced Non-small Cell Lung Cancer (NSCLC) Treated with First-line EGFR-TKI.

    PubMed

    Lin, Liping; Zhao, Juanjuan; Hu, Jiazhu; Huang, Fuxi; Han, Jianjun; He, Yan; Cao, Xiaolong

    2018-01-01

    Purpose The aim of this study is to evaluate the impact of weight loss at presentation on treatment outcomes of first-line EGFR-tyrosine kinase inhibitors (EGFR-TKI) in EGFR-TKI sensitive mutant NSCLC patients. Methods We retrospectively analyzed the clinical outcomes of 75 consecutive advanced NSCLC patients with EGFR-TKI sensitive mutations (exon 19 deletion or exon 21 L858R) received first-line gefitinib or erlotinib therapy according to weight loss status at presentation in our single center. Results Of 75 EGFR-TKI sensitive mutant NSCLC patients, 49 (65.3%) patients had no weight loss and 26 (34.7%) had weight loss at presentation, the objective response rate (ORR) to EGFR-TKI treatment were similar between the two groups (79.6% vs. 76.9%, p = 0.533). Patients without weight loss at presentation had significantly longer median progression free survival (PFS) (12.4 months vs. 7.6 months; hazard ratio [HR] 0.356, 95% confidence interval [CI] 0.212-0.596, p < 0.001) and overall survival (OS) (28.5 months vs. 20.7 months; HR 0.408, 95% CI 0.215-0.776, p = 0.006) than those with weight loss at presentation; moreover, the stratified analysis by EGFR-TKI sensitive mutation types also found similar trend between these two groups except for OS in EGFR exon 21 L858R mutation patients. Multivariate analysis identified weight loss at presentation and EGFR-TKI sensitive mutation types were independent predictive factors for PFS and OS. Conclusions Weight loss at presentation had a detrimental impact on PFS and OS in EGFR-TKI sensitive mutant advanced NSCLC patients treated with first-line EGFR-TKI. It should be considered as an important factor in the treatment decision or designing of EGFR-TKI clinical trials.

  12. Interstitial Lung Disease Induced by Osimertinib for Epidermal Growth Factor Receptor (EGFR) T790M-positive Non-small Cell Lung Cancer.

    PubMed

    Matsumoto, Yoshiya; Kawaguchi, Tomoya; Yamamoto, Norio; Sawa, Kenji; Yoshimoto, Naoki; Suzumura, Tomohiro; Watanabe, Tetsuya; Mitsuoka, Shigeki; Asai, Kazuhisa; Kimura, Tatsuo; Yoshimura, Naruo; Kuwae, Yuko; Hirata, Kazuto

    2017-09-01

    A 75-year-old man with stage IV lung adenocarcinoma was treated with osimertinib due to disease progression despite having been administered erlotinib. Both an epidermal growth factor receptor (EGFR) L858R mutation on exon 21 and a T790M mutation on exon 20 were detected in a specimen from a recurrent primary tumor. Five weeks after osimertinib initiation, he developed general fatigue and dyspnea. Chest computed tomography scan revealed diffuse ground glass opacities and consolidation on both lungs. An analysis of the bronchoalveolar lavage fluid revealed marked lymphocytosis, and a transbronchial lung biopsy specimen showed a thickened interstitium with fibrosis and prominent lymphocytic infiltration. We diagnosed the patient to have interstitial lung disease induced by osimertinib.

  13. Studying the Stoichiometry of Epidermal Growth Factor Receptor in Intact Cells using Correlative Microscopy.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2015-09-11

    This protocol describes the labeling of epidermal growth factor receptor (EGFR) on COS7 fibroblast cells, and subsequent correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM) of whole cells in hydrated state. Fluorescent quantum dots (QDs) were coupled to EGFR via a two-step labeling protocol, providing an efficient and specific protein labeling, while avoiding label-induced clustering of the receptor. Fluorescence microscopy provided overview images of the cellular locations of the EGFR. The scanning transmission electron microscopy (STEM) detector was used to detect the QD labels with nanoscale resolution. The resulting correlative images provide data of the cellular EGFR distribution, and the stoichiometry at the single molecular level in the natural context of the hydrated intact cell. ESEM-STEM images revealed the receptor to be present as monomer, as homodimer, and in small clusters. Labeling with two different QDs, i.e., one emitting at 655 nm and at 800 revealed similar characteristic results.

  14. Identification and suppression of epidermal growth factor receptor variant III signaling in fibroblast-like synoviocytes from aggressive rheumatoid arthritis by the mimotope.

    PubMed

    Niu, Jianying; Li, Changhong; Jin, Yinji; Xing, Rui; Sun, Lin; Yu, Ruohan; Jian, Leilei; Liu, Xiangyuan; Yang, Lin

    2018-06-01

    Epidermal growth factor receptor (EGFR) signaling has been reported to play a vital role in the pathogenesis of rheumatoid arthritis (RA). In current study, we sought to observe whether the active immunization induced by the mimotope could recognize EGFR, inhibit their signaling and disrupt the pathogenic behavior of fibroblast-like synoviocytes (FLS) from RA patients. We prepared a linked EGFR mimotope and performed series of experiments to detect whether the mimotope could induce the desired immune responses. To our surprises, we detected the expression of EGFR variant III (EGFRvIII), but not EGFR in the synovial tissues and FLS from patients with aggressive RA by the linked EGFR mimotope-induced antibodies (LEMIA). Meanwhile, LEMIA could inhibit the signaling caused by the autophosphorylation of EGFRvIII in the FLS. The proliferation, migration, invasion and anti-apoptosis capabilities of the EGFRvIII-expressed FLS were disrupted by LEMIA. These results suggest that EGFRvIII signaling may participate in the malignant behaviors of FLS from aggressive RA. Meanwhile, the linked EGFR mimotope could be used to detect the expression of EGFRvIII and developed to be a potential therapy agent against the aggressive FLS. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  15. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule.

    PubMed

    Garousi, Javad; Andersson, Ken G; Dam, Johan H; Olsen, Birgitte B; Mitran, Bogdan; Orlova, Anna; Buijs, Jos; Ståhl, Stefan; Löfblom, John; Thisgaard, Helge; Tolmachev, Vladimir

    2017-07-20

    Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111 In-labelled DOTA-conjugated Z EGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-Z EGFR:2377 . DOTA-Z EGFR:2377 was labelled with 57 Co (T 1/2  = 271.8 d), 55 Co (T 1/2  = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68 Ga (T 1/2  = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57 Co was used in animal studies. Both 57 Co-DOTA-Z EGFR:2377 and 68 Ga-DOTA-Z EGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-Z EGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57 Co-DOTA-Z EGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68 Ga-DOTA-Z EGFR:2377 . The results of this study suggest that the positron-emitting cobalt isotope 55 Co would be an optimal label for DOTA-Z EGFR:2377 and further development should concentrate on this radionuclide as a label.

  16. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed

    Johnson Hamlet, M R; Perkins, L A

    2001-11-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.

  17. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed Central

    Johnson Hamlet, M R; Perkins, L A

    2001-01-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway. PMID:11729154

  18. Combined caveolin-1 and epidermal growth factor receptor expression as a prognostic marker for breast cancer.

    PubMed

    Liang, Ya-Nan; Liu, Yu; Wang, Letian; Yao, Guodong; Li, Xiaobo; Meng, Xiangning; Wang, Fan; Li, Ming; Tong, Dandan; Geng, Jingshu

    2018-06-01

    Previous studies have indicated that caveolin-1 (Cav-1) is able to bind the signal transduction factor epidermal growth factor receptor (EGFR) to regulate its tyrosine kinase activity. The aim of the present study was to evaluate the clinical significance of Cav-1 gene expression in association with the expression of EGFR in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Cav-1 and EGFR expression using immunohistochemistry, and clinical significance was assessed using multivariate Cox regression analysis, Kaplan-Meier estimator curves and the log-rank test. Stromal Cav-1 was downregulated in 38.56% (118/306) of tumor tissues, whereas cytoplasmic EGFR and Cav-1 were overexpressed in 53.92% (165/306) and 44.12% (135/306) of breast cancer tissues, respectively. EGFR expression was positively associated with cytoplasmic Cav-1 and not associated with stromal Cav-1 expression in breast cancer samples; however, low expression of stromal Cav-1 was negatively associated with cytoplasmic Cav-1 expression in total tumor tissues, and analogous results were identified in the chemotherapy group. Multivariate Cox's proportional hazards model analysis revealed that, for patients in the estrogen receptor (ER)(+) group, the expression of stromal Cav-1 alone was a significant prognostic marker of breast cancer. However, in the chemotherapy, human epidermal growth factor receptor 2 (HER-2)(-), HER-2(+) and ER(-) groups, the use of combined markers was more effective prognostic marker. Stromal Cav-1 has a tumor suppressor function, and the combined marker stromal Cav-1/EGFR expression was identified as an improved prognostic marker in the diagnosis of breast cancer. Parenchymal expression of Cav-1 is able to promote EGFR signaling in breast cancer, potentially being required for EGFR-mediated initiation of mitosis.

  19. EGFR Ligands Drive Multipotential Stromal Cells to Produce Multiple Growth Factors and Cytokines via Early Growth Response-1

    PubMed Central

    Kerpedjieva, Svetoslava S.; Kim, Duk Soo; Barbeau, Dominique J.

    2012-01-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)–EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase–extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands. PMID:22316125

  20. Comparison of targeted next-generation sequencing with conventional sequencing for predicting the responsiveness to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy in never-smokers with lung adenocarcinoma.

    PubMed

    Han, Ji-Youn; Kim, Sun Hye; Lee, Yeon-Su; Lee, Seung-Youn; Hwang, Jung-Ah; Kim, Jin Young; Yoon, Sung Jin; Lee, Geon Kook

    2014-08-01

    To investigate the clinical utility of targeted next-generation sequencing (NGS) for predicting the responsiveness to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy, we compared the efficacy with conventional sequencing in never-smokers with lung adenocarcinoma (NSLAs). We obtained DNA from 48 NSLAs who received gefitinib or erlotinib for their recurrent disease after surgery. Sanger sequencing and peptide nucleic acid clamp polymerase chain reaction (PCR) were used to analyze EGFR, KRAS, BRAF, and PIK3CA mutations. We analyzed ALK, RET, and ROS1 rearrangements by fluorescent in situ hybridization or reverse transcriptase-PCR and quantitative real-time PCR. After molecular screening, Ion Torrent NGS was performed in 31 cases harboring only EGFR exon 19 deletions (19DEL), an L858R mutation, or none of the above mutations. The 31 samples were divided into four groups: (1) responders to EGFR-TKIs with only 19DEL or L858R (n=15); (2) primary resistance to EGFR-TKI with only 19DEL or L858R (n=4); (3) primary resistance to EGFR-TKI without any mutations (n=8); (4) responders to EGFR-TKI without any mutations (n=4). With NGS, all conventionally detected mutations were confirmed except for one L858R in group 2. Additional uncovered predictive mutations with NGS included one PIK3CA E542K in group 2, two KRAS (G12V and G12D), one PIK3CA E542K, one concomitant PIK3CA and EGFR L858R in group 3, and one EGFR 19DEL in group 4. Targeted NGS provided a more accurate and clinically useful molecular classification of NSLAs. It may improve the efficacy of EGFR-TKI therapy in lung cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. In Vitro Killing of Colorectal Carcinoma Cells by Autologous Activated NK Cells is Boosted by Anti-Epidermal Growth Factor Receptor-induced ADCC Regardless of RAS Mutation Status.

    PubMed

    Turin, Ilaria; Delfanti, Sara; Ferulli, Federica; Brugnatelli, Silvia; Tanzi, Matteo; Maestri, Marcello; Cobianchi, Lorenzo; Lisini, Daniela; Luinetti, Ombretta; Paulli, Marco; Perotti, Cesare; Todisco, Elisabetta; Pedrazzoli, Paolo; Montagna, Daniela

    2018-05-01

    Treatment of advanced metastatic colorectal cancer (mCRC) patients is associated with a poor prognosis and significant morbidity. Moreover, targeted therapies such as anti-epidermal growth factor receptor (EGFR) have no effect in metastatic patients with tumors harboring a mutation in the RAS gene. The failure of conventional treatment to improve outcomes in mCRC patients has prompted the development of adoptive immunotherapy approaches including natural killer (NK)-based therapies. In this study, after confirmation that patients' NK cells were not impaired in their cytotoxic activity, evaluated against long-term tumor cell lines, we evaluated their interactions with autologous mCRC cells. Molecular and phenotypical evaluation of mCRC cells, expanded in vitro from liver metastasis, showed that they expressed high levels of polio virus receptor and Nectin-2, whereas UL16-binding proteins were less expressed in all tumor samples evaluated. Two different patterns of MICA/B and HLA class I expression on the membrane of mCRC were documented; approximately half of mCRC patients expressed high levels of these molecules on the membrane surface, whereas, in the remaining, very low levels were documented. Resting NK cells were unable to display sizeable levels of cytotoxic activity against mCRC cells, whereas their cytotoxic activity was enhanced after overnight or 5-day incubation with IL-2 or IL-15. The susceptibility of NK-mediated mCRC lysis was further significantly enhanced after coating with cetuximab, irrespective of their RAS mutation and HLA class I expression. These data open perspectives for combined NK-based immunotherapy with anti-epidermal growth factor receptor antibodies in a cohort of mCRC patients with a poor prognosis refractory to conventional therapies.

  2. Genetic deletion of the EGFR ligand epigen does not affect mouse embryonic development and tissue homeostasis.

    PubMed

    Dahlhoff, Maik; Schäfer, Matthias; Wolf, Eckhard; Schneider, Marlon R

    2013-02-15

    The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Clinical efficacy of icotinib in lung cancer patients with different EGFR mutation status: a meta-analysis

    PubMed Central

    Xu, Ping; Xiang, Da-Xiong; Yang, Rui; Wei, Wei; Qu, Qiang

    2017-01-01

    Icotinib is a novel and the third listed epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), which exerts a good anti-tumor efficacy on non-small cell lung cancer (NSCLC). The efficacy of EGFR-TKIs has been shown to be associated with the EGFR mutation status, especially exon 19 deletion (19Del) and exon 21 L858R mutation. Therefore, a meta-analysis was performed to assess the efficacy of icotinib in NSCLC patients harboring EGFR mutations (19Del or L858R) and wild type (19Del and L858R loci wild type). A total of 24 studies were included for comparing the objective response rate (ORR) in the EGFR wild type and mutant patients treated with icotinib. The ORRs of EGFR mutant patients (19Del or L858R) are better than those of EGFR wild type patients (OR = 7.03(5.09–9.71), P < 0.00001). The pooling ORs from 21 studies on the disease control rate (DCR) in EGFR mutant patients are better than those of EGFR wild type patients (OR = 10.54(5.72–19.43), P < 0.00001). Moreover, the ORRs of EGFR 19Del patients are better than those of EGFR L858R patients after pooling ORs of 12 studies (OR = 2.04(1.12–3.73), P = 0.019). However, there was no significant difference on DCRs of EGFR 19Del patients and those of EGFR L858R patients (OR = 2.01(0.94–4.32), P = 0.072). Our findings indicated that compared with EGFR wild type patients, EGFR mutant patients have better ORRs and DCRs after icotinib treatment; EGFR 19Del patients treated with icotinib have better ORRs than EGFR L858R patients. EGFR mutation status is a useful biomarker for the evaluation of icotinib efficacy in NSCLC patients. PMID:28430623

  4. Clinical efficacy of icotinib in lung cancer patients with different EGFR mutation status: a meta-analysis.

    PubMed

    Qu, Jian; Wang, Ya-Nan; Xu, Ping; Xiang, Da-Xiong; Yang, Rui; Wei, Wei; Qu, Qiang

    2017-05-16

    Icotinib is a novel and the third listed epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), which exerts a good anti-tumor efficacy on non-small cell lung cancer (NSCLC). The efficacy of EGFR-TKIs has been shown to be associated with the EGFR mutation status, especially exon 19 deletion (19Del) and exon 21 L858R mutation. Therefore, a meta-analysis was performed to assess the efficacy of icotinib in NSCLC patients harboring EGFR mutations (19Del or L858R) and wild type (19Del and L858R loci wild type). A total of 24 studies were included for comparing the objective response rate (ORR) in the EGFR wild type and mutant patients treated with icotinib. The ORRs of EGFR mutant patients (19Del or L858R) are better than those of EGFR wild type patients (OR = 7.03(5.09-9.71), P < 0.00001). The pooling ORs from 21 studies on the disease control rate (DCR) in EGFR mutant patients are better than those of EGFR wild type patients (OR = 10.54(5.72-19.43), P < 0.00001). Moreover, the ORRs of EGFR 19Del patients are better than those of EGFR L858R patients after pooling ORs of 12 studies (OR = 2.04(1.12-3.73), P = 0.019). However, there was no significant difference on DCRs of EGFR 19Del patients and those of EGFR L858R patients (OR = 2.01(0.94-4.32), P = 0.072). Our findings indicated that compared with EGFR wild type patients, EGFR mutant patients have better ORRs and DCRs after icotinib treatment; EGFR 19Del patients treated with icotinib have better ORRs than EGFR L858R patients. EGFR mutation status is a useful biomarker for the evaluation of icotinib efficacy in NSCLC patients.

  5. EGFR Signaling in the Brain Is Necessary for Olfactory Learning in "Drosophila" Larvae

    ERIC Educational Resources Information Center

    Rahn, Tasja; Leippe, Matthias; Roeder, Thomas; Fedders, Henning

    2013-01-01

    Signaling via the epidermal growth factor receptor (EGFR) pathway has emerged as one of the key mechanisms in the development of the central nervous system in "Drosophila melanogaster." By contrast, little is known about the functions of EGFR signaling in the differentiated larval brain. Here, promoter-reporter lines of EGFR and its most prominent…

  6. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  7. High Baseline Levels of Tumor Necrosis Factor Receptor 1 Are Associated With Progression of Kidney Disease in Indigenous Australians With Diabetes: The eGFR Follow-up Study.

    PubMed

    Barr, Elizabeth L M; Barzi, Federica; Hughes, Jaquelyne T; Jerums, George; Hoy, Wendy E; O'Dea, Kerin; Jones, Graham R D; Lawton, Paul D; Brown, Alex D H; Thomas, Mark; Ekinci, Elif I; Sinha, Ashim; Cass, Alan; MacIsaac, Richard J; Maple-Brown, Louise J

    2018-04-01

    To examine the association between soluble tumor necrosis factor receptor 1 (sTNFR1) levels and kidney disease progression in Indigenous Australians at high risk of kidney disease. This longitudinal observational study examined participants aged ≥18 years recruited from >20 sites across diabetes and/or kidney function strata. Baseline measures included sTNFR1, serum creatinine, urine albumin-to-creatinine ratio (uACR), HbA 1c , C-reactive protein (CRP), waist-to-hip ratio, systolic blood pressure, and medical history. Linear regression was used to estimate annual change in estimated glomerular filtration rate (eGFR) for increasing sTNFR1, and Cox proportional hazards were used to estimate the hazard ratio (HR) and 95% CI for developing a combined renal outcome (first of a ≥30% decline in eGFR with a follow-up eGFR <60 mL/min/1.73 m 2 , progression to renal replacement therapy, or renal death) for increasing sTNFR1. Over a median of 3 years, participants with diabetes ( n = 194) in the highest compared with the lowest quartile of sTNFR1 experienced significantly greater eGFR decline (-4.22 mL/min/1.73 m 2 /year [95% CI -7.06 to -1.38]; P = 0.004), independent of baseline age, sex, eGFR, and uACR. The adjusted HR (95% CI) for participants with diabetes per doubling of sTNFR1 for the combined renal outcome ( n = 32) was 3.8 (1.1-12.8; P = 0.03). No association between sTNFR1 and either renal outcome was observed for those without diabetes ( n = 259). sTNFR1 is associated with greater kidney disease progression independent of albuminuria and eGFR in Indigenous Australians with diabetes. Further research is required to assess whether TNFR1 operates independently of other metabolic factors associated with kidney disease progression. © 2018 by the American Diabetes Association.

  8. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor

    PubMed Central

    Kortüm, Fanny; Harms, Frederike Leonie; Hennighausen, Natascha; Rosenberger, Georg

    2015-01-01

    Endosomal sorting is an essential control mechanism for signaling through the epidermal growth factor receptor (EGFR). We report here that the guanine nucleotide exchange factor αPIX, which modulates the activity of Rho-GTPases, is a potent bimodal regulator of EGFR trafficking. αPIX interacts with the E3 ubiquitin ligase c-Cbl, an enzyme that attaches ubiquitin to EGFR, thereby labelling this tyrosine kinase receptor for lysosomal degradation. We show that EGF stimulation induces αPIX::c-Cbl complex formation. Simultaneously, αPIX and c-Cbl protein levels decrease, which depends on both αPIX binding to c-Cbl and c-Cbl ubiquitin ligase activity. Through interaction αPIX sequesters c-Cbl from EGFR and this results in reduced EGFR ubiquitination and decreased EGFR degradation upon EGF treatment. However, quantitatively more decisive for cellular EGFR distribution than impaired EGFR degradation is a strong stimulating effect of αPIX on EGFR recycling to the cell surface. This function depends on the GIT binding domain of αPIX but not on interaction with c-Cbl or αPIX exchange activity. In summary, our data demonstrate a previously unappreciated function of αPIX as a strong promoter of EGFR recycling. We suggest that the novel recycling regulator αPIX and the degradation factor c-Cbl closely cooperate in the regulation of EGFR trafficking: uncomplexed αPIX and c-Cbl mediate a positive and a negative feedback on EGFR signaling, respectively; αPIX::c-Cbl complex formation, however, results in mutual inhibition, which may reflect a stable condition in the homeostasis of EGF-induced signal flow. PMID:26177020

  9. Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, T.; Burgess, A; Gan, H

    2009-01-01

    Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells. However, the mechanism for this activity was unclear. Crystallographic structures for Fab:EGFR{sub 287-302} complexes of mAb806 (and a second, related antibody, mAb175) show that this peptide epitope adopts conformations similar to those found in the wtEGFR.more » However, in both conformations observed for wtEGFR, tethered and untethered, antibody binding would be prohibited by significant steric clashes with the CR1 domain. Thus, these antibodies must recognize a cryptic epitope in EGFR. Structurally, it appeared that breaking the disulfide bond preceding the epitope might allow the CR1 domain to open up sufficiently for antibody binding. The EGFR{sub C271A/C283A} mutant not only binds mAb806, but binds with 1:1 stoichiometry, which is significantly greater than wtEGFR binding. Although mAb806 and mAb175 decrease tumor growth in xenografts displaying mutant, overexpressed, or autocrine stimulated EGFR, neither antibody inhibits the in vitro growth of cells expressing wtEGFR. In contrast, mAb806 completely inhibits the ligand-associated stimulation of cells expressing EGFR{sub C271A/C283A}. Clearly, the binding of mAb806 and mAb175 to the wtEGFR requires the epitope to be exposed either during receptor activation, mutation, or overexpression. This mechanism suggests the possibility of generating antibodies to target other wild-type receptors on tumor cells.« less

  10. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients.

    PubMed

    Siravegna, Giulia; Mussolin, Benedetta; Buscarino, Michela; Corti, Giorgio; Cassingena, Andrea; Crisafulli, Giovanni; Ponzetti, Agostino; Cremolini, Chiara; Amatu, Alessio; Lauricella, Calogero; Lamba, Simona; Hobor, Sebastijan; Avallone, Antonio; Valtorta, Emanuele; Rospo, Giuseppe; Medico, Enzo; Motta, Valentina; Antoniotti, Carlotta; Tatangelo, Fabiana; Bellosillo, Beatriz; Veronese, Silvio; Budillon, Alfredo; Montagut, Clara; Racca, Patrizia; Marsoni, Silvia; Falcone, Alfredo; Corcoran, Ryan B; Di Nicolantonio, Federica; Loupakis, Fotios; Siena, Salvatore; Sartore-Bianchi, Andrea; Bardelli, Alberto

    2015-07-01

    Colorectal cancers (CRCs) evolve by a reiterative process of genetic diversification and clonal evolution. The molecular profile of CRC is routinely assessed in surgical or bioptic samples. Genotyping of CRC tissue has inherent limitations; a tissue sample represents a single snapshot in time, and it is subjected to spatial selection bias owing to tumor heterogeneity. Repeated tissue samples are difficult to obtain and cannot be used for dynamic monitoring of disease progression and response to therapy. We exploited circulating tumor DNA (ctDNA) to genotype colorectal tumors and track clonal evolution during treatment with the epidermal growth factor receptor (EGFR)-specific antibodies cetuximab or panitumumab. We identified alterations in ctDNA of patients with primary or acquired resistance to EGFR blockade in the following genes: KRAS, NRAS, MET, ERBB2, FLT3, EGFR and MAP2K1. Mutated KRAS clones, which emerge in blood during EGFR blockade, decline upon withdrawal of EGFR-specific antibodies, indicating that clonal evolution continues beyond clinical progression. Pharmacogenomic analysis of CRC cells that had acquired resistance to cetuximab reveals that upon antibody withdrawal KRAS clones decay, whereas the population regains drug sensitivity. ctDNA profiles of individuals who benefit from multiple challenges with anti-EGFR antibodies exhibit pulsatile levels of mutant KRAS. These results indicate that the CRC genome adapts dynamically to intermittent drug schedules and provide a molecular explanation for the efficacy of rechallenge therapies based on EGFR blockade.

  11. Clinical significance of BRAF non-V600E mutations on the therapeutic effects of anti-EGFR monoclonal antibody treatment in patients with pretreated metastatic colorectal cancer: the Biomarker Research for anti-EGFR monoclonal Antibodies by Comprehensive Cancer genomics (BREAC) study.

    PubMed

    Shinozaki, Eiji; Yoshino, Takayuki; Yamazaki, Kentaro; Muro, Kei; Yamaguchi, Kensei; Nishina, Tomohiro; Yuki, Satoshi; Shitara, Kohei; Bando, Hideaki; Mimaki, Sachiyo; Nakai, Chikako; Matsushima, Koutatsu; Suzuki, Yutaka; Akagi, Kiwamu; Yamanaka, Takeharu; Nomura, Shogo; Fujii, Satoshi; Esumi, Hiroyasu; Sugiyama, Masaya; Nishida, Nao; Mizokami, Masashi; Koh, Yasuhiro; Abe, Yukiko; Ohtsu, Atsushi; Tsuchihara, Katsuya

    2017-11-07

    Patients with BRAF V600E -mutated metastatic colorectal cancer (mCRC) have a poorer prognosis as well as resistance to anti-EGFR antibodies. However, it is unclear whether BRAF mutations other than BRAF V600E (BRAF non-V600E mutations) contribute to anti-EGFR antibody resistance. This study was composed of exploratory and inference cohorts. Candidate biomarkers identified by whole exome sequencing from super-responders and nonresponders in the exploratory cohort were validated by targeted resequencing for patients who received anti-EGFR antibody in the inference cohort. In the exploratory cohort, 31 candidate biomarkers, including KRAS/NRAS/BRAF mutations, were identified. Targeted resequencing of 150 patients in the inference cohort revealed 40 patients with RAS (26.7%), 9 patients with BRAF V600E (6.0%), and 7 patients with BRAF non-V600E mutations (4.7%), respectively. The response rates in RAS, BRAF V600E , and BRAF non-V600E were lower than those in RAS/BRAF wild-type (2.5%, 0%, and 0% vs 31.9%). The median PFS in BRAF non-V600E mutations was 2.4 months, similar to that in RAS or BRAF V600E mutations (2.1 and 1.6 months) but significantly worse than that in wild-type RAS/BRAF (5.9 months). Although BRAF non-V600E mutations identified were a rare and unestablished molecular subtype, certain BRAF non-V600E mutations might contribute to a lesser benefit of anti-EGFR monoclonal antibody treatment.

  12. Aptamer-conjugated gold nanorod for photothermal ablation of epidermal growth factor receptor-overexpressed epithelial cancer

    NASA Astrophysics Data System (ADS)

    Choi, Jihye; Park, Yeonji; Choi, Eun Bi; Kim, Hyun-Ouk; Kim, Dong Joo; Hong, Yoochan; Ryu, Sung-Ho; Lee, Jung Hwan; Suh, Jin-Suck; Yang, Jaemoon; Huh, Yong-Min; Haam, Seungjoo

    2014-05-01

    Biomarker-specific photothermal nanoparticles that can efficiently sense markers that are overexpressed in distinguished adenocarcinomas have attracted much interest in an aspect of efficacy increase of cancer treatment. We demonstrated a promising prospect of a smart photothermal therapy agent employing anti-epidermal growth factor receptor aptamer (AptEGFR)-conjugated polyethylene glycol (PEG) layted gold nanorods (AptEGFR-PGNRs). The cetyltrimethylammonium bromide bilayer on GNRs was replaced with heterobifunctional PEG (COOH-PEG-SH) not only to serve as a biocompatible stabilizer and but also to conjugate Apt. Subsequently, to direct photothermal therapy agent toward epithelial cancer cells, the carboxylated PEGylated GNRs (PGNRs) were further functionalized with Apt using carbodiimide chemistry. Then, to assess the potential as biomarker-specific photothermal therapy agent of synthesized Apt-PGNRs, the optical properties, biocompatibility, colloidal stability, binding affinity, and epicellial cancer cell killing efficacy in vitro/in vivo under near-infrared laser irradiation were investigated. As a result, Apt-PGNRs exhibit excellent tumor targeting ability and feasibility of effective photothermal ablation cancer therapy.

  13. Dual-Color Fluorescence Imaging of EpCAM and EGFR in Breast Cancer Cells with a Bull's Eye-Type Plasmonic Chip.

    PubMed

    Izumi, Shota; Yamamura, Shohei; Hayashi, Naoko; Toma, Mana; Tawa, Keiko

    2017-12-19

    Surface plasmon field-enhanced fluorescence microscopic observation of a live breast cancer cell was performed with a plasmonic chip. Two cell lines, MDA-MB-231 and Michigan Cancer Foundation-7 (MCF-7), were selected as breast cancer cells, with two kinds of membrane protein, epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR), observed in both cells. The membrane proteins are surface markers used to differentiate and classify breast cancer cells. EGFR and EpCAM were detected with Alexa Fluor ® 488-labeled anti-EGFR antibody (488-EGFR) and allophycocyanin (APC)-labeled anti-EpCAM antibody (APC-EpCAM), respectively. In MDA-MB231 cells, three-fold plus or minus one and seven-fold plus or minus two brighter fluorescence of 488-EGFR were observed on the 480-nm pitch and the 400-nm pitch compared with that on a glass slide. Results show the 400-nm pitch is useful. Dual-color fluorescence of 488-EGFR and APC-EpCAM in MDA-MB231 was clearly observed with seven-fold plus or minus two and nine-fold plus or minus three, respectively, on the 400-nm pitch pattern of a plasmonic chip. Therefore, the 400-nm pitch contributed to the dual-color fluorescence enhancement for these wavelengths. An optimal grating pitch of a plasmonic chip improved a fluorescence image of membrane proteins with the help of the surface plasmon-enhanced field.

  14. Phthalocyanine-Peptide Conjugates for Epidermal Growth Factor Receptor Targeting1

    PubMed Central

    Ongarora, Benson G.; Fontenot, Krystal R.; Hu, Xiaoke; Sehgal, Inder; Satyanarayana-Jois, Seetharama D.; Vicente, M. Graça H.

    2012-01-01

    Four phthalocyanine (Pc)-peptide conjugates designed to target the epidermal growth factor receptor (EGFR) were synthesized and evaluated in vitro using four cell lines: human carcinoma A431 and HEp2, human colorectal HT-29, and kidney Vero (negative control) cells. Two peptide ligands for EGFR were investigated: EGFR-L1 and -L2, bearing 6 and 13 amino acid residues, respectively. The peptides and Pc-conjugates were shown to bind to EGFR using both theoretical (Autodock) and experimental (SPR) investigations. The Pc-EGFR-L1 conjugates 5a and 5b efficiently targeted EGFR and were internalized, in part due to their cationic charge, whereas the uncharged Pc-EGFR-L2 conjugates 4b and 6a poorly targeted EGFR maybe due to their low aqueous solubility. All conjugates were non-toxic (IC50 > 100 µM) to HT-29 cells, both in the dark and upon light activation (1 J/cm2). Intravenous (iv) administration of conjugate 5b into nude mice bearing A431 and HT-29 human tumor xenografts resulted in a near-IR fluorescence signal at ca. 700 nm, 24 h after administration. Our studies show that Pc-EGFR-L1 conjugates are promising near-IR fluorescent contrast agents for CRC, and potentially other EGFR over-expressing cancers. PMID:22468711

  15. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  16. Interstitial Lung Disease Induced by Osimertinib for Epidermal Growth Factor Receptor (EGFR) T790M-positive Non-small Cell Lung Cancer

    PubMed Central

    Matsumoto, Yoshiya; Kawaguchi, Tomoya; Yamamoto, Norio; Sawa, Kenji; Yoshimoto, Naoki; Suzumura, Tomohiro; Watanabe, Tetsuya; Mitsuoka, Shigeki; Asai, Kazuhisa; Kimura, Tatsuo; Yoshimura, Naruo; Kuwae, Yuko; Hirata, Kazuto

    2017-01-01

    A 75-year-old man with stage IV lung adenocarcinoma was treated with osimertinib due to disease progression despite having been administered erlotinib. Both an epidermal growth factor receptor (EGFR) L858R mutation on exon 21 and a T790M mutation on exon 20 were detected in a specimen from a recurrent primary tumor. Five weeks after osimertinib initiation, he developed general fatigue and dyspnea. Chest computed tomography scan revealed diffuse ground glass opacities and consolidation on both lungs. An analysis of the bronchoalveolar lavage fluid revealed marked lymphocytosis, and a transbronchial lung biopsy specimen showed a thickened interstitium with fibrosis and prominent lymphocytic infiltration. We diagnosed the patient to have interstitial lung disease induced by osimertinib. PMID:28794368

  17. ErbB activation signatures as potential biomarkers for anti-ErbB3 treatment in HNSCC.

    PubMed

    Alvarado, Diego; Ligon, Gwenda F; Lillquist, Jay S; Seibel, Scott B; Wallweber, Gerald; Neumeister, Veronique M; Rimm, David L; McMahon, Gerald; LaVallee, Theresa M

    2017-01-01

    Head and neck squamous cell carcinoma (HNSCC) accounts for 3-5% of all tumor types and remains an unmet medical need with only two targeted therapies approved to date. ErbB3 (HER3), the kinase-impaired member of the EGFR/ErbB family, has been implicated as a disease driver in a number of solid tumors, including a subset of HNSCC. Here we show that the molecular components required for ErbB3 activation, including its ligand neuregulin-1 (NRG1), are highly prevalent in HNSCC and that HER2, but not EGFR, is the major activating ErbB3 kinase partner. We demonstrate that cetuximab treatment primarily inhibits the ERK signaling pathway and KTN3379, an anti-ErbB3 monoclonal antibody, inhibits the AKT signaling pathway, and that dual ErbB receptor inhibition results in enhanced anti-tumor activity in HNSCC models. Surprisingly, we found that while NRG1 is required for ErbB3 activation, it was not sufficient to fully predict for KTN3379 activity. An evaluation of HNSCC patient samples demonstrated that NRG1 expression was significantly associated with expression of the EGFR ligands amphiregulin (AREG) and transforming growth factor α (TGFα). Furthermore, NRG1-positive HNSCC cell lines that secreted high levels of AREG and TGFα or contained high levels of EGFR homodimers (H11D) demonstrated a better response to KTN3379. Although ErbB3 and EGFR activation are uncoupled at the receptor level, their respective signaling pathways are linked through co-expression of their respective ligands. We propose that NRG1 expression and EGFR activation signatures may enrich for improved efficacy of anti-ErbB3 therapeutic mAb approaches when combined with EGFR-targeting therapies in HNSCC.

  18. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration.

    PubMed

    Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A

    2017-05-09

    Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair.

  19. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration

    PubMed Central

    Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A.

    2017-01-01

    Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair. PMID:28485389

  20. Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants

    PubMed Central

    Chung, Byung Min; Tom, Eric; Zutshi, Neha; Bielecki, Timothy Alan; Band, Vimla; Band, Hamid

    2014-01-01

    Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links

  1. Frequency of Epidermal Growth Factor Receptor Mutation in Smokers with Lung Cancer Without Pulmonary Emphysema.

    PubMed

    Takeda, Kenichi; Yamasaki, Akira; Igishi, Tadashi; Kawasaki, Yuji; Ito-Nishii, Shizuka; Izumi, Hiroki; Sakamoto, Tomohiro; Touge, Hirokazu; Kodani, Masahiro; Makino, Haruhiko; Yanai, Masaaki; Tanaka, Natsumi; Matsumoto, Shingo; Araki, Kunio; Nakamura, Hiroshige; Shimizu, Eiji

    2017-02-01

    Chronic obstructive pulmonary disease is a smoking-related disease, and is categorized into the emphysema and airway dominant phenotypes. We examined the relationship between emphysematous changes and epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma. The medical records for 250 patients with lung adenocarcinoma were retrospectively reviewed. All patients were categorized into the emphysema or non-emphysema group. Wild-type EGFR was detected in 136 (54%) and mutant EGFR in 48 (19%). Emphysematous changes were observed in 87 (36%) patients. EGFR mutation was highly frequent in the non-emphysema group (p=0.0014). Multivariate logistic regression analysis showed that emphysema was an independent risk factor for reduced frequency of EGFR mutation (Odds Ratio=3.47, p=0.005). Our data showed a relationship between emphysematous changes and EGFR mutation status. There might be mutually exclusive genetic risk factors for carcinogenesis and development of emphysematous changes. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Cy5.5-labeled Affibody molecule for near-infrared fluorescent optical imaging of epidermal growth factor receptor positive tumors

    NASA Astrophysics Data System (ADS)

    Miao, Zheng; Ren, Gang; Liu, Hongguang; Jiang, Lei; Cheng, Zhen

    2010-05-01

    Affibody protein is an engineered protein scaffold with a three-helical bundle structure. Affibody molecules of small size (7 kD) have great potential for targeting overexpressed cancer biomarkers in vivo. To develop an Affibody-based molecular probe for in vivo optical imaging of epidermal growth factor receptor (EGFR) positive tumors, an anti-EGFR Affibody molecule, Ac-Cys-ZEGFR:1907 (7 kD), is site-specifically conjugated with a near-IR fluorescence dye, Cy5.5-mono-maleimide. Using fluorescent microscopy, the binding specificity of the probe Cy5.5-ZEGFR:1907 is checked by a high-EGFR-expressing A431 cell and low-EGFR-expressing MCF7 cells. The binding affinity of Cy5.5-ZEGFR:1907 (KD) to EGFR is 43.6+/-8.4 nM, as determined by flow cytometry. For an in vivo imaging study, the probe shows fast tumor targeting and good tumor contrast as early as 0.5 h postinjection (p.i.) for A431 tumors, while MCF7 tumors are barely visible. An ex vivo imaging study also demonstrates that Cy5.5-ZEGFR:1907 has high tumor, liver, and kidney uptakes at 24 h p.i.. In conclusion, Cy5.5-ZEGFR:1907 shows good affinity and high specificity to the EGFR. There is rapid achievement of good tumor-to-normal-tissue contrasts of Cy5.5-ZEGFR:1907, thus demonstrating its potential for EGFR-targeted molecular imaging of cancers.

  3. Coarse-Grained Molecular Simulation of Epidermal Growth Factor Receptor Protein Tyrosine Kinase Multi-Site Self-Phosphorylation

    PubMed Central

    Koland, John G.

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  4. Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors.

    PubMed

    Ping Li, Wen; Meyer, Laura A; Capretto, David A; Sherman, Christopher D; Anderson, Carolyn J

    2008-04-01

    The epidermal growth-factor receptor (EGFR) and its ligands have been recognized as critical factors in the pathophysiology of tumorigenesis. Overexpression of the EGFR plays a significant role in the tumor progression of a wide variety of solid human cancers. Therefore, the EGFR represents an attractive target for the design of novel diagnostic and therapeutic agents for cancer. Cetuximab (C225, Erbitux) was the first monoclonal antibody targeted against the ligand-binding site of EGFR approved by the Food and Drug Administration for the treatment of patients with EGFR-expressing, metastatic colorectal carcinoma, although clinical trials showed variability in the response to this treatment. The aim of this study involved using cetuximab to design a positron emission tomography (PET) agent to image the overexpression of EGFR in tumors. Cetuximab was conjugated with the chelator, DOTA, for radiolabeling with the positron-emitter, 64Cu (T(1/2) = 12.7 hours). 64Cu-DOTA-cetuximab showed high binding affinity to EGFR-positive A431 cells (K(D) of 0.28 nM). Both biodistribution and microPET imaging studies with 64Cu-DOTA-cetuximab demonstrated greater uptake at 24 hours postinjection in EGFR-positive A431 tumors (18.49% +/- 6.50% injected dose per gram [ID/g]), compared to EGFR-negative MDA-MB-435 tumors (2.60% +/- 0.35% ID/g). A431 tumor uptake at 24 hours was blocked with unlabeled cetuximab (10.69% +/- 2.72% ID/g), suggesting that the tumor uptake was receptor mediated. Metabolism experiments in vivo showed that 64Cu-DOTA-cetuximab was relatively stable in the blood of tumor-bearing mice; however, there was significant metabolism in the liver and tumors. 64Cu-DOTA-cetuximab is a potential agent for imaging EGFR-positive tumors in humans.

  5. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerizationmore » and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative

  6. Role for the epidermal growth factor receptor in chemotherapy-induced alopecia.

    PubMed

    Bichsel, Kyle J; Gogia, Navdeep; Malouff, Timothy; Pena, Zachary; Forney, Eric; Hammiller, Brianna; Watson, Patrice; Hansen, Laura A

    2013-01-01

    Treatment of cancer patients with chemotherapeutics like cyclophosphamide often causes alopecia as a result of premature and aberrant catagen. Because the epidermal growth factor receptor (EGFR) signals anagen hair follicles to enter catagen, we hypothesized that EGFR signaling may be involved in cyclophosphamide-induced alopecia. To test this hypothesis, skin-targeted Egfr mutant mice were generated by crossing floxed Egfr and Keratin 14 promoter-driven Cre recombinase mice. Cyclophosphamide treatment of control mice resulted in alopecia while Egfr mutant skin was resistant to cyclophosphamide-induced alopecia. Egfr mutant skin entered catagen normally, as indicated by dermal papilla condensation and decreased follicular proliferation, but did not progress to telogen as did Egfr wild type follicles. Egfr mutant follicles responded with less proliferation, apoptosis, and fewer p53-positive cells after cyclophosphamide. Treatment of control mice with the EGFR inhibitors erlotinib or gefitinib similarly suppressed alopecia and catagen progression by cyclophosphamide. Secondary analysis of clinical trials utilizing EGFR-targeted therapies and alopecia-inducing chemotherapy also revealed evidence for involvement of EGFR in chemotherapy-induced alopecia. Taken together, our results demonstrated the involvement of EGFR signaling in chemotherapy-induced alopecia, which will help in the design of novel therapeutic regimens to minimize chemotherapy-induced alopecia.

  7. The EGF receptor family as targets for cancer therapy.

    PubMed

    Mendelsohn, J; Baselga, J

    2000-12-27

    Human carcinomas frequently express high levels of receptors in the EGF receptor family, and overexpression of at least two of these receptors, the EGF receptor (EGFr) and closely related ErbB2, has been associated with a more aggressive clinical behavior. Further, transfection or activation of high levels of these two receptors in nonmalignant cell lines can lead to a transformed phenotype. For these reasons therapies directed at preventing the function of these receptors have the potential to be useful anti-cancer treatments. In the last two decades monoclonal antibodies (MAbs) which block activation of the EGFr and ErbB2 have been developed. These MAbs have shown promising preclinical activity and 'chimeric' and 'humanized' MAbs have been produced in order to obviate the problem of host immune reactions. Clinical activity with these antibodies has been documented: trastuzumab, a humanized anti-ErbB2 MAb, is active and was recently approved in combination with paclitaxel for the therapy of patients with metastatic ErbB2-overexpressing breast cancer; IMC-C225, a chimeric anti-EGFr MAb, has shown impressive activity when combined with radiation therapy and reverses resistance to chemotherapy. In addition to antibodies, compounds that directly inhibit receptor tyrosine kinases have shown preclinical activity and early clinical activity has been reported. A series of phase III studies with these antibodies and direct tyrosine kinase inhibitors are ongoing or planned, and will further address the role of these active anti-receptor agents in the treatment of patients with cancer.

  8. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Yuji, E-mail: ysakuma@gancen.asahi.yokohama.jp; Yamazaki, Yukiko; Nakamura, Yoshiyasu

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cellsmore » cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.« less

  9. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding.

    PubMed

    Taylor, Eric S; Pol-Fachin, Laercio; Lins, Roberto D; Lower, Steven K

    2017-04-01

    The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Epidermal growth factor receptor is required for colonic tumor promotion by dietary fat in the azoxymethane/dextran sulfate sodium model: roles of transforming growth factor-{alpha} and PTGS2.

    PubMed

    Dougherty, Urszula; Cerasi, Dario; Taylor, Ieva; Kocherginsky, Masha; Tekin, Ummuhan; Badal, Shamiram; Aluri, Lata; Sehdev, Amikar; Cerda, Sonia; Mustafi, Reba; Delgado, Jorge; Joseph, Loren; Zhu, Hongyan; Hart, John; Threadgill, David; Fichera, Alessandro; Bissonnette, Marc

    2009-11-15

    Colon cancer is a major cause of cancer deaths. Dietary factors contribute substantially to the risk of this malignancy. Western-style diets promote development of azoxymethane-induced colon cancer. Although we showed that epidermal growth factor receptors (EGFR) controlled azoxymethane tumorigenesis in standard fat conditions, the role of EGFR in tumor promotion by high dietary fat has not been examined. A/J x C57BL6/J mice with wild-type Egfr (Egfr(wt)) or loss-of-function waved-2 Egfr (Egfr(wa2)) received azoxymethane followed by standard (5% fat) or western-style (20% fat) diet. As F(1) mice were resistant to azoxymethane, we treated mice with azoxymethane followed by one cycle of inflammation-inducing dextran sulfate sodium to induce tumorigenesis. Mice were sacrificed 12 weeks after dextran sulfate sodium. Tumors were graded for histology and assessed for EGFR ligands and proto-oncogenes by immunostaining, Western blotting, and real-time PCR. Egfr(wt) mice gained significantly more weight and had exaggerated insulin resistance compared with Egfr(wa2) mice on high-fat diet. Dietary fat promoted tumor incidence (71.2% versus 36.7%; P < 0.05) and cancer incidence (43.9% versus 16.7%; P < 0.05) only in Egfr(wt) mice. The lipid-rich diet also significantly increased tumor and cancer multiplicity only in Egfr(wt) mice. In tumors, dietary fat and Egfr(wt) upregulated transforming growth factor-alpha, amphiregulin, CTNNB1, MYC, and CCND1, whereas PTGS2 was only increased in Egfr(wt) mice and further upregulated by dietary fat. Notably, dietary fat increased transforming growth factor-alpha in normal colon. EGFR is required for dietary fat-induced weight gain and tumor promotion. EGFR-dependent increases in receptor ligands and PTGS2 likely drive diet-related tumor promotion.

  11. Receptor tyrosine kinase inhibitors and cytotoxic drugs affect pleural mesothelioma cell proliferation: insight into EGFR and ERK1/2 as antitumor targets.

    PubMed

    Barbieri, Federica; Würth, Roberto; Favoni, Roberto E; Pattarozzi, Alessandra; Gatti, Monica; Ratto, Alessandra; Ferrari, Angelo; Bajetto, Adriana; Florio, Tullio

    2011-11-15

    Malignant pleural mesothelioma (MPM) is an aggressive chemotherapy-resistant cancer. Up-regulation of epidermal growth factor receptor (EGFR) plays an important role in MPM development and EGFR-tyrosine kinase inhibitors (TKIs) may represent novel therapeutic options. We tested the effects of the EGFR TKIs gefitinib and erlotinib and TKIs targeted to other growth factors (VEGFR and PDGFR), in comparison to standard antineoplastic agents, in two human MPM cell lines, IST-Mes2 and ZL55. All drugs showed IC(50) values in the micromolar range: TKIs induced cytostatic effects at concentrations up to the IC(50,) while conventional drug growth-inhibitory activity was mainly cytotoxic. Moreover, the treatment of IST-Mes2 with TKIs (gefitinib and imatinib mesylate) in combination with cisplatin and gemcitabine did not show additivity. Focusing on the molecular mechanisms underlying the antiproliferative and pro-apoptotic effects of EGFR-TKIs, we observed that gefitinib induced the formation and stabilization of inactive EGFR homodimers, even in absence of EGF, as demonstrated by EGFR B(max) and number of sites/cell. The analysis of downstream effectors of EGFR signaling demonstrated that EGF-induced proliferation, reverted by gefitinib, involved ERK1/2 activation, independently from Akt pathway. Gefitinib inhibits MPM cell growth and survival, preventing EGF-dependent activation of ERK1/2 pathway by blocking EGFR-TK phosphorylation and stabilizing inactive EGFR dimers. Along with the molecular definition of TKIs pharmacological efficacy in vitro, these results may contribute to delve deep into the promising but still controversial role for targeted and conventional drugs in the therapy of MPM. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Inhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA content.

    PubMed

    Montermini, Laura; Meehan, Brian; Garnier, Delphine; Lee, Wan Jin; Lee, Tae Hoon; Guha, Abhijit; Al-Nedawi, Khalid; Rak, Janusz

    2015-10-02

    Cancer cells emit extracellular vesicles (EVs) containing unique molecular signatures. Here, we report that the oncogenic EGF receptor (EGFR) and its inhibitors reprogram phosphoproteomes and cargo of tumor cell-derived EVs. Thus, phosphorylated EGFR (P-EGFR) and several other receptor tyrosine kinases can be detected in EVs purified from plasma of tumor-bearing mice and from conditioned media of cultured cancer cells. Treatment of EGFR-driven tumor cells with second generation EGFR kinase inhibitors (EKIs), including CI-1033 and PF-00299804 but not with anti-EGFR antibody (Cetuximab) or etoposide, triggers a burst in emission of exosome-like EVs containing EGFR, P-EGFR, and genomic DNA (exo-gDNA). The EV release can be attenuated by treatment with inhibitors of exosome biogenesis (GW4869) and caspase pathways (ZVAD). The content of P-EGFR isoforms (Tyr-845, Tyr-1068, and Tyr-1173), ERK, and AKT varies between cells and their corresponding EVs and as a function of EKI treatment. Immunocapture experiments reveal the presence of EGFR and exo-gDNA within the same EV population following EKI treatment. These findings suggest that targeted agents may induce cancer cells to change the EV emission profiles reflective of drug-related therapeutic stress. We suggest that EV-based assays may serve as companion diagnostics for targeted anticancer agents. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Relation of epidermal growth factor receptor and estrogen receptor-independent pS2 protein to the malignant transformation of mucinous cystic neoplasms of the pancreas.

    PubMed

    Kirby, R E; Lewandrowski, K B; Southern, J F; Compton, C C; Warshaw, A L

    1995-01-01

    To evaluate the role of epidermal growth factor receptor (EGF-R) and pS2 protein in the evolution of malignancy in mucinous cystic tumors of the pancreas. Mucinous cystic tumors of the pancreas include histologically benign but premalignant mucinous cystic neoplasms and mucinous cystadenocarcinoma. The molecular events leading to transformation from a benign to a malignant mucinous tumor are not known. Overexpression of EGF-R and detection of an estrogen-induced protein (pS2) has been demonstrated in ductal adenocarcinomas of the pancreas, but these factors have not been evaluated in mucinous cystic tumors. Twenty-six mucinous tumors were examined for EGF-R, pS2 protein, and estrogen and progesterone receptors. Eight (61.2%) of 13 malignant tumors exhibited increased expression of EGF-R, whereas EGF-R was not detected in any of the 13 benign tumors (P = .002). The pS2 protein was detected in nine of 11 malignant and 11 of 11 benign tumors (P = .480). Estrogen and progesterone receptors were not detected in the epithelium of either tumor type. The median survival time of the patients with EGF-R-negative tumors was 29.0 months compared with 14.5 months for those with EGF-R-positive tumors, but this difference did not reach significance owing to the small population size. Overexpression of EGF-R in mucinous cystic tumors, as in ductal adenocarcinomas, may be an important feature associated with malignancy and may have prognostic significance. Failure to detect EGF-R in histologically benign epithelium suggests that the upregulation of EGF-R may be important in the evolution of aggressive behavior. The expression of pS2 protein appears to be independent of estrogen and may play a role in the proliferative activity of mucinous tumors. However, pS2 expression is not a feature associated exclusively with malignancy.

  14. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    PubMed

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier

  15. EGFR-TKIs plus chemotherapy demonstrated superior efficacy than EGFR-TKIs alone as first-line setting in advanced NSCLC patients with EGFR mutation and BIM deletion polymorphism.

    PubMed

    Liu, Sangtian; He, Yayi; Jiang, Tao; Ren, Shengxiang; Zhou, Fei; Zhao, Chao; Li, Xuefei; Zhang, Jie; Su, Chunxia; Chen, Xiaoxia; Cai, Weijing; Gao, Guanghui; Li, Wei; Wu, Fengying; Li, Jiayu; Zhao, Jing; Hu, Qiong; Zhao, Mingchuan; Zhou, Caicun; Hirsch, Fred R

    2018-06-01

    Non-small-cell lung cancer (NSCLC) patients with both epidermal growth factor receptor (EGFR) positive mutation and B-cell chronic lymphocytic leukemia/lymphoma-like 11 (BIM) deletion polymorphism had a poor clinical response to EGFR-tyrosine kinase inhibitors (TKIs). The current study aimed to investigate the clinical efficacy and tolerability of EGFR-TKIs plus chemotherapy versus EGFR-TKIs alone as first-line treatment in advanced NSCLC patients with EGFR mutations and BIM deletion polymorphism. A retrospective, non-randomized analysis was conducted. BIM deletion polymorphism was detected using polymerase chain reaction (PCR) analysis and direct sequencing of DNA from peripheral blood cells. Clinical characteristics, overall survival (OS), progress-free-survival (PFS), objective response rate (ORR) and treatment-related adverse events were compared between EGFR-TKIs alone versus EGFR-TKIs plus chemotherapy group. 65 patients were enrolled. 36 of them received EGFR-TKIs and 29 received EGFR-TKIs plus chemotherapy. EGFR-TKIs plus chemotherapy had significantly higher ORR than TKIs alone (65.5% vs. 38.9%, P = 0.046). Median PFS was significantly longer in EGFR-TKIs plus chemotherapy group than in TKIs group (7.2 vs 4.7 m; P = 0.008). Median OS was numerically longer in EGFR-TKIs plus chemotherapy group than in TKIs alone (18.5 vs 14.2 m; P = 0.107). EGFR-TKIs plus chemotherapy was associated with more grade 3 or 4 hematological toxic effects than EGFR-TKIs alone. EGFR-TKIs plus chemotherapy conferred a significantly higher ORR, prolonged PFS and numerically longer OS in advanced NSCLC patients with EGFR mutation and BIM deletion polymorphism. Further prospective studies are needed to validate these findings. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network

    PubMed Central

    Thakar, Manjusha; Howard, Jason D.; Kagohara, Luciane T.; Krigsfeld, Gabriel; Ranaweera, Ruchira S.; Hughes, Robert M.; Perez, Jimena; Jones, Siân; Favorov, Alexander V.; Carey, Jacob; Stein-O'Brien, Genevieve; Gaykalova, Daria A.; Ochs, Michael F.; Chung, Christine H.

    2016-01-01

    Patients with oncogene driven tumors are treated with targeted therapeutics including EGFR inhibitors. Genomic data from The Cancer Genome Atlas (TCGA) demonstrates molecular alterations to EGFR, MAPK, and PI3K pathways in previously untreated tumors. Therefore, this study uses bioinformatics algorithms to delineate interactions resulting from EGFR inhibitor use in cancer cells with these genetic alterations. We modify the HaCaT keratinocyte cell line model to simulate cancer cells with constitutive activation of EGFR, HRAS, and PI3K in a controlled genetic background. We then measure gene expression after treating modified HaCaT cells with gefitinib, afatinib, and cetuximab. The CoGAPS algorithm distinguishes a gene expression signature associated with the anticipated silencing of the EGFR network. It also infers a feedback signature with EGFR gene expression itself increasing in cells that are responsive to EGFR inhibitors. This feedback signature has increased expression of several growth factor receptors regulated by the AP-2 family of transcription factors. The gene expression signatures for AP-2alpha are further correlated with sensitivity to cetuximab treatment in HNSCC cell lines and changes in EGFR expression in HNSCC tumors with low CDKN2A gene expression. In addition, the AP-2alpha gene expression signatures are also associated with inhibition of MEK, PI3K, and mTOR pathways in the Library of Integrated Network-Based Cellular Signatures (LINCS) data. These results suggest that AP-2 transcription factors are activated as feedback from EGFR network inhibition and may mediate EGFR inhibitor resistance. PMID:27650546

  17. Broad Detection of Alterations Predicted to Confer Lack of Benefit From EGFR Antibodies or Sensitivity to Targeted Therapy in Advanced Colorectal Cancer.

    PubMed

    Rankin, Andrew; Klempner, Samuel J; Erlich, Rachel; Sun, James X; Grothey, Axel; Fakih, Marwan; George, Thomas J; Lee, Jeeyun; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M; Schrock, Alexa B

    2016-09-28

    A KRAS mutation represented the first genomic biomarker to predict lack of benefit from anti-epidermal growth factor receptor (EGFR) antibody therapy in advanced colorectal cancer (CRC). Expanded RAS testing has further refined the treatment approach, but understanding of genomic alterations underlying primary and acquired resistance is limited and further study is needed. We prospectively analyzed 4,422 clinical samples from patients with advanced CRC, using hybrid-capture based comprehensive genomic profiling (CGP) at the request of the individual treating physicians. Comparison with prior molecular testing results, when available, was performed to assess concordance. We identified a RAS/RAF pathway mutation or amplification in 62% of cases, including samples harboring KRAS mutations outside of the codon 12/13 hotspot region in 6.4% of cases. Among cases with KRAS non-codon 12/13 alterations for which prior test results were available, 79 of 90 (88%) were not identified by focused testing. Of 1,644 RAS/RAF wild-type cases analyzed by CGP, 31% harbored a genomic alteration (GA) associated with resistance to anti-EGFR therapy in advanced CRC including mutations in PIK3CA, PTEN, EGFR, and ERBB2. We also identified other targetable GA, including novel kinase fusions, receptor tyrosine kinase amplification, activating point mutations, as well as microsatellite instability. Extended genomic profiling reliably detects alterations associated with lack of benefit to anti-EGFR therapy in advanced CRC, while simultaneously identifying alterations potentially important in guiding treatment. The use of CGP during the course of clinical care allows for the refined selection of appropriate targeted therapies and clinical trials, increasing the chance of clinical benefit and avoiding therapeutic futility. Comprehensive genomic profiling (CGP) detects diverse genomic alterations associated with lack of benefit to anti-epidermal growth factor receptor therapy in advanced

  18. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy.

    PubMed

    Dharmawardana, Pathirage G; Peruzzi, Benedetta; Giubellino, Alessio; Burke, Terrence R; Bottaro, Donald P

    2006-01-01

    Growth factor receptor-bound 2 (Grb2) is a ubiquitously expressed adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway. As such, it has been implicated in the oncogenesis of several important human malignancies. In addition to this function, research over the last decade has revealed other fundamental roles for Grb2 in cell motility and angiogenesis--processes that also contribute to tumor growth, invasiveness and metastasis. This functional profile makes Grb2 a high priority target for anti-cancer drug development. Knowledge of Grb2 protein structure, its component Src homology domains and their respective structure-function relationships has facilitated the rapid development of sophisticated drug candidates that can penetrate cells, bind Grb2 with high affinity and potently antagonize Grb2 signaling. These novel compounds offer considerable promise in our growing arsenal of rationally designed anti-cancer therapeutics.

  19. Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy.

    PubMed

    Peckys, Diana B; Baudoin, Jean-Pierre; Eder, Magdalena; Werner, Ulf; de Jonge, Niels

    2013-01-01

    Imaging single epidermal growth factor receptors (EGFR) in intact cells is presently limited by the available microscopy methods. Environmental scanning electron microscopy (ESEM) of whole cells in hydrated state in combination with specific labeling with gold nanoparticles was used to localize activated EGFRs in the plasma membranes of COS7 and A549 cells. The use of a scanning transmission electron microscopy (STEM) detector yielded a spatial resolution of 3 nm, sufficient to identify the locations of individual EGFR dimer subunits. The sizes and distribution of dimers and higher order clusters of EGFRs were determined. The distance between labels bound to dimers amounted to 19 nm, consistent with a molecular model. A fraction of the EGFRs was found in higher order clusters with sizes ranging from 32-56 nm. ESEM can be used for quantitative whole cell screening studies of membrane receptors, and for the study of nanoparticle-cell interactions in general.

  20. Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy

    PubMed Central

    Peckys, Diana B.; Baudoin, Jean-Pierre; Eder, Magdalena; Werner, Ulf; de Jonge, Niels

    2013-01-01

    Imaging single epidermal growth factor receptors (EGFR) in intact cells is presently limited by the available microscopy methods. Environmental scanning electron microscopy (ESEM) of whole cells in hydrated state in combination with specific labeling with gold nanoparticles was used to localize activated EGFRs in the plasma membranes of COS7 and A549 cells. The use of a scanning transmission electron microscopy (STEM) detector yielded a spatial resolution of 3 nm, sufficient to identify the locations of individual EGFR dimer subunits. The sizes and distribution of dimers and higher order clusters of EGFRs were determined. The distance between labels bound to dimers amounted to 19 nm, consistent with a molecular model. A fraction of the EGFRs was found in higher order clusters with sizes ranging from 32–56 nm. ESEM can be used for quantitative whole cell screening studies of membrane receptors, and for the study of nanoparticle-cell interactions in general. PMID:24022088

  1. 17beta-estradiol promotes breast cancer cell proliferation-inducing stromal cell-derived factor-1-mediated epidermal growth factor receptor transactivation: reversal by gefitinib pretreatment.

    PubMed

    Pattarozzi, Alessandra; Gatti, Monica; Barbieri, Federica; Würth, Roberto; Porcile, Carola; Lunardi, Gianluigi; Ratto, Alessandra; Favoni, Roberto; Bajetto, Adriana; Ferrari, Angelo; Florio, Tullio

    2008-01-01

    The coordinated activity of estrogens and epidermal growth factor receptor (EGFR) family agonists represents the main determinant of breast cancer cell proliferation. Stromal cell-derived factor-1 (SDF-1) enhances extracellular signal-regulated kinases 1 and 2 (ERK1/2) activity via the transactivation of EGFR and 17beta-estradiol (E2) induces SDF-1 production to exert autocrine proliferative effects. On this basis, we evaluated whether the inhibition of the tyrosine kinase (TK) activity of EGFR may control different mitogenic stimuli in breast tumors using the EGFR-TK inhibitor gefitinib to antagonize the proliferation induced by E2 in T47D human breast cancer cells. EGF, E2, and SDF-1 induced a dose-dependent T47D cell proliferation, that being nonadditive suggested the activation of common intracellular pathways. Gefitinib treatment inhibited not only the EGF-dependent proliferation and ERK1/2 activation but also the effects of SDF-1 and E2, suggesting that these activities were mediated by EGFR transactivation. Indeed, both SDF-1 and E2 caused EGFR tyrosine phosphorylation. The molecular link between E2 and SDF-1 proliferative effects was identified because 1,1'-(1,4-phenylenebis(methylene))-bis-1,4,8,11-tetraazacyclotetradecane octahydrochloride (AMD3100), a CXCR4 antagonist, inhibited SDF-1- and E2-dependent proliferation and EGFR and ERK1/2 phosphorylation. EGFR transactivation was dependent on c-Src activation. E2 treatment caused a powerful SDF-1 release from T47D cells. Finally, in SKBR3, E2-resistant cells, EGFR was constitutively activated, and AMD3100 reduced EGFR phosphorylation and cell proliferation, whereas HER2-neu was transactivated by SDF-1 in SKBR3 but not in T47D cells. In conclusion, we show that activation of CXCR4 transduces proliferative signals from the E2 receptor to EGFR, whose inhibition is able to revert breast cancer cell proliferation induced by multiple receptor activation.

  2. In vivo detection of small tumour lesions by multi-pinhole SPECT applying a 99mTc-labelled nanobody targeting the Epidermal Growth Factor Receptor

    PubMed Central

    Krüwel, Thomas; Nevoltris, Damien; Bode, Julia; Dullin, Christian; Baty, Daniel; Chames, Patrick; Alves, Frauke

    2016-01-01

    The detection of tumours in an early phase of tumour development in combination with the knowledge of expression of tumour markers such as epidermal growth factor receptor (EGFR) is an important prerequisite for clinical decisions. In this study we applied the anti-EGFR nanobody 99mTc-D10 for visualizing small tumour lesions with volumes below 100 mm3 by targeting EGFR in orthotopic human mammary MDA-MB-468 and MDA-MB-231 and subcutaneous human epidermoid A431 carcinoma mouse models. Use of nanobody 99mTc-D10 of a size as small as 15.5 kDa enables detection of tumours by single photon emission computed tomography (SPECT) imaging already 45 min post intravenous administration with high tumour uptake (>3% ID/g) in small MDA-MB-468 and A431 tumours, with tumour volumes of 52.5 mm3 ± 21.2 and 26.6 mm3 ± 16.7, respectively. Fast blood clearance with a serum half-life of 4.9 min resulted in high in vivo contrast and ex vivo tumour to blood and tissue ratios. In contrast, no accumulation of 99mTc-D10 in MDA-MB-231 tumours characterized by a very low expression of EGFR was observed. Here we present specific and high contrast in vivo visualization of small human tumours overexpressing EGFR by preclinical multi-pinhole SPECT shortly after administration of anti-EGFR nanobody 99mTc-D10. PMID:26912069

  3. Differential signaling and regulation of apical vs. basolateral EGFR in polarized epithelial cells.

    PubMed

    Kuwada, S K; Lund, K A; Li, X F; Cliften, P; Amsler, K; Opresko, L K; Wiley, H S

    1998-12-01

    Overexpression of the epidermal growth factor receptors (EGFR) in polarized kidney epithelial cells caused them to appear in high numbers at both the basolateral and apical cell surfaces. We utilized these cells to look for differences in the regulation and signaling of apical vs. basolateral EGFR. Apical and basolateral EGFR were biologically active and mediated EGF-induced cell proliferation to similar degrees. Receptor downregulation and endocytosis were less efficient at the apical surface, resulting in prolonged EGF-induced tyrosine kinase activity at the apical cell membrane. Tyrosine phosphorylation of EGFR substrates known to mediate cell proliferation, Src-homologous and collagen protein (SHC), extracellularly regulated kinase 1 (ERK1), and ERK2 could be induced similarly by activation of apical or basolateral EGFR. Focal adhesion kinase was tyrosine phosphorylated more by basolateral than by apical EGFR; however, beta-catenin was tyrosine phosphorylated to a much greater degree following the activation of mislocalized apical EGFR. Thus EGFR regulation and EGFR-mediated phosphorylation of certain substrates differ at the apical and basolateral cell membrane domains. This suggests that EGFR mislocalization could result in abnormal signal transduction and aberrant cell behavior.

  4. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    PubMed

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  5. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma

    PubMed Central

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  6. EGF-dependent re-routing of vesicular recycling switches spontaneous phosphorylation suppression to EGFR signaling

    PubMed Central

    Baumdick, Martin; Brüggemann, Yannick; Schmick, Malte; Xouri, Georgia; Sabet, Ola; Davis, Lloyd; Chin, Jason W; Bastiaens, Philippe IH

    2015-01-01

    Autocatalytic activation of epidermal growth factor receptor (EGFR) coupled to dephosphorylating activity of protein tyrosine phosphatases (PTPs) ensures robust yet diverse responses to extracellular stimuli. The inevitable tradeoff of this plasticity is spontaneous receptor activation and spurious signaling. We show that a ligand-mediated switch in EGFR trafficking enables suppression of spontaneous activation while maintaining EGFR’s capacity to transduce extracellular signals. Autocatalytic phosphorylation of tyrosine 845 on unliganded EGFR monomers is suppressed by vesicular recycling through perinuclear areas with high PTP1B activity. Ligand-binding results in phosphorylation of the c-Cbl docking tyrosine and ubiquitination of the receptor. This secondary signal relies on EGF-induced EGFR self-association and switches suppressive recycling to directional trafficking. The re-routing regulates EGFR signaling response by the transit-time to late endosomes where it is switched-off by high PTP1B activity. This ubiquitin-mediated switch in EGFR trafficking is a uniquely suited solution to suppress spontaneous activation while maintaining responsiveness to EGF. DOI: http://dx.doi.org/10.7554/eLife.12223.001 PMID:26609808

  7. First-line therapy for advanced non-small cell lung cancer with activating EGFR mutation: is combined EGFR-TKIs and chemotherapy a better choice?

    PubMed

    Wang, Shuyun; Gao, Aiqin; Liu, Jie; Sun, Yuping

    2018-03-01

    As the standard first-line treatment for advanced non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation, EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have significantly improved the median progression-free survival (PFS) up to 18.9 months. However, almost all patients eventually develop acquired resistance to EGFR-TKIs, which limits the first-line PFS. To overcome the resistance and improve overall survival, researchers have tried to identify the resistance mechanisms and develop new treatment strategies, among which a combination of EGFR-TKIs and cytotoxic chemotherapy is one of the hotspots. The data from preclinical and clinical studies on combined EGFR-TKIs and chemotherapy have shown very interesting results. Here, we reviewed the available preclinical and clinical studies on first-line EGFR-TKIs-chemotherapy combination in patients with advanced NSCLC harboring activating EGFR mutation, aiming to provide evidences for more potential choices and shed light on clinical treatment.

  8. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying-Nai; Wang, Hongmei; Yamaguchi, Hirohito

    2010-09-03

    Research highlights: {yields} ARF1 activation is involved in the EGFR transport to the ER and the nucleus. {yields} Assembly of {gamma}-COP coatomer mediates EGFR transport to the ER and the nucleus. {yields} Golgi-to-ER retrograde trafficking regulates nuclear transport of EGFR. -- Abstract: Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored.more » Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH{sub 2}-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with {gamma}-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.« less

  9. Development of the Third Generation EGFR Tyrosine Kinase Inhibitors for Anticancer Therapy.

    PubMed

    Cheng, Weiyan; Zhou, Jianhua; Tian, Xin; Zhang, Xiaojian

    2016-01-01

    Epidermal growth factor receptor (EGFR) is one of the most important targets in anticancer therapy. Till date, a large number of first and second generation EGFR tyrosine kinase inhibitors (TKIs) have been marketed or advanced into clinical studies. However, the occurrence of TKI-resistant mutations has led to the loss of efficacy of these inhibitors. In the purpose of overcoming resistant mutations and reducing side effects, lots of third generation EGFR inhibitors are explored with promising potencies against EGFR mutations while sparing wild-type EGFR. This review outlines the current landscape of the development of third generation EGFR inhibitors, mainly focusing on the biological properties, clinical status and structure-activity relationships.

  10. Integrated experimental and model-based analysis reveals the spatial aspects of EGFR activation dynamics

    PubMed Central

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. Steven; Resat, Haluk

    2012-01-01

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models to determine the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor phosphorylation kinetics at the cell surface and early endosomes are comparable. We validated the last finding by measuring the EGFR dephosphorylation rates at various times following ligand addition both in whole cells and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks. PMID:22952062

  11. Selective gene amplification to detect the T790M mutation in plasma from patients with advanced non-small cell lung cancer (NSCLC) who have developed epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance.

    PubMed

    Nishikawa, Shingo; Kimura, Hideharu; Koba, Hayato; Yoneda, Taro; Watanabe, Satoshi; Sakai, Tamami; Hara, Johsuke; Sone, Takashi; Kasahara, Kazuo; Nakao, Shinji

    2018-03-01

    The epidermal growth factor receptor (EGFR) T790M mutation is associated with resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). However, tissues for the genotyping of the EGFR T790M mutation can be difficult to obtain in a clinical setting. The aims of this study were to evaluate a blood-based, non-invasive approach to detecting the EGFR T790M mutation in advanced NSCLC patients using the PointMan™ EGFR DNA enrichment kit, which is a novel method for the selective amplification of specific genotype sequences. Blood samples were collected from NSCLC patients who had activating EGFR mutations and who were resistant to EGFR-TKI treatment. Using cell-free DNA (cfDNA) from plasma, EGFR T790M mutations were amplified using the PointMan™ enrichment kit, and all the reaction products were confirmed using direct sequencing. The concentrations of plasma DNA were then determined using quantitative real-time PCR. Nineteen patients were enrolled, and 12 patients (63.2%) were found to contain EGFR T790M mutations in their cfDNA, as detected by the kit. T790M mutations were detected in tumor tissues in 12 cases, and 11 of these cases (91.7%) also exhibited the T790M mutation in cfDNA samples. The concentrations of cfDNA were similar between patients with the T790M mutation and those without the mutation. The PointMan™ kit provides a useful method for determining the EGFR T790M mutation status in cfDNA.

  12. Uncovering the Origin of Skin Side Effects from EGFR-Targeted Therapies | Center for Cancer Research

    Cancer.gov

    The epidermal growth factor receptor (EGFR), a key regulator of cell proliferation, is often mutated or overexpressed in a variety of cancer types. EGFR-targeted therapies, including monoclonal antibodies and small molecule inhibitors, can effectively treat patients whose tumors depend on aberrant EGFR signaling. Within a few weeks of initiating therapy, however, patients

  13. Osimertinib - effective treatment of NSCLC with activating EGFR mutations after progression on EGFR tyrosine kinase inhibitors.

    PubMed

    Skrzypski, Marcin; Szymanowska-Narloch, Amelia; Dziadziuszko, Rafał

    2017-01-01

    Non-small cell lung cancer (NSCLC) driven by activating mutations in epidermal growth factor receptor (EGFR) constitutes up to 10% of NSCLC cases. According to the NCCN recommendations, all patients (with the exception of smoking patients with squamous cell lung cancer) should be screened for the presence of activating EGFR mutations, i.e. deletion in exon 19 or point mutation L858R in exon 21, in order to select the group that benefits from EGFR tyrosine kinase inhibitors (EGFR TKIs) treatment. Among approved agents there are the 1 st generation reversible EGFR TKIs, erlotinib and gefitinib, and the 2 nd generation irreversible EGFR TKI, afatinib. The objective response rates to these drugs in randomised clinical trials were in the range of 56-74%, and median time to progression 9-13 months. The most common determinant of resistance to these drugs is the clonal expansion of cancer cells with T790M mutation (Thr790Met) in exon 20 of EGFR. Osimertinib (Tagrisso™), a 3 rd generation, irreversible EGFR tyrosine kinase inhibitor, constitutes a novel, highly efficacious treatment for NSCLC patients progressing on EGFR TKIs with T790M mutation confirmed as the resistance mechanism. Resistance mutation can be determined in tissue or liquid biopsy obtained after progression on EGFR TKIs. Osimertinib has a favourable toxicity profile, with mild rash and diarrhoea being the most common. In this article, we present three cases that were successfully treated with osimertinib after progression on 1st and 2nd generation EGFR TKIs.

  14. Interrogation of EGFR Targeted Uptake of TiO2 Nanoconjugates by X-ray Fluorescence Microscopy.

    PubMed

    Yuan, Ye; Paunesku, Tatjana; Arora, Hans; Ward, Jesse; Vogt, Stefan; Woloschak, Gayle

    2011-09-01

    We are developing TiO 2 nanoconjugates that can be used as therapeutic and diagnostic agents. Nanoscale TiO 2 can be surface conjugated with various molecules and has the unique ability to induce the production of reactive oxygen species after radiation activation. One way to improve the potential clinical usefulness of TiO 2 nanoparticles is to control their delivery to malignant cells by targeting them to cancer cell specific antigens. Epidermal Growth Factor Receptor is one potential target that is enriched in epithelial cancers and is rapidly internalized after ligand binding. Hence, we have synthesized TiO 2 nanoparticles and functionalized them with a short EGFR binding peptide to create EGFR-targeted NCs. X-ray Fluorescence Microscopy was used to image nanoconjugates within EGFR positive HeLa cells. Further labeling of fixed cells with antibodies against EGFR and Protein A nanogold showed that TiO 2 nanoconjugates can colocalize with receptors at the cell's plasma membrane. Interestingly, with increased incubation times, EGFR targeted nanoconjugates could also be found colocalized with EGFR within the cell nucleus. This suggests that EGFR-targeted nanoconjugates can bind the receptor at the cell membrane, which leads to the internalization of NC-receptor complexes and the subsequent transport of nanoconjugates into the nucleus.

  15. Autocrine expression of the epidermal growth factor receptor ligand heparin-binding EGF-like growth factor in cervical cancer.

    PubMed

    Schrevel, Marlies; Osse, E Michelle; Prins, Frans A; Trimbos, J Baptist M Z; Fleuren, Gert Jan; Gorter, Arko; Jordanova, Ekaterina S

    2017-06-01

    In cervical cancer, the epidermal growth factor receptor (EGFR) is overexpressed in 70-90% of the cases and has been associated with poor prognosis. EGFR-based therapy is currently being explored in cervical cancer. We investigated which EGFR ligand is primarily expressed in cervical cancer and which cell type functions as the major source of this ligand. We hypothesized that macrophages are the main source of EGFR ligands and that a paracrine loop between tumor cells and macrophages is responsible for ligand expression. mRNA expression analysis was performed on 32 cervical cancer cases to determine the expression of the EGFR ligands amphiregulin, β-cellulin, epidermal growth factor (EGF), epiregulin, heparin-binding EGF-like growth factor (HB‑EGF) and transforming growth factor α (TGFα). Subsequently, protein expression was determined immunohistochemically on 36 additional cases. To assess whether macrophages are the major source of EGFR ligands, immunohistochemical double staining was performed on four representative tissue slides. Expression of the chemokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and C-C motif ligand 2 (CCL2) was determined by mRNA in situ hybridization. Of the known EGFR ligands, HB‑EGF had the highest mRNA expression and HB‑EGF and EGFR protein expression were highly correlated. Tumor specimens with high EGFR expression showed higher numbers of macrophages, and higher expression of GM-CSF and CCL2, but only a small subset (9%) of macrophages was found to be HB‑EGF-positive. Strikingly, 78% of cervical cancer specimens were found to express HB‑EGF. Standardized assessment of staining intensity, using spectral imaging analysis, showed that HB‑EGF expression was higher in the tumor compartment than in the stromal compartment. These results suggest that HB‑EGF is an important EGFR ligand in cervical cancer and that cervical cancer cells are the predominant source of HB‑EGF. Therefore, we propose an autocrine

  16. HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone

    PubMed Central

    Day, Kathleen C.; Hiles, Guadalupe Lorenzatti; Kozminsky, Molly; Dawsey, Scott J.; Paul, Alyssa; Broses, Luke J.; Shah, Rajal; Kunja, Lakshmi P.; Hall, Christopher; Palanisamy, Nallasivam; Daignault-Newton, Stephanie; El-Sawy, Layla; Wilson, Steven James; Chou, Andrew; Ignatoski, Kathleen Woods; Keller, Evan; Thomas, Dafydd; Nagrath, Sunitha; Morgan, Todd; Day, Mark L.

    2016-01-01

    Activation of the epidermal growth factor receptors EGFR (ErbB1) and HER2 (ErbB2) drive the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF-κB receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits. Inhibiting HER2 expression in bone tumor xenografts reduced proliferation and RANK expression while maintaining EGFR expression. In examining the role of EGFR in tumor-initiating cells (TIC), we found that EGFR expression was required for primary and secondary sphere formation of prostate cancer cells. EGFR expression was also observed in circulating tumor cells (CTC) during prostate cancer metastasis. Dual inhibition of HER2 and EGFR resulted in significant inhibition of tumor xenograft growth, further supporting the significance of these receptors in prostate cancer progression. Overall, our results indicate that EGFR promotes survival of prostate TIC and CTC that metastasize to bone, whereas HER2 supports the growth of prostate cancer cells once they are established at metastatic sites. PMID:27793843

  17. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  18. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  19. Steroid hormone and epidermal growth factor receptors in meningiomas.

    PubMed

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  20. Emergence of EGFR G724S mutation in EGFR-mutant lung adenocarcinoma post progression on osimertinib.

    PubMed

    Oztan, A; Fischer, S; Schrock, A B; Erlich, R L; Lovly, C M; Stephens, P J; Ross, J S; Miller, V; Ali, S M; Ou, S-H I; Raez, L E

    2017-09-01

    Mutations in the epidermal growth factor receptor (EGFR) are drivers for a subset of lung cancers. Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) recently approved for the treatment of T790M-positive non-small cell lung cancer (NSCLC); however, acquired resistance to osimertinib is evident and resistance mechanisms remain incompletely defined. The EGFR G724S mutation was detected using hybrid-capture based comprehensive genomic profiling (CGP) and a hybrid-capture based circulating tumor DNA (ctDNA) assays in two cases of EGFR-driven lung adenocarcinoma in patients who had progressed on osimertinib treatment. This study demonstrates the importance of both tissue and blood based hybrid-capture based genomic profiling at disease progression to identifying novel resistance mechanisms in the clinic. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Characterization of In Vivo Resistance to Osimertinib and JNJ-61186372, an EGFR/Met Bispecific Antibody, Reveals Unique and Consensus Mechanisms of Resistance.

    PubMed

    Emdal, Kristina B; Dittmann, Antje; Reddy, Raven J; Lescarbeau, Rebecca S; Moores, Sheri L; Laquerre, Sylvie; White, Forest M

    2017-11-01

    Approximately 10% of non-small cell lung cancer (NSCLC) patients in the United States and 40% of NSCLC patients in Asia have activating epidermal growth factor receptor (EGFR) mutations and are eligible to receive targeted anti-EGFR therapy. Despite an extension of life expectancy associated with this treatment, resistance to EGFR tyrosine kinase inhibitors and anti-EGFR antibodies is almost inevitable. To identify additional signaling routes that can be cotargeted to overcome resistance, we quantified tumor-specific molecular changes that govern resistant cancer cell growth and survival. Mass spectrometry-based quantitative proteomics was used to profile in vivo signaling changes in 41 therapy-resistant tumors from four xenograft NSCLC models. We identified unique and tumor-specific tyrosine phosphorylation rewiring in tumors resistant to treatment with the irreversible third-generation EGFR-inhibitor, osimertinib, or the novel dual-targeting EGFR/Met antibody, JNJ-61186372. Tumor-specific increases in tyrosine-phosphorylated peptides from EGFR family members, Shc1 and Gab1 or Src family kinase (SFK) substrates were observed, underscoring a differential ability of tumors to uniquely escape EGFR inhibition. Although most resistant tumors within each treatment group displayed a marked inhibition of EGFR as well as SFK signaling, the combination of EGFR inhibition (osimertinib) and SFK inhibition (saracatinib or dasatinib) led to further decrease in cell growth in vitro This result suggests that residual SFK signaling mediates therapeutic resistance and that elimination of this signal through combination therapy may delay onset of resistance. Overall, analysis of individual resistant tumors captured unique in vivo signaling rewiring that would have been masked by analysis of in vitro cell population averages. Mol Cancer Ther; 16(11); 2572-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect.

    PubMed

    Velpula, Kiran Kumar; Bhasin, Arnima; Asuthkar, Swapna; Tsung, Andrew J

    2013-12-15

    Glioblastoma multiforme is the most aggressive primary brain tumor in adults. Overexpression of the EGF receptor (EGFR) is recognized as a widespread oncogenic signature in glioblastoma multiforme, but the complexity of its contributions is not fully understood, nor the most effective ways to leverage anti-EGFR therapy in this setting. Hypoxia is known to drive the aggressive character of glioblastoma multiforme by promoting aerobic glycolysis rather than pyruvate oxidation carried out in mitochondria (OXPHOS), a phenomenon termed the Warburg effect, which is a general feature of oncogenesis. In this study, we report that hypoxia drives expression of the pyruvate dehydrogenase kinase (PDK1) and EGFR along with the hypoxia-inducing factor (HIF)-1α in human glioblastoma multiforme cells. PDK1 is a HIF-1-regulated gene and our findings indicated that hypoxia-induced PDK1 expression may promote EGFR activation, initiating a feed-forward loop that can sustain malignant progression. RNAi-mediated attenuation of PDK1 and EGFR lowered PDK1-EGFR activation and decreased HIF-1α expression, shifting the Warburg phenotype to OXPHOS and inhibiting glioblastoma multiforme growth and proliferation. In clinical specimens of glioblastoma multiforme, we found that immunohistochemical expression of PDK1, EGFR, and HIF-1α were elevated in glioblastoma multiforme specimens when compared with normal brain tissues. Collectively, our studies establish PDK1 as a key driver and candidate therapeutic target in glioblastoma multiforme. ©2013 AACR.

  3. TP53, STK11 and EGFR Mutations Predict Tumor Immune Profile and the Response to anti-PD-1 in Lung Adenocarcinoma.

    PubMed

    Biton, Jerome; Mansuet-Lupo, Audrey; Pécuchet, Nicolas; Alifano, Marco; Ouakrim, Hanane; Arrondeau, Jennifer; Boudou-Rouquette, Pascaline; Goldwasser, Francois; Leroy, Karen; Goc, Jeremy; Wislez, Marie; Germain, Claire; Laurent-Puig, Pierre; Dieu-Nosjean, Marie-Caroline; Cremer, Isabelle; Herbst, Ronald; Blons, Hélène F; Damotte, Diane

    2018-05-15

    By unlocking anti-tumor immunity, antibodies targeting programmed cell death 1 (PD-1) exhibit impressive clinical results in non-small cell lung cancer, underlining the strong interactions between tumor and immune cells. However, factors that can robustly predict long-lasting responses are still needed. We performed in depth immune profiling of lung adenocarcinoma using an integrative analysis based on immunohistochemistry, flow-cytometry and transcriptomic data. Tumor mutational status was investigated using next-generation sequencing. The response to PD-1 blockers was analyzed from a prospective cohort according to tumor mutational profiles and to PD-L1 expression, and a public clinical database was used to validate the results obtained. We showed that distinct combinations of STK11 , EGFR and TP53 mutations, were major determinants of the tumor immune profile (TIP) and of the expression of PD-L1 by malignant cells. Indeed, the presence of TP53 mutations without co-occurring STK11 or EGFR alterations ( TP53 -mut/ STK11 - EGFR -WT), independently of KRAS mutations, identified the group of tumors with the highest CD8 T cell density and PD-L1 expression. In this tumor subtype, pathways related to T cell chemotaxis, immune cell cytotoxicity, and antigen processing were up-regulated. Finally, a prolonged progression-free survival (PFS: HR=0.32; 95% CI, 0.16-0.63, p <0.001) was observed in anti-PD-1 treated patients harboring TP53 -mut/ STK11 - EGFR -WT tumors. This clinical benefit was even more remarkable in patients with associated strong PD-L1 expression. Our study reveals that different combinations of TP53 , EGFR and STK11 mutations , together with PD-L1 expression by tumor cells, represent robust parameters to identify best responders to PD-1 blockade. Copyright ©2018, American Association for Cancer Research.

  4. Effects of radiation on the epidermal growth factor receptor pathway in the heart

    PubMed Central

    Sridharan, Vijayalakshmi; Sharma, Sunil K.; Moros, Eduardo G.; Corry, Peter M.; Tripathi, Preeti; Lieblong, Benjamin J.; Guha, Chandan; Hauer-Jensen, Martin; Boerma, Marjan

    2013-01-01

    Purpose Radiation-induced heart disease (RIHD) is a serious side effect of thoracic radiotherapy. The epidermal growth factor receptor (EGFR) pathway is essential for the function and survival of cardiomyocytes. Hence, agents that target the EGFR pathway are cardiotoxic. Tocotrienols protect from radiation injury, but may also enhance the therapeutic effects of EGFR pathway inhibitors in cancer treatment. This study investigates the effects of local irradiation on the EGFR pathway in the heart and tests whether tocotrienols may modify radiation-induced changes in this pathway. Methods Male Sprague-Dawley rats received image-guided localized heart irradiation with 21 Gy. Twenty four hours before irradiation, rats received a single dose of tocotrienol-enriched formulation or vehicle by oral gavage. At time points from 2 hours to 9 months after irradiation, left ventricular expression of EGFR pathway mediators was studied. Results Irradiation caused a decrease in the expression of epidermal growth factor (EGF) and neuregulin-1 (Nrg-1) mRNA from 6 hours up to 10 weeks, followed by an upregulation of these ligands and the receptor erythroblastic leukemia viral oncogene homolog (ErbB)4 at 6 months. In addition, the upregulation of Nrg-1 was statistically significant up to 9 months after irradiation. A long-term upregulation of ErbB2 protein did not coincide with changes in transcription or post-translational interaction with the chaperone heat shock protein 90 (HSP90). Pretreatment with tocotrienols prevented radiation-induced changes at 2 weeks. Conclusions Local heart irradiation causes long-term changes in the EGFR pathway. Studies have to address how radiation may interact with cardiotoxic effects of EGFR inhibitors. PMID:23488537

  5. Cancer stem cell-like population is preferentially suppressed by EGFR-TKIs in EGFR-mutated PC-9 tumor models.

    PubMed

    Yang, Fan; Li, Yang; Liu, Bin; You, Jiacong; Zhou, Qinghua

    2018-01-01

    Although the epidermal growth factor receptor (EGFR) and Wnt/β-catenin signaling systems synergistically regulate many essential developmental and regenerative processes in lung cancer, the mechanisms of their crosstalk remain poorly defined. Our study aimed to investigate an interaction between EGFR and the β-catenin signal. In this study, we described a potent activation of β-catenin by EGFR, which is dependent of the PtdIns3K/AKT pathway. We found EGF activated β-catenin signaling via phosphorylation of EGFR and AKT in EGFR-mutated PC-9 lung cancer cells. Meanwhile, EGFR tyrosine kinase inhibitors (EGFR-TKIs) regulated cancer stem-like cells (CSCs) by inhibiting autophosphorylation of EGFR and downstream signaling proteins, as well as β-catenin. Further, β-catenin depletion by RNA interference virtually eliminated cancer stem cell-like population in PC-9 cells in vitro. The nude mice transplantation model was also performed to confirm EGFR-TKIs strongly inhibited the β-catenin signal and decreased CSCs. Importantly, the reduction of CSCs that sorted out by side population (SP) cells significantly reduced the migration capability. Thus, our results improved the understanding of this process to provide insights into mechanisms of responding to EGFR-TKIs. Our discoveries raise an intriguing question of the role of β-catenin in EGFR-TKIs-treated cancer stem cell-like population(s) and its potential as a new therapeutic target for NSCLC in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Lili; Yang, Min; Ding, Wei

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangialmore » cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.« less

  7. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer.

    PubMed

    Shields, Sarah; Conroy, Emer; O'Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W; O'Connor, Darran; McCann, Amanda; Gallagher, William M; Coppinger, Judith A

    2018-03-20

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.

  8. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer

    PubMed Central

    Shields, Sarah; Conroy, Emer; O’Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P.; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W.; O’Connor, Darran; McCann, Amanda; Gallagher, William M.; Coppinger, Judith A.

    2018-01-01

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC. PMID:29644001

  9. Acquired Resistance Mechanisms to Combination Met-TKI/EGFR-TKI Exposure in Met-Amplified EGFR-TKI-Resistant Lung Adenocarcinoma Harboring an Activating EGFR Mutation.

    PubMed

    Yamaoka, Toshimitsu; Ohmori, Tohru; Ohba, Motoi; Arata, Satoru; Kishino, Yasunari; Murata, Yasunori; Kusumoto, Sojiro; Ishida, Hiroo; Shirai, Takao; Hirose, Takashi; Ohnishi, Tsukasa; Sasaki, Yasutsuna

    2016-12-01

    Met-amplified EGFR-tyrosine kinase inhibitor (TKI)-resistant non-small cell lung cancer (NSCLC) harboring an activating EGFR mutation is responsive to concurrent EGFR-TKI and Met-TKI treatment in a preclinical model. Here, we determined that Met-amplified gefitinib-resistant cells acquire dual resistance to inhibition of EGFR and Met tyrosine kinase activities. PC-9 lung adenocarcinoma cells harboring 15-bp deletions (Del E746_A750) in EGFR exon 19 were treated with increasing concentrations of the Met-TKI PHA665752 and 1 μmol/L gefitinib for 1 year; three resistant clones were established via Met amplification. The three dual-resistance cell lines (PC-9DR2, PC-9DR4, and PC-9DR6, designated as DR2, DR4, and DR6, respectively) exhibited different mechanisms for evading both EGFR and Met inhibition. None of the clones harbored a secondary mutation of EGFR T790M or a Met mutation. Insulin-like growth factor (IGF)/IGF1 receptor activation in DR2 and DR4 cells acted as a bypass signaling pathway. Met expression was attenuated to a greater extent in DR2 than in PC-9 cells, but was maintained in DR4 cells by overexpression of IGF-binding protein 3. In DR6 cells, Met was further amplified by association with HSP90, which protected Met from degradation and induced SET and MYND domain-containing 3 (SMYD3)-mediated Met transcription. This is the first report describing the acquisition of dual resistance mechanisms in NSCLC harboring an activating EGFR mutation to Met-TKI and EGFR-TKI following previous EGFR-TKI treatment. These results might inform the development of more effective therapeutic strategies for NSCLC treatment. Mol Cancer Ther; 15(12); 3040-54. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Bispecific Antibody Conjugated Manganese-Based Magnetic Engineered Iron Oxide for Imaging of HER2/neu- and EGFR-Expressing Tumors

    PubMed Central

    Wu, Shou-Cheng; Chen, Yu-Jen; Wang, Hsiang-Ching; Chou, Min-Yuan; Chang, Teng-Yuan; Yuan, Shyng-Shiou; Chen, Chiao-Yun; Hou, Ming-Feng; Hsu, John Tsu-An; Wang, Yun-Ming

    2016-01-01

    The overexpression of HER2/neu and EGFR receptors plays important roles in tumorigenesis and tumor progression. Targeting these two receptors simultaneously can have a more widespread application in early diagnosis of cancers. In this study, a new multifunctional nanoparticles (MnMEIO-CyTE777-(Bis)-mPEG NPs) comprising a manganese-doped iron oxide nanoparticle core (MnMEIO), a silane-amino functionalized poly(ethylene glycol) copolymer shell, a near infrared fluorescence dye (CyTE777), and a covalently conjugated anti-HER2/neu and anti-EGFR receptors bispecific antibody (Bis) were successfully developed. In vitro T2-weighted MR imaging studies in SKBR-3 and A431 tumor cells incubated with MnMEIO-CyTE777-(Bis)-mPEG NPs showed - 94.8 ± 3.8 and - 84.1 ± 2.8% negative contrast enhancement, respectively. Pharmacokinetics study showed that MnMEIO-CyTE777-(Bis)-mPEG NPs were eliminated from serum with the half-life of 21.3 mins. In vivo MR imaging showed that MnMEIO-CyTE777-(Bis)-mPEG NPs could specifically and effectively target to HER2/neu- and EGFR-expressing tumors in mice; the relative contrast enhancements were 11.8 (at 2 hrs post-injection) and 61.5 (at 24 hrs post-injection) fold higher in SKBR-3 tumors as compared to Colo-205 tumors. T2-weighted MR and optical imaging studies revealed that the new contrast agent (MnMEIO-CyTE777-(Bis)-mPEG NPs) could specifically and effectively target to HER2/neu- and/or EGFR-expressing tumors. Our results demonstrate that MnMEIO-CyTE777-(Bis)-mPEG NPs are able to recognize the tumors expressing both HER2/neu and/or EGFR, and may provide a novel molecular imaging tool for early diagnosis of cancers expressing HER2/neu and/or EGFR. PMID:26722378

  11. Spheroid Culture of Head and Neck Cancer Cells Reveals an Important Role of EGFR Signalling in Anchorage Independent Survival.

    PubMed

    Braunholz, Diana; Saki, Mohammad; Niehr, Franziska; Öztürk, Merve; Borràs Puértolas, Berta; Konschak, Robert; Budach, Volker; Tinhofer, Ingeborg

    2016-01-01

    In solid tumours millions of cells are shed into the blood circulation each day. Only a subset of these circulating tumour cells (CTCs) survive, many of them presumable because of their potential to form multi-cellular clusters also named spheroids. Tumour cells within these spheroids are protected from anoikis, which allows them to metastasize to distant organs or re-seed at the primary site. We used spheroid cultures of head and neck squamous cell carcinoma (HNSCC) cell lines as a model for such CTC clusters for determining the role of the epidermal growth factor receptor (EGFR) in cluster formation ability and cell survival after detachment from the extra-cellular matrix. The HNSCC cell lines FaDu, SCC-9 and UT-SCC-9 (UT-SCC-9P) as well as its cetuximab (CTX)-resistant sub-clone (UT-SCC-9R) were forced to grow in an anchorage-independent manner by coating culture dishes with the anti-adhesive polymer poly-2-hydroxyethylmethacrylate (poly-HEMA). The extent of apoptosis, clonogenic survival and EGFR signalling under such culture conditions was evaluated. The potential of spheroid formation in suspension culture was found to be positively correlated with the proliferation rate of HNSCC cell lines as well as their basal EGFR expression levels. CTX and gefitinib blocked, whereas the addition of EGFR ligands promoted anchorage-independent cell survival and spheroid formation. Increased spheroid formation and growth were associated with persistent activation of EGFR and its downstream signalling component (MAPK/ERK). Importantly, HNSCC cells derived from spheroid cultures retained their clonogenic potential in the absence of cell-matrix contact. Addition of CTX under these conditions strongly inhibited colony formation in CTX-sensitive cell lines but not their resistant subclones. Altogether, EGFR activation was identified as crucial factor for anchorage-independent survival of HNSCC cells. Targeting EGFR in CTC cluster formation might represent an attractive anti

  12. Role of Pgrmc1 in estrogen maintenance of meiotic arrest in zebrafish oocytes through Gper/Egfr.

    PubMed

    Aizen, Joseph; Thomas, Peter

    2015-04-01

    The regulation of receptor trafficking to the cell surface and its effect on responses of target cells to growth factors and hormones remain poorly understood. Initial evidence has been recently obtained using cancer cells that surface expression of the epidermal growth factor receptor (EGFR) is dependent on its association with progesterone receptor membrane component 1 (PGRMC1). Estrogen inhibition of oocyte maturation (OM) in zebrafish is mediated through G-protein-coupled estrogen membrane receptor 1 (Gper1) and involves activation of Egfr. Therefore, in this study, the potential roles of Pgrmc1 in the cell surface expression and functions of Egfr in normal cells were investigated in this in vitro OM model of Egfr action using an inhibitor of PGMRC1 signaling, AG205. A single ∼60 kDa protein band, which corresponds to the size of the Pgrmc1 dimer, was detected on plasma membranes of fully grown oocytes by western blotting. Co-treatment with the PGRMC1 inhibitor AG205 (20 μM) blocked the inhibitory effects of 100 nM estradiol-17β and the GPER agonist, G-1, on spontaneous maturation of denuded zebrafish oocytes. Moreover, reversal of these estrogen effects on OM by the EGFR inhibitors AG1478 and AG825 (50 μM) was prevented by co-incubation with the PGRMC1 inhibitor. Inhibition of Pgrmc1 signaling with AG205 also caused a decrease in Egfr-dependent signaling and Egfr expression on oocyte cell membranes. These results indicate that maintenance of Pgrmc1 signaling is required for Egfr expression on zebrafish oocyte cell membranes and for conserving the functions of Egfr in maintaining meiotic arrest through estrogen activation of Gper. © 2015 Society for Endocrinology.

  13. Production of a germline-humanized cetuximab scFv and evaluation of its activity in recognizing EGFR- overexpressing cancer cells.

    PubMed

    Banisadr, Arsham; Safdari, Yaghoub; Kianmehr, Anvarsadat; Pourafshar, Mahdieh

    2018-04-03

    The aim of this study was to produce a humanized single chain antibody (scFv) as a potential improved product design to target EGFR (Epidermal Growth Factor Receptor) overexpressing cancer cells. To this end, CDR loops of cetuximab (an FDA-approved anti-EGFR antibody) were grafted on framework regions derived from type 3 (VH3 and VL3 kappa) human germline sequences to obtain recombinant VH and VL domainslinked together with a flexible linker [(Gly 4 Ser) 3 ] to form a scFv. Codon optimized synthetic gene encoding the scFv (with NH2-VH-linker-VL-COOH orientation) was expressed in E. coli Origami™ 2(DE3) cells and the resultant scFv purified by using Ni-NTA affinity chromatography. The scFv, called cet.Hum scFv, was evaluated in ELISA and immunoblot to determine whether it can recognize EGFR. The scFv was able to recognize EGFR over-expressing cancer cells (A-431) but failed to detect cancer cells with low levels of EGFR (MCF-7 cells). Although the affinity of the scFv forA-431 cells was 9 fold lower than that of cetuximab, it was strong enough to recognize these cells. Considering its ability to bind EGFR molecules, the scFv may exhibit a potential application for the detection of EGFR-overexpressing cancer cells.

  14. Angiogenin/Ribonuclease 5 Is an EGFR Ligand and a Serum Biomarker for Erlotinib Sensitivity in Pancreatic Cancer.

    PubMed

    Wang, Ying-Nai; Lee, Heng-Huan; Chou, Chao-Kai; Yang, Wen-Hao; Wei, Yongkun; Chen, Chun-Te; Yao, Jun; Hsu, Jennifer L; Zhu, Cihui; Ying, Haoqiang; Ye, Yuanqing; Wang, Wei-Jan; Lim, Seung-Oe; Xia, Weiya; Ko, How-Wen; Liu, Xiuping; Liu, Chang-Gong; Wu, Xifeng; Wang, Huamin; Li, Donghui; Prakash, Laura R; Katz, Matthew H; Kang, Yaan; Kim, Michael; Fleming, Jason B; Fogelman, David; Javle, Milind; Maitra, Anirban; Hung, Mien-Chie

    2018-04-09

    Pancreatic ribonuclease (RNase) is a secreted enzyme critical for host defense. We discover an intrinsic RNase function, serving as a ligand for epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase (RTK), in pancreatic ductal adenocarcinoma (PDAC). The closely related bovine RNase A and human RNase 5 (angiogenin [ANG]) can trigger oncogenic transformation independently of their catalytic activities via direct association with EGFR. Notably, high plasma ANG level in PDAC patients is positively associated with response to EGFR inhibitor erlotinib treatment. These results identify a role of ANG as a serum biomarker that may be used to stratify patients for EGFR-targeted therapies, and offer insights into the ligand-receptor relationship between RNase and RTK families. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Third generation EGFR TKIs: current data and future directions.

    PubMed

    Tan, Chee-Seng; Kumarakulasinghe, Nesaretnam Barr; Huang, Yi-Qing; Ang, Yvonne Li En; Choo, Joan Rou-En; Goh, Boon-Cher; Soo, Ross A

    2018-02-19

    Acquired T790 M mutation is the commonest cause of resistance for advanced non-small cell lung cancer (NSCLC) epidermal growth factor receptor (EGFR) mutant patients who had progressed after first line EGFR TKI (tyrosine kinase inhibitor). Several third generation EGFR TKIs which are EGFR mutant selective and wild-type (WT) sparing were developed to treat these patients with T790 M acquired resistant mutation. Osimertinib is one of the third generation EGFR TKIs and is currently the most advanced in clinical development. Unfortunately, despite good initial response, patients who was treated with third generation EGFR TKI would develop acquired resistance and several mechanisms had been identified and the commonest being C797S mutation at exon 20. Several novel treatment options were being developed for patients who had progressed on third generation EGFR TKI but they are still in the early phase of development. Osimertinib under FLAURA study had been shown to have better progression-free survival over first generation EGFR TKI in the first line setting and likely will become the new standard of care.

  16. Selective regulation of clathrin-mediated epidermal growth factor receptor signaling and endocytosis by phospholipase C and calcium

    PubMed Central

    Delos Santos, Ralph Christian; Bautista, Stephen; Lucarelli, Stefanie; Bone, Leslie N.; Dayam, Roya M.; Abousawan, John; Botelho, Roberto J.; Antonescu, Costin N.

    2017-01-01

    Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca2+, or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca2+- and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes. PMID:28814502

  17. EGFR-targeted therapies in the post-genomic era.

    PubMed

    Xu, Mary Jue; Johnson, Daniel E; Grandis, Jennifer R

    2017-09-01

    Over 90% of head and neck cancers overexpress the epidermal growth factor receptor (EGFR). In diverse tumor types, EGFR overexpression has been associated with poorer prognosis and outcomes. Therapies targeting EGFR include monoclonal antibodies, tyrosine kinase inhibitors, phosphatidylinositol 3-kinase (PI3K) inhibitors, and antisense gene therapy. Few EGFR-targeted therapeutics are approved for clinical use. The monoclonal antibody cetuximab is a Food and Drug Administration (FDA)-approved EGFR-targeted therapy, yet has exhibited modest benefit in clinical trials. The humanized monoclonal antibody nimotuzumab is also approved for head and neck cancers in Cuba, Argentina, Colombia, Peru, India, Ukraine, Ivory Coast, and Gabon in addition to nasopharyngeal cancers in China. Few other EGFR-targeted therapeutics for head and neck cancers have led to as significant responses as seen in lung carcinomas, for instance. Recent genome sequencing of head and neck tumors has helped identify patient subgroups with improved response to EGFR inhibitors, for example, cetuximab in patients with the KRAS-variant and the tyrosine kinase inhibitor erlotinib for tumors harboring MAPK1 E322K mutations. Genome sequencing has furthermore broadened our understanding of dysregulated pathways, holding the potential to enhance the benefit derived from therapies targeting EGFR.

  18. Drug Resistance to EGFR Inhibitors in Lung Cancer | Office of Cancer Genomics

    Cancer.gov

    The discovery of mutations in epidermal growth factor receptor (EGFR) has dramatically changed the treatment of patients with non-small-cell lung cancer (NSCLC), the leading cause of cancer deaths worldwide. EGFR-targeted therapies show considerable promise, but drug resistance has become a substantial issue. We reviewed the literature to provide an overview of the drug resistance to EGFR tyrosine kinase inhibitors (TKIs) in NSCLC. The mechanisms causing primary, acquired and persistent drug resistance to TKIs vary.

  19. Mimicking the BIM BH3 domain overcomes resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer

    PubMed Central

    Xia, Jinjing; Bai, Hao; Yan, Bo; Li, Rong; Shao, Minhua; Xiong, Liwen; Han, Baohui

    2017-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are widely applied to treat EGFR-mutant non-small cell lung cancer (NSCLC). BIM is a BH3 domain-containing protein encoded by BCL2L11. Some EGFR-mutant NSCLC patients showing BIM deletion polymorphism are resistant to EGFR TKIs. We retrospectively investigated BIM deletion polymorphism in NSCLC patients, its correlation with EGFR TKI (erlotinib) resistance, and the mechanism underlying the drug resistance. Among 245 EGFR-mutant NSCLC patients examined, BIM deletion polymorphism was detected in 43 (12.24%). Median progression-free and overall survival was markedly shorter in patients with BIM deletion polymorphism than with BIM wide-type. Moreover, NSCLC cells expressing EGFR-mutant harboring BIM polymorphism were more resistant to erlotinib-induced apoptosis than BIM wide-type cells. However, combined use of erlotinib and the BH3-mimetic ABT-737 up-regulated BIM expression and overcame erlotinib resistance in EGFR-mutant NSCLC cells harboring BIM deletion polymorphism. In vivo, erlotinib suppressed growth of BIM wide-type NSCLC cell xenographs by inducing apoptosis. Combined with ABT-737, erlotinib also suppressed NSCLC xenographs expressing EGFR-mutant harboring BIM deletion polymorphism. These results indicate that BIM polymorphism is closely related to a poor clinical response to EGFR TKIs in EGFR-mutant NSCLC patients, and that the BH3-mimetic ABT-737 restores BIM functionality and EGFR-TKI sensitivity. PMID:29312548

  20. Mimicking the BIM BH3 domain overcomes resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer.

    PubMed

    Xia, Jinjing; Bai, Hao; Yan, Bo; Li, Rong; Shao, Minhua; Xiong, Liwen; Han, Baohui

    2017-12-12

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are widely applied to treat EGFR-mutant non-small cell lung cancer (NSCLC). BIM is a BH3 domain-containing protein encoded by BCL2L11. Some EGFR-mutant NSCLC patients showing BIM deletion polymorphism are resistant to EGFR TKIs. We retrospectively investigated BIM deletion polymorphism in NSCLC patients, its correlation with EGFR TKI (erlotinib) resistance, and the mechanism underlying the drug resistance. Among 245 EGFR-mutant NSCLC patients examined, BIM deletion polymorphism was detected in 43 (12.24%). Median progression-free and overall survival was markedly shorter in patients with BIM deletion polymorphism than with BIM wide-type. Moreover, NSCLC cells expressing EGFR-mutant harboring BIM polymorphism were more resistant to erlotinib-induced apoptosis than BIM wide-type cells. However, combined use of erlotinib and the BH3-mimetic ABT-737 up-regulated BIM expression and overcame erlotinib resistance in EGFR-mutant NSCLC cells harboring BIM deletion polymorphism. In vivo , erlotinib suppressed growth of BIM wide-type NSCLC cell xenographs by inducing apoptosis. Combined with ABT-737, erlotinib also suppressed NSCLC xenographs expressing EGFR-mutant harboring BIM deletion polymorphism. These results indicate that BIM polymorphism is closely related to a poor clinical response to EGFR TKIs in EGFR-mutant NSCLC patients, and that the BH3-mimetic ABT-737 restores BIM functionality and EGFR-TKI sensitivity.

  1. Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors

    PubMed Central

    Katayama, Ryohei; Fang, Siyang; Tsutsui, Saki; Akatsuka, Akinobu; Shan, Mingde; Choi, Hyeong-Wook; Fujita, Naoya; Yoshimatsu, Kentaro; Shiina, Isamu; Yamori, Takao; Dan, Shingo

    2018-01-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) were demonstrated to provide survival benefit in patients with non-small cell lung cancer (NSCLC) harboring activating mutations of EGFR; however, emergence of acquired resistance to EGFR-TKIs has been shown to cause poor outcome. To overcome the TKI resistance, drugs with different mode of action are required. We previously reported that M-COPA (2-methylcoprophilinamide), a Golgi disruptor, suppressed the growth of gastric cancers overexpressing receptor tyrosine kinases (RTKs) such as hepatocyte growth factor receptor (MET) via downregulating their cell surface expression. In this study, we examined the antitumor effect of M-COPA on NSCLC cells with TKI resistance. As a result, M-COPA effectively downregulated cell surface EGFR and its downstream signals, and finally exerted in vivo antitumor effect in NSCLC cells harboring secondary (T790M/del19) and tertiary (C797S/T790M/del19) mutated EGFR, which exhibit acquired resistance to first- and third generation EGFR-TKIs, respectively. M-COPA also downregulated MET expression potentially involved in the acquired resistance to EGFR-TKIs via bypassing the EGFR pathway blockade. These results provide the first evidence that targeting the Golgi apparatus might be a promising therapeutic strategy to overcome the vicious cycle of TKI resistance in EGFR-mutated NSCLC cells via downregulating cell surface RTK expression. PMID:29416720

  2. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation inmore » HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.« less

  3. Association between BIM deletion polymorphism and clinical outcome of EGFR-mutated NSCLC patient with EGFR-TKI therapy: A meta-analysis.

    PubMed

    Ma, Ji-Yong; Yan, Hai-Jun; Gu, Wei

    2015-01-01

    BIM deletion polymorphism was deemed to be associated with downregulation of BIM, resulting in a decreased apoptosis induced by epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in EGFR mutation-positive non-small cell lung cancer (NSCLC). However, accumulating evidences concerning the association between BIM deletion polymorphism and efficacy of EGFR-TKI and survival in EGFR-mutation-driven NSCLC patient reported contradictory results. A meta-analysis was conducted by combing six original eligible studies including 871 NSCLC patients. Our study showed that BIM deletion polymorphism was significantly associated with poor response to EGFR-TKI therapy in mutant EGFRNSCLC patients (P(h) = 0.309, P(z) = 0.001, OR = 0.39, 95% confidence interval (CI) = 0.23-0.67). Disease control rate (DCR) in mutant EGFRNSCLC patient with treatment of EGFR-TKI was significantly decreased in patients with BIM deletion polymorphism comparing to patients harbored BIM wild variant (P(h) = 0.583, P(Z) = 0.007, OR = 0.46, 95%CI = 0.25-0.85). EGFR mutation-derived NSCLC patient carrying BIM deletion polymorphism had a shorter progression-free survival (PFS; P(h) < 0.001, P(z) < 0.001, hazard ratio (HR) = 1.37, 95%CI = 1.09-1.71) and overall survival (OS; P(h) = 0.90, P(z) = 0.003, HR = 1.25, 95%CI = 1.08-1.45), than those harbored BIM wild variant. These results suggested that BIM deletion polymorphism might be a cause that contributes to primary EGFR-TKI resistance, and it could be used as a genetic predictor for EGFR-TKI outcome and an independent prognostic factor of EGFR mutation-driven NSCLC patient.

  4. Robust detection of EGFR copy number changes and EGFR variant III: technical aspects and relevance for glioma diagnostics.

    PubMed

    Jeuken, Judith; Sijben, Angelique; Alenda, Cristina; Rijntjes, Jos; Dekkers, Marieke; Boots-Sprenger, Sandra; McLendon, Roger; Wesseling, Pieter

    2009-10-01

    Epidermal growth factor receptor (EGFR) is commonly affected in cancer, generally in the form of an increase in DNA copy number and/or as mutation variants [e.g., EGFR variant III (EGFRvIII), an in-frame deletion of exons 2-7]. While detection of EGFR aberrations can be expected to be relevant for glioma patients, such analysis has not yet been implemented in a routine setting, also because feasible and robust assays were lacking. We evaluated multiplex ligation-dependent probe amplification (MLPA) for detection of EGFR amplification and EGFRvIII in DNA of a spectrum of 216 diffuse gliomas. EGFRvIII detection was verified at the protein level by immunohistochemistry and at the RNA level using the conventionally used endpoint RT-PCR as well as a newly developed quantitative RT-PCR. Compared to these techniques, the DNA-based MLPA assay for EGFR/EGFRvIII analysis tested showed 100% sensitivity and specificity. We conclude that MLPA is a robust assay for detection of EGFR/EGFRvIII aberrations. While the exact diagnostic, prognostic and predictive value of such EGFR testing remains to be seen, MLPA has great potential as it can reliably and relatively easily be performed on routinely processed (formalin-fixed, paraffin-embedded) tumor tissue in combination with testing for other relevant glioma markers.

  5. Epidermal Growth Factor Receptor Tyrosine Kinase: A Potential Target in Treatment of Non-Small-Cell Lung Carcinoma.

    PubMed

    Prabhu, Venugopal Vinod; Devaraj, Niranjali

    2017-01-01

    Lung cancer is responsible for 1.6 million deaths. Approximately 80%-85% of lung cancers are of the non-small-cell variety, which includes squamous cell carcinoma, adenocarcinoma, and large-cell carcinoma. Knowing the stage of cancer progression is a requisite for determining which management approach-surgery, chemotherapy, radiotherapy, and/or immunotherapy-is optimal. Targeted therapeutic approaches with antiangiogenic monoclonal antibodies or tyrosine kinase inhibitors are one option if tumors harbor oncogene mutations. Another, newer approach is directed against cancer-specific molecules and signaling pathways and thus has more limited nonspecific toxicities. This approach targets the epidermal growth factor receptor (EGFR, HER-1/ErbB1), a receptor tyrosine kinase of the ErbB family, which consists of four closely related receptors: HER-1/ErbB1, HER-2/neu/ErbB2, HER-3/ErbB3, and HER-4/ErbB4. Because EGFR is expressed at high levels on the surface of some cancer cells, it has been recognized as an effective anticancer target. EGFR-targeted therapies include monoclonal antibodies (mAbs) and small-molecule tyrosine kinase inhibitors. Tyrosine kinases are an especially important target because they play an important role in the modulation of growth factor signaling. This review highlights various classes of synthetically derived molecules that have been reported in the last few years as potential EGFR-TK inhibitors (TKIs) and their targeted therapies in NSCLC, along with effective strategies for overcoming EGFR-TKI resistance and efforts to develop a novel potent EGFR-TKI as an efficient target of NSCLC treatment in the foreseeable future.

  6. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance.

    PubMed

    Sevelda, Florian; Mayr, Lisa; Kubista, Bernd; Lötsch, Daniela; van Schoonhoven, Sushilla; Windhager, Reinhard; Pirker, Christine; Micksche, Michael; Berger, Walter

    2015-11-02

    Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.

  7. WHSC1L1-mediated EGFR mono-methylation enhances the cytoplasmic and nuclear oncogenic activity of EGFR in head and neck cancer

    PubMed Central

    Saloura, Vassiliki; Vougiouklakis, Theodore; Zewde, Makda; Deng, Xiaolan; Kiyotani, Kazuma; Park, Jae-Hyun; Matsuo, Yo; Lingen, Mark; Suzuki, Takehiro; Dohmae, Naoshi; Hamamoto, Ryuji; Nakamura, Yusuke

    2017-01-01

    While multiple post-translational modifications have been reported to regulate the function of epidermal growth factor receptor (EGFR), the effect of protein methylation on its function has not been well characterized. In this study, we show that WHSC1L1 mono-methylates lysine 721 in the tyrosine kinase domain of EGFR, and that this methylation leads to enhanced activation of its downstream ERK cascade without EGF stimulation. We also show that EGFR K721 mono-methylation not only affects the function of cytoplasmic EGFR, but also that of nuclear EGFR. WHSC1L1-mediated methylation of EGFR in the nucleus enhanced its interaction with PCNA in squamous cell carcinoma of the head and neck (SCCHN) cells and resulted in enhanced DNA synthesis and cell cycle progression. Overall, our study demonstrates the multifaceted oncogenic function of the protein lysine methyltransferase WHSC1L1 in SCCHN, which is mediated through direct non-histone methylation of the EGFR protein with effects both in its cytoplasmic and nuclear functions. PMID:28102297

  8. Epidermal growth factor receptor tyrosine kinase inhibitors: application in non-small cell lung cancer.

    PubMed

    Thomas, Melodie

    2003-12-01

    Despite treatment advances over the past decade, long-term survival for patients with non-small cell lung cancer (NSCLC) remains poor, and treatment options available after second-line therapy are limited. Increased understanding of cancer biology has led to the identification of several potential targets for treatment. The epidermal growth factor receptor (EGFR) belongs to a family of plasma membrane receptor tyrosine kinases that controls many important cellular functions, from growth and proliferation to cell death. This receptor is a particularly promising therapeutic target because it often is overexpressed in patients with NSCLC and has been implicated in the pathogenesis as well as the proliferation, invasion, and metastasis of lung cancer and other malignancies. New agents developed to inhibit EGFR function include small-molecule tyrosine kinase inhibitors, monoclonal antibodies to EGFR, and pan-EGFR inhibitors. Completed and ongoing clinical trials have shown that EGFR inhibitors have remarkable efficacy for patients with relapsed NSCLC. Among these, two phase 2 trials have shown that ZD1839 is effective when used as monotherapy. The response rates are comparable with those for docetaxel given in the second-line setting. Another phase 2 trial has shown that OSI-774 is effective in the same setting. Data from phase 3 trials indicate that adding an EGFR tyrosine kinase inhibitor to chemotherapy does not provide an additional survival benefit, as compared with standard chemotherapy alone for first-line treatment of NSCLC. It appears that EGFR tyrosine kinase inhibitors are safe and well tolerated by patients with cancer. Further studies will elucidate how these new agents can best be used for NSCLC and other tumor types.

  9. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development.

    PubMed

    Costa, Ricardo; Shah, Ami N; Santa-Maria, Cesar A; Cruz, Marcelo R; Mahalingam, Devalingam; Carneiro, Benedito A; Chae, Young Kwang; Cristofanilli, Massimo; Gradishar, William J; Giles, Francis J

    2017-02-01

    Triple negative breast cancer (TNBC) accounts for 10-20% of cases in breast cancer. Despite recent advances in the treatment of hormonal receptor+ and HER2+ breast cancers, there are no targeted therapies available for TNBC. Evidence supports that most patients with TNBC express the transmembrane Epidermal Growth Factor Receptor (EGFR). However, early phase clinical trials failed to demonstrate significant activity of EGFR-targeted monoclonal antibodies and/or tyrosine kinase inhibitors. Here, we review the recent discoveries related to the underlying biology of the EGFR pathway in TNBC, clinical progress to date and suggest rational future approaches for investigational therapies in TNBC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Activation of epidermal growth factor receptor mediates receptor axon sorting and extension in the developing olfactory system of the moth Manduca sexta.

    PubMed

    Gibson, Nicholas J; Tolbert, Leslie P

    2006-04-10

    During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. Copyright 2006 Wiley-Liss, Inc.

  11. Impact of clinical parameters and systemic inflammatory status on epidermal growth factor receptor-mutant non-small cell lung cancer patients readministration with epidermal growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Chen, Yu-Mu; Lai, Chien-Hao; Rau, Kun-Ming; Huang, Cheng-Hua; Chang, Huang-Chih; Chao, Tung-Ying; Tseng, Chia-Cheng; Fang, Wen-Feng; Chung, Yu-Hsiu; Wang, Yi-Hsi; Su, Mao-Chang; Huang, Kuo-Tung; Liu, Shih-Feng; Chen, Hung-Chen; Chang, Ya-Chun; Chang, Yu-Ping; Wang, Chin-Chou; Lin, Meng-Chih

    2016-11-08

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) readministration to lung cancer patients is common owing to the few options available. Impact of clinical factors on prognosis of EGFR-mutant non-small cell lung cancer (NSCLC) patients receiving EGFR-TKI readministration after first-line EGFR-TKI failure and a period of TKI holiday remains unclear. Through this retrospective study, we aimed to understand the impact of clinical factors in such patients. Of 1386 cases diagnosed between December 2010 and December 2013, 80 EGFR-mutant NSCLC patients who were readministered TKIs after failure of first-line TKIs and intercalated with at least one cycle of cytotoxic agent were included. We evaluated clinical factors that may influence prognosis of TKI readministration as well as systemic inflammatory status in terms of neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR). Baseline NLR and LMR were estimated at the beginning of TKI readministration and trends of NLR and LMR were change amount from patients receiving first-Line TKIs to TKIs readministration. Median survival time since TKI readministration was 7.0 months. In the univariable analysis, progression free survival (PFS) of first-line TKIs, baseline NLR and LMR, and trend of LMR were prognostic factors in patients receiving TKIs readministration. In the multivariate analysis, only PFS of first-line TKIs (p < 0.001), baseline NLR (p = 0.037), and trend of LMR (p = 0.004) were prognostic factors. Longer PFS of first-line TKIs, low baseline NLR, and high trend of LMR were good prognostic factors in EGFR-mutant NSCLC patients receiving TKI readministration.

  12. Dynein-mediated trafficking negatively regulates LET-23 EGFR signaling

    PubMed Central

    Skorobogata, Olga; Meng, Jassy; Gauthier, Kimberley; Rocheleau, Christian E.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signaling is essential for animal development, and increased signaling underlies many human cancers. Identifying the genes and cellular processes that regulate EGFR signaling in vivo will help to elucidate how this pathway can become inappropriately activated. Caenorhabditis elegans vulva development provides an in vivo model to genetically dissect EGFR signaling. Here we identified a mutation in dhc-1, the heavy chain of the cytoplasmic dynein minus end–directed microtubule motor, in a genetic screen for regulators of EGFR signaling. Despite the many cellular functions of dynein, DHC-1 is a strong negative regulator of EGFR signaling during vulva induction. DHC-1 is required in the signal-receiving cell and genetically functions upstream or in parallel to LET-23 EGFR. LET-23 EGFR accumulates in cytoplasmic foci in dhc-1 mutants, consistent with mammalian cell studies in which dynein is shown to regulate late endosome trafficking of EGFR with the Rab7 GTPase. However, we found different distributions of LET-23 EGFR foci in rab-7 versus dhc-1 mutants, suggesting that dynein functions at an earlier step of LET-23 EGFR trafficking to the lysosome than RAB-7. Our results demonstrate an in vivo role for dynein in limiting LET-23 EGFR signaling via endosomal trafficking. PMID:27654944

  13. Molecular basis for multimerization in the activation of the epidermal growth factor receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yongjian; Bharill, Shashank; Karandur, Deepti

    The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if thismore » is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation.« less

  14. Molecular basis for multimerization in the activation of the epidermal growth factor receptor

    DOE PAGES

    Huang, Yongjian; Bharill, Shashank; Karandur, Deepti; ...

    2016-03-28

    The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if thismore » is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation.« less

  15. Entrapment of an EGFR inhibitor into nanostructured lipid carriers (NLC) improves its antitumor activity against human hepatocarcinoma cells

    PubMed Central

    2014-01-01

    Background In hepatocellular carcinoma (HCC), different signaling pathways are de-regulated, and among them, the expression of the epidermal growth factor receptor (EGFR). Tyrphostin AG-1478 is a lipophilic low molecular weight inhibitor of EGFR, preferentially acting on liver tumor cells. In order to overcome its poor drug solubility and thus improving its anticancer activity, it was entrapped into nanostructured lipid carriers (NLC) by using safe ingredients for parenteral delivery. Results Nanostructured lipid carriers (NLC) carrying tyrphostin AG-1478 were prepared by using the nanoprecipitation method and different matrix compositions. The best system in terms of mean size, PDI, zeta potential, drug loading and release profile was chosen to evaluate the anti-proliferative effect of drug-loaded NLC versus free drug on human hepatocellular carcinoma HA22T/VGH cells. Conclusions Thanks to the entrapment into NLC systems, tyrphostin AG-1478 shows an enhanced in vitro anti-tumor activity compared to free drug. These finding raises hope of future drug delivery strategy of tyrphostin AG-1478 -loaded NLC targeted to the liver for the HCC treatment. PMID:24886097

  16. The relationship between BIM deletion polymorphism and clinical significance of epidermal growth factor receptor-mutated non-small cell lung cancer patients with epidermal growth factor receptor-tyrosine kinase inhibitor therapy: a meta-analysis.

    PubMed

    Zou, Qian; Zhan, Ping; Lv, Tangfeng; Song, Yong

    2015-12-01

    BIM deletion polymorphism is a germline that might lead to little or no BH3 expression, which affects epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) related apoptosis. Recent studies show that BIM deletion polymorphism might be a critical factor leading to the resistance of EGFR-TKIs in EGFR mutation-positive non-small cell lung cancer (NSCLC) patients. Thus, a meta-analysis was conducted by combing seven original eligible studies including 778 NSCLC patients to investigate a steady and reliable conclusion. Our study indicated that BIM deletion polymorphism was significantly associated with the poor objective response rate (ORR) of EGFR-TKIs in EGFR-mutated NSCLC patients [odds ratios (OR) =0.55, 95% confidence interval (CI), 0.33-0.92]. And disease control rate (DCR) in EGFR-mutate NSCLC patients treated with EGFR-TKIs was significantly decreased in patients with BIM deletion polymorphism (OR=0.55, 95% CI, 0.27-1.12). Moreover, the progression-free survival (PFS) of patients with BIM deletion polymorphism is shorter. These findings suggested that BIM deletion polymorphism might be a genetic cause of intrinsic resistance to TKI therapy and it could be emerged as an independent predictor to identify patients who would benefit from TKI targeted therapy in EGFR-mutated NSCLC.

  17. Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells.

    PubMed

    Gekle, Michael; Freudinger, Ruth; Mildenberger, Sigrid; Silbernagl, Stefan

    2002-04-01

    Epidermal growth factor (EGF) regulates cell proliferation, differentiation, and ion transport by using extracellular signal-regulated kinase (ERK)1/2 as a downstream signal. Furthermore, the EGF-receptor (EGF-R) is involved in signaling by G protein-coupled receptors, growth hormone, and cytokines by means of transactivation. It has been suggested that steroids interact with peptide hormones, in part, by rapid, potentially nongenomic, mechanisms. Previously, we have shown that aldosterone modulates Na(+)/H(+) exchange in Madin-Darby canine kidney (MDCK) cells by means of ERK1/2 in a way similar to growth factors. Here, we tested the hypothesis that aldosterone uses the EGF-R as a heterologous signal transducer in MDCK cells. Nanomolar concentrations of aldosterone induce a rapid increase in ERK1/2 phosphorylation, cellular Ca(2+) concentration, and Na(+)/H(+) exchange activity similar to increases induced by EGF. Furthermore, aldosterone induced a rapid increase in EGF-R-Tyr phosphorylation, and inhibition of EGF-R kinase abolished aldosterone-induced signaling. Inhibition of ERK1/2 phosphorylation reduced the Ca(2+) response, whereas prevention of Ca(2+) influx did not abolish ERK1/2 phosphorylation. Our data show that aldosterone uses the EGF-R-ERK1/2 signaling cascade to elicit its rapid effects in MDCK cells.

  18. Clinical and economic aspects of KRAS mutational status as predictor for epidermal growth factor receptor inhibitor therapy in metastatic colorectal cancer patients.

    PubMed

    Königsberg, Robert; Hulla, Wolfgang; Klimpfinger, Martin; Reiner-Concin, Angelika; Steininger, Tanja; Büchler, Wilfried; Terkola, Robert; Dittrich, Christian

    2011-01-01

    Treatment of metastasized colorectal cancer (mCRC) patients with anti-epidermal growth factor receptor (EGFR)-directed monoclonal antibodies is driven by the results of the KRAS mutational status (wild type [WT]/mutated [MUT]). To find out as to what extent the treatment selection based on the KRAS status had impact on overall costs, a retrospective analysis was performed. Of 73 mCRC patients 31.5% were MUT carriers. Costs of EGFR inhibitor treatment for WT patients were significantly higher compared to those for patients with MUT (p = 0.005). Higher treatment costs in WT carriers reflect a significantly higher number of treatment cycles (p = 0.012) in this cohort of patients. Savings of drug costs minus the costs for the determination of KRAS status accounted for EUR 779.42 (SD ±336.28) per patient per cycle. The routine use of KRAS screening is a cost-effective strategy. Costs of unnecessary monoclonal EGFR inhibitor treatment can be saved in MUT patients. Copyright © 2012 S. Karger AG, Basel.

  19. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells.

    PubMed

    Han, Jianfeng; Chu, Jianhong; Keung Chan, Wing; Zhang, Jianying; Wang, Youwei; Cohen, Justus B; Victor, Aaron; Meisen, Walter H; Kim, Sung-hak; Grandi, Paola; Wang, Qi-En; He, Xiaoming; Nakano, Ichiro; Chiocca, E Antonio; Glorioso, Joseph C; Kaur, Balveen; Caligiuri, Michael A; Yu, Jianhua

    2015-07-09

    Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB.

  20. Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab1

    PubMed Central

    Iida, Mari; Brand, Toni M; Starr, Megan M; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D; Kragh, Michael; Wheeler, Deric L

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (CtxR) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for CtxR tumor cells. Sym004 treatment of CtxR clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo CtxR NCI-H226 mouse xenografts and subsequently treated CtxR tumors with Sym004. Sym004 treatment of mice harboring CtxR tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in CtxR tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for CtxR tumors. PMID:24204198

  1. Biomarker-driven EGFR therapy improves outcomes in patients with metastatic colorectal cancer.

    PubMed

    Hendifar, Andrew; Tan, Carlyn-Rose; Annamalai, Anand; Tuli, Richard

    2014-09-01

    As new data from randomized studies comparing EGFR-targeting therapies with VEGF inhibitors emerge, the treatment landscape for metastatic colorectal cancer is expected to change. Although both the VEGF inhibitor bevacizumab and the anti-EGFR antibody cetuximab are approved in the first-line setting, they have not until recently been compared directly in randomized studies. Unlike targeted therapy in the EGFR pathway, there are no biomarkers guiding VEGF treatment. Recent data, discussed in this review, demonstrate that patients with KRAS/NRAS wild-type tumors benefit from anti-EGFR therapy in the first-line setting and that anti-EGFR therapy may be superior when compared with anti-VEGF approaches. This review focuses on the clinical utility of targeting EGFR by revisiting the biologic rationale for EGFR inhibition in metastatic colorectal cancer and providing new insight on the advancements in biomarker analyses with the potential to change practice.

  2. Impact of epidermal growth factor receptor protein and gene alteration on Taiwanese hepatocellular carcinomas.

    PubMed

    Su, Yu-Hung; Ng, Kwai-Fong; Yu, Ming-Chin; Wu, Ting-Jung; Yeh, Ta-Sen; Lee, Wei-Chen; Lin, Yong-Shiang; Hsieh, Tsung-Han; Lin, Chun-Yen; Yeh, Chau-Ting; Chen, Tse-Ching

    2015-09-01

    Epidermal growth factor receptor (EGFR) overexpression is associated with disease progression and poor survival in a variety of solid tumors. The role of EGFR in hepatocellular carcinoma (HCC) remains controversial. One hundred thirty-eight HCCs were analyzed for total EGFR (t-EGFR) and phospho-EGFR (p-EGFR) expression and gene amplification using immunohistochemistry and fluorescence in situ hybridization. The role of EGFR was analyzed in relation to the clinicopathological features. Weak to strong p-EGFR immunostaining was noted in 42 of the 138 HCCs. p-EGFR expression correlated with alcoholism (P = 0.03) and chronic hepatitis B infection (P = 0.041). There was no correlation between t-EGFR expression and any of the clinicopathological features. Amplification of the EGFR gene was not identified in the 138 HCCs, but 39.1% of the HCCs showed balanced polysomy of both the EGFR gene and centromere 7. Moreover, 65 tumors showed > 2.2 copies per tumor cell. EGFR copy number gain (CNG) was significantly correlated with gender (P = 0.0491), tumor grade (P = 0.006), and vascular invasion (P = 0.005). HCCs with EGFR CNG also had a poor recurrence-free survival (RFS), as compared with HCCs without EGFR CNG (P = 0.031). When exploring the impact of gender, a significant association of EGFR CNG was found with tumor grade (P = 0.044) and cirrhosis (P = 0.015) exclusively in the male group only; however, the OS and RFS analysis show no significant difference between male and female groups. EGFR CNG was related to crucial clinicopathological features and early recurrence, indicating that EGFR CNG might be a poor prognosis factor for Taiwanese HCC. © 2015 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  3. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors

    PubMed Central

    Gao, Sizhi P.; Chang, Qing; Mao, Ninghui; Daly, Laura A.; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Brewer, Monica Red; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L.; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F.

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non–small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells’ dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  4. Protein-tyrosine-phosphatase-mediated epidermal growth factor (EGF) receptor transinactivation and EGF receptor-independent stimulation of mitogen-activated protein kinase by bradykinin in A431 cells.

    PubMed Central

    Graness, A; Hanke, S; Boehmer, F D; Presek, P; Liebmann, C

    2000-01-01

    Transactivation of the epidermal growth factor (EGF) receptor (EGFR) has been proposed to represent an essential link between G-protein-coupled receptors and the mitogen-activated protein kinase (MAPK) pathway in various cell types. In the present work we report, in contrast, that in A431 cells bradykinin transinactivates the EGFR and stimulates MAPK activity independently of EGFR tyrosine phosphorylation. Both effects of bradykinin are mediated by a pertussis-toxin-insensitive G-protein. Three lines of evidence suggest the activation of a protein tyrosine phosphatase (PTP) by bradykinin: (i) treatment of A431 cells with bradykinin decreases both basal and EGF-induced EGFR tyrosine phosphorylation, (ii) this effect of bradykinin can be blocked by two different PTP inhibitors, and (iii) bradykinin significantly increased the PTP activity in total A431 cell lysates when measured in vitro. The transmembrane receptor PTP sigma was identified as a putative mediator of bradykinin-induced downregulation of EGFR autophosphorylation. Activation of MAPK in response to bradykinin was insensitive towards AG 1478, a specific inhibitor of EGFR tyrosine kinase, but was blocked by wortmannin or bisindolylmaleimide, inhibitors of phosphatidylinositol 3-kinase (PI3-K) and protein kinase C (PKC) respectively. These results also suggest that the bradykinin-induced activation of MAPK is independent of EGFR and indicate a pathway involving PI3-K and PKC. In addition, bradykinin evokes a rapid and transient increase in Src kinase activity. Although Src does not participate in bradykinin-induced stimulation of PTP activity, inhibition of Src by 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine leads to an increase in MAPK activation by bradykinin. Our results suggest that in A431 cells the G(q/11)-protein-coupled bradykinin B(2) receptor may stimulate PTP activity and thereby transinactivate the EGFR, and may simultaneously activate MAPK by an alternative signalling pathway

  5. 3-Dimensional Culture Systems for Anti-Cancer Compound Profiling and High-Throughput Screening Reveal Increases in EGFR Inhibitor-Mediated Cytotoxicity Compared to Monolayer Culture Systems

    PubMed Central

    Howes, Amy L.; Richardson, Robyn D.; Finlay, Darren; Vuori, Kristiina

    2014-01-01

    3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery. PMID:25247711

  6. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems.

    PubMed

    Howes, Amy L; Richardson, Robyn D; Finlay, Darren; Vuori, Kristiina

    2014-01-01

    3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery.

  7. Comparison of Thoracic Radiotherapy Efficacy Between Patients With and Without EGFR-mutated Lung Adenocarcinoma.

    PubMed

    Li, Ming-Hsien; Tsai, Jo-Ting; Ting, Lai-Lei; Lin, Jang-Chun; Liu, Yu-Chang

    2018-01-01

    To investigate the association between tumor response to thoracic radiotherapy and epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma, we collected 48 patients treated between January 2010 and December 2013. Of the 18 patients with EGFR mutation, 15 (83.3%) had a single mutation, and three (16.7%) had double mutation. Different EGFR mutation subtypes exhibited different responses to radiotherapy. The identified double EGFR mutations were associated with reduction of residual tumor burden (RTB) after radiotherapy. In univariate analysis, EGFR mutations in exon 18, 20, and 21 and double EGFR mutation were significant factors predicting RTB. In multivariate analysis, exon 20 mutation was the only significant factor. Patients with EGFR mutation seemed to have longer mean overall survival (OS) compared to the group with wild-type EGFR (31.1 vs. 26.6 months, p=0.49). The median and mean OS in patients with double EGFR mutation vs. wild-type EGFR were 20.1 vs. 16.9 months and 28.9 vs. 26.6 months, respectively. Further studies with larger sample size are warranted to clarify the association of EGFR mutation status with the lung tumor response after radiotherapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Epidermal growth factor receptor expression is related to post-mitotic events in cerebellar development: regulation by thyroid hormone.

    PubMed

    Carrasco, Emilce; Blum, Mariann; Weickert, Cynthia Shannon; Casper, Diana

    2003-01-10

    It has been established that thyroid hormone and neurotrophic factors both orchestrate developmental events in the brain. However, it is not clear how these two influences are related. In this study, we investigated the effects of thyroid hormone on cerebellar development and the coincident expression of transforming growth factor-alpha (TGF-alpha), a ligand in the epidermal growth factor (EGF) family, and the epidermal growth factor receptor (EGFR). Profiles of thyroid hormone expression were measured in postnatal animals and were found to peak at postnatal day 15 (P15). These levels dropped below detectable levels when mice were made hypothyroid with propylthiouracil (PTU). TGF-alpha and EGFR expression, as determined by RNAse protection assay, was maximal at P6 in normal animals, but remained low in hypothyroid animals, suggesting that thyroid hormone was responsible for their induction. In situ hybridization and immunohistochemical analysis of EGFR expression revealed that this receptor was present on granule cells within the inner zone of the external granule cell layer (EGL), suggesting that EGFR-ligands were not inducing granule cell proliferation. The persistence of EGFR expression on migrating granule cells and subsequent down-regulation of expression in the internal granule cell layer (IGL) implicates a role for EGFR-ligands in differentiation and/or migration. In hypothyroid animals, we observed a delayed progression of granule cell migration, consistent with the persistence of EGFR labeling in the EGL, and in the 'pile-up' of labeled cells at the interface between the molecular layer and the Purkinje cell layer. Taken together, these results implicate thyroid hormone in the coordinated expression of TGF-alpha and EGFR, which are positioned to play a role in post-mitotic developmental events in the cerebellum.

  9. Differential responses of EGFR-/AGT-expressing cells to the "combi-triazene" SMA41.

    PubMed

    Matheson, Stephanie L; McNamee, James P; Jean-Claude, Bertrand J

    2003-01-01

    Previous studies have demonstrated enhanced potency associated with the binary [DNA/epidermal growth factor receptor (EGFR)] targeting properties of SMA41 (a chimeric 3-(alkyl)-1,2,3-triazene linked to a 4-anilinoquinazoline backbone) in the A431 (epidermal carcinoma of the vulva) cell line. We now report on the dependence of its antiproliferative effects (e.g. DNA damage, cell survival) on the EGFR and the DNA repair protein O6-alkylguanine DNA alkyltransferase (AGT) contents of 12 solid tumor cell lines, two of which, NIH3T3 and NIH3T3 HER14 (engineered to overexpress EGFR), were isogenic. Receptor type specificity was determined using ELISA for competitive binding, as well as growth factor-stimulation assays. DNA damage was studied using single-cell microelectrophoresis (comet) assays, and levels of EGFR were determined by Western blotting. The effects of SMA41 on the cell cycle of NIH3T3 cells were investigated using univariate flow cytometry. Studies of receptor type specificity showed that SMA41: (a) preferentially inhibited the kinase activity of EGFR over those of Src, insulin receptor and protein kinase C (PKC, a serine/threonine kinase), (b) induced stronger inhibition of growth stimulated with EGF than of growth stimulated with platelet-derived growth factor (PDGF) or fetal bovine serum (FBS). Despite the EGFR specificity of SMA41, there was an absence of a linear correlation between the EGFR status of our solid tumor cell lines and levels of DNA damage induced by the alkylating component. Similarly, EGFR levels did not correlate with IC(50) values. The antiproliferative activities of SMA41 correlated more with the AGT status of these cells and paralleled those of the clinical triazene temozolomide (TEM). However, throughout the panel, tumor cell sensitivity to SMA41 was consistently stronger than to its closest analogue TEM. Experiments performed with the isogenic cells showed that SMA41 was capable of inducing twofold higher levels of DNA damage in the

  10. Collagen type I induces EGFR-TKI resistance in EGFR-mutated cancer cells by mTOR activation through Akt-independent pathway.

    PubMed

    Yamazaki, Shota; Higuchi, Youichi; Ishibashi, Masayuki; Hashimoto, Hiroko; Yasunaga, Masahiro; Matsumura, Yasuhiro; Tsuchihara, Katsuya; Tsuboi, Masahiro; Goto, Koichi; Ochiai, Atsushi; Ishii, Genichiro

    2018-06-01

    Primary resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a serious problem in lung adenocarcinoma patients harboring EGFR mutations. The aim of this study was to examine whether and how collagen type I (Col I), the most abundantly deposited matrix in tumor stroma, affects EGFR-TKI sensitivity in EGFR-mutant cells. We evaluated the EGFR-TKI sensitivity of EGFR-mutated cancer cells cultured with Col I. Changes in the activation of downstream signaling molecules of EGFR were analyzed. We also examined the association between the Col I expression in tumor stroma in surgical specimens and EGFR-TKI response of postoperative recurrence patients with EGFR mutations. Compared to cancer cells without Col I, the survival rate of cancer cells cultured with Col I was significantly higher after EGFR-TKI treatment. In cancer cells cultured with and without Col I, EGFR-TKI suppressed the levels of phosphorylated (p-)EGFR, p-ERK1/2, and p-Akt. When compared to cancer cells without Col I, expression of p-P70S6K, a hallmark of mTOR activation, was dramatically upregulated in cancer cells with Col I. This activation was maintained even after EGFR-TKI treatment. Simultaneous treatment with EGFR-TKI and mTOR inhibitor abrogated Col I-induced resistance to EGFR-TKI. Patients with Col I-rich stroma had a significantly shorter progression-free survival time after EGFR-TKI therapy (238 days vs 404 days; P < .05). Collagen type I induces mTOR activation through an Akt-independent pathway, which results in EGFR-TKI resistance. Combination therapy using EGFR-TKI and mTOR inhibitor could be a possible strategy to combat this resistance. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Detection of EGFR Gene Mutation by Mutation-oriented LAMP Method.

    PubMed

    Matsumoto, Naoyuki; Kumasaka, Akira; Ando, Tomohiro; Komiyama, Kazuo

    2018-04-01

    Epidermal growth factor receptor (EGFR) is a target of molecular therapeutics for non-small cell lung cancer. EGFR gene mutations at codons 746-753 promote constitutive EGFR activation and result in worst prognosis. However, these mutations augment the therapeutic effect of EGFR-tyrosine kinase inhibitor. Therefore, the detection of EGFR gene mutations is important for determining treatment planning. The aim of the study was to establish a method to detect EGFR gene mutations at codons 746-753. EGFR gene mutation at codons 746-753 in six cancer cell lines were investigated. A loop-mediated isothermal amplification (LAMP)-based procedure was developed, that employed peptide nucleic acid to suppress amplification of the wild-type allele. This mutation-oriented LAMP can amplify the DNA fragment of the EGFR gene with codons 746-753 mutations within 30 min. Moreover, boiled cells can work as template resources. Mutation oriented-LAMP assay for EGFR gene mutation is sensitive on extracted DNA. This procedure would be capable of detecting EGFR gene mutation in sputum, pleural effusion, broncho-alveolar lavage fluid or trans-bronchial lung biopsy by chair side. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Immunoliposomal delivery of doxorubicin can overcome multidrug resistance mechanisms in EGFR-overexpressing tumor cells.

    PubMed

    Mamot, Christoph; Ritschard, Reto; Wicki, Andreas; Küng, Willy; Schuller, Jan; Herrmann, Richard; Rochlitz, Christoph

    2012-06-01

    Immunoliposomes (ILs) can be constructed to target the epidermal growth factor receptor (EGFR) to provide efficient intracellular drug delivery in tumor cells. We hypothesized that this approach might be able to overcome drug resistance mechanisms, which remain an important obstacle to better outcomes in cancer therapy. ILs were evaluated in vitro and in vivo against EGFR-overexpressing pairs of human cancer cells (HT-29 and MDA-MB-231) that either lack or feature the multidrug resistance (mdr) phenotype. In multidrug-resistant cell lines, ILs loaded with doxorubicin (DOX) produced 19-216-fold greater cytotoxicity than free DOX, whereas in nonresistant cells, immunoliposomal cytotoxicity of DOX was comparable with that of the free drug. In intracellular distribution studies, free DOX was efficiently pumped out of the multidrug-resistant tumor cells, whereas immunoliposomal DOX leads to 3.5-8 times higher accumulation of DOX in the cytoplasm and 3.5-4.9 times in the nuclei compared with the free drug. Finally, in vivo studies in the MDA-MB-231 Vb100 xenograft model confirmed the ability of anti-EGFR ILs-DOX to efficiently target multidrug-resistant cells and showed impressive antitumor effects, clearly superior to all other treatments. In conclusion, ILs provide efficient and targeted drug delivery to EGFR-overexpressing tumor cells and are capable of completely reversing the multidrug-resistant phenotype of human cancer cells.

  13. Monoclonal antibody-tagged receptor-targeted contrast agents for detection of cancers

    NASA Astrophysics Data System (ADS)

    Soukos, N. S.; Hamblin, Michael R.; Deutsch, Thomas F.; Hasan, Tayyaba

    2001-07-01

    Oral cancer and precancer overexpress the epidermal growth factor receptor (EGFR) and monoclonal antibodies against EGFR coupled to photoactive dyes may have a potential both as a diagnostic and treatment modalities for oral premalignancy. We asked whether an anti-EGFR mab (C225) conjugated with the fluorescence dye indocyanine Cy5.5 could detect dysplastic changes in the hamster cheek pouch carcinogenesis model. Secondly, we tested whether the same antibody conjugated with the photosensitizer chlorin (e6) could be used together with illumination to reduce levels of expression of EGFR as evaluated by the immunophotodetection procedure. Increased fluorescence appeared to correlate with development of premalignancy when the C225-Cy5.5 conjugate was used. Areas with increased fluorescence signal were found in carcinogen-treated but clinically normal cheek pouches, that revealed dysplastsic changes by histology. The immunophotodetection procedure was carried out after photoummunotherapy with the C225-ce6 conjugate, and showed a significant reduction in fluorescence in the illuminated compared to the non-illuminated areas in the carcinogen- treated but not the normal cheek pouch. The results demonstrate that the use of anti-EGFR Mab targeted photoactive dyes may serve as a feedback controlled optical diagnosis and therapy procedure for oral premalignant lesions.

  14. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia.

    PubMed

    Chen, Yongqiang; Henson, Elizabeth S; Xiao, Wenyan; Huang, Daniel; McMillan-Ward, Eileen M; Israels, Sara J; Gibson, Spencer B

    2016-06-02

    Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.

  15. Immunoexpression of EGFR and EMMPRIN in a series of cases of head and neck squamous cell carcinoma.

    PubMed

    de Andrade, Ana Luiza Dias Leite; Ferreira, Stefânia Jeronimo; Ferreira, Sonia Maria Soares; Ribeiro, Camila Maria Beder; Freitas, Roseana de Almeida; Galvão, Hébel Cavalcanti

    2015-10-01

    The epidermal growth factor receptor (EGFR) and the extracellular matrix metalloproteinase inducer (EMMPRIN) have been identified as oncologically important targets. This study aimed to evaluate the immunoexpression of EGFR and EMMPRIN in a series of cases of head and neck squamous cell carcinoma (HNSCC). Forty-five cases of HNSCC were selected for this study and evaluated with anti-EGFR and anti-EMMPRIN antibodies. The percentage of positive cells was determined assessing to the following categories: score 1 (staining in 0-50% of cells), score 2 (staining in 51-75% of cells), and score 3 (staining in >75% of cells). Immunostaining intensity was graded according to the following parameters: score 1 (absent/weak expression) and score 2 (strong expression). For EGFR, a predominance of high median scores was observed in cases of both histological grades of malignancy and in different clinical stages (p>0.05). For EMMPRIN, a statistically significant difference was observed between the histological grades of malignancy (p=0.030). Regarding the immunostaining intensity of EMMPRIN, it was observed a predominance of score 1 in cases with stages I/II, whereas most cases with stages III/IV presented score 2 (p=0.032). Considering the anatomical location, most cases of buccal floor presented higher median score of EMMPRIN in comparison with the other sites (p=0.015). These findings suggest that both proteins are potential targets for cancer therapy and EMMPRIN can be used as a prognostic marker of a more aggressive biological behavior in patients with HNSCC. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. ErbB2 and EGFR are downmodulated during the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Pagano, Eleonora; Calvo, Juan Carlos

    2003-10-15

    The expression of receptors belonging to the epidermal growth factor receptor subfamily has been largely studied these last years in epithelial cells mainly as involved in cell proliferation and malignant progression. Although much work has focused on the role of these growth factor receptors in the differentiation of a variety of tissues, there is little information in regards to normal stromal cells. We investigated erbB2 expression in the murine fibroblast cell line Swiss 3T3L1, which naturally or hormonally induced undergoes adipocyte differentiation. We found that the Swiss 3T3-L1 fibroblasts express erbB2, in addition to EGFR, and in a quantity comparable to or even greater than the breast cancer cell line T47D. Proliferating cells increased erbB2 and EGFR levels when reaching confluence up to 4- and 10-fold, respectively. This expression showed a significant decrease when growth-arrested cells were stimulated to differentiate with dexamethasone and isobutyl-methylxanthine. Differentiated cells presented a decreased expression of both erbB2 and EGFR regardless of whether the cells were hormonally or spontaneously differentiated. EGF stimulation of serum-starved cells increased erbB2 tyrosine phosphorylation and retarded erbB2 migration in SDS-PAGE, suggesting receptor association and activation. Heregulin-alpha1 and -beta1, two EGF related factors, had no effect on erbB2 or EGFR phosphorylation. Although 3T3-L1 cells expressed heregulin, its specific receptors, erbB3 and erbB4, were not found. This is the first time in which erbB2 is reported to be expressed in an adipocytic cell line which does not depend on non EGF family growth factors (thyroid hormone, growth hormone, etc.) to accomplish adipose differentiation. Since erbB2 and EGFR expression were downmodulated as differentiation progressed it is conceivable that a mechanism of switching from a mitogenic to a differentiating signaling pathway may be involved, through regulation of the expression of these

  17. Epidermal growth factor receptor gene amplification in surgical resected Japanese lung cancer.

    PubMed

    Sasaki, Hidefumi; Shimizu, Shigeki; Okuda, Katsuhiro; Kawano, Osamu; Yukiue, Haruhiro; Yano, Motoki; Fujii, Yoshitaka

    2009-06-01

    To evaluate the epidermal growth factor receptor (EGFR) protein expression and increased copy number as predictors of clinical outcome in patients with non-small-cell lung cancer (NSCLC), we have performed fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC). We investigated the EGFR increased copy number and EGFR protein expression statuses in 109 surgically treated NSCLC cases. The presence or absence of EGFR mutations of kinase domains was analyzed by genotyping analysis and sequences, and already reported. EGFR increased copy number was defined as Cappuzzo et al. criteria. FISH positive was found from 36/109 (33.0%) lung cancer patients, including 30 high polysomy cases and 6 gene amplification cases. FISH-positive cases were significantly correlated with worse prognosis (log-rank test p=0.0097). Within EGFR-mutant patients (n=55), FISH-positive cases were also correlated with poor prognosis (p=0.0255). FISH-negative tumors were found to be more frequently well-differentiated histology. Smoking status (never smoker vs. smoker, p=0.1510), and gender (p=0.5248) did not correlated with FISH positive. EGFR IHC results were correlated with FISH results (p=0.004), but not correlated with prognosis (p=0.2815). Although EGFR FISH-positive rate did not correlated with EGFR mutation (p=0.1973), EGFR polysomy or amplification cases were correlated with EGFR mutations (p=0.0023). In conclusion, the EGFR FISH-positive rate in Japanese patients with NSCLC was similar to rates in Western populations, unlike the higher frequencies of EGFR mutation in East Asians. A high EGFR gene copy number might have shorter survival in NSCLC.

  18. Local Epidermal Growth Factor Receptor Signaling Mediates the Systemic Pathogenic Effects of Staphylococcus aureus Toxic Shock Syndrome.

    PubMed

    Breshears, Laura M; Gillman, Aaron N; Stach, Christopher S; Schlievert, Patrick M; Peterson, Marnie L

    2016-01-01

    Secreted factors of Staphylococcus aureus can activate host signaling from the epidermal growth factor receptor (EGFR). The superantigen toxic shock syndrome toxin-1 (TSST-1) contributes to mucosal cytokine production through a disintegrin and metalloproteinase (ADAM)-mediated shedding of EGFR ligands and subsequent EGFR activation. The secreted hemolysin, α-toxin, can also induce EGFR signaling and directly interacts with ADAM10, a sheddase of EGFR ligands. The current work explores the role of EGFR signaling in menstrual toxic shock syndrome (mTSS), a disease mediated by TSST-1. The data presented show that TSST-1 and α-toxin induce ADAM- and EGFR-dependent cytokine production from human vaginal epithelial cells. TSST-1 and α-toxin also induce cytokine production from an ex vivo porcine vaginal mucosa (PVM) model. EGFR signaling is responsible for the majority of IL-8 production from PVM in response to secreted toxins and live S. aureus. Finally, data are presented demonstrating that inhibition of EGFR signaling with the EGFR-specific tyrosine kinase inhibitor AG1478 significantly increases survival in a rabbit model of mTSS. These data indicate that EGFR signaling is critical for progression of an S. aureus exotoxin-mediated disease and may represent an attractive host target for therapeutics.

  19. An EGFR inhibitor enhances the efficacy of SN38, an active metabolite of irinotecan, in SN38-refractory gastric carcinoma cells

    PubMed Central

    Yashiro, M; Qiu, H; Hasegawa, T; Zhang, X; Matsuzaki, T; Hirakawa, K

    2011-01-01

    Background: Acquired drug resistance to irinotecan is one of the significant obstacles in the treatment of advanced gastric cancer. This study was performed to clarify the effect of epidermal growth factor receptor (EGFR) inhibitors in combination with SN38, an active metabolite of irinotecan, on the proliferation of irinotecan-refractory gastric cancer. Methods: Two irinotecan-resistant gastric cancer cell lines, OCUM-2M/SN38 and OCUM-8/SN38 were, respectively, established by stepwise exposure to SN38 from the parent gastric cancer cell lines OCUM-2M and OCUM-8. The combination effects of two EGFR inhibitors, gefitinib and lapatinib, with SN38 on proliferation, apoptosis, and cell cycle on gastric cancer cells were examined. Results: Gefitinib or lapatinib showed synergistic anti-tumour effects against OCUM-2M/SN38 and OCUM-8/SN38 cells when used in combination with SN38, but not against OCUM-2M or OCUM-8 cells. SN38 increased the expression of EGFR and HER2 in OCUM-2M/SN38 and OCUM-8/SN38 cells. The combination of an EGFR inhibitor and SN38 significantly increased the levels of apoptosis-related molecules, caspase-6, p53, and DAPK-2, and resulted in the induction of apoptosis of irinotecan-resistant cells. The EGFR inhibitors increased the S-phase and decreased the UGT1A1 and ABCG expression in irinotecan-resistant cells. The SN38 plus Lapatinib group more effectively suppressed in vivo tumour growth by OCUM-2M/SN38 cells than either alone group. Conclusion: The combination treatment with an EGFR inhibitor and irinotecan might produce synergistic anti-tumour effects for irinotecan-refractory gastric cancer cells. The regulation of SN38 metabolism-related genes and cell cycle by EGFR inhibitors might be responsible for the synergism. PMID:21997136

  20. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions.

    PubMed

    Sehgal, Poonam; Kong, Xinyu; Wu, Jun; Sunyer, Raimon; Trepat, Xavier; Leckband, Deborah

    2018-03-20

    This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  1. A comprehensive pathway map of epidermal growth factor receptor signaling

    PubMed Central

    Oda, Kanae; Matsuoka, Yukiko; Funahashi, Akira; Kitano, Hiroaki

    2005-01-01

    The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulate growth, survival, proliferation, and differentiation in mammalian cells. Reflecting this importance, it is one of the best-investigated signaling systems, both experimentally and computationally, and several computational models have been developed for dynamic analysis. A map of molecular interactions of the EGFR signaling system is a valuable resource for research in this area. In this paper, we present a comprehensive pathway map of EGFR signaling and other related pathways. The map reveals that the overall architecture of the pathway is a bow-tie (or hourglass) structure with several feedback loops. The map is created using CellDesigner software that enables us to graphically represent interactions using a well-defined and consistent graphical notation, and to store it in Systems Biology Markup Language (SBML). PMID:16729045

  2. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma*

    PubMed Central

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-01-01

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. PMID:26023239

  3. β-catenin contributes to lung tumor development induced by EGFR mutations

    PubMed Central

    Nakayama, Sohei; Sng, Natasha; Carretero, Julian; Welner, Robert; Hayashi, Yuichiro; Yamamoto, Mihoko; Tan, Alistair J.; Yamaguchi, Norihiro; Yasuda, Hiroyuki; Li, Danan; Soejima, Kenzo; Soo, Ross A.; Costa, Daniel B.; Wong, Kwok-Kin; Kobayashi, Susumu S.

    2014-01-01

    The discovery of somatic mutations in epidermal growth factor receptor (EGFR) and development of EGFR tyrosine kinase inhibitors (TKIs) have revolutionized treatment for lung cancer. However, resistance to TKIs emerges in almost all patients and currently no effective treatment is available. Here we show that β-catenin is essential for development of EGFR mutated lung cancers. β-catenin was upregulated and activated in EGFR mutated cells. Mutant EGFR preferentially bound to and tyrosine-phosphorylated β-catenin, leading to increase in β-catenin-mediated transactivation, particularly in cells harboring the gefitinib/erlotinib-resistant gatekeeper EGFR-T790M mutation. Pharmacological inhibition of β-catenin suppressed EGFR-L858R-T790M mutated lung tumor growth and genetic deletion of the β-catenin gene dramatically reduced lung tumor formation in EGFR-L858R-T790M transgenic mice. These data suggest that β-catenin plays an essential role in lung tumorigenesis and that targeting the β-catenin pathway may provide novel strategies to prevent lung cancer development or overcome resistance to EGFR TKIs. PMID:25164010

  4. Loss of Activating EGFR Mutant Gene Contributes to Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer Cells

    PubMed Central

    Kubo, Takuya; Murakami, Yuichi; Kawahara, Akihiko; Azuma, Koichi; Abe, Hideyuki; Kage, Masayoshi; Yoshinaga, Aki; Tahira, Tomoko; Hayashi, Kenshi; Arao, Tokuzo; Nishio, Kazuto; Rosell, Rafael; Kuwano, Michihiko; Ono, Mayumi

    2012-01-01

    Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR) mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs). However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11–18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11–18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11–18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2) or BIBW2992 (pan-TKI of EGFR family proteins). Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance. PMID:22815900

  5. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis.

    PubMed

    Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin

    2015-10-12

    Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis.

  6. Personalized medicine in non-small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor-targeted therapy?

    PubMed

    Roberts, Patrick J; Stinchcombe, Thomas E; Der, Channing J; Socinski, Mark A

    2010-11-01

    In patients with metastatic colorectal cancer, the predictive value of KRAS mutational status in the selection of patients for treatment with anti-epidermal growth factor (EGFR) monoclonal antibodies is established. In patients with non-small-cell lung cancer (NSCLC), the utility of determining KRAS mutational status to predict clinical benefit to anti-EGFR therapies remains unclear. This review will provide a brief description of Ras biology, provide an overview of aberrant Ras signaling in NSCLC, and summarize the clinical data for using KRAS mutational status as a negative predictive biomarker to anti-EGFR therapies. Retrospective investigations of KRAS mutational status as a negative predictor of clinical benefit from anti-EGFR therapies in NSCLC have been performed; however, small samples sizes as a result of low prevalence of KRAS mutations and the low rate of tumor sample collection have limited the strength of these analyses. Although an association between the presence of KRAS mutation and lack of response to EGFR tyrosine kinase inhibitors (TKIs) has been observed, it remains unclear whether there is an association between KRAS mutation and EGFR TKI progression-free and overall survival. Unlike colorectal cancer, KRAS mutations do not seem to identify patients who do not benefit from anti-EGFR monoclonal antibodies in NSCLC. The future value of testing for KRAS mutational status may be to exclude the possibility of an EGFR mutation or anaplastic lymphoma kinase translocation or to identify a molecular subset of patients with NSCLC in whom to pursue a drug development strategy that targets the KRAS pathway.

  7. EGFR and HER2 activate rigidity sensing only on rigid matrices

    NASA Astrophysics Data System (ADS)

    Saxena, Mayur; Liu, Shuaimin; Yang, Bo; Hajal, Cynthia; Changede, Rishita; Hu, Junqiang; Wolfenson, Haguy; Hone, James; Sheetz, Michael P.

    2017-07-01

    Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15-20 min, but diminish by tenfold after 4 h. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in the absence of EGF both for normal and cancerous growth.

  8. C. elegans Vulva Induction: An In Vivo Model to Study Epidermal Growth Factor Receptor Signaling and Trafficking.

    PubMed

    Gauthier, Kimberley; Rocheleau, Christian E

    2017-01-01

    Epidermal growth factor receptor (EGFR)-mediated activation of the canonical Ras/MAPK signaling cascade is responsible for cell proliferation and cell growth. This signaling pathway is frequently overactivated in epithelial cancers; therefore, studying regulation of this pathway is crucial not only for our fundamental understanding of cell biology but also for our ability to treat EGFR-related disease. Genetic model organisms such as Caenorhabditis elegans, a hermaphroditic nematode, played a vital role in identifying components of the EGFR/Ras/MAPK pathway and delineating their order of function, and continues to play a role in identifying novel regulators of the pathway. Polarized activation of LET-23, the C. elegans homolog of EGFR, is responsible for induction of the vulval cell fate; perturbations in this signaling pathway produce either a vulvaless or multivulva phenotype. The translucent cuticle of the nematode facilitates in vivo visualization of the receptor, revealing that localization of LET-23 EGFR is tightly regulated and linked to its function. In this chapter, we review the methods used to harness vulva development as a tool for studying EGFR signaling and trafficking in C. elegans.

  9. EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer

    PubMed Central

    Nan, Xueli; Xie, Chao; Yu, Xueyan; Liu, Jie

    2017-01-01

    After the discovery of activating mutations in EGFR, EGFR tyrosine kinase inhibitors (TKIs) have been introduced into the first-line treatment of non-small-cell lung cancer (NSCLC). A series of studies have shown that EGFR TKI monotherapy as first-line treatment can benefit NSCLC patients harbouring EGFR mutations. Besides, combination strategies based on EGFR TKIs in the first line treatment have also been proved to delay the occurrence of resistance. In this review, we summarize the scientific literature and evidence of EGFR TKIs as first-line therapy from the first-generation EGFR TKIs to conceptually proposed fourth-generation EGFR TKI, and also recommend the application of monotherapy and combination therapies of the EGFR-based targeted therapy with other agents such as chemotherapy, anti-angiogenic drugs and immunecheckpoint inhibitors. PMID:29088904

  10. CDK4/6 or MAPK blockade enhances efficacy of EGFR inhibition in oesophageal squamous cell carcinoma.

    PubMed

    Zhou, Jin; Wu, Zhong; Wong, Gabrielle; Pectasides, Eirini; Nagaraja, Ankur; Stachler, Matthew; Zhang, Haikuo; Chen, Ting; Zhang, Haisheng; Liu, Jie Bin; Xu, Xinsen; Sicinska, Ewa; Sanchez-Vega, Francisco; Rustgi, Anil K; Diehl, J Alan; Wong, Kwok-Kin; Bass, Adam J

    2017-01-06

    Oesophageal squamous cell carcinoma is a deadly disease where systemic therapy has relied upon empiric chemotherapy despite the presence of genomic alterations pointing to candidate therapeutic targets, including recurrent amplification of the gene encoding receptor tyrosine kinase epidermal growth factor receptor (EGFR). Here, we demonstrate that EGFR-targeting small-molecule inhibitors have efficacy in EGFR-amplified oesophageal squamous cell carcinoma (ESCC), but may become quickly ineffective. Resistance can occur following the emergence of epithelial-mesenchymal transition and by reactivation of the mitogen-activated protein kinase (MAPK) pathway following EGFR blockade. We demonstrate that blockade of this rebound activation with MEK (mitogen-activated protein kinase kinase) inhibition enhances EGFR inhibitor-induced apoptosis and cell cycle arrest, and delays resistance to EGFR monotherapy. Furthermore, genomic profiling shows that cell cycle regulators are altered in the majority of EGFR-amplified tumours and a combination of cyclin-dependent kinase 4/6 (CDK4/6) and EGFR inhibitors prevents the emergence of resistance in vitro and in vivo. These data suggest that upfront combination strategies targeting EGFR amplification, guided by adaptive pathway reactivation or by co-occurring genomic alterations, should be tested clinically.

  11. Epidermal growth factor receptor gene mutation as risk factor for recurrence in patients with surgically resected lung adenocarcinoma: a matched-pair analysis.

    PubMed

    Matsumura, Yuki; Owada, Yuki; Yamaura, Takumi; Muto, Satoshi; Osugi, Jun; Hoshino, Mika; Higuchi, Mitsunori; Ohira, Tetsuya; Suzuki, Hiroyuki; Gotoh, Mitsukazu

    2016-08-01

    Epidermal growth factor receptor (EGFR) mutation is a robust prognostic factor in patients with lung adenocarcinoma (ADC). However, the role of EGFR mutation status as a recurrence-risk factor remains unknown because the presence of such mutations is associated with other background characteristics. We therefore conducted a matched-pair analysis to compare recurrence-free survival (RFS) in matched cohorts of patients with lung ADC. We enrolled 379 patients who underwent surgical resection for lung ADC between 2005 and 2012. We determined the EGFR mutation status of each tumour. Matching their age, gender, smoking history and pathological stage (pStage), we compared RFS between matched cohorts with and without EGFR mutation (n = 86 each). The median age was 67 years, there were 39 (45%) men, 39 (45%) ex- or current smokers and pStage I: 71 (83%), II: 5 (6%), III: 8 (9%), IV: 2 (2%) in each group. The 3- and 5-year RFS rates in patients with mutant and wild-type EGFR were 85 and 78%, and 74 and 60%, respectively, with significant differences between the groups (P = 0.040). Multivariate analysis identified vascular invasion and lymphatic permeation, but not EGFR mutation status, as independent risk factors for recurrence. EGFR-gene mutation might be a favourable recurrence-risk factor in patients with surgically resected lung ADC, but further studies in larger cohorts are needed to verify this hypothesis. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  12. [Current Possibilities for Predicting Responses to EGFR Blockade in Metastatic Colorectal Cancer].

    PubMed

    Němeček, R; Svoboda, M; Slabý, O

    2016-01-01

    The combination of modern systemic chemotherapy and anti-EGFR monoclonal antibodies improves overall survival and quality of life for patients with metastatic colorecal cancer. By contrast, the addition of anti-EGFR therapy to the treatment regime of resistant patients may lead to worse progression-free survival and overall survival. Therefore, identifying sensitive and resistant patients prior to targeted therapy of metastatic colorecal cancer is a key point during the initial decision making process. Previous research shows that primary resistance to EGFR blockade is in most cases caused by constitutive activation of signaling pathways downstream of EGFR. Of all relevant factors (mutation of KRAS, NRAS, BRAF, and PIK3CA oncogenes, inactivation of tumor suppressors PTEN and TP53, amplification of EGFR and HER2, and expression of epiregulin and amphiregulin, mikroRNA miR-31-3p, and miR-31-5p), only evaluation of KRAS and NRAS mutations has entered routine clinical practice. The role of the other markers still needs to be validated. The ongoing benefit of anti-EGFR therapy could be indicated by specific clinical parameters measured after the initiation of targeted therapy, including early tumor shrinkage, the deepness of the response, or hypomagnesemia. The accuracy of predictive dia-gnostic tools could be also increased by examining a combination of predictive markers using next generation sequencing methods. However, unjustified investigation of many molecular markers should be resisted as this may complicate interpretation of the results, particularly in terms of their specific clinical relevance. The aim of this review is to describe current possibilities with respect to predicting responses to EGFR blockade in the context of the EGFR pathway, and the utilization of such results in routine clinical practice.

  13. [Regulation on EGFR function via its interacting proteins and its potential application].

    PubMed

    Zheng, Jun-Fang; Chen, Hui-Min; He, Jun-Qi

    2013-12-01

    Epidermal growth factor receptor (EGFR) is imptortant for cell activities, oncogenesis and cell migration, and EGFR inhibitor can treat cancer efficiently, but its side effects, for example, in skin, limited its usage. On the other hand, EGFR interacting proteins may also lead to oncogenesis and its interacting protein as drug targets can avoid cutaneous side effect, which implies possibly a better outcome and life quality of cancer patients. For the multiple EGFR interaction proteins, B1R enhances Erk/MAPK signaling, while PTPN12, Kek1, CEACAM1 and NHERF repress Erk/MAPK signaling. CaM may alter charge of EGFR juxamembrane domain and regulate activation of PI3K/Akt and PLC-gamma/PKC. STAT1, STAT5b are widely thought to be activated by EGFR, while there is unexpectedly inhibiting sequence within EGFR to repress the activity of STATs. LRIG1 and ACK1 enhance the internalization and degration of EGFR, while NHERF and HIP1 repress it. In this article, proteins interacting with EGFR, their interacting sites and their regulation on EGFR signal transduction will be reviewed.

  14. EGFR gene amplification is relatively common and associates with outcome in intestinal adenocarcinoma of the stomach, gastro-oesophageal junction and distal oesophagus.

    PubMed

    Birkman, Eva-Maria; Ålgars, Annika; Lintunen, Minnamaija; Ristamäki, Raija; Sundström, Jari; Carpén, Olli

    2016-07-07

    Approximately 50 % of gastric adenocarcinomas belong to a molecular subgroup characterised by chromosomal instability and a strong association with the intestinal histological subtype. This subgroup typically contains alterations in the receptor tyrosine kinase-RAS pathway, for example EGFR or HER2 gene amplifications leading to protein overexpression. In clinical practice, HER2 overexpressing metastatic gastric cancer is known to respond to treatment with anti-HER2 antibodies. By contrast, anti-EGFR antibodies have not been able to provide survival benefit in clinical trials, which, however, have not included patient selection based on the histological subtype or EGFR gene copy number analysis of the tumours. To examine the role of EGFR as a potential biomarker, we studied the prevalence, clinicopathological associations as well as prognostic role of EGFR and HER2 expression and gene amplification in intestinal adenocarcinomas of the stomach, gastro-oesophageal junction and distal oesophagus. Tissue samples from 220 patients were analysed with EGFR and HER2 immunohistochemistry. Those samples with moderate/strong staining intensity were further analysed with silver in situ hybridization to quantify gene copy numbers. The results were associated with clinical patient characteristics and survival. Moderate/strong EGFR protein expression was found in 72/220 (32.7 %) and EGFR gene amplification in 31/220 (14.1 %) of the tumours, while moderate/strong HER2 protein expression was detected in 31/220 (14.1 %) and HER2 gene amplification in 29/220 (13.2 %) of the tumours. EGFR and HER2 genes were co-amplified in eight tumours (3.6 %). EGFR gene amplification was more common in tumours of distal oesophagus/gastro-oesophageal junction/cardia than in those of gastric corpus (p = 0.013). It was associated with shortened time to cancer recurrence (p = 0.026) and cancer specific survival (p = 0.033). EGFR gene amplification is relatively common in intestinal

  15. Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells.

    PubMed

    Sudhagar, S; Sathya, S; Anuradha, R; Gokulapriya, G; Geetharani, Y; Lakshmi, B S

    2018-02-01

    To examine the potential of ferulic acid and 4-vinylguaiacol for inhibiting epidermal growth factor receptor (EGFR) in human breast cancer cells in vitro. Ferulic acid and 4-vinylguaiacol limit the EGF (epidermal growth factor)-induced breast cancer proliferation and new DNA synthesis. Western blot analysis revealed both ferulic acid and 4-vinylguaiacol exhibit sustained inhibition of EGFR activation through down-regulation of Tyr 1068 autophosphorylation. Molecular docking analysis shows ferulic acid forming hydrogen bond interaction with Lys 745 and Met 793 whereas, 4-vinylguaiacol forms two hydrogen bonds with Phe 856 and exhibits stronger hydrophobic interactions with multiple amino acid residues at the EGFR kinase domain. Ferulic acid and 4-vinylguaiacol could serve as a potential structure for the development of new small molecule therapeutics against EGFR.

  16. Evolution of the EGFR pathway in Metazoa and its diversification in the planarian Schmidtea mediterranea.

    PubMed

    Barberán, Sara; Martín-Durán, José M; Cebrià, Francesc

    2016-06-21

    The EGFR pathway is an essential signaling system in animals, whose core components are the epidermal growth factors (EGF ligands) and their trans-membrane tyrosine kinase receptors (EGFRs). Despite extensive knowledge in classical model organisms, little is known of the composition and function of the EGFR pathway in most animal lineages. Here, we have performed an extensive search for the presence of EGFRs and EGF ligands in representative species of most major animal clades, with special focus on the planarian Schmidtea mediterranea. With the exception of placozoans and cnidarians, we found that the EGFR pathway is potentially present in all other analyzed animal groups, and has experienced frequent independent expansions. We further characterized the expression domains of the EGFR/EGF identified in S. mediterranea, revealing a wide variety of patterns and localization in almost all planarian tissues. Finally, functional experiments suggest an interaction between one of the previously described receptors, Smed-egfr-5, and the newly found ligand Smed-egf-6. Our findings provide the most comprehensive overview to date of the EGFR pathway, and indicate that the last common metazoan ancestor had an initial complement of one EGFR and one putative EGF ligand, which was often expanded or lost during animal evolution.

  17. Evolution of the EGFR pathway in Metazoa and its diversification in the planarian Schmidtea mediterranea

    PubMed Central

    Barberán, Sara; Martín-Durán, José M.; Cebrià, Francesc

    2016-01-01

    The EGFR pathway is an essential signaling system in animals, whose core components are the epidermal growth factors (EGF ligands) and their trans-membrane tyrosine kinase receptors (EGFRs). Despite extensive knowledge in classical model organisms, little is known of the composition and function of the EGFR pathway in most animal lineages. Here, we have performed an extensive search for the presence of EGFRs and EGF ligands in representative species of most major animal clades, with special focus on the planarian Schmidtea mediterranea. With the exception of placozoans and cnidarians, we found that the EGFR pathway is potentially present in all other analyzed animal groups, and has experienced frequent independent expansions. We further characterized the expression domains of the EGFR/EGF identified in S. mediterranea, revealing a wide variety of patterns and localization in almost all planarian tissues. Finally, functional experiments suggest an interaction between one of the previously described receptors, Smed-egfr-5, and the newly found ligand Smed-egf-6. Our findings provide the most comprehensive overview to date of the EGFR pathway, and indicate that the last common metazoan ancestor had an initial complement of one EGFR and one putative EGF ligand, which was often expanded or lost during animal evolution. PMID:27325311

  18. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations.

    PubMed

    Lou, Na-Na; Zhang, Xu-Chao; Chen, Hua-Jun; Zhou, Qing; Yan, Li-Xu; Xie, Zhi; Su, Jian; Chen, Zhi-Hong; Tu, Hai-Yan; Yan, Hong-Hong; Wang, Zhen; Xu, Chong-Rui; Jiang, Ben-Yuan; Wang, Bin-Chao; Bai, Xiao-Yan; Zhong, Wen-Zhao; Wu, Yi-Long; Yang, Jin-Ji

    2016-10-04

    The co-occurrence of epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements constitutes a rare molecular subtype of non-small-cell lung cancer (NSCLC). Herein, we assessed the clinical outcomes and incidence of acquired resistance to tyrosine kinase inhibitors (TKIs) in this subtype. So we enrolled 118 advanced NSCLC treated with TKIs. EGFR mutations and ALK rearrangements were detected by DNA sequencing or Scorpion amplification refractory mutation system and fluorescence in situ hybridization respectively. Immunohistochemistry was used to evaluate the activation of associated proteins. We found that nine in ten patients with EGFR/ALK co-alterations had good response with first-line EGFR TKI, and the objective response rate (ORR) of EGFR TKIs was 80% (8/10) for EGFR/ALK co-altered and 65.5% (55/84) for EGFR-mutant (P = 0.57), with a median progression-free survival (PFS) of 11.2 and 13.2 months, (hazard ratio [HR]=0.95, 95% [CI], 0.49-1.84, P= 0.87). ORR of crizotinib was 40% (2/5) for EGFR/ALK co-altered and 73.9% (17/23) for ALK-rearranged (P= 0.29), with a median PFS of 1.9 and 6.9 months (hazard ratio [HR], 0.40; 95% [CI] 0.15-1.10, P = 0.08). The median overall survival (OS) was 21.3, 23.7, and 18.5 months in EGFR-mutant, ALK-rearranged, and EGFR/ALK co-altered (P= 0.06), and there existed a statistically significant difference in OS between ALK-rearranged and EGFR/ALK co-altered (P=0.03). Taken together, the first-line EGFR-TKI might be the reasonable care for advanced NSCLC harbouring EGFR/ALK co-alterations, whether or nor to use sequential crizotinib should be guided by the status of ALK rearrangement and the relative level of phospho-EGFR and phospho-ALK.

  19. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors

    PubMed Central

    Ji, Hongbin; Zhao, Xiaojun; Yuza, Yuki; Shimamura, Takeshi; Li, Danan; Protopopov, Alexei; Jung, Boonim L.; McNamara, Kate; Xia, Huili; Glatt, Karen A.; Thomas, Roman K.; Sasaki, Hidefumi; Horner, James W.; Eck, Michael; Mitchell, Albert; Sun, Yangping; Al-Hashem, Ruqayyah; Bronson, Roderick T.; Rabindran, Sridhar K.; Discafani, Carolyn M.; Maher, Elizabeth; Shapiro, Geoffrey I.; Meyerson, Matthew; Wong, Kwok-Kin

    2006-01-01

    The tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) have shown anti-tumor activity in the treatment of non-small cell lung cancer (NSCLC). Dramatic and durable responses have occurred in NSCLC tumors with mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). In contrast, these inhibitors have shown limited efficacy in glioblastoma, where a distinct EGFR mutation, the variant III (vIII) in-frame deletion of exons 2–7, is commonly found. In this study, we determined that EGFRvIII mutation was present in 5% (3/56) of analyzed human lung squamous cell carcinoma (SCC) but was not present in human lung adenocarcinoma (0/123). We analyzed the role of the EGFRvIII mutation in lung tumorigenesis and its response to tyrosine kinase inhibition. Tissue-specific expression of EGFRvIII in the murine lung led to the development of NSCLC. Most importantly, these lung tumors depend on EGFRvIII expression for maintenance. Treatment with an irreversible EGFR inhibitor, HKI-272, dramatically reduced the size of these EGFRvIII-driven murine tumors in 1 week. Similarly, Ba/F3 cells transformed with the EGFRvIII mutant were relatively resistant to gefitinib and erlotinib in vitro but proved sensitive to HKI-272. These findings suggest a therapeutic strategy for cancers harboring the EGFRvIII mutation. PMID:16672372

  20. Crystal structure of EGFR T790 M/C797S/V948R in complex with EAI045.

    PubMed

    Zhao, Peng; Yao, Ming-Yu; Zhu, Su-Jie; Chen, Ji-Yun; Yun, Cai-Hong

    2018-05-23

    Lung cancer is the leading cause of cancer deaths. Epidermal growth factor receptor (EGFR) kinase domain mutations are a common cause of non-small cell lung cancers (NSCLCs), a major subtype of lung cancers. Patients harboring most of these mutations respond well to the anti-EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib initially, but soon develop resistance to them in about half of the cases due to the emergence of the gatekeeper mutation T790 M. The third-generation TKIs such as AZD9291, HM61713, CO-1686 and WZ4002 can overcome T790 M through covalent binding to the EGFR kinase through Cys 797, but ultimately lose their efficacy upon emergence of the C797S mutation that abolishes the covalent bonding. Therefore to develop new TKIs to overcome EGFR drug-resistant mutants harboring T790 M/C797S is urgently demanded. EAI001 and EAI045 are a new type of EGFR TKIs that bind to EGFR reversibly and not relying on Cys 797. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR L858 R/T790 M and L858 R/T790 M/C797S. Here we report the crystal structure of EGFR T790 M/C797S/V948R in complex with EAI045, and compare it to EGFR T790 M/V948R in complex with EAI001. The complex structure reveals why EAI045 binds tighter to EGFR than does EAI001, and why EAI001 and EAI045 prefer binding to EGFR T790 M. The knowledge may facilitate future drug development studies targeting this very important cancer target. Copyright © 2018. Published by Elsevier Inc.

  1. Mutation analysis of the EGFR pathway genes, EGFR, RAS, PIK3CA, BRAF, and AKT1, in salivary gland adenoid cystic carcinoma.

    PubMed

    Saida, Kosuke; Murase, Takayuki; Ito, Mayuko; Fujii, Kana; Takino, Hisashi; Masaki, Ayako; Kawakita, Daisuke; Ijichi, Kei; Tada, Yuichiro; Kusafuka, Kimihide; Iida, Yoshiyuki; Onitsuka, Tetsuro; Yatabe, Yasushi; Hanai, Nobuhiro; Hasegawa, Yasuhisa; Shinomiya, Hitomi; Nibu, Ken-Ichi; Shimozato, Kazuo; Inagaki, Hiroshi

    2018-03-30

    Adenoid cystic carcinoma (AdCC), one of the most common salivary gland carcinomas, usually has a fatal outcome. Epidermal growth factor receptor (EGFR) pathway gene mutations are important in predicting a patient's prognosis and estimating the efficacy of molecular therapy targeting the EGFR pathway. In this study of salivary gland AdCC (SAdCC), we looked for gene mutations in EGFR, RAS family ( KRAS, HRAS, and NRAS ), PIK3CA, BRAF, and AKT1 , using a highly sensitive single-base extension multiplex assay, SNaPshot. Out of 70 cases, EGFR pathway missense mutations were found in 13 (18.6%): RAS mutations in 10 (14.3%), EGFR in one (1.4%), and PIK3CA in 5 (7.1%). None of the cases showed an EGFR deletion by direct sequencing. Concurrent gene mutations were found in three cases (4.3%). EGFR pathway mutations were significantly associated with a shorter disease-free ( p = 0.011) and overall survival ( p = 0.049) and RAS mutations were as well; ( p = 0.010) and ( p = 0.024), respectively. The gene fusion status as determined by a FISH assay had no significant association with mutations of the genes involved in the EGFR pathway. In conclusion, EGFR pathway mutations, especially RAS mutations, may be frequent in SAdCC, and associated with a poor prognosis for the patient.

  2. In vivo imaging of the dynamics of different variants of EGFR in glioblastomas.

    PubMed

    Shah, Khalid

    2011-01-01

    A number of altered pathways in cancer cells depend on growth factor receptors. The amplification/alteration of the epidermal growth factor receptor (EGFR) has been shown to play a significant role in enhancing tumor burden in a number of tumors, including malignant glioblastomas (GBM). To dissect the role of EGFR expression in tumor progression in mouse models of cancer and ultimately evaluate targeted therapies, it is necessary to visualize the dynamics of EGFR in real time in vivo. Non-invasive imaging based on quantitative and qualitative changes in light emission by fluorescent and bioluminescent markers offers a huge potential to facilitate drug development. Multiple approaches could be used to follow a molecular target or pathway with the fusion of a bioluminescent-fluorescent marker. This unit describes a protocol for simultaneously imaging EGFR activity and progression of GBM in a mouse model. Human glioma cells transduced with lentiviral vectors bearing different combinations of fluorescent and bioluminescent proteins either fused to EGFR or expressed alone can be grown as monolayers and maintained over several passages. The unit begins with a method for transducing glioma cells with lentiviral vectors for stable expression of these fluorescent and bioluminescent markers in vitro, followed by transplantation of engineered glioma cells in mice, and, finally, sequential bioluminescent imaging of EGFR expression and GBM progression in mice. The protocol details characterization of engineered glioma cells in culture, surgical preparation, craniotomy, cell implantation, animal recovery, and imaging procedures to study kinetics of EGFR expression and GBM progression.

  3. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts

    PubMed Central

    Costa, Delfina; Venè, Roberta; Benelli, Roberto; Romairone, Emanuele; Scabini, Stefano; Catellani, Silvia; Rebesco, Barbara; Mastracci, Luca; Grillo, Federica; Minghelli, Simona; Loiacono, Fabrizio; Zocchi, Maria Raffaella; Poggi, Alessandro

    2018-01-01

    Mesenchymal stromal cells (MSC) present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF)] can exert immunosuppressive effects on T and natural killer (NK) lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC) and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16). In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR); thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3− NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3− cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF) of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy. PMID:29910806

  4. Differential Receptor Tyrosine Kinase PET Imaging for Therapeutic Guidance.

    PubMed

    Wehrenberg-Klee, Eric; Turker, N Selcan; Heidari, Pedram; Larimer, Benjamin; Juric, Dejan; Baselga, José; Scaltriti, Maurizio; Mahmood, Umar

    2016-09-01

    Inhibitors of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway hold promise for the treatment of breast cancer, but resistance to these treatments can arise via feedback loops that increase surface expression of the receptor tyrosine kinases (RTK) epidermal growth factor receptor 1 (EGFR) and human epidermal growth factor receptor 3 (HER3), leading to persistent growth pathway signaling. We developed PET probes that provide a method of imaging this response in vivo, determining which tumors may use this escape pathway while avoiding the need for repeated biopsies. Anti-EGFR-F(ab')2 and anti-HER3-F(ab')2 were generated from monoclonal antibodies by enzymatic digestion, conjugated to DOTA, and labeled with (64)Cu. A panel of breast cancer cell lines was treated with increasing concentrations of the AKT inhibitor GDC-0068 or the PI3K inhibitor GDC-0941. Pre- and posttreatment expression of EGFR and HER3 was compared using Western blot and correlated to probe accumulation with binding studies. Nude mice xenografts of HCC-70 or MDA-MB-468 were treated with either AKT inhibitor or PI3K inhibitor and imaged with either EGFR or HER3 PET probe. Changes in HER3 and EGFR PET probe accumulation correlate to RTK expression change as assessed by Western blot (R(2) of 0.85-0.98). EGFR PET probe PET/CT imaging of HCC70 tumors shows an SUV of 0.32 ± 0.03 for vehicle-, 0.50 ± 0.01 for GDC-0941-, and 0.62 ± 0.01 for GDC-0068-treated tumors, respectively (P < 0.01 for both comparisons to vehicle). HER3 PET probe PET/CT imaging of MDAMB468 tumors shows an SUV of 0.35 ± 0.02 for vehicle- and 0.73 ± 0.05 for GDC-0068-treated tumors (P < 0.01). Our imaging studies, using PET probes specific to EGFR and HER3, show that changes in RTK expression indicative of resistance to PI3K and AKT inhibitors can be seen within days of therapy initiation and are of sufficient magnitude as to allow reliable clinical interpretation. Noninvasive

  5. Real-World Data on Prognostic Factors for Overall Survival in EGFR Mutation-Positive Advanced Non-Small Cell Lung Cancer Patients Treated with First-Line Gefitinib.

    PubMed

    Yao, Zong-Han; Liao, Wei-Yu; Ho, Chao-Chi; Chen, Kuan-Yu; Shih, Jin-Yuan; Chen, Jin-Shing; Lin, Zhong-Zhe; Lin, Chia-Chi; Chih-Hsin Yang, James; Yu, Chong-Jen

    2017-09-01

    This study aimed to identify independent prognostic factors for overall survival (OS) of patients with advanced non-small cell lung cancer (NSCLC) harboring an activating epidermal growth factor receptor (EGFR) mutation and receiving gefitinib as first-line treatment in real-world practice. We enrolled 226 patients from June 2011 to May 2013. During this period, gefitinib was the only EGFR-tyrosine kinase inhibitor reimbursed by the Bureau of National Health Insurance of Taiwan. The median progression-free survival and median OS were 11.9 months (95% confidence interval [CI]: 9.7-14.2) and 26.9 months (21.2-32.5), respectively. The Cox proportional hazards regression model revealed that postoperative recurrence, performance status (Eastern Cooperative Oncology Grade [ECOG] ≥2), smoking index (≥20 pack-years), liver metastasis at initial diagnosis, and chronic hepatitis C virus (HCV) infection were independent prognostic factors for OS (hazard ratio [95% CI] 0.3 [0.11-0.83], p  = .02; 2.69 [1.60-4.51], p  < .001; 1.92 [1.24-2.97], p  = .003; 2.26 [1.34-3.82], p  = .002; 3.38 [1.85-7.78], p  < .001, respectively). However, brain metastasis (BM) at initial diagnosis or intracranial progression during gefitinib treatment had no impact on OS (1.266 [0.83-1.93], p  = .275 and 0.75 [0.48-1.19], p  = .211, respectively). HCV infection, performance status (ECOG ≥2), newly diagnosed advanced NSCLC without prior operation, and liver metastasis predicted poor OS in EGFR mutation-positive advanced NSCLC patients treated with first-line gefitinib; however, neither BM at initial diagnosis nor intracranial progression during gefitinib treatment had an impact on OS. The finding that chronic hepatitis C virus (HCV) infection might predict poor overall survival (OS) in epidermal growth factor receptor mutation-positive advanced non-small cell lung cancer (NSCLC) patients treated with first-line gefitinib may raise awareness of benefit from anti

  6. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease.

    PubMed

    Cortés-Ramírez, Dionisio-Alejandro; Rodríguez-Tojo, María-Jose; Coca-Meneses, Juan-Carlos; Marichalar-Mendia, Xabier; Aguirre-Urizar, José-Manuel

    2014-09-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk.

  7. Epidermal growth factor receptor restoration rescues the fatty liver regeneration in mice.

    PubMed

    Zimmers, Teresa A; Jin, Xiaoling; Zhang, Zongxiu; Jiang, Yanlin; Koniaris, Leonidas G

    2017-10-01

    Hepatic steatosis is a common histological finding in obese patients. Even mild steatosis is associated with delayed hepatic regeneration and poor outcomes following liver resection or transplantation. We sought to identify and target molecular pathways that mediate this dysfunction. Lean mice and mice made obese through feeding of a high-fat, hypercaloric diet underwent 70 or 80% hepatectomy. After 70% resection, obese mice demonstrated 100% survival but experienced increased liver injury, reduced energy stores, reduced mitoses, increased necroapoptosis, and delayed recovery of liver mass. Increasing liver resection to 80% was associated with mortality of 40% in lean and 80% in obese mice ( P < 0.05). Gene expression profiling showed decreased epidermal growth factor receptor (EGFR) in fatty liver. Meta-analysis of expression studies in mice, rats, and patients also demonstrated reduction of EGFR in fatty liver. In mice, both EGFR and phosphorylated EGFR decreased with increasing percent body fat. Hydrodynamic transfection of EGFR plasmids in mice corrected fatty liver regeneration, reducing liver injury, increasing proliferation, and improving survival after 80% resection. Loss of EGFR expression is rate limiting for liver regeneration in obesity. Therapies directed at increasing EGFR in steatosis might promote liver regeneration and survival following hepatic resection or transplantation. Copyright © 2017 the American Physiological Society.

  8. Bacterial production and structure-functional validation of a recombinant antigen-binding fragment (Fab) of an anti-cancer therapeutic antibody targeting epidermal growth factor receptor.

    PubMed

    Kim, Ji-Hun; Sim, Dae-Won; Park, Dongsun; Jung, Tai-Geun; Lee, Seonghwan; Oh, Taeheun; Ha, Jong-Ryul; Seok, Seung-Hyeon; Seo, Min-Duk; Kang, Ho Chul; Kim, Young Pil; Won, Hyung-Sik

    2016-12-01

    Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.

  9. Epidermal growth factor receptor mutations in Japanese men with lung adenocarcinomas.

    PubMed

    Tomita, Masaki; Ayabe, Takanori; Chosa, Eiichi; Kawagoe, Katsuya; Nakamura, Kunihide

    2014-01-01

    Epidermal growth factor receptor (EGFR) mutations play a vital role in the prognosis of patients with lung adenocarcinoma. Such somatic mutations are more common in women who are non-smokers with adenocarcinoma and are of Asian origin. However, to our knowledge, there are few studies that have focused on men. One hundred and eighty-four consecutive patients (90 men and 94 women) of resected lung adenocarcinoma were studied retrospectively. EGFR mutations were positive in 48.9% and negative (wild type) in 51.1%. Overall mutation was significant in women (66.0% vs. 32.2%) compared with men (p<0.001). For overall patients, EGFR mutation status was associated with gender, pStage, pT status, lepidic dominant histologic subtype, pure or mixed ground-glass nodule type on computed tomography and smoking status. However, in men, EGFR mutation status was only associated with lepidic dominant histologic subtype and not the other variables. Interestingly, the Brinkman index of men with mutant EGFR also did not differ from that for the wild type (680.0±619.3 vs. 813.1±552.1 p=0.1077). The clinical characteristics of men with lung adenocarcinoma related to EGFR mutation are not always similar to that of overall patients. Especially we failed to find the relationship between EGFR mutations and smoking status in men.

  10. Epidermal Growth Factor Receptor mediated cellular and subcellular targeted delivery of Iron oxide core-Titanium dioxide shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Ye

    TiO2 nanomaterials can carry a multitude of therapeutic and diagnostic agents and the semiconductor properties of TiO2 allow for the production of cytotoxic reactive oxygen species following photoactivation. However, the delivery of these nanomaterials to specific cancer cells and specific subcellular organelles within these cells can have a substantial impact on the efficacy and safety of TiO2 nanoparticle therapeutics. Targeting cell surface receptors that are overexpressed by cancer cells is one strategy to improve the specificity of nanoparticle delivery. Therefore we decided to target the Epidermal Growth Factor Receptor (EGFR) because ligand- binding induces rapid receptor endocytosis and ligand-bound EGFR can translocate to the nucleus of cancer cells. To create NPs that can bind EGFR, we identified a peptide derived from the B-loop of Epidermal Growth Factor (EGF) that has been shown to bind and activate EGFR and conjugated it to the surface of Fe3O4 core-TiO2 shell NPs to produce B-loop NCs. We then devised a pulldown assay to show that B-loop NCs, but not bare NPs or NCs carrying a scrambled B-loop peptide, can bind and extract EGFR from HeLa cell protein extracts. Interestingly, B-loop NCs can also pulldown importin-beta, a protein that can transport EGFR to the nucleus. Furthermore, we used flow cytometry and fluorescently labeled NPs to show that B-loop peptides can significantly improve the internalization of NPs by EGFR-expressing HeLa cells. We determined that B-loop NCs can bind EGFR on the membrane of HeLa cells and that these NCs can be transported to the nucleus, by using a combination of confocal microscopy and X-ray Fluorescence Microscopy (XFM) to indirectly and directly track the subcellular distribution of NCs. Finally, we demonstrate how the Bionanoprobe, a novel high-resolution XFM apparatus that can scan whole-mounted, frozen-hydrated cells at multiple angles can be used to verify the subcellular distribution of B-loop NCs.

  11. Discovery of a series of novel phenylpiperazine derivatives as EGFR TK inhibitors

    NASA Astrophysics Data System (ADS)

    Sun, Juan; Wang, Xin-Yi; Lv, Peng-Cheng; Zhu, Hai-Liang

    2015-09-01

    Human epidermal growth factor receptor (EGFR) is an important drug target that plays a fundamental role in signal transduction pathways in oncology. We report herein the discovery of a novel class of phenylpiperazine derivatives with improved potency toward EGFR. The biological activity of compound 3p as inhibitor of EGFR was further investigated both in vitro and in vivo. Notably, compound 3p exhibited an IC50 in the nanomolar range in A549 cell cultures and induced a cessation of tumor growth with no toxicity, as determined by loss of body weight and death of treated mice. Compoutational docking studies also showed that compound 3p has interaction with EGFR key residues in the active site.

  12. Localisation of epidermal growth factor (EGF), its specific receptor (EGF-R) and aromatase at the materno-fetal interface during placentation in the pregnant mare.

    PubMed

    Allen, W R Twink; Gower, Susan; Wilsher, Sandra

    2017-02-01

    Implantation and placentation in the mare does not commence until as late as day 40 after ovulation. The reasons for this and the growth factors and/or hormones which drive placentation when it does finally occur are of considerable academic and practical interest. Placental interface tissues recovered from 11 accurately aged and perfused-fixed horse uteri between 20 and 68 days of gestation were stained immunocytochemically for Epidermal Growth Factor (EGF), its specific receptor (EGF-R) and for the steroid hormone enzyme, aromatase. EGF was present in endometrial gland and lumenal epithelia from day 20 but staining intensity increased noticeably for the protein between days 30 and 40, coincidentally with the commencing secretion of equine Chorionic Gonadotrophin (eCG) from the endometrial cups and immediately prior to attachment and commencing interdigitation between the allantochorion and endometrium. EGF-R, on the other hand, was expressed strongly on the cell surface membrane of both non-invasive and invasive trophoblast and it similarly increased in staining intensity between days 30 and 40. Aromatase, the enzyme necessary for conversion of C-19 androgens to C-18 oestrogens, was expressed strongly and constantly from as early as day 12 in the non-invasive trophoblast of the allantochorion, but not the invasive trophoblast of the chorionic girdle, the progenitor tissue of the endometrial cups. The findings support the hypothesis that, in equine pregnancy, the maternal growth factor EGF synergises with maternally and fetally secreted oestrogens to drive the rapid growth and extensive vascularisation of the non-invasive, epitheliochorial, microcotyledonary placenta which results in the birth of the precocious foal after only 11 months gestation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as amore » plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.« less

  14. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco-Garcia, Estefania; Saceda, Miguel; Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cellmore » lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.« less

  15. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma.

    PubMed

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-07-10

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Graf regulates hematopoiesis through GEEC endocytosis of EGFR.

    PubMed

    Kim, Sungdae; Nahm, Minyeop; Kim, Najin; Kwon, Yumi; Kim, Joohyung; Choi, Sukwoo; Choi, Eun Young; Shim, Jiwon; Lee, Cheolju; Lee, Seungbok

    2017-11-15

    GTPase regulator associated with focal adhesion kinase 1 (GRAF1) is an essential component of the GPI-enriched endocytic compartment (GEEC) endocytosis pathway. Mutations in the human GRAF1 gene are associated with acute myeloid leukemia, but its normal role in myeloid cell development remains unclear. We show that Graf, the Drosophila ortholog of GRAF1, is expressed and specifically localizes to GEEC endocytic membranes in macrophage-like plasmatocytes. We also find that loss of Graf impairs GEEC endocytosis, enhances EGFR signaling and induces a plasmatocyte overproliferation phenotype that requires the EGFR signaling cascade. Mechanistically, Graf-dependent GEEC endocytosis serves as a major route for EGFR internalization at high, but not low, doses of the predominant Drosophila EGFR ligand Spitz (Spi), and is indispensable for efficient EGFR degradation and signal attenuation. Finally, Graf interacts directly with EGFR in a receptor ubiquitylation-dependent manner, suggesting a mechanism by which Graf promotes GEEC endocytosis of EGFR at high Spi. Based on our findings, we propose a model in which Graf functions to downregulate EGFR signaling by facilitating Spi-induced receptor internalization through GEEC endocytosis, thereby restraining plasmatocyte proliferation. © 2017. Published by The Company of Biologists Ltd.

  17. Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans.

    PubMed

    Skandalis, Spyros S; Afratis, Nikolaos; Smirlaki, Gianna; Nikitovic, Dragana; Theocharis, Achilleas D; Tzanakakis, George N; Karamanos, Nikos K

    2014-04-01

    In hormone-dependent breast cancer, estrogen receptors are the principal signaling molecules that regulate several cell functions either by the genomic pathway acting directly as transcription factors in the nucleus or by the non-genomic pathway interacting with other receptors and their adjacent pathways like EGFR/IGFR. It is well established in literature that EGFR and IGFR signaling pathways promote cell proliferation and differentiation. Moreover, recent data indicate the cross-talk between ERs and EGFR/IGFR signaling pathways causing a transformation of cell functions as well as deregulation on normal expression pattern of matrix molecules. Specifically, proteoglycans, a major category of extracellular matrix (ECM) and cell surface macromolecules, are modified during malignancy and cause alterations in cancer cell signaling, affecting eventually functional cell properties such as proliferation, adhesion and migration. The on-going strategies to block only one of the above signaling effectors result cancer cells to overcome such inactivation using alternative signaling pathways. In this article, we therefore review the underlying mechanisms in respect to the role of ERs and the involvement of cross-talk between ERs, IGFR and EGFR in breast cancer cell properties and expression of extracellular secreted and cell bound proteoglycans involved in cancer progression. Understanding such signaling pathways may help to establish new potential pharmacological targets in terms of using ECM molecules to design novel anticancer therapies. © 2013. Published by Elsevier B.V. All rights reserved.

  18. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity

    PubMed Central

    Grossman, Craig E.; Carter, Shirron L.; Czupryna, Julie; Wang, Le; Putt, Mary E.; Busch, Theresa M.

    2016-01-01

    Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor®)-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm. PMID:26784170

  19. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity.

    PubMed

    Grossman, Craig E; Carter, Shirron L; Czupryna, Julie; Wang, Le; Putt, Mary E; Busch, Theresa M

    2016-01-14

    Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor(®))-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm.

  20. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease

    PubMed Central

    Cortés-Ramírez, Dionisio A.; Rodríguez-Tojo, María J.; Coca-Meneses, Juan C.; Marichalar-Mendia, Xabier

    2014-01-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. Objectives: To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Material and Methods: Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Results: Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk. Key words:Oral lichenoid disease, oral lichen planus, oral lichenoid lesion, oral carcinogenesis, EGFR. PMID:24880441

  1. Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

    PubMed Central

    Lee, Jeffrey C; Vivanco, Igor; Beroukhim, Rameen; Huang, Julie H. Y; Feng, Whei L; DeBiasi, Ralph M; Yoshimoto, Koji; King, Jennifer C; Nghiemphu, Phioanh; Yuza, Yuki; Xu, Qing; Greulich, Heidi; Thomas, Roman K; Paez, J. Guillermo; Peck, Timothy C; Linhart, David J; Glatt, Karen A; Getz, Gad; Onofrio, Robert; Ziaugra, Liuda; Levine, Ross L; Gabriel, Stacey; Kawaguchi, Tomohiro; O'Neill, Keith; Khan, Haumith; Liau, Linda M; Nelson, Stanley F; Rao, P. Nagesh; Mischel, Paul; Pieper, Russell O; Cloughesy, Tim; Leahy, Daniel J; Sellers, William R; Sawyers, Charles L; Meyerson, Matthew; Mellinghoff, Ingo K

    2006-01-01

    Background Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. Methods and Findings Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. Conclusions Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma. PMID:17177598

  2. Cigarette smoke enhances oncogene addiction to c-MET and desensitizes EGFR-expressing non-small cell lung cancer to EGFR TKIs.

    PubMed

    Tu, Chih-Yen; Cheng, Fang-Ju; Chen, Chuan-Mu; Wang, Shu-Ling; Hsiao, Yu-Chun; Chen, Chia-Hung; Hsia, Te-Chun; He, Yu-Hao; Wang, Bo-Wei; Hsieh, I-Shan; Yeh, Yi-Lun; Tang, Chih-Hsin; Chen, Yun-Ju; Huang, Wei-Chien

    2018-05-01

    Cigarette smoking is one of the leading risks for lung cancer and is associated with the insensitivity of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, it remains undetermined whether and how cigarette smoke affects the therapeutic efficacy of EGFR TKIs. In this study, our data showed that chronic exposure to cigarette smoke extract (CSE) or tobacco smoke-derived carcinogen benzo[α]pyrene, B[α]P, but not nicotine-derived nitrosamine ketone (NNK), reduced the sensitivity of wild-type EGFR-expressing NSCLC cells to EGFR TKIs. Treatment with TKIs almost abolished EGFR tyrosine kinase activity but did not show an inhibitory effect on downstream Akt and ERK pathways in B[α]P-treated NSCLC cells. CSE and B[α]P transcriptionally upregulate c-MET and activate its downstream Akt pathway, which is not inhibited by EGFR TKIs. Silencing of c-MET reduces B[α]P-induced Akt activation. The CSE-treated NSCLC cells are sensitive to the c-MET inhibitor crizotinib. These findings suggest that cigarette smoke augments oncogene addiction to c-MET in NSCLC cells and that MET inhibitors may show clinical benefits for lung cancer patients with a smoking history. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  3. RAB-7 Antagonizes LET-23 EGFR Signaling during Vulva Development in Caenorhabditis elegans

    PubMed Central

    Skorobogata, Olga; Rocheleau, Christian E.

    2012-01-01

    The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(−) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans. PMID:22558469

  4. RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans.

    PubMed

    Skorobogata, Olga; Rocheleau, Christian E

    2012-01-01

    The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(-) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans.

  5. Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes

    PubMed Central

    Villaseñor, Roberto; Nonaka, Hidenori; Del Conte-Zerial, Perla; Kalaidzidis, Yannis; Zerial, Marino

    2015-01-01

    An outstanding question is how receptor tyrosine kinases (RTKs) determine different cell-fate decisions despite sharing the same signalling cascades. Here, we uncovered an unexpected mechanism of RTK trafficking in this process. By quantitative high-resolution FRET microscopy, we found that phosphorylated epidermal growth factor receptor (p-EGFR) is not randomly distributed but packaged at constant mean amounts in endosomes. Cells respond to higher EGF concentrations by increasing the number of endosomes but keeping the mean p-EGFR content per endosome almost constant. By mathematical modelling, we found that this mechanism confers both robustness and regulation to signalling output. Different growth factors caused specific changes in endosome number and size in various cell systems and changing the distribution of p-EGFR between endosomes was sufficient to reprogram cell-fate decision upon EGF stimulation. We propose that the packaging of p-RTKs in endosomes is a general mechanism to ensure the fidelity and specificity of the signalling response. DOI: http://dx.doi.org/10.7554/eLife.06156.001 PMID:25650738

  6. SMOC Binds to Pro-EGF, but Does Not Induce Erk Phosphorylation via the EGFR.

    PubMed

    Thomas, J Terrig; Chhuy-Hy, Lina; Andrykovich, Kristin R; Moos, Malcolm

    2016-01-01

    In an attempt to identify the cell-associated protein(s) through which SMOC (Secreted Modular Calcium binding protein) induces mitogen-activated protein kinase (MAPK) signaling, the epidermal growth factor receptor (EGFR) became a candidate. However, although in 32D/EGFR cells, the EGFR was phosphorylated in the presence of a commercially available human SMOC-1 (hSMOC-1), only minimal phosphorylation was observed in the presence of Xenopus SMOC-1 (XSMOC-1) or human SMOC-2. Analysis of the commercial hSMOC-1 product demonstrated the presence of pro-EGF as an impurity. When the pro-EGF was removed, only minimal EGFR activation was observed, indicating that SMOC does not signal primarily through EGFR and its receptor remains unidentified. Investigation of SMOC/pro-EGF binding affinity revealed a strong interaction that does not require the C-terminal extracellular calcium-binding (EC) domain of SMOC or the EGF domain of pro-EGF. SMOC does not appear to potentiate or inhibit MAPK signaling in response to pro-EGF, but the interaction could provide a mechanism for retaining soluble pro-EGF at the cell surface.

  7. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβmore » phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a

  8. The safety and efficacy of osimertinib for the treatment of EGFR T790M mutation positive non-small-cell lung cancer

    PubMed Central

    Gao, Xin; Le, Xiuning; Costa, Daniel B.

    2016-01-01

    First- and second-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the evidence-based first-line treatment for metastatic non-small-cell lung cancers (NSCLCs) that harbor sensitizing EGFR mutations (i.e., exon 19 deletions or L858R). However, acquired resistance to EGFR TKI monotherapy occurs invariably within a median time frame of one year. The most common form of biological resistance is through the selection of tumor clones harboring the EGFR T790M mutation, present in >50% of repeat biopsies. The presence of the EGFR T790M mutation negates the inhibitory activity of gefitinib, erlotinib, and afatinib. A novel class of third-generation EGFR TKIs has been identified by probing a series of covalent pyrimidine EGFR inhibitors that bind to amino-acid residue C797 of EGFR and preferentially inhibit mutant forms of EGFR versus the wild-type receptor. We review the rapid clinical development and approval of the third-generation EGFR TKI osimertinib for treatment of NSCLCs with EGFR-T790M. PMID:26943236

  9. EGFR and HER2 Activate Rigidity Sensing Only on Rigid Matrices

    PubMed Central

    Saxena, Mayur; Liu, Shuaimin; Yang, Bo; Hajal, Cynthia; Changede, Rishita; Hu, Junqiang

    2017-01-01

    Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15–20 min, but diminish by 10-fold after 4 hours. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in absence of EGF both for normal and cancerous growth. PMID:28459445

  10. Mig6 Puts the Brakes on Mutant EGFR-Driven Lung Cancer | Center for Cancer Research

    Cancer.gov

    Lung cancer is the most common cause of cancer-related death worldwide. These cancers are often induced by mutations in the epidermal growth factor receptor (EGFR), resulting in constitutive activation of the protein’s tyrosine kinase domain. Lung cancers expressing these EGFR mutants are initially sensitive to tyrosine kinase inhibitors (TKIs), such as erlotinib, but often

  11. Different response of human glioma tumor-initiating cells to epidermal growth factor receptor kinase inhibitors.

    PubMed

    Griffero, Fabrizio; Daga, Antonio; Marubbi, Daniela; Capra, Maria Cristina; Melotti, Alice; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adriana; Porcile, Carola; Barbieri, Federica; Favoni, Roberto E; Lo Casto, Michele; Zona, Gianluigi; Spaziante, Renato; Florio, Tullio; Corte, Giorgio

    2009-03-13

    Because a subpopulation of cancer stem cells (tumor-initiating cells, TICs) is believed to be responsible for the development, progression, and recurrence of many tumors, we evaluated the in vitro sensitivity of human glioma TICs to epidermal growth factor receptor (EGFR) kinase inhibitors (erlotinib and gefitinib) and possible molecular determinants for their effects. Cells isolated from seven glioblastomas (GBM 1-7) and grown using neural stem cell permissive conditions were characterized for in vivo tumorigenicity, expression of tumor stem cell markers (CD133, nestin), and multilineage differentiation properties, confirming that these cultures are enriched in TICs. TIC cultures were challenged with increasing concentrations of erlotinib and gefitinib, and their survival was evaluated after 1-4 days. In most cases, a time- and concentration-dependent cell death was observed, although GBM 2 was completely insensitive to both drugs, and GBM 7 was responsive only to the highest concentrations tested. Using a radioligand binding assay, we show that all GBM TICs express EGFR. Erlotinib and gefitinib inhibited EGFR and ERK1/2 phosphorylation/activation in all GBMs, irrespective of the antiproliferative response observed. However, under basal conditions GBM 2 showed a high Akt phosphorylation that was completely insensitive to both drugs, whereas GBM 7 was completely insensitive to gefitinib, and Akt inactivation occurred only for the highest erlotinib concentration tested, showing a precise relationship with the antiproliferative effects of the drug. Interestingly, in GBM 2, phosphatase and tensin homolog expression was significantly down-regulated, possibly accounting for the insensitivity to the drugs. In conclusion, glioma TICs are responsive to anti-EGFR drugs, but phosphatase and tensin homolog expression and Akt inhibition seem to be necessary for such effect.

  12. Immuno-PET Imaging and Radioimmunotherapy of 64Cu-/177Lu-Labeled Anti-EGFR Antibody in Esophageal Squamous Cell Carcinoma Model.

    PubMed

    Song, In Ho; Lee, Tae Sup; Park, Yong Serk; Lee, Jin Sook; Lee, Byung Chul; Moon, Byung Seok; An, Gwang Il; Lee, Hae Won; Kim, Kwang Il; Lee, Yong Jin; Kang, Joo Hyun; Lim, Sang Moo

    2016-07-01

    Immuno-PET provides valuable information about tumor location, phenotype, susceptibility to therapy, and treatment response, especially to targeted radioimmunotherapy. In this study, we prepared antiepidermal growth factor receptor (EGFR) antibody via identical chelator, 3,6,9,15-tetraazabicyclo[9.3.1]-pentadeca-1(15),11,13-trience-3,6,9,-triacetic acid (PCTA), labeled with (64)Cu or (177)Lu to evaluate the EGFR expression levels using immuno-PET and the feasibility of radioimmunotherapy in an esophageal squamous cell carcinoma (ESCC) model. Cetuximab was conjugated with p-SCN-Bn-PCTA and radiolabeled with (64)Cu or (177)Lu. In vitro EGFR expression levels were determined and compared using flow cytometry and cell binding assay. In vivo EGFR expression levels were evaluated via immuno-PET imaging of (64)Cu-cetuximab and biodistribution analysis. Micro-SPECT/CT imaging, biodistribution, and radioimmunotherapy studies of (177)Lu-cetuximab were performed in the ESCC model. Therapeutic responses were monitored using (18)F-FDG PET and immunohistochemical staining. (64)Cu- or (177)Lu-labeled antibodies showed high radiolabeling yield (>98%), stability (>90%), and favorable immunoreactivity. In vitro EGFR status measured by cell binding assay was correlated with the flow cytometry data. Immuno-PET, micro-SPECT/CT, and biodistribution demonstrated specific uptake in ESCC tumors depending on the EGFR expression levels. Tumor accumulation of (64)Cu- and (177)Lu-cetuximab was peaked at 48 and 120 h, respectively. Radioimmunotherapy with (177)Lu-cetuximab showed significant inhibition of tumor growth (P < 0.01) and marked reduction of (18)F-FDG SUV compared with that of control (P < 0.05). Terminal deoxynucleotidyl transferase dUTP nick-end labeling positivity and Ki-67 staining indices increased and decreased, respectively, in the radioimmunotherapy group compared with other groups (P < 0.01). (64)Cu-cetuximab immuno-PET represented EGFR expression levels in ESCC tumors, and

  13. Striatal but not frontal cortical up-regulation of the epidermal growth factor receptor in rats exposed to immune activation in utero and cannabinoid treatment in adolescence.

    PubMed

    Idrizi, Rejhan; Malcolm, Peter; Weickert, Cynthia Shannon; Zavitsanou, Katerina; Suresh Sundram

    2016-06-30

    In utero maternal immune activation (MIA) and cannabinoid exposure during adolescence constitute environmental risk factors for schizophrenia. We investigated these risk factors alone and in combination ("two-hit") on epidermal growth factor receptor (EGFR) and neuregulin-1 receptor (ErbB4) levels in the rat brain. EGFR but not ErbB4 receptor protein levels were significantly increased in the nucleus accumbens and striatum of "two-hit" rats only, with no changes seen at the mRNA level. These findings support region specific EGF-system dysregulation as a plausible mechanism in this animal model of schizophrenia pathogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Selective regulation of clathrin-mediated epidermal growth factor receptor signaling and endocytosis by phospholipase C and calcium.

    PubMed

    Delos Santos, Ralph Christian; Bautista, Stephen; Lucarelli, Stefanie; Bone, Leslie N; Dayam, Roya M; Abousawan, John; Botelho, Roberto J; Antonescu, Costin N

    2017-10-15

    Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca 2+ , or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca 2+ - and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca 2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes. © 2017 Delos Santos et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Quantitative analysis reveals how EGFR activation and downregulation are coupled in normal but not in cancer cells

    PubMed Central

    Capuani, Fabrizio; Conte, Alexia; Argenzio, Elisabetta; Marchetti, Luca; Priami, Corrado; Polo, Simona; Di Fiore, Pier Paolo; Sigismund, Sara; Ciliberto, Andrea

    2015-01-01

    Ubiquitination of the epidermal growth factor receptor (EGFR) that occurs when Cbl and Grb2 bind to three phosphotyrosine residues (pY1045, pY1068 and pY1086) on the receptor displays a sharp threshold effect as a function of EGF concentration. Here we use a simple modelling approach together with experiments to show that the establishment of the threshold requires both the multiplicity of binding sites and cooperative binding of Cbl and Grb2 to the EGFR. While the threshold is remarkably robust, a more sophisticated model predicted that it could be modulated as a function of EGFR levels on the cell surface. We confirmed experimentally that the system has evolved to perform optimally at physiological levels of EGFR. As a consequence, this system displays an intrinsic weakness that causes—at the supraphysiological levels of receptor and/or ligand associated with cancer—uncoupling of the mechanisms leading to signalling through phosphorylation and attenuation through ubiquitination. PMID:26264748

  16. Nucleolin inhibitor GroA triggers reduction in epidermal growth factor receptor activation: Pharmacological implication for glial scarring after spinal cord injury.

    PubMed

    Goldshmit, Yona; Schokoroy Trangle, Sari; Afergan, Fabian; Iram, Tal; Pinkas-Kramarski, Ronit

    2016-09-01

    Glial scarring, formed by reactive astrocytes, is one of the major impediments for regeneration after spinal cord injury (SCI). Reactive astrocytes become hypertrophic, proliferate and secrete chondroitin sulphate proteoglycans into the extracellular matrix (ECM). Many studies have demonstrated that epidermal growth factor receptors (EGFR) can mediate astrocyte reactivity after neurotrauma. Previously we showed that there is crosstalk between nucleolin and EGFR that leads to increased EGFR activation followed by increased cell proliferation. Treatment with the nucleolin inhibitor GroA (AS1411) prevented these effects in vitro and in vivo. In this study, we hypothesized that similar interactions may mediate astrogliosis after SCI. Our results demonstrate that nucleolin and EGFR interaction may play a pivotal role in mediating astrocyte proliferation and reactivity after SCI. Moreover, we demonstrate that treatment with GroA reduces EGFR activation, astrocyte proliferation and chondroitin sulphate proteoglycans secretion, therefore promoting axonal regeneration and sprouting into the lesion site. Our results identify, for the first time, a role for the interaction between nucleolin and EGFR in astrocytes after SCI, indicating that nucleolin inhibitor GroA may be used as a novel treatment after neurotrauma. A major barrier for axonal regeneration after spinal cord injury is glial scar created by reactive and proliferating astrocytes. EGFR mediate astrocyte reactivity. We showed that inhibition of nucleolin by GroA, reduces EGFR activation, which results in attenuation of astrocyte reactivity and proliferation in vivo and in vitro. EGFR, epidermal growth factor receptor. © 2016 International Society for Neurochemistry.

  17. STAT1-Induced HLA class I Upregulation Enhances Immunogenicity and Clinical Response to anti-EGFR mAb Cetuximab Therapy in HNC Patients

    PubMed Central

    Srivastava, Raghvendra M.; Trivedi, Sumita; Concha-Benavente, Fernando; Hyun-bae, Jie; Wang, Lin; Seethala, Raja R.; Branstetter, Barton F.; Ferrone, Soldano; Ferris, Robert L.

    2015-01-01

    The goal of this study was to characterize the molecular mechanisms underlying cetuximab-mediated upregulation of HLA class I antigen-processing machinery components in head and neck cancer (HNC) cells and to determine the clinical significance of these changes in cetuximab-treated HNC patients. Flow cytometry, signaling studies and chromatin immunoprecipitation (ChIP) assays were performed using HNC cells treated with cetuximab alone or with Fcγ receptor (FcγR)-bearing lymphocytes to establish the mechanism of EGFR-dependent regulation of HLA APM expression. A prospective phase II clinical trial of neoadjuvant cetuximab was utilized to correlate HLA class I expression with clinical response in HNC patients. EGFR blockade triggered STAT1 activation and HLA upregulation, in a src homology-containing protein (SHP)-2-dependent fashion, more prominently in HLA-B/C than in HLA-A alleles. EGFR signaling blockade also enhanced IFNγ receptor 1 (IFNAR) expression, augmenting induction of HLA class I and TAP1/2 expression by IFNγ, which was abrogated in STAT1−/− cells. Cetuximab enhanced HNC cell recognition by EGFR853–861-specific CTLs, and notably enhanced surface presentation of a non-EGFR peptide (MAGE-3271–279). HLA class I upregulation was significantly associated with clinical response in cetuximab-treated HNC patients. EGFR induces HLA downregulation through SHP-2/STAT1 suppression. Reversal of HLA class I downregulation was more prominent in clinical responders to cetuximab therapy, supporting an important role for adaptive immunity in cetuximab antitumor activity. Abrogating EGFR-induced immune escape mechanisms and restoring STAT1 signaling to reverse HLA downregulation using cetuximab should be combined with strategies to enhance adaptive cellular immunity. PMID:25972070

  18. Hierarchical classification strategy for Phenotype extraction from epidermal growth factor receptor endocytosis screening.

    PubMed

    Cao, Lu; Graauw, Marjo de; Yan, Kuan; Winkel, Leah; Verbeek, Fons J

    2016-05-03

    Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In order to find related Ribonucleic acid (RNA) regulators in this process, high-throughput imaging with fluorescent markers is used to visualize the complex EGFR endocytosis process. Subsequently a dedicated automatic image and data analysis system is developed and applied to extract the phenotype measurement and distinguish different developmental episodes from a huge amount of images acquired through high-throughput imaging. For the image analysis, a phenotype measurement quantifies the important image information into distinct features or measurements. Therefore, the manner in which prominent measurements are chosen to represent the dynamics of the EGFR process becomes a crucial step for the identification of the phenotype. In the subsequent data analysis, classification is used to categorize each observation by making use of all prominent measurements obtained from image analysis. Therefore, a better construction for a classification strategy will support to raise the performance level in our image and data analysis system. In this paper, we illustrate an integrated analysis method for EGFR signalling through image analysis of microscopy images. Sophisticated wavelet-based texture measurements are used to obtain a good description of the characteristic stages in the EGFR signalling. A hierarchical classification strategy is designed to improve the recognition of phenotypic episodes of EGFR during endocytosis. Different strategies for normalization, feature selection and classification are evaluated. The results of performance assessment clearly demonstrate that our hierarchical classification scheme combined with a selected set of features provides a notable improvement in the temporal

  19. Mutations in the Polybasic Juxtamembrane Sequence of Both Plasma Membrane- and Endoplasmic Reticulum-localized Epidermal Growth Factor Receptors Confer Ligand-independent Cell Transformation*

    PubMed Central

    Bryant, Kirsten L.; Antonyak, Marc A.; Cerione, Richard A.; Baird, Barbara; Holowka, David

    2013-01-01

    Deregulation of ErbB receptor-tyrosine kinases is a hallmark of many human cancers. Conserved in the ErbB family is a cluster of basic amino acid residues in the cytoplasmic juxtamembrane region. We found that charge-silencing mutagenesis within this juxtamembrane region of the epidermal growth factor receptor (EGFR) results in the generation of a mutant receptor (EGFR Mut R1-6) that spontaneously transforms NIH 3T3 cells in a ligand-independent manner. A similar mutant with one additional basic residue, EGFR Mut R1-5, fails to exhibit ligand-independent transformation. The capacity of EGFR Mut R1-6 to mediate this transformation is maintained when this mutant is retained in the endoplasmic reticulum via a single point mutation, L393H, which we describe. We show that EGFR Mut R1-6 with or without L393H exhibits enhanced basal tyrosine phosphorylation when ectopically expressed, and the ligand-independent transforming activity of EGFR Mut R1-6 is sensitive to inhibition of EGFR kinase activity and is particularly dependent on PI3K and mTOR activity. Similar to EGFR Mut R1-6/L393H in NIH 3T3 cells, EGFR variant type III, a highly oncogenic mutant form of EGFR linked to human brain cancers, confers transforming activity while it is wholly endoplasmic reticulum-retained in U87 cells. Our findings highlight the importance of the polybasic juxtamembrane sequence in regulating the oncogenic potential of EGFR signaling. PMID:24142702

  20. Frequent rhabdomyolysis in anti-NMDA receptor encephalitis.

    PubMed

    Lim, Jung-Ah; Lee, Soon-Tae; Kim, Tae-Joon; Moon, Jangsup; Sunwoo, Jun-Sang; Byun, Jung-Ick; Jung, Keun-Hwa; Jung, Ki-Young; Chu, Kon; Lee, Sang Kun

    2016-09-15

    The aim of this study was to analyze the clinical presentation and provocation factors of rhabdomyolysis in anti-NMDAR encephalitis. Among the 16 patients with anti-NMDAR encephalitis in our institutional cohort, nine patients had elevated CK enzyme levels and clinical evidence of rhabdomyolysis. Rhabdomyolysis was more frequent after immunotherapy. The use of dopamine receptor blocker (DRB) increased the risk of rhabdomyolysis. None of the patients without rhabdomyolysis received DRBs. Rhabdomyolysis is a frequent complication in anti-NMDAR encephalitis and more common after immunotherapy and the use of DRBs increases the risk. Therefore, DRBs should be administered carefully in patients with anti-NMDAR encephalitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Involvement of epidermal growth factor receptor signaling in estrogen inhibition of oocyte maturation mediated through the G protein-coupled estrogen receptor (Gper) in zebrafish (Danio rerio).

    PubMed

    Peyton, Candace; Thomas, Peter

    2011-07-01

    Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression.

  2. In-silico evidences for binding of Glucokinase activators to EGFR C797S to overcome EGFR resistance obstacle with mutant-selective allosteric inhibition.

    PubMed

    Patel, Harun; Pawara, Rahul; Surana, Sanjay

    2018-03-29

    The tyrosine kinase inhibitors (TKI) against epidermal growth factor receptor (EGFR) are generally utilized as a part of patients with non-small cell lung carcinoma (NSCLC). However, EGFR T790M mutation results in resistance to most clinically available EGFR TKIs. Third-generation EGFR TKIs against the T790M mutation has been in active clinical development to triumph the resistance problem; they covalently bind with conserved Cys797 inside the EGFR active site, offering both potency and kinase-selectivity. Third generation drugs target C797, which makes the C797S resistance mutation more subtle. EGFR C797S mutation was accounted to be a main mechanism of resistance to the third-generation inhibitors. The C797S mutation gives off an impression of being an ideal target for conquering the acquired resistance to the third generation inhibitors. We have performed structure based-virtual screening strategies for binding of glucokinase activator to EGFR C797S, which can overcome EGFR resistance impediment with mutant-selective allosteric inhibition towards all kinds of mutant EGFR (T790M, L858R, TMLR) and WT EGFR. The final filter of Lipinski's Rule of Five, Jargan's Rule of Three and in silico ADME predictions gave 23 hits, which conform to Lipinski's rule and Jorgensen's rule and all their pharmacokinetic parameters are inside the appropriate range characterized for human use, in this manner demonstrating their potential as a drug-like molecule. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Epidermal growth factor receptor mutations in 510 Finnish non--small-cell lung cancer patients.

    PubMed

    Mäki-Nevala, Satu; Rönty, Mikko; Morel, Mike; Gomez, Maria; Dawson, Zoe; Sarhadi, Virinder Kaur; Telaranta-Keerie, Aino; Knuuttila, Aija; Knuutila, Sakari

    2014-06-01

    Among the driver gene mutations in non-small-cell lung cancer, mutations in epidermal growth factor receptor (EGFR) are the most important because of their predictive role in selecting patients eligible for targeted therapy. Our aim was to study EGFR mutations in a Finnish non-small-cell lung cancer cohort of 528 patients. Mutation testing was conducted on DNA extracted from paraffin-embedded, formalin-fixed tumor material using the following real-time polymerase chain reaction-based kits: Therascreen EGFR PCR Kit and cobas EGFR Mutation Test. EGFR mutation frequency was 11.4% and all positive cases were adenocarcinomas, of which a majority had an acinar predominant pattern. Mutations were seen significantly more often in females and never-smokers than in males and smokers. The most frequent mutations were L858R in exon 21 and deletions in exon 19. Overall survival of the patients, not treated with EGFR inhibitor, did not differ between EGFR mutation-positive and EGFR mutation-negative patients. EGFR mutation profile in this Finnish non-small-cell lung cancer cohort resembles in many respect with that of other Western European cohorts, even though the overall frequency of mutations is slightly higher. We show the occurrence of EGFR mutations in patients with occupational asbestos exposure and also in those diagnosed with chronic obstructive pulmonary disease who have not been often investigated before.

  4. Simultaneous targeting of EGFR, HER2, and HER4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines.

    PubMed

    De Pauw, Ines; Lardon, Filip; Van den Bossche, Jolien; Baysal, Hasan; Fransen, Erik; Deschoolmeester, Vanessa; Pauwels, Patrick; Peeters, Marc; Vermorken, Jan Baptist; Wouters, An

    2018-06-01

    The epidermal growth factor receptor (EGFR, HER1) is a therapeutic target in head and neck squamous cell carcinoma (HNSCC). After initial promising results with EGFR-targeted therapies such as cetuximab, therapeutic resistance has become a major clinical problem, and new treatment options are therefore necessary. Moreover, the relationship between HER receptors, anti-EGFR therapies, and the human papillomavirus (HPV) status in HNSCC is not fully understood. In contrast to first-generation EGFR inhibitors, afatinib irreversibly inhibits multiple HER receptors simultaneously. Therefore, treatment with afatinib might result in a more pronounced therapeutic benefit, even in patients experiencing cetuximab resistance. In this study, the cytotoxic effect of afatinib as single agent and in combination with cisplatin was investigated in cetuximab-sensitive, intrinsically cetuximab-resistant, and acquired cetuximab-resistant HNSCC cell lines with different HPV status under normoxia and hypoxia. Furthermore, the influence of cetuximab resistance, HPV, and hypoxia on the expression of HER receptors was investigated. Our results demonstrated that afatinib was able to establish cytotoxicity in cetuximab-sensitive, intrinsically cetuximab-resistant, and acquired cetuximab-resistant HNSCC cell lines, independent of the HPV status. However, cross-resistance between cetuximab and afatinib might be possible. Treatment with afatinib caused a G 0 /G 1 cell cycle arrest as well as induction of apoptotic cell death. Additive to antagonistic interactions between afatinib and cisplatin could be observed. Neither cetuximab resistance nor HPV status significantly influenced the expression of HER receptors in HNSCC cell lines. In contrast, the expression of EGFR, HER2, and HER3 was significantly altered under hypoxia. Oxygen deficiency is a common characteristic of HNSCC tumors, and these hypoxic tumor regions often contain cells that are more resistant to treatment. However, we observed

  5. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less

  6. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations—a review

    PubMed Central

    Stewart, Erin L.; Tan, Samuel Zhixing; Liu, Geoffrey

    2015-01-01

    Lung cancer is the leading cause of cancer related deaths in Canada with non-small cell lung cancer (NSCLC) being the predominant form of the disease. Tumor characterization can identify cancer-driving mutations as treatment targets. One of the most successful examples of cancer targeted therapy is inhibition of mutated epidermal growth factor receptor (EGFR), which occurs in ~10-30% of NSCLC patients. While this treatment has benefited many patients with activating EGFR mutations, almost all who initially benefited will eventually acquire resistance. Approximately 50% of cases of acquired resistance (AR) are due to a secondary T790M mutation in exon 20 of the EGFR gene; however, many of the remaining mechanisms of resistance are still unknown. Much work has been done to elucidate the remaining mechanisms of resistance. This review aims to highlight both the mechanisms of resistance that have already been identified in patients and potential novel mechanisms identified in preclinical models which have yet to be validated in the patient settings. PMID:25806347

  7. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms.

    PubMed

    Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B

    2013-11-05

    We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.

  8. Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors in T790M-positive non-small cell lung cancer: review on emerged mechanisms of resistance

    PubMed Central

    Minari, Roberta; Bordi, Paola

    2016-01-01

    Osimertinib, third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), has been approved in the US and EU for the treatment of EGFR mutant T790M-positive non-small cell lung cancer (NSCLC) patients resistant to first- or second-generation EGFR-TKIs, such as gefitinib, erlotinib and afatinib. Although exciting survival data and response rates have been registered in patients treated with this and other third-generation EGFR-TKIs, unfortunately acquired resistance still occurs after approximately 10 months. Mechanisms determining progression of disease are heterogeneous and not fully understood. EGFR-dependent resistance mechanisms (such as new EGFR mutations), bypass pathway activation [as erb-b2 receptor tyrosine kinase 2 (HER2) or MET amplification] and histological transformation [in small cell lung cancer (SCLC)] have been reported, similarly to previous generation TKIs. Here, we review principle mechanisms of innate and acquired resistance described in literature both in clinical and preclinical settings during NSCLC treatment with third-generation EGFR-TKIs. PMID:28149764

  9. Potential influence of interleukin-6 on the therapeutic effect of gefitinib in patients with advanced non-small cell lung cancer harbouring EGFR mutations.

    PubMed

    Tamura, Tomoki; Kato, Yuka; Ohashi, Kadoaki; Ninomiya, Kiichiro; Makimoto, Go; Gotoda, Hiroko; Kubo, Toshio; Ichihara, Eiki; Tanaka, Takehiro; Ichimura, Koichi; Maeda, Yoshinobu; Hotta, Katsuyuki; Kiura, Katsuyuki

    2018-01-01

    Although epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are a key therapy used for patients with EGFR-mutant non-small cell lung cancer (NSCLC), some of whom do not respond well to its therapy. Cytokine including IL-6 secreted by tumour cells is postulated as a potential mechanism for the primary resistance or low sensitivity to EGFR-TKIs. Fifty-two patients with advanced EGFR-mutant NSCLC who had received gefitinib were assessed retrospectively. The protein expression of IL-6 in the tumour cells was assessed by immunostaining and judged as positive if ≥ 50 of 100 tumour cells stained positively. Of the 52 patients, 24 (46%) and 28 (54%) were defined as IL-6-postitive (group P) and IL-6-negative (group N), respectively. Group P had worse progression-free survival (PFS) than that of group N, which was retained in the multivariate analysis (hazard ratio: 2.39; 95 %CI: 1.00-5.68; p < 0.05). By contrast, the PFS after platinum-based chemotherapy did not differ between groups P and N (p = 0.47). In cell line-based model, the impact of IL-6 on the effect of EGFR-TKIs was assessed. The combination of EGFR-TKI and anti-IL-6 antibody moderately improved the sensitivity of EGFR-TKI in lung cancer cell with EGFR mutation. Interestingly, suppression of EGFR with EGFR-TKI accelerated the activation of STAT3 induced by IL-6. Taken together, tumour IL-6 levels might indicate a subpopulation of EGFR-mutant NSCLC that benefits less from gefitinib monotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Signaling pathways involved in the inhibition of epidermal growth factor receptor by erlotinib in hepatocellular cancer

    PubMed Central

    Huether, Alexander; Höpfner, Michael; Sutter, Andreas P; Baradari, Viola; Schuppan, Detlef; Scherübl, Hans

    2006-01-01

    AIM: To examine the underlying mechanisms of erlotinib-induced growth inhibition in hepatocellular carcinoma (HCC). METHODS: Erlotinib-induced alterations in gene expression were evaluated using cDNA array technology; changes in protein expression and/or protein activation due to erlotinib treatment as well as IGF-1-induced EGFR transactivation were investigated using Western blotting. RESULTS: Erlotinib treatment inhibited the mitogen activated protein (MAP)-kinase pathway and signal transducer of activation and transcription (STAT)-mediated signaling which led to an altered expression of apoptosis and cell cycle regulating genes as demonstrated by cDNA array technology. Overexpression of proapoptotic factors like caspases and gadds associated with a down-regulation of antiapoptotic factors like Bcl-2, Bcl-XL or jun D accounted for erlotinib's potency to induce apoptosis. Downregulation of cell cycle regulators promoting the G1/S-transition and overexpression of cyclin-dependent kinase inhibitors and gadds contributed to the induction of a G1/G0-arrest in response to erlotinib. Furthermore, we displayed the transactivation of EGFR-mediated signaling by the IGF-1-receptor and showed erlotinib’s inhibitory effects on the receptor-receptor cross talk. CONCLUSION: Our study sheds light on the under-standing of the mechanisms of action of EGFR-TK-inhibition in HCC-cells and thus might facilitate the design of combination therapies that act additively or synergistically. Moreover, our data on the pathways responding to erlotinib treatment could be helpful in predicting the responsiveness of tumors to EGFR-TKIs in the future. PMID:16937526

  11. Prognostic significance of epidermal growth factor receptor in surgically treated squamous cell lung cancer patients.

    PubMed

    Niemiec, Joanna; Kołodziejski, Leszek; Dyczek, Sonia; Gasińska, Anna

    2004-01-01

    Epidermal growth factor receptor (EGFR) is one of signalling pathways activated during premalignant proliferative changes in the airway epithelium. However there is no agreement about prognostic significance of EGFR expression in non-small cell lung cancer (NSCLC). Facts mentioned above prompted us to study EGFR expression in the group of 78 surgically treated squamous cell lung cancer (SqCLC) patients. The EGFR expression was visualized in formalin-fixed, paraffin-embedded sections, using immunohistochemistry. Three methods of assessment of EGFR expression were applied: percentage of cells with membranous EGFR expression--EGFR labellig index (EGFR LI), percentage of fields with membranous EGFR staining (PS%) and staining intensity (absent, weak or strong) in the whole specimen (SI). Mean EGFR LI and PS% values were 30.4 +/- 3.5% and 51.6 +/- 3.9%, respectively. Patients with higher EGFR expression (EGFR LI, PS%, SI) were significantly younger than those with low EGFR expression. EGFR LI was higher in pT3 tumours than in pT1+pT2 tumours, moreover, EGFR expression (EGFR LI, PS%, SI) was significantly higher in G1+G2 tumours than in G3 tumours. There were significant correlations between parameters used for assessment of EGFR expression. PS% < or = 50 indicated shorter disease-specific survival than PS% > 50. However, patients with tumours with both very low and very high EGFR LI (13% > or = EGFR LI > 80%) showed significantly shorter survival than those with medium EGFR LI (13% < GFR LI < or = 80%). Additionally, pTNM and pN significantly influenced patients' survival. In multivariate analysis, EGFR LI and pTNM were independent prognostic parameters influencing disease-specific survival of patients.

  12. The E3 ubiquitin ligase CHIP selectively regulates mutant epidermal growth factor receptor by ubiquitination and degradation.

    PubMed

    Chung, Chaeuk; Yoo, Geon; Kim, Tackhoon; Lee, Dahye; Lee, Choong-Sik; Cha, Hye Rim; Park, Yeon Hee; Moon, Jae Young; Jung, Sung Soo; Kim, Ju Ock; Lee, Jae Cheol; Kim, Sun Young; Park, Hee Sun; Park, Myoungrin; Park, Dong Il; Lim, Dae-Sik; Jang, Kang Won; Lee, Jeong Eun

    2016-10-14

    Somatic mutation in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) is a decisive factor for the therapeutic response to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in lung adenocarcinoma. The stability of mutant EGFR is maintained by various regulators, including heat shock protein 90 (Hsp90). The C terminus of Hsc70-interacting protein (CHIP) is a Hsp70/Hsp90 co-chaperone and exhibits E3 ubiquitin ligase activity. The high-affinity Hsp90-CHIP complex recognizes and selectively regulates their client proteins. CHIP also works with its own E3 ligase activity independently of Hsp70/Hsp90. Here, we investigated the role of CHIP in regulating EGFR in lung adenocarcinoma and also evaluated the specificity of CHIP's effects on mutant EGFR. In HEK 293T cells transfected with either WT EGFR or EGFR mutants, the overexpression of CHIP selectively decreased the expression of certain EGFR mutants (G719S, L747_E749del A750P and L858R) but not WT EGFR. In a pull-down assay, CHIP selectively interacted with EGFR mutants and simultaneously induced their ubiquitination and proteasomal degradation. The expressions of mutant EGFR in PC9 and H1975 were diminished by CHIP, while the expression of WT EGFR in A549 was nearly not affected. In addition, CHIP overexpression inhibited cell proliferation and xenograft's tumor growth of EGFR mutant cell lines, but not WT EGFR cell lines. EGFR mutant specific ubiquitination by CHIP may provide a crucial regulating mechanism for EGFR in lung adenocarcinoma. Our results suggest that CHIP can be novel therapeutic target for overcoming the EGFR TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. 64Cu-Labeled Repebody Molecules for Imaging of Epidermal Growth Factor Receptor-Expressing Tumors.

    PubMed

    Pyo, Ayoung; Yun, Misun; Kim, Hyeon Sik; Kim, Tae-Yoon; Lee, Joong-Jae; Kim, Jung Young; Lee, Sunwoo; Kwon, Seong Young; Bom, Hee-Seung; Kim, Hak-Sung; Kim, Dong-Yeon; Min, Jung-Joon

    2018-02-01

    The epidermal growth factor receptor (EGFR) is a member of the erbB family of receptors and is overexpressed in many tumor types. A repebody is a newly designed nonantibody protein scaffold for tumor targeting that contains leucine-rich repeat modules. In this study, 3 64 Cu-labeled anti-EGFR repebodies with different chelators were synthesized, and their biologic characteristics were assessed in cultured cells and tumor-bearing mice. Methods: Repebodies were synthesized with the chelators 2-( p -isothiocyanatobenzyl)-1,4,7-triazacyclononane- N,N',N,″- triacetic acid trihydrochloride ([ p -SCN-Bn]-NOTA), 2,2',2″-(10-(2-(2,5-dioxopyrrolidin-1-yloxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (DOTA- N -hydroxysuccinimide ester), or 1-( p -isothiocyanatobenzyl)diethylenetriamine pentaacetic acid trihydrochloride ([ p -SCN-Bn]-DTPA) in 1.0 M NaHCO 3 buffer (pH 9.2) for 24 h. Purified NOTA-, DOTA-, and DTPA-conjugated repebody were radiolabeled with 64 Cu in 0.1 M NH 4 OAc buffer (pH 5.5). To compare the EGFR-binding affinities of the repebodies, cellular uptake studies were performed with the human non-small cell lung cancer cell line H1650 (high expression of EGFR) and the human colon adenocarcinoma cell line SW620 (low expression of EGFR). Biodistribution and small-animal PET imaging studies were performed using H1650 tumor-bearing mice. Results: Radiochemical yields of the 64 Cu-labeled repebodies were approximately 70%-80%. Cellular uptake of the NOTA-, DOTA-, and DTPA-repebodies was over 4-fold higher in H1650 cells than in SW620 cells at 1 h. The 3 repebodies had accumulated specifically in H1650 tumor-bearing nude mice by 1 h after intravenous injection and were retained for over 24 h, as measured by the percentage injected dose per gram of tissue (%ID/g). Tumor uptake of all repebodies increased from 1 to 6 h (at 1 h, 6.28, 8.46, and 6.91 %ID/g for NOTA-, DOTA-, and DTPA-repebody, respectively; at 6 h, 9.4, 8.28, and 10.1 %ID

  14. CpG island methylator phenotype is associated with the efficacy of sequential oxaliplatin- and irinotecan-based chemotherapy and EGFR-related gene mutation in Japanese patients with metastatic colorectal cancer.

    PubMed

    Zhang, Xiaofei; Shimodaira, Hideki; Soeda, Hiroshi; Komine, Keigo; Takahashi, Hidekazu; Ouchi, Kota; Inoue, Masahiro; Takahashi, Masanobu; Takahashi, Shin; Ishioka, Chikashi

    2016-12-01

    The CpG island methylator phenotype (CIMP) with multiple promoter methylated loci has been observed in a subset of human colorectal cancer (CRC) cases. CIMP status, which is closely associated with specific clinicopathological and molecular characteristics, is considered a potential predictive biomarker for efficacy of cancer treatment. However, the relationship between the effect of standard chemotherapy, including cytotoxic drugs and anti-epidermal growth factor receptor (EGFR) antibodies, and CIMP status has not been elucidated. In 125 metastatic colorectal cancer (mCRC) patients, we investigated how clinical outcome of chemotherapy was related to CIMP status as detected by methylation-specific PCR (MSP) and to genetic status in five EGFR-related genes (KRAS, BRAF, PIK3CA, NRAS, and AKT1) as detected by direct sequencing. CIMP-positive status was significantly associated with proximal tumor location and peritoneum metastasis (all P values <0.05). The progression-free survival of patients with CIMP-positive tumors receiving sequential therapy with FOLFOX as the first-line treatment followed by irinotecan-based therapy as the second-line treatment (median = 6.6 months) was inferior to that of such patients receiving the reverse sequence (median = 15.2 months; P = 0.043). Furthermore, CIMP-positive tumors showed higher mutation frequencies for the five EGFR-related genes (74.1 %) than the CIMP-negative tumors did (50.0 %). Among the KRAS wild-type tumors, CIMP-positive tumors were associated with a worse clinical outcome than CIMP-negative tumors following anti-EGFR antibody therapy. Sequential FOLFOX followed by an irinotecan-based regimen is unfavorable in patients with CIMP-positive tumors. High frequencies of mutation in EGFR-related genes in CIMP-positive tumors may cause the lower response to anti-EGFR antibody therapy seen in patients with wild-type KRAS and CIMP-positive tumors.

  15. Photonic modulation of EGFR: 280nm low level light arrests cancer cell activation and migration

    NASA Astrophysics Data System (ADS)

    Botelho, Cláudia M.; Marques, Rogério; Viruthachalam, Thiagarajan; Gonçalves, Odete; Vorum, Henrik; Gomes, Andreia C.; Neves-Petersen, Maria Teresa

    2017-02-01

    Overexpression of the Epidermal Growth Factor Receptor (EGFR) by cancer cells is associated with a poor prognosis for the patient. For several decades, therapies targeting EGFR have been designed, including the use of monoclonal antibodies and small molecule tyrosine kinase inhibitors. The use of these molecules had good clinical results, although its efficiency (and specificity) is still far from being optimal. In this paper, we present a new approach for a possible new cancer therapy targeting EGFR and using low intensity 280nm light. The influence of 280nm UVB illumination on cancer cells stimulated with 2nM of EGF was followed by time-lapse confocal microscopy. The 280nm illumination of the cancer cells blocks EGFR activation, inhibiting EGFR internalization and cell migration thus inhibiting the transition to the metastatic phenotype. Exposure time is a very important factor. The higher the illumination time the more significant differences were observed: 280nm light delayed or completely halted EGFR activation in the cell membrane, mainly at the cell junction level, and delayed or halted EGFR endocytic internalization, filopodia formation and cell migration.

  16. The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR

    PubMed Central

    Boncompain, Gaelle; Laketa, Vibor; Poser, Ina; Beck, Martin; Bork, Peer

    2016-01-01

    Stimulation of cells with epidermal growth factor (EGF) induces internalization and partial degradation of the EGF receptor (EGFR) by the endo-lysosomal pathway. For continuous cell functioning, EGFR plasma membrane levels are maintained by transporting newly synthesized EGFRs to the cell surface. The regulation of this process is largely unknown. In this study, we find that EGF stimulation specifically increases the transport efficiency of newly synthesized EGFRs from the endoplasmic reticulum to the plasma membrane. This coincides with an up-regulation of the inner coat protein complex II (COPII) components SEC23B, SEC24B, and SEC24D, which we show to be specifically required for EGFR transport. Up-regulation of these COPII components requires the transcriptional regulator RNF11, which localizes to early endosomes and appears additionally in the cell nucleus upon continuous EGF stimulation. Collectively, our work identifies a new regulatory mechanism that integrates the degradation and transport of EGFR in order to maintain its physiological levels at the plasma membrane. PMID:27872256

  17. EGFR G796D mutation mediates resistance to osimertinib.

    PubMed

    Zheng, Di; Hu, Min; Bai, Yu; Zhu, Xuehua; Lu, Xuesong; Wu, Chunyan; Wang, Jiying; Liu, Li; Wang, Zheng; Ni, Jian; Yang, Zhenfan; Xu, Jianfang

    2017-07-25

    Osimertinib is an effective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved in multiple countries and regions for patients with EGFR T790M mutation-positive non-small cell lung cancer (NSCLC). Despite impressive initial tumor responses, development of drug resistance ultimately limits the benefit of this compound. Mechanisms of resistance to osimertinib are just beginning to emerge, such as EGFR C797S and L718Q mutations, BRAF V600E and PIK3CA E545K mutations, as well as ERBB2 and MET amplification. However, a comprehensive view is still missing. In this study, we presented the first case of Chinese NSCLC patient who developed resistance to osimertinib, and discovered de novo EGFR G796D mutation as a potential mechanism. Our findings provided insights into mechanisms of resistance to osimertinib and highlighted tumor heterogeneity and clonal evolution during the development of drug resistance.

  18. EGFR G796D mutation mediates resistance to osimertinib

    PubMed Central

    Bai, Yu; Zhu, Xuehua; Lu, Xuesong; Wu, Chunyan; Wang, Jiying; Liu, Li; Wang, Zheng; Ni, Jian; Yang, Zhenfan; Xu, Jianfang

    2017-01-01

    Osimertinib is an effective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved in multiple countries and regions for patients with EGFR T790M mutation-positive non-small cell lung cancer (NSCLC). Despite impressive initial tumor responses, development of drug resistance ultimately limits the benefit of this compound. Mechanisms of resistance to osimertinib are just beginning to emerge, such as EGFR C797S and L718Q mutations, BRAF V600E and PIK3CA E545K mutations, as well as ERBB2 and MET amplification. However, a comprehensive view is still missing. In this study, we presented the first case of Chinese NSCLC patient who developed resistance to osimertinib, and discovered de novo EGFR G796D mutation as a potential mechanism. Our findings provided insights into mechanisms of resistance to osimertinib and highlighted tumor heterogeneity and clonal evolution during the development of drug resistance. PMID:28572531

  19. Inhibitors of the epidermal growth factor receptor in apple juice extract.

    PubMed

    Kern, Melanie; Tjaden, Zeina; Ngiewih, Yufanyi; Puppel, Nicole; Will, Frank; Dietrich, Helmut; Pahlke, Gudrun; Marko, Doris

    2005-04-01

    The polyphenol-rich extract of a consumer-relevant apple juice blend was found to potently inhibit the growth of the human colon cancer cell line HT29 in vitro. The epidermal growth factor receptor (EGFR) and its subsequent signaling cascade play an important role in the regulation of cell proliferation in HT29 cells. The protein tyrosine kinase activity of an EGFR preparation was effectively inhibited by the polyphenol-rich apple juice extract. Treatment of intact cells with this extract resulted in the suppression of the subsequent mitogen-activated protein kinase cascade. Amongst the so far identified apple juice constituents, the proanthocyanidins B1 and B2 as well as quercetin-3-glc (isoquercitrin) and quercetin-3-gal (hyperoside) were found to possess substantial EGFR-inhibitory properties. However, as to be expected from the final concentration of these potential EGFR inhibitors in the original polyphenol-rich extract, a synthetic mixture of the apple juice constituents identified and available so far, including both proanthocyanidins and the quercetin glycosides, showed only marginal inhibitory effects on the EGFR. These results permit the assumption that yet unknown constituents contribute substantially to the potent EGFR-inhibitory properties of polyphenol-rich apple juice extract. In summary, the polyphenol composition of apple juice possesses promising growth-inhibitory properties, affecting proliferation-associated signaling cascades in colon tumor cells.

  20. Preselection of EGFR mutations in non-small-cell lung cancer patients by immunohistochemistry: comparison with DNA-sequencing, EGFR wild-type expression, gene copy number gain and clinicopathological data.

    PubMed

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten

    2017-01-01

    Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.

  1. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib

    PubMed Central

    Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-01-01

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF “like” ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation. PMID:25249545

  2. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib.

    PubMed

    Younes, Mohamad; Wu, Zherui; Dupouy, Sandra; Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-09-30

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF "like" ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation.

  3. Statistical analysis of EGFR structures' performance in virtual screening

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, Xiang; Dong, Zigang

    2015-11-01

    In this work the ability of EGFR structures to distinguish true inhibitors from decoys in docking and MM-PBSA is assessed by statistical procedures. The docking performance depends critically on the receptor conformation and bound state. The enrichment of known inhibitors is well correlated with the difference between EGFR structures rather than the bound-ligand property. The optimal structures for virtual screening can be selected based purely on the complex information. And the mixed combination of distinct EGFR conformations is recommended for ensemble docking. In MM-PBSA, a variety of EGFR structures have identically good performance in the scoring and ranking of known inhibitors, indicating that the choice of the receptor structure has little effect on the screening.

  4. Gender-related survival differences associated with EGFR polymorphisms in metastatic colon cancer.

    PubMed

    Press, Oliver A; Zhang, Wu; Gordon, Michael A; Yang, Dongyun; Lurje, Georg; Iqbal, Syma; El-Khoueiry, Anthony; Lenz, Heinz-Josef

    2008-04-15

    Evidence is accumulating supporting gender-related differences in the development of colonic carcinomas. Sex steroid hormone receptors are expressed in the colon and interact with epidermal growth factor receptor (EGFR), a gene widely expressed in colonic tissue. Increased EGFR expression is linked with poor prognosis in colon cancer. Within the EGFR gene there are two functional polymorphisms of interest: a polymorphism located at codon 497 (HER-1 R497K) and a dinucleotide (CA)(n) repeat polymorphism located within intron 1. These germ-line polymorphisms of EGFR were analyzed in genomic DNA from 318 metastatic colon cancer patients, 177 males and 141 females, collected from 1992 to 2003. Gender-related survival differences were associated with the HER-1 R497K polymorphism (P(interaction) = 0.003). Females with the HER-1 497 Arg/Arg variant had better overall survival (OS) when compared with the Lys/Lys and/or Lys/Arg variants. In males the opposite was true. The EGFR dinucleotide (CA)(n) repeat also trended with a gender-related OS difference (P(interaction) = 0.11). Females with both short <20 (CA)(n) repeat alleles had better OS than those with any long >or=20 (CA)(n) repeats. In males the opposite was true. Combination analysis of the two polymorphisms taken together also revealed the same gender-related survival difference (P(interaction) = 0.002). These associations were observed using multivariable analysis. The two polymorphisms were not in linkage disequilibrium and are independent of one another. This study supports the role of functional EGFR polymorphisms as independent prognostic markers in metastatic colon cancer. As a prognostic factor, these variants had opposite prognostic implications based on gender.

  5. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    PubMed Central

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  6. EGFR Mutation Testing Practices within the Asia Pacific Region

    PubMed Central

    Kerr, Keith M.; Utomo, Ahmad; Rajadurai, Pathmanathan; Tran, Van Khanh; Du, Xiang; Chou, Teh-Ying; Enriquez, Ma. Luisa D.; Lee, Geon Kook; Iqbal, Jabed; Shuangshoti, Shanop; Chung, Jin-Haeng; Hagiwara, Koichi; Liang, Zhiyong; Normanno, Nicola; Park, Keunchil; Toyooka, Shinichi; Tsai, Chun-Ming; Waring, Paul; Zhang, Li; McCormack, Rose; Ratcliffe, Marianne; Itoh, Yohji; Sugeno, Masatoshi; Mok, Tony

    2015-01-01

    Introduction: The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutation-positive non–small-cell lung cancer (NSCLC) patients necessitates accurate, timely testing. Although EGFR mutation testing has been adopted by many laboratories in Asia, data are lacking on the proportion of NSCLC patients tested in each country, and the most commonly used testing methods. Methods: A retrospective survey of records from NSCLC patients tested for EGFR mutations during 2011 was conducted in 11 Asian Pacific countries at 40 sites that routinely performed EGFR mutation testing during that period. Patient records were used to complete an online questionnaire at each site. Results: Of the 22,193 NSCLC patient records surveyed, 31.8% (95% confidence interval: 31.2%–32.5%) were tested for EGFR mutations. The rate of EGFR mutation positivity was 39.6% among the 10,687 cases tested. The majority of samples were biopsy and/or cytology samples (71.4%). DNA sequencing was the most commonly used testing method accounting for 40% and 32.5% of tissue and cytology samples, respectively. A pathology report was available only to 60.0% of the sites, and 47.5% were not members of a Quality Assurance Scheme. Conclusions: In 2011, EGFR mutation testing practices varied widely across Asia. These data provide a reference platform from which to improve the molecular diagnosis of NSCLC, and EGFR mutation testing in particular, in Asia. PMID:25376513

  7. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance.

    PubMed

    Kabe, Yasuaki; Nakane, Takanori; Koike, Ikko; Yamamoto, Tatsuya; Sugiura, Yuki; Harada, Erisa; Sugase, Kenji; Shimamura, Tatsuro; Ohmura, Mitsuyo; Muraoka, Kazumi; Yamamoto, Ayumi; Uchida, Takeshi; Iwata, So; Yamaguchi, Yuki; Krayukhina, Elena; Noda, Masanori; Handa, Hiroshi; Ishimori, Koichiro; Uchiyama, Susumu; Kobayashi, Takuya; Suematsu, Makoto

    2016-03-18

    Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem-haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer.

  8. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance

    PubMed Central

    Kabe, Yasuaki; Nakane, Takanori; Koike, Ikko; Yamamoto, Tatsuya; Sugiura, Yuki; Harada, Erisa; Sugase, Kenji; Shimamura, Tatsuro; Ohmura, Mitsuyo; Muraoka, Kazumi; Yamamoto, Ayumi; Uchida, Takeshi; Iwata, So; Yamaguchi, Yuki; Krayukhina, Elena; Noda, Masanori; Handa, Hiroshi; Ishimori, Koichiro; Uchiyama, Susumu; Kobayashi, Takuya; Suematsu, Makoto

    2016-01-01

    Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem–haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer. PMID:26988023

  9. Involvement of Epidermal Growth Factor Receptor Signaling in Estrogen Inhibition of Oocyte Maturation Mediated Through the G Protein-Coupled Estrogen Receptor (Gper) in Zebrafish (Danio rerio)1

    PubMed Central

    Peyton, Candace; Thomas, Peter

    2011-01-01

    Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression. PMID:21349822

  10. Epidermal Growth Factor Receptor Mutation as a Risk Factor for Recurrence in Lung Adenocarcinoma.

    PubMed

    Hayasaka, Kazuki; Shiono, Satoshi; Matsumura, Yuki; Yanagawa, Naoki; Suzuki, Hiroyuki; Abe, Jiro; Sagawa, Motoyasu; Sakurada, Akira; Katahira, Masato; Takahashi, Satomi; Endoh, Makoto; Okada, Yoshinori

    2018-06-01

    The presence of epidermal growth factor receptor (EGFR) mutations is an established prognostic factor for patients with advanced lung adenocarcinoma. Here, we examined whether EGFR mutation status is a prognostic factor for patients who had undergone surgery. Clinicopathologic data from 1,463 patients who underwent complete surgical resection for lung adenocarcinoma between 2005 and 2012 were collected. Differences in postoperative recurrence-free survival and overall survival according to EGFR mutation status were evaluated. Of 835 eligible patients, the numbers of patients with wild-type EGFR (WT), exon 19 deletion (Ex19), and exon 21 L858R (Ex21) were 426, 175, and 234, respectively. Patients with Ex19 had a significantly higher incidence of extrathoracic recurrence than patients with Ex21 (p = 0.004). The 5-year recurrence-free survival rates for patients with WT, Ex19, and Ex21 were 63.0%, 67.5%, and 78.2%, respectively. The Ex21 group had a significantly longer recurrence-free survival than the WT group (p < 0.001) and the Ex19 group (p = 0.016). The 5-year overall survival for patients with WT, Ex19, and Ex21 were 76.9%, 86.5%, and 87.5%, respectively. Patients with Ex19 and Ex21 had a significantly longer overall survival than patients with WT (Ex19, p = 0.009; Ex21, p < 0.001). Multivariate analysis for recurrence-free survival showed that Ex19 was significantly associated with a worse prognosis than Ex21 (p = 0.019). Patients with Ex19 had significantly shorter recurrence-free survival and had extrathoracic recurrence more frequently than patients with Ex21 among patients with resected lung adenocarcinoma, implying that Ex19 could be a worse prognostic factor. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    NASA Astrophysics Data System (ADS)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  12. Diurnal suppression of EGFR signalling by glucocorticoids and implications for tumour progression and treatment.

    PubMed

    Lauriola, Mattia; Enuka, Yehoshua; Zeisel, Amit; D'Uva, Gabriele; Roth, Lee; Sharon-Sevilla, Michal; Lindzen, Moshit; Sharma, Kirti; Nevo, Nava; Feldman, Morris; Carvalho, Silvia; Cohen-Dvashi, Hadas; Kedmi, Merav; Ben-Chetrit, Nir; Chen, Alon; Solmi, Rossella; Wiemann, Stefan; Schmitt, Fernando; Domany, Eytan; Yarden, Yosef

    2014-10-03

    Signal transduction by receptor tyrosine kinases (RTKs) and nuclear receptors for steroid hormones is essential for body homeostasis, but the cross-talk between these receptor families is poorly understood. We observed that glucocorticoids inhibit signalling downstream of EGFR, an RTK. The underlying mechanism entails suppression of EGFR's positive feedback loops and simultaneous triggering of negative feedback loops that normally restrain EGFR. Our studies in mice reveal that the regulation of EGFR's feedback loops by glucocorticoids translates to circadian control of EGFR signalling: EGFR signals are suppressed by high glucocorticoids during the active phase (night-time in rodents), while EGFR signals are enhanced during the resting phase. Consistent with this pattern, treatment of animals bearing EGFR-driven tumours with a specific kinase inhibitor was more effective if administered during the resting phase of the day, when glucocorticoids are low. These findings support a circadian clock-based paradigm in cancer therapy.

  13. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice.

    PubMed

    Li, He; Huang, Yao; Jiang, Du-Qing; Cui, Lian-Zhen; He, Zhou; Wang, Chao; Zhang, Zhi-Wei; Zhu, Hai-Li; Ding, Yong-Mei; Li, Lin-Fang; Li, Qiang; Jin, Hua-Jun; Qian, Qi-Jun

    2018-02-07

    Effective control of non-small-cell lung cancer (NSCLC) remains clinically challenging, especially during advanced stages of the disease. This study developed an adoptive T-cell treatment through expression of a chimeric antigen receptor (CAR) to target human epidermal growth factor receptor (EGFR) in NSCLC. We optimized the non-viral piggyBac transposon system to engineer human T cells for the expression of EGFR-CAR, consisting of EGFR scFv, transmembrane domain, and intracellular 4-1BB-CD3ζ signaling domains. The modified CAR T cells exhibited expansion capability and anticancer efficacy in a time- and antigen-dependent manner in vitro as well as regression of EGFR-positive human lung cancer xenografts in vivo. EGFR-CAR T therapy is a promising strategy to improve the efficacy and potency of the adoptive immunotherapy in NSCLC. Moreover, EGFR-CAR T therapy could become a clinical application for NSCLC patients in the future.

  14. Lead acetate induces EGFR activation upstream of SFK and PKC{alpha} linkage to the Ras/Raf-1/ERK signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.

    2009-03-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC {yields} ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1{sup S338} and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKC{alpha} using specific small interfering RNA blocked Pb induction ofmore » Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKC{alpha}, Ras-GTP, phospho-Raf-1{sup S338} and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKC{alpha} activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKC{alpha} activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKC{alpha} and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade.« less

  15. Expression of the Human Epidermal Growth Factor Receptor in a Murine T- Cell Hybridoma: A Transmembrane Protein Tyrosine Kinase Can Synergize with the T-Cell Antigen Receptor

    DTIC Science & Technology

    1992-01-01

    protein kirases suchmembrane P17K. nln T ts ebaepoenkr sssc as the EGFR or platelet-derived growth factor re,,,ptor. For instance, the EGFR and TCR...stimulated with EGF (100 ng/mi, in PBS containing phosphatase inhibitors , lysed, and immunoprecip. 5 min, B) anti Thy- I antibody (07 1:50 dilution or...washed in PBS containing phosphatase inhibitors and lysed. Total cellular MX1- lysate was subjected to SDS.PAGE. Western-transferred, and im- Mxi

  16. Mechanisms of resistance to irreversible epidermal growth factor receptor tyrosine kinase inhibitors and therapeutic strategies in non-small cell lung cancer

    PubMed Central

    Xu, Jing; Wang, Jinghui; Zhang, Shucai

    2017-01-01

    Epidermal growth factor receptor (EGFR) T790M mutation is the most frequent mechanism which accounts for about 60% of acquired resistance to first-generation EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) patients harboring EGFR activating mutations. Irreversible EGFR-TKIs which include the second-generation and third-generation EGFR-TKIs are developed to overcome T790M mediated resistance. The second-generation EGFR-TKIs inhibit the wide type (WT) EGFR combined with dose-limiting toxicity which limits its application in clinics, while the development of third-generation EGFR-TKIs brings inspiring efficacy either in vitro or in vivo. The acquired resistance, however, will also occur and limit their response. Understanding the mechanisms of resistance to irreversible EGFR-TKIs plays an important role in the choice of subsequent treatment. In this review, we show the currently known mechanisms of resistance which can be summarized as EGFR dependent and independent mechanisms and potential therapeutic strategies to irreversible EGFR-TKIs. PMID:29163853

  17. BIM Gene Polymorphism Lowers the Efficacy of EGFR-TKIs in Advanced Nonsmall Cell Lung Cancer With Sensitive EGFR Mutations: A Systematic Review and Meta-Analysis.

    PubMed

    Huang, Wu Feng; Liu, Ai Hua; Zhao, Hai Jin; Dong, Hang Ming; Liu, Lai Yu; Cai, Shao Xi

    2015-08-01

    The strong association between bcl-2-like 11 (BIM) triggered apoptosis and the presence of epidermal growth factor receptor (EGFR) mutations has been proven in nonsmall cell lung cancer (NSCLC). However, the relationship between EGFR-tyrosine kinase inhibitor's (TKI's) efficacy and BIM polymorphism in NSCLC EGFR is still unclear.Electronic databases were searched for eligible literatures. Data on objective response rates (ORRs), disease control rates (DCRs), and progression-free survival (PFS) stratified by BIM polymorphism status were extracted and synthesized based on random-effect model. Subgroup and sensitivity analyses were conducted.A total of 6 studies that involved a total of 773 EGFR mutant advanced NSCLC patients after EGFR-TKI treatment were included. In overall, non-BIM polymorphism patients were associated with significant prolonged PFS (hazard ratio 0.63, 0.47-0.83, P = 0.001) compared to patients with BIM polymorphism. However, only marginal improvements without statistical significance in ORR (odds ratio [OR] 1.71, 0.91-3.24, P = 0.097) and DCR (OR 1.56, 0.85-2.89, P = 0.153) were observed. Subgroup analyses showed that the benefits of PFS in non-BIM polymorphism group were predominantly presented in pooled results of studies involving chemotherapy-naive and the others, and retrospective studies. Additionally, we failed to observe any significant benefit from patients without BIM polymorphism in every subgroup for ORR and DCR.For advanced NSCLC EGFR mutant patients, non-BIM polymorphism ones are associated with longer PFS than those with BIM polymorphism after EGFR-TKIs treatment. BIM polymorphism status should be considered an essential factor in studies regarding EGFR-targeted agents toward EGFR mutant patients.

  18. A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans.

    PubMed

    Bongers, Gerold; Muniz, Luciana R; Pacer, Michelle E; Iuga, Alina C; Thirunarayanan, Nanthakumar; Slinger, Erik; Smit, Martine J; Reddy, E Premkumar; Mayer, Lloyd; Furtado, Glaucia C; Harpaz, Noam; Lira, Sergio A

    2012-09-01

    Epithelial cancers can be initiated by activating mutations in components of the mitogen-activated protein kinase signaling pathway such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), or epidermal growth factor receptor (EGFR). Human intestinal serrated polyps are a heterogeneous group of benign lesions, but some progress to colorectal cancer. Tumors that arise from these polyps frequently contain activating mutations in BRAF or KRAS, but little is known about the role of EGFR activation in their development. Polyp samples were obtained from adults during screening colonoscopies at Mount Sinai Hospital in New York. We measured levels of EGFR protein and phosphorylation in human serrated polyps by immunohistochemical and immunoblot analyses. We generated transgenic mice that express the ligand for EGFR, Heparin-binding EGF-like growth factor (HB-EGF), in the intestine. EGFR and the extracellular-regulated kinases (ERK)1/2 were phosphorylated in serrated areas of human hyperplastic polyps (HPPs), sessile serrated adenomas, and traditional serrated adenomas. EGFR and ERK1/2 were phosphorylated in the absence of KRAS or BRAF activating mutations in a subset of HPP. Transgenic expression of the EGFR ligand HB-EGF in the intestines of mice promoted development of small cecal serrated polyps. Mice that expressed a combination of HB-EGF and US28 (a constitutively active, G-protein-coupled receptor that increases processing of HB-EGF from the membrane) rapidly developed large cecal serrated polyps. These polyps were similar to HPPs and had increased phosphorylation of EGFR and ERK1/2 within the serrated epithelium. Administration of pharmacologic inhibitors of EGFR or MAPK to these transgenic mice significantly reduced polyp development. Activation of EGFR signaling in the intestine of mice promotes development of serrated polyps. EGFR signaling also is activated in human HPPs, sessile serrated adenomas

  19. Mig6 Puts the Brakes on Mutant EGFR-Driven Lung Cancer | Center for Cancer Research

    Cancer.gov

    Lung cancer is the most common cause of cancer-related death worldwide. These cancers are often induced by mutations in the epidermal growth factor receptor (EGFR), resulting in constitutive activation of the protein’s tyrosine kinase domain. Lung cancers expressing these EGFR mutants are initially sensitive to tyrosine kinase inhibitors (TKIs), such as erlotinib, but often become resistant by developing compensatory mutations in EGFR or other growth-promoting pathways. To better understand how mutant EGFR initiates and maintains tumor growth in the hopes of identifying novel targets for drug development, Udayan Guha, M.D., Ph.D., of CCR’s Thoracic and Gastrointestinal Oncology Branch, and his colleagues examined the landscape of proteins phosphorylated in EGFR wild type and mutant cells. One protein hyper-phosphorylated in mutant EGFR cells was Mig6, a putative tumor suppressor.

  20. A Structural Perspective on the Regulation of the EGF Receptor

    PubMed Central

    Kovacs, Erika; Zorn, Julie Anne; Huang, Yongjian; Barros, Tiago; Kuriyan, John

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a critical role in the pathogenesis of many cancers. EGFR is unique in that its ligand-induced dimerization is established solely by contacts between regions of the receptor that are occluded within the monomeric, unliganded state. Activation of EGFR depends on the formation of an asymmetric dimer of the intracellular module of two receptor molecules, a configuration observed in crystal structures of the EGFR kinase domain in the active state. Coupling between the extracellular and intracellular modules is achieved by a switch between alternative geometries of the transmembrane and juxtamembrane segments within the receptor dimer. As the structure of the full-length receptor is yet to be determined, here we review recent structural studies on isolated modules of EGFR and molecular dynamics simulations that have provided much of our current understanding of its signaling mechanism, including how its regulation is compromised by oncogenic mutations. PMID:25621509