Sample records for factor receptor antibody12

  1. Principles of antibody-mediated TNF receptor activation

    PubMed Central

    Wajant, H

    2015-01-01

    From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies. PMID:26292758

  2. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. Thesemore » antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.« less

  3. Thyroid-stimulation hormone-receptor antibodies as a predictor of thyrosuppressive drug therapy outcome in Graves' disease patients.

    PubMed

    Aleksić, Aleksandar Z; Aleksić, Željka; Manić, Saška; Mitov, Vladimir; Jolić, Aleksandar

    2014-01-01

    Graves' disease is autoimmune hyperthyroidism caused by pathological stimulation of thyroid-stimulation hormone-receptor antibodies. The decision on changing the therapy can be made on time by determining the prognostic factors of thyrosuppressive drug therapy outcome. The aim of the study was to determine the significance of thyroid-stimulation hormone-receptor antibodies level on the prediction of therapy outcome. The study was prospective and involved 106 drug-treated patients with newly diagnosed Graves' disease. Thyroid-stimulation hormone-receptor antibodies level was measured at the beginning of therapy, during therapy and 12 months after it had been introduced. No statistically significant difference in the level of thyroid-stimulation hormone-receptor antibodies was found at the beginning of disease and 12 months after the introduction of thyrosuppressive drug therapy among the patients who had been in remission and those who had not. Regardless of the outcome, thyroid-stimulation hormone-receptor antibodies level significantly decreased in all patients 12 months after the therapy had been introduced. The level of thyroid-stimulation hormone-receptor antibodies at the beginning of disease and 12 months after the introduction of therapy cannot predict the outcome of thyrosuppressive drug therapy.

  4. Antibodies directed against receptor tyrosine kinases

    PubMed Central

    FAUVEL, Bénédicte; Yasri, Aziz

    2014-01-01

    Approximately 30 therapeutic monoclonal antibodies have already been approved for cancers and inflammatory diseases, and monoclonal antibodies continue to be one of the fastest growing classes of therapeutic molecules. Because aberrant signaling by receptor tyrosine kinases (RTKs) is a commonly observed factor in cancer, most of the subclasses of RTKs are being extensively studied as potential targets for treating malignancies. The first two RTKs that have been targeted by antibody therapy, with five currently marketed antibodies, are the growth factor receptors EGFR and HER2. However, due to systemic side effects, refractory patients and the development of drug resistance, these treatments are being challenged by emerging therapeutics. This review examines current monoclonal antibody therapies against RTKs. After an analysis of agents that have already been approved, we present an analysis of antibodies in clinical development that target RTKs. Finally, we highlight promising RTKs that are emerging as new oncological targets for antibody-based therapy. PMID:24859229

  5. Bioprocess development for the production of mouse-human chimeric anti-epidermal growth factor receptor vIII antibody C12 by suspension culture of recombinant Chinese hamster ovary cells.

    PubMed

    Hu, Suwen; Deng, Lei; Wang, Huamao; Zhuang, Yingping; Chu, Ju; Zhang, Siliang; Li, Zhonghai; Guo, Meijin

    2011-05-01

    The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 10(5) cells/mL. Then, the basic metabolic characteristics of CHO-C12 cells were studied in stirred bioreactor batch cultures. The results showed that the limiting concentrations of glucose and glutamine were 6 and 1 mM, respectively. The culture process consumed significant amounts of aspartate, glutamate, asparagine, serine, isoleucine, leucine, and lysine. Aspartate, glutamate, asparagine, and serine were particularly exhausted in the early growth stage, thus limiting cell growth and antibody synthesis. Based on these findings, fed-batch and perfusion processes in the bioreactor were successfully developed with a balanced amino acid feed strategy. Fed-batch and especially perfusion culture effectively maintained high cell viability to prolong the culture process. Furthermore, perfusion cultures maximized the efficiency of nutrient utilization; the mean yield coefficient of antibody to consumed glucose was 44.72 mg/g and the mean yield coefficient of glutamine to antibody was 721.40 mg/g. Finally, in small-scale bioreactor culture, the highest total amount of C12 antibody (1,854 mg) was realized in perfusion cultures. Therefore, perfusion culture appears to be the optimal process for small-scale production of C12 antibody by rCHO-C12 cells.

  6. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer.

    PubMed

    Yamada, Tadaaki; Takeuchi, Shinji; Kita, Kenji; Bando, Hideaki; Nakamura, Takahiro; Matsumoto, Kunio; Yano, Seiji

    2012-02-01

    Epidermal growth factor receptor (EGFR) is an attractive drug target in lung cancer, with several anti-EGFR antibodies and small-molecule inhibitors showing efficacy in lung cancer patients. Patients, however, may develop resistance to EGFR inhibitors. We demonstrated previously that hepatocyte growth factor (HGF) induced resistance to EGFR tyrosine kinase inhibitors in lung cancers harboring EGFR mutations. We therefore determined whether HGF could induce resistance to the anti-EGFR antibody (EGFR Ab) cetuximab in lung cancer cells, regardless of EGFR gene status. Cetuximab sensitivity and signal transduction in lung cancer cells were examined in the presence or absence of HGF, HGF-producing fibroblasts, and cells tranfected with the HGF gene in vitro and in vivo. HGF induced resistance to cetuximab in H292 (EGFR wild) and Ma-1(EGFR mutant) cells. Western blotting showed that HGF-induced resistance was mediated by the Met/Gab1/Akt signaling pathway. Resistance of H292 and Ma-1 cells to cetuximab was also induced by coculture with lung fibroblasts producing high levels of HGF and by cells stably transfected with the HGF gene. This resistance was abrogated by treatment with anti-HGF neutralizing antibody. HGF-mediated resistance is a novel mechanism of resistance to EGFR Ab in lung cancers, with fibroblast-derived HGF inducing cetuximab resistance in H292 tumors in vivo. The involvement of HGF-Met-mediated signaling should be assessed in acquired resistance to EGFR Ab in lung cancer, regardless of EGFR gene status.

  7. Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response.

    PubMed

    Dong, Jianying; Demarest, Stephen J; Sereno, Arlene; Tamraz, Susan; Langley, Emma; Doern, Adam; Snipas, Tracey; Perron, Keli; Joseph, Ingrid; Glaser, Scott M; Ho, Steffan N; Reff, Mitchell E; Hariharan, Kandasamy

    2010-09-01

    The insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor tyrosine kinase that mediates cell survival signaling and supports tumor progression in multiple tumor types. We identified a spectrum of inhibitory IGF-IR antibodies with diverse binding epitopes and ligand-blocking properties. By binding distinct inhibitory epitopes, two of these antibodies, BIIB4 and BIIB5, block both IGF-I and IGF-II binding to IGF-IR using competitive and allosteric mechanisms, respectively. Here, we explored the inhibitory effects of combining BIIB4 and BIIB5. In biochemical assays, the combination of BIIB4 and BIIB5 improved both the potency and extent of IGF-I and IGF-II blockade compared with either antibody alone. In tumor cells, the combination of BIIB4 and BIIB5 accelerated IGF-IR downregulation and more efficiently inhibited IGF-IR activation as well as downstream signaling, particularly AKT phosphorylation. In several carcinoma cell lines, the antibody combination more effectively inhibited ligand-driven cell growth than either BIIB4 or BIIB5 alone. Notably, the enhanced tumor growth-inhibitory activity of the BIIB4 and BIIB5 combination was much more pronounced at high ligand concentrations, where the individual antibodies exhibited substantially reduced activity. Compared with single antibodies, the BIIB4 and BIIB5 combination also significantly further enhanced the antitumor activity of the epidermal growth factor receptor inhibitor erlotinib and the mTOR inhibitor rapamycin. Moreover, in osteosarcoma and hepatocellular carcinoma xenograft models, the BIIB4 and BIIB5 combination significantly reduced tumor growth to a greater degree than each single antibody. Taken together, our results suggest that targeting multiple distinct inhibitory epitopes on IGF-IR may be a more effective strategy of affecting the IGF-IR pathway in cancer.

  8. CNS syndromes associated with antibodies against metabotropic receptors.

    PubMed

    Lancaster, Eric

    2017-06-01

    Autoantibodies to Central nervous system (CNS) metabotropic receptors are associated with a growing family of autoimmune brain diseases, including encephalitis, basal ganglia encephalitis, Ophelia syndrome, and cerebellitis. The purpose of this review is to summarize the state of knowledge regarding the target receptors, the neurological autoimmune disorders, and the pathogenic mechanisms. Antibodies to the γ-aminobutyric acid B receptor are associate with limbic encephalitis and severe seizures, often with small cell lung cancers. Metabotropic glutamate receptor 5 (mGluR5) antibodies associate with Ophelia syndrome, a relatively mild form of encephalitis linked to Hodgkin lymphoma. mGluR1 antibodies associate with a form of cerebellar degeneration, and also Hodgkin lymphoma. Antibodies to Homer 3, a protein associated with mGluR1, have also been reported in two patients with cerebellar syndromes. Dopamine-2 receptor antibodies have been reported by one group in children with basal ganglia encephalitis and other disorders. CNS metabotropic receptor antibodies may exert direct inhibitory effects on their target receptors, but the evidence is more limited than with autoantibodies to ionotropic glutamate receptors. In the future, improved recognition of these patients may lead to better outcomes. Understanding the molecular mechanisms of the diseases may uncover novel treatment strategies.

  9. Epitope mapping of tsh receptor-blocking antibodies in Graves' disease that appear during pregnancy.

    PubMed

    Kung, A W; Lau, K S; Kohn, L D

    2001-08-01

    Spontaneous remission of Graves' disease during pregnancy is thought to be due to a reduction of thyroid-stimulating antibody activity. We suspected, however, that a broader change in TSH receptor antibody characteristics might play an important role in modulating disease activity during pregnancy. We measured TSH binding inhibitory Ig, thyroid-stimulating antibody, and thyroid stimulating-blocking antibody activities in 13 pregnant Graves' disease patients at first, second, and third trimesters and 4 months postpartum. To measure and epitope-map thyroid-stimulating antibody and thyroid stimulating-blocking antibody activities, we used CHO cells transfected with wild-type human TSH receptor or with several TSH receptor-LH/hCG receptor chimeras: Mc1+2, Mc2, and Mc4. These chimeric cells have their respective TSH receptor residues 9-165, 90-165, and 261-370 substituted with equivalent residues of the LH/hCG receptor. Overall thyroid-stimulating antibody decreased, whereas thyroid stimulating-blocking antibody increased progressively during pregnancy. TSH binding inhibitory Ig fluctuated in individual patients, but overall the activities remained statistically unchanged. Thyroid stimulating-blocking antibody appeared in subjects who were either negative for thyroid-stimulating antibody or whose thyroid-stimulating antibody activity increased or decreased during pregnancy. Epitope mapping showed that the thyroid-stimulating antibodies were mainly directed against residues 9-165 of the N-terminus of the TSH receptor extracellular domain. All thyroid stimulating-blocking antibodies had blocking activities against residues 261-370 of the C-terminus of the ectodomain. However, the majority of the thyroid stimulating-blocking antibodies had a hybrid conformational epitope directed against N-terminal residues 9-89 or 90-165 as well. Despite a change in the activity level, we did not observe any change in the epitope of either the stimulatory or blocking Abs as pregnancy

  10. Generation and characterization of a potent fully human monoclonal antibody against the interleukin-23 receptor.

    PubMed

    Sasaki-Iwaoka, Haruna; Ohori, Makoto; Imasato, Akira; Taguchi, Katsunari; Minoura, Kyoko; Saito, Tetsu; Kushima, Kiyoshi; Imamura, Emiko; Kubo, Satoshi; Furukawa, Shigetada; Morokata, Tatsuaki

    2018-06-05

    Interleukin (IL)-12 and IL-23 share a common subunit (p40) and function in T-helper (Th) 1 and Th17 immunity, respectively. Anti-IL-12/23p40 and specific anti-IL-23 antibodies are currently in clinical use for psoriasis and undergoing trials for autoimmune diseases. Since expression levels of the IL-23 receptor are likely to be much lower than those of IL-23, an anti-IL-23 receptor antibody might offer greater promise in inhibiting the IL-23-IL-17 pathways involved in inflammatory disorders. To our knowledge, no anti-IL-23 receptor antibody has been trialed in clinical studies to date. This study describes the generation and characterization of AS2762900-00, a fully human monoclonal antibody against the IL-23 receptor. AS2762900-00 bound both human and cynomolgus monkey IL-23 receptors. AS2762900-00 showed potent inhibitory effects on IL-23-induced Kit-225 cell proliferation compared to the existing anti-IL-12/23p40 antibody, ustekinumab. In a single dose administration pharmacodynamics study in cynomolgus monkeys, 1 mg/kg of AS2762900-00 significantly inhibited (> 85%) IL-23-induced STAT3 phosphorylation in blood for up to 84 days. Therefore, AS2762900-00 represents a potent novel IL-23-IL-17 pathway inhibitor with the potential to be developed into a new therapy for the treatment of autoimmune diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor

    PubMed Central

    Chen, Zhaochun; Fischer, Elizabeth R.; Kouiavskaia, Diana; Hansen, Bryan T.; Ludtke, Steven J.; Bidzhieva, Bella; Makiya, Michelle; Agulto, Liane; Purcell, Robert H.; Chumakov, Konstantin

    2013-01-01

    Most structural information about poliovirus interaction with neutralizing antibodies was obtained in the 1980s in studies of mouse monoclonal antibodies. Recently we have isolated a number of human/chimpanzee anti-poliovirus antibodies and demonstrated that one of them, MAb A12, could neutralize polioviruses of both serotypes 1 and 2. This communication presents data on isolation of an additional cross-neutralizing antibody (F12) and identification of a previously unknown epitope on the surface of poliovirus virions. Epitope mapping was performed by sequencing of antibody-resistant mutants and by cryo-EM of complexes of virions with Fab fragments. The results have demonstrated that both cross-neutralizing antibodies bind the site located at the bottom of the canyon surrounding the fivefold axis of symmetry that was previously shown to interact with cellular poliovirus receptor CD155. However, the same antibody binds to serotypes 1 and 2 through different specific interactions. It was also shown to interact with type 3 poliovirus, albeit with about 10-fold lower affinity, insufficient for effective neutralization. Antibody interaction with the binding site of the cellular receptor may explain its broad reactivity and suggest that further screening or antibody engineering could lead to a universal antibody capable of neutralizing all three serotypes of poliovirus. PMID:24277851

  12. Acetylcholine receptor antibody

    MedlinePlus

    ... found in the blood of most people with myasthenia gravis . The antibody affects a chemical that sends signals ... Performed This test is used to help diagnose myasthenia gravis . Normal Results Normally, there is no acetylcholine receptor ...

  13. Balancing Selectivity and Efficacy of Bispecific Epidermal Growth Factor Receptor (EGFR) × c-MET Antibodies and Antibody-Drug Conjugates*

    PubMed Central

    Sellmann, Carolin; Doerner, Achim; Knuehl, Christine; Rasche, Nicolas; Sood, Vanita; Krah, Simon; Rhiel, Laura; Messemer, Annika; Wesolowski, John; Schuette, Mark; Becker, Stefan; Toleikis, Lars; Kolmar, Harald; Hock, Bjoern

    2016-01-01

    Bispecific antibodies (bsAbs) and antibody-drug conjugates (ADCs) have already demonstrated benefits for the treatment of cancer in several clinical studies, showing improved drug selectivity and efficacy. In particular, simultaneous targeting of prominent cancer antigens, such as EGF receptor (EGFR) and c-MET, by bsAbs has raised increasing interest for potentially circumventing receptor cross-talk and c-MET-mediated acquired resistance during anti-EGFR monotherapy. In this study, we combined the selectivity of EGFR × c-MET bsAbs with the potency of cytotoxic agents via bispecific antibody-toxin conjugation. Affinity-attenuated bispecific EGFR × c-MET antibody-drug conjugates demonstrated high in vitro selectivity toward tumor cells overexpressing both antigens and potent anti-tumor efficacy. Due to basal EGFR expression in the skin, ADCs targeting EGFR in general warrant early safety assessments. Reduction in EGFR affinity led to decreased toxicity in keratinocytes. Thus, the combination of bsAb affinity engineering with the concept of toxin conjugation may be a viable route to improve the safety profile of ADCs targeting ubiquitously expressed antigens. PMID:27694443

  14. Limited value of testing for intrinsic factor antibodies with negative gastric parietal cell antibodies in pernicious anaemia.

    PubMed

    Khan, S; Del-Duca, C; Fenton, E; Holding, S; Hirst, J; Doré, P C; Sewell, W A C

    2009-05-01

    The appropriate testing strategy for diagnosing pernicious anaemia using gastric parietal cell (GPC) and/or intrinsic factor antibodies (IFA) is controversial. Intrinsic factor antibodies are found in only about 70% of cases. Indirect immunofluorescence screening for gastric parietal cell antibodies is more sensitive, labour intensive, and less specific. The frequency of antibody positivity (IFA and/or GPC) was retrospectively examined in patients tested for both autoantibodies over a three-year period. It was investigated whether B12 levels were related to antibody status. These findings were validated in a prospective study of IFA in 91 GPC negative patients with low B12 levels. Of 847 samples identified in the retrospective study, 4 (0.47%) were positive for only intrinsic factor antibodies, 731 (86.3%) positive for GPC alone, and 112 (13.2%) for both. Student t test on log-transformed data showed B12 levels had no bearing on autoantibody status. 91 consecutive patients with low B12 levels were tested for both autoantibodies; all were negative for gastric parietal cell antibodies. Only one sample was positive for intrinsic factor antibody using the porcine intrinsic factor assay, but was negative by a human recombinant intrinsic factor-based ELISA. This study provides evidence that testing for gastric parietal cell antibodies is an appropriate screening test for pernicious anaemia, with intrinsic factor antibodies reserved for confirmatory testing or in patients with other autoantibodies that mask the GPC pattern; B12 levels are not related to autoantibody status.

  15. [Construction of a phage antibody library and screening of anti-epidermal growth factor receptor variant III single chain antibody].

    PubMed

    Han, Dong-gang; Duan, Xiao-yi; Guo, You-min; Zhou, Qi; Wang, Quan-ying; Yang, Guang-xiao

    2010-01-01

    To obtain specific anti-epidermal growth factor receptor variant III (EGFRvIII) single chain antibody (ScFv) by phage antibody library display system. The total RNA was extracted from the spleen B cells of BALB/c mice immunized with pep-3-OVA protein, and the first-strand cDNA was synthesized by reverse transcription. Antibody VH and VL gene fragments were amplified and joined to a ScFv gene with the linker. The ScFv gene was ligated into the phagemid vector pCANTAB5E, which was transformed into competent E. coli TG1. The transformed cells were then infected with M13KO7 helper phage to yield the recombinant phage to construct the phage ScFv library. Pep-3-BSA protein was used to screen the phage antibody library and ELISA carried out to characterize the activity of the antibody. The VH and VL gene fragments of the antibody were about 350 bp and 320 bp in length as analyzed by agarose gel electrophoresis. The ScFv gene was 780 bp, consistent with the expected length. The recombinant phagemid with ScFv gene insert was rescued, and an immune phage ScFv library with the content of 5.0x10(6) was constructed. The recombinant ScFv phage had a titer of 3.0x10(4) cfu/ml, and the fourth phage harvest yielded 56 times as much as that of the first one. SDS-PAGE demonstrated a molecular mass of the soluble ScFv of about 28 kD. ELISA results indicated good specificity of the ScFv to bind EGFRvIII. An immune phage ScFv library is successfully constructed, and the ScFv antibody fragment is capable of specific binding to EGFRvIII.

  16. C4d-negative antibody-mediated rejection with high anti-angiotensin II type I receptor antibodies in absence of donor-specific antibodies.

    PubMed

    Fuss, Alexander; Hope, Christopher M; Deayton, Susan; Bennett, Greg Donald; Holdsworth, Rhonda; Carroll, Robert P; Coates, P Toby H

    2015-07-01

    Acute antibody-mediated rejection can occur in absence of circulating donor-specific antibodies. Agonistic antibodies targeting the anti-angiotensin II type 1 receptor (anti-AT1 R) are emerging as important non-human leucocyte antigen (HLA) antibodies. Elevated levels of anti-angiotensin II receptor antibodies were first observed in kidney transplant recipients with malignant hypertension and allograft rejection. They have now been studied in three separate kidney transplant populations and associate to frequency of rejection, severity of rejection and graft failure. We report 11 cases of biopsy-proven, Complement 4 fragment d (C4d)-negative, acute rejection occurring without circulating donor-specific anti-HLA antibodies. In eight cases, anti-angiotensin receptor antibodies were retrospectively examined. The remaining three subjects were identified from our centre's newly instituted routine anti-angiotensin receptor antibody screening. All subjects fulfilled Banff 2013 criteria for antibody-mediated rejection and all responded to anti-rejection therapy, which included plasma exchange and angiotensin receptor blocker therapy. These cases support the routine assessment of anti-AT1 R antibodies in kidney transplant recipients to identify subjects at risk. Further studies will need to determine optimal assessment protocol and the effectiveness of pre-emptive treatment with angiotensin receptor blockers. © 2015 Asian Pacific Society of Nephrology.

  17. Development of antibodies against the rat brain somatostatin receptor.

    PubMed

    Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T

    1992-05-15

    Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).

  18. Hybrid Antibody-Induced Topographical Redistribution of Surface Immunoglobulins, Alloantigens, and Concanavalin A Receptors on Mouse Lymphoid Cells

    PubMed Central

    Stackpole, Christopher W.; De Milio, Lawrence T.; Hämmerling, Ulrich; Jacobson, Janet B.; Lardis, Michael P.

    1974-01-01

    Redistribution of surface immunoglobulins, H-2b, Thy-1.2, and TL.1,2,3 alloantigens, and concanavalin A receptors on mouse lymphoid cells induced by hybrid rabbit F(ab′)2 antibody (anti-mouse immunoglobulin/anti-visual marker or anti-concanavalin A/anti-visual marker) was studied by immunofluorescence. When used directly to label surface immunoglobulin, and indirectly to label alloantigens and concanavalin A receptors, hybrid antibodies induced similar displacement of all surface components from a uniform distribution into “patches” and “caps” at 37°. One hybrid antibody preparation, antimouse immunoglobulin/anti-ferritin, contained negligible amounts of bivalent anti-mouse immunoglobulin antibody, and was therefore “monovalent” for the antimouse immunoglobulin specificity. This observation suggests that factors other than multivalent crosslinking are responsible for hybrid antibody-induced redistribution of cell-surface components. Cap formation induced by hybrid antibody was enhanced markedly by attachment of the visual marker, either ferritin or southern bean mosaic virus, at 37°. At -5°, hybrid antibody does not displace uniformly distributed H-2b alloantigen-alloantibody complexes, but patches of label develop when ferritin attaches to the hybrid antibody. These results explain the patchy distribution of cell-surface components, which is a temperature-independent characteristic of labeling with hybrid antibodies and visual markers for electron microscopy. Images PMID:4595577

  19. Toll-like Receptors and B-cell Receptors Synergize to Induce Immunoglobulin Class Switch DNA Recombination: Relevance to Microbial Antibody Responses

    PubMed Central

    Pone, Egest J.; Zan, Hong; Zhang, Jinsong; Al-Qahtani, Ahmed; Xu, Zhenming; Casali, Paolo

    2011-01-01

    Differentiation of naïve B cells, including immunoglobulin (Ig) class switch DNA recombination (CSR), is critical for the immune response and depends on the extensive integration of signals from the B cell receptor (BCR), tumor necrosis factor (TNF) receptor family members, Toll-like receptors (TLRs) and cytokine receptors. TLRs and BCR synergize to induce CSR in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B cell differentiation and antibody responses. The requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the upregulation of co-stimulatory CD80 and MHC-II receptors, which, in turn, result in more efficient interactions with T cells, thereby enhancing the germinal center (GC) reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products, determine the ensuing B cell antibody response. PMID:20370617

  20. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    PubMed

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A monoclonal antibody against PDGF B-chain inhibits PDGF-induced DNA synthesis in C3H fibroblasts and prevents binding of PDGF to its receptor.

    PubMed

    Vassbotn, F S; Langeland, N; Hagen, I; Holmsen, H

    1990-09-01

    A monoclonal antibody (MAb 6D11) against platelet-derived growth factor (PDGF) was studied. We found that the MAb 6D11 in concentrations equimolar to PDGF blocked the [3H]thymidine incorporation in C3H/10T1/2 C18 fibroblasts stimulated by PDGF B-B and PDGF A-B. This inhibition was overcome by high doses of PDGF. The [3H]thymidine incorporation stimulated by other growth factors (aFGF, bFGF and bombesin) was not inhibited by the antibody. The MAb 6D11 blocked receptor binding of PDGF B-B, but not PDGF A-A. These findings suggest that the MAb 6D11 abolishes PDGF-induced DNA synthesis by blocking PDGF receptor binding. In this communication we demonstrate an isoform-specific monoclonal antibody against PDGF.

  2. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies.

    PubMed

    Petit-Pedrol, Mar; Armangue, Thaís; Peng, Xiaoyu; Bataller, Luis; Cellucci, Tania; Davis, Rebecca; McCracken, Lindsey; Martinez-Hernandez, Eugenia; Mason, Warren P; Kruer, Michael C; Ritacco, David G; Grisold, Wolfgang; Meaney, Brandon F; Alcalá, Carmen; Sillevis-Smitt, Peter; Titulaer, Maarten J; Balice-Gordon, Rita; Graus, Francesc; Dalmau, Josep

    2014-03-01

    Increasing evidence suggests that seizures and status epilepticus can be immune-mediated. We aimed to describe the clinical features of a new epileptic disorder, and to establish the target antigen and the effects of patients' antibodies on neuronal cultures. In this observational study, we selected serum and CSF samples for antigen characterisation from 140 patients with encephalitis, seizures or status epilepticus, and antibodies to unknown neuropil antigens. The samples were obtained from worldwide referrals of patients with disorders suspected to be autoimmune between April 28, 2006, and April 25, 2013. We used samples from 75 healthy individuals and 416 patients with a range of neurological diseases as controls. We assessed the samples using immunoprecipitation, mass spectrometry, cell-based assay, and analysis of antibody effects in cultured rat hippocampal neurons with confocal microscopy. Neuronal cell-membrane immunoprecipitation with serum of two index patients revealed GABAA receptor sequences. Cell-based assay with HEK293 expressing α1/β3 subunits of the GABAA receptor showed high titre serum antibodies (>1:160) and CSF antibodies in six patients. All six patients (age 3-63 years, median 22 years; five male patients) developed refractory status epilepticus or epilepsia partialis continua along with extensive cortical-subcortical MRI abnormalities; four patients needed pharmacologically induced coma. 12 of 416 control patients with other diseases, but none of the healthy controls, had low-titre GABAA receptor antibodies detectable in only serum samples, five of them also had GAD-65 antibodies. These 12 patients (age 2-74 years, median 26.5 years; seven male patients) developed a broader spectrum of symptoms probably indicative of coexisting autoimmune disorders: six had encephalitis with seizures (one with status epilepticus needing pharmacologically induced coma; one with epilepsia partialis continua), four had stiff-person syndrome (one with seizures

  3. Encephalitis and AMPA receptor antibodies

    PubMed Central

    Höftberger, Romana; van Sonderen, Agnes; Leypoldt, Frank; Houghton, David; Geschwind, Michael; Gelfand, Jeffrey; Paredes, Mercedes; Sabater, Lidia; Saiz, Albert; Titulaer, Maarten J.; Graus, Francesc

    2015-01-01

    Objective: We report the clinical features, comorbidities, and outcome of 22 newly identified patients with antibodies to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Methods: This was a retrospective review of patients diagnosed between May 2009 and March 2014. Immunologic techniques have been reported previously. Results: Patients' median age was 62 years (range 23–81; 14 female). Four syndromes were identified: 12 (55%) patients presented with distinctive limbic encephalitis (LE), 8 (36%) with limbic dysfunction along with multifocal/diffuse encephalopathy, one with LE preceded by motor deficits, and one with psychosis with bipolar features. Fourteen patients (64%) had a tumor demonstrated pathologically (5 lung, 4 thymoma, 2 breast, 2 ovarian teratoma) or radiologically (1 lung). Additional antibodies occurred in 7 patients (3 onconeuronal, 1 tumor-related, 2 cell surface, and 1 tumor-related and cell surface), all with neurologic symptoms or tumor reflecting the concurrent autoimmunity. Treatment and outcome were available from 21 patients (median follow-up 72 weeks, range 5–266): 5 had good response to immunotherapy and tumor therapy, 10 partial response, and 6 did not improve. Eventually 5 patients died; all had a tumor or additional paraneoplastic symptoms related to onconeuronal antibodies. Coexistence of onconeuronal antibodies predicted a poor outcome (p = 0.009). Conclusion: Anti-AMPAR encephalitis usually manifests as LE, can present with other symptoms or psychosis, and is paraneoplastic in 64% of cases. Complete and impressive neurologic improvement can occur, but most patients have partial recovery. Screening for a tumor and onconeuronal antibodies is important because their detection influences outcome. PMID:25979696

  4. A Human Blood-Brain Barrier Transcytosis Assay Reveals Antibody Transcytosis Influenced by pH-Dependent Receptor Binding

    PubMed Central

    Sade, Hadassah; Baumgartner, Claudia; Hugenmatter, Adrian; Moessner, Ekkehard; Freskgård, Per-Ola; Niewoehner, Jens

    2014-01-01

    We have adapted an in vitro model of the human blood-brain barrier, the immortalized human cerebral microvascular endothelial cells (hCMEC/D3), to quantitatively measure protein transcytosis. After validating the receptor-mediated transport using transferrin, the system was used to measure transcytosis rates of antibodies directed against potential brain shuttle receptors. While an antibody to the insulin-like growth factor 1 receptor (IGF1R) was exclusively recycled to the apical compartment, the fate of antibodies to the transferrin receptor (TfR) was determined by their relative affinities at extracellular and endosomal pH. An antibody with reduced affinity at pH5.5 showed significant transcytosis, while pH-independent antibodies of comparable affinities at pH 7.4 remained associated with intracellular vesicular compartments and were finally targeted for degradation. PMID:24788759

  5. The Influence of Thyroid-Stimulating Hormone and Thyroid-Stimulating Hormone Receptor Antibodies on Osteoclastogenesis

    PubMed Central

    Morshed, Syed; Latif, Rauf; Zaidi, Mone; Davies, Terry F.

    2011-01-01

    Background We have shown that thyroid-stimulating hormone (TSH) has a direct inhibitory effect on osteoclastic bone resorption and that TSH receptor (TSHR) null mice display osteoporosis. To determine the stage of osteoclast development at which TSH may exert its effect, we examined the influence of TSH and agonist TSHR antibodies (TSHR-Ab) on osteoclast differentiation from murine embryonic stem (ES) cells to gain insight into bone remodeling in hyperthyroid Graves' disease. Methods Osteoclast differentiation was initiated in murine ES cell cultures through exposure to macrophage colony stimulation factor, receptor activator of nuclear factor кB ligand, vitamin D, and dexamethasone. Results Tartrate resistant acid phosphatase (TRAP)-positive osteoclasts formed in ∼12 days. This coincided with the expected downregulation of known markers of self renewal and pluripotency (including Oct4, Sox2, and REX1). Both TSH and TSHR-Abs inhibited osteoclastogenesis as evidenced by decreased development of TRAP-positive cells (∼40%–50% reduction, p = 0.0047), and by decreased expression, in a concentration-dependent manner, of osteoclast differentiation markers (including the calcitonin receptor, TRAP, cathepsin K, matrix metallo-proteinase-9, and carbonic anhydrase II). Similar data were obtained using serum immunoglobulin-Gs (IgGs) from patients with hyperthyroid Graves' disease and known TSHR-Abs. TSHR stimulators inhibited tumor necrosis factor-alpha mRNA and protein expression, but increased the expression of osteoprotegerin (OPG), an antiosteoclastogenic human soluble receptor activator of nuclear factor кB ligand receptor. Neutralizing antibody to OPG reversed the inhibitory effect of TSH on osteoclast differentiation evidencing that the TSH effect was at least in part mediated by increased OPG. Conclusion These data establish ES-derived osteoclastogenesis as an effective model system to study the regulation of osteoclast differentiation in early development

  6. Biomarkers of skin toxicity induced by anti-epidermal growth factor receptor antibody treatment in colorectal cancer.

    PubMed

    Kubo, Akiko; Hashimoto, Hironobu; Takahashi, Naoki; Yamada, Yasuhide

    2016-01-14

    Skin toxicity is a common symptom of anti-epidermal growth factor receptor (EGFR) antibody treatment and is also a predictive marker of its efficacy in colorectal cancer patients. However, severe skin disorders induced by such antibodies negatively impact on the quality of life of patients and decreases drug compliance during treatment. If we can predict the high-risk group susceptible to severe skin toxicity before treatment, we can undertake the early management of any arising skin disorders and formulate a more accurate prognosis for anti-EGFR antibody treatment. Previous studies have identified molecular markers of skin toxicity induced by anti-EGFR antibody, such as EGFR polymorphisms, the expression of inflammatory chemokines and serum levels of EGFR ligands. A clinical trial was undertaken involving the escalation of cetuximab doses, guided by the grade of skin toxicity observed, such as no or low-grade, in metastatic colorectal cancer (the EVEREST study). The dose escalation of cetuximab was confirmed by a safety profile and had the tendency to achieve a higher response rate in KRAS wild-type patients. A large, prospective randomized trial is now ongoing (EVEREST 2) and the results of this trial may contribute to personalized medicine in KRAS wild-type colorectal cancer patients.

  7. Biomarkers of skin toxicity induced by anti-epidermal growth factor receptor antibody treatment in colorectal cancer

    PubMed Central

    Kubo, Akiko; Hashimoto, Hironobu; Takahashi, Naoki; Yamada, Yasuhide

    2016-01-01

    Skin toxicity is a common symptom of anti-epidermal growth factor receptor (EGFR) antibody treatment and is also a predictive marker of its efficacy in colorectal cancer patients. However, severe skin disorders induced by such antibodies negatively impact on the quality of life of patients and decreases drug compliance during treatment. If we can predict the high-risk group susceptible to severe skin toxicity before treatment, we can undertake the early management of any arising skin disorders and formulate a more accurate prognosis for anti-EGFR antibody treatment. Previous studies have identified molecular markers of skin toxicity induced by anti-EGFR antibody, such as EGFR polymorphisms, the expression of inflammatory chemokines and serum levels of EGFR ligands. A clinical trial was undertaken involving the escalation of cetuximab doses, guided by the grade of skin toxicity observed, such as no or low-grade, in metastatic colorectal cancer (the EVEREST study). The dose escalation of cetuximab was confirmed by a safety profile and had the tendency to achieve a higher response rate in KRAS wild-type patients. A large, prospective randomized trial is now ongoing (EVEREST 2) and the results of this trial may contribute to personalized medicine in KRAS wild-type colorectal cancer patients. PMID:26811634

  8. Viral receptor-binding site antibodies with diverse germline origins.

    PubMed

    Schmidt, Aaron G; Therkelsen, Matthew D; Stewart, Shaun; Kepler, Thomas B; Liao, Hua-Xin; Moody, M Anthony; Haynes, Barton F; Harrison, Stephen C

    2015-05-21

    Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by 11 different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B cell targets. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Netrin-1 receptor antibodies in thymoma-associated neuromyotonia with myasthenia gravis.

    PubMed

    Torres-Vega, Estefanía; Mancheño, Nuria; Cebrián-Silla, Arantxa; Herranz-Pérez, Vicente; Chumillas, María J; Moris, Germán; Joubert, Bastien; Honnorat, Jérôme; Sevilla, Teresa; Vílchez, Juan J; Dalmau, Josep; Graus, Francesc; García-Verdugo, José Manuel; Bataller, Luis

    2017-03-28

    To identify cell-surface antibodies in patients with neuromyotonia and to describe the main clinical implications. Sera of 3 patients with thymoma-associated neuromyotonia and myasthenia gravis were used to immunoprecipitate and characterize neuronal cell-surface antigens using reported techniques. The clinical significance of antibodies against precipitated proteins was assessed with sera of 98 patients (neuromyotonia 46, myasthenia gravis 52, thymoma 42; 33 of them with overlapping syndromes) and 219 controls (other neurologic diseases, cancer, and healthy volunteers). Immunoprecipitation studies identified 3 targets, including the Netrin-1 receptors DCC (deleted in colorectal carcinoma) and UNC5A (uncoordinated-5A) as well as Caspr2 (contactin-associated protein-like 2). Cell-based assays with these antigens showed that among the indicated patients, 9 had antibodies against Netrin-1 receptors (7 with additional Caspr2 antibodies) and 5 had isolated Caspr2 antibodies. Only one of the 219 controls had isolated Caspr2 antibodies with relapsing myelitis episodes. Among patients with neuromyotonia and/or myasthenia gravis, the presence of Netrin-1 receptor or Caspr2 antibodies predicted thymoma ( p < 0.05). Coexisting Caspr2 and Netrin-1 receptor antibodies were associated with concurrent thymoma, myasthenia gravis, and neuromyotonia, often with Morvan syndrome ( p = 0.009). Expression of DCC, UNC5A, and Caspr2 proteins was demonstrated in paraffin-embedded thymoma samples (3) and normal thymus. Antibodies against Netrin-1 receptors (DCC and UNC5a) and Caspr2 often coexist and associate with thymoma in patients with neuromyotonia and myasthenia gravis. This study provides Class III evidence that antibodies against Netrin-1 receptors can identify patients with thymoma (sensitivity 21.4%, specificity 100%). © 2017 American Academy of Neurology.

  10. Structural Activation of Pro-inflammatory Human Cytokine IL-23 by Cognate IL-23 Receptor Enables Recruitment of the Shared Receptor IL-12Rβ1.

    PubMed

    Bloch, Yehudi; Bouchareychas, Laura; Merceron, Romain; Składanowska, Katarzyna; Van den Bossche, Lien; Detry, Sammy; Govindarajan, Srinath; Elewaut, Dirk; Haerynck, Filomeen; Dullaers, Melissa; Adamopoulos, Iannis E; Savvides, Savvas N

    2018-01-16

    Interleukin-23 (IL-23), an IL-12 family cytokine, plays pivotal roles in pro-inflammatory T helper 17 cell responses linked to autoimmune and inflammatory diseases. Despite intense therapeutic targeting, structural and mechanistic insights into receptor complexes mediated by IL-23, and by IL-12 family members in general, have remained elusive. We determined a crystal structure of human IL-23 in complex with its cognate receptor, IL-23R, and revealed that IL-23R bound to IL-23 exclusively via its N-terminal immunoglobulin domain. The structural and functional hotspot of this interaction partially restructured the helical IL-23p19 subunit of IL-23 and restrained its IL-12p40 subunit to cooperatively bind the shared receptor IL-12Rβ1 with high affinity. Together with structural insights from the interaction of IL-23 with the inhibitory antibody briakinumab and by leveraging additional IL-23:antibody complexes, we propose a mechanistic paradigm for IL-23 and IL-12 whereby cognate receptor binding to the helical cytokine subunits primes recruitment of the shared receptors via the IL-12p40 subunit. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Chimeric Monoclonal Antibody Cetuximab Targeting Epidermal Growth Factor-Receptor in Advanced Non-Melanoma Skin Cancer.

    PubMed

    Wollina, Uwe; Tchernev, Georgi; Lotti, Torello

    2018-01-25

    Non-melanoma skin cancer (NMSC) is the most common malignancy in humans. Targeted therapy with monoclonal antibody cetuximab is an option in case of advanced tumor or metastasis. We present and update of the use of cetuximab in NMSC searching PUBMED 2011-2017. The monoclonal antibody cetuximab against epidermal growth factor receptor (EGFR) has been investigated for its use in NMSC during the years 2011 to 2017 by a PUBMED research using the following items: "Non-melanoma skin cancer AND cetuximab," "cutaneous squamous cell carcinoma AND cetuximab," and "basal cell carcinoma AND cetuximab", and "cetuximab AND skin toxicity". Available data were analyzed including case reports. Current evidence of cetuximab efficacy in NMSC was mainly obtained in cutaneous SCC and to a lesser extend in BCC. Response rates vary for neoadjuvant, adjuvant, mono- and combined therapy with cetuximab. Management of cutaneous toxicities is necessary. Guidelines are available. Cetuximab is an option for recurrent or advanced NMSC of the skin. It seems to be justified particularly in very high-risk tumors. There is a need for phase III trials.

  12. Epitope mapping of the alpha-chain of the insulin-like growth factor I receptor using antipeptide antibodies.

    PubMed

    Delafontaine, P; Ku, L; Ververis, J J; Cohen, C; Runge, M S; Alexander, R W

    1994-12-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells (VSMC). The IGF I receptor (IGF IR) is a heterotetramer composed of two cross-linked extracellular alpha-chains and two membrane-spanning beta-chains that contain a tyrosine-kinase domain. It has a high degree of sequence similarity to the insulin receptor (IR), and the putative ligand-specific binding site has been localized to a cysteine-rich region (CRR) of the alpha-chain. To obtain insights into antigenic determinants of the IGF IR, we raised a panel of site-specific polyclonal antibodies against short peptide sequences N-terminal to and within the CRR. Several antibodies raised against linear epitopes within the CRR bound to solubilized and native rat and human IGF IR by ELISA, did not cross-react with IR, but unexpectedly failed to inhibit 125I-IGF I binding. A polyclonal antibody directed against a 48-amino acid synthetic peptide, corresponding to a region of the CRR postulated to be essential for ligand binding, failed to react with either solubilized, reduced or intact IGF IR. Three antibodies specific for the N-terminus of the alpha-chain reacted with solubilized and native IGF IR. One of these, RAB 6, directed against amino acids 38-44 of the IGF IR, inhibited 125I-IGF I binding to rat aortic smooth muscle cells (RASM) and to IGF IR/3T3 cells (overexpressing human IGF IR) by up to 45%. Immunohistochemical analysis revealed strong IGF IR staining in the medial smooth muscle cell layer of rat aorta. These findings are consistent with a model wherein conformational epitopes within the CRR and linear epitopes within the N-terminus of the alpha-chain contribute to the IGF I binding pocket. These antibodies should provide a valuable tool to study structure-function relationships and in vivo regulation of the IGF IR.

  13. Netrin-1 receptor antibodies in thymoma-associated neuromyotonia with myasthenia gravis

    PubMed Central

    Torres-Vega, Estefanía; Mancheño, Nuria; Cebrián-Silla, Arantxa; Herranz-Pérez, Vicente; Chumillas, María J.; Moris, Germán; Joubert, Bastien; Honnorat, Jérôme; Sevilla, Teresa; Vílchez, Juan J.; Dalmau, Josep; Graus, Francesc; García-Verdugo, José Manuel

    2017-01-01

    Objective: To identify cell-surface antibodies in patients with neuromyotonia and to describe the main clinical implications. Methods: Sera of 3 patients with thymoma-associated neuromyotonia and myasthenia gravis were used to immunoprecipitate and characterize neuronal cell-surface antigens using reported techniques. The clinical significance of antibodies against precipitated proteins was assessed with sera of 98 patients (neuromyotonia 46, myasthenia gravis 52, thymoma 42; 33 of them with overlapping syndromes) and 219 controls (other neurologic diseases, cancer, and healthy volunteers). Results: Immunoprecipitation studies identified 3 targets, including the Netrin-1 receptors DCC (deleted in colorectal carcinoma) and UNC5A (uncoordinated-5A) as well as Caspr2 (contactin-associated protein-like 2). Cell-based assays with these antigens showed that among the indicated patients, 9 had antibodies against Netrin-1 receptors (7 with additional Caspr2 antibodies) and 5 had isolated Caspr2 antibodies. Only one of the 219 controls had isolated Caspr2 antibodies with relapsing myelitis episodes. Among patients with neuromyotonia and/or myasthenia gravis, the presence of Netrin-1 receptor or Caspr2 antibodies predicted thymoma (p < 0.05). Coexisting Caspr2 and Netrin-1 receptor antibodies were associated with concurrent thymoma, myasthenia gravis, and neuromyotonia, often with Morvan syndrome (p = 0.009). Expression of DCC, UNC5A, and Caspr2 proteins was demonstrated in paraffin-embedded thymoma samples (3) and normal thymus. Conclusions: Antibodies against Netrin-1 receptors (DCC and UNC5a) and Caspr2 often coexist and associate with thymoma in patients with neuromyotonia and myasthenia gravis. Classification of evidence: This study provides Class III evidence that antibodies against Netrin-1 receptors can identify patients with thymoma (sensitivity 21.4%, specificity 100%). PMID:28251919

  14. Six commercially available angiotensin II AT1 receptor antibodies are non-specific.

    PubMed

    Benicky, Julius; Hafko, Roman; Sanchez-Lemus, Enrique; Aguilera, Greti; Saavedra, Juan M

    2012-11-01

    Commercially available Angiotensin II AT1 receptor antibodies are widely employed for receptor localization and quantification, but they have not been adequately validated. In this study, six commercially available AT1 receptor antibodies were characterized by established criteria: sc-1173 and sc-579 from Santa Cruz Biotechnology, Inc., AAR-011 from Alomone Labs, Ltd., AB15552 from Millipore, and ab18801 and ab9391 from Abcam. The immunostaining patterns observed were different for every antibody tested, and were unrelated to the presence or absence of AT1 receptors. The antibodies detected a 43 kDa band in western blots, corresponding to the predicted size of the native AT1 receptor. However, identical bands were observed in wild-type mice and in AT1A knock-out mice not expressing the target protein. Moreover, immunoreactivity detected in rat hypothalamic 4B cells not expressing AT1 receptors or transfected with AT1A receptor construct was identical, as revealed by western blotting and immunocytochemistry in cultured 4B cells. Additional prominent immunoreactive bands above and below 43 kDa were observed by western blotting in extracts from tissues of AT1A knock-out and wild-type mice and in 4B cells with or without AT1 receptor expression. In all cases, the patterns of immunoreactivity were independent of the AT1 receptor expression and different for each antibody studied. We conclude that, in our experimental setup, none of the commercially available AT1 receptor antibodies tested met the criteria for specificity and that competitive radioligand binding remains the only reliable approach to study AT1 receptor physiology in the absence of full antibody characterization.

  15. Six Commercially Available Angiotensin II AT1 Receptor Antibodies are Non-specific

    PubMed Central

    Benicky, Julius; Hafko, Roman; Sanchez-Lemus, Enrique; Aguilera, Greti

    2012-01-01

    Commercially available Angiotensin II AT1 receptor antibodies are widely employed for receptor localization and quantification, but they have not been adequately validated. In this study, six commercially available AT1 receptor antibodies were characterized by established criteria: sc-1173 and sc-579 from Santa Cruz Biotechnology, Inc., AAR-011 from Alomone Labs, Ltd., AB15552 from Millipore, and ab18801 and ab9391 from Abcam. The immunostaining patterns observed were different for every antibody tested, and were unrelated to the presence or absence of AT1 receptors. The antibodies detected a 43 kDa band in western blots, corresponding to the predicted size of the native AT1 receptor. However, identical bands were observed in wild-type mice and in AT1A knock-out mice not expressing the target protein. Moreover, immunoreactivity detected in rat hypothalamic 4B cells not expressing AT1 receptors or transfected with AT1A receptor construct was identical, as revealed by western blotting and immunocytochemistry in cultured 4B cells. Additional prominent immunoreactive bands above and below 43 kDa were observed by western blotting in extracts from tissues of AT1A knock-out and wild-type mice and in 4B cells with or without AT1 receptor expression. In all cases, the patterns of immunoreactivity were independent of the AT1 receptor expression and different for each antibody studied. We conclude that, in our experimental setup, none of the commercially available AT1 receptor antibodies tested met the criteria for specificity and that competitive radioligand binding remains the only reliable approach to study AT1 receptor physiology in the absence of full antibody characterization. PMID:22843099

  16. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  17. Insulin Action is Blocked by a Monoclonal Antibody That Inhibits the Insulin Receptor Kinase

    NASA Astrophysics Data System (ADS)

    Morgan, David O.; Ho, Lisa; Korn, Laurence J.; Roth, Richard A.

    1986-01-01

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor β subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens, and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor β subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin.

  18. Targeting the fibroblast growth factor receptors for the treatment of cancer.

    PubMed

    Lemieux, Steven M; Hadden, M Kyle

    2013-06-01

    Receptor tyrosine kinases (RTKs) are transmembrane proteins that play a critical role in stimulating signal transduction cascades to influence cell proliferation, growth, and differentiation and they have also been shown to promote angiogenesis when they are up-regulated or mutated. For this reason, their dysfunction has been implicated in the development of human cancer. Over the past decade, much attention has been devoted to developing inhibitors and antibodies against several classes of RTKs, including vascular endothelial growth factor receptors (VEGFRs), epidermal growth factor receptors (EGFRs), and platelet-derived growth factor receptors (PDGFRs). More recently, interest in the fibroblast growth factor receptor (FGFR) class of RTKs as a drug target for the treatment of cancer has emerged. Signaling through FGFRs is critical for normal cellular function and their dysregulation has been linked to various malignancies such as breast and prostate cancer. This review will focus on the current state of both small molecules and antibodies as FGFR inhibitors to provide insight into their development and future potential as anti-cancer agents.

  19. Epitope mapping of epidermal growth factor receptor (EGFR) monoclonal antibody and induction of growth-inhibitory polyclonal antibodies by vaccination with EGFR mimotope.

    PubMed

    Navari, Mohsen; Zare, Mehrak; Javanmardi, Masoud; Asadi-Ghalehni, Majid; Modjtahedi, Helmout; Rasaee, Mohammad Javed

    2014-10-01

    One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.

  20. Agonistic Human Monoclonal Antibodies against Death Receptor 4 (DR4) | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute is seeking parties interested in licensing human monoclonal antibodies (mAbs) that bind to death receptor 4 ("DR4"). The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its functional receptors, DR4 and DR5, have been recognized as promising targets for cancer treatment.

  1. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes

    PubMed Central

    Carvajal-González, Alexander; Leite, M. Isabel; Waters, Patrick; Woodhall, Mark; Coutinho, Ester; Balint, Bettina; Lang, Bethan; Pettingill, Philippa; Carr, Aisling; Sheerin, Una-Marie; Press, Raomand; Lunn, Michael P.; Lim, Ming; Maddison, Paul; Meinck, H.-M.; Vandenberghe, Wim

    2014-01-01

    The clinical associations of glycine receptor antibodies have not yet been described fully. We identified prospectively 52 antibody-positive patients and collated their clinical features, investigations and immunotherapy responses. Serum glycine receptor antibody endpoint titres ranged from 1:20 to 1:60 000. In 11 paired samples, serum levels were higher than (n = 10) or equal to (n = 1) cerebrospinal fluid levels; there was intrathecal synthesis of glycine receptor antibodies in each of the six pairs available for detailed study. Four patients also had high glutamic acid decarboxylase antibodies (>1000 U/ml), and one had high voltage-gated potassium channel-complex antibody (2442 pM). Seven patients with very low titres (<1:50) and unknown or alternative diagnoses were excluded from further study. Three of the remaining 45 patients had newly-identified thymomas and one had a lymphoma. Thirty-three patients were classified as progressive encephalomyelitis with rigidity and myoclonus, and two as stiff person syndrome; five had a limbic encephalitis or epileptic encephalopathy, two had brainstem features mainly, two had demyelinating optic neuropathies and one had an unclear diagnosis. Four patients (9%) died during the acute disease, but most showed marked improvement with immunotherapies. At most recent follow-up, (2–7 years, median 3 years, since first antibody detection), the median modified Rankin scale scores (excluding the four deaths) decreased from 5 at maximal severity to 1 (P < 0.0001), but relapses have occurred in five patients and a proportion are on reducing steroids or other maintenance immunotherapies as well as symptomatic treatments. The glycine receptor antibodies activated complement on glycine receptor-transfected human embryonic kidney cells at room temperature, and caused internalization and lysosomal degradation of the glycine receptors at 37°C. Immunoglobulin G antibodies bound to rodent spinal cord and brainstem co-localizing with

  2. Improved growth response of antibody/receptor chimera attained by the engineering of transmembrane domain.

    PubMed

    Kawahara, Masahiro; Ogo, Yuko; Ueda, Hiroshi; Nagamune, Teruyuki

    2004-10-01

    Structure-based design of antibody/cytokine receptor chimeras has permitted a growth signal transduction in response to non-natural ligands such as fluorescein-conjugated BSA as mimicry of cytokine-cytokine receptor systems. However, while tight on/off regulation is observed in the natural cytokine receptor systems, many chimeras constructed to date showed residual growth-promoting activity in the absence of ligands. Here we tried to reduce the basal growth signal intensity from a chimera by engineering the transmembrane domain (TM) that is thought to be involved in the interchain interaction of natural cytokine receptors. When the retroviral vectors encoding the chimeras with either the wild-type erythropoietin receptor (EpoR) TM or the one bearing two mutations in the leucine zipper motif were transduced to non-strictly interleukin-6-dependent 7TD1 cells, a tight antigen-dependent on/off regulation was attained, also demonstrating the first antigen-mediated genetically modified cell amplification of non-strictly factor-dependent cells. The results clearly indicate that the TM mutation is an effective means to improve the growth response of the antibody/receptor chimera.

  3. Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaramillo, Maria L.; Leon, Zully; Grothe, Suzanne

    The anti-receptor antibody, 225 mAb, is known to block binding of ligand to the epidermal growth factor receptor (EGFR). However, the effect of this neutralizing antibody on EGFR endocytosis, trafficking and degradation remains unclear. Here, we demonstrate that endocytosis of {sup 125}I-225 mAb occurs, albeit with a slower rate than that of EGF. Using pulse chase assays, we show that internalized {sup 125}I-225 mAb is recycled to the surface much more efficiently than internalized {sup 125}I-EGF. Also, we found that internalization of {sup 125}I-225 mAb, in contrast to that of EGF, is independent of receptor tyrosine kinase activity, as evidencedmore » by its insensitivity to AG1478, a specific EGFR tyrosine kinase inhibitor. Analysis of the levels of cell surface and total EGFR showed that treatment with 225 mAb results in a 30-40% decrease in surface EGFR and a relatively slow downregulation of total EGFR. Taken together, these data indicate that 225 mAb induces internalization and downregulation of EGFR via a mechanism distinct from that underlying EGF-induced EGFR internalization and downregulation.« less

  4. Fully human antibodies against the Protease-Activated Receptor-2 (PAR-2) with anti-inflammatory activity.

    PubMed

    Giblin, Patricia; Boxhammer, Rainer; Desai, Sudha; Kroe-Barrett, Rachel; Hansen, Gale; Ksiazek, John; Panzenbeck, Maret; Ralph, Kerry; Schwartz, Racheline; Zimmitti, Clare; Pracht, Catrin; Miller, Sandra; Magram, Jeanne; Litzenburger, Tobias

    2011-01-01

    PAR-2 belongs to a family of G-protein coupled Protease-Activated Receptors (PAR) which are activated by specific proteolytic cleavage in the extracellular N-terminal region. PAR-2 is activated by proteases such as trypsin, tryptase, proteinase 3, factor VIIa, factor Xa and is thought to be a mediator of inflammation and tissue injury, where elevated levels of proteases are found. Utilizing the HuCAL GOLD® phage display library we generated fully human antibodies specifically blocking the protease cleavage site in the N-terminal domain. In vitro affinity optimization resulted in antibodies with up to 1000-fold improved affinities relative to the original parental antibodies with dissociation constants as low as 100 pM. Corresponding increases in potency were observed in a mechanistic protease cleavage assay. The antibodies effectively inhibited PAR-2 mediated intracellular calcium release and cytokine secretion in various cell types stimulated with trypsin. In addition, the antibodies demonstrated potent inhibition of trypsin induced relaxation of isolated rat aortic rings ex vivo. In a short term mouse model of inflammation, the trans vivo DTH model, anti-PAR-2 antibodies showed inhibition of the inflammatory swelling response. In summary, potent inhibitors of PAR-2 were generated which allow further assessment of the role of this receptor in inflammation and evaluation of their potential as therapeutic agents.

  5. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies

    PubMed Central

    Dalmau, Josep; Gleichman, Amy J; Hughes, Ethan G; Rossi, Jeffrey E; Peng, Xiaoyu; Lai, Meizan; Dessain, Scott K; Rosenfeld, Myrna R; Balice-Gordon, Rita; Lynch, David R

    2008-01-01

    Summary Background A severe form of encephalitis associated with antibodies against NR1–NR2 heteromers of the NMDA receptor was recently identified. We aimed to analyse the clinical and immunological features of patients with the disorder and examine the effects of antibodies against NMDA receptors in neuronal cultures. Methods We describe the clinical characteristics of 100 patients with encephalitis and NR1–NR2 antibodies. HEK293 cells ectopically expressing single or assembled NR1–NR2 subunits were used to determine the epitope targeted by the antibodies. Antibody titres were measured with ELISA. The effect of antibodies on neuronal cultures was determined by quantitative analysis of NMDA-receptor clusters. Findings Median age of patients was 23 years (range 5–76 years); 91 were women. All patients presented with psychiatric symptoms or memory problems; 76 had seizures, 88 unresponsiveness (decreased conciousness), 86 dyskinesias, 69 autonomic instability, and 66 hypoventilation. 58 (59%) of 98 patients for whom results of oncological assessments were available had tumours, most commonly ovarian teratoma. Patients who received early tumour treatment (usually with immunotherapy) had better outcome (p=0.004) and fewer neurological relapses (p=0.009) than the rest of the patients. 75 patients recovered or had mild deficits and 25 had severe deficits or died. Improvement was associated with a decrease of serum antibody titres. The main epitope targeted by the antibodies is in the extracellular N-terminal domain of the NR1 subunit. Patients’ antibodies decreased the numbers of cell-surface NMDA receptors and NMDA-receptor clusters in postsynaptic dendrites, an effect that could be reversed by antibody removal. Interpretation A well-defined set of clinical characteristics are associated with anti-NMDA-receptor encephalitis. The pathogenesis of the disorder seems to be mediated by antibodies. PMID:18851928

  6. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies.

    PubMed

    Dalmau, Josep; Gleichman, Amy J; Hughes, Ethan G; Rossi, Jeffrey E; Peng, Xiaoyu; Lai, Meizan; Dessain, Scott K; Rosenfeld, Myrna R; Balice-Gordon, Rita; Lynch, David R

    2008-12-01

    A severe form of encephalitis associated with antibodies against NR1-NR2 heteromers of the NMDA receptor was recently identified. We aimed to analyse the clinical and immunological features of patients with the disorder and examine the effects of antibodies against NMDA receptors in neuronal cultures. We describe the clinical characteristics of 100 patients with encephalitis and NR1-NR2 antibodies. HEK293 cells ectopically expressing single or assembled NR1-NR2 subunits were used to determine the epitope targeted by the antibodies. Antibody titres were measured with ELISA. The effect of antibodies on neuronal cultures was determined by quantitative analysis of NMDA-receptor clusters. Median age of patients was 23 years (range 5-76 years); 91 were women. All patients presented with psychiatric symptoms or memory problems; 76 had seizures, 88 unresponsiveness (decreased consciousness), 86 dyskinesias, 69 autonomic instability, and 66 hypoventilation. 58 (59%) of 98 patients for whom results of oncological assessments were available had tumours, most commonly ovarian teratoma. Patients who received early tumour treatment (usually with immunotherapy) had better outcome (p=0.004) and fewer neurological relapses (p=0.009) than the rest of the patients. 75 patients recovered or had mild deficits and 25 had severe deficits or died. Improvement was associated with a decrease of serum antibody titres. The main epitope targeted by the antibodies is in the extracellular N-terminal domain of the NR1 subunit. Patients' antibodies decreased the numbers of cell-surface NMDA receptors and NMDA-receptor clusters in postsynaptic dendrites, an effect that could be reversed by antibody removal. A well-defined set of clinical characteristics are associated with anti-NMDA-receptor encephalitis. The pathogenesis of the disorder seems to be mediated by antibodies.

  7. Development of an affinity-matured humanized anti-epidermal growth factor receptor antibody for cancer immunotherapy.

    PubMed

    Nakanishi, Takeshi; Maru, Takamitsu; Tahara, Kazuhiro; Sanada, Hideaki; Umetsu, Mitsuo; Asano, Ryutaro; Kumagai, Izumi

    2013-02-01

    We showed previously that humanization of 528, a murine anti-epidermal growth factor receptor (EGFR) antibody, causes reduced affinity for its target. Here, to improve the affinity of the humanized antibody for use in cancer immunotherapy, we constructed phage display libraries focused on the complementarity-determining regions (CDRs) of the antibody and carried out affinity selection. Two-step selections using libraries constructed in a stepwise manner enabled a 32-fold affinity enhancement of humanized 528 (h528). Thermodynamic analysis of the interactions between the variable domain fragment of h528 (h528Fv) mutants and the soluble extracellular domain of EGFR indicated that the h528Fv mutants obtained from the first selection showed a large increase in negative enthalpy change due to binding, resulting in affinity enhancement. Furthermore, mutants from the second selection showed a decrease in entropy loss, which led to further affinity maturation. These results suggest that a single mutation in the heavy chain variable domain (i.e. Tyr(52) to Trp) enthalpically contributed for overcoming the energetic barrier to the antigen-antibody interaction, which was a major hurdle for the in vitro affinity maturation of h528. We reported previously that the humanized bispecific diabody hEx3 Db, which targets EGFR and CD3, shows strong anti-tumor activity. hEx3 Db mutants, in which the variable domains of h528 were replaced with those of the affinity-enhanced mutants, were prepared and characterized. In a growth inhibition assay of tumor cells, the hEx3 Db mutants showed stronger anti-tumor activity than that of hEx3 Db, suggesting that affinity enhancement of h528Fv enhances the anti-tumor activity of the bispecific diabody.

  8. Acute Mechanisms Underlying Antibody Effects in Anti–N-Methyl-D-Aspartate Receptor Encephalitis

    PubMed Central

    Moscato, Emilia H; Peng, Xiaoyu; Jain, Ankit; Parsons, Thomas D; Dalmau, Josep; Balice-Gordon, Rita J

    2014-01-01

    Objective A severe but treatable form of immune-mediated encephalitis is associated with antibodies in serum and cerebrospinal fluid (CSF) against the GluN1 subunit of the N-methyl-D-aspartate receptor (NMDAR). Prolonged exposure of hippocampal neurons to antibodies from patients with anti-NMDAR encephalitis caused a reversible decrease in the synaptic localization and function of NMDARs. However, acute effects of the antibodies, fate of the internalized receptors, type of neurons affected, and whether neurons develop compensatory homeostatic mechanisms were unknown and are the focus of this study. Methods Dissociated hippocampal neuron cultures and rodent brain sections were used for immunocytochemical, physiological, and molecular studies. Results Patient antibodies bind to NMDARs throughout the rodent brain, and decrease NMDAR cluster density in both excitatory and inhibitory hippocampal neurons. They rapidly increase the internalization rate of surface NMDAR clusters, independent of receptor activity. This internalization likely accounts for the observed decrease in NMDAR-mediated currents, as no evidence of direct blockade was detected. Once internalized, antibody-bound NMDARs traffic through both recycling endosomes and lysosomes, similar to pharmacologically induced NMDAR endocytosis. The antibodies are responsible for receptor internalization, as their depletion from CSF abrogates these effects in hippocampal neurons. We find that although anti-NMDAR antibodies do not induce compensatory changes in glutamate receptor gene expression, they cause a decrease in inhibitory synapse density onto excitatory hippocampal neurons. Interpretation Our data support an antibody-mediated mechanism of disease pathogenesis driven by immunoglobulin-induced receptor internalization. Antibody-mediated downregulation of surface NMDARs engages homeostatic synaptic plasticity mechanisms, which may inadvertently contribute to disease progression. Ann Neurol 2014;76:108–119 PMID

  9. Isolation of a human anti-epidermal growth factor receptor Fab antibody, EG-19-11, with subnanomolar affinity from naïve immunoglobulin repertoires using a hierarchical antibody library system.

    PubMed

    Hur, Byung-ung; Yoon, Jae-bong; Liu, Li-Kun; Cha, Sang-hoon

    2010-11-30

    Specific antibodies that possess a subnanomolar affinity are very difficult to obtain from human naïve immunoglobulin repertoires without the use of lengthy affinity optimization procedures. Here, we designed a hierarchical phage-displayed antibody library system to generate an enormous diversity of combinatorial Fab fragments (6×10(17)) and attempted to isolate high-affinity Fabs against the human epidermal growth factor receptor (EGFR). A primary antibody library, designated HuDVFab-8L, comprising 4.5×10(9) human naïve heavy chains and eight unspecified human naïve light chains was selected against the EGFR-Fc protein by biopanning, and four anti-EGFR Fab clones were isolated. Because one of the Fab clones, denoted EG-L2-11, recognized a native EGFR expressed on A431 cells, the heavy chain of the Fab was shuffled with a human naïve light chain repertoire with a diversity of 1.4×10(8) and selected a second time against the EGFR-Fc protein again. One EG-L2-11 variant, denoted EG-19-11, recognized an EGFR epitope that was almost the same as that bound by cetuximab and had a K(D) of approximately 540 pM for soluble EGFR, which is about 7-fold higher than that of the FabC225 derived from cetuximab. This variant was also internalized by A431 cells, likely via receptor-mediated endocytosis, and it efficiently inhibited EGF-mediated tyrosine phosphorylation of the EGFR. These results demonstrate that the use of our hierarchical antibody library system is advantageous in generating fully human antibodies especially with a therapeutic purpose. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Monoclonal antibodies against the rat liver glucocorticoid receptor.

    PubMed Central

    Okret, S; Wikström, A C; Wrange, O; Andersson, B; Gustafsson, J A

    1984-01-01

    Splenic cells from one BALB/c mouse and one C57/BL mouse, immunized with purified rat liver glucocorticoid receptor (GR), were fused with the mouse myeloma cell line Sp 2/0-Ag 14. Screening for production of anti-GR-antibodies by the hybridomas was carried out with an enzyme-linked immunosorbent assay, using partially purified rat liver GR as antigen. Further screening was by a second-antibody immunoprecipitation assay using [3H]triamcinolone acetonide-GR complex from rat liver cytosol as tracer. Hybridomas from 10 different microplate wells, positive in both assays, were successfully cloned by the limiting dilution method to monoclonality. The different origins of the monoclonal antibodies were confirmed by their various isoelectric points when analyzed by isoelectric focusing. Four of the monoclonal hybridoma cell lines secreted IgM antibodies; two, IgG1; three, IgG2a; and one, IgG2b. The GR-antibody complex was identified in glycerol density gradients by a shift of the 4S GR to an 8.5S or 19S GR-antibody complex when incubated with monoclonal IgG or IgM antibody, respectively. The 10 monoclonal antibodies recognized different determinants on the GR, all situated on that domain of the receptor that is separate from the ligand and DNA-binding domains. Also, the cross-reactivity to the mouse liver GR varied among the monoclonal antibodies. No cross-reactivity was observed to the human lymphocytic GR. NaDodSO4 electrophoresis of a 0.5% pure GR preparation followed by immunoblotting using one of the monoclonal antibodies identified a single peptide with a molecular weight of 94,000, identical to the purified rat liver GR. Images PMID:6200880

  11. HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rational antibody-drug conjugate design.

    PubMed

    de Goeij, Bart E C G; Peipp, Matthias; de Haij, Simone; van den Brink, Edward N; Kellner, Christian; Riedl, Thilo; de Jong, Rob; Vink, Tom; Strumane, Kristin; Bleeker, Wim K; Parren, Paul W H I

    2014-01-01

    The human epidermal growth factor receptor (HER)2 provides an excellent target for selective delivery of cytotoxic drugs to tumor cells by antibody-drug conjugates (ADC) as has been clinically validated by ado-trastuzumab emtansine (Kadcyla(TM)). While selecting a suitable antibody for an ADC approach often takes specificity and efficient antibody-target complex internalization into account, the characteristics of the optimal antibody candidate remain poorly understood. We studied a large panel of human HER2 antibodies to identify the characteristics that make them most suitable for an ADC approach. As a model toxin, amenable to in vitro high-throughput screening, we employed Pseudomonas exotoxin A (ETA') fused to an anti-kappa light chain domain antibody. Cytotoxicity induced by HER2 antibodies, which were thus non-covalently linked to ETA', was assessed for high and low HER2 expressing tumor cell lines and correlated with internalization and downmodulation of HER2 antibody-target complexes. Our results demonstrate that HER2 antibodies that do not inhibit heterodimerization of HER2 with related ErbB receptors internalize more efficiently and show greater ETA'-mediated cytotoxicity than antibodies that do inhibit such heterodimerization. Moreover, stimulation with ErbB ligand significantly enhanced ADC-mediated tumor kill by antibodies that do not inhibit HER2 heterodimerization. This suggests that the formation of HER2/ErbB-heterodimers enhances ADC internalization and subsequent killing of tumor cells. Our study indicates that selecting HER2 ADCs that allow piggybacking of HER2 onto other ErbB receptors provides an attractive strategy for increasing ADC delivery and tumor cell killing capacity to both high and low HER2 expressing tumor cells.

  12. Myasthenia gravis patients with ryanodine receptor antibodies have distinctive clinical features.

    PubMed

    Romi, F; Aarli, J A; Gilhus, N E

    2007-06-01

    Myasthenia gravis (MG) is an autoimmune disease caused in 85% of the patients by acetylcholine receptor (AChR) antibodies. Non-AChR muscle antibodies, against titin and ryanodine receptor (RyR) are mainly found in sera of patients with thymoma or late-onset MG. The occurrence of RyR antibodies increases the risk for severe MG and should lead to active immunomodulating treatment already at MG onset. The aim in this study was to describe the association between symptoms at MG onset and antibody profile in 152 patients. Patients with RyR antibodies had the highest rate of bulbar, respiratory and neck involvement at MG onset. They also had the highest frequency of non-limb MG symptoms. Neck weakness occurred in 40%. Respiratory difficulties at MG onset occurred in patients with titin antibodies, with and without RyR antibodies. Patients with RyR antibodies have a distinctive non-limb MG symptom profile, with bulbar, ocular, neck, and respiratory symptoms. These features, identified as early as at the first examination by a neurologist, characterize the RyR antibody positive subgroup at MG onset.

  13. The main immunogenic region of acetylcholine receptors does not provoke the formation of antibodies of a predominant idiotype.

    PubMed

    Killen, J A; Hochschwender, S M; Lindstrom, J M

    1985-08-01

    Anti-idiotype antibodies were induced in rats by immunization with rat monoclonal antibodies to the main immunogenic region of acetylcholine receptors. These anti-idiotype antibodies showed very little crossreaction with other rat monoclonal antibodies which bind to the same region of the receptor. When the rats producing these anti-idiotype antibodies were immunized with receptor, they showed no net decrease in anti-receptor antibody production. These data indicate that, although more than half of the antibodies produced by rats immunized with receptor are directed at a small region, many anti-receptor idiotypes are involved in this response and anti-idiotype therapy is not beneficial.

  14. Variability in Platelet-Derived Growth Factor Receptor Alpha Antibody Specificity May Impact Clinical Utility of Immunohistochemistry Assays

    PubMed Central

    Holzer, Timothy R.; O’Neill Reising, Leslie; Credille, Kelly M.; Schade, Andrew E.; Oakley, Gerard J.

    2016-01-01

    Aberrant regulation of the receptor tyrosine kinase platelet-derived growth factor alpha (PDGFRα) is implicated in several types of cancer. Inhibition of the PDGFRα pathway may be a beneficial therapy, and detection of PDGFRα in tumor biopsies may lead to insights about which patients respond to therapy. Exploratory or clinical biomarker use of PDGFRα IHC has been frequently reported, often with polyclonal antibody sc-338. An sc-338-based assay was systematically compared with anti-PDGFRα rabbit monoclonal antibody D13C6 using immunoblot profiling and IHC in formalin-fixed and paraffin-embedded human tumor cell lines. Application of sc-338 to blots of whole cell lysates showed multiple bands including some of unknown origin, whereas application of D13C6 resulted in a prominent band at the expected molecular mass of PDGFRα. The IHC assay using D13C6 showed appropriate staining in cell lines, whereas the assay using sc-338 suggested nonspecific detection of proteins. An optimized IHC assay using D13C6 showed a range of staining in the tumor stromal compartment in lung and ovarian carcinomas. These observations suggest that use of clone sc-338 produced unreliable results and should not be used for an IHC research grade assay. In addition, this precludes its use as a potential antibody for a clinical diagnostic tool. PMID:27837159

  15. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. Wemore » have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.« less

  16. Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors.

    PubMed

    Omdal, R; Brokstad, K; Waterloo, K; Koldingsnes, W; Jonsson, R; Mellgren, S I

    2005-05-01

    To determine whether neuropsychiatric manifestations in patients with systemic lupus erythematosus (SLE) are influenced by antibodies against the human N-methyl-D-aspartate (NMDA) receptor types NR2a or NR2b. A decapeptide was synthesized containing a sequence motif present in the extracellular ligand-binding domain of NMDA receptors NR2a and NR2b, bound by the monoclonal murine anti-DNA antibody R4A. In an ELISA with the murine monoclonal R4v as positive control, plasma samples of 57 patients with SLE were examined for the anti-peptide (anti-NR2) antibody after the patients had been subjected to comprehensive psychological and cognitive testing. Poor performance on the Visual Paired Associates test (immediate), the Grooved Pegboard test, as well as high scores on the Beck Depression Inventory, and scales D-2 (depression), Pd-4 (psychopathic deviate), Sc-8 (schizophrenia), and Ma-9 (hypomania) of the MMPI-2 were significantly associated with elevated levels of anti-NR2 antibodies. The findings in several domains indicate an association between anti-NR2 antibodies and depressed mood in addition to decreased short-time memory and learning. Antibodies to NMDA receptors thus may represent one of several mechanisms for cerebral dysfunction in patients with SLE.

  17. Anti-streptococcal, tubulin, and dopamine receptor 2 antibodies in children with PANDAS and Tourette syndrome: single-point and longitudinal assessments.

    PubMed

    Morris-Berry, C M; Pollard, M; Gao, S; Thompson, C; Singer, H S

    2013-11-15

    Single-point-in-time ELISA optical densities for three putative antibodies identified in Sydenham's chorea, the streptococcal group A carbohydrate antigen, N-acetyl-beta-d-glucosamine, tubulin, and the dopamine 2 receptor, showed no differences in children with PANDAS (n=44) or Tourette syndrome (n=40) as compared to controls (n=24). Anti-tubulin and D2 receptor antibodies assessed in serial samples from 12 PANDAS subjects obtained prior to a documented exacerbation, during the exacerbation (with or without a temporally associated streptococcal infection), and following the exacerbation, showed no evidence of antibody levels correlating with a clinical exacerbation. These data do not support hypotheses suggesting an autoimmune hypothesis in either TS or PANDAS. © 2013.

  18. Ion channels in EEG: isolating channel dysfunction in NMDA receptor antibody encephalitis.

    PubMed

    Symmonds, Mkael; Moran, Catherine H; Leite, M Isabel; Buckley, Camilla; Irani, Sarosh R; Stephan, Klaas Enno; Friston, Karl J; Moran, Rosalyn J

    2018-06-01

    See Roberts and Breakspear (doi:10.1093/brain/awy136) for a scientific commentary on this article.Neurological and psychiatric practice frequently lack diagnostic probes that can assess mechanisms of neuronal communication non-invasively in humans. In N-methyl-d-aspartate (NMDA) receptor antibody encephalitis, functional molecular assays are particularly important given the presence of NMDA antibodies in healthy populations, the multifarious symptomology and the lack of radiological signs. Recent advances in biophysical modelling techniques suggest that inferring cellular-level properties of neural circuits from macroscopic measures of brain activity is possible. Here, we estimated receptor function from EEG in patients with NMDA receptor antibody encephalitis (n = 29) as well as from encephalopathic and neurological patient controls (n = 36). We show that the autoimmune patients exhibit distinct fronto-parietal network changes from which ion channel estimates can be obtained using a microcircuit model. Specifically, a dynamic causal model of EEG data applied to spontaneous brain responses identifies a selective deficit in signalling at NMDA receptors in patients with NMDA receptor antibody encephalitis but not at other ionotropic receptors. Moreover, though these changes are observed across brain regions, these effects predominate at the NMDA receptors of excitatory neurons rather than at inhibitory interneurons. Given that EEG is a ubiquitously available clinical method, our findings suggest a unique re-purposing of EEG data as an assay of brain network dysfunction at the molecular level.

  19. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom-Davis, J.; Willcox, N.; Calder, L.

    1981-11-26

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlatedmore » with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases.« less

  20. Human tumor xenografts in mouse as a model for evaluating therapeutic efficacy of monoclonal antibodies or antibody-drug conjugate targeting receptor tyrosine kinases.

    PubMed

    Feng, Liang; Wang, Wei; Yao, Hang-Ping; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai

    2015-01-01

    Targeting receptor tyrosine kinases by therapeutic monoclonal antibodies and antibody-drug conjugates has met with tremendous success in clinical oncology. Currently, numerous therapeutic monoclonal antibodies are under preclinical development. The potential for moving candidate antibodies into clinical trials relies heavily on therapeutic efficacy validated by human tumor xenografts in mice. Here we describe methods used to determine therapeutic efficacy of monoclonal antibodies or antibody-drug conjugates specific to human receptor tyrosine kinase using human tumor xenografts in mice as the model. The end point of the study is to determine whether treatment of tumor-bearing mice with a monoclonal antibody or antibody-drug conjugates results in significant delay of tumor growth.

  1. Cumulated Activity Comparison of 64Cu-/177Lu-Labeled Anti-Epidermal Growth Factor Receptor Antibody in Esophageal Squamous Cell Carcinoma Model.

    PubMed

    Laffon, Eric; Thumerel, Matthieu; Jougon, Jacques; Marthan, Roger

    2017-06-01

    This work aimed at estimating the kinetic parameters, and hence cumulated activity (A C ), of a diagnostic/therapeutic convergence radiopharmaceutical, namely 64 Cu-/ 177 Lu-labeled antibody ( 64 Cu-/ 177 Lu-cetuximab), that acts as anti-epidermal growth factor receptor. Methods: In mice bearing esophageal squamous cell carcinoma tumors, to estimate uptake (K), release rate constant (k R ), and hence A C , a kinetic model analysis was applied to recently published biodistribution data of immuno-PET imaging with 64 Cu-cetuximab and of small-animal SPECT/CT imaging with 177 Lu-cetuximab, including blood and TE-8 tumor. Results: K, k R , and A C were estimated to be 0.0566/0.0593 g⋅h -1 ⋅g -1 , 0.0150/0.0030 h -1 , and 2.3 × 10 10 /4.1 × 10 12 disintegrations (per gram of TE-8 tumor), with an injected activity of 3.70/12.95 MBq, for 64 Cu-/ 177 Lu-cetuximab, respectively. Conclusion: A model is available for comparing kinetic parameters and A C of the companion diagnostic/therapeutic 64 Cu-/ 177 Lu-cetuximab that may be considered as a step for determining whether one can really use the former to predict dosimetry of the latter. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  2. Crosslinking of surface antibodies and Fc sub. gamma. receptors: Theory and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wofsy, C.; Goldstein, B.

    1991-03-15

    In an immune response, the crosslinking of surface immunoglobulin (sIg) on B cells by multiply-bound ligand activates a range of cell responses, culminating in the production of antibody-secreting cells. However, when the crosslinking agent is itself an antibody, B cell activation is inhibited. Solution antibody (IgG) can bind simultaneously to sIg and to another cell surface receptor, Fc{sub {gamma}}R, co-crosslinking' the distinct receptors. Experiments point to co-crosslinking as the inhibitory signal. It is not clear how co-crosslinking inhibits B cell stimulation. The authors construct and analyze a mathematical model aimed at clarifying the nature and mechanisms of action of themore » separate cell signals controlling B cell responses to antibodies. Basophils and mast cells respond to the crosslinking of cell surface antibody by releasing histamine. Like B cells, basophils also express FC{sub {gamma}}R. They use their model to analyze new data on the effect of antibody-induced co-crosslinking of the two types of receptor on this family of cells. Predictions of the model indicate that an observed difference between the response patterns induced by antibodies and by antibody fragments that cannot bind to FC{sub {gamma}}R can be explained if co-crosslinking is neither inhibitory nor stimulatory in this system.« less

  3. Use of polyclonal and monoclonal antibodies to study hCG-receptor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milius, R.P.

    1985-01-01

    Although the glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) bind to different receptors, each contains an identical alpha subunit. Specificity is somehow endowed by theta subunits which are distinct for each hormone. Human choriogonadotropin (hCG) is a natural LH analog that contains a beta subunit nearly identical to that of LH. The roles of these subunits in the recognition and high affinity binding of hCG to receptor was examined. Polyclonal and monoclonal antibodies specific for the individual subunits of hCG were used to probe the hormone-receptor interaction. Conformation-specific and sequence-specific antibodies were examined for their abilities to bindmore » Triton X-100-solubilized /sup 125/I-hCG-receptor complex and to inhibit hormone binding to crude rat ovarian membranes containing receptor. Even though the immunoreactive sites are not located on the receptor binding surface of the beta subunit, most, but not all, of these polyclonal and monoclonal antibodies were able to inhibit /sup 125/I-hCG binding to receptor. Although the inhibition of binding may be due to steric interference due to the size of the antibody molecules, a two-step model for hCG binding to receptor is presented that also explains these results. In this model, the beta subunit initially binds with the receptor with a highly specific but low affinity interaction. This activates a site for the high affinity binding of the alpha subunit and stabilization of the complex. This is an attractive model as it may be applied to other glycoprotein hormones sharing an alpha subunit.« less

  4. Progress on research of chicken IgY antibody-FcRY receptor combination and transfer.

    PubMed

    Tian, Zehua; Zhang, Xiaoying

    2012-10-01

    The transfer of maternal immunoglobulins (Igs) plays a significant role in fetal initial humoral immunity, of which process has changed and diversified during the evolution of vertebrates. IgY is a key molecular in antibody evolution which links ancient Igs and mammalian Igs such as IgG and IgE. IgY's transfer to the embryo is a two-step receptor-mediated process, including the transfer from the maternal bloodstream to the yolk sac, and from the yolk sac to the embryo. IgY's neonatal Fc receptor (FcRY) mainly functions in the second process. This article reviews IgY's status in antibody evolution and IgY's structure and application. Furthermore, this review compares the binding and transferring mechanism between mammalian IgG, and IgG's neonatal Fc receptor and chicken IgY-FcRY. Details of IgY-FcRY combination, such as combining conditions required, IgY-FcRY binding stoichiometry and exact binding sites on both FcRY and IgY are discussed. Likewise, the endocytosis, the main mechanism of IgY-FcRY transfer and recycling mechanism are analyzed. Related knowledge might be important for better understanding antibody and receptor evolution, antibody-receptor interaction and antibody function. Furthermore, such kind of knowledge might be useful for antibody drug research and development.

  5. Isoform specificity of progesterone receptor antibodies

    PubMed Central

    Fabris, Victoria; Abascal, María F; Giulianelli, Sebastián; May, María; Sequeira, Gonzalo R; Jacobsen, Britta; Lombès, Marc; Han, Julie; Tran, Luan; Molinolo, Alfredo

    2017-01-01

    Abstract Progesterone receptors (PR) are prognostic and predictive biomarkers in hormone‐dependent cancers. Two main PR isoforms have been described, PRB and PRA, that differ only in that PRB has 164 extra N‐terminal amino acids. It has been reported that several antibodies empirically exclusively recognize PRA in formalin‐fixed paraffin‐embedded (FFPE) tissues. To confirm these findings, we used human breast cancer xenograft models, T47D‐YA and ‐YB cells expressing PRA or PRB, respectively, MDA‐MB‐231 cells modified to synthesize PRB, and MDA‐MB‐231/iPRAB cells which can bi‐inducibly express either PRA or PRB. Cells were injected into immunocompromised mice to generate tumours exclusively expressing PRA or PRB. PR isoform expression was verified using immunoblots. FFPE samples from the same tumours were studied by immunohistochemistry using H‐190, clone 636, clone 16, and Ab‐6 anti‐PR antibodies, the latter exclusively recognizing PRB. Except for Ab‐6, all antibodies displayed a similar staining pattern. Our results indicate that clones 16, 636, and the H‐190 antibody recognize both PR isoforms. They point to the need for more stringency in evaluating the true specificity of purported PRA‐specific antibodies as the PRA/PRB ratio may have prognostic and predictive value in breast cancer. PMID:29085663

  6. Isoform specificity of progesterone receptor antibodies.

    PubMed

    Fabris, Victoria; Abascal, María F; Giulianelli, Sebastián; May, María; Sequeira, Gonzalo R; Jacobsen, Britta; Lombès, Marc; Han, Julie; Tran, Luan; Molinolo, Alfredo; Lanari, Claudia

    2017-10-01

    Progesterone receptors (PR) are prognostic and predictive biomarkers in hormone-dependent cancers. Two main PR isoforms have been described, PRB and PRA, that differ only in that PRB has 164 extra N-terminal amino acids. It has been reported that several antibodies empirically exclusively recognize PRA in formalin-fixed paraffin-embedded (FFPE) tissues. To confirm these findings, we used human breast cancer xenograft models, T47D-YA and -YB cells expressing PRA or PRB, respectively, MDA-MB-231 cells modified to synthesize PRB, and MDA-MB-231/iPRAB cells which can bi-inducibly express either PRA or PRB. Cells were injected into immunocompromised mice to generate tumours exclusively expressing PRA or PRB. PR isoform expression was verified using immunoblots. FFPE samples from the same tumours were studied by immunohistochemistry using H-190, clone 636, clone 16, and Ab-6 anti-PR antibodies, the latter exclusively recognizing PRB. Except for Ab-6, all antibodies displayed a similar staining pattern. Our results indicate that clones 16, 636, and the H-190 antibody recognize both PR isoforms. They point to the need for more stringency in evaluating the true specificity of purported PRA-specific antibodies as the PRA/PRB ratio may have prognostic and predictive value in breast cancer.

  7. Association between serum ligands and the skin toxicity of anti-epidermal growth factor receptor antibody in metastatic colorectal cancer.

    PubMed

    Takahashi, Naoki; Yamada, Yasuhide; Furuta, Koh; Nagashima, Kengo; Kubo, Akiko; Sasaki, Yusuke; Shoji, Hirokazu; Honma, Yoshitaka; Iwasa, Satoru; Okita, Natsuko; Takashima, Atsuo; Kato, Ken; Hamaguchi, Tetsuya; Shimada, Yasuhiro

    2015-05-01

    Skin toxicity is a known clinical signature used to predict the prognosis of anti-epidermal growth factor receptor (EGFR) antibody treatment in metastatic colorectal cancer (mCRC). There are no biological markers to predict skin toxicity before anti-EGFR antibody treatment in mCRC patients. Between August 2008 and August 2011, pretreatment serum samples were obtained from KRAS wild-type (WT) patients who received anti-EGFR antibody treatment. Serum levels of ligands were measured by ELISA. A total of 103 KRAS WT patients were enrolled in the study. Progression-free survival and overall survival of patients with a high grade (grade 2-3) of skin toxicity were significantly longer than those with a low grade (grade 0-1) of skin toxicity (median progression-free survival, 6.4 months vs 2.4 months, P < 0.001; median overall survival, 14.6 months vs 7.1 months, P = 0.006). There were significant differences in distribution of serum levels of epiregulin (EREG), amphiregulin (AREG), and hepatocyte growth factor (HGF) between groups of low/high grade of skin toxicity (P < 0.048, P < 0.012, P < 0.012, respectively). In addition, serum levels of HGF, EREG, and AREG were inversely proportional to grades of skin toxicity as determined by the Cochran-Armitage test (P = 0.019, P = 0.047, P = 0.021, respectively). Our study indicated that serum levels such as HGF, EREG, and AREG may be significant markers to predict the grade of skin toxicity and the prognosis of anti-EGFR antibody treatment, which contribute to improvement of the management of skin toxicity and survival time in mCRC patients. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  8. Use of antibodies specific to defined regions of scorpion. cap alpha. -toxin to study its interaction with its receptor site on the sodium channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayeb, M.E.; Bahraoui, E.M.; Granier, C.

    1986-10-21

    Five antibody populations selected by immunoaffinity chromatography for the specificity toward various regions of toxin II of the scorpion Androctonus australis Hector were used to probe the interaction of this protein with its receptor site on the sodium channel. These studies indicate that two antigenic sites, one located around the disulfide bridge 12-63 and one encompassing residues 50-59, are involved in the molecular mechanisms of toxicity neutralization. Fab fragments specific to the region around disulfide bridge 12-63 inhibit binding of the /sup 125/I-labeled toxin to its receptor site. Also, these two antigenic regions are inaccessible to the antibodies when themore » toxin is bound to its receptor site. In contrast, the two other antigenic sites encompassing the only ..cap alpha..-helix region (residues 23-32) and a ..beta..-turn structure (residues 32-35) are accessible to the respective antibodies when the toxin is bound to its receptor. Together, these data support the recent proposal that a region made of residues that are conserved in the scorpion toxin family is involved in the binding of the toxin to the receptor.« less

  9. Studies of thermostability in Camelus bactrianus (Bactrian camel) single-domain antibody specific for the mutant epidermal-growth-factor receptor expressed by Pichia.

    PubMed

    Omidfar, Kobra; Rasaee, Mohhamad Javad; Kashanian, Soheila; Paknejad, Malieheh; Bathaie, Zahra

    2007-01-01

    Camelids have a unique immune system capable of producing heavy-chain antibodies lacking the light chains and CH1 (constant heavy-chain domain 1). It has been shown that, in contrast with conventional antibody fragments, the variable domains of these heavy-chain antibodies are functional at or after exposure to high temperatures. In the present study, the VHH (variable domain of heavy-chain antibody) camel antibody was subcloned into vector Ppiczc and expressed in Pichia pastoris. ORB1-83 VHH antibody recognizes the external domain of the mutant EGFR [EGF (epidermal growth factor) receptor], EGFR VIII. This tumour-specific antigen is ligand-independent, contains a constitutively active tyrosine kinase domain and has been shown to be present in a number of human malignancies. We report here that, although expression from P. pastoris resulted in a significantly increased level of expression of the anti-EGFR VIII VHH antibodies compared with Escherichia coli [Omidfar, Rasaee, Modjtahedi, Forouzandeh, Taghikhani, Bakhtiari, Paknejad and Kashanian (2004) Tumor Biol. 25, 179-187; Omidfar, Rasaee, Modjtahedi, Forouzandeh, Taghikhani and Golmakany (2004) Tumor Biol. 25, 296-305], this antibody selectively bound to the EGFR VIII peptide and reacted specifically with the immunoaffinity-purified antigen from non-small-cell lung cancer. Furthermore, thermal denaturation stability and CD spectra analysis of the Camelus bactrianus (Bactrian camel) VHH and heavy-chain antibodies at different temperature proved reversibility and binding activity after heat denaturation. Our results indicate that the P. pastoris expression system may be useful for the expression of camel single domain antibody and the ability of the expressed protein to reversibly melt without aggregation, allowing it to regain binding activity after heat denaturation.

  10. Development of EMab-51, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in Flow Cytometry, Western Blot, and Immunohistochemistry.

    PubMed

    Itai, Shunsuke; Kaneko, Mika K; Fujii, Yuki; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Chang, Yao-Wen; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-10-01

    The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG 1 , kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.

  11. Clinical Value of Thyrotropin Receptor Antibodies for the Differential Diagnosis of Interferon Induced Thyroiditis.

    PubMed

    Benaiges, D; Garcia-Retortillo, M; Mas, A; Cañete, N; Broquetas, T; Puigvehi, M; Chillarón, J J; Flores-Le Roux, J A; Sagarra, E; Cabrero, B; Zaffalon, D; Solà, R; Pedro-Botet, J; Carrión, J A

    2016-01-01

    The clinical value of thyrotropin receptor antibodies for the differential diagnosis of thyrotoxicosis induced by pegylated interferon-alpha remains unknown. We analyzed the diagnostic accuracy of thyrotropin receptor antibodies in the differential diagnosis of thyrotoxicosis in patients with chronic hepatitis C (CHC) receiving pegylated interferon-alpha plus ribavirin. Retrospective analysis of 274 patients with CHC receiving pegylated interferon-alpha plus ribavirin. Interferon-induced thyrotoxicosis was classified according to clinical guidelines as Graves disease, autoimmune and non- autoimmune destructive thyroiditis. 48 (17.5%) patients developed hypothyroidism, 17 (6.2%) thyrotoxicosis (6 non- autoimmune destructive thyroiditis, 8 autoimmune destructive thyroiditis and 3 Graves disease) and 22 "de novo" thyrotropin receptor antibodies (all Graves disease, 2 of the 8 autoimmune destructive thyroiditis and 17 with normal thyroid function). The sensitivity and specificity of thyrotropin receptor antibodies for Graves disease diagnosis in patients with thyrotoxicosis were 100 and 85%, respectively. Patients with destructive thyroiditis developed hypothyroidism in 87.5% of autoimmune cases and in none of those with a non- autoimmune etiology (p<0.001). Thyrotropin receptor antibodies determination cannot replace thyroid scintigraphy for the differential diagnosis of thyrotoxicosis in CHC patients treated with pegylated interferon. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody

    PubMed Central

    Wacker, Daniel; Kapoor, Mili; Zhang, Ai; Han, Gye Won; Basu, Shibom; Patel, Nilkanth; Messerschmidt, Marc; Weierstall, Uwe; Liu, Wei; Katritch, Vsevolod; Roth, Bryan L.; Stevens, Raymond C.

    2017-01-01

    Monoclonal antibodies provide an attractive alternative to small-molecule therapies for a wide range of diseases. Given the importance of G protein-coupled receptors (GPCRs) as pharmaceutical targets, there has been an immense interest in developing therapeutic monoclonal antibodies that act on GPCRs. Here we present the 3.0-Å resolution structure of a complex between the human 5-hydroxytryptamine 2B (5-HT2B) receptor and an antibody Fab fragment bound to the extracellular side of the receptor, determined by serial femtosecond crystallography with an X-ray free-electron laser. The antibody binds to a 3D epitope of the receptor that includes all three extracellular loops. The 5-HT2B receptor is captured in a well-defined active-like state, most likely stabilized by the crystal lattice. The structure of the complex sheds light on the mechanism of selectivity in extracellular recognition of GPCRs by monoclonal antibodies. PMID:28716900

  13. Adult celiac disease with acetylcholine receptor antibody positive myasthenia gravis

    PubMed Central

    Freeman, Hugh J; Gillett, Helen R; Gillett, Peter M; Oger, Joel

    2009-01-01

    Celiac disease has been associated with some autoimmune disorders. A 40-year-old competitive strongman with celiac disease responded to a gluten-free diet, but developed profound and generalized motor weakness with acetylcholine receptor antibody positive myasthenia gravis, a disorder reported to occur in about 1 in 5000. This possible relationship between myasthenia gravis and celiac disease was further explored in serological studies. Frozen stored serum samples from 23 acetylcholine receptor antibody positive myasthenia gravis patients with no intestinal symptoms were used to screen for celiac disease. Both endomysial and tissue transglutaminase antibodies were examined. One of 23 (or, about 4.3%) was positive for both IgA-endomysial and IgA tissue transglutaminase antibodies. Endoscopic studies subsequently showed duodenal mucosal scalloping and biopsies confirmed the histopathological changes of celiac disease. Celiac disease and myasthenia gravis may occur together more often than is currently appreciated. The presence of motor weakness in celiac disease may be a clue to occult myasthenia gravis, even in the absence of intestinal symptoms. PMID:19824105

  14. Evolution of collagen arthritis in mice is arrested by treatment with anti-tumour necrosis factor (TNF) antibody or a recombinant soluble TNF receptor.

    PubMed Central

    Piguet, P F; Grau, G E; Vesin, C; Loetscher, H; Gentz, R; Lesslauer, W

    1992-01-01

    Immunization of DBA/1 mice with type II collagen within complete Freund's adjuvant leads to arthritis, lasting more than 3 months. Injection of anti-tumour necrosis factor (TNF) IgG, 2 and 3 weeks after immunization prevented the development of arthritis in the following months. This treatment had no effect when started 2 months after induction of the disease. A soluble form of the human recombinant TNF receptor type-beta (rsTNFR-beta), continuously infused at a rate of 20 micrograms/day during the second and third week after immunization, also had a long-term protective effect. Anti-TNF antibody had no effect upon the production of anti-type II collagen antibodies. These results indicate that TNF is critically involved in an early phase of this arthritis. Images Figure 1 Figure 2 PMID:1337334

  15. Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses.

    PubMed

    Clark, Lars E; Mahmutovic, Selma; Raymond, Donald D; Dilanyan, Taleen; Koma, Takaaki; Manning, John T; Shankar, Sundaresh; Levis, Silvana C; Briggiler, Ana M; Enria, Delia A; Wucherpfennig, Kai W; Paessler, Slobodan; Abraham, Jonathan

    2018-05-14

    While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1-Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern.

  16. Pre-transplant angiotensin II type 1receptor antibodies: a risk factor for decreased kidney graft function in the early post-transplant period?

    PubMed

    Hernández-Méndez, Erick Alejandro; Arreola-Guerra, José Manuel; Morales-Buenrostro, Luis E; Ramírez, Julia B; Calleja, Said; Castelán, Natalia; Salcedo, Isaac; Vilatobá, Mario; Contreras, Alan G; Gabilondo, Bernardo; Granados, Julio; Alberú, Josefina

    2014-01-01

    Angiotensin II type 1 receptor antibodies (AT1Rab) are associated to a significantly lower graft survival and a higher risk of acute rejection after kidney transplantation. This study aimed to evaluate graft function and BPAR during the 1st year post-transplant (PT) in adult kidney transplant recipients (KTR), between 03/2009 and 08/2012. Pre-KT sera were screened for AT1Rab (ELISA) and HLA-DSA (Luminex). Three groups were analyzed: AT1Rab only (n = 13); HLA-DSA only (n = 8); and no AT1Rab or HLA-DSA (n = 90). No differences were observed in clinical characteristics across groups. A higher percentage of BPAR was observed in the AT1Rab positive group, but this difference was not significant. KTR with AT1Rab had a lower mean eGFR (20 mL/min/1.73m2) when compared to KTR with no Abs at 12 months. The significant difference in eGFR was observed since the 1st month PT. Multivariate analysis showed 4 factors independently and significantly associated with eGFR at 12mos PT: BPAR (-18.7 95%, CI -28.2 to -9.26, p<0.001), AT1Rab (-10.51, CI -20.9 to -0.095, p = 0.048), donor age (-0.42, CI -0.75 to -0.103 p = 0.010), and recipient age (-0.36, CI -0.67 to -0.048, p = 0.024). In this study AT1Rab in pre-transplant sera from KTR, was an independent and significant risk factor contributing to a lower eGFR 12 months. PT. This finding deserves to be confirmed in a larger KTR population.

  17. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody.

    PubMed

    Nagaya, Tadanobu; Okuyama, Shuhei; Ogata, Fusa; Maruoka, Yasuhiro; Knapp, Deborah W; Karagiannis, Sophia N; Fazekas-Singer, Judit; Choyke, Peter L; LeBlanc, Amy K; Jensen-Jarolim, Erika; Kobayashi, Hisataka

    2018-04-10

    Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro . In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups ( p < 0.001), and significantly prolonged survival was achieved ( p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans.

  18. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody

    PubMed Central

    Nagaya, Tadanobu; Okuyama, Shuhei; Ogata, Fusa; Maruoka, Yasuhiro; Knapp, Deborah W.; Karagiannis, Sophia N.; Fazekas-Singer, Judit; Choyke, Peter L.; LeBlanc, Amy K.; Jensen-Jarolim, Erika; Kobayashi, Hisataka

    2018-01-01

    Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro. In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups (p < 0.001), and significantly prolonged survival was achieved (p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans. PMID:29721181

  19. Growth inhibition of tumor cells in vitro by using monoclonal antibodies against gonadotropin-releasing hormone receptor.

    PubMed

    Lee, Gregory; Ge, Bixia

    2010-07-01

    As the continuation of a previous study, synthetic peptides corresponding to the extracellular domains of human gonadotropin-releasing hormone (GnRH) receptor were used to generate additional monoclonal antibodies which were further characterized biochemically and immunologically. Among those identified to recognize GnRH receptor, monoclonal antibodies designated as GHR-103, GHR-106 and GHR-114 were found to exhibit high affinity (Kd < or = 1 x 10(-8) M) and specificity to GnRH receptor as judged by the whole cell binding immunoassay and Western blot assay. Both anti-GnRH receptor monoclonal antibodies and GnRH were shown to compete for the same binding site of GnRH receptor on the surface of cultured cancer cells. Growth inhibitions of cancer cells cultured in vitro were demonstrated by cellular apoptosis experiments (TUNEL and MTT assays) under different conditions of treatment with GHR-106 monoclonal antibody or GnRH analogs. It was generally observed that both GnRH I and GHR-106 effectively induce the apoptosis of cultured cancer cells as determined by TUNEL and MTT assays. Consistently, suppressions of gene expressions at mRNA levels were demonstrated with several ribosomal proteins (P0, P1, P2 and L37), when cancer cells were incubated with GnRH or GHR-106. The widespread expressions of GnRH receptor in almost all of the studied human cancer cell lines were also demonstrated by RT-PCR and Western blot assay, as well as indirect immunofluorescence assay with either of these monoclonal antibodies as the primary antibody. In view of the longer half life of antibodies as compared to that of GnRH or its analogs, anti-GnRH receptor monoclonal antibodies in humanized forms could function as GnRH analogs and serve as an ideal candidate of anti-cancer drugs for therapeutic treatments of various cancers in humans as well as for fertility regulations.

  20. Structural Mimicry of Receptor Interaction by Antagonistic Interleukin-6 (IL-6) Antibodies*

    PubMed Central

    Blanchetot, Christophe; De Jonge, Natalie; Desmyter, Aline; Ongenae, Nico; Hofman, Erik; Klarenbeek, Alex; Sadi, Ava; Hultberg, Anna; Kretz-Rommel, Anke; Spinelli, Silvia; Loris, Remy; Cambillau, Christian; de Haard, Hans

    2016-01-01

    Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe229 and Phe279 of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe279. Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe279. In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe279, whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe229. PMID:27129274

  1. Structural Mimicry of Receptor Interaction by Antagonistic Interleukin-6 (IL-6) Antibodies.

    PubMed

    Blanchetot, Christophe; De Jonge, Natalie; Desmyter, Aline; Ongenae, Nico; Hofman, Erik; Klarenbeek, Alex; Sadi, Ava; Hultberg, Anna; Kretz-Rommel, Anke; Spinelli, Silvia; Loris, Remy; Cambillau, Christian; de Haard, Hans

    2016-06-24

    Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe(229) and Phe(279) of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe(279) Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe(279) In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe(279), whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe(229). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors

    PubMed Central

    Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois

    2016-01-01

    ABSTRACT We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted. PMID:27559765

  3. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors.

    PubMed

    Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois

    We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials. 1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted.

  4. Growth stimulating antibody, as another predisposing factor of Graves' disease (GD): analysis using monoclonal TSH receptor antibodies derived from patients with GD.

    PubMed

    Ihara, Yoshiaki; Kanda, Yasunari; Seo, Marie; Watanabe, Yasuhiro; Akamizu, Takashi; Tanaka, Yuji

    2012-01-01

    TSH receptor antibody (TRAb) is clinically classified into thyroid stimulating antibody (TSAb) and thyroid-stimulation blocking antibody (TSBAb). Although the former is considered to cause Graves' disease (GD), its activity does not necessarily reflect hormone production and goiter size. Moreover, uptake of 99mTcO4(-), the best indicator for GD, is correlated with activity of TSH binding inhibitor immunoglobulin better than activity of TSAb. Because uptake of 99mTcO4(-) reflects thyroid volume, these observations suggest that there exist TRAb with thyrocyte growth stimulating activity (GSA) other than TSAb. In this study, we analyzed GSA of monoclonal TRAb established from patients with GD or idiopathic myxedema (IME). GSA was measured as the degree of FRTL-5 cell growth stimulated by each TRAb. The signaling pathways of the cell growth were pharmacologically analyzed. The cell growth stimulated by TSH was strongly suppressed by protein kinase A (PKA) inhibitor, but was not affected by extracellular signal regulated kinase kinase (MEK) inhibitor. Although TSAb from GD stimulated the cell growth, both inhibitors suppressed it. Surprisingly, the cell growth was also induced by TSBAb from GD and was only suppressed by MEK inhibitor. TSBAb from IME did not have GSA and attenuated the cell growth stimulated by TSH. We concluded that 1; in GD, not only TSAb but some TSBAb could stimulate thyrocyte growth. 2; TSBAb might be classified with respect to their effects on thyrocyte growth; i.e., thyrocyte growth stimulating antibody and thyrocyte growth-stimulation blocking antibody.

  5. Fixation effect of SurePath preservative fluids using epidermal growth factor receptor mutation-specific antibodies for immunocytochemistry.

    PubMed

    Kawahara, Akihiko; Taira, Tomoki; Abe, Hideyuki; Watari, Kosuke; Murakami, Yuichi; Fukumitsu, Chihiro; Takase, Yorihiko; Yamaguchi, Tomohiko; Azuma, Koichi; Akiba, Jun; Ono, Mayumi; Kage, Masayoshi

    2014-02-01

    Cytological diagnosis of respiratory disease has become important, not only for histological typing using immunocytochemistry (ICC) but also for molecular DNA analysis of cytological material. The aim of this study was to investigate the fixation effect of SurePath preservative fluids. Human lung cancer PC9 and 11-18 cell lines, and lung adenocarcinoma cells in pleural effusion, were fixed in CytoRich Blue, CytoRich Red, 15% neutral-buffered formalin, and 95% ethanol, respectively. PC9 and 11-18 cell lines were examined by ICC with epidermal growth factor receptor (EGFR) mutation-specific antibodies, the EGFR mutation DNA assay, and fluorescence in situ hybridization. The effect of antigenic storage time was investigated in lung adenocarcinoma cells in pleural effusion by ICC using the lung cancer detection markers. PC9 and 11-18 cell lines in formalin-based fixatives showed strong staining of EGFR mutation-specific antibodies and lung cancer detection markers by ICC as compared with ethanol-based fixatives. DNA preservation with CytoRich Blue and CytoRich Red was superior to that achieved with 95% ethanol and 15% neutral-buffered formalin fixatives, whereas EGFR mutations by DNA assay and EGFR gene amplification by fluorescence in situ hybridization were successfully identified in all fixative samples. Although cytoplasmic antigens maintained high expression levels, expression levels in nuclear antigens fell as storage time increased. These results indicate that CytoRich Red is not only suitable for ICC with EGFR mutation-specific antibodies, but also for DNA analysis of cytological material, and is useful in molecular testing of lung cancer, for which various types of analyses will be needed in future. © 2013 American Cancer Society.

  6. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo.

    PubMed

    Doern, Adam; Cao, Xianjun; Sereno, Arlene; Reyes, Christopher L; Altshuler, Angelina; Huang, Flora; Hession, Cathy; Flavier, Albert; Favis, Michael; Tran, Hon; Ailor, Eric; Levesque, Melissa; Murphy, Tracey; Berquist, Lisa; Tamraz, Susan; Snipas, Tracey; Garber, Ellen; Shestowsky, William S; Rennard, Rachel; Graff, Christilyn P; Wu, Xiufeng; Snyder, William; Cole, Lindsay; Gregson, David; Shields, Michael; Ho, Steffan N; Reff, Mitchell E; Glaser, Scott M; Dong, Jianying; Demarest, Stephen J; Hariharan, Kandasamy

    2009-04-10

    Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism

  7. Macromolecular beta-adrenergic antagonists discriminating between receptor and antibody.

    PubMed Central

    Pitha, J; Zjawiony, J; Lefkowitz, R J; Caron, M G

    1980-01-01

    The beta-adrenergic antagonist, alprenolol, was attached in an irreversible manner to macromolecular dextran via side arms that differed in length. The ability of these macromolecules to bind to the beta-adrenergic receptor of frog erythrocytes and to catecholamine-binding antibodies raised against partially purified receptors was studied. Compared to the parent drug the potency of binding of macromolecular alprenolol to the receptor decreased about 1/10, 1/600, and 1/8000 when the length of the arm separating alprenolol from the dextran moiety was 13, 8, and 4 atoms, respectively. In contrast, the binding potencies of the parent drug and of all its macromolecular derivatives for the antibody were within the same order of magnitude. Thus, conversion of a drug to a macromolecular form may not only sustain its binding activity but may also lead in a higher selectivity. The macromolecular derivatives described here may be suitable probes for investigation of the location and of the molecular properties of the binding sites for beta-adrenergic drugs. PMID:6154947

  8. Potentiated antibodies to mu-opiate receptors: effect on integrative activity of the brain.

    PubMed

    Geiko, V V; Vorob'eva, T M; Berchenko, O G; Epstein, O I

    2003-01-01

    The effect of homeopathically potentiated antibodies to mu-receptors (10(-100) wt %) on integrative activity of rat brain was studied using the models of self-stimulation of the lateral hypothalamus and convulsions produced by electric current. Electric current was delivered through electrodes implanted into the ventromedial hypothalamus. Single treatment with potentiated antibodies to mu-receptors increased the rate of self-stimulation and decreased the threshold of convulsive seizures. Administration of these antibodies for 7 days led to further activation of the positive reinforcement system and decrease in seizure thresholds. Distilled water did not change the rate of self-stimulation and seizure threshold.

  9. Development of cell-penetrating bispecific antibodies targeting the N-terminal domain of androgen receptor for prostate cancer therapy.

    PubMed

    Goicochea, Nancy L; Garnovskaya, Maria; Blanton, Mary G; Chan, Grace; Weisbart, Richard; Lilly, Michael B

    2017-12-01

    Castration-resistant prostate cancer cells exhibit continued androgen receptor signaling in spite of low levels of ligand. Current therapies to block androgen receptor signaling act by inhibiting ligand production or binding. We developed bispecific antibodies capable of penetrating cells and binding androgen receptor outside of the ligand-binding domain. Half of the bispecific antibody molecule consists of a single-chain variable fragment of 3E10, an anti-DNA antibody that enters cells. The other half is a single-chain variable fragment version of AR441, an anti-AR antibody. The resulting 3E10-AR441 bispecific antibody enters human LNCaP prostate cells and accumulates in the nucleus. The antibody binds to wild-type, mutant and splice variant androgen receptor. Binding affinity of 3E10-AR441 to androgen receptor (284 nM) was lower than that of the parental AR441 mAb (4.6 nM), but could be improved (45 nM) through alternative placement of the affinity tags, and ordering of the VH and VK domains. The 3E10-AR441 bispecific antibody blocked genomic signaling by wild-type or splice variant androgen receptor in LNCaP cells. It also blocked non-genomic signaling by the wild-type receptor. Furthermore, bispecific antibody inhibited the growth of C4-2 prostate cancer cells under androgen-stimulated conditions. The 3E10-AR441 biAb can enter prostate cancer cells and inhibits androgen receptor function in a ligand-independent manner. It may be an attractive prototype agent for prostate cancer therapy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Retrieval of estradiol receptor in paraffin sections of resting porcine uteri by microwave treatment. Immunostaining patterns obtained with different primary antibodies.

    PubMed

    Sierralta, W D; Thole, H H

    1996-05-01

    The unmasking of estradiol receptor in paraffin sections of Bouin's-fixed uterine tissue from ovariectomized gilts was attained with microwave treatment. Immunocytochemistry of the receptor was performed using a polyclonal or five monoclonal antibodies, two of which are commercially available, reacting with different domains of the protein and an amplified-peroxidase system for detection. With five of the antibodies, a predominance of nuclear staining was observed in cells of endometrial glands, while one monoclonal antibody (13H2), reacting with the receptor's domain E, showed a preference for the cytoplasmic receptor. In stroma, all antibodies detected more receptor in nuclei than in cytoplasm. In epithelium, the commercially available antibody H222, our monoclonals 13H2 and HT65, and the polyclonal antibody 402 demonstrated more receptor in cytoplasmic than in nuclear areas. In myometrium, the nuclei from longitudinal and ring muscles were definitely stained with the antibodies. We conclude that the accessibilities of the antibody epitopes of the receptor differ according to the functional uterine cell type.

  11. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.

    PubMed

    Levite, Mia

    2014-08-01

    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti

  12. Crystallization of the receptor-binding domain of parathyroid hormone-related protein in complex with a neutralizing monoclonal antibody Fab fragment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore

    Parathyroid hormone-related protein (PTHrP) plays an important role in regulating embryonic skeletal development and is abnormally regulated in the pathogenesis of skeletal complications observed with many cancers and osteoporosis. It exerts its action through binding to a G-protein-coupled seven-transmembrane cell-surface receptor (GPCR). Structurally, GPCRs are very difficult to study by X-ray crystallography. In this study, a monoclonal antibody Fab fragment which recognizes the same region of PTHrP as its receptor, PTH1R, was used to aid in the crystallization of PTHrP. The resultant protein complex was crystallized using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitant. The crystals belongedmore » to the orthorhombic space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 72.6, b = 96.3, c = 88.5 {angstrom}, and diffracted to 2.0 {angstrom} resolution using synchrotron radiation. The crystal structure will shed light on the nature of the key residues of PTHrP that interact with the antibody and will provide insights into how the antibody is able to discriminate between PTHrP and the related molecule parathyroid homone.« less

  13. Molecular Simulation of Receptor Occupancy and Tumor Penetration of an Antibody and Smaller Scaffolds: Application to Molecular Imaging.

    PubMed

    Orcutt, Kelly D; Adams, Gregory P; Wu, Anna M; Silva, Matthew D; Harwell, Catey; Hoppin, Jack; Matsumura, Manabu; Kotsuma, Masakatsu; Greenberg, Jonathan; Scott, Andrew M; Beckman, Robert A

    2017-10-01

    Competitive radiolabeled antibody imaging can determine the unlabeled intact antibody dose that fully blocks target binding but may be confounded by heterogeneous tumor penetration. We evaluated the hypothesis that smaller radiolabeled constructs can be used to more accurately evaluate tumor expressed receptors. The Krogh cylinder distributed model, including bivalent binding and variable intervessel distances, simulated distribution of smaller constructs in the presence of increasing doses of labeled antibody forms. Smaller constructs <25 kDa accessed binding sites more uniformly at large distances from blood vessels compared with larger constructs and intact antibody. These observations were consistent for different affinity and internalization characteristics of constructs. As predicted, a higher dose of unlabeled intact antibody was required to block binding to these distant receptor sites. Small radiolabeled constructs provide more accurate information on total receptor expression in tumors and reveal the need for higher antibody doses for target receptor blockade.

  14. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    USDA-ARS?s Scientific Manuscript database

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  15. Rapidly progressive neurological deterioration in anti-AMPA receptor encephalitis with additional CRMP5 antibodies.

    PubMed

    Yang, Shuangshuang; Qin, Jie; Li, Jinghong; Gao, Yuan; Zhao, Lu; Wu, Jun; Song, Bo; Xu, Yuming; Sun, Shilei

    2016-11-01

    Anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) encephalitis positive for additional onconeural antibodies is rarely reported. Here we report the clinical features of a patient who developed limbic encephalitis with both glutamate receptor 2 (GluR2) and collapsin response mediator protein 5 (CRMP5) antibodies. Brain magnetic resonance imaging revealed multifocal encephalopathy. Chest computed tomography showed a highly suspicious malignant thymoma. He experienced rapid neurological deterioration during hospitalization. This report indicates that the clinical diversity of anti-AMPAR encephalitis and the presence of onconeural antibodies may lead to poor prognosis.

  16. Immediate and Catastrophic Antibody-Mediated Rejection in a Lung Transplant Recipient With Anti-Angiotensin II Receptor Type 1 and Anti-Endothelin-1 Receptor Type A Antibodies.

    PubMed

    Cozzi, E; Calabrese, F; Schiavon, M; Feltracco, P; Seveso, M; Carollo, C; Loy, M; Cardillo, M; Rea, F

    2017-02-01

    Preexisting donor-specific anti-HLA antibodies (DSAs) have been associated with reduced survival of lung allografts. However, antibodies with specificities other than HLA may have a detrimental role on the lung transplant outcome. A young man with cystic fibrosis underwent lung transplantation with organs from a suitable deceased donor. At the time of transplantation, there were no anti-HLA DSAs. During surgery, the patient developed a severe and intractable pulmonary hypertension associated with right ventriular dysfunction, which required arteriovenous extracorporeal membrane oxygenation. After a brief period of clinical improvement, a rapid deterioration in hemodynamics led to the patient's death on postoperative day 5. Postmortem studies showed that lung specimens taken at the end of surgery were compatible with antibody-mediated rejection (AMR), while terminal samples evidenced diffuse capillaritis, blood extravasation, edema, and microthrombi, with foci of acute cellular rejection (A3). Immunological investigations demonstrated the presence of preexisting antibodies against the endothelin-1 receptor type A (ET A R) and the angiotensin II receptor type 1 (AT 1 R), two of the most potent vasoconstrictors reported to date, whose levels slightly rose after transplantation. These data suggest that preexisting anti-ET A R and anti-AT 1 R antibodies may have contributed to the onset of AMR and to the catastrophic clinical course of this patient. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. The Fc and not CD4 Receptor Mediates Antibody Enhancement of HIV Infection in Human Cells

    NASA Astrophysics Data System (ADS)

    Homsy, Jacques; Meyer, Mia; Tateno, Masatoshi; Clarkson, Sarah; Levy, Jay A.

    1989-06-01

    Antibodies that enhance human immunodeficiency virus (HIV) infectivity have been found in the blood of infected individuals and in infected or immunized animals. These findings raise serious concern for the development of a safe vaccine against acquired immunodeficiency syndrome. To address the in vivo relevance and mechanism of this phenomenon, antibody-dependent enhancement of HIV infectivity in peripheral blood macrophages, lymphocytes, and human fibroblastoid cells was studied. Neither Leu3a, a monoclonal antibody directed against the CD4 receptor, nor soluble recombinant CD4 even at high concentrations prevented this enhancement. The addition of monoclonal antibody to the Fc receptor III (anti-FcRIII), but not of antibodies that react with FcRI or FcRII, inhibited HIV type 1 and HIV type 2 enhancement in peripheral blood macrophages. Although enhancement of HIV infection in CD4+ lymphocytes could not be blocked by anti-FcRIII, it was inhibited by the addition of human immunoglobulin G aggregates. The results indicate that the FcRIII receptor on human macrophages and possibly another Fc receptor on human CD4+ lymphocytes mediate antibody-dependent enhancement of HIV infectivity and that this phenomenon proceeds through a mechanism independent of the CD4 protein.

  18. Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies.

    PubMed

    Zarschler, K; Prapainop, K; Mahon, E; Rocks, L; Bramini, M; Kelly, P M; Stephan, H; Dawson, K A

    2014-06-07

    For effective localization of functionalized nanoparticles at diseased tissues such as solid tumours or metastases through biorecognition, appropriate targeting vectors directed against selected tumour biomarkers are a key prerequisite. The diversity of such vector molecules ranges from proteins, including antibodies and fragments thereof, through aptamers and glycans to short peptides and small molecules. Here, we analyse the specific nanoparticle targeting capabilities of two previously suggested peptides (D4 and GE11) and a small camelid single-domain antibody (sdAb), representing potential recognition agents for the epidermal growth factor receptor (EGFR). We investigate specificity by way of receptor RNA silencing techniques and look at increasing complexity in vitro by introducing increasing concentrations of human or bovine serum. Peptides D4 and GE11 proved problematic to employ and conjugation resulted in non-receptor specific uptake into cells. Our results show that sdAb-functionalized particles can effectively target the EGFR, even in more complex bovine and human serum conditions where targeting specificity is largely conserved for increasing serum concentration. In human serum however, an inhibition of overall nanoparticle uptake is observed with increasing protein concentration. For highly affine targeting ligands such as sdAbs, targeting a receptor such as EGFR with low serum competitor abundance, receptor recognition function can still be partially realised in complex conditions. Here, we stress the value of evaluating the targeting efficiency of nanoparticle constructs in realistic biological milieu, prior to more extensive in vivo studies.

  19. Establishment of H2Mab-119, an Anti-Human Epidermal Growth Factor Receptor 2 Monoclonal Antibody, Against Pancreatic Cancer.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Chang, Yao-Wen; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kaneko, Mika K; Kato, Yukinari

    2017-12-01

    Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer and is associated with poor clinical outcomes. In addition, HER2 expression has been reported in other cancers, such as gastric, colorectal, lung, and pancreatic cancers. An anti-HER2 humanized antibody, trastuzumab, leads to significant survival benefits in patients with HER2-overexpressing breast cancers and gastric cancers. Herein, we established a novel anti-HER2 monoclonal antibody (mAb), H 2 Mab-119 (IgG 1 , kappa), and characterized its efficacy against pancreatic cancers using flow cytometry, Western blot, and immunohistochemical analyses. H 2 Mab-119 reacted with pancreatic cancer cell lines, such as KLM-1, Capan-2, and MIA PaCa-2, but did not react with PANC-1 in flow cytometry analysis. Western blot analysis also revealed a moderate signal for KLM-1 and a weak signal for MIA PaCa-2, although H 2 Mab-119 reacted strongly with LN229/HER2 cells. Finally, immunohistochemical analyses with H 2 Mab-119 revealed sensitive and specific reactions against breast and colon cancers but did not react with pancreatic cancers, indicating that H 2 Mab-119 is useful for detecting HER2 overexpression in pancreatic cancers using flow cytometry and Western blot analyses.

  20. Targeting autocrine HB-EGF signaling with specific ADAM12 inhibition using recombinant ADAM12 prodomain

    NASA Astrophysics Data System (ADS)

    Miller, Miles A.; Moss, Marcia L.; Powell, Gary; Petrovich, Robert; Edwards, Lori; Meyer, Aaron S.; Griffith, Linda G.; Lauffenburger, Douglas A.

    2015-10-01

    Dysregulation of ErbB-family signaling underlies numerous pathologies and has been therapeutically targeted through inhibiting ErbB-receptors themselves or their cognate ligands. For the latter, “decoy” antibodies have been developed to sequester ligands including heparin-binding epidermal growth factor (HB-EGF); however, demonstrating sufficient efficacy has been difficult. Here, we hypothesized that this strategy depends on properties such as ligand-receptor binding affinity, which varies widely across the known ErbB-family ligands. Guided by computational modeling, we found that high-affinity ligands such as HB-EGF are more difficult to target with decoy antibodies compared to low-affinity ligands such as amphiregulin (AREG). To address this issue, we developed an alternative method for inhibiting HB-EGF activity by targeting its cleavage from the cell surface. In a model of the invasive disease endometriosis, we identified A Disintegrin and Metalloproteinase 12 (ADAM12) as a protease implicated in HB-EGF shedding. We designed a specific inhibitor of ADAM12 based on its recombinant prodomain (PA12), which selectively inhibits ADAM12 but not ADAM10 or ADAM17. In endometriotic cells, PA12 significantly reduced HB-EGF shedding and resultant cellular migration. Overall, specific inhibition of ligand shedding represents a possible alternative to decoy antibodies, especially for ligands such as HB-EGF that exhibit high binding affinity and localized signaling.

  1. Clinical Utility of Acetylcholine Receptor Antibody Testing in Ocular Myasthenia Gravis.

    PubMed

    Peeler, Crandall E; De Lott, Lindsey B; Nagia, Lina; Lemos, Joao; Eggenberger, Eric R; Cornblath, Wayne T

    2015-10-01

    The sensitivity of acetylcholine receptor (AChR) antibody testing is thought to be lower in ocular myasthenia gravis (OMG) compared with generalized disease, although estimates in small-scale studies vary. There is little information in the literature about the implications of AChR antibody levels and progression from OMG to generalized myasthenia gravis. To test the hypothesis that serum AChR antibody testing is more sensitive in OMG than previously reported and to examine the association between AChR antibody levels and progression from OMG to generalized myasthenia gravis. A retrospective, observational cohort study was conducted of 223 patients (mean [SD] age, 59.2 [16.4] years; 139 [62.3%] male) diagnosed with OMG between July 1, 1986, and May 31, 2013, at 2 large, academic medical centers. Baseline characteristics, OMG symptoms, results of AChR antibody testing, and progression time to generalized myasthenia gravis (if this occurred) were recorded for each patient. Multiple logistic regression was used to measure the association between all clinical variables and antibody result. Kaplan-Meier survival analysis was performed to examine time to generalization. Among the 223 participants, AChR antibody testing results were positive in 158 participants (70.9%). In an adjusted model, increased age at diagnosis (odds ratio [OR], 1.03; 95% CI, 1.01-1.04; P = .007) and progression to generalized myasthenia gravis (OR, 2.92; 95% CI, 1.18-7.26; P = .02) were significantly associated with positive antibody test results. Women were less likely to have a positive antibody test result (OR, 0.36; 95% CI, 0.19-0.68; P = .002). Patients who developed symptoms of generalized myasthenia gravis had a significantly higher mean (SD) antibody level than those who did not develop symptoms of generalized myasthenia gravis (12.7 [16.5] nmol/L vs 4.2 [7.9] nmol/L; P = .002). We demonstrate a higher sensitivity of AChR antibody testing than previously reported in the

  2. Antibodies to watch in 2014.

    PubMed

    Reichert, Janice M

    2014-01-01

    Since 2010, mAbs has documented the biopharmaceutical industry's progress in transitioning antibody therapeutics to first Phase 3 clinical studies and regulatory review, and its success at gaining first marketing approvals for antibody-based products. This installment of the "Antibodies to watch" series outlines events anticipated to occur between December 2013 and the end of 2014, including first regulatory actions on marketing applications for vedolizumab, siltuximab, and ramucirumab, as well as the Fc fusion proteins Factor IX-Fc and Factor VIII-Fc; and the submission of first marketing applications for up to five therapeutics (secukinumab, ch14.18, onartuzumab, necitumumab, gevokizumab). Antibody therapeutics in Phase 3 studies are described, with an emphasis on those with study completion dates in 2014, including antibodies targeting interleukin-17a or the interleukin-17a receptor (secukinumab, ixekizumab, brodalumab), proprotein convertase subtilisin/kexin type 9 (alirocumab, evolocumab, bococizumab), and programmed death 1 receptor (lambrolizumab, nivolumab). Five antibodies with US Food and Drug Administration's Breakthrough Therapy designation (obinutuzumab, ofatumumab, lambrolizumab, bimagrumab, daratumumab) are also discussed.

  3. Antibodies to watch in 2014

    PubMed Central

    Reichert, Janice M

    2014-01-01

    Since 2010, mAbs has documented the biopharmaceutical industry’s progress in transitioning antibody therapeutics to first Phase 3 clinical studies and regulatory review, and its success at gaining first marketing approvals for antibody-based products. This installment of the “Antibodies to watch” series outlines events anticipated to occur between December 2013 and the end of 2014, including first regulatory actions on marketing applications for vedolizumab, siltuximab, and ramucirumab, as well as the Fc fusion proteins Factor IX-Fc and Factor VIII-Fc; and the submission of first marketing applications for up to five therapeutics (secukinumab, ch14.18, onartuzumab, necitumumab, gevokizumab). Antibody therapeutics in Phase 3 studies are described, with an emphasis on those with study completion dates in 2014, including antibodies targeting interleukin-17a or the interleukin-17a receptor (secukinumab, ixekizumab, brodalumab), proprotein convertase subtilisin/kexin type 9 (alirocumab, evolocumab, bococizumab), and programmed death 1 receptor (lambrolizumab, nivolumab). Five antibodies with US Food and Drug Administration’s Breakthrough Therapy designation (obinutuzumab, ofatumumab, lambrolizumab, bimagrumab, daratumumab) are also discussed. PMID:24284914

  4. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by XMetA, an allosteric partial agonist antibody

    USDA-ARS?s Scientific Manuscript database

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  5. Focal status epilepticus and progressive dyskinesia: A novel phenotype for glycine receptor antibody-mediated neurological disease in children.

    PubMed

    Chan, D W S; Thomas, T; Lim, M; Ling, S; Woodhall, M; Vincent, A

    2017-03-01

    Antibody-associated disorders of the central nervous system are increasingly recognised in adults and children. Some are known to be paraneoplastic, whereas in others an infective trigger is postulated. They include disorders associated with antibodies to N-methyl-d-aspartate receptor (NMDAR), voltage-gated potassium channel-complexes (VGKC-complex), GABA B receptor or glycine receptor (GlyR). With antibodies to NMDAR or VGKC-complexes, distinct clinical patterns are well characterised, but as more antibodies are discovered, the spectra of associated disorders are evolving. GlyR antibodies have been detected in patients with progressive encephalopathy with rigidity and myoclonus (PERM), or stiff man syndrome, both rare but disabling conditions. We report a case of a young child with focal seizures and progressive dyskinesia in whom GlyR antibodies were detected. Anticonvulsants and immunotherapy were effective in treating both the seizures and movement disorder with good neurological outcome and with a decline in the patient's serum GlyR-Ab titres. Glycine receptor antibodies are associated with focal status epilepticus and seizures, encephalopathy and progressive dyskinesia and should be evaluated in autoimmune encephalitis. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  6. Fc receptors for mouse IgG1 on human monocytes: polymorphism and role in antibody-induced T cell proliferation.

    PubMed

    Tax, W J; Hermes, F F; Willems, R W; Capel, P J; Koene, R A

    1984-09-01

    In previous studies, it was shown that there is polymorphism in the mitogenic effect of mouse IgG1 monoclonal antibodies against the T3 antigen of human T cells. This polymorphism implies that IgG1 anti-T3 antibodies are not mitogenic for T cells from 30% of healthy individuals. The present results demonstrate that this polymorphism is caused by polymorphism of an Fc receptor for mouse IgG1, present on human monocytes. The Fc receptor for murine IgG1 could be detected by a newly developed rosetting assay on monocytes from all individuals responsive to the mitogenic effect of IgG1 anti-T3 antibodies. This Fc receptor was not detectable on monocytes from those individuals exhibiting no mitogenic responses to IgG1 anti-T3 monoclonal antibodies. Cross-linking of T3 antigens appears to be essential for antibody-induced mitosis of T cells, because mononuclear cells that did not proliferate in response to WT 31 (an IgG1 antibody against T3 antigen) showed a proliferative response to Sepharose beads coated with WT 31. The Fc receptor--if functionally present--may be involved in the cross-linking of T3 antigens through anti-T3 antibodies. Further evidence for the involvement of this Fc receptor in antibody-induced T cell proliferation was provided by inhibition studies. Immune complexes containing IgG1 antibodies were able to inhibit the proliferative response to IgG1 anti-T3 antibodies. This inhibition by immune complexes appears to be mediated through the monocyte Fc receptor for mouse IgG1. These findings are important for the interpretation of previously described inhibitory effects of anti-T cell monoclonal antibodies on T cell proliferation, and show that such inhibitory effects may be monocyte-mediated (via immune complexes) rather than caused by a direct involvement of the respective T cell antigens in T cell mitosis. The Fc receptor for mouse IgG1 plays a role in antibody-induced T cell proliferation. Its polymorphism may have important implications for the

  7. Blockade of human P2X7 receptor function with a monoclonal antibody.

    PubMed

    Buell, G; Chessell, I P; Michel, A D; Collo, G; Salazzo, M; Herren, S; Gretener, D; Grahames, C; Kaur, R; Kosco-Vilbois, M H; Humphrey, P P

    1998-11-15

    A monoclonal antibody (MoAb) specific for the human P2X7 receptor was generated in mice. As assessed by flow cytometry, the MoAb labeled human blood-derived macrophage cells natively expressing P2X7 receptors and cells transfected with human P2X7 but not other P2X receptor types. The MoAb was used to immunoprecipitate the human P2X7 receptor protein, and in immunohistochemical studies on human lymphoid tissue, P2X7 receptor labeling was observed within discrete areas of the marginal zone of human tonsil sections. The antibody also acted as a selective antagonist of human P2X7 receptors in several functional studies. Thus, whole cell currents, elicited by the brief application of 2',3'-(4-benzoyl)-benzoyl-ATP in cells expressing human P2X7, were reduced in amplitude by the presence of the MoAb. Furthermore, preincubation of human monocytic THP-1 cells with the MoAb antagonized the ability of P2X7 agonists to induce the release of interleukin-1beta.

  8. HIV blocking antibodies following immunisation with chimaeric peptides coding a short N-terminal sequence of the CCR5 receptor.

    PubMed

    Chain, Benjamin M; Noursadeghi, Mahdad; Gardener, Michelle; Tsang, Jhen; Wright, Edward

    2008-10-23

    The chemokine receptor CCR5 is required for cellular entry by many strains of HIV, and provides a potential target for molecules, including antibodies, designed to block HIV transmission. This study investigates a novel approach to stimulate antibodies to CCR5. Rabbits were immunised with chimaeric peptides which encode a short fragment of the N-terminal sequence of CCR5, as well as an unrelated T cell epitope from Tetanus toxoid. Immunisation with these chimaeric peptides generates a strong antibody response which is highly focused on the N-terminal CCR5 sequence. The antibody to the chimaeric peptide containing an N-terminal methionine also recognises the full length CCR5 receptor on the cell surface, albeit at higher concentrations. Further comparison of binding to intact CCR5 with binding to CCR5 peptide suggest that the receptor specific antibody generated represents a very small fragment of the total anti-peptide antibody. These findings are consistent with the hypothesis that the N-terminal peptide in the context of the intact receptor has a different structure to that of the synthetic peptide. Finally, the antibody was able to block HIV infection of macrophages in vitro. Thus results of this study suggest that N-terminal fragments of CCR5 may provide potential immunogens with which to generate blocking antibodies to this receptor, while avoiding the dangers of including T cell auto-epitopes.

  9. HIV blocking antibodies following immunisation with chimaeric peptides coding a short N-terminal sequence of the CCR5 receptor

    PubMed Central

    Chain, Benjamin M.; Noursadeghi, Mahdad; Gardener, Michelle; Tsang, Jhen; Wright, Edward

    2008-01-01

    The chemokine receptor CCR5 is required for cellular entry by many strains of HIV, and provides a potential target for molecules, including antibodies, designed to block HIV transmission. This study investigates a novel approach to stimulate antibodies to CCR5. Rabbits were immunised with chimaeric peptides which encode a short fragment of the N-terminal sequence of CCR5, as well as an unrelated T cell epitope from Tetanus toxoid. Immunisation with these chimaeric peptides generates a strong antibody response which is highly focused on the N-terminal CCR5 sequence. The antibody to the chimaeric peptide containing an N-terminal methionine also recognises the full length CCR5 receptor on the cell surface, albeit at higher concentrations. Further comparison of binding to intact CCR5 with binding to CCR5 peptide suggest that the receptor specific antibody generated represents a very small fragment of the total anti-peptide antibody. These findings are consistent with the hypothesis that the N-terminal peptide in the context of the intact receptor has a different structure to that of the synthetic peptide. Finally, the antibody was able to block HIV infection of macrophages in vitro. Thus results of this study suggest that N-terminal fragments of CCR5 may provide potential immunogens with which to generate blocking antibodies to this receptor, while avoiding the dangers of including T cell auto-epitopes. PMID:18765264

  10. Mapping of monoclonal antibody- and receptor-binding domains on human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) using a surface plasmon resonance-based biosensor.

    PubMed

    Laricchia-Robbio, L; Liedberg, B; Platou-Vikinge, T; Rovero, P; Beffy, P; Revoltella, R P

    1996-10-01

    An automated surface plasmon resonance (SPR)-based biosensor system has been used for mapping antibody and receptor-binding regions on the recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) molecule. A rabbit antimouse IgG1-Fc antibody (RAM.Fc) was coupled to an extended carboxymethylated-hydrogel matrix attached to a gold surface in order to capture an anti-rhGM-CSF monoclonal antibody (MAb) injected over the sensing layer. rhGM-CSF was subsequently injected and allowed to bind to this antibody. Multisite binding assays were then performed, by flowing sequentially other antibodies and peptides over the surface, and the capacity of the latter to interact with the entrapped rhGM-CSF in a multimolecular complex was monitored in real time with SPR. Eleven MAb (all IgG1K), were analyzed: respectively, four antipeptide MAb raised against three distinct epitopes of the cytokine (two clones against residues 14-24, that includes part of the first alpha-helix toward the N-terminal region; one clone against peptide 30-41, an intrahelical loop; and one clone against residues 79-91, including part of the third alpha-helix) and seven antiprotein MAbs raised against the entire rhGM-CSF, whose target native epitopes are still undetermined. In addition, the binding capacity to rhGM-CSF of a synthetic peptide, corresponding to residues 238-254 of the extracellular human GM-CSF receptor alpha-chain, endowed with rhGM-CSF binding activity, was tested. The results from experiments performed with the biosensor were compared with those obtained by a sandwich enzyme-linked immunosorbent assay (ELISA), using the same reagents. The features of the biosensor technology (fully automated, measure in real time, sharpened yes/no response, less background disturbances, no need for washing step or labeling of the reagent) offered several advantages in these studies of MAb immunoreactivity and epitope mapping, giving a much better resolution and enabling more distinct

  11. In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe

    NASA Astrophysics Data System (ADS)

    Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong

    2018-02-01

    Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.

  12. [Construction and screening of phage antibody libraries against epidermal growth factor receptor and soluble expression of single chain Fv].

    PubMed

    Sheng, Wei-Jin; Miao, Qing-Fang; Zhen, Yong-Su

    2009-06-01

    Recent studies have shown that epidermal growth factor receptor (EGFR) is an important target for cancer therapy. The present study prepared single chain Fv (scFv) directed against EGFR. Balb/c mice were immunized by human carcinoma A431 cells, and total RNA of the splenic cells was extracted. VH and VL gene fragments were amplified by RT-PCR and further joined into scFv gene with a linker, then scFv gene fragments were ligated into the phagemid vector pCANTAB 5E. The phagemid containing scFv were transformed into electro-competent E. coli TG1 cells. The recombinant phage antibody library was constructed through rescuing the transformed cells with help phage M13K07. The specified recombinant phages were enriched through 5 rounds of affinity panning and the anti-EGFR phage scFv clones were screened and identified with ELISA. A total of 48 clones from the library were selected randomly and 45 clones were identified positive. After infecting E. coli HB2151 cells with one positive clone, soluble recombinant antibodies about 27 kD were produced and located in the periplasm and the supernatant. The result of sequencing showed that the scFv gene was 768 bp, which encoded 256 amino acid residues. VH and VL including 3 CDRs and 4 FRs, respectively, were all homologous to mouse Ig. The soluble scFv showed the specific binding activity to purified EGFR and EGFR located in carcinoma cell membrane. The successful preparation of anti-EGFR scFv will provide an EGFR targeted molecule for the development of antibody-based drugs and biological therapy of cancer.

  13. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study.

    PubMed

    Gresa-Arribas, Nuria; Titulaer, Maarten J; Torrents, Abiguei; Aguilar, Esther; McCracken, Lindsey; Leypoldt, Frank; Gleichman, Amy J; Balice-Gordon, Rita; Rosenfeld, Myrna R; Lynch, David; Graus, Francesc; Dalmau, Josep

    2014-02-01

    Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis is a severe but treatable autoimmune disorder which diagnosis depends on sensitive and specific antibody testing. We aimed to assess the sensitivity and specificity of serum and CSF antibody testing in patients with anti-NMDA receptor encephalitis, and the relation between titres, relapses, outcome, and epitope repertoire. In this observational study, we used rat brain immunohistochemistry and cell-based assays (CBA) with fixed or live NMDA receptor-expressing cells to determine the sensitivity and specificity of antibody testing in paired serum and CSF samples. Samples were obtained at diagnosis from patients with anti-NMDA receptor encephalitis and from control participants worldwide. We deemed a patient to be antibody positive if their serum, their CSF, or both tested positive with both immunohistochemistry and CBA techniques; we determined titres with serial sample dilution using brain immunohistochemistry. We examined samples from 45 patients (25 with good outcome [modified Rankin Scale, mRS 0-2], ten with poor outcome [mRS 3-6], and ten with relapses) at three or more timepoints. We determined the epitope repertoire in the samples of 23 patients with CBA expressing GluN1-NMDA receptor mutants. We analysed samples from 250 patients with anti-NMDA receptor encephalitis and 100 control participants. All 250 patients had NMDA receptor antibodies in CSF but only 214 had antibodies in serum (sensitivity 100.0% [98.5-1000%] vs 85.6% [80.7-89.4%], p<0.0001). Serum immunohistochemistry testing was more often in agreement with CBA with fixed cells (77 [71%] of 108) than with CBA with live cells (63 [58%] of 108, p=0.0056). In multivariable analysis, CSF and serum titres were higher in patients with poor outcome than in those with good outcome (CSF dilution 340 vs 129, difference 211, [95% CI 1-421], p=0.049; serum dilution 7370 vs 1243, difference 6127 [2369-9885], p=0.0025), and in patients with teratoma than in

  14. Immunoadsorption to remove ß2 adrenergic receptor antibodies in Chronic Fatigue Syndrome CFS/ME.

    PubMed

    Scheibenbogen, Carmen; Loebel, Madlen; Freitag, Helma; Krueger, Anne; Bauer, Sandra; Antelmann, Michaela; Doehner, Wolfram; Scherbakov, Nadja; Heidecke, Harald; Reinke, Petra; Volk, Hans-Dieter; Grabowski, Patricia

    2018-01-01

    Infection-triggered disease onset, chronic immune activation and autonomic dysregulation in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) point to an autoimmune disease directed against neurotransmitter receptors. We had observed elevated autoantibodies against ß2 adrenergic receptors, and muscarinic 3 and 4 acetylcholine receptors in a subset of patients. Immunoadsorption (IA) was shown to be effective in removing autoantibodies and improve outcome in various autoimmune diseases. 10 patients with post-infectious CFS/ME and elevated ß2 autoantibodies were treated with IA with an IgG-binding column for 5 days. We assessed severity of symptoms as outcome parameter by disease specific scores. Antibodies were determined by ELISA and B cell phenotype by flow cytometry. IgG levels dropped to median 0.73 g/l (normal 7-16 g/l) after the 4th cycle of IA, while IgA and IgM levels remained unchanged. Similarly, elevated ß2 IgG antibodies rapidly decreased during IA in 9 of 10 patients. Also 6 months later ß2 autoantibodies were significantly lower compared to pretreatment. Frequency of memory B cells significantly decreased and frequency of plasma cells increased after the 4th IA cycle. A rapid improvement of symptoms was reported by 7 patients during the IA. 3 of these patients had long lasting moderate to marked improvement for 6-12+ months, 2 patients had short improvement only and 2 patients improved for several months following initial worsening. IA can remove autoantibodies against ß2 adrenergic receptor and lead to clinical improvement. B cell phenotyping provides evidence for an effect of IA on memory B cell development. Data from our pilot trial warrants further studies in CFS/ME.

  15. Validation of endothelin B receptor antibodies reveals two distinct receptor-related bands on Western blot.

    PubMed

    Barr, Travis P; Kornberg, Daniel; Montmayeur, Jean-Pierre; Long, Melinda; Reichheld, Stephen; Strichartz, Gary R

    2015-01-01

    Antibodies are important tools for the study of protein expression but are often used without full validation. In this study, we used Western blots to characterize antibodies targeted to the N or C terminal (NT or CT, respectively) and the second or third intracellular loop (IL2 or IL3, respectively) of the endothelin B receptor (ETB). The IL2-targeted antibody accurately detected endogenous ETB expression in rat brain and cultured rat astrocytes by labeling a 50-kDa band, the expected weight of full-length ETB. However, this antibody failed to detect transfected ETB in HEK293 cultures. In contrast, the NT-targeted antibody accurately detected endogenous ETB in rat astrocyte cultures and transfected ETB in HEK293 cultures by labeling a 37-kDa band but failed to detect endogenous ETB in rat brain. Bands detected by the CT- or IL3-targeted antibody were found to be unrelated to ETB. Our findings show that functional ETB can be detected at 50 or 37kDa on Western blot, with drastic differences in antibody affinity for these bands. The 37-kDa band likely reflects ETB processing, which appears to be dependent on cell type and/or culture condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Immunohistochemical application of a highly sensitive and specific murine monoclonal antibody recognising the extracellular domain of the human hepatocyte growth factor receptor (MET).

    PubMed

    Gruver, Aaron M; Liu, Ling; Vaillancourt, Peter; Yan, Sau-Chi B; Cook, Joel D; Roseberry Baker, Jessica A; Felke, Erin M; Lacy, Megan E; Marchal, Christophe C; Szpurka, Hadrian; Holzer, Timothy R; Rhoads, Emily K; Zeng, Wei; Wortinger, Mark A; Lu, Jirong; Chow, Chi-kin; Denning, Irene J; Beuerlein, Gregory; Davies, Julian; Hanson, Jeff C; Credille, Kelly M; Wijayawardana, Sameera R; Schade, Andrew E

    2014-12-01

    Development of novel targeted therapies directed against hepatocyte growth factor (HGF) or its receptor (MET) necessitates the availability of quality diagnostics to facilitate their safe and effective use. Limitations of some commercially available anti-MET antibodies have prompted development of the highly sensitive and specific clone A2H2-3. Here we report its analytical properties when applied by an automated immunohistochemistry method. Excellent antibody specificity was demonstrated by immunoblot, ELISA, and IHC evaluation of characterised cell lines including NIH3T3 overexpressing the related kinase MST1R (RON). Sensitivity was confirmed by measurements of MET in cell lines or characterised tissues. IHC correlated well with FISH and quantitative RT-PCR assessments of MET (P < 0.001). Good total agreement (89%) was observed with the anti-MET antibody clone SP44 using whole-tissue sections, but poor positive agreement (21-47%) was seen in tissue microarray cores. Multiple lots displayed appropriate reproducibility (R(2)  > 0.9). Prevalence of MET positivity by IHC was higher in non-squamous cell NSCLC, MET or EGFR amplified cases, and in tumours harbouring abnormalities in EGFR exon 19 or 21. The anti-MET antibody clone A2H2-3 displays excellent specificity and sensitivity. These properties make it suitable for clinical trial investigations and development as a potential companion diagnostic. © 2014 The Authors. Histopathology Published by John Wiley & Sons Ltd.

  17. Auto-antibodies to Receptor Tyrosine Kinases TrkA, TrkB and TrkC in Patients with Chronic Chagas’ Disease

    PubMed Central

    Lu, B.; Petrola, Z.; Luquetti, A. O.; PereiraPerrin, M.

    2010-01-01

    The Chagas’ disease parasite Trypanosoma cruzi promotes survival and differentiation of neurones by binding and activating nerve growth factor (NGF) receptor TrkA. The functional mimic of NGF in T. cruzi is a surface-bound and shed immunogenic protein [neurotrophic factor/trans-sialidase (TS)], which raised the possibility that immune response to T. cruzi in general and to neurotrophic factor/TS in particular leads to loss of immunological tolerance to host NGF and/or the NGF-binding partner TrkA. In testing this hypothesis, we found that sera of individuals with chronic Chagas’ disease bear unique IgG2 autoantibodies that bind TrkA and TrkA family members TrkB and TrkC (ATA). Binding of ATA to Trk receptors is specific because the autoantibodies did not cross-react with five other growth factor receptors, NGF and other neurotrophins, and T. cruzi. Thus, individuals with chronic Chagas’ disease produce unique antibodies that react with pan-Trk receptors, one of which (TrkA) T. cruzi exploits to inhibit host cell apoptosis and to promote cellular invasion. PMID:18410251

  18. Characterization of Antibodies to Identify Cellular Expression of Dopamine Receptor 4.

    PubMed

    Deming, Janise D; Van Craenenbroeck, Kathleen; Eom, Yun Sung; Lee, Eun-Jin; Craft, Cheryl Mae

    2016-01-01

    The dopamine receptor D4 (DRD4) plays an important role in vision. In order to study the DRD4 expression in vivo, it is important to have antibodies that are specific for DRD4 for both immunoblot and immunohistochemical (IHC) applications. In this study, six antibodies raised against DRD4 peptides were tested in vitro, using transfected mammalian cells, and in vivo, using mouse retinas. Three Santa Cruz (SC) antibodies, D-16, N-20, and R-20, were successful in IHC of transfected DRD4; however, N-20 was the only one effective on immunoblot analysis in DRD4 transfected cells and IHC of mouse retinal sections, while R-20, 2B9, and Antibody Verify AAS63631C were non-specific or below detection.

  19. Inhibiting thyrotropin/insulin-like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro.

    PubMed

    Place, Robert F; Krieger, Christine C; Neumann, Susanne; Gershengorn, Marvin C

    2017-02-01

    Crosstalk between thyrotropin (TSH) receptors and insulin-like growth factor 1 (IGF-1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF-1 receptor-dependent and -independent pathways. Although an anti-IGF-1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF-1 versus TSH receptor signalling in GO pathogenesis. TSH and IGF-1 receptor antagonists were used to probe TSH/IGF-1 receptor crosstalk in primary cultures of Graves' orbital fibroblasts (GOFs) following activation with monoclonal TSH receptor antibody, M22. Inhibition of HA secretion following TSH receptor stimulation was measured by modified HA elisa. TSH receptor antagonist, ANTAG3 (NCGC00242364), inhibited both IGF-1 receptor -dependent and -independent pathways at all doses of M22; whereas IGF-1 receptor antagonists linsitinib and 1H7 (inhibitory antibody) lost efficacy at high M22 doses. Combining TSH and IGF-1 receptor antagonists exhibited Loewe additivity within the IGF-1 receptor-dependent component of the M22 concentration-response. Similar effects were observed in GOFs activated by autoantibodies from GO patients' sera. Our data support TSH and IGF-1 receptors as therapeutic targets for GO, but reveal putative conditions for anti-IGF-1 receptor resistance. Combination treatments antagonizing both receptors yield additive effects by inhibiting crosstalk triggered by TSH receptor stimulatory antibodies. Combination therapy may be an effective strategy for dose reduction and/or compensate for any loss of anti-IGF-1 receptor efficacy. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  20. Transforming growth factor-alpha short-circuits downregulation of the epidermal growth factor receptor.

    PubMed

    Ouyang, X; Gulliford, T; Huang, G; Epstein, R J

    1999-04-01

    Transforming growth factor-alpha (TGFalpha) is an epidermal growth factor receptor (EGFR) ligand which is distinguished from EGF by its acid-labile structure and potent transforming function. We recently reported that TGFalpha induces less efficient EGFR heterodimerization and downregulation than does EGF (Gulliford et al., 1997, Oncogene, 15:2219-2223). Here we use isoform-specific EGFR and ErbB2 antibodies to show that the duration of EGFR signalling induced by a single TGFalpha exposure is less than that induced by equimolar EGF. The protein trafficking inhibitor brefeldin A (BFA) reduces the duration of EGF signalling to an extent similar to that seen with TGFalpha alone; the effects of TGFalpha and BFA on EGFR degradation are opposite, however, with TGFalpha sparing EGFR from downregulation but BFA accelerating EGF-dependent receptor loss. This suggests that BFA blocks EGFR recycling and thus shortens EGF-dependent receptor signalling, whereas TGFalpha shortens receptor signalling and thus blocks EGFR downregulation. Consistent with this, repeated application of TGFalpha is accompanied by prolonged EGFR expression and signalling, whereas similar application of EGF causes receptor downregulation and signal termination. These findings indicate that constitutive secretion of pH-labile TGFalpha may perpetuate EGFR signalling by permitting early oligomer dissociation and dephosphorylation within acidic endosomes, thereby extinguishing a phosphotyrosine-based downregulation signal and creating an irreversible autocrine growth loop.

  1. Anticancer activity of TTAC-0001, a fully human anti-vascular endothelial growth factor receptor 2 (VEGFR-2/KDR) monoclonal antibody, is associated with inhibition of tumor angiogenesis

    PubMed Central

    Kim, Dong Geon; Jin, Younggeon; Jin, Juyoun; Yang, Heekyoung; Joo, Kyeung Min; Lee, Weon Sup; Shim, Sang Ryeol; Kim, Sung-Woo; Yoo, Jinsang; Lee, Sang Hoon; Yoo, Jin-San; Nam, Do-Hyun

    2015-01-01

    Vascular endothelial growth factor (VEGF) and its receptors are considered the primary cause of tumor-induced angiogenesis. Specifically, VEGFR-2/kinase insert domain receptor (KDR) is part of the major signaling pathway that plays a significant role in tumor angiogenesis, which is associated with the development of various types of tumor and metastasis. In particular, KDR is involved in tumor angiogenesis as well as cancer cell growth and survival. In this study, we evaluated the therapeutic potential of TTAC-0001, a fully human antibody against VEGFR-2/KDR. To assess the efficacy of the antibody and pharmacokinetic (PK) relationship in vivo, we tested the potency of TTAC-0001 in glioblastoma and colorectal cancer xenograft models. Antitumor activity of TTAC-0001 in preclinical models correlated with tumor growth arrest, induction of tumor cell apoptosis, and inhibition of angiogenesis. We also evaluated the combination effect of TTAC-0001 with a chemotherapeutic agent in xenograft models. We were able to determine the relationship between PK and the efficacy of TTAC-0001 through in vivo single-dose PK study. Taken together, our data suggest that targeting VEGFR-2 with TTAC-0001 could be a promising approach for cancer treatment. PMID:26325365

  2. The effect of monoclonal antibodies to the human transferrin receptor on transferrin and iron uptake by rat and rabbit reticulocytes.

    PubMed

    McArdle, H J; Morgan, E H

    1984-02-10

    The effect of monoclonal antibodies to the human transferrin receptor on transferrin and iron uptake by rat and rabbit reticulocytes has been examined. The antibodies used were as follows: T58/1.4, B3/25.4, 42/6.3, T56/14.3.1, and 43/31. The effects were the same, irrespective of the antibody. Transferrin and iron uptake were stimulated in both rat and rabbit reticulocytes. The stimulation was not due to an increase in the number or affinity of the receptors, but rather to an increase in the rate of turnover of the receptors. Electron microscopy suggested that the antibody acted by facilitating the formation of coated pits containing the transferrin-receptor complex.

  3. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor

    PubMed Central

    Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella

    2002-01-01

    Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394

  4. Inhibiting thyrotropin/insulin‐like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro

    PubMed Central

    Place, Robert F; Neumann, Susanne; Gershengorn, Marvin C

    2017-01-01

    Background and Purpose Crosstalk between thyrotropin (TSH) receptors and insulin‐like growth factor 1 (IGF‐1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF‐1 receptor‐dependent and ‐independent pathways. Although an anti‐IGF‐1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF‐1 versus TSH receptor signalling in GO pathogenesis. Experimental Approach TSH and IGF‐1 receptor antagonists were used to probe TSH/IGF‐1 receptor crosstalk in primary cultures of Graves' orbital fibroblasts (GOFs) following activation with monoclonal TSH receptor antibody, M22. Inhibition of HA secretion following TSH receptor stimulation was measured by modified HA elisa. Key Results TSH receptor antagonist, ANTAG3 (NCGC00242364), inhibited both IGF‐1 receptor ‐dependent and ‐independent pathways at all doses of M22; whereas IGF‐1 receptor antagonists linsitinib and 1H7 (inhibitory antibody) lost efficacy at high M22 doses. Combining TSH and IGF‐1 receptor antagonists exhibited Loewe additivity within the IGF‐1 receptor‐dependent component of the M22 concentration‐response. Similar effects were observed in GOFs activated by autoantibodies from GO patients' sera. Conclusions and Implications Our data support TSH and IGF‐1 receptors as therapeutic targets for GO, but reveal putative conditions for anti‐IGF‐1 receptor resistance. Combination treatments antagonizing both receptors yield additive effects by inhibiting crosstalk triggered by TSH receptor stimulatory antibodies. Combination therapy may be an effective strategy for dose reduction and/or compensate for any loss of anti‐IGF‐1 receptor efficacy. PMID:27987211

  5. [TSH anti-receptor antibodies in Graves' disease].

    PubMed

    Sérgio, M R; Godinho, C; Guerra, L; Agapito, A; Fonseca, F; Costa, C

    1996-01-01

    The purpose of this study was to evaluate the sensitivity, specificity and predictive value of thyrotropin receptor antibody (TRAb) in the diagnosis of Graves disease. TRAb was tested by an isotopic receptor assay-TRAK Henning-in 80 newly diagnosed, untreated Graves disease patients (group I), 63 with other thyroid diseases (group II) and 60 controls (group III). In group I, 11 patients were TRAb negative and 7 were considered in the gray area (TRAb between 9 and 14 U/L). In group II, only 2 patients had TRAb 9 U/l and all controls were TRAb negative. For statistical analysis patients with TRAb in gray area were excluded. Sensitivity and specificity for this assay were 84.5 and 100% respectively. Predictive value of 100% affords certainty that a hyperthyroid patient with a positive TRAb has Graves disease, not sequining a scintigram.

  6. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    PubMed

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  7. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    PubMed

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents.

  8. Reduction of factor XII in antiphospholipid antibody-positive patients with thrombotic events in the rheumatology clinic.

    PubMed

    Takeishi, M; Mimori, A; Nakajima, K; Mimura, T; Suzuki, T

    2003-02-01

    Although rheumatological diagnosis often includes an assessment of antiphospholipid (aPL) antibodies, the significance of other prothrombotic factors has not been established in thrombotic patients who are not afflicted with either arteriosclerosis or vasculitis syndrome. We have observed both the presence of antiphospholipid antibodies and a reduction of factor XII in such patients. Our results identified both lupus anticoagulant-positive (50%) and anticardiolipin antibody-positive (58%) patients. In addition, 83% of patients showed factor XII antigen level reduction. Furthermore, 70% of aPL-positive thrombotic patients showed factor XII antigen level reduction. Only two cases had antiphospholipid antibody alone, and 4/12 showed just factor XII antigen reduction. Recently, it has been reported that the presence of antiphospholipid antibodies induces factor XII reduction, and that anti-factor XII autoantibody can be detected in thrombotic patients. However, our results indicate that there are smaller factor XII reductions in non-thrombotic controls who are positive for antiphospholipid antibodies. Furthermore, anti-factor XII autoantibody was not detected in patients with decreased factor XII levels. Kindred research suggested that in two patients there was a genetic component to factor XII reduction. We concluded that the presence of both antiphospholipid antibodies and reduced serum factor XII was observed in most thrombotic patients from our rheumatology clinic. It is therefore possible to consider that the coexistence of these prothrombotic factors can contribute to the onset of thrombosis.

  9. Chimeric Anti-Human Podoplanin Antibody NZ-12 of Lambda Light Chain Exerts Higher Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity Compared with NZ-8 of Kappa Light Chain.

    PubMed

    Kaneko, Mika K; Abe, Shinji; Ogasawara, Satoshi; Fujii, Yuki; Yamada, Shinji; Murata, Takeshi; Uchida, Hiroaki; Tahara, Hideaki; Nishioka, Yasuhiko; Kato, Yukinari

    2017-02-01

    Podoplanin (PDPN), a type I transmembrane 36-kDa glycoprotein, is expressed not only in normal cells, such as renal epithelial cells (podocytes), lymphatic endothelial cells, and pulmonary type I alveolar cells, but also in cancer cells, including brain tumors and lung squamous cell carcinomas. Podoplanin activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelets, and the podoplanin/CLEC-2 interaction facilitates blood/lymphatic vessel separation. We previously produced neutralizing anti-human podoplanin monoclonal antibody (mAb), clone NZ-1 (rat IgG 2a , lambda), which neutralizes the podoplanin/CLEC-2 interaction and inhibits platelet aggregation and cancer metastasis. Human-rat chimeric antibody, NZ-8, was previously developed using variable regions of NZ-1 and human constant regions of heavy chain (IgG 1 ) and light chain (kappa chain). Although NZ-8 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cells, the binding affinity of NZ-8 was lower than that of NZ-1. Herein, we produced a novel human-rat chimeric antibody, NZ-12, the constant regions of which consist of IgG 1 heavy chain and lambda light chain. Using flow cytometry, we demonstrated that the binding affinity of NZ-12 was much higher than that of NZ-8. Furthermore, ADCC and CDC activities of NZ-12 were significantly increased against glioblastoma cell lines (LN319 and D397) and lung cancer cell line (PC-10). These results suggested that NZ-12 could become a promising therapeutic antibody against podoplanin-expressing brain tumors and lung cancers.

  10. Immunologic analysis of human breast cancer progesterone receptors. 1. Immunonaffinity purification of transformed receptors and production of monoclonal antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, P.A.; Suba, E.J.; Lawler-Heavner, J.

    1987-09-22

    A monoclonal antibody (MAb), designated PR-6, produced against chick oviduct progesterone receptors cross-reacts with the M/sub r/ 120,000 human B receptors. An immunomatrix prepared with PR-6 was used to purify progesterone receptors (PR) from T47D human breast cancer cells. Single-step immunoaffinity chromatography results in enrichment of B receptors (identified by immunoblot with PR-6 and by photoaffinity labeling with (/sup 3/H)promegestone) to a specific activity of 1915 pmol/mg of protein (or 23% purity) and with 27% yield. Purity and yields as judged by gel electrophoresis and densitometric scanning of the B protein were approximately 1.7-fold higher due to partial loss inmore » hormone binding activity at the elution step. B receptors purified under these conditions are transformed and biologically active. They were maintained as undergraded 120-kDa doublets and retained both hormone and DNA binding activities. These purified B receptors were used as immunogen for production of four monoclonal antibodies against human PR. Three of the MAbs, designated as B-30 (IgG/sub 1/), B-64 (IgG/sub 1/), and B-11 (IgM), are specific for B receptors. The fourth MAb, A/B-52 (IgG/sub 1/), reacts with both A and B receptors. The IgG MAbs are monospecific for human PR since they recognize and absorb native receptor-hormone complexes, displace the sedimentation of 4S receptors on salt containing sucrose gradients, and, by immunoblot assay of crude T47D cytosol, react only with receptor polypeptides. Although mice were injected with B receptors only, production of A/B-52 which recognized both A and B receptors provides evidence that these two proteins share regions of structural homology.« less

  11. New-Onset Headache in Patients With Autoimmune Encephalitis Is Associated With anti-NMDA-Receptor Antibodies.

    PubMed

    Schankin, Christoph J; Kästele, Fabian; Gerdes, Lisa Ann; Winkler, Tobias; Csanadi, Endy; Högen, Tobias; Pellkofer, Hannah; Paulus, Walter; Kümpfel, Tania; Straube, Andreas

    2016-06-01

    We tested the hypotheses (i) that autoimmune encephalitis is associated with new-onset headache, and (ii) that the occurrence of headache is associated with the presence of anti-N-methyl-D-aspartate (NMDA)-receptor antibodies. Autoimmune encephalitis presents with cognitive dysfunction as well as neuro-psychiatric symptoms. Its pathophysiology might involve antibody-mediated dysfunction of the glutamatergic system as indicated by the presence of anti-NMDA-receptor antibodies in some patients. In this cross-sectional study, patients with autoimmune encephalitis were assessed with a standardized interview for previous headache and headache associated with autoimmune encephalitis. Headache was classified according to the International Classification of Headache Disorders, second edition. Clinical and paraclinical findings were correlated with the occurrence of headache. Of 40 patients with autoimmune encephalitis, 19 did not have a history of headache. Of those, nine suffered from encephalitis-associated headache. Seven of these nine had anti-NMDA-receptor antibodies in contrast to only two among the remaining 10 patients without new-onset headache (P = .023, odds ratio: 14, 95% confidence interval: 1.5; 127). In most patients headache occurred in attacks on more than 15 days/month, was severe, and of short duration (less than 4 hours). International Headache Society criteria for migraine were met in three patients. New-onset headache is a relevant symptom in patients with autoimmune encephalitis who have no history of previous headache, especially in the subgroup with anti-NMDA-receptor antibodies. This indicates a thorough investigation for secondary headaches including anti-NMDA-R antibodies for patients with new-onset headache and neuropsychiatric findings. Glutamatergic dysfunction might be important for the generation of head pain but may only occasionally be sufficient to trigger migraine-like attacks in nonmigraineurs. © 2016 American Headache Society.

  12. Thyroid Stimulating Hormone Receptor Antibodies in Thyroid Eye Disease-Methodology and Clinical Applications.

    PubMed

    Diana, Tanja; Kahaly, George J

    2018-05-02

    Thyroid stimulating hormone receptor antibodies (TSHR-Ab) cause autoimmune hyperthyroidism and are prevalent in patients with related thyroid eye disease (TED). To provide a historical perspective on TSHR-Ab and to present evidence-based recommendations for clinical contemporary use. The authors review the recent literature pertaining to TSHR-Ab in patients with TED and describe the various immunoassays currently used for detecting TSHR-Ab and their clinical applications. We provide a historical summary and description of the various methods used to detect TSHR-Ab, foremost, the functional TSHR-Ab. Increasing experimental and clinical data demonstrate the clinical usefulness of cell-based bioassays for measurements of functional TSHR-Ab in the diagnosis and management of patients with autoimmune TED and in the characterization of patients with autoimmune-induced hyperthyroidism and hypothyroidism. Thyroid stimulating hormone receptor antibodies, especially the functional stimulating antibodies, are sensitive, specific, and reproducible biomarkers for patients with autoimmune TED and correlate well with clinical disease activity and clinical severity. Unlike competitive-binding assays, bioassays have the advantage of indicating not only the presence of antibodies but also their functional activity and potency. Measurement of TSHR-Ab (especially stimulating antibodies) is a clinically useful tool for the management of patients with TED.

  13. [An analysis and literature review of two cases of autoimmune encephalitis with GABAB receptor antibodies].

    PubMed

    Zhang, M; Hao, H J; Liu, L P; Zhang, H H; Zhou, Y Y

    2016-10-01

    Autoimmune encephalitis with GABA B receptor antibodies has been rarely reported. Two cases of GABA B receptor antibodies encephalitis were presented here.Epilepsy was the onset symptom, followed by declined consciousness and frequent seizures. Fever was presented in the whole course of the disease. Myorhythmia of the two hands and pilomotor seizures were shown in the later course of the disease. No specificity was demonstrated in electroencephalograms and magnetic resonance imaging. Sensitive response was shown to the first-line immunotherapy.

  14. Subcellular localization of estradiol receptor in MCF7 cells studied with nanogold-labelled antibody fragments.

    PubMed

    Kessels, M M; Qualmann, B; Thole, H H; Sierralta, W D

    1998-01-01

    Ultrastructural localization studies of estradiol receptor in hormone-deprived and hormone-stimulated MCF7 cells were done using F(ab') fragments of three different antibodies (#402, 13H2, HT277) covalently linked to nanogold. These ultra-small, non-charged immunoreagents, combined with a size-enlargement by silver enhancement, localized estradiol receptor in both nuclear and cytoplasmic areas of non-stimulated target cells; stimulation with the steroid induced a predominantly nuclear labelling. In the cytoplasm of resting cells, tagging was often observed at or in the proximity of stress fibers. In the nucleus a large proportion of receptor was found inside the nucleolus, specially with the reagent derived from antibody 13H2. We postulate that different accessibilities of receptor epitopes account for the different labelling densities observed at cytoskeletal elements and the nucleoli.

  15. Therapeutic antibody targeting of individual Notch receptors.

    PubMed

    Wu, Yan; Cain-Hom, Carol; Choy, Lisa; Hagenbeek, Thijs J; de Leon, Gladys P; Chen, Yongmei; Finkle, David; Venook, Rayna; Wu, Xiumin; Ridgway, John; Schahin-Reed, Dorreyah; Dow, Graham J; Shelton, Amy; Stawicki, Scott; Watts, Ryan J; Zhang, Jeff; Choy, Robert; Howard, Peter; Kadyk, Lisa; Yan, Minhong; Zha, Jiping; Callahan, Christopher A; Hymowitz, Sarah G; Siebel, Christian W

    2010-04-15

    The four receptors of the Notch family are widely expressed transmembrane proteins that function as key conduits through which mammalian cells communicate to regulate cell fate and growth. Ligand binding triggers a conformational change in the receptor negative regulatory region (NRR) that enables ADAM protease cleavage at a juxtamembrane site that otherwise lies buried within the quiescent NRR. Subsequent intramembrane proteolysis catalysed by the gamma-secretase complex liberates the intracellular domain (ICD) to initiate the downstream Notch transcriptional program. Aberrant signalling through each receptor has been linked to numerous diseases, particularly cancer, making the Notch pathway a compelling target for new drugs. Although gamma-secretase inhibitors (GSIs) have progressed into the clinic, GSIs fail to distinguish individual Notch receptors, inhibit other signalling pathways and cause intestinal toxicity, attributed to dual inhibition of Notch1 and 2 (ref. 11). To elucidate the discrete functions of Notch1 and Notch2 and develop clinically relevant inhibitors that reduce intestinal toxicity, we used phage display technology to generate highly specialized antibodies that specifically antagonize each receptor paralogue and yet cross-react with the human and mouse sequences, enabling the discrimination of Notch1 versus Notch2 function in human patients and rodent models. Our co-crystal structure shows that the inhibitory mechanism relies on stabilizing NRR quiescence. Selective blocking of Notch1 inhibits tumour growth in pre-clinical models through two mechanisms: inhibition of cancer cell growth and deregulation of angiogenesis. Whereas inhibition of Notch1 plus Notch2 causes severe intestinal toxicity, inhibition of either receptor alone reduces or avoids this effect, demonstrating a clear advantage over pan-Notch inhibitors. Our studies emphasize the value of paralogue-specific antagonists in dissecting the contributions of distinct Notch receptors to

  16. Randomized, Phase II Study of the Insulin-Like Growth Factor-1 Receptor Inhibitor IMC-A12, With or Without Cetuximab, in Patients With Cetuximab- or Panitumumab-Refractory Metastatic Colorectal Cancer

    PubMed Central

    Reidy, Diane Lauren; Vakiani, Efsevia; Fakih, Marwan G.; Saif, Muhammad Wasif; Hecht, Joel Randolph; Goodman-Davis, Noah; Hollywood, Ellen; Shia, Jinru; Schwartz, Jonathan; Chandrawansa, Kumari; Dontabhaktuni, Aruna; Youssoufian, Hagop; Solit, David B.; Saltz, Leonard B.

    2010-01-01

    Purpose To evaluate the safety and efficacy of IMC-A12, a human monoclonal antibody (mAb) that blocks insulin-like growth factor receptor-1 (IGF-1R), as monotherapy or in combination with cetuximab in patients with metastatic refractory anti–epidermal growth factor receptor (EGFR) mAb colorectal cancer. Methods A randomized, phase II study was performed in which patients in arm A received IMC-A12 10 mg/kg intravenously (IV) every 2 weeks, while patients in arm B received this same dose of IMC-A12 plus cetuximab 500 mg/m2 IV every 2 weeks. Subsequently, arm C (same combination treatment as arm B) was added to include patients who had disease control on a prior anti-EGFR mAb and wild-type KRAS tumors. Archived pretreatment tumor tissue was obtained when possible for KRAS, PIK3CA, and BRAF genotyping, and immunohistochemistry was obtained for pAKT as well as IGF-1R. Results Overall, 64 patients were treated (median age, 61 years; range, 40 to 84 years): 23 patients in arm A, 21 in arm B, and 20 in arm C. No antitumor activity was seen in the 23 patients treated with IMC-A12 monotherapy. Of the 21 patients randomly assigned to IMC-A12 plus cetuximab, one patient (with KRAS wild type) achieved a partial response, with disease control lasting 6.5 months. Arm C (all patients with KRAS wild type), however, showed no additional antitumor activity. Serious adverse events thought possibly related to IMC-A12 included a grade 2 infusion-related reaction (2%; one of 64 patients), thrombocytopenia (2%; one of 64 patients), grade 3 hyperglycemia (2%; one of 64 patients), and grade 1 pyrexia (2%, one of 64 patients). Conclusion IMC-A12 alone or in combination with cetuximab was insufficient to warrant additional study in patients with colorectal cancer refractory to EGFR inhibitors. PMID:20713879

  17. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  18. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2more » hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.« less

  19. Neuropsychiatric lupus and auto-antibodies against ionotropic glutamate receptor (NMDAR)

    PubMed Central

    Cohen-Solal, J.F.G.; Diamond, B.

    2010-01-01

    Almost half of lupus patients will experience neuropsychiatric symptoms during the course of their disease. The etiology of the neuronal damages are still uncertain and probably multiple. Auto-antibodies reactive with brain have been postulated to play a role. The observation of pathogenic auto-antibodies binding the NR2A and NR2B subunits of the ionotropic glutamate receptor (NMDAR) illustrates this hypothesis. First studies showed that 40% of lupus patients possess serum titers of anti-NR2A/B antibody, but the presence of these auto-antibodies is not always associated with the occurrence of neuronal damages or neuropsychiatric symptoms. Nevertheless, their presence is observed in the cerebro-spinal fluid (CSF) of one half of the patients suffering from neurolupus. The presence in the serum of these auto-antibodies anti-NR2A/B of the NMDAR is preliminary to their presence in the CSF where their deleterious effect is observable. Their entry into the brain is dependent on a breach of the blood brain barrier (BBB). In conclusion, the serum titer of auto-antibodies against NR2A/B subunits is an indication of the potential for neuro-psychiatric manifestations during the course of the disease. PMID:20605660

  20. Anti-PDGF receptor β antibody-conjugated squarticles loaded with minoxidil for alopecia treatment by targeting hair follicles and dermal papilla cells.

    PubMed

    Aljuffali, Ibrahim A; Pan, Tai-Long; Sung, Calvin T; Chang, Shu-Hao; Fang, Jia-You

    2015-08-01

    This study developed lipid nanocarriers, called squarticles, conjugated with anti-platelet-derived growth factor (PDGF)-receptor β antibody to determine whether targeted Minoxidil (MXD) delivery to the follicles and dermal papilla cells (DPCs) could be achieved. Squalene and hexadecyl palmitate (HP) were used as the matrix of the squarticles. The PDGF-squarticles showed a mean diameter and zeta potential of 195 nm and -46 mV, respectively. Nanoparticle encapsulation enhanced MXD porcine skin deposition from 0.11 to 0.23 μg/mg. The antibody-conjugated nanoparticles ameliorated follicular uptake of MXD by 3-fold compared to that of the control solution in the in vivo mouse model. Both vertical and horizontal skin sections exhibited a wide distribution of nanoparticles in the follicles, epidermis, and deeper skin strata. The encapsulated MXD moderately elicited proliferation of DPCs and vascular endothelial growth factor (VEGF) expression. The active targeting of PDGF-squarticles may be advantageous to improving the limited success of alopecia therapy. Topical use of minoxidil is only one of the very few treatment options for alopecia. Nonetheless, the current delivery method is far from ideal. In this article, the authors developed lipid nanocarriers with anti-platelet-derived growth factor receptor ? antibody to target dermal papilla cells, and showed enhanced uptake of minoxidil. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    PubMed Central

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  2. FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody

    PubMed Central

    Zhang, Di; Whitaker, Brian; Derebe, Mehabaw G.; Chiu, Mark L.

    2018-01-01

    ABSTRACT Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities. PMID:29359992

  3. Harnessing tumor necrosis factor receptors to enhance antitumor activities of drugs.

    PubMed

    Muntané, Jordi

    2011-10-17

    Cancer is the second-leading cause of death in the U.S. behind heart disease and over stroke. The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The inhibition of cell death pathways is one of these tumor characteristics which also include sustained proliferative signaling, evading growth suppressor signaling, replicative immortality, angiogenesis, and promotion of invasion and metastasis. Cell death is mediated through death receptor (DR) stimulation initiated by specific ligands that transmit signaling to the cell death machinery or through the participation of mitochondria. Cell death involving DR is mediated by the superfamily of tumor necrosis factor receptor (TNF-R) which includes TNF-R type I, CD95, DR3, TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 (TRAIL-R1) and -2 (TRAIL-R2), DR6, ectodysplasin A (EDA) receptor (EDAR), and the nerve growth factor (NGF) receptor (NGFR). The expression of these receptors in healthy and tumor cells induces treatment side effects that limit the systemic administration of cell death-inducing therapies. The present review is focused on the different therapeutic strategies such as targeted antibodies or small molecules addressed to selective stimulated DR-mediated apoptosis or reduce cell proliferation in cancer cells.

  4. Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases.

    PubMed

    Douthwaite, Julie A; Finch, Donna K; Mustelin, Tomas; Wilkinson, Trevor C I

    2017-01-01

    The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Christian; Madshus, Inger Helene; Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo

    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and inducedmore » ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: Black-Right-Pointing-Pointer Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. Black-Right-Pointing-Pointer Antibody combination causes internalization of EGFR by macropinocytosis. Black-Right-Pointing-Pointer Antibody-induced internalization of EGFR is independent of EGFR kinase activity. Black-Right-Pointing-Pointer Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.« less

  6. Anticancer molecules targeting fibroblast growth factor receptors.

    PubMed

    Liang, Guang; Liu, Zhiguo; Wu, Jianzhang; Cai, Yuepiao; Li, Xiaokun

    2012-10-01

    The fibroblast growth factor receptor (FGFR) family includes four highly conserved receptor tyrosine kinases: FGFR1-4. Upon ligand binding, FGFRs activate an array of downstream signaling pathways, such as the mitogen activated protein kinase (MAPK) and the phosphoinositide-3-kinase (PI3K)/Akt pathways. These FGFR cascades play crucial roles in tumor cell proliferation, angiogenesis, migration, and survival. The combination of knockdown studies and pharmaceutical inhibition in preclinical models demonstrates that FGFRs are attractive targets for therapeutic intervention in cancer. Multiple FGFR inhibitors with various structural skeletons have been designed, synthesized, and evaluated. Reviews on FGFRs have recently focused on FGFR signaling, pathophysiology, and functions in cancer or other diseases. In this article, we review recent advances in structure-activity relationships (SAR) of FGFR inhibitors, as well as the FGFR-targeting drug design strategies currently employed in targeting deregulated FGFRs by antibodies and small molecule inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    PubMed

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  8. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity.

    PubMed

    Ogitani, Yusuke; Hagihara, Katsunobu; Oitate, Masataka; Naito, Hiroyuki; Agatsuma, Toshinori

    2016-07-01

    Antibody-drug conjugates deliver anticancer agents selectively and efficiently to tumor tissue and have significant antitumor efficacy with a wide therapeutic window. DS-8201a is a human epidermal growth factor receptor 2 (HER2)-targeting antibody-drug conjugate prepared using a novel linker-payload system with a potent topoisomerase I inhibitor, exatecan derivative (DX-8951 derivative, DXd). It was effective against trastuzumab emtansine (T-DM1)-insensitive patient-derived xenograft models with both high and low HER2 expression. In this study, the bystander killing effect of DS-8201a was evaluated and compared with that of T-DM1. We confirmed that the payload of DS-8201a, DXd (1), was highly membrane-permeable whereas that of T-DM1, Lys-SMCC-DM1, had a low level of permeability. Under a coculture condition of HER2-positive KPL-4 cells and negative MDA-MB-468 cells in vitro, DS-8201a killed both cells, whereas T-DM1 and an antibody-drug conjugate with a low permeable payload, anti-HER2-DXd (2), did not. In vivo evaluation was carried out using mice inoculated with a mixture of HER2-positive NCI-N87 cells and HER2-negative MDA-MB-468-Luc cells by using an in vivo imaging system. In vivo, DS-8201a reduced the luciferase signal of the mice, indicating suppression of the MDA-MB-468-Luc population; however, T-DM1 and anti-HER2-DXd (2) did not. Furthermore, it was confirmed that DS-8201a was not effective against MDA-MB-468-Luc tumors inoculated at the opposite side of the NCI-N87 tumor, suggesting that the bystander killing effect of DS-8201a is observed only in cells neighboring HER2-positive cells, indicating low concern in terms of systemic toxicity. These results indicated that DS-8201a has a potent bystander effect due to a highly membrane-permeable payload and is beneficial in treating tumors with HER2 heterogeneity that are unresponsive to T-DM1. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer

  9. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender

    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocketmore » on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.« less

  10. Mouse Hepatitis Virus Strain A59 and Blocking Antireceptor Monoclonal Antibody Bind to the N-Terminal Domain of Cellular Receptor

    NASA Astrophysics Data System (ADS)

    Dveksler, Gabriela S.; Pensiero, Michael N.; Dieffenbach, Carl W.; Cardellichio, Christine B.; Basile, Alexis A.; Elia, Patrick E.; Holmes, Kathryn V.

    1993-03-01

    Mouse hepatitis virus (MHV) strain A59 uses as cellular receptors members of the carcinoembryonic antigen family in the immunoglobulin superfamily. Recombinant receptor proteins with deletions of whole or partial immunoglobulin domains were used to identify the regions of receptor glycoprotein recognized by virus and by antireceptor monoclonal antibody CC1, which blocks infection of murine cells. Monoclonal antibody CC1 and MHV-A59 virions bound only to recombinant proteins containing the entire first domain of MHV receptor. To determine which of the proteins could serve as functional virus receptors, receptor-negative hamster cells were transfected with recombinant deletion clones and then challenged with MHV-A59 virions. Receptor activity required the entire N-terminal domain with either the second or the fourth domain and the transmembrane and cytoplasmic domains. Recombinant proteins lacking the first domain or its C-terminal portion did not serve as viral receptors. Thus, like other virus receptors in the immunoglobulin superfamily, including CD4, poliovirus receptor, and intercellular adhesion molecule 1, the N-terminal domain of MHV receptor is recognized by the virus and the blocking monoclonal antibody.

  11. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  12. Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V

    PubMed Central

    Schmees, C.; Villaseñor, R.; Zheng, W.; Ma, H.; Zerial, M.; Heldin, C.-H.; Hellberg, C.

    2012-01-01

    Receptor tyrosine kinase (RTK) signaling is frequently increased in tumor cells, sometimes as a result of decreased receptor down-regulation. The extent to which the endocytic trafficking routes can contribute to such RTK hyperactivation is unclear. Here, we show for the first time that fibroblast transformation by H-RasG12V induces the internalization of platelet-derived growth factor β-receptor (PDGFRβ) by macropinocytosis, enhancing its signaling activity and increasing anchorage-independent proliferation. H-RasG12V transformation and PDGFRβ activation were synergistic in stimulating phosphatidylinositol (PI) 3-kinase activity, leading to receptor macropinocytosis. PDGFRβ macropinocytosis was both necessary and sufficient for enhanced receptor activation. Blocking macropinocytosis by inhibition of PI 3-kinase prevented the increase in receptor activity in transformed cells. Conversely, increasing macropinocytosis by Rabankyrin-5 overexpression was sufficient to enhance PDGFRβ activation in nontransformed cells. Simultaneous stimulation with PDGF-BB and epidermal growth factor promoted macropinocytosis of both receptors and increased their activation in nontransformed cells. We propose that H-Ras transformation promotes tumor progression by enhancing growth factor receptor signaling as a result of increased receptor macropinocytosis. PMID:22573884

  13. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  14. Factors determining antibody distribution in tumors.

    PubMed

    Thurber, Greg M; Schmidt, Michael M; Wittrup, K Dane

    2008-02-01

    The development of antibody therapies for cancer is increasing rapidly, primarily owing to their specificity. Antibody distribution in tumors is often extremely uneven, however, leading to some malignant cells being exposed to saturating concentrations of antibody, whereas others are completely untargeted. This is detrimental because large regions of cells escape therapy, whereas other regions might be exposed to suboptimal concentrations that promote a selection of resistant mutants. The distribution of antibody depends on a variety of factors, including dose, affinity, antigens per cell and molecular size. Because these parameters are often known or easily estimated, a quick calculation based on simple modeling considerations can predict the uniformity of targeting within a tumor. Such analyses should enable experimental researchers to identify in a straightforward way the limitations in achieving evenly distributed antibody, and design and test improved antibody therapeutics more rationally.

  15. Factors determining antibody distribution in tumors

    PubMed Central

    Thurber, Greg M.; Schmidt, Michael M.; Wittrup, K. Dane

    2009-01-01

    The development of antibody therapies for cancer is increasing rapidly, primarily owing to their specificity. Antibody distribution in tumors is often extremely uneven, however, leading to some malignant cells being exposed to saturating concentrations of antibody, whereas others are completely untargeted. This is detrimental because large regions of cells escape therapy, whereas other regions might be exposed to suboptimal concentrations that promote a selection of resistant mutants. The distribution of antibody depends on a variety of factors, including dose, affinity, antigens per cell and molecular size. Because these parameters are often known or easily estimated, a quick calculation based on simple modeling considerations can predict the uniformity of targeting within a tumor. Such analyses should enable experimental researchers to identify in a straightforward way the limitations in achieving evenly distributed antibody, and design and test improved antibody therapeutics more rationally. PMID:18179828

  16. Epidermal growth factor receptor mutations in adenocarcinoma in situ and minimally invasive adenocarcinoma detected using mutation-specific monoclonal antibodies.

    PubMed

    Nakamura, Haruhiko; Koizumi, Hirotaka; Kimura, Hiroyuki; Marushima, Hideki; Saji, Hisashi; Takagi, Masayuki

    2016-09-01

    Epidermal growth factor receptor (EGFR) mutation rates in adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) were studied using both DNA analysis and mutation-specific immunohistochemistry. The peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method was used to detect mutations in exons 18, 19, 20, and 21 of the EGFR gene in DNA samples extracted from paraffin-embedded tissue sections. Simultaneously, immunohistochemical analysis with two EGFR mutation-specific monoclonal antibodies was used to identify proteins resulting from an in-frame deletion in exon 19 (E746_A750del) and a point mutation replacing leucine with arginine at codon 858 of exon 21 (L858R). Forty-three tumors (22 AIS and 21 MIA) were examined. The EGFR mutation rate in AIS detected by DNA analysis was 27.3% (L858R, 5/22; exon 19 deletion,1/22), whereas that detected in MIA was 42.9% (L858R,4/21; exon 19 deletion,5/21). Mutations detected by immunohistochemical analysis included 22.7% (L858R, 4/22; exon 19 deletion, 1/22) in AIS and 42.9% (L858R, 4/21; exon 19 deletion, 5/21) in MIA. Although some results were contradictory, concordant results were obtained using both assays in 38 of 43 cases (88.4%). DNA and immunohistochemical analyses revealed similar EGFR mutation rates in both MIA and AIS, suggesting that mutation-specific monoclonal antibodies are useful to confirm DNA assay results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Interleukin-12 (IL-12)-driven alloimmune responses in vitro and in vivo: requirement for beta1 subunit of the IL-12 receptor.

    PubMed

    Piccotti, J R; Li, K; Chan, S Y; Eichwald, E J; Bishop, D K

    1999-06-15

    Interleukin-12 (IL-12) mediates its biologic activities via binding high-affinity receptors on T and natural killer cells. Although emphasis has been placed on the requirement for IL-12Rbeta2 in IL-12 bioactivity, the role of IL-12Rbeta1 is less well defined. The current study evaluated the effects of exogenous IL-12 on alloantigen-specific immune responses and determined the requirement for IL-12Rbeta1 in IL-12-mediated alloimmunity. The mouse heterotopic cardiac transplant model was employed to evaluate the effects of IL-12 on alloantigen-specific immune responses in vivo. In addition, IFN-gamma production in mixed lymphocyte cultures (MLC) supplemented with IL-12 was measured to assess the effects of IL-12 on Th1 function in vitro. Mice deficient in IL-12Rbeta1 (IL-12Rbeta1-/-) were used to determine the requirement for this receptor component in IL-12-driven alloimmune responses. Addition of IL-12 to MLC consisting of wild-type splenocytes enhanced alloantigen-specific proliferative responses and Th1 development. In contrast, IL-12 did not alter these in vitro immune parameters in IL-12Rbeta1-/- MLC. Treatment of wild-type cardiac allograft recipients with IL-12 resulted in high concentrations of serum interferon-gamma (IFN-gamma) and a 10-fold increase in IFN-gamma production by recipient splenocytes after restimulation in vitro. However, this fulminate Th1 response did not accelerate allograft rejection. Importantly, IL-12 had no effect on serum IFN-gamma or in vivo priming of Thl in IL-12Rbeta1-/- recipients. Finally, administration of IL-12 to WT allograft recipients resulted in a bimodal alloantibody response: antibody production was suppressed at high doses of IL-12, and enhanced at lower doses. IL-12 markedly enhances alloantigen-specific immune function; however, these exaggerated Th1-driven responses do not culminate in accelerated allograft rejection. Further, these data indicate that IL-12Rbeta1 is essential for the enhancement of both in vitro and

  18. Location of Primary Tumor and Benefit From Anti-Epidermal Growth Factor Receptor Monoclonal Antibodies in Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer.

    PubMed

    Moretto, Roberto; Cremolini, Chiara; Rossini, Daniele; Pietrantonio, Filippo; Battaglin, Francesca; Mennitto, Alessia; Bergamo, Francesca; Loupakis, Fotios; Marmorino, Federica; Berenato, Rosa; Marsico, Valentina Angela; Caporale, Marta; Antoniotti, Carlotta; Masi, Gianluca; Salvatore, Lisa; Borelli, Beatrice; Fontanini, Gabriella; Lonardi, Sara; De Braud, Filippo; Falcone, Alfredo

    2016-08-01

    Right- and left-sided colorectal cancers (CRCs) differ in clinical and molecular characteristics. Some retrospective analyses suggested that patients with right-sided tumors derive less benefit from anti-epidermal growth factor receptor (EGFR) antibodies; however, molecular selection in those studies was not extensive. Patients with RAS and BRAF wild-type metastatic CRC (mCRC) who were treated with single-agent anti-EGFRs or with cetuximab-irinotecan (if refractory to previous irinotecan) were included in the study. Differences in outcome between patients with right- and left-sided tumors were investigated. Of 75 patients, 14 and 61 had right- and left-sided tumors, respectively. None of the right-sided tumors responded according to RECIST, compared with 24 left-sided tumors (overall response rate: 0% vs. 41%; p = .0032), and only 2 patients with right-sided tumors (15%) versus 47 patients with left-sided tumors (80%) achieved disease control (p < .0001). The median duration of progression-free survival was 2.3 and 6.6 months in patients with right-sided and left-sided tumors, respectively (hazard ratio: 3.97; 95% confidence interval: 2.09-7.53; p < .0001). Patients with right-sided RAS and BRAF wild-type mCRC seemed to derive no benefit from single-agent anti-EGFRs. Right- and left-sided colorectal tumors have peculiar epidemiological and clinicopathological characteristics, distinct gene expression profiles and genetic alterations, and different prognoses. This study assessed the potential predictive impact of primary tumor site with regard to anti-epidermal growth factor receptor (EGFR) monoclonal antibody treatment in patients with RAS and BRAF wild-type metastatic colorectal cancer. The results demonstrated the lack of activity of anti-EGFRs in RAS and BRAF wild-type, right-sided tumors, thus suggesting a potential role for primary tumor location in driving treatment choices. ©AlphaMed Press.

  19. Drug of the year: programmed death-1 receptor/programmed death-1 ligand-1 receptor monoclonal antibodies.

    PubMed

    Robert, Caroline; Soria, Jean-Charles; Eggermont, Alexander M M

    2013-09-01

    Programmed death-1 receptor (PD-1)/its ligand (PD-L1) antibodies have changed the landscape in oncology in 2013. The most mature results have been obtained in advanced melanoma patients. They indicate important response rates and high quality responses or prolonged duration. Also in renal cancer and in lung cancer remarkable activity has been demonstrated. Thus it is clear that these antibodies have a very broad potential and trials in many tumour types are being initiated. Breaking tolerance at the tumour site is a potent phenomenon and the potential for synergy with other checkpoint inhibitors such as ipilimumab have also been demonstrated in 2013. Long term tumour control now seems achievable and thus the concept of a clinical cure is emerging by modulation of the immune system. These antibodies bring immunotherapy to the forefront and indicate that immune-modulation will be a key component of therapeutic strategies from now on. Because of all these reasons PD-1/PD-L1 antibodies are considered 'drug of the year'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Correlation of monoclonal and polyclonal somatostatin receptor 5 antibodies in pancreatic neuroendocrine tumors

    PubMed Central

    Kaemmerer, Daniel; Lupp, Amelie; Peter, Luisa; Fischer, Elke; Schulz, Stefan; Klöppel, Günter; Hommann, Merten

    2013-01-01

    Aims: To evaluate the frequency of somatostatin-receptor 5 (SSTR 5) in pancreatic neuroendocrine tumors by using monoclonal and polyclonal antibodies. Material and Method: we analyzed 66 proven pancreatic neuroendocrine tumors immunohistochemically with monoclonal (clone UMB-4) and polyclonal SSTR 5-antibodies. Immunoreactive score (IRS) and DAKO-score Her2/neu were evaluated. Results: Immunohistochemistry analysis demonstrated for the IRS a significant higher staining of all specimen using the monoclonal antibodies ( IRS SSTR5 poly vs IRS SSTR 5 mono; 20.0% vs 30.3% p < 0.001) by a correlation of 0.21; p = 0.04. For the HER2 score there was also a significant higher staining in the monoclonal group (Her2 SSTR 5 poly vs Her2 SSTR 5 mono; 21.5% vs 28.8% p < 0.001) by a correlation of 0.20; p = 0.08. Conclusion: Both antibodies are useful in staining of SSTR, although UMB-4 demonstrated a 10% higher SSTR 5 staining. Due to the previous underestimated expression rate of SSTR 5, current standards in diagnostics and therapy should be reconsidered. The increasing usage of long-acting pansomatostatin receptor analogues will rise the adverse effects connected to SSTR5 binding. PMID:23236542

  1. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  2. [A case of acute cerebellar ataxia following infectious mononucleosis accompanied by intrathecal anti-glutamate receptor δ2 antibody].

    PubMed

    Murakami, Hidetomo; Iijima, Shoji; Kawamura, Mitsuru; Takahashi, Yukitoshi; Ichikawa, Hiroo

    2013-01-01

    An 18-year-old woman was admitted because of sore throat and pain in the epigastric region. On admission, she presented with swollen tonsils and hepatosplenomegaly. Blood examinations revealed the presence of atypical lymphocytes, liver damage and anti-VCA IgM and IgG antibodies. These findings led to diagnosis of infectious mononucleosis. After admission, her condition improved, but on hospital day 4, she suddenly developed cerebellar ataxia in the trunk and four limbs. Cranial MRI findings were normal. Cerebrospinal fluid (CSF) collected on hospital day 6 showed normal cell counts and normal concentrations of protein and glucose. EB virus DNA and anti-VCA IgM and IgG antibodies were negative and glutamate receptor δ2 antibody was positive in CSF collected on hospital day 11. We diagnosed acute cerebellar ataxia (ACA) and performed methylprednisolone pulse therapy. After this therapy, her cerebellar ataxia improved over a few days. This is the first reported case of ACA after EB virus infection presenting with glutamate receptor δ2 antibody in CSF. The glutamate receptor δ2 subunit is expressed on cerebellar Purkinje cells. Therefore, the presence of the antibody may be associated with cerebellar dysfunction. In the present case, secondary immune reactions after EB virus infection may have produced the antibody.

  3. Glycine receptor modulating antibody predicting treatable stiff-person spectrum disorders.

    PubMed

    Hinson, Shannon R; Lopez-Chiriboga, A Sebastian; Bower, James H; Matsumoto, Joseph Y; Hassan, Anhar; Basal, Eati; Lennon, Vanda A; Pittock, Sean J; McKeon, Andrew

    2018-03-01

    Glycine receptor alpha-1 subunit (GlyRα1)-immunoglobulin G (IgG) is diagnostic of stiff-person syndrome (SPS) spectrum but has been reported detectable in other neurologic diseases for which significance is less certain. To assess GlyRα1-IgGs as biomarkers of SPS spectrum among patients and controls, specimens were tested using cell-based assays (binding [4°C] and modulating [antigen endocytosing, 37°C]). Medical records of seropositive patients were reviewed. GlyRα1-IgG (binding antibody) was detected in 21 of 247 patients with suspected SPS spectrum (8.5%) and in 8 of 190 healthy subject sera (4%) but not CSF. Among 21 seropositive patients, 20 had confirmed SPS spectrum clinically, but 1 was later determined to have a functional neurologic disorder. Sera from 9 patients with SPS spectrum , but not 7 controls, nor the functional patient, caused GlyRα1 modulation (100% specificity). SPS spectrum phenotypes included progressive encephalomyelitis with rigidity and myoclonus (PERM) (8), classic SPS (5), stiff limb (5), stiff trunk (1), and isolated exaggerated startle (hyperekplexia, 1). Neuropsychiatric symptoms present in 12 patients (60%) were anxiety (11), depression (6), and delirium (3). Anxiety was particularly severe in 3 patients with PERM. Objective improvements in SPS neurologic symptoms were recorded in 16 of 18 patients who received first-line immunotherapy (89%, 9/10 treated with corticosteroids, 8/10 treated with IVIg, 3/4 treated with plasma exchange, and 1 treated with rituximab). Treatment-sparing maintenance strategies were successful in 4 of 7 patients (rituximab [2/3], azathioprine [1/1], and mycophenolate [1/3]). GlyRα1-modulating antibody improves diagnostic specificity for immunologically treatable SPS spectrum disorders. This study provides Class IV evidence that GlyRα1-modulating antibody accurately identifies patients with treatable SPS spectrum disorders.

  4. Intracellular antibody signalling is regulated by phosphorylation of the Fc receptor TRIM21

    PubMed Central

    Vaysburd, Marina; Yang, Ji-Chun; Mallery, Donna L; Zeng, Jingwei; Johnson, Christopher M; McLaughlin, Stephen H; Skehel, Mark; Maslen, Sarah; Cruickshank, James; Huguenin-Dezot, Nicolas; Chin, Jason W; Neuhaus, David

    2018-01-01

    Cell surface Fc receptors activate inflammation and are tightly controlled to prevent autoimmunity. Antibodies also simulate potent immune signalling from inside the cell via the cytosolic antibody receptor TRIM21, but how this is regulated is unknown. Here we show that TRIM21 signalling is constitutively repressed by its B-Box domain and activated by phosphorylation. The B-Box occupies an E2 binding site on the catalytic RING domain by mimicking E2-E3 interactions, inhibiting TRIM21 ubiquitination and preventing immune activation. TRIM21 is derepressed by IKKβ and TBK1 phosphorylation of an LxxIS motif in the RING domain, at the interface with the B-Box. Incorporation of phosphoserine or a phosphomimetic within this motif relieves B-Box inhibition, promoting E2 binding, RING catalysis, NF-κB activation and cytokine transcription upon infection with DNA or RNA viruses. These data explain how intracellular antibody signalling is regulated and reveal that the B-Box is a critical regulator of RING E3 ligase activity. PMID:29667579

  5. [Antibodies against TSH receptors (TRAb) as indicators in prognosing the effectiveness of Tiamazol therapy for Grave's Disease].

    PubMed

    Bojarska-Szmygin, Anna; Ciechanek, Roman

    2003-01-01

    The aim of the study was to evaluate the usefulness of TRAb determinations in prognosing and monitoring the efficacy of conservative treatment in Graves' disease. The examinations were performed in 54 patients. During the 18-month observation all the patients were treated with Tiamazol. The control group consisted of 20 healthy volunteers. The TRAb levels were determined before as well as 12 and 18 months after thyrostatic treatment. Simultaneously, the levels of TSH and FT4 were analysed. Moreover, all the patients underwent ultrasound examinations to assess the size of the thyroid gland. The findings of the 18-month follow up showed that in 31 patients (57%) the thyroid function became normal (group I--euthyreosis), in 23 patients (43%) hyperactivity persisted (group II--hyperthyreosis). The TRAb levels were analysed in both groups of patients. An increased initial level of TRAb was found in the hyperactivity group mean -54.39 + 31.21 U/l which was statistically significantly different from the TRAb levels in the euthyreosis group mean -29.13 +/- 19.14 U/l and in controls mean -2.75 +/- 2.06 U/l (p < 0.001 for both parameters). After 12-month treatment increased values of antibodies were still observed in this group of patients (mean -39.96 +/- 33.40 U/l) in comparison with the euthyreosis group (mean -9.87 +/- 8.33 U/l) and controls (mean -2.75 +/- 2.06 U/l) (p < 0.001 for both parameters). After 18-month treatment the TRAb levels in group II remained increased (mean -40.17 +/- 33.06) while in group I normal levels were achieved. The sizes of the thyroid gland were compared between the individual groups. In the hyperactivity group after 18-month treatment, the thyroid size was the biggest (mean -41.09 +/- 13.94 ml) and was statistically significantly different when compared to the average size in the euthyreosis group mean -31.65 +/- 11.74 ml (p < 0.01) and in controls mean -14.45 +/- 2.37 ml (p < 0.001). The levels of antibodies against TSH receptors are useful

  6. Mimicry of erythropoietin and interleukin-6 signalling by an antibody/cytokine receptor chimera in murine myeloid 32D cells.

    PubMed

    Kawahara, Masahiro; Ueda, Hiroshi; Tsumoto, Kouhei; Kumagai, Izumi; Nagamune, Teruyuki

    2007-04-01

    We have previously designed antibody-cytokine receptor chimeras that could respond to a cognate antigen. While these chimeric receptors were functional, it has not been investigated exactly how they mimic signal transduction through corresponding wild-type receptors. In this study, we compared the growth properties and the phosphorylation status of intracellular signal transducers between the erythropoietin receptor (EpoR)- or gp130-based chimeric receptors and wild-type EpoR or EpoR-gp130 chimera, respectively. Expression plasmids, encoding V(H) or V(L) region of anti-hen egg lysozyme (HEL) antibody HyHEL-10 tethered to a pair of extracellular D2 domain of EpoR and transmembrane/cytoplasmic domains of either EpoR or gp130, were constructed, and pairs of chimeric receptor combinations (V(H)-EpoR and V(L)-EpoR, V(H)-gp130 and V(L)-gp130, V(H)-EpoR and V(L)-gp130, V(H)-gp130 and V(L)-EpoR) were expressed in an IL-3-dependent myeloid cell line, 32D. Growth assay revealed that the transfectants all grew in a HEL-dependent manner. As for phosphorylation of Stat3, Stat5, ERK and Akt, the chimeric receptors showed similar activation pattern of signalling molecules with wild-type receptors, although the chimeric receptors showed ligand-independency and a little lower maximal phosphorylation than the corresponding wild-type receptors. The results demonstrate that antibody-receptor chimeras could substantially mimic wild-type receptors.

  7. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    PubMed

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  8. Identification of the membrane remnants of transferrin receptor with domain-specific antibodies.

    PubMed

    Baynes, R D; Shih, Y J; Hudson, B G; Cook, J D

    1994-03-01

    Tissue culture studies with K562 and HL60 cells have demonstrated the production of a soluble form of transferrin receptor identical to that identified in human serum. The present study was undertaken to search for membrane remnants of the truncated receptor with peptide antibodies specific for the extracellular and cytoplasmic domain of transferrin receptor. In cell membranes, a 105K remnant was identified that is consistent with truncation of one extracellular domain monomer of the transferrin receptor. In the exosomal fraction of the culture supernatant, a smaller 20K remnant consistent with truncation of both extracellular domains was also demonstrated. These findings provide evidence that soluble receptor is the product of proteolytic cleavage of intact membrane-bound transferrin receptor. Prior studies showing that the concentration of the extracellular domain in exosomes remained stable during incubation in culture supernatant suggest that this cleavage possibly occurs intracellularly.

  9. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Guorui; Lam, Kwok-ho; Weisemann, Jasmin

    Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH).more » In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on H CA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.« less

  10. A novel site contributing to growth-arrest-specific gene 6 binding to its receptors as revealed by a human monoclonal antibody

    PubMed Central

    2004-01-01

    Gas6 (growth-arrest-specific gene 6) is a vitamin K-dependent protein known to activate the Axl family of receptor tyrosine kinases. It is an important regulator of thrombosis and many other biological functions. The C-terminus of Gas6 binds to receptors and consists of two laminin-like globular domains LG1 and LG2. It has been reported that a Ca2+-binding site at the junction of LG1 and LG2 domains and a hydrophobic patch at the LG2 domain are important for receptor binding [Sasaki, Knyazev, Cheburkin, Gohring, Tisi, Ullrich, Timpl and Hohenester (2002) J. Biol. Chem. 277, 44164–44170]. In the present study, we developed a neutralizing human monoclonal antibody, named CNTO300, for Gas6. The antibody was generated by immunization of human IgG-expressing transgenic mice with recombinant human Gas6 protein and the anti-Gas6 IgG sequences were rescued from an unstable hybridoma clone. Binding of Gas6 to its receptors was partially inhibited by the CNTO300 antibody in a dose-dependent manner. To characterize further the interaction between Gas6 and this antibody, the binding kinetics of CNTO300 for recombinant Gas6 were compared with independently expressed LG1 and LG2. The CNTO300 antibody showed comparable binding affinity, yet different dependence on Ca2+, to Gas6 and LG1. No binding to LG2 was detected. In the presence of EDTA, binding of the antibody to Gas6 was disrupted, but no significant effect of EDTA on LG1 binding was evident. Further epitope mapping identified a Gas6 peptide sequence recognized by the CNTO300 antibody. This peptide sequence was found to be located at the LG1 domain distant from the Ca2+-binding site and the hydrophobic patch. Co-interaction of Gas6 with its receptor and CNTO300 antibody was detected by BIAcore analysis, suggesting a second receptor-binding site on the LG1 domain. This hypothesis was further supported by direct binding of Gas6 receptors to an independently expressed LG1 domain. Our results revealed, for the first time, a

  11. Repeated acetylcholine receptor antibody-concentrations and association to clinical myasthenia gravis development.

    PubMed

    Heldal, Anne Taraldsen; Eide, Geir Egil; Romi, Fredrik; Owe, Jone Furlund; Gilhus, Nils Erik

    2014-01-01

    We aimed to examine the longitudinal association between Myasthenia Gravis (MG) clinical severity and concentration of acetylcholine receptor (AChR)-antibodies to evaluate if AChR-antibody variations correlate to disease severity. A positive AChR-antibody test is specific for MG. All patients from western Norway who had two or more AChR- antibody tests in the period 1983-2013 were identified. The Myasthenia Gravis Foundation of America (MGFA) Clinical Classification was used to grade disease development. Multiple ordinal logistic regression analysis was used to estimate a possible predictive effect for AChR-antibody concentration on MGFA classification result. In 67 patients two or more AChR-antibody tests with a corresponding MGFA-score were performed, with a total of 309 tests. 56 patients were treated with immunosuppressive drugs and 11 by pyridostigmine only. There was a positive association between concentration of AChR-antibodies and longitudinal MGFA-score for the subgroup with immunosuppressive treatment, but not for those treated with pyridostigmine only. This association between AChR-antibody concentration and MGFA score declined with increasing time since onset (p = 0.005 for the interaction of group×time×concentration). For MG patients with immunosuppressive treatment, repeated AChR-antibody measurements give information about clinical development, and can therefore be of support in therapeutic decisions.

  12. Novel Function for Vascular Endothelial Growth Factor Receptor-1 on Epidermal Keratinocytes

    PubMed Central

    Wilgus, Traci A.; Matthies, Annette M.; Radek, Katherine A.; Dovi, Julia V.; Burns, Aime L.; Shankar, Ravi; DiPietro, Luisa A.

    2005-01-01

    Vascular endothelial growth factor (VEGF-A), a potent stimulus for angiogenesis, is up-regulated in the skin after wounding. Although studies have shown that VEGF is important for wound repair, it is unclear whether this is based solely on its ability to promote angiogenesis or if VEGF can also promote healing by acting directly on non-endothelial cell types. By immunohistochemistry and reverse transcriptase-polymerase chain reaction, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was detected in murine keratinocytes during wound repair and in normal human epidermal keratinocytes (NHEKs). The presence of VEGF receptors on NHEKs was verified by binding studies with 125I-VEGF. In vitro, VEGF stimulated the proliferation of NHEKs, an effect that could be blocked by treatment with neutralizing VEGFR-1 antibodies. A role for VEGFR-1 in keratinocytes was also shown in vivo because treatment of excisional wounds with neutralizing VEGFR-1 antibodies delayed re-epithelialization. Treatment with anti-VEGFR-1 antibodies also reduced the number of proliferating keratinocytes at the leading edge of the wound, suggesting that VEGF sends a proliferative signal to these cells. Together, these data describe a novel role for VEGFR-1 in keratinocytes and suggest that VEGF may play several roles in cutaneous wound repair. PMID:16251410

  13. Monoclonal antibody-tagged receptor-targeted contrast agents for detection of cancers

    NASA Astrophysics Data System (ADS)

    Soukos, N. S.; Hamblin, Michael R.; Deutsch, Thomas F.; Hasan, Tayyaba

    2001-07-01

    Oral cancer and precancer overexpress the epidermal growth factor receptor (EGFR) and monoclonal antibodies against EGFR coupled to photoactive dyes may have a potential both as a diagnostic and treatment modalities for oral premalignancy. We asked whether an anti-EGFR mab (C225) conjugated with the fluorescence dye indocyanine Cy5.5 could detect dysplastic changes in the hamster cheek pouch carcinogenesis model. Secondly, we tested whether the same antibody conjugated with the photosensitizer chlorin (e6) could be used together with illumination to reduce levels of expression of EGFR as evaluated by the immunophotodetection procedure. Increased fluorescence appeared to correlate with development of premalignancy when the C225-Cy5.5 conjugate was used. Areas with increased fluorescence signal were found in carcinogen-treated but clinically normal cheek pouches, that revealed dysplastsic changes by histology. The immunophotodetection procedure was carried out after photoummunotherapy with the C225-ce6 conjugate, and showed a significant reduction in fluorescence in the illuminated compared to the non-illuminated areas in the carcinogen- treated but not the normal cheek pouch. The results demonstrate that the use of anti-EGFR Mab targeted photoactive dyes may serve as a feedback controlled optical diagnosis and therapy procedure for oral premalignant lesions.

  14. Redefining progressive encephalomyelitis with rigidity and myoclonus after the discovery of antibodies to glycine receptors.

    PubMed

    Crisp, Sarah J; Balint, Bettina; Vincent, Angela

    2017-06-01

    This review highlights the recent discovery of antibodies to glycine receptor (GlyR-Ab) and discusses the relationship between these antibodies and neurological disorders. Since the initial description in 2008 of antibodies to glycine receptors (GlyR-Abs) in a patient with progressive encephalomyelitis with rigidity and myoclonus (PERM), these antibodies have been found in PERM and in some patients with a variety of stiff person spectrum (SPS) or related disorders. Patients with GlyR-Abs often improve with aggressive immunotherapy, and antibody titres correlate with disease severity. Around 25% of patients have another autoimmune condition and 10-20% have an underlying malignancy. GlyR-Abs bind to extracellular determinants, are mainly Immunoglobulin G1 subclass and induce GlyR internalization in Human embryonic kidney 293 cells, suggesting pathogenicity. The spectrum of neurological disease associated with GlyR-Abs has not been fully characterized, and lower titres may not be syndrome specific, but GlyR-Abs, like antibodies to other neuronal cell-surface antigens, define immunotherapy-responsive disease and are likely to be pathogenic. This distinguishes them from the glutamic acid decarboxylase antibodies that can also be found at high titres in patients with classical stiff person syndrome which is more often chronic and relatively resistant to immunological treatments. Irrespective of the clinical features, GlyR-Abs are helpful in the diagnosis of patients who very often have a subacute, progressive and life-threatening disorder which shows a favourable response to immunotherapy.

  15. Closely Related Antibody Receptors Exploit Fundamentally Different Strategies for Steroid Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdino, P.; Aldag, C.; Hilvert, D.

    2009-05-26

    Molecular recognition by the adaptive immune system relies on specific high-affinity antibody receptors that are generated from a restricted set of starting sequences through homologous recombination and somatic mutation. The steroid binding antibody DB3 and the catalytic Diels-Alderase antibody 1E9 derive from the same germ line sequences but exhibit very distinct specificities and functions. However, mutation of only two of the 36 sequence differences in the variable domains, Leu{sup H47}Trp and Arg{sup H100}Trp, converts 1E9 into a high-affinity steroid receptor with a ligand recognition profile similar to DB3. To understand how these changes switch binding specificity and function, we determinedmore » the crystal structures of the 1E9 Leu{sup H47}Trp/Arg{sup H100}Trp double mutant (1E9dm) as an unliganded Fab at 2.05 {angstrom} resolution and in complex with two configurationally distinct steroids at 2.40 and 2.85 {angstrom}. Surprisingly, despite the functional mimicry of DB3, 1E9dm employs a distinct steroid binding mechanism. Extensive structural rearrangements occur in the combining site, where residue H47 acts as a specificity switch and H100 adapts to different ligands. Unlike DB3, 1E9dm does not use alternative binding pockets or different sets of hydrogen-bonding interactions to bind configurationally distinct steroids. Rather, the different steroids are inserted more deeply into the 1E9dm combining site, creating more hydrophobic contacts that energetically compensate for the lack of hydrogen bonds. These findings demonstrate how subtle mutations within an existing molecular scaffold can dramatically modulate the function of immune receptors by inducing unanticipated, but compensating, mechanisms of ligand interaction.« less

  16. Antibodies and Their Receptors: Different Potential Roles in Mucosal Defense

    PubMed Central

    Horton, Rachel E.; Vidarsson, Gestur

    2013-01-01

    Over recent years it has become increasingly apparent that mucosal antibodies are not only restricted to the IgM and IgA isotypes, but that also other isotypes and particularly IgG can be found in significant quantities at some mucosal surfaces, such as in the genital tract. Their role is more complex than traditionally believed with, among other things, the discovery of novel function of mucosal immunoglobulin receptors. A thorough knowledge in the source and function and mucosal immunoglobulins is particularly important in development of vaccines providing mucosal immunity, and also in the current climate of microbicide development, to combat major world health issues such as HIV. We present here a comprehensive review of human antibody mediated mucosal immunity. PMID:23882268

  17. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells

    PubMed Central

    Tone, Masahide; Tone, Yukiko; Adams, Elizabeth; Yates, Stephen F.; Frewin, Mark R.; Cobbold, Stephen P.; Waldmann, Herman

    2003-01-01

    Recently, agonist antibodies to glucocorticoid-induced tumor necrosis factor receptor (GITR) (tumor necrosis factor receptor superfamily 18) have been shown to neutralize the suppressive activity of CD4+CD25+ regulatory T cells. It was anticipated that this would be the role of the physiological ligand. We have identified and expressed the gene for mouse GITR ligand and have confirmed that its interaction with GITR reverses suppression by CD4+CD25+ T cells. It also, however, provides a costimulatory signal for the antigen-driven proliferation of naïve T cells and polarized T helper 1 and T helper 2 clones. RT-PCR and mAb staining revealed mouse GITR ligand expression in dendritic cells, macrophages, and B cells. Expression was controlled by the transcription factor NF-1 and potentially by alternative splicing of mRNA destabilization sequences. PMID:14608036

  18. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation inmore » HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.« less

  19. Correlation of antimuscarinic acetylcholine receptor antibody titers and antidesmoglein antibody titers with the severity of disease in patients with pemphigus.

    PubMed

    Lakshmi, Manimegalai Jeyasekaran Dhanabhakya; Jaisankar, Telanseri Jaykar; Rajappa, Medha; Thappa, Devinder Mohan; Chandrashekar, Laxmisha; Divyapriya, Dakshinamurthy; Munisamy, Malathi; Revathy, Gunaseelan

    2017-05-01

    Acetylcholine receptor (AchR) antibody levels significantly correlate with disease severity at initial pemphigus diagnosis and during follow-up. However, it is not clear if they are just an epiphenomenon or a potential trigger of the known pathogenic process in pemphigus vulgaris. We sought to assess the changes in anti-muscarinic (M3) AchR and anti-desmoglein (Dsg) antibody titers with therapy. This was a hospital-based cohort study involving 45 patients with active pemphigus. Disease was graded clinically using Pemphigus Disease Area Index. Antibody titers were estimated using enzyme-linked immunosorbent assay at baseline, 3 months, and 15 months. All patients with pemphigus had significantly higher anti-M3 AchR titers when compared with a control group. Only 95.5% of patients had anti-Dsg1 antibodies and 84.4% of patients had anti-Dsg3 antibodies. A statistically significant reduction in all 3 antibody titers from baseline to follow-up with treatment was observed. There was a good correlation between all 3 antibody titer and Pemphigus Disease Area Index score at baseline and after therapy and between anti-M3 AchR and anti-Dsg1 antibody titers. Sample size was small and follow-up period was short. Anti-M3 AchR antibodies are strongly associated with pemphigus. They significantly correlate with disease activity and their titers decline with therapy along with anti-Dsg antibodies. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Importance of IgG subclasses of anti-Rh antibodies for the detection of Fc-receptor-bearing human lymphocytes.

    PubMed

    Zupańska, B; Maślanka, K; van Loghem, E

    1982-11-01

    13 anti-Rh sera were compared for their usefulness in the detection of Fc-receptor-bearing lymphocytes (EAhum test). IgG subclasses of anti-Rh antibodies were determined by the antiglobulin test with monospecific sera and by the detection of Gm allotypic markers in the haemagglutination inhibition test. Six sera with IgG1 + IgG3 or IgG1 + IgG2 + IgG3 antibodies and one with pure IgG3 antibodies were found to be useful, whereas six other sera with only IgG1 were unsuitable for the EAhum test. G3m markers were detected only on the anti-Rh antibodies which were capable of forming rosettes with lymphocytes. The data show that human peripheral lymphocytes possess Fc receptors for IgG3 immunoglobulins.

  1. A Fusion Receptor as a Safety Switch, Detection, and Purification Biomarker for Adoptive Transferred T Cells.

    PubMed

    Wu, Xiuqi; Shi, Bizhi; Zhang, Jiqin; Shi, Zhimin; Di, Shengmeng; Fan, Minliang; Gao, Huiping; Wang, Hai; Gu, Jianren; Jiang, Hua; Li, Zonghai

    2017-10-04

    The incorporation of an endogenous safety switch represents a rational strategy for the control of toxicities following the administration of adoptive T cell therapies. An ideal safety switch should be capable of depleting the transferred T cells with minimal injury to normal tissues. We generated a fusion receptor by engineering a cryptic 806 epitope of human epidermal growth factor receptor (EGFR) into the N terminus of the full-length human folate receptor 1 (FOLR1), designated as FR806. The expression of FR806 allows transduced T cells to be targeted with CH12, a monoclonal antibody recognizing the 806 epitope, but not wild-type EGFR in healthy tissues. FR806, therefore, constitutes a specific cell-surface marker for the elimination of transduced T cells. We demonstrate that the antibody-drug conjugate (ADC) CH12-MMAF is efficiently internalized by FR806-expressing T cells and has the potential to eliminate them. Transfected T cells could, furthermore, be efficiently detected and purified using CH12 antibodies. In immuno-compromised mice, CH12-MMAF eliminated the majority of transferred T cells expressing FR806 and anti-CD19 chimeric antigen receptor (CAR). The selectivity for the 806 epitope and internalization capacity of FOLR1 makes FR806 an efficient safety switch, which may additionally be used as a detection and purification biomarker for human T cell immunotherapies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  2. Successful combination immunotherapy of anti-gamma aminobutyric acid (GABA)A receptor antibody-positive encephalitis with extensive multifocal brain lesions.

    PubMed

    Fukami, Yuki; Okada, Hiroaki; Yoshida, Mari; Yamaguchi, Keiji

    2017-08-31

    A 78-year old woman who presented with akinetic mutism was admitted to our hospital. Brain MRI showed multifocal increased T 2 /FLAIR signal with extensive cortical-subcortical involvement. We suspected autoimmune encephalitis and the patient received methylprednisolone pulse. Her conscious level gradually recovered, but later relapsed again and presented with refractory status epilepticus. We treated her with intravenous immunoglobulin, plasma exchange and pulsed cyclophosphamide, with satisfactory response. A brain biopsy showed perivascular lymphocytic infiltrates and reactive gliosis. Anti-gamma aminobutyric acid (GABA) A receptor antibodies test came back to be positive after her recovery, and the diagnosis of anti-GABA A receptor antibody-positive encephalitis was made. This is a very rare case where brain biopsies were performed in a patient with anti-GABA A receptor antibody-positive encephalitis.

  3. Prevalence of elevated serum anti-N-methyl-D-aspartate receptor antibody titers in patients presenting exclusively with psychiatric symptoms: a comparative follow-up study.

    PubMed

    Ando, Yoshihito; Shimazaki, Haruo; Shiota, Katsutoshi; Tetsuka, Syuichi; Nakao, Koichi; Shimada, Tatsuhiro; Kurata, Kazumi; Kuroda, Jinichi; Yamashita, Akihiro; Sato, Hayato; Sato, Mamoru; Eto, Shinkichi; Onishi, Yasunori; Tanaka, Keiko; Kato, Satoshi

    2016-07-08

    Increasing numbers of patients with elevated anti-N-methyl-D-aspartate (NMDA) receptor antibody titers presenting exclusively with psychiatric symptoms have been reported. The aim of the present study was to clarify the prevalence of elevated serum anti-NMDA receptor antibody titers in patients with new-onset or acute exacerbations of psychiatric symptoms. In addition, the present study aimed to investigate the association between elevated anti-NMDA receptor titers and psychiatric symptoms. The present collaborative study included 59 inpatients (23 male, 36 female) presenting with new-onset or exacerbations of schizophrenia-like symptoms at involved institutions from June 2012 to March 2014. Patient information was collected using questionnaires. Anti-NMDA receptor antibody titers were measured using NMDAR NR1 and NR2B co-transfected human embryonic kidney (HEK) 293 cells as an antigen (cell-based assay). Statistical analyses were performed for each questionnaire item. The mean age of participants was 42.0 ± 13.7 years. Six cases had elevated serum anti-NMDA antibody titers (10.2 %), four cases were first onset, and two cases with disease duration >10 years presented with third and fifth recurrences. No statistically significant difference in vital signs or major symptoms was observed between antibody-positive and antibody-negative groups. However, a trend toward an increased frequency of schizophrenia-like symptoms was observed in the antibody-positive group. Serum anti-NMDA receptor antibody titers may be associated with psychiatric conditions. However, an association with specific psychiatric symptoms was not observed in the present study. Further studies are required to validate the utility of serum anti-NMDA receptor antibody titer measurements at the time of symptom onset.

  4. R1507, an Anti-Insulin-Like Growth Factor-1 Receptor (IGF-1R) Antibody, and EWS/FLI-1 siRNA in Ewing's Sarcoma: Convergence at the IGF/IGFR/Akt Axis

    PubMed Central

    Rodon, Jordi; Sun, Michael; Kuenkele, Klaus-Peter; Parsons, Henrique A.; Trent, Jonathan C.; Kurzrock, Razelle

    2011-01-01

    A subset of patients with Ewing's sarcoma responds to anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies. Mechanisms of sensitivity and resistance are unknown. We investigated whether an anti-IGF-1R antibody acts via a pathway that could also be suppressed by small interfering (si) RNA against the EWS/FLI-1 fusion protein, the hallmark of Ewing's sarcoma. The growth of two Ewing's sarcoma cell lines (TC-32 and TC-71) was inhibited by the fully human anti-IGF-1R antibody, R1507 (clonogenic and MTT assays). TC-32 and TC-71 cells express high levels of IGF-2, while RD-ES and A4573 Ewing's cell lines, which were less responsive to R1507 in our assays, express low or undetectable IGF-2, respectively. TC-71 cells also expressed high levels of IGF-1R, and R1507 decreased steady-state levels of this receptor by internalization/degradation, an effect which was associated with a decrease in p-IGF-1R, p-IRS-1, and p-Akt. EWS/FLI-1 siRNA also decreased p-Akt, due to its ability to increase IGF-BP3 levels and subsequently decrease IGF-1 and IGF-2 levels, thus inhibiting signaling through p-IGF-1R. This inhibition correlated with growth suppression and apoptosis. The attenuation of Akt activation was confirmed in TC-71 and HEK-293 (human embryonic kidney) cells by transfecting them with IGF-1R siRNA. We conclude that antibodies and siRNA to IGF-1R, as well as siRNA to EWS/FLI-1, act via intersecting IGF/IGF-1R signals that suppress a common point in this pathway, namely the phosphorylation of Akt. PMID:22022506

  5. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less

  6. Re-engineering therapeutic antibodies for Alzheimer's disease as blood-brain barrier penetrating bi-specific antibodies.

    PubMed

    Pardridge, William M

    2016-12-01

    Therapeutic antibodies are large molecule drugs that do not cross the blood-brain barrier (BBB). Therefore, drug development of therapeutic antibodies for Alzheimer's disease (AD) requires that these molecules be re-engineered to enable BBB delivery. This is possible by joining the therapeutic antibody with a transporter antibody, resulting in the engineering of a BBB-penetrating bispecific antibody (BSA). Areas covered: The manuscript covers transporter antibodies that cross the BBB via receptor-mediated transport systems on the BBB, such as the insulin receptor or transferrin receptor. Furthermore, it highlights therapeutic antibodies for AD that target the Abeta amyloid peptide, beta secretase-1, or the metabotropic glutamate receptor-1. BSAs are comprised of both the transporter antibody and the therapeutic antibody, as well as IgG constant region, which can induce immune tolerance or trigger transport via Fc receptors. Expert opinion: Multiple types of BSA molecular designs have been used to engineer BBB-penetrating BSAs, which differ in valency and spatial orientation of the transporter and therapeutic domains of the BSA. The plasma pharmacokinetics and dosing regimens of BSAs differ from that of conventional therapeutic antibodies. BBB-penetrating BSAs may be engineered in the future as new treatments of AD, as well as other neural disorders.

  7. Arrestin Scaffolds NHERF1 to the P2Y12 Receptor to Regulate Receptor Internalization*

    PubMed Central

    Nisar, Shaista P.; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J.; Kelly, Eamonn; Mundell, Stuart J.

    2012-01-01

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y12 receptor (P2Y12R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y12R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y12R internalization. In vitro and prior to agonist stimulation P2Y12R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101

  8. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.

    PubMed

    Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J

    2012-07-13

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.

  9. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor: a study based on biosensor technology.

    PubMed

    List, K; Høyer-Hansen, G; Rønne, E; Danø, K; Behrendt, N

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interference with conformational properties of the receptor critical for ligand binding. This distinction is central when employing the antibodies as tools in the elucidation of the structure-function relationship of the protein in question. We have studied the effect of monoclonal antibodies against the urokinase plasminogen activator receptor (uPAR), a protein located on the surface of various types of malignant and normal cells which is involved in the direction of proteolytic degradation reactions in the extracellular matrix. We show that surface plasmon resonance/biomolecular interaction analysis (BIA) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former antibody efficiently blocked the receptor against subsequent ligand binding but was unable to promote the dissociation of a preformed receptor-ligand complex. The latter antibody was capable of binding the preformed complex, forming a transient trimolecular assembly, and promoting the dissociation of the uPA/uPAR complex. The continuous recording of binding and dissociation, obtained in BIA, is central in characterizing these phenomena. The identification of a non-competitive inhibitory mechanism against this receptor reveals the presence of a determinant which influences the binding properties of a remote site in the molecular structure and which could be an important target for a putative synthetic antagonist.

  10. FGF23 Neutralizing Antibody Ameliorates Hypophosphatemia and Impaired FGF Receptor Signaling in Kidneys of HMWFGF2 Transgenic Mice.

    PubMed

    Du, E; Xiao, L; Hurley, M M

    2017-03-01

    High molecular weight FGF2 transgenic mice (HMWTg) phenocopy the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with phosphate wasting and abnormal fibroblast growth factor (FGF23), fibroblast growth factor receptor (FGFR), Klotho and mitogen activated protein kinases (MAPK) signaling in kidney. In this study, we assessed whether short-term (24 h) in vivo administration of FGF23 neutralizing antibody (FGF23Ab) could rescue hypophosphatemia and impaired FGFR signaling in kidneys of HMWTg male mice. Bone mineral density and bone mineral content in 1-month-old HMWTg mice were significantly reduced compared with Control/VectorTg mice. Serum FGF23 was significantly increased in HMWTg compared with VectorTg. Serum phosphate was significantly reduced in HMWTg and was rescued by FGF23Ab. Serum parathyroid hormone (PTH) was significantly increased in HMWTg but was not reduced by FGF23Ab. 1, 25(OH) 2 D was inappropriately normal in serum of HMWTg and was significantly increased in both Vector and HMWTg by FGF23Ab. Analysis of HMWTg kidneys revealed significantly increased mRNA expression of the FGF23 co-receptor Klotho, transcription factor mRNAs for early growth response-1 transcription factor (Egr-1), and c-fos were all significantly decreased by FGF23Ab. A significant reduction in the phosphate transporter Npt2a mRNA was also observed in HMWTg kidneys, which was increased by FGF23Ab. FGF23Ab reduced p-FGFR1, p-FGFR3, KLOTHO, p-ERK1/2, C-FOS, and increased NPT2A protein in HMWTg kidneys. We conclude that FGF23 blockade rescued hypophosphatemia by regulating FGF23/FGFR downstream signaling in HMWTg kidneys. Furthermore, HMWFGF2 isoforms regulate PTH expression independent of FGF23/FGFR signaling. J. Cell. Physiol. 232: 610-616, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  12. Improved decision making for prioritizing tumor targeting antibodies in human xenografts: Utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule.

    PubMed

    Dobosz, Michael; Haupt, Ute; Scheuer, Werner

    2017-01-01

    Preclinical efficacy studies of antibodies targeting a tumor-associated antigen are only justified when the expression of the relevant antigen has been demonstrated. Conventionally, antigen expression level is examined by immunohistochemistry of formalin-fixed paraffin-embedded tumor tissue section. This method represents the diagnostic "gold standard" for tumor target evaluation, but is affected by a number of factors, such as epitope masking and insufficient antigen retrieval. As a consequence, variances and discrepancies in histological staining results can occur, which may influence decision-making and therapeutic outcome. To overcome these problems, we have used different fluorescence-labeled therapeutic antibodies targeting human epidermal growth factor receptor (HER) family members and insulin-like growth factor-1 receptor (IGF1R) in combination with fluorescence imaging modalities to determine tumor antigen expression, drug-target interaction, and biodistribution and tumor saturation kinetics in non-small cell lung cancer xenografts. For this, whole-body fluorescence intensities of labeled antibodies, applied as a single compound or antibody mixture, were measured in Calu-1 and Calu-3 tumor-bearing mice, then ex vivo multispectral tumor tissue analysis at microscopic resolution was performed. With the aid of this simple and fast imaging method, we were able to analyze the tumor cell receptor status of HER1-3 and IGF1R, monitor the antibody-target interaction and evaluate the receptor binding sites of anti-HER2-targeting antibodies. Based on this, the most suitable tumor model, best therapeutic antibody, and optimal treatment dosage and application schedule was selected. Predictions drawn from obtained imaging data were in excellent concordance with outcome of conducted preclinical efficacy studies. Our results clearly demonstrate the great potential of combined in vivo and ex vivo fluorescence imaging for the preclinical development and characterization of

  13. In vivo Therapy with Monoclonal Anti-I-A Antibody Suppresses Immune Responses to Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Waldor, Matthew K.; Sriram, Subramaniam; McDevitt, Hugh O.; Steinman, Lawrence

    1983-05-01

    A monoclonal antibody to I-A gene products of the immune response gene complex attenuates both humoral and cellular responses to acetylcholine receptor and appears to suppress clinical manifestations of experimental autoimmune myasthenia gravis. This demonstrates that use of antibodies against immune response gene products that are associated with susceptibility to disease may be feasible for therapy in autoimmune conditions such as myasthenia gravis.

  14. Polymorphisms in the Vitamin A Receptor and Innate Immunity Genes Influence the Antibody Response to Rubella Vaccination

    PubMed Central

    Ovsyannikova, Inna G.; Haralambieva, Iana H.; Dhiman, Neelam; O’Byrne, Megan M.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2009-01-01

    Background Genetic polymorphisms play an important role in rubella vaccine-induced immunity. Methods We genotyped 714 healthy children after two age-appropriate doses of rubella-containing vaccine for 142 potential SNPs. Results Specific polymorphisms in the vitamin A receptor, RIG-I, TRIM5 and TRIM22 genes were significantly associated with rubella vaccine humoral immunity. The minor allele of the rs4416353 in the vitamin A receptor gene was associated with an allele dose-related decrease (P=.019) in rubella antibody response. The minor allele of rs6793694, in the vitamin A receptor gene, was associated with an allele dose-related antibody decrease (P=.039). The minor variant of nonsynonymous SNP rs10813831 (Arg7Cys) in the RIG-I gene was associated with an allele dose-related decrease in rubella antibody level from 37.4 IU/mL to 28.0 IU/mL (P=.035), while increased representation of the minor allele of the 5’UTR SNP (rs3824949, P=.015), in the antiretroviral TRIM5 gene, was associated with an allele dose-related increase in rubella antibody. It is of particular interest that the nonsynonymous SNP rs3740996 (His43Tyr) in the TRIM5 gene was associated with variations in rubella antibody response (P=.016) after having been previously found to have a significant functional role. Conclusions These findings further expand our immunogenetic understanding of mechanisms of rubella vaccine-induced immunity. PMID:20001730

  15. Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues.

    PubMed

    Xiong, Jing; Zhou, L I; Lim, Yoon; Yang, Miao; Zhu, Yu-Hong; Li, Zhi-Wei; Fu, Deng-Li; Zhou, Xin-Fu

    2015-07-01

    There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro , while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.

  16. Anti-IL-23 receptor monoclonal antibody prevents CD4+ T cell-mediated colitis in association with decreased systemic Th1 and Th17 responses.

    PubMed

    Imamura, Emiko; Taguchi, Katsunari; Sasaki-Iwaoka, Haruna; Kubo, Satoshi; Furukawa, Shigetada; Morokata, Tatsuaki

    2018-04-05

    Experimental colitis studies, including T cell-mediated colitis, indicate that IL-23 rather than IL-12 orchestrates intestinal inflammation in inflammatory bowel disease (IBD). Previous studies have identified the roles of IL-12 and IL-23 using mice deficient for their specific subunits, p35 and p19, respectively. However, these studies do not completely reflect the difference in roles between IL-12 and IL-23, especially since the discovery of novel IL-12 family cytokines, which also include p35 or p19 subunits. Here, to clarify the contribution of IL-12 and IL-23 in T cell-mediated colitis, we compared the efficacy of a monoclonal antibody (mAb) to an IL-23-specific receptor subunit with that of an anti-IL-12/23p40 mAb in a naive CD4 + T cell transfer model of experimental colitis, which is associated with enhanced Th1 and Th17 responses. Both antibodies almost completely prevented the development of colitis and showed reduced associated histological changes, including mucosal hyperplasia, infiltration of inflammatory cells and loss of goblet cells. The anti-IL-23 receptor mAb inhibited not only the systemic Th17-response but also the Th1-response, both of which were up-regulated in this model. These results suggest that IL-23, but not IL-12, signaling is critical for the development of colitis. Blockade of IL-23 signaling is a promising therapeutic approach for IBD. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance.

    PubMed

    Congdon, Erin E; Gu, Jiaping; Sait, Hameetha B R; Sigurdsson, Einar M

    2013-12-06

    Tau immunotherapy is effective in transgenic mice, but the mechanisms of Tau clearance are not well known. To this end, Tau antibody uptake was analyzed in brain slice cultures and primary neurons. Internalization was rapid (<1 h), saturable, and substantial compared with control mouse IgG. Furthermore, temperature reduction to 4 °C, an excess of unlabeled mouse IgG, or an excess of Tau antibodies reduced uptake in slices by 63, 41, and 62%, respectively (p = 0.002, 0.04, and 0.005). Uptake strongly correlated with total and insoluble Tau levels (r(2) = 0.77 and 0.87 and p = 0.002 and 0.0002), suggesting that Tau aggregates influence antibody internalization and/or retention within neurons. Inhibiting phagocytosis did not reduce uptake in slices or neuronal cultures, indicating limited microglial involvement. In contrast, clathrin-specific inhibitors reduced uptake in neurons (≤ 78%, p < 0.0001) and slices (≤ 35%, p = 0.03), demonstrating receptor-mediated endocytosis as the primary uptake pathway. Fluid phase endocytosis accounted for the remainder of antibody uptake in primary neurons, based on co-staining with internalized dextran. The receptor-mediated uptake is to a large extent via low affinity FcγII/III receptors and can be blocked in slices (43%, p = 0.04) and neurons (53%, p = 0.008) with an antibody against these receptors. Importantly, antibody internalization appears to be necessary for Tau reduction in primary neurons. Overall, these findings clarify that Tau antibody uptake is primarily receptor-mediated, that these antibodies are mainly found in neurons with Tau aggregates, and that their intracellular interaction leads to clearance of Tau pathology, all of which have major implications for therapeutic development of this approach.

  18. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.

  19. Fibroblast growth factor receptor 1 is fused to FIM in stem-cell myeloproliferative disorder with t(8;13)(p12;q12)

    PubMed Central

    Popovici, Cornel; Adélaïde, José; Ollendorff, Vincent; Chaffanet, Max; Guasch, Géraldine; Jacrot, Michèle; Leroux, Dominique; Birnbaum, Daniel; Pébusque, Marie-Josèphe

    1998-01-01

    Chromosome 8p11–12 is the site of a recurrent breakpoint in a myeloproliferative disorder that involves lymphoid (T- or B-cell), myeloid hyperplasia and eosinophilia, and evolves toward acute leukemia. This multilineage involvement suggests the malignant transformation of a primitive hematopoietic stem cell. In this disorder, the 8p11–12 region is associated with three different partners 6q27, 9q33, and 13q12. We describe here the molecular characterization of the t(8;13) translocation that involves the FGFR1 gene from 8p12, encoding a tyrosine kinase receptor for members of the fibroblast growth factor family, and a gene from 13q12, tentatively named FIM (Fused In Myeloproliferative disorders). FIM is related to DXS6673E, a candidate gene for X-linked mental retardation in Xq13.1; this defines a gene family involved in different human pathologies. The two reciprocal fusion transcripts, FIM/FGFR1 and FGFR1/FIM are expressed in the malignant cells. The FIM/FGFR1 fusion protein contains the FIM putative zinc finger motifs and the catalytic domain of FGFR1. We show that it has a constitutive tyrosine kinase activity. PMID:9576949

  20. Mapping of melanin-concentrating hormone receptor 1 B cell epitopes predicts two major binding sites for vitiligo patient autoantibodies.

    PubMed

    Gavalas, Nikos G; Gottumukkala, Raju V S R K; Gawkrodger, David J; Watson, Philip F; Weetman, Anthony P; Kemp, E Helen

    2009-05-01

    The melanin-concentrating hormone receptor 1 (MCHR1) has been identified as a B cell autoantigen in vitiligo with antibodies to the receptor detectable in binding and function-blocking assays. Two epitope domains (amino acids 1-138 and 139-298) have been previously identified. In this study, we aimed to further define the epitope specificity of MCHR1 antibodies using phage-display technology and to identify the epitopes recognised by receptor antibodies detected in MCHR1 function-blocking assays. Antibody reactivity to MCHR1 peptides 51-80, 85-98, 154-158 and 254-260 was identified by phage-display and subsequently confirmed in phage ELISA in 2/12, 5/12, 3/12 and 6/12 of vitiligo patients, respectively. The results suggest that major autoantibody epitopes are localised in the 85-98 and 254-260 amino acid regions of MCHR1 with minor epitopes in amino acid sequences 51-80 and 154-158. Antibodies with MCHR1 function-blocking activity were determined to recognise epitope 254-260, this being the first epitope to be reported as a target site for antibodies that block the function of the receptor.

  1. Antibodies Against Hypocretin Receptor 2 Are Rare in Narcolepsy.

    PubMed

    Giannoccaro, Maria Pia; Waters, Patrick; Pizza, Fabio; Liguori, Rocco; Plazzi, Giuseppe; Vincent, Angela

    2017-02-01

    Recently, antibodies to the hypocretin receptor 2 (HCRTR2-Abs) were reported in a high proportion of narcolepsy patients who developed the disease following Pandemrix® vaccination. We tested a group of narcolepsy patients for the HCRTR2-Abs using a newly established cell-based assay. Sera from 50 narcolepsy type 1 (NT1) and 11 narcolepsy type 2 (NT2) patients, 22 patients with other sleep disorders, 15 healthy controls, and 93 disease controls were studied. Cerebrospinal fluid (CSFs) from three narcoleptic patients were subsequently included. Human embryonic kidney cells were transiently transfected with human HCRTR2, incubated with patients' sera for 1 hr at 1:20 dilution and then fixed. Binding of antibodies was detected by fluorescently labeled secondary antibodies to human immunoglobulin G (IgG) and the different IgG subclasses. A nonlinear visual scoring system was used from 0 to 4; samples scoring ≥1 were considered positive. Only 3 (5%) of 61 patients showed a score ≥1, one with IgG1- and two with IgG3-antibodies, but titers were low (1:40-1:100). CSFs from these patients were negative. The three positive patients included one NT1 case with associated psychotic features, one NT2 patient, and an NT1 patient with normal hypocretin CSF levels. Low levels of IgG1 or IgG3 antibodies against HCRTR2 were found in 3 of 61 patients with narcolepsy, although only 1 presented with full-blown NT1. HCRTR2-Abs are not common in narcolepsy unrelated to vaccination. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. A case of late-onset, thymoma-associated myasthenia gravis with ryanodine receptor and titin antibodies and concomitant granulomatous myositis.

    PubMed

    Stefanou, M I; Komorowski, L; Kade, S; Bornemann, A; Ziemann, U; Synofzik, M

    2016-09-13

    Myasthenia gravis is an autoimmune neuromuscular disorder, which has only rarely been reported to co-manifest with myositis. The diagnosis of concomitant myositis in patients with myasthenia gravis is clinically challenging, and requires targeted investigations for the differential diagnosis, including EMG, autoantibody assays, muscle biopsy and, importantly, imaging of the mediastinum for thymoma screening. This report presents a case-vignette of a 72-year-old woman with progressive proximal muscle weakness and myalgias, diagnosed with thymoma-associated myasthenia and bioptically verified granulomatous myositis, with positive autoantibody status for ryanodine receptor and titin antibodies. The diagnosis of concurrent myositis and myasthenia gravis, especially in the presence of ryanodine receptor and titin antibodies, should lead neurologists to adopt different treatment strategies compared to those applied in myasthenia or myositis alone. Moreover, further evidence is warranted that titin and, particularly, ryanodine receptor antibodies may co-occur or be pathophysiologically involved in myasthenia-myositis cases.

  3. Potent neutralization of botulinum neurotoxin/B by synergistic action of antibodies recognizing protein and ganglioside receptor binding domain.

    PubMed

    Chen, Changchun; Wang, Shuhui; Wang, Huajing; Mao, Xiaoyan; Zhang, Tiancheng; Ji, Guanghui; Shi, Xin; Xia, Tian; Lu, Weijia; Zhang, Dapeng; Dai, Jianxin; Guo, Yajun

    2012-01-01

    Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed. We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo. The combination of two mAbs recognizing different receptors' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes.

  4. Anti-MUC1 antibody inhibits EGF receptor signaling in cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hisatsune, Akinori, E-mail: hisatsun@kumamoto-u.ac.jp; Nakayama, Hideki; Kawasaki, Mitsuru

    2011-02-18

    Research highlights: {yields} We identified changes in the expression and function of EGFR by anti-MUC1 antibody. {yields} An anti-MUC1 antibody GP1.4 decreased EGFR from cell surface by internalization. {yields} GP1.4 specifically inhibited ERK signaling triggered EGF-EGFR signaling pathway. {yields} Internalization of EGFR was dependent on the presence of MUC1 on cell surface. {yields} GP1.4 significantly inhibited EGF-dependent cancer cell proliferation and migration. -- Abstract: MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. High expression of MUC1 is closely associated with cancer progression and metastasis, leading to poor prognosis. We previously reported that MUC1 is internalizedmore » by the binding of the anti-MUC1 antibody, from the cell surface to the intracellular region via the macropinocytotic pathway. Since MUC1 is closely associated with ErbBs, such as EGF receptor (EGFR) in cancer cells, we examined the effect of the anti-MUC1 antibody on EGFR trafficking. Our results show that: (1) anti-MUC1 antibody GP1.4, but not another anti-MUC1 antibody C595, triggered the internalization of EGFR in pancreatic cancer cells; (2) internalization of EGFR by GP1.4 resulted in the inhibition of ERK phosphorylation by EGF stimulation, in a MUC1 dependent manner; (3) inhibition of ERK phosphorylation by GP1.4 resulted in the suppression of proliferation and migration of pancreatic cancer cells. We conclude that the internalization of EGFR by anti-MUC1 antibody GP1.4 inhibits the progression of cancer cells via the inhibition of EGFR signaling.« less

  5. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor.

    PubMed

    Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J

    1999-09-15

    We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.

  6. Hashimoto's thyroiditis with heterogeneous antithyrotropin receptor antibodies: unique epitopes may contribute to the regulation of thyroid function by the antibodies.

    PubMed

    Akamizu, T; Kohn, L D; Hiratani, H; Saijo, M; Tahara, K; Nakao, K

    2000-06-01

    Blocking-type TSH-binding inhibitor Igs (TBIIs) are known to cause hypothyroidism and an atrophic thyroid gland in patients with primary myxedema. They can block the activity of thyroid-stimulating antibodies (TSAbs) in Graves' patients as well as the activity of TSH. The majority of the epitopes for these blocking-type TBIIs have been, and are shown herein, to be present on the C-terminal region of the extracellular domain of the human TSH receptor (TSHR), whereas those for Graves' TSAbs are on the N-terminus. We report on a patient with Hashimoto's thyroiditis who suffered from mild hypothyroidism and a moderately sized goiter. Her serum had a potent blocking-type TBII and a weak TSAb in human and porcine TSHR systems. Using human TSHR/lutropin-CG receptor chimeras, we determined that the functional epitope of her blocking-type TBII was uniquely present on the N-terminal, rather than the C-terminal, region of the extracellular domain of the TSHR, unlike the case for blocking-type TBIIs in primary myxedema patients. The epitope of her TSAb was also unusual. Although the functional epitopes of most TSAbs are known to involve the N-terminal region of the receptor, her TSAb epitope did not seem to be present solely on the N- or C-terminus of the extracellular domain of the receptor. Blocking-type TBIIs from patients with primary myxedema blocked her TSAb activity as well as stimulation by TSH; her blocking-type TBII was able to only partially block her TSAb. In contrast, her blocking-type TBII almost completely blocked TSAbs from Graves' patients. Thus, we suggest that the unique epitopes of this patient's heterogeneous population of TSH receptor antibodies, at least in part, contribute to regulation of her thyroid function.

  7. Antibody protection reveals extended epitopes on the human TSH receptor.

    PubMed

    Latif, Rauf; Teixeira, Avelino; Michalek, Krzysztof; Ali, M Rejwan; Schlesinger, Max; Baliram, Ramkumarie; Morshed, Syed A; Davies, Terry F

    2012-01-01

    Stimulating, and some blocking, antibodies to the TSH receptor (TSHR) have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD). However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs) have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity.

  8. Antibody Protection Reveals Extended Epitopes on the Human TSH Receptor

    PubMed Central

    Latif, Rauf; Teixeira, Avelino; Michalek, Krzysztof; Ali, M. Rejwan; Schlesinger, Max; Baliram, Ramkumarie; Morshed, Syed A.; Davies, Terry F.

    2012-01-01

    Stimulating, and some blocking, antibodies to the TSH receptor (TSHR) have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD). However, successful crystallization of TSHR residues 22–260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs) have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1–412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity. PMID:22957097

  9. Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity.

    PubMed

    Planagumà, Jesús; Haselmann, Holger; Mannara, Francesco; Petit-Pedrol, Mar; Grünewald, Benedikt; Aguilar, Esther; Röpke, Luise; Martín-García, Elena; Titulaer, Maarten J; Jercog, Pablo; Graus, Francesc; Maldonado, Rafael; Geis, Christian; Dalmau, Josep

    2016-09-01

    To demonstrate that ephrin-B2 (the ligand of EphB2 receptor) antagonizes the pathogenic effects of patients' N-methyl-D-aspartate receptor (NMDAR) antibodies on memory and synaptic plasticity. One hundred twenty-two C57BL/6J mice infused with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, with or without ephrin-B2, were investigated. CSF was infused through ventricular catheters connected to subcutaneous osmotic pumps over 14 days. Memory, behavioral tasks, locomotor activity, presence of human antibodies specifically bound to hippocampal NMDAR, and antibody effects on the density of cell-surface and synaptic NMDAR and EphB2 were examined at different time points using reported techniques. Short- and long-term synaptic plasticity were determined in acute brain sections; the Schaffer collateral pathway was stimulated and the field excitatory postsynaptic potentials were recorded in the CA1 region of the hippocampus. Mice infused with patients' CSF, but not control CSF, developed progressive memory deficit and depressive-like behavior along with deposits of NMDAR antibodies in the hippocampus. These findings were associated with a decrease of the density of cell-surface and synaptic NMDAR and EphB2, and marked impairment of long-term synaptic plasticity without altering short-term plasticity. Administration of ephrin-B2 prevented the pathogenic effects of the antibodies in all the investigated paradigms assessing memory, depressive-like behavior, density of cell-surface and synaptic NMDAR and EphB2, and long-term synaptic plasticity. Administration of ephrin-B2 prevents the pathogenic effects of anti-NMDAR encephalitis antibodies on memory and behavior, levels of cell-surface NMDAR, and synaptic plasticity. These findings reveal a strategy beyond immunotherapy to antagonize patients' antibody effects. Ann Neurol 2016;80:388-400. © 2016 American Neurological Association.

  10. Monoclonal Antibodies against the MET/HGF Receptor and Its Ligand: Multitask Tools with Applications from Basic Research to Therapy

    PubMed Central

    Prat, Maria; Oltolina, Francesca; Basilico, Cristina

    2014-01-01

    Monoclonal antibodies can be seen as valuable tools for many aspects of basic as well as applied sciences. In the case of MET/HGFR, they allowed the identification of truncated isoforms of the receptor, as well as the dissection of different epitopes, establishing structure–function relationships. Antibodies directed against MET extracellular domain were found to be full or partial receptor agonists or antagonists. The agonists can mimic the effects of the different isoforms of the natural ligand, but with the advantage of being more stable than the latter. Thus, some agonist antibodies promote all the biological responses triggered by MET activation, including motility, proliferation, morphogenesis, and protection from apoptosis, while others can induce only a migratory response. On the other hand, antagonists can inhibit MET-driven biological functions either by competing with the ligand or by removing the receptor from the cell surface. Since MET/HGFR is often over-expressed and/or aberrantly activated in tumors, monoclonal antibodies can be used as probes for MET detection or as “bullets” to target MET-expressing tumor cells, thus pointing to their use in diagnosis and therapy. PMID:28548076

  11. Graves' Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies

    PubMed Central

    Morshed, S. A.; Davies, T. F.

    2016-01-01

    The immunologic processes involved in Graves' disease (GD) have one unique characteristic – the autoantibodies to the TSH receptor (TSHR) – which have both linear and conformational epitopes. Three types of TSHR antibodies (stimulating, blocking, and cleavage) with different functional capabilities have been described in GD patients, which induce different signaling effects varying from thyroid cell proliferation to thyroid cell death. The establishment of animal models of GD by TSHR antibody transfer or by immunization with TSHR antigen has confirmed its pathogenic role and, therefore, GD is the result of a breakdown in TSHR tolerance. Here we review some of the characteristics of TSHR antibodies with a special emphasis on new developments in our understanding of what were previously called “neutral” antibodies and which we now characterize as autoantibodies to the “cleavage” region of the TSHR ectodomain. PMID:26361259

  12. Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor.

    PubMed Central

    Jefferies, W A; Brandon, M R; Williams, A F; Hunt, S V

    1985-01-01

    A mouse monoclonal IgG2a antibody, designated MRC OX-26, is shown to be specific for the rat transferrin receptor, but does not block transferrin binding. The antibody labelled a myeloma, three leukaemia cell lines and normal dividing cells of various types, but also bound to a number of nondividing normal tissues. No labelling of lymphopoietic stem cells could be detected, even though approximately 25% of bone marrow and over 95% of fetal liver cells were clearly labelled. Images Figure 1 Figure 3 PMID:2981766

  13. Anti-Interleukin-31 Receptor A Antibody for Atopic Dermatitis.

    PubMed

    Ruzicka, Thomas; Hanifin, Jon M; Furue, Masutaka; Pulka, Grazyna; Mlynarczyk, Izabela; Wollenberg, Andreas; Galus, Ryszard; Etoh, Takafumi; Mihara, Ryosuke; Yoshida, Hiroki; Stewart, Jonathan; Kabashima, Kenji

    2017-03-02

    Interleukin-31 may play a role in the pathobiologic mechanism of atopic dermatitis and pruritus. We wanted to assess the efficacy and safety of nemolizumab (CIM331), a humanized antibody against interleukin-31 receptor A, in the treatment of atopic dermatitis. In this phase 2, randomized, double-blind, placebo-controlled, 12-week trial, we assigned adults with moderate-to-severe atopic dermatitis that was inadequately controlled by topical treatments to receive subcutaneous nemolizumab (at a dose of 0.1 mg, 0.5 mg, or 2.0 mg per kilogram of body weight) or placebo every 4 weeks or an exploratory dose of 2.0 mg of nemolizumab per kilogram every 8 weeks. The primary end point was the percentage improvement from baseline in the score on the pruritus visual-analogue scale (on which a negative change indicates improvement) at week 12. Secondary end points included changes in the score on the Eczema Area and Severity Index (EASI, on which a negative change indicates improvement), and body-surface area of atopic dermatitis. Of 264 patients who underwent randomization, 216 (82%) completed the study. At week 12, among the patients who received nemolizumab every 4 weeks, changes on the pruritus visual-analogue scale were -43.7% in the 0.1-mg group, -59.8% in the 0.5-mg group, and -63.1% in the 2.0-mg group, versus -20.9% in the placebo group (P<0.01 for all comparisons). Changes on the EASI were -23.0%, -42.3%, and -40.9%, respectively, in the nemolizumab groups, versus -26.6% in the placebo group. Respective changes in body-surface area affected by atopic dermatitis were -7.5%, -20.0%, and -19.4% with nemolizumab, versus -15.7% with placebo. Among the patients receiving nemolizumab every 4 weeks, treatment discontinuations occurred in 9 of 53 patients (17%) in the 0.1-mg group, in 9 of 54 (17%) in the 0.5-mg group, and in 7 of 52 (13%) in the 2.0-mg group, versus in 9 of 53 (17%) in the placebo group. In this phase 2 trial, nemolizumab at all monthly doses significantly

  14. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors.

    PubMed

    El-Gamal, Mohammed I; Al-Ameen, Shahad K; Al-Koumi, Dania M; Hamad, Mawadda G; Jalal, Nouran A; Oh, Chang-Hyun

    2018-01-17

    Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.

  15. Platelet receptors for the Streptococcus sanguis adhesin and aggregation-associated antigens are distinguished by anti-idiotypical monoclonal antibodies.

    PubMed Central

    Gong, K; Wen, D Y; Ouyang, T; Rao, A T; Herzberg, M C

    1995-01-01

    Platelets aggregate in response to an adhesin and the platelet aggregation-associated protein (PAAP) expressed on the cell surfaces of certain strains of Streptococcus sanguis. We sought to identify the corresponding PAAP receptor and accessory adhesin binding sites on platelets. Since the adhesion(s) of S. sanguis for platelets has not been characterized, an anti-idiotype (anti-id) murine monoclonal antibody (MAb2) strategy was developed. First, MAb1s that distinguished the adhesin and PAAP antigens on the surface of S. sanguis I 133-79 were selected. Fab fragments of MAb1.2 (immunoglobulin G2b [IgG2b]; 70 pmol) reacted with 5 x 10(7) cells of S. sanguis to completely inhibit the aggregation of human platelets in plasma. Under similar conditions, MAb1.1 (IgG1) inhibited the adhesion of S. sanguis cells to platelets by a maximum of 34%, with a comparatively small effect on platelet aggregation. Together, these two MAb1s inhibited S. sanguis-platelet adhesion by 63%. In Western immunoblots, both MAb1s reacted with S. sanguis 133-79 87- and 150-kDa surface proteins and MAb1.2 also reacted with purified type I collagen. The hybridomas producing MAb1.1 and MAb1.2 were then injected into BALB/c mice. Enlarged spleens were harvested, and a panel of MAb2 hybridomas was prepared. To identify anti-ids against the specific MAb1s, the MAb2 panel was screened by enzyme-linked immunosorbent assay for reaction with rabbit polyclonal IgG antibodies against the 87- and 150-kDa antigens. The reactions between the specific rabbit antibodies and anti-ids were inhibited by the 87- and 150-kDa antigens. When preincubated with platelets, MAb2.1 (counterpart of MAb1.1) inhibited adhesion to platelets maximally by 46% and MAb2.2 (anti-MAb1.2) inhibited adhesion to platelets maximally by 35%. Together, both MAb2s inhibited the adhesion of S. sanguis to platelets by 81%. MAb2.2 also inhibited induction of platelet aggregation. MAb2.2 immunoprecipitated a biotinylated platelet membrane

  16. Characterization of the receptors for mycobacterial cord factor in Guinea pig.

    PubMed

    Toyonaga, Kenji; Miyake, Yasunobu; Yamasaki, Sho

    2014-01-01

    Guinea pig is a widely used animal for research and development of tuberculosis vaccines, since its pathological disease process is similar to that present in humans. We have previously reported that two C-type lectin receptors, Mincle (macrophage inducible C-type lectin, also called Clec4e) and MCL (macrophage C-type lectin, also called Clec4d), recognize the mycobacterial cord factor, trehalose-6,6'-dimycolate (TDM). Here, we characterized the function of the guinea pig homologue of Mincle (gpMincle) and MCL (gpMCL). gpMincle directly bound to TDM and transduced an activating signal through ITAM-bearing adaptor molecule, FcRγ. Whereas, gpMCL lacked C-terminus and failed to bind to TDM. mRNA expression of gpMincle was detected in the spleen, lymph nodes and peritoneal macrophages and it was strongly up-regulated upon stimulation of zymosan and TDM. The surface expression of gpMincle was detected on activated macrophages by a newly established monoclonal antibody that also possesses a blocking activity. This antibody potently suppressed TNF production in BCG-infected macrophages. Collectively, gpMincle is the TDM receptor in the guinea pig and TDM-Mincle axis is involved in host immune responses against mycobacteria.

  17. Granulocyte colony-stimulating factor enhances protection by anti-K1 capsular IgM antibody in murine Escherichia coli sepsis.

    PubMed

    Hustinx, W; Benaissa-Trouw, B; Van Kessel, K; Kuenen, J; Tavares, L; Kraaijeveld, K; Verhoef, J; Hoepelman, A

    1997-12-01

    Combined prophylactic treatment with recombinant murine granulocyte colony-stimulating factor (G-CSF) and a suboptimal dose of anti-K1 capsular IgM monoclonal antibody (MAb) significantly enhanced survival in an experimental mouse Escherichia coli O7:K1 peritonitis model compared with untreated animals (67% vs. 11% survival; P < 0.001) and with either treatment alone (67 vs. 29% and 27% survival, respectively; P < 0.01), which suggests synergism between these agents. Enhanced survival by combined treatment was associated with increased neutrophil counts in blood and peritoneal lavage fluid, lower systemic and higher levels of local tumour necrosis factor (TNF) and lower bacterial counts in blood cultures. Mouse neutrophils treated with G-CSF but not infected with E. coli showed enhanced phagocytic and respiratory burst capacity, down-regulation of L-selectin receptors and enhanced expression of Fc RII-III receptors but not of complement receptors.

  18. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  19. Global Structure of HIV-1 Neutralizing Antibody IgG1 b12 is Asymmetric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashish, F.; Solanki, A; Boone, C

    2010-01-01

    Human antibody IgG1 b12 is one of the four antibodies known to neutralize a broad range of human immunodeficiency virus-1. The crystal structure of this antibody displayed an asymmetric disposition of the Fab arms relative to its Fc portion. Comparison of structures solved for other IgG1 antibodies led to a notion that crystal packing forces entrapped a 'snap-shot' of different conformations accessible to this antibody. To elucidate global structure of this unique antibody, we acquired small-angle X-ray scattering data from its dilute solution. Data analysis indicated that b12 adopts a bilobal globular structure in solution with a radius of gyrationmore » and a maximum linear dimension of {approx}54 and {approx}180 {angstrom}, respectively. Extreme similarity between its solution and crystal structure concludes that non-flexible, asymmetric shape is an inherent property of this rare antibody.« less

  20. Safety and Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer.

    PubMed

    Rugo, Hope S; Delord, Jean-Pierre; Im, Seock-Ah; Ott, Patrick A; Piha-Paul, Sarina A; Bedard, Philippe L; Sachdev, Jasgit; Tourneau, Christophe Le; van Brummelen, Emilie M J; Varga, Andrea; Salgado, Roberto; Loi, Sherene; Saraf, Sanatan; Pietrangelo, Dina; Karantza, Vassiliki; Tan, Antoinette R

    2018-03-20

    Purpose: We investigated the safety and antitumor activity of the anti-programmed death 1 monoclonal antibody pembrolizumab in patients with estrogen receptor-positive (ER + )/human epidermal growth factor receptor 2-negative (HER2 - ) advanced breast cancer with programmed death ligand 1-positive (PD-L1-positive) tumors in the phase Ib open-label, multicohort KEYNOTE-028 (NCT02054806) study. Experimental Design: Patients with ER + /HER2 - advanced breast cancer with PD-L1-positive tumors (combined positive score ≥1) received pembrolizumab (10 mg/kg every 2 weeks) up to 2 years or until confirmed progression/intolerable toxicity. Primary endpoints were safety and overall response rate (ORR), based on Response Evaluation Criteria in Solid Tumors, version 1 (RECIST v1.1) as assessed by investigator review. Results: Between April 2014 and January 2015, 25 patients were enrolled. Median number of prior therapies for breast cancer, including endocrine agents, was 9 (range, 3-15). Median follow-up was 9.7 months (range, 0.7-31.8 months). Three patients experienced partial response (PR) and none experienced complete response (CR), resulting in an ORR of 12.0% (95% CI, 2.5%-31.2%); 16% of patients had stable disease (SD) and clinical benefit rate (CR + PR + [SD for ≥24 weeks]) was 20% (95% CI, 7-41). Median duration of response was 12.0 months (range, 7.4-15.9 months). The incidence of treatment-related adverse events was 64%; nausea (20%) and fatigue (12%) were most common and were predominantly grade 1/2. No treatment-related discontinuations or deaths occurred. Conclusions: Pembrolizumab was well tolerated with modest but durable overall response in certain patients with previously treated, advanced, PD-L1-positive, ER + /HER2 - breast cancer. Clin Cancer Res; 1-8. ©2018 AACR. ©2018 American Association for Cancer Research.

  1. [Anti-M3 muscarinic acetylcholine receptor antibodies and Sjögren's syndrome].

    PubMed

    Tsuboi, Hiroto; Iizuka, Mana; Asashima, Hiromitsu; Sumida, Takayuki

    2013-01-01

    Sjögren's syndrome (SS) is an autoimmune disease that affects exocrine glands including salivary and lacrimal glands. It is characterized by lymphocytic infiltration into exocrine glands, leading to dry mouth and eyes. A number of auto-antibodies are detected in patients with SS. However, no SS-specific pathologic auto-antibodies have yet been found in this condition. M3 muscarinic acetylcholine receptor (M3R) plays a crucial role in the secretion of saliva. It is reported that some patients with SS carried inhibitory auto-antibodies against M3R. To clarify the epitopes and function of anti-M3R antibodies in SS, we examined antibodies to the extracellular domains (N terminal region, the first, second, and third extracellular loop) of M3R by ELISA using synthesized peptide antigens encoding these domains in 42 SS and 42 healthy controls (HC). Titers and positivity of anti-M3R antibodies to every extracellular domain of M3R were significantly higher in SS than in HC. Our results indicated the presence of several B cell epitopes on M3R in SS. Moreover, we analyzed the functions of anti-M3R antibodies by Ca(2+)-influx assays using a human salivary gland (HSG) cell line. The functional analysis indicated that the influence of such anti-M3R antibodies on Ca(2+)-influx in HSG cells might differ based on the epitopes to which they bind. Interestingly, both IgG from anti-M3R antibodies to the second extracellular loop positive SS and anti-M3R monoclonal antibodies against the second extracellular loop of M3R, which we generated, suppressed Ca(2+)-influx in the HSG cells induced by cevimeline stimulation. These observations suggested that auto-antibodies against the second extracellular loop of M3R could be involved in salivary dysfunction in patients with SS. These results indicated the presence of several B cell epitopes on M3R in SS and the influence of anti-M3R antibodies on salivary secretion might differ based on these epitopes. Thus, anti-M3R antibodies could be not

  2. Somatostatin receptor scintigraphy in patients with cat-scratch disease.

    PubMed

    Krause, R; Piswanger-Soelkner, C; Lipp, R W; Daxböck, F; Schnedl, W J; Hoier, S; Reisinger, E C

    2006-01-01

    Somatostatin receptor scintigraphy images various neoplastic, granulomatous, and auto-immune diseases. Cat-scratch disease in an infectious granulomatous disease usually affecting the lymphnodes. It is not known whether cat-scratch disease provides positive somatostatin receptor scintigrams. Twelve patients with lymphadenitis and suspected cat-scratch disease were investigated by immunofluorescence antibody testing and somatostatin receptor scintigraphy. Suppurated lymphnodes were extracted or drained and Bartonella henselae specific PCR was then performed. Eleven of 12 patients showed IgG antibodies against B. henselae. SRS showed positive scintigraphic results in 6 of 11 patients with CSD. B. henselae DNA was detected in tissue of lymphnodes from 4 of 5 patients with lymphnode extraction or lymphnode drainage. SRS demonstrated positive scintigrams in all patients with a positive PCR. In one patient with suspected CSD SRS was negative as well as antibody testing. Somatostatin receptor scintigraphy correlated with positive Bartonella henselae specific PCR tests and positive Bartonella henselae specific antibody tests in patients with CSD.

  3. A receptor-G protein coupling-independent step in the internalization of the thyrotropin-releasing hormone receptor.

    PubMed

    Petrou, C; Chen, L; Tashjian, A H

    1997-01-24

    To determine whether functional receptor-G protein coupling or signaling are required for internalization of the thyrotropin-releasing hormone receptor (TRHR), we compared the endocytosis of Gq-coupled and uncoupled receptors. A hemagglutinin epitope-tagged TRHR (HA-TRHR) was in the Gq-coupled state when bound to the agonist, MeTRH, and in a nonsignaling state when bound to the HA antibody (12CA5). 12CA5 did not induce an increase in [Ca2+]i or inositol phosphates and did not inhibit [3H]MeTRH binding or MeTRH-induced production of second messengers. Both agonist- and antibody-bound HA-TRHRs were rapidly internalized via the same pathway; internalization was sensitive to hypertonic shock, and both types of internalized receptors were sorted into lysosomes. In addition, the amino acid sequence CNC (positions 335-337) in the C-terminal tail of the TRHR, which is important in ligand-induced receptor internalization as determined by deletion mutagenesis (Nussenzveig, D. R., Heinflink, M., and Gershengorn, M. C. (1993) J. Biol. Chem. 268, 2389-2392), was also important for 12CA5-induced internalization. We expressed two truncated receptors, HA-K338STOP and HA-C335STOP, in GH12C1 pituitary cells. Both HA-TRHR and HA-K338STOP were localized at the plasma membrane of untreated cells and were translocated to intracellular vesicles after MeTRH or 12CA5 binding; however, HA-C335STOP was internalized and recycled constitutively. The intracellular localization of HA-C335STOP was not altered by MeTRH; however, 12CA5 binding induced the disappearance of internalized HA-C335STOP and caused its localization at the plasma membrane, indicating that constitutively cycling HA-C335STOP cannot be reinternalized after antibody binding. Thus, amino acids 335-337, which are important for the internalization of Gq-coupled TRHRs, are also required for the sequestration of functionally uncoupled TRHRs, and in addition, they act as an inhibitory signal that prevents constitutive receptor

  4. (D-Phe/sup 12/)bombesin analogues: a new class of bombesin receptor antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinz-Erian, P.; Coy, D.H.; Tamura, M.

    1987-03-01

    Previous attempts to develop analogues of bombesin that function as specific receptor antagonists have been unsuccessful. Alteration of the histidine in luteinizing hormone releasing factor has resulted in analogues that function as competitive antagonists. In the present study the authors have used a similar strategy and altered the histidine in bombesin. (D-Phe/sup 12/)bombesin, (D-Phe/sup 12/,Leu/sup 14/)bombesin, and (Try/sup 4/, D-)je/sup 12/) bombesin did not stimulate amylase release from guinea pig pancreatic acini when present alone, but each analog inhibited bombesin-stimulated secretion. For each analog, detectable inhibition occurred at 1 ..mu..M and half-maximal inhibition at 4 ..mu..M. Each analog inhibited amylasemore » release by bombesin and other agonists that stimulate secretion by interacting with bombesin receptors. The analogues of bombesin did not alter stimulation by substance P or other agonists that interact with other receptors. The inhibition of the action of bombesin was competitive with Schild plots having slopes of 1.0. Each analog also inhibited binding of /sup 125/I-labeled (Try/sup 4/) bombesin but not /sup 125/I-labeled substance P. These results demonstrate that (D-Phe/sup 12/) analogues of bombesin function as bombesin receptor antagonists and are the only bombesin receptor antagonists that interact only with the bombesin receptor. Because of their specificity, these analogues may prove useful for defining the role of bombesin in various physiological or pathological processes.« less

  5. Neuronal surface antigen antibodies in limbic encephalitis

    PubMed Central

    Graus, F; Saiz, A; Lai, M; Bruna, J; López, F; Sabater, L; Blanco, Y; Rey, M J.; Ribalta, T; Dalmau, J

    2008-01-01

    Objective: To report the frequency and type of antibodies against neuronal surface antigens (NSA-ab) in limbic encephalitis (LE). Methods: Analysis of clinical features, neuropathologic findings, and detection of NSA-ab using immunochemistry on rat tissue and neuronal cultures in a series of 45 patients with paraneoplastic (23) or idiopathic (22) LE. Results: NSA-ab were identified in 29 patients (64%; 12 paraneoplastic, 17 idiopathic). Thirteen patients had voltage-gated potassium channels (VGKC)-ab, 11 novel NSA (nNSA)-ab, and 5 NMDA receptor (NMDAR)-ab. nNSA-ab did not identify a common antigen and were more frequent in paraneoplastic than idiopathic LE (39% vs 9%; p = 0.03). When compared with VGKC-ab or NMDAR-ab, the nNSA associated more frequently with intraneuronal antibodies (11% vs 73%; p = 0.001). Of 12 patients (9 nNSA-ab, 2 VGKC-ab, 1 NMDAR-ab) with paraneoplastic LE and NSA-ab, concomitant intraneuronal antibodies occurred in 9 (75%). None of these 12 patients improved with immunotherapy. The autopsy of three of them showed neuronal loss, microgliosis, and cytotoxic T cell infiltrates in the hippocampus and amygdala. These findings were compatible with a T-cell mediated neuronal damage. In contrast, 13 of 17 (76%) patients with idiopathic LE and NSA-ab (8 VGKC-ab, 4 NMDAR-ab, 1 nNSA-ab) and 1 of 5 (20%) without antibodies had clinical improvement (p = 0.04). Conclusions: In paraneoplastic limbic encephalitis (LE), novel antibodies against neuronal surface antigens (nNSA-ab) occur frequently, coexist with antibodies against intracellular antigens, and these cases are refractory to immunotherapy. In idiopathic LE, the likelihood of improvement is significantly higher in patients with NSA-ab than in those without antibodies. GLOSSARY GAD = glutamic acid decarboxylase; LE = limbic encephalitis; NMDAR = N-methyl-D-aspartate receptor; NSA = neuronal surface antigens; nNSA = novel NSA; SCLC = small-cell lung cancer; VGKC = voltage-gated potassium channels

  6. Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors.

    PubMed

    Ping Li, Wen; Meyer, Laura A; Capretto, David A; Sherman, Christopher D; Anderson, Carolyn J

    2008-04-01

    The epidermal growth-factor receptor (EGFR) and its ligands have been recognized as critical factors in the pathophysiology of tumorigenesis. Overexpression of the EGFR plays a significant role in the tumor progression of a wide variety of solid human cancers. Therefore, the EGFR represents an attractive target for the design of novel diagnostic and therapeutic agents for cancer. Cetuximab (C225, Erbitux) was the first monoclonal antibody targeted against the ligand-binding site of EGFR approved by the Food and Drug Administration for the treatment of patients with EGFR-expressing, metastatic colorectal carcinoma, although clinical trials showed variability in the response to this treatment. The aim of this study involved using cetuximab to design a positron emission tomography (PET) agent to image the overexpression of EGFR in tumors. Cetuximab was conjugated with the chelator, DOTA, for radiolabeling with the positron-emitter, 64Cu (T(1/2) = 12.7 hours). 64Cu-DOTA-cetuximab showed high binding affinity to EGFR-positive A431 cells (K(D) of 0.28 nM). Both biodistribution and microPET imaging studies with 64Cu-DOTA-cetuximab demonstrated greater uptake at 24 hours postinjection in EGFR-positive A431 tumors (18.49% +/- 6.50% injected dose per gram [ID/g]), compared to EGFR-negative MDA-MB-435 tumors (2.60% +/- 0.35% ID/g). A431 tumor uptake at 24 hours was blocked with unlabeled cetuximab (10.69% +/- 2.72% ID/g), suggesting that the tumor uptake was receptor mediated. Metabolism experiments in vivo showed that 64Cu-DOTA-cetuximab was relatively stable in the blood of tumor-bearing mice; however, there was significant metabolism in the liver and tumors. 64Cu-DOTA-cetuximab is a potential agent for imaging EGFR-positive tumors in humans.

  7. Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile.

    PubMed

    Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N; Klassen, John S; Ng, Kenneth K S

    2014-01-24

    Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.

  8. Structural Basis for Antibody Recognition in the Receptor-binding Domains of Toxins A and B from Clostridium difficile*

    PubMed Central

    Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N.; Klassen, John S.; Ng, Kenneth K. S.

    2014-01-01

    Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents. PMID:24311789

  9. Non-HLA Antibodies May Accelerate Immune Responses After Intestinal and Multivisceral Transplantation.

    PubMed

    Gerlach, Undine Ariane; Lachmann, Nils; Ranucci, Giuseppina; Sawitzki, Birgit; Schoenemann, Constanze; Pratschke, Johann; Dragun, Duska; Pascher, Andreas

    2017-01-01

    Non-HLA alloantibodies and autoantibodies are involved in allograft rejection in kidney and heart transplantation. Their role in intestinal transplantation has not yet been described. We examined the development of antiangiotensin II type I receptor antibodies (anti-AT1R) and antiendothelin type A receptor antibodies associated with the clinical course and histopathological findings of intestinal transplantation recipients. Thirty-seven patients underwent intestinal or multivisceral transplantation. Non-HLA antibodies (non-HLAabs) were screened in 29 transplant recipients. Antibody-levels greater than 12 U/L were considered positive and were evaluated retrospectively regarding rejection episodes. Twenty patients developed anti-AT1R and/or antiendothelin type A receptor antibodies (non-HLAabs group), 9 did not (control group). The non-HLAabs group had a higher rate of allograft rejection than controls (80% vs 55%), especially a higher rate of antibody-mediated rejections (55% vs 11%, P < 0.01) with detection of donor-specific anti-HLAabs. All rejection episodes in the non-HLAabs group appeared around the time of positive non-HLAabs detection. Five patients had acute cellular rejections at the time of non-HLAabs development, 4 had viral infections. Our data suggest that antibody-mediated mechanisms targeting antigens beyond HLA may trigger and accelerate immune responses. Given the possibility of pharmacologic targeting of non-HLA receptors, future studies will focus on the explanation of mechanisms how non-HLAabs may enhance rejection and affect long-term allograft survival.

  10. An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy

    PubMed Central

    Minetti, Giulia C.; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N.; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji

    2014-01-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings. PMID:24298022

  11. Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer.

    PubMed

    Mukohara, Toru

    2011-01-01

    Approximately 20% of breast cancers are characterized by overexpression of human epidermal growth factor receptor 2 (HER2) protein and associated gene amplification, and the receptor tyrosine kinase is believed to play a critical role in the pathogenesis of these tumors. The development and implementation of trastuzumab, a humanized monoclonal antibody against the extracellular domain of HER2 protein, has significantly improved treatment outcomes in patients with HER2-overexpressing breast cancer. However, despite this clinical usefulness, unmet needs for better prediction of trastuzumab's response and overcoming primary and acquired resistance remain. In this review, we discuss several potential mechanisms of resistance to trastuzumab that have been closely studied over the last decade. Briefly, these mechanisms include: impaired access of trastuzumab to HER2 by expression of extracellular domain-truncated HER2 (p95 HER2) or overexpression of MUC4; alternative signaling from insulin-like growth factor-1 receptor, other epidermal growth factor receptor family members, or MET; aberrant downstream signaling caused by loss of phosphatase and tensin homologs deleted from chromosome 10 (PTEN), PIK3CA mutation, or downregulation of p27; or FCGR3A polymorphisms. In addition, we discuss potential strategies for overcoming resistance to trastuzumab. Specifically, the epidermal growth factor receptor/HER2 tyrosine kinase inhibitor lapatinib partially overcame trastuzumab resistance in a clinical setting, so its efficacy results and limited data regarding potential mechanisms of resistance to the drug are also discussed. © 2010 Japanese Cancer Association.

  12. Chimeras of the native form or achondroplasia mutant (G375C) of human fibroblast growth factor receptor 3 induce ligand-dependent differentiation of PC12 cells.

    PubMed Central

    Thompson, L M; Raffioni, S; Wasmuth, J J; Bradshaw, R A

    1997-01-01

    Mutations in the gene for human fibroblast growth factor receptor 3 (hFGFR3) cause a variety of skeletal dysplasias, including the most common genetic form of dwarfism, achondroplasia (ACH). Evidence indicates that these phenotypes are not due to simple haploinsufficiency of FGFR3 but are more likely related to a role in negatively regulating skeletal growth. The effects of one of these mutations on FGFR3 signaling were examined by constructing chimeric receptors composed of the extracellular domain of human platelet-derived growth factor receptor beta (hPDGFR beta) and the transmembrane and intracellular domains of hFGFR3 or of an ACH (G375C) mutant. Following stable transfection in PC12 cells, which lack platelet-derived growth factor (PDGF) receptors, all clonal cell lines, with either type of chimera, showed strong neurite outgrowth in the presence of PDGF but not in its absence. Antiphosphotyrosine immunoblots showed ligand-dependent autophosphorylation, and both receptor types stimulated strong phosphorylation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase, an event associated with the differentiative response of these cells. In addition, ligand-dependent phosphorylation of phospholipase Cgamma and Shc was also observed. All of these responses were comparable to those observed from ligand activation, such as by nerve growth factor, of the native PC12 cells used to prepare the stable transfectants. The cells with the chimera bearing the ACH mutation were more rapidly responsive to ligand with less sustained MAPK activation, indicative of a preactivated or primed condition and consistent with the view that these mutations weaken ligand control of FGFR3 function. However, the full effect of the mutation likely depends in part on structural features of the extracellular domain. Although FGFR3 has been suggested to act as a negative regulator of long-bone growth in chrondrocytes, it produces differentiative signals similar to

  13. A combination of two antibodies recognizing non-overlapping epitopes of HER2 induces kinase activity-dependent internalization of HER2.

    PubMed

    Szymanska, Monika; Fosdahl, Anne M; Nikolaysen, Filip; Pedersen, Mikkel W; Grandal, Michael M; Stang, Espen; Bertelsen, Vibeke

    2016-10-01

    The human epidermal growth factor receptor 2 (HER2/ErbB2) is overexpressed in a number of human cancers. HER2 is the preferred heterodimerization partner for other epidermal growth factor receptor (EGFR) family members and is considered to be resistant to endocytic down-regulation, properties which both contribute to the high oncogenic potential of HER2. Antibodies targeting members of the EGFR family are powerful tools in cancer treatment and can function by blocking ligand binding, preventing receptor dimerization, inhibiting receptor activation and/or inducing receptor internalization and degradation. With respect to antibody-induced endocytosis of HER2, various results are reported, and the effect seems to depend on the HER2 expression level and whether antibodies are given as individual antibodies or as mixtures of two or more. In this study, the effect of a mixture of two monoclonal antibodies against non-overlapping epitopes of HER2 was investigated with respect to localization and stability of HER2. Individual antibodies had limited effect, but the combination of antibodies induced internalization and degradation of HER2 by multiple endocytic pathways. In addition, HER2 was phosphorylated and ubiquitinated upon incubation with the antibody combination, and the HER2 kinase activity was found to be instrumental in antibody-induced HER2 down-regulation. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Microglial Fc Receptors Mediate Physiological Changes Resulting From Antibody Cross-Linking of Myelin Oligodendrocyte Glycoprotein

    PubMed Central

    Marta, Cecilia B.; Bansal, Rashmi; Pfeiffer, Steven E.

    2009-01-01

    Antibodies to myelin oligodendrocyte glycoprotein (MOG) have been implicated in Multiple Sclerosis demyelination through activation of complement and/or macrophage-effector processes. We presented a novel mechanism, whereby MOG on oligodendrocytes, when cross-linked with anti-MOG and secondary antibody resulted in its repartitioning into lipid rafts, and changes in protein phosphorylation and morphology. Here, we show that similar events occur when anti-MOG is cross-linked with Fc receptors (FcRs) present on microglia but not with complement. These results indicate that FcRs are endogenous antigen/antibody cross-linkers in vitro, suggesting that FcRs could be physiologically relevant in vivo and possible targets for therapy in Multiple Sclerosis. PMID:18406472

  15. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Peter S.; Ohshima, Nobuko; Stanfield, Robyn L.

    Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012–2013. Here we describe an antibody, F045–092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045–092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045–092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhancedmore » avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.« less

  16. Detecting Tie2, an endothelial growth factor receptor, by using immunohistochemistry in mouse lungs.

    PubMed

    Guha, Prajna P; David, Sascha A; Ghosh, Chandra C

    2014-01-01

    Immunohistochemical (IHC) staining is an invaluable, sensitive, and effective method to detect the presence and localization of proteins in the cellular compartment in tissues. The basic concept of IHC is detecting the antigen in tissues by means of specific antibody binding, which is then demonstrated with a colored histochemical reaction that can be observed under a light microscope. The most challenging aspect of IHC techniques is optimizing the precise experimental conditions that are required to get a specific and a strong signal. The critical steps of IHC are specimen acquisition, fixation, permeabilization, detection system, and selection of the antigen specific antibody and its optimization. Here, we elaborate the technique using the endothelial growth factor binding receptor Tie2 in mouse lungs.

  17. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodiesmore » to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.« less

  18. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy.

    PubMed

    Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L

    2010-01-01

    The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

  19. Identification and quantification of the rat hepatocyte asialoglycoprotein receptor.

    PubMed Central

    Schwartz, A L; Marshak-Rothstein, A; Rup, D; Lodish, H F

    1981-01-01

    The asialoglycoprotein receptor from rat liver was purified by solubilization and affinity chromatography on asialoorosomucoid-Sepharose. The preparation yielded four distinct polypeptides of Mr 40,000-120,000. We prepared a monoclonal antibody that both immunoprecipitates solubilized receptor activity and blocks the binding of galactose-terminal glycoproteins to immobilized receptor. The monoclonal antibody and a rabbit antireceptor antiserum immunoprecipitated all four polypeptide species. Peptide analysis by two-dimensional chromatography of the individual 125I-labeled species showed nearly identical patterns, which also suggested that the four polypeptides have a similar primary structure. To identify and quantitate the asialoglycoprotein receptor on the hepatocyte cell surface, intact cells were iodinated with lactoperoxidase, and the solubilized membranes were treated with antireceptor antibody. The Mr 55,000 and Mr 65,000 species were the major species found. Our results suggest that the Mr of the surface receptor is at least 55,000 and that it comprises between 1-2% of the iodinated hepatocyte surface protein. Images PMID:6267585

  20. [Expression of epidermal growth factor receptor mutation specific antibodies in lung adenocarcinoma: evaluation of sensitivity, specificity and relationship to histologic subtypes].

    PubMed

    Lai, Y M; Feng, Q; Sun, Y; Wang, P; Shi, Y F; Zhao, M; Wu, Q; Li, X H

    2016-09-08

    To evaluate the expression of epidermal growth factor receptor (EGFR) mutation specific antibodies in invasive lung adenocarcinomas, and their sensitivity, specificity, as well as relationship to histological subtypes. Immunostaining with EGFR mutation-specific antibodies, del E746-A750 in exon 19 and L858R in exon 21, was performed in tissue microarrays of 884 cases of resection specimens to study the relationship between the immunophenotypes and morphologic subtypes. The sensitivity and specificity of the stains were compared with gene mutations detected by amplified refractory mutation system-polymerase chain reaction (ARMS-PCR). Of the 884 cases, the expression of del E746-A750 in exon 19 was 3+ , 2+ , 1+ and 0 in 7 cases (0.79%), 38 cases (4.30%), 129 cases (14.59%) and 710 cases (80.32%), respectively. For L858R in exon 21, 3+ , 2+ , 1+ and 0 staining were seen in 82 cases (9.28%), 93 cases (10.52%), 82 cases (9.28%) and 627 cases (70.93%), respectively. For both antibodies, positive expression (1+ or more) was mainly observed in lepidic, acinar and papillary predominant subtypes, and rarely seen in solid subtype or invasive mucinous adenocarcinoma (P=0.014 and 0.016). If 1+ to 3+ expression was set as positive, the specificity of exon 19/exon 21 reached 98.59%/92.98%, while the sensitivity was relatively lower (62.86%/88.89%). If 2+ to 3+ expression was read as positive, the specificity and sensitivity were 99.30%/97.37% and 25.71%/74.60% for exon 19/exon 21. If only 3+ expression was considered positive, the specificity was 100.0% for both antibodies, with a low sensitivity (8.57% for exon 19 and 34.92% for exon 21). Of the 18 cases with E746-A750 del in exon 19 based on molecular detection, the sensitivity of immunohistochemistry for exon 19 was 88.89% if a positive cutoff value ≥1+ was used; in contrast, of the 8 cases harboring other deletions in exon 19, only two cases were positive as 1+ . Both the EGFR mutation specific antibodies del E746-A750 in

  1. Species-Specific Involvement of Integrin αIIbβ3 in a Monoclonal Antibody CH12 Triggers Off-Target Thrombocytopenia in Cynomolgus Monkeys.

    PubMed

    Zhang, Yiting; Sun, Jianhua; Tan, Minjia; Liu, Yongzhen; Li, Qian; Jiang, Hua; Wang, Huamao; Li, Zonghai; Wan, Wei; Jiang, Hualiang; Lu, Henglei; Wang, Bingshun; Ren, Jin; Gong, Likun

    2018-04-07

    CH12 is a novel humanized monoclonal antibody against epidermal growth factor receptor variant III (EGFRvIII) for cancer treatment. Unfortunately, in pre-clinical safety evaluation studies, acute thrombocytopenia was observed after administration of CH12 in cynomolgus monkeys, but not rats. More importantly, in vitro experiments found that CH12 can bind and activate platelets in cynomolgus monkey, but not human peripheral blood samples. Cynomolgus monkey-specific thrombocytopenia has been reported previously; however, the underlying mechanism remains unclear. Here, we first showed that CH12 induced thrombocytopenia in cynomolgus monkeys through off-target platelet binding and activation, resulting in platelet destruction. We subsequently found that integrin αIIbβ3 (which is expressed on platelets) contributed to this off-target toxicity. Furthermore, three-dimensional structural modeling of the αIIbβ3 molecules in cynomolgus monkeys, humans, and rats suggested that an additional unique loop exists in the ligand-binding pocket of the αIIb subunit in cynomolgus monkeys, which may explain why CH12 binds to platelets only in cynomolgus monkeys. Moreover, this study supported the hypothesis that the minor differences between cynomolgus monkeys and humans can confuse human risk assessments and suggests that species differences can help the prediction of human risks and avoid losses in drug development. Copyright © 2018. Published by Elsevier Inc.

  2. Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody.

    PubMed

    Pardridge, William M

    2015-02-01

    Biologic drugs are large molecules that do not cross the blood- brain barrier (BBB). Brain penetration is possible following the re-engineering of the biologic drug as an IgG fusion protein. The IgG domain is a MAb against an endogenous BBB receptor such as the transferrin receptor (TfR). The TfRMAb acts as a molecular Trojan horse to ferry the fused biologic drug into the brain via receptor-mediated transport on the endogenous BBB TfR. This review discusses TfR isoforms, models of BBB transport of transferrin and TfRMAbs, and the genetic engineering of TfRMAb fusion proteins, including BBB penetrating IgG-neurotrophins, IgG-decoy receptors, IgG-lysosomal enzyme therapeutics and IgG-avidin fusion proteins, as well as BBB transport of bispecific antibodies formed by fusion of a therapeutic antibody to a TfRMAb targeting antibody. Also discussed are quantitative aspects of the plasma pharmacokinetics and brain uptake of TfRMAb fusion proteins, as compared to the brain uptake of small molecules, and therapeutic applications of TfRMAb fusion proteins in mouse models of neural disease, including Parkinson's disease, stroke, Alzheimer's disease and lysosomal storage disorders. The review covers the engineering of TfRMAb-avidin fusion proteins for BBB targeted delivery of biotinylated peptide radiopharmaceuticals, low-affinity TfRMAb Trojan horses and the safety pharmacology of chronic administration of TfRMAb fusion proteins. The BBB delivery of biologic drugs is possible following re-engineering as a fusion protein with a molecular Trojan horse such as a TfRMAb. The efficacy of this technology will be determined by the outcome of future clinical trials.

  3. Congestive Heart Failure During Osimertinib Treatment for Epidermal Growth Factor Receptor (EGFR)-mutant Non-small Cell Lung Cancer (NSCLC).

    PubMed

    Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki

    2017-08-15

    We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity.

  4. Congestive Heart Failure During Osimertinib Treatment for Epidermal Growth Factor Receptor (EGFR)-mutant Non-small Cell Lung Cancer (NSCLC)

    PubMed Central

    Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki

    2017-01-01

    We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity. PMID:28781309

  5. Inhibition of insulin-like growth factor receptor-1 reduces necroptosis-related markers and attenuates LPS-induced lung injury in mice.

    PubMed

    Lee, Su Hwan; Shin, Ju Hye; Song, Joo Han; Leem, Ah Young; Park, Moo Suk; Kim, Young Sam; Chang, Joon; Chung, Kyung Soo

    2018-04-15

    Insulin-like growth factor-1 (IGF-1) levels are known to increase in the bronchoalveolar lavage fluid (BALF) of patients with acute respiratory distress syndrome. Herein, we investigated the role of IGF-1 in lipopolysaccharide (LPS)-induced lung injury. In LPS-treated cells, expressions of receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like protein (MLKL) were decreased in IGF-1 receptor small interfering RNA (siRNA)-treated cells compared to control cells. The levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, and macrophage inflammatory protein 2/C-X-C motif chemokine ligand 2 in the supernatant were significantly reduced in IGF-1 receptor siRNA-treated cells compared to control cells. In LPS-induced murine lung injury model, total cell counts, polymorphonuclear leukocytes counts, and pro-inflammatory cytokine levels in the BALF were significantly lower and histologically detected lung injury was less common in the group treated with IGF-1 receptor monoclonal antibody compared to the non-treated group. On western blotting, RIP3 and phosphorylated MLKL expressions were relatively decreased in the IGF-1 receptor monoclonal antibody group compared to the non-treated group. IGF-1 may be associated with RIP3-mediated necroptosis in vitro, while blocking of the IGF-1 pathway may reduce LPS-induced lung injuries in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. New epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren's syndrome

    PubMed Central

    Tsuboi, H; Matsumoto, I; Wakamatsu, E; Nakamura, Y; Iizuka, M; Hayashi, T; Goto, D; Ito, S; Sumida, T

    2010-01-01

    M3 muscarinic acetylcholine receptor (M3R) plays a crucial role in the secretion of saliva from salivary glands. It is reported that some patients with Sjögren's syndrome (SS) carried inhibitory autoantibodies against M3R. The purpose of this study is to clarify the epitopes and function of anti-M3R antibodies in SS. We synthesized peptides encoding the extracellular domains of human-M3R including the N-terminal region and the first, second and third extracellular loops. Antibodies against these regions were examined by enzyme-linked immunosorbent assay in sera from 42 SS and 42 healthy controls. For functional analysis, human salivary gland (HSG) cells were preincubated with immunoglobulin G (IgG) separated from sera of anti-M3R antibody-positive SS, -negative SS and controls for 12 h. After loading with Fluo-3, HSG cells were stimulated with cevimeline hydrochloride, and intracellular Ca2+ concentrations [(Ca2+)i] were measured. Antibodies to the N-terminal, first, second and third loops were detected in 42·9% (18 of 42), 47·6% (20 of 42), 54·8% (23 of 42) and 45·2% (19 of 42) of SS, while in 4·8% (two of 42), 7·1% (three of 42), 2·4% (one of 42) and 2·4% (one of 42) of controls, respectively. Antibodies to the second loop positive SS-IgG inhibited the increase of (Ca2+)i induced by cevimeline hydrochloride. Antibodies to the N-terminal positive SS-IgG and antibodies to the first loop positive SS-IgG enhanced it, while antibodies to the third loop positive SS-IgG showed no effect on (Ca2+)i as well as anti-M3R antibody-negative SS-IgG. Our results indicated the presence of several B cell epitopes on M3R in SS. The influence of anti-M3R antibodies on salivary secretion might differ based on these epitopes. PMID:20731676

  7. Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody-drug conjugates

    PubMed Central

    Acchione, Mauro; Kwon, Hyewon; Jochheim, Claudia M.; Atkins, William M.

    2012-01-01

    Antibody-drug conjugates (ADCs) with biotin as a model cargo tethered to IgG1 mAbs via different linkers and conjugation methods were prepared and tested for thermostability and ability to bind target antigen and Fc receptor. Most conjugates demonstrated decreased thermostability relative to unconjugated antibody, based on DSC, with carbohydrate and amine coupled ADCs showing the least effect compared with thiol coupled conjugates. A strong correlation between biotin-load and loss of stability is observed with thiol conjugation to one IgG scaffold, but the stability of a second IgG scaffold is relatively insensitive to biotin load. The same correlation for amine coupling was less significant. Binding of antibody to antigen and Fc receptor was investigated using surface plasmon resonance. None of the conjugates exhibited altered antigen affinity. Fc receptor FcγIIb (CD32b) interactions were investigated using captured antibody conjugate. Protein G and Protein A, known inhibitors of Fc receptor (FcR) binding to IgG, were also used to extend the analysis of the impact of conjugation on Fc receptor binding. H10NPEG4 was the only conjugate to show significant negative impact to FcR binding, which is likely due to higher biotin-load compared with the other ADCs. The ADC aHISNLC and aHISTPEG8 demonstrated some loss in affinity for FcR, but to much lower extent. The general insensitivity of target binding and effector function of the IgG1 platform to conjugation highlight their utility. The observed changes in thermostability require consideration for the choice of conjugation chemistry, depending on the system being pursued and particular application of the conjugate. PMID:22531451

  8. Platelets Express Activated P2Y12 Receptor in Patients With Diabetes Mellitus.

    PubMed

    Hu, Liang; Chang, Lin; Zhang, Yan; Zhai, Lili; Zhang, Shenghui; Qi, Zhiyong; Yan, Hongmei; Yan, Yan; Luo, Xinping; Zhang, Si; Wang, Yiping; Kunapuli, Satya P; Ye, Hongying; Ding, Zhongren

    2017-08-29

    Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood. We measured P2Y 12 expression on platelets from patients with type 2 diabetes mellitus and on platelets from rats with diabetes mellitus. We also assayed platelet P2Y 12 activation by measuring cAMP and VASP phosphorylation. The antiplatelet and antithrombotic effects of AR-C78511 and cangrelor were compared in rats. Finally, we explored the role of the nuclear factor-κB pathway in regulating P2Y 12 receptor expression in megakaryocytes. Platelet P2Y 12 levels are 4-fold higher in patients with type 2 diabetes mellitus compared with healthy subjects. P2Y 12 expression correlates with ADP-induced platelet aggregation (r=0.89, P <0.01). P2Y 12 in platelets from patients with diabetes mellitus is constitutively activated. Although both AR-C78511, a potent P2Y 12 inverse agonist, and cangrelor have similar antiplatelet efficacy on platelets from healthy subjects, AR-C78511 exhibits more powerful antiplatelet effects on diabetic platelets than cangrelor (aggregation ratio 36±3% versus 49±5%, respectively, P <0.05). Using a FeCl 3 -injury mesenteric arteriole thrombosis model in rats and an arteriovenous shunt thrombosis model in rats, we found that the inverse agonist AR-C78511 has greater antithrombotic effects on GK rats with diabetes mellitus than cangrelor (thrombus weight 4.9±0.3 mg versus 8.3±0.4 mg, respectively, P <0.01). We also found that a pathway involving high glucose-reactive oxygen species-nuclear factor-κB increases platelet P2Y 12 receptor expression in diabetes mellitus. Platelet P2Y 12 receptor expression is significantly increased and the receptor is constitutively activated in patients with type 2 diabetes mellitus, which contributes to

  9. Use of Monoclonal Antibodies to Study the Structure and Function of Nicotinic Acetylcholine Receptors on Electric Organ and Muscle and to Determine the Structure of Nicotinic Acetylcholine Receptors on Neurons

    DTIC Science & Technology

    1988-03-16

    receptors in muscle is responsible for the muscular weakness characteristic of myasthenia gravis . Some insecticides can act like chemical warfare...expresses muscle-like acetyi-.holine receptor by observing that autoantibodies from myasthenia gravis patients reacted as well with these receptors as...Antibodies in sera from patients with myasthenia gravis do not bind to acetylcholine receptors from human brain. J Neuroimmunol 16:205-213. 21. Whiting

  10. Tumor-specific novel taxoid-monoclonal antibody conjugates.

    PubMed

    Ojima, Iwao; Geng, Xudong; Wu, Xinyuan; Qu, Chuanxing; Borella, Christopher P; Xie, Hongsheng; Wilhelm, Sharon D; Leece, Barbara A; Bartle, Laura M; Goldmacher, Victor S; Chari, Ravi V J

    2002-12-19

    Taxoids bearing methyldisulfanyl(alkanoyl) groups for taxoid-antibody immunoconjugates were designed, synthesized and their activities evaluated. A highly cytotoxic C-10 methyldisulfanylpropanoyl taxoid was conjugated to monoclonal antibodies recognizing the epidermal growth factor receptor (EGFR) expressed in human squamous cancers. These conjugates were shown to possess remarkable target-specific antitumor activity in vivo against EGFR-expressing A431 tumor xenografts in severe combined immune deficiency mice, resulting in complete inhibition of tumor growth in all the treated mice.

  11. Expression of Epidermal Growth Factor Receptor and Transforming Growth Factor Alpha in Cancer Bladder: Schistosomal and Non-Schistosomal

    PubMed Central

    Badawy, Afkar A.; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Helal, Noha S.; Kamel, Amira

    2017-01-01

    Introduction Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand-receptor combination constitutes an important event in multistep tumorigenesis. Methods This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immuohistochemically stained with EGFR and TGFα antibodies. Results EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy. PMID:28413380

  12. Anti-lipoteichoic acid antibodies enhance release of cytokines by monocytes sensitized with lipoteichoic acid.

    PubMed Central

    Mancuso, G; Tomasello, F; Ofek, I; Teti, G

    1994-01-01

    Lipoteichoic acid (LTA) from gram-positive bacteria can stimulate monocytes to produce cytokines. To ascertain whether aggregation of LTA receptors can contribute to this effect, human monocytes were sensitized with LTA from Streptococcus pyogenes, washed, and treated with anti-LTA antibodies. The addition of anti-LTA antibodies or F(ab')2 fragments markedly enhanced the aggregation of LTA receptors, as evidenced by indirect immunofluorescence and the release of tumor necrosis factor alpha and interleukin-1 beta. These findings suggest that aggregation of LTA receptors of monocytes is required for triggering marked cytokine responses. PMID:8132355

  13. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow.

    PubMed

    Yamashita, Hiromichi; Kamada, Daichi; Shirasuna, Koumei; Matsui, Motozumi; Shimizu, Takashi; Kida, Katsuya; Berisha, Bajram; Schams, Dieter; Miyamoto, Akio

    2008-09-01

    Active angiogenesis and progesterone (P) synthesis occur in parallel during development of the corpus luteum (CL). Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are known to stimulate angiogenesis and P synthesis in vitro. The aim of the present study was to investigate the impact of bFGF or VEGF on the CL development in the cow by using a specific antibody against bFGF or VEGF. bFGF antibody, VEGF antibody, or saline as a control (n = 4 cows/treatment) were injected directly into the CL immediately after ovulation (Day 1), and the treatment was continued for 3 times/day over 7 days. Luteal biopsies were applied on Day 8 of the estrous cycle to determine the expression of genes associated with P synthesis and angiogenesis. Intraluteal injections with the bFGF antibody or the VEGF antibody markedly decreased the CL volume, plasma P concentration and StAR mRNA expression. bFGF antibody treatment decreased the mRNA expression of bFGF, FGF receptor-1, VEGF120, and angiopoietin (ANPT)-1, and increased ANPT-2/ANPT-1 ratio. However, VEGF antibody treatment decreased ANPT-2 mRNA expression and ANPT-2/ANPT-1 ratio. These results indicate that local neutralization of bFGF or VEGF changes genes regulating angiogenesis and P synthesis, and remarkably suppresses the CL size and P secretion during the development of CL in the cow, supporting the concept that bFGF and VEGF control the CL formation and function.

  14. Clinical Significance of Classification of Graves’ Disease According to the Characteristics of TSH Receptor Antibodies

    PubMed Central

    Kim, Won Bae; Chung, Hyun Kyung; Park, Young Joo; Park, Do Joon; Lee, Hong Kyu; Cho, Bo Youn

    2001-01-01

    Background : It has been widely accepted that the epitope (s) and/or functional characteristics of thyrotropin receptor antibodies (TSHRAb) from Graves’ patients are heterogenous among patients. However, the clinical significance of such heterogeneity has not been systematically evaluated yet. We were to elucidate and find the clinical significance of heterogeneity for TSH receptor antibodies in Graves’ disease. Methods : We measured stimulating TSHRAb (TSAb) activities using CHO-hTSHR cells, FRTL-5 cells and chimeric receptor expressing cells (Mcl+2 and Mc2), specific blocking TSHRAb (TSBAb) activities using Mc2 cells and TBII activities using porcine thyroid membrane in 136 patients with untreated hyperthyroid Graves’ disease. Results : Based on various TSHRAb activities from each patient, the patients could be categorized into 7 subgroups by cluster analysis: 1) Group 1 (n=41) was characterized by moderate TSAb activities both in CHO-hTSHR cells and in FRTL-5 cells, typical TSAb epitope, rare blocking antibodies and high TBII activities. 2) Group 2 (n=16) was characterized by the presence of blocking TSHRAb in most patients, albeit the other characteristics were the same as those in Group 1. 3) Group 3 (n=19) patients had low TSAb activities both in CHO-hTSHR cells and in FRTL-5 cells, seldom had blocking TSHRAb, but they had high TBII activities. 4) Group 4 (n = 30) could be categorized as ‘mild disease’ group, as they had low activities in all kinds of TSHRAb assay and had low antimicrosomal antibody activities. 5) Group 5 (n=14) was characterized by moderate TSAb activities with atypical epitope (s), rare blocking TSHRAb and moderate TBII activities. 6) Group 6 (n=10) patients had very high TSAb activities with typical epitopes, seldom blocking TSHRAb and low TBII activities. 7) Group 7 (n = 6) was characterized by very high TSAb activities with atypical epitopes and high TBII activities. Pretreatment serum thyroid hormone level was low only in

  15. Differentiation of postpartum Graves' thyrotoxicosis from postpartum destructive thyrotoxicosis using antithyrotropin receptor antibodies and thyroid blood flow.

    PubMed

    Ide, Akane; Amino, Nobuyuki; Kang, Shino; Yoshioka, Waka; Kudo, Takumi; Nishihara, Eijun; Ito, Mitsuru; Nakamura, Hirotoshi; Miyauchi, Akira

    2014-06-01

    Postpartum thyroid dysfunction occurs in approximately 5-10% of women in the general population within one year of delivery. Differentiation of postpartum Graves' thyrotoxicosis (PPGr) from postpartum destructive thyrotoxicosis (PPDT) is essential because of the difference in treatment measures between the two. However, it is sometimes difficult because radioactive iodine uptake is contraindicated when patients are lactating. We examined the usefulness of determining the time of onset postpartum and measurement of antithyrotropin (anti-TSH) receptor antibodies and thyroid blood flow. Forty-two patients with newly developed thyrotoxicosis after delivery were examined: 18 had Graves' disease and 24 had destructive thyrotoxicosis. Serum free thyroxine (fT4), free triiodothyronine (fT3), and TSH were measured by chemiluminescent immunoassays. Anti-TSH receptor antibodies (TRAb), antithyroglobulin antibodies (TgAb), and antithyroid peroxidase antibodies (TPOAb) were measured by the Elecsys electrochemiluminescence immunoassay. Thyroid volume and blood flow (TBF) were measured quantitatively by color flow Doppler ultrasonography. Onset of thyrotoxicosis was distributed from 2 to 12 months postpartum. Twelve (85.7%) of 14 patients who developed thyrotoxicosis at three months or earlier after delivery had PPDT. On the other hand, all 11 patients who developed thyrotoxicosis at 6.5 months or later had PPGr. All patients with PPGr had positive TRAb (14.9±14.9 IU/L, mean±standard deviation (SD)) and all patients with PPDT had negative TRAb (0.1±0.3 IU/L, p<0.0001). Fifteen (83.3%) of 18 PPGr patients had high TBF of more than 4.0% (8.9±4.4), and all PPDT patients had low TBF of <4.0% (1.6±1.0, p<0.0001). The fT3/fT4 ratio was higher in PPGr (64.0±23.9) than in PPDT (38.9±13.1, p<0.0002), but absolute values overlapped between the two. Early onset of thyrotoxicosis postpartum was associated mainly with PPDT, and a late onset was suggestive of PPGr. Positive TRAb and

  16. Prospective Design of Anti‐Transferrin Receptor Bispecific Antibodies for Optimal Delivery into the Human Brain

    PubMed Central

    Kanodia, JS; Gadkar, K; Bumbaca, D; Zhang, Y; Tong, RK; Luk, W; Hoyte, K; Lu, Y; Wildsmith, KR; Couch, JA; Watts, RJ; Dennis, MS; Ernst, JA; Scearce‐Levie, K; Atwal, JK; Joseph, S

    2016-01-01

    Anti‐transferrin receptor (TfR)‐based bispecific antibodies have shown promise for boosting antibody uptake in the brain. Nevertheless, there are limited data on the molecular properties, including affinity required for successful development of TfR‐based therapeutics. A complex nonmonotonic relationship exists between affinity of the anti‐TfR arm and brain uptake at therapeutically relevant doses. However, the quantitative nature of this relationship and its translatability to humans is heretofore unexplored. Therefore, we developed a mechanistic pharmacokinetic‐pharmacodynamic (PK‐PD) model for bispecific anti‐TfR/BACE1 antibodies that accounts for antibody‐TfR interactions at the blood‐brain barrier (BBB) as well as the pharmacodynamic (PD) effect of anti‐BACE1 arm. The calibrated model correctly predicted the optimal anti‐TfR affinity required to maximize brain exposure of therapeutic antibodies in the cynomolgus monkey and was scaled to predict the optimal affinity of anti‐TfR bispecifics in humans. Thus, this model provides a framework for testing critical translational predictions for anti‐TfR bispecific antibodies, including choice of candidate molecule for clinical development. PMID:27299941

  17. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody

    PubMed Central

    Kwong, Peter D.; Wyatt, Richard; Robinson, James; Sweet, Raymond W.; Sodroski, Joseph; Hendrickson, Wayne A.

    2017-01-01

    The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gpl20 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 Å resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene. PMID:9641677

  18. Mycoplasma infection of cell lines can simulate the expression of Fc receptors by binding of the carbohydrate moiety of antibodies.

    PubMed

    Lemke, H; Krausse, R; Lorenzen, J; Havsteen, B

    1985-05-01

    During the production of Fc receptor (FcR)-bearing hybridomas it was observed with a particular monoclonal anti-sheep red blood cell antibody (anti-SRBC 1/5, IgG1) that the contamination with Mycoplasma arginini of in vitro cultured cell lines leads to an apparent FcR activity. This property did not correspond with the serological typing since other antibodies of the same isotype could not support FcR rosette formation. Another mycoplasma strain M. orale lacked this property. Analysis of the binding reaction revealed that M. arginini contains a lectin which binds the carbohydrate moiety of the anti-SRBC 1/5 antibody, i.e. anti-SRBC 1/5 synthesized under the influence of tunicamycin or deglycosylated by NaIO4 oxidation did not support rosette formation. These data suggest that binding of antibodies to certain mycoplasma strains may be a pathogenic factor during mycoplasma infections by masking the microorganisms with the host's own defense molecules. The experiments with M. arginini-infected cell lines gain immunological importance since we obtained identical results with staphylococcal protein A, as another bacteriological FcR, and cell lines expressing intrinsic membrane FcR. Although it is an open question whether the glycoconjugates are directly bound by the FcR or else by influencing the three-dimensional structure of the antibodies, it seems possible that FcR in general may be lectins.

  19. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production

    PubMed Central

    Sprokholt, Joris K.; Kaptein, Tanja M.; van Hamme, John L.; Overmars, Ronald J.; Gringhuis, Sonja I.

    2017-01-01

    Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/β receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies. PMID:29186193

  20. Agonistic antibody to angiotensin II type 1 receptor accelerates atherosclerosis in ApoE-/- mice

    PubMed Central

    Li, Weijuan; Chen, Yaoqi; Li, Songhai; Guo, Xiaopeng; Zhou, Wenping; Zeng, Qiutang; Liao, Yuhua; Wei, Yumiao

    2014-01-01

    This study aimed to investigate the effects of agonistic antibody to angiotensin II type 1 receptor (AT1-AA) on atherosclerosis in male ApoE-/- mice which were employed to establish the animal models of AT1-AA in two ways. In the first group, mice were injected subcutaneously with conjugated AT1 peptide at multiple sites; in the second group, mice were infused with AT1-AA prepared from rabbits that were treated with AT1 peptide intraperitoneally. Mice in each group were further randomly divided into five subgroups and treated with AT1 peptide/AT1-AA, AT1 peptide/AT1-AA plus valsartan, AT1 peptide/AT1-AA plus fenofibrate, AT1 peptide/ AT1-AA plus pyrrolidine dithiocarbamate (PDTC) and control vehicle, respectively. Antibodies were detected in mice (except for mice in control group). Aortic atherosclerotic lesions were assessed by oil red O staining, while plasma CRP, TNF-α, nuclear factor-kappa B (NF-κB) and H2O2 were determined by ELISA. CCR2 (the receptor of MCP-1), macrophages, and smooth muscle cells were detected by immunohistochemistry. P47phox, MCP-1 and eNOS were detected by RT-PCR, while P47phox, NF-κB and MCP-1 were detected by Western blot assay. The aortic atherosclerotic lesions were significantly increased in AT1 peptide/AT1-AA treated mice, along with simultaneous increases in inflammatory parameters. However, mice treated with valsartan, fenofibrate or PDTC showed alleviated progression of atherosclerosis and reductions in inflammatory parameters. Thus, AT1-AA may accelerate aortic atherosclerosis in ApoE-/- mice, which is mediated, at least in part, by the inflammatory reaction involving nicotinamide-adenine dinucleotide phosphate oxidase, reactive oxygen species, and NF-κB. In addition, valsartan, fenofibrate and PDTC may inhibit the AT1-AA induced atherosclerosis. PMID:25628779

  1. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  2. Engineering of PDMS Surfaces for use in Microsystems for Capture and Isolation of Complex and Biomedically Important Proteins: Epidermal Growth Factor Receptor as a Model System

    PubMed Central

    Lowe, Aaron M.; Ozer, Byram H.; Wiepz, Gregory J.; Bertics, Paul J.; Abbott, Nicholas L.

    2009-01-01

    Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was 32P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (H11 and 111.6) and one phosphospecific EGF receptor antibody (pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82:1, exceeding the signal-to-background measured on the ELISA plate (<48:1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the transmembrane protein

  3. Engineering of PDMS surfaces for use in microsystems for capture and isolation of complex and biomedically important proteins: epidermal growth factor receptor as a model system.

    PubMed

    Lowe, Aaron M; Ozer, Byram H; Wiepz, Gregory J; Bertics, Paul J; Abbott, Nicholas L

    2008-08-01

    Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the

  4. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed.

  5. Novel BAFF-Receptor Antibody to Natively Folded Recombinant Protein Eliminates Drug-Resistant Human B-cell Malignancies In Vivo.

    PubMed

    Qin, Hong; Wei, Guowei; Sakamaki, Ippei; Dong, Zhenyuan; Cheng, Wesley A; Smith, D Lynne; Wen, Feng; Sun, Han; Kim, Kunhwa; Cha, Soungchul; Bover, Laura; Neelapu, Sattva S; Kwak, Larry W

    2018-03-01

    Purpose: mAbs such as anti-CD20 rituximab are proven therapies in B-cell malignancies, yet many patients develop resistance. Novel therapies against alternative targets are needed to circumvent resistance mechanisms. We sought to generate mAbs against human B-cell-activating factor receptor (BAFF-R/TNFRSF13C), which has not yet been targeted successfully for cancer therapy. Experimental Design: Novel mAbs were generated against BAFF-R, expressed as a natively folded cell surface immunogen on mouse fibroblast cells. Chimeric BAFF-R mAbs were developed and assessed for in vitro and in vivo monotherapy cytotoxicity. The chimeric mAbs were tested against human B-cell tumor lines, primary patient samples, and drug-resistant tumors. Results: Chimeric antibodies bound with high affinity to multiple human malignant B-cell lines and induced potent antibody-dependent cellular cytotoxicity (ADCC) against multiple subtypes of human lymphoma and leukemia, including primary tumors from patients who had relapsed after anti-CD20 therapy. Chimeric antibodies also induced ADCC against ibrutinib-resistant and rituximab-insensitive CD20-deficient variant lymphomas, respectively. Importantly, they demonstrated remarkable in vivo growth inhibition of drug-resistant tumor models in immunodeficient mice. Conclusions: Our method generated novel anti-BAFF-R antibody therapeutics with remarkable single-agent antitumor effects. We propose that these antibodies represent an effective new strategy for targeting and treating drug-resistant B-cell malignancies and warrant further development. Clin Cancer Res; 24(5); 1114-23. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Selection of single chain antibody fragments binding to the extracellular domain of 4-1BB receptor by phage display technology.

    PubMed

    Bagheri, Salman; Yousefi, Mehdi; Safaie Qamsari, Elmira; Riazi-Rad, Farhad; Abolhassani, Mohsen; Younesi, Vahid; Dorostkar, Ruhollah; Movassaghpour, Ali Akbar; Sharifzadeh, Zahra

    2017-03-01

    The 4-1BB is a surface glycoprotein that pertains to the tumor necrosis factor-receptor family. There is compelling evidence suggesting important roles for 4-1BB in the immune response, including cell activation and proliferation and also cytokine induction. Because of encouraging results of different agonistic monoclonal antibodies against 4-1BB in the treatment of cancer, infectious, and autoimmune diseases, 4-1BB has been suggested as an attractive target for immunotherapy. In this study, single chain variable fragment phage display libraries, Tomlinson I+J, were screened against specific synthetic oligopeptides (peptides I and II) designed from 4-1BB extracellular domain. Five rounds of panning led to selection of four 4-1BB specific single chain variable fragments (PI.12, PI.42, PII.16, and PII.29) which showed specific reaction to relevant peptides in phage enzyme-linked immunosorbent assay. The selected clones were successfully expressed in Escherichia coli Rosetta-gami 2, and their expression was confirmed by western blot analysis. Enzyme-linked immunosorbent assay experiments indicated that these antibodies were able to specifically recognize 4-1BB without any cross-reactivity with other antigens. Flow cytometry analysis demonstrated an acceptable specific binding of the single chain variable fragments to 4-1BB expressed on CCRF-CEM cells, while no binding was observed with an irrelevant antibody. Anti-4-1BB single chain variable fragments enhanced surface CD69 expression and interleukin-2 production in stimulated CCRF-CEM cells which confirmed the agonistic effect of the selected single chain variable fragments. The data from this study have provided a rationale for further experiments involving the biological functions of anti-4-1BB single chain variable fragments in future studies.

  7. Integrating Novel Therapeutic Monoclonal Antibodies into the Management of Head and Neck Cancer

    PubMed Central

    Bauman, Julie E.; Ferris, Robert L.

    2014-01-01

    Head and neck squamous cell carcinoma (HNSCC) is an immunosuppressive malignancy. Interest in developing novel immunotherapies in HNSCC has been reawakened by the success of cetuximab, a therapeutic monoclonal antibody (mAb) against the epidermal growth factor receptor which likely relies on immune as well as anti-signaling mechanisms. We focus on novel therapeutic mAb in current clinical development against established mechanisms of immune evasion in HNSCC, targeting: tumor antigens (TA), with resultant potential to induce antibody-dependent cell-mediated cytotoxicity and T cell activation; immunosuppressive cytokines; co-stimulatory Tumor Necrosis Factor (TNF)-family receptors; and co-inhibitory immune checkpoint receptors. Clinical trials of immunotherapeutic mAb as monotherapy, in combination with cytolytic standard therapies exposing TA or in combination with other immunomodulatory mAb, are urgently needed in HNSCC. PMID:24222079

  8. Differences in Glycoprotein Complex Receptor Binding Site Accessibility Prompt Poor Cross-Reactivity of Neutralizing Antibodies between Closely Related Arenaviruses

    PubMed Central

    Brouillette, Rachel B.; Phillips, Elisabeth K.; Ayithan, Natarajan

    2017-01-01

    ABSTRACT The glycoprotein complex (GPC) of arenaviruses, composed of stable signal peptide, GP1, and GP2, is the only antigen correlated with antibody-mediated neutralization. However, despite strong cross-reactivity of convalescent antisera between related arenavirus species, weak or no cross-neutralization occurs. Two closely related clade B viruses, Machupo virus (MACV) and Junín virus (JUNV), have nearly identical overall GPC architecture and share a host receptor, transferrin receptor 1 (TfR1). Given structural and functional similarities of the GP1 receptor binding site (RBS) of these viruses and the recent demonstration that the RBS is an important target for neutralizing antibodies, it is not clear how these viruses avoid cross-neutralization. To address this, MACV/JUNV chimeric GPCs were assessed for interaction with a group of α-JUNV GPC monoclonal antibodies (MAbs) and mouse antisera against JUNV or MACV GPC. All six MAbs targeted GP1, with those that neutralized JUNV GPC-pseudovirions competing with each other for RBS binding. However, these MAbs were unable to bind to a chimeric GPC composed of JUNV GP1 containing a small disulfide bonded loop (loop 10) unique to MACV GPC, suggesting that this loop may block MAbs interaction with the GP1 RBS. Consistent with this loop causing interference, mouse anti-JUNV GPC antisera that solely neutralized pseudovirions bearing autologous GP1 provided enhanced neutralization of MACV GPC when this loop was removed. Our studies provide evidence that loop 10, which is unique to MACV GP1, is an important impediment to binding of neutralizing antibodies and contributes to the poor cross-neutralization of α-JUNV antisera against MACV. IMPORTANCE Multiple New World arenaviruses can cause severe disease in humans, and some geographic overlap exists among these viruses. A vaccine that protects against a broad range of New World arenaviruses is desirable for purposes of simplicity, cost, and broad protection against

  9. Differences in Glycoprotein Complex Receptor Binding Site Accessibility Prompt Poor Cross-Reactivity of Neutralizing Antibodies between Closely Related Arenaviruses.

    PubMed

    Brouillette, Rachel B; Phillips, Elisabeth K; Ayithan, Natarajan; Maury, Wendy

    2017-04-01

    The glycoprotein complex (GPC) of arenaviruses, composed of stable signal peptide, GP1, and GP2, is the only antigen correlated with antibody-mediated neutralization. However, despite strong cross-reactivity of convalescent antisera between related arenavirus species, weak or no cross-neutralization occurs. Two closely related clade B viruses, Machupo virus (MACV) and Junín virus (JUNV), have nearly identical overall GPC architecture and share a host receptor, transferrin receptor 1 (TfR1). Given structural and functional similarities of the GP1 receptor binding site (RBS) of these viruses and the recent demonstration that the RBS is an important target for neutralizing antibodies, it is not clear how these viruses avoid cross-neutralization. To address this, MACV/JUNV chimeric GPCs were assessed for interaction with a group of α-JUNV GPC monoclonal antibodies (MAbs) and mouse antisera against JUNV or MACV GPC. All six MAbs targeted GP1, with those that neutralized JUNV GPC-pseudovirions competing with each other for RBS binding. However, these MAbs were unable to bind to a chimeric GPC composed of JUNV GP1 containing a small disulfide bonded loop (loop 10) unique to MACV GPC, suggesting that this loop may block MAbs interaction with the GP1 RBS. Consistent with this loop causing interference, mouse anti-JUNV GPC antisera that solely neutralized pseudovirions bearing autologous GP1 provided enhanced neutralization of MACV GPC when this loop was removed. Our studies provide evidence that loop 10, which is unique to MACV GP1, is an important impediment to binding of neutralizing antibodies and contributes to the poor cross-neutralization of α-JUNV antisera against MACV. IMPORTANCE Multiple New World arenaviruses can cause severe disease in humans, and some geographic overlap exists among these viruses. A vaccine that protects against a broad range of New World arenaviruses is desirable for purposes of simplicity, cost, and broad protection against multiple

  10. Analysis of colonization factor antigen I, an adhesin of enterotoxigenic Escherichia coli O78:H11: fimbrial morphology and location of the receptor-binding site.

    PubMed Central

    Bühler, T; Hoschützky, H; Jann, K

    1991-01-01

    Colonization factor antigen I (CFA/I) of enterotoxigenic Escherichia coli was dissociated into one type of subunit (15 kDa). The dissociation was achieved either by heating CFA/I in sodium dodecyl sulfate at 100 degrees C or by heating it for 20 min in water. Heating in water to 100 degrees C yielded only in the 15-kDa subunit, but heating to 85 degree C yielded small amounts of oligomers in addition. The monomeric subunits obtained after heating in water are stable, as demonstrated by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis without heating prior to the electrophoretic run. These subunits inhibited CFA/I-induced hemagglutination, indicating that they had maintained their receptor-binding properties. When the hybridoma technique was used, two types of monoclonal anti-CFA/I antibodies were obtained. Antibodies obtained by immunization with the purified subunits were more reactive with subunits than with fimbriae, as shown by enzyme-linked immunosorbent assay. These antibodies strongly inhibited CFA/I-induced hemagglutination. When examined by immunoelectron microscopy, these antibodies seemed to label the fimbrial tips. A similar labeling pattern was obtained with gold particles modified with the receptor ganglioside GM2. Antibodies obtained by immunization with fimbriae reacted in enzyme-linked immunosorbent assays equally well with fimbriae and subunits. They inhibited CFA/I-induced hemagglutination only slightly. Immunoelectron microscopy revealed that these antibodies labeled the fimbriae densely and regularly over their entire lengths. In a coagglutination experiment with Staphylococcus aureus and monoclonal antibodies, the subunits retained their receptor-binding properties. From these results, we conclude that CFA/I fimbriae consist entirely of one type of adhesive subunit, of which only the one at the tip is accessible to the receptor. Images PMID:1682253

  11. Production and characterization of a new antibody specific for the mutant EGF receptor, EGFRvIII, in Camelus bactrianus.

    PubMed

    Omidfar, K; Rasaee, M J; Modjtahedi, H; Forouzandeh, M; Taghikhani, M; Bakhtiari, A; Paknejad, M; Kashanian, S

    2004-01-01

    EGFRvIII is the type III deletion mutant form of the epidermal growth factor receptor (EGFR) with transforming activity. This tumor-specific antigen is ligand independent, contains a constitutively active tyrosine kinase domain and has been shown to be present in a number of human malignancies. In this study, we report the production and characterization of camel antibodies that are directed against the external domain of the EGFRvIII. Antibodies developed in camels are smaller (i.e. IgG2 and IgG3 subclasses lack light chains) than any other conventional mammalian antibodies. This property of camel antibodies makes them ideal tools for basic research and other applications such as tumor imaging and cancer therapy. In the present study, camel antibodies were generated by immunization of camelids (Camelus bactrianus and Camelus dromedarius) with a synthetic 14-amino acid peptide corresponding to the mutated sequence of the EGFR, tissue homogenates of several patients with human glioblastoma, medulloblastoma and aggressive breast carcinoma, as well as EGFR-expressing cell lines. Three subclasses of camel IgG [conventional (IgG1, 160 kD) and heavy chain-only antibodies (IgG2 and IgG3, 90 kD)] were separated by their different binding properties to protein A and protein G affinity columns. The anti-EGFRvIII peptide antibodies from immunized camels were purified further using the EGFRvIII synthetic peptide affinity column. The purified anti-EGFRvIII peptide camel antibodies selectively bound to the EGFRvIII peptide and affinity-purified EGFRvIII from malignant tissues and detected a protein band of 140 kD from malignant tissues by Western blot. Affinity analysis showed that the antibodies from C. bactrianus and C. dromedarius reacted with peptide and antigen purified from a small cell lung cancer ascitic fluid with affinities of 2 x 10(8) and 5 x 10(7)M(-1) to the same extent, respectively. Since the functional antigen-binding domain of the anti-EGFRvIII antibodies in

  12. Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells.

    PubMed

    Gekle, Michael; Freudinger, Ruth; Mildenberger, Sigrid; Silbernagl, Stefan

    2002-04-01

    Epidermal growth factor (EGF) regulates cell proliferation, differentiation, and ion transport by using extracellular signal-regulated kinase (ERK)1/2 as a downstream signal. Furthermore, the EGF-receptor (EGF-R) is involved in signaling by G protein-coupled receptors, growth hormone, and cytokines by means of transactivation. It has been suggested that steroids interact with peptide hormones, in part, by rapid, potentially nongenomic, mechanisms. Previously, we have shown that aldosterone modulates Na(+)/H(+) exchange in Madin-Darby canine kidney (MDCK) cells by means of ERK1/2 in a way similar to growth factors. Here, we tested the hypothesis that aldosterone uses the EGF-R as a heterologous signal transducer in MDCK cells. Nanomolar concentrations of aldosterone induce a rapid increase in ERK1/2 phosphorylation, cellular Ca(2+) concentration, and Na(+)/H(+) exchange activity similar to increases induced by EGF. Furthermore, aldosterone induced a rapid increase in EGF-R-Tyr phosphorylation, and inhibition of EGF-R kinase abolished aldosterone-induced signaling. Inhibition of ERK1/2 phosphorylation reduced the Ca(2+) response, whereas prevention of Ca(2+) influx did not abolish ERK1/2 phosphorylation. Our data show that aldosterone uses the EGF-R-ERK1/2 signaling cascade to elicit its rapid effects in MDCK cells.

  13. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook.

    PubMed

    Jarius, S; Wildemann, B

    2015-09-17

    Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.

  14. A panel of recombinant monoclonal antibodies against zebrafish neural receptors and secreted proteins suitable for wholemount immunostaining.

    PubMed

    Staudt, Nicole; Müller-Sienerth, Nicole; Fane-Dremucheva, Alla; Yusaf, Shahnaz P; Millrine, David; Wright, Gavin J

    2015-01-02

    Cell surface receptors and secreted proteins play important roles in neural recognition processes, but because their site of action can be a long distance from neuron cell bodies, antibodies that label these proteins are valuable to understand their function. The zebrafish embryo is a popular vertebrate model for neurobiology, but suffers from a paucity of validated antibody reagents. Here, we use the entire ectodomain of neural zebrafish cell surface or secreted proteins expressed in mammalian cells to select monoclonal antibodies to ten different antigens. The antibodies were characterised by Western blotting and the sensitivity of their epitopes to formalin fixation was determined. The rearranged antigen binding regions of the antibodies were amplified and cloned which enabled expression in a recombinant form from a single plasmid. All ten antibodies gave specific staining patterns within formalin-treated embryonic zebrafish brains, demonstrating that this generalised approach is particularly efficient to elicit antibodies that stain native antigen in fixed wholemount tissue. Finally, we show that additional tags can be easily added to the recombinant antibodies for convenient multiplex staining. The antibodies and the approaches described here will help to address the lack of well-defined antibody reagents in zebrafish research. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The sclerostin-neutralizing antibody AbD09097 recognizes an epitope adjacent to sclerostin's binding site for the Wnt co-receptor LRP6

    PubMed Central

    Boschert, V.; Frisch, C.; Back, J. W.; van Pee, K.; Weidauer, S. E.; Muth, E.-M.; Schmieder, P.; Beerbaum, M.; Knappik, A.; Timmerman, P.

    2016-01-01

    The glycoprotein sclerostin has been identified as a negative regulator of bone growth. It exerts its function by interacting with the Wnt co-receptor LRP5/6, blocks the binding of Wnt factors and thereby inhibits Wnt signalling. Neutralizing anti-sclerostin antibodies are able to restore Wnt activity and enhance bone growth thereby presenting a new osteoanabolic therapy approach for diseases such as osteoporosis. We have generated various Fab antibodies against human and murine sclerostin using a phage display set-up. Biochemical analyses have identified one Fab developed against murine sclerostin, AbD09097 that efficiently neutralizes sclerostin's Wnt inhibitory activity. In vitro interaction analysis using sclerostin variants revealed that this neutralizing Fab binds to sclerostin's flexible second loop, which has been shown to harbour the LRP5/6 binding motif. Affinity maturation was then applied to AbD09097, providing a set of improved neutralizing Fab antibodies which particularly bind human sclerostin with enhanced affinity. Determining the crystal structure of AbD09097 provides first insights into how this antibody might recognize and neutralize sclerostin. Together with the structure–function relationship derived from affinity maturation these new data will foster the rational design of new and highly efficient anti-sclerostin antibodies for the therapy of bone loss diseases such as osteoporosis. PMID:27558933

  16. Candida albicans C3d receptor, isolated by using a monoclonal antibody.

    PubMed Central

    Linehan, L; Wadsworth, E; Calderone, R

    1988-01-01

    Pseudohyphae of Candida albicans possess a receptor for C3d, a fragment of the complement component C3. This receptor was partially purified by using a monoclonal antibody (CA-A) that previously had been shown to inhibit the binding of C3d to C. albicans pseudohyphae. Purified immunoglobulin G from ascites fluid (CA-A) was coupled to a cyanogen bromide-activated Sepharose column, and an affinity-purified fraction (A2) from C. albicans pseudohyphae was obtained. This fraction inhibited rosetting of the EAC3d receptor by pseudohyphae and appeared to contain glycoprotein, since receptor activity could be removed when A2 was incubated with lectins specific for mannose and glucose. A2 was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two polypeptides of approximately 60 and 70 kilodaltons (kDa) were consistently identified in reducing gels. The 60-kDa protein was identified as a glycoprotein by concanavalin A binding. A2 was further analyzed by high-pressure liquid chromatography (HPLC). Of three fractions obtained by HPLC, one containing the 60-kDa protein was found to have receptor activity. When analyzed by HPLC, this protein was found to contain mannose and glucose in approximately equal amounts. Both immunofluorescence and electron microscopy of pseudohyphae treated with CA-A identified A2 as a surface moiety. Thus, the C3d receptor of C. albicans, isolated with CA-A, is a glycoprotein of approximately 60 kDa. Images PMID:2969374

  17. Enhanced Delivery of Galanin Conjugates to the Brain through Bioengineering of the Anti-Transferrin Receptor Antibody OX26.

    PubMed

    Thom, George; Burrell, Matthew; Haqqani, Arsalan S; Yogi, Alvaro; Lessard, Etienne; Brunette, Eric; Delaney, Christie; Baumann, Ewa; Callaghan, Deborah; Rodrigo, Natalia; Webster, Carl I; Stanimirovic, Danica B

    2018-04-02

    The blood-brain barrier (BBB) is a formidable obstacle for brain delivery of therapeutic antibodies. However, antibodies against the transferrin receptor (TfR), enriched in brain endothelial cells, have been developed as delivery carriers of therapeutic cargoes into the brain via a receptor-mediated transcytosis pathway. In vitro and in vivo studies demonstrated that either a low-affinity or monovalent binding of these antibodies to the TfR improves their release on the abluminal side of the BBB and target engagement in brain parenchyma. However, these studies have been performed with mouse-selective TfR antibodies that recognize different TfR epitopes and have varied binding characteristics. In this study, we evaluated serum pharmacokinetics and brain and CSF exposure of the rat TfR-binding antibody OX26 affinity variants, having K D s of 5 nM, 76 nM, 108 nM, and 174 nM, all binding the same epitope in bivalent format. Pharmacodynamic responses were tested in the Hargreaves chronic pain model after conjugation of OX26 affinity variants with the analgesic and antiepileptic peptide, galanin. OX26 variants with affinities of 76 nM and 108 nM showed enhanced brain and cerebrospinal fluid (CSF) exposure and higher potency in the Hargreaves model, compared to a 5 nM affinity variant; lowering affinity to 174 nM resulted in prolonged serum pharmacokinetics, but reduced brain and CSF exposure. The study demonstrates that binding affinity optimization of TfR-binding antibodies could improve their brain and CSF exposure even in the absence of monovalent TfR engagement.

  18. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. | Office of Cancer Genomics

    Cancer.gov

    Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.

  19. Molecular and Therapeutic Characterization of Anti-ectodysplasin A Receptor (EDAR) Agonist Monoclonal Antibodies*

    PubMed Central

    Kowalczyk, Christine; Dunkel, Nathalie; Willen, Laure; Casal, Margret L.; Mauldin, Elizabeth A.; Gaide, Olivier; Tardivel, Aubry; Badic, Giovanna; Etter, Anne-Lise; Favre, Manuel; Jefferson, Douglas M.; Headon, Denis J.; Demotz, Stéphane; Schneider, Pascal

    2011-01-01

    The TNF family ligand ectodysplasin A (EDA) and its receptor EDAR are required for proper development of skin appendages such as hair, teeth, and eccrine sweat glands. Loss of function mutations in the Eda gene cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition that can be ameliorated in mice and dogs by timely administration of recombinant EDA. In this study, several agonist anti-EDAR monoclonal antibodies were generated that cross-react with the extracellular domains of human, dog, rat, mouse, and chicken EDAR. Their half-life in adult mice was about 11 days. They induced tail hair and sweat gland formation when administered to newborn EDA-deficient Tabby mice, with an EC50 of 0.1 to 0.7 mg/kg. Divalency was necessary and sufficient for this therapeutic activity. Only some antibodies were also agonists in an in vitro surrogate activity assay based on the activation of the apoptotic Fas pathway. Activity in this assay correlated with small dissociation constants. When administered in utero in mice or at birth in dogs, agonist antibodies reverted several ectodermal dysplasia features, including tooth morphology. These antibodies are therefore predicted to efficiently trigger EDAR signaling in many vertebrate species and will be particularly suited for long term treatments. PMID:21730053

  20. Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons

    PubMed Central

    Borges, Gisela Patrícia; Micó, Juan Antonio; Neto, Fani Lourença

    2015-01-01

    Background: The corticotropin-releasing factor is a stress-related neuropeptide that modulates locus coeruleus activity. As locus coeruleus has been involved in pain and stress-related patologies, we tested whether the pain-induced anxiety is a result of the corticotropin-releasing factor released in the locus coeruleus. Methods: Complete Freund’s adjuvant-induced monoarthritis was used as inflammatory chronic pain model. α-Helical corticotropin-releasing factor receptor antagonist was microinjected into the contralateral locus coeruleus of 4-week-old monoarthritic animals. The nociceptive and anxiety-like behaviors, as well as phosphorylated extracellular signal-regulated kinases 1/2 and corticotropin-releasing factor receptors expression, were quantified in the paraventricular nucleus and locus coeruleus. Results: Monoarthritic rats manifested anxiety and increased phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus and paraventricular nucleus, although the expression of corticotropin-releasing factor receptors was unaltered. α-Helical corticotropin-releasing factor antagonist administration reversed both the anxiogenic-like behavior and the phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus. Conclusions: Pain-induced anxiety is mediated by corticotropin-releasing factor neurotransmission in the locus coeruleus through extracellular signal-regulated kinases 1/2 signaling cascade. PMID:25716783

  1. New epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren's syndrome.

    PubMed

    Tsuboi, H; Matsumoto, I; Wakamatsu, E; Nakamura, Y; Iizuka, M; Hayashi, T; Goto, D; Ito, S; Sumida, T

    2010-10-01

    M3 muscarinic acetylcholine receptor (M3R) plays a crucial role in the secretion of saliva from salivary glands. It is reported that some patients with Sjögren's syndrome (SS) carried inhibitory autoantibodies against M3R. The purpose of this study is to clarify the epitopes and function of anti-M3R antibodies in SS. We synthesized peptides encoding the extracellular domains of human-M3R including the N-terminal region and the first, second and third extracellular loops. Antibodies against these regions were examined by enzyme-linked immunosorbent assay in sera from 42 SS and 42 healthy controls. For functional analysis, human salivary gland (HSG) cells were preincubated with immunoglobulin G (IgG) separated from sera of anti-M3R antibody-positive SS, -negative SS and controls for 12 h. After loading with Fluo-3, HSG cells were stimulated with cevimeline hydrochloride, and intracellular Ca(2+) concentrations [(Ca(2+) )i] were measured. Antibodies to the N-terminal, first, second and third loops were detected in 42·9% (18 of 42), 47·6% (20 of 42), 54·8% (23 of 42) and 45·2% (19 of 42) of SS, while in 4·8% (two of 42), 7·1% (three of 42), 2·4% (one of 42) and 2·4% (one of 42) of controls, respectively. Antibodies to the second loop positive SS-IgG inhibited the increase of (Ca(2+) )i induced by cevimeline hydrochloride. Antibodies to the N-terminal positive SS-IgG and antibodies to the first loop positive SS-IgG enhanced it, while antibodies to the third loop positive SS-IgG showed no effect on (Ca(2+) )i as well as anti-M3R antibody-negative SS-IgG. Our results indicated the presence of several B cell epitopes on M3R in SS. The influence of anti-M3R antibodies on salivary secretion might differ based on these epitopes. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  2. Evaluation of pre-existing antibody presence as a risk factor for posttreatment anti-drug antibody induction: analysis of human clinical study data for multiple biotherapeutics.

    PubMed

    Xue, Li; Rup, Bonita

    2013-07-01

    Biotherapeutic-reactive antibodies in treatment-naïve subjects (i.e., pre-existing antibodies) have been commonly detected during clinical immunogenicity assessments; however information on pre-existing antibody prevalence, physiological effects, and impact on posttreatment anti-drug antibody (ADA) induction remains limited. In this analysis, pre-existing antibody prevalence and impact on posttreatment ADA induction were determined using ADA data from 12 biotherapeutics analyzed in 32 clinical studies. Approximately half (58%) of the biotherapeutics were associated with some level of pre-existing antibodies and 67% of those were associated with posttreatment ADA induction. Across all studies, 5.6% of study subjects demonstrated presence of pre-existing antibodies, among which, 17% of the individual subjects had posttreatment increases in their ADA titers while 16% had decreased titers and 67% had no change in titers. However, in studies conducted in the rheumatoid arthritis (RA) population, 14.8% of RA patients were associated with pre-existing antibodies and 30% of those had posttreatment titer increases. The results suggest that in most study subjects, pre-existing antibodies pose a low risk for posttreatment ADA induction. That said, the high risk of induction implicated for RA patients, primarily observed in treatments evaluating novel antibody-based constructs, indicates that further understanding of the contribution of product and disease-specific factors is needed. Cross-industry efforts to collect and analyze a larger data set would enhance understanding of the prevalence, nature, and physiological consequences of pre-existing antibodies, better inform the immunogenicity risk profiles of products associated with these antibodies and lead to better fit-for-purpose immunogenicity management and mitigation strategies.

  3. Use of Fc-Engineered Antibodies as Clearing Agents to Increase Contrast During PET

    PubMed Central

    Swiercz, Rafal; Chiguru, Srinivas; Tahmasbi, Amir; Ramezani, Saleh M.; Hao, Guiyang; Challa, Dilip K.; Lewis, Matthew A.; Kulkarni, Padmakar V.; Sun, Xiankai; Ober, Raimund J.; Mason, Ralph P.; Ward, E. Sally

    2015-01-01

    Despite promise for the use of antibodies as molecular imaging agents in PET, their long in vivo half-lives result in poor contrast and radiation damage to normal tissue. This study describes an approach to overcome these limitations. Methods Mice bearing human epidermal growth factor receptor type 2 (HER2)–overexpressing tumors were injected with radiolabeled (124I, 125I) HER2-specific antibody (pertuzumab). Pertuzumab injection was followed 8 h later by the delivery of an engineered, antibody-based inhibitor of the receptor, FcRn. Biodistribution analyses and PET were performed at 24 and 48 h after pertuzumab injection. Results The delivery of the engineered, antibody-based FcRn inhibitor (or Abdeg, for antibody that enhances IgG degradation) results in improved tumor-to-blood ratios, reduced systemic exposure to radiolabel, and increased contrast during PET. Conclusion Abdegs have considerable potential as agents to stringently regulate antibody dynamics in vivo, resulting in increased contrast during molecular imaging with PET. PMID:24868106

  4. A semi high-throughput method for screening small bispecific antibodies with high cytotoxicity.

    PubMed

    Sugiyama, Aruto; Umetsu, Mitsuo; Nakazawa, Hikaru; Niide, Teppei; Onodera, Tomoko; Hosokawa, Katsuhiro; Hattori, Shuhei; Asano, Ryutaro; Kumagai, Izumi

    2017-06-06

    Small bispecific antibodies that induce T-cell-mediated cytotoxicity have the potential to damage late-stage tumor masses to a clinically relevant degree, but their cytotoxicity is critically dependent on their structural and functional properties. Here, we constructed an optimized procedure for identifying highly cytotoxic antibodies from a variety of the T-cell-recruiting antibodies engineered from a series of antibodies against cancer antigens of epidermal growth factor receptor family and T-cell receptors. By developing and applying a set of rapid operations for expression vector construction and protein preparation, we screened the cytotoxicity of 104 small antibodies with diabody format and identified some with 10 3 -times higher cytotoxicity than that of previously reported active diabody. The results demonstrate that cytotoxicity is enhanced by synergistic effects between the target, epitope, binding affinity, and the order of heavy-chain and light-chain variable domains. We demonstrate the importance of screening to determine the critical rules for highly cytotoxic antibodies.

  5. Human epidermal growth factor receptor bispecific ligand trap RB200: abrogation of collagen-induced arthritis in combination with tumour necrosis factor blockade

    PubMed Central

    2011-01-01

    Introduction Rheumatoid arthritis (RA) is a chronic disease associated with inflammation and destruction of bone and cartilage. Although inhibition of TNFα is widely used to treat RA, a significant number of patients do not respond to TNFα blockade, and therefore there is a compelling need to continue to identify alternative therapeutic strategies for treating chronic inflammatory diseases such as RA. The anti-epidermal growth factor (anti-EGF) receptor antibody trastuzumab has revolutionised the treatment of patients with EGF receptor-positive breast cancer. Expression of EGF ligands and receptors (known as HER) has also been documented in RA. The highly unique compound RB200 is a bispecific ligand trap that is composed of full-length extracellular domains of HER1 and HER3 EGF receptors. Because of its pan-HER specificity, RB200 inhibits responses mediated by HER1, HER2 and HER3 in vitro and in vivo. The objective of this study was to assess the effect of RB200 combined with TNF blockade in a murine collagen-induced arthritis (CIA) model of RA. Methods Arthritic mice were treated with RB200 alone or in combination with the TNF receptor fusion protein etanercept. We performed immunohistochemistry to assess CD31 and in vivo fluorescent imaging using anti-E-selectin antibody labelled with fluorescent dye to elucidate the effect of RB200 on the vasculature in CIA. Results RB200 significantly abrogated CIA by reducing paw swelling and clinical scores. Importantly, low-dose RB200 combined with a suboptimal dose of etanercept led to complete abrogation of arthritis. Moreover, the combination of RB200 with etanercept abrogated the intensity of the E-selectin-targeted signal to the level seen in control animals not immunised to CIA. Conclusions The human pan-EGF receptor bispecific ligand trap RB200, when combined with low-dose etanercept, abrogates CIA, suggesting that inhibition of events downstream of EGF receptor activation, in combination with TNFα inhibitors, may

  6. Human IgG1 antibodies antagonizing activating receptor NKG2D on natural killer cells

    PubMed Central

    Steigerwald, Jutta; Raum, Tobias; Pflanz, Stefan; Cierpka, Ronny; Mangold, Susanne; Rau, Doris; Hoffmann, Patrick; Kvesic, Majk; Zube, Christina; Linnerbauer, Stefanie; Lumsden, John; Sriskandarajah, Mirnaalini; Kufer, Peter; Baeuerle, Patrick A

    2009-01-01

    NKG2D is a surface receptor expressed on NK cells but also on CD8+ T cells, γδ T cells, and auto-reactive CD4+/CD28− T cells of patients with rheumatoid arthritis. Various studies suggested that NKG2D plays a critical role in autoimmune diseases, e.g., in diabetes, celiac disease and rheumatoid arthritis (RA), rendering the activating receptor a potential target for antibody-based therapies. Here, we describe the generation and characteristics of a panel of human, high-affinity anti-NKG2D IgG1 monoclonal antibodies (mAbs) derived by phage display. The lead molecule mAb E4 bound with an affinity (KD) of 2.7 ± 1.4 × 10−11 M to soluble and membrane-bound human NKG2D, and cross-reacted with NKG2D from cynomolgus macaque, indicating potential suitability for studies in a relevant primate model. MAb E4 potently antagonized the cytolytic activity of NKL cells against BaF/3-MICA cells expressing NKG2D ligand, and blocked the NKG2D ligand-induced secretion of TNFα, IFNγ and GM-CSF, as well as surface expression of CRTAM by NK cells cultured on immobilized MICA or ULBP-1 ligands. The antibody did not show a detectable loss of binding to NKG2D after seven days in human serum at 37°C, and resisted thermal inactivation up to 70°C. Based on these results, anti-human NKG2D mAb E4 provides an ideal candidate for development of a novel therapeutic agent antagonizing a key receptor of NK and cytotoxic T cells with implications in autoimmune diseases. PMID:20061825

  7. Anti-epidermal growth factor receptor (anti-EGFR) antibody conjugated fluorescent nanoparticles probe for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Hun, Xu; Zhang, Zhujun

    2009-10-01

    Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.

  8. Genomic Region Containing Toll-Like Receptor Genes Has a Major Impact on Total IgM Antibodies Including KLH-Binding IgM Natural Antibodies in Chickens

    PubMed Central

    Berghof, Tom V. L.; Visker, Marleen H. P. W.; Arts, Joop A. J.; Parmentier, Henk K.; van der Poel, Jan J.; Vereijken, Addie L. J.; Bovenhuis, Henk

    2018-01-01

    Natural antibodies (NAb) are antigen binding antibodies present in individuals without a previous exposure to this antigen. Keyhole limpet hemocyanin (KLH)-binding NAb levels were previously associated with survival in chickens. This suggests that selective breeding for KLH-binding NAb may increase survival by means of improved general disease resistance. Genome-wide association studies (GWAS) were performed to identify genes underlying genetic variation in NAb levels. The studied population consisted of 1,628 adolescent layer chickens with observations for titers of KLH-binding NAb of the isotypes IgM, IgA, IgG, the total KLH-binding (IgT) NAb titers, total antibody concentrations of the isotypes IgM, IgA, IgG, and the total antibodies concentration in plasma. GWAS were performed using 57,636 single-nucleotide polymorphisms (SNP). One chromosomal region on chromosome 4 was associated with KLH-binding IgT NAb, and total IgM concentration, and especially with KLH-binding IgM NAb. The region of interest was fine mapped by imputing the region of the study population to whole genome sequence, and subsequently performing an association study using the imputed sequence variants. 16 candidate genes were identified, of which FAM114A1, Toll-like receptor 1 family member B (TLR1B), TLR1A, Krüppel-like factor 3 (KLF3) showed the strongest associations. SNP located in coding regions of the candidate genes were checked for predicted changes in protein functioning. One SNP (at 69,965,939 base pairs) received the maximum impact score from two independent prediction tools, which makes this SNP the most likely causal variant. This SNP is located in TLR1A, which suggests a fundamental role of TLR1A on regulation of IgM levels (i.e., KLH-binding IgM NAb, and total IgM concentration), or B cells biology, or both. This study contributes to increased understanding of (genetic) regulation of KLH-binding NAb levels, and total antibody concentrations. PMID:29375555

  9. Anti-neuronal anti-bodies in patients with early psychosis.

    PubMed

    Mantere, O; Saarela, M; Kieseppä, T; Raij, T; Mäntylä, T; Lindgren, M; Rikandi, E; Stoecker, W; Teegen, B; Suvisaari, J

    2018-02-01

    It may be challenging to distinguish autoimmune encephalitis associated with anti-neuronal autoantibodies from primary psychiatric disorders. Here, serum was drawn from patients with a first-episode psychosis (n=70) or a clinical high-risk for psychosis (n=6) and controls (n=34). We investigated the serum prevalence of 24 anti-neuronal autoantibodies: IgG antibodies for anti-N-methyl-d-aspartate-type glutamate receptor (anti-NMDAR), glutamate and γ-aminobutyric acid alpha and beta receptors (GABA-a, GABA-b), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA), glycine receptor (GlyR), metabotropic glutamate receptor 1 and 5 (mGluR1, mGluR5), anti-Tr/Delta/notch-like epidermal growth factor-related receptor (DNER), contactin-associated protein-like 2 (CASPR2), myelin oligodendrocyte glycoprotein (MOG), glutamic acid decarboxylase-65 (GAD65), collapsin response mediator protein 5/crossveinless-2 (CV2), aquaporin-4 (AQP4), anti-dipeptidyl-peptidase-like protein-6 (DPPX), type 1 anti-neuronal nuclear antibody (ANNA-1, Hu), Ri, Yo, IgLON5, Ma2, zinc finger protein 4 (ZIC4), Rho GTPase-activating protein 26, amphiphysin, and recoverin, as well as IgA and IgM for dopamine-2-receptor (DRD2). Anti-NMDA IgG antibodies were positive with serum titer 1:320 in one patient with a clinical high risk for psychosis. He did not receive a diagnosis of encephalitis after comprehensive neurological evaluation. All other antineuronal autoantibodies were negative and there were no additional findings with immunohistochemistry of brain issues. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cell Penetrating Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer

    DTIC Science & Technology

    2016-12-01

    biochemical and biologic assay systems. The final specific aim was tol examine the ability of the bispecific antibody to perturb the growth of prostate ...designated by other documentation. TITLE: Cell-Penetrating Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate ...Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer Michael Lilly, MD Richard Weisbart, MD Medical

  11. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  12. ROLE OF RAS IN METAL-INDUCED EGF RECEPTOR AND NFKB SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    We have shown previously that EGF receptor signaling is triggered by some metals associated with ambient air particles. Western blot using phospho-specific antibodies showed that As, Zn and V activated EGF receptor tyrosine kinase and the downstream kinases, MEK1/2 and ERK1/2. Us...

  13. Factors Affecting Formation of Incomplete Vi Antibody in Mice

    PubMed Central

    Gaines, Sidney; Currie, Julius A.; Tully, Joseph G.

    1965-01-01

    Gaines, Sidney (Walter Reed Army Institute of Research, Washington, D.C.), Julius A. Currie, and Joseph G. Tully. Factors affecting formation of incomplete Vi antibody in mice. J. Bacteriol. 90:635–642. 1965.—Single immunizing doses of purified Vi antigen elicited complete and incomplete Vi antibodies in BALB/c mice, but only incomplete antibody in Cinnamon mice. Three of six other mouse strains tested responded like BALB/c mice; the remaining three, like Cinnamon mice. Varying the quantity of antigen injected or the route of administration failed to stimulate the production of detectable complete Vi antibody in Cinnamon mice. Such antibody was evoked in these animals by multiple injections of Vi antigen or by inoculating them with Vi-containing bacilli or Vi-coated erythrocytes. The early protection afforded by serum from Vi-immunized BALB/c mice coincided with the appearance of incomplete Vi antibody, 1 day prior to the advent of complete antibody. Persistence of incomplete as well as complete antibody in the serum of immunized mice was demonstrated for at least 56 days after injection of 10 μg of Vi antigen. Incomplete Vi antibody was shown to have blocking ability, in vitro bactericidal activity, and the capability of protecting mice against intracerebral as well as intraperitoneal challenge with virulent typhoid bacilli. Production of incomplete and complete Vi antibodies was adversely affected by immunization with partially depolymerized Vi antigens. PMID:16562060

  14. Antibody Conjugation Approach Enhances Breadth and Potency of Neutralization of Anti-HIV-1 Antibodies and CD4-IgG

    PubMed Central

    Gavrilyuk, Julia; Ban, Hitoshi; Uehara, Hisatoshi; Sirk, Shannon J.; Saye-Francisco, Karen; Cuevas, Angelica; Zablowsky, Elise; Oza, Avinash; Seaman, Michael S.; Burton, Dennis R.

    2013-01-01

    Broadly neutralizing antibodies PG9 and PG16 effectively neutralize 70 to 80% of circulating HIV-1 isolates. In this study, the neutralization abilities of PG9 and PG16 were further enhanced by bioconjugation with aplaviroc, a small-molecule inhibitor of virus entry into host cells. A novel air-stable diazonium hexafluorophosphate reagent that allows for rapid, tyrosine-selective functionalization of proteins and antibodies under mild conditions was used to prepare a series of aplaviroc-conjugated antibodies, including b12, 2G12, PG9, PG16, and CD4-IgG. The conjugated antibodies blocked HIV-1 entry through two mechanisms: by binding to the virus itself and by blocking the CCR5 receptor on host cells. Chemical modification did not significantly alter the potency of the parent antibodies against nonresistant HIV-1 strains. Conjugation did not alter the pharmacokinetics of a model IgG in blood. The PG9-aplaviroc conjugate was tested against a panel of 117 HIV-1 strains and was found to neutralize 100% of the viruses. PG9-aplaviroc conjugate IC50s were lower than those of PG9 in neutralization studies of 36 of the 117 HIV-1 strains. These results support this new approach to bispecific antibodies and offer a potential new strategy for combining HIV-1 therapies. PMID:23427154

  15. The clinicopathological relevance of pretransplant anti-angiotensin II type 1 receptor antibodies in renal transplantation.

    PubMed

    Lee, Juhan; Huh, Kyu Ha; Park, Yongjung; Park, Borae G; Yang, Jaeseok; Jeong, Jong Cheol; Lee, Joongyup; Park, Jae Berm; Cho, Jang-Hee; Lee, Sik; Ro, Han; Han, Seung-Yeup; Kim, Myoung Soo; Kim, Yu Seun; Kim, Sung Joo; Kim, Chan-Duck; Chung, Wookyung; Park, Sung-Bae; Ahn, Curie

    2017-07-01

    Anti-angiotensin II type 1 receptor antibodies (AT1R-Abs) have been suggested as a risk factor for graft failure and acute rejection (AR). However, the prevalence and clinical significance of pretransplant AT1R-Abs have seldom been evaluated in Asia. In this multicenter, observational cohort study, we tested the AT1R-Abs in pretransplant serum samples obtained from 166 kidney transplant recipients. Statistical analysis was used to set a threshold AT1R-Abs level at 9.05 U/mL. Pretransplant AT1R-Abs were detected in 98/166 (59.0%) of the analyzed recipients. No graft loss or patient death was reported during the study period. AT1R-Abs (+) patients had a significantly higher incidence of biopsy-proven AR than AT1R-Abs (-) patients (27.6 versus 10.3%, P = 0.007). Recipients with pretransplant AT1R-Abs had a 3.2-fold higher risk of AR within a year of transplantation (P = 0.006). Five study subjects developed microcirculation inflammation (score ≥2). Four of them were presensitized to AT1R-Abs. In particular, three patients had a high titer of anti-AT1R-Abs (>22.7 U/mL). Pretransplant AT1R-Abs is an independent risk factor for AR, especially acute cellular rejection, and is possibly associated with the risk of antibody-mediated injury. Pretransplant assessment of AT1R-Abs may be useful for stratifying immunologic risks. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  16. Signaling by Antibodies: Recent Progress

    PubMed Central

    Bournazos, Stylianos; Wang, Taia T.; Dahan, Rony; Maamary, Jad; Ravetch, Jeffrey V.

    2017-01-01

    IgG antibodies mediate a diversity of immune functions by coupling of antigen specificity through the Fab domain to signal transduction via Fc-Fc receptor interactions. Indeed, balanced IgG signaling through Type I and Type II Fc receptors is required for the control of pro-inflammatory, anti-inflammatory, and immunomodulatory processes. In this review, we discuss the mechanisms that govern IgG-Fc receptor interactions, highlighting the diversity of Fc receptor-mediated effector functions that regulate immunity and inflammation, as well as determine susceptibility to infection and autoimmunity, and responsiveness to antibody-based therapeutics, and vaccine responses. PMID:28446061

  17. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.

    PubMed

    Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J

    2017-07-05

    Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.

  18. Epidermal Growth Factor Receptor Tyrosine Kinase: A Potential Target in Treatment of Non-Small-Cell Lung Carcinoma.

    PubMed

    Prabhu, Venugopal Vinod; Devaraj, Niranjali

    2017-01-01

    Lung cancer is responsible for 1.6 million deaths. Approximately 80%-85% of lung cancers are of the non-small-cell variety, which includes squamous cell carcinoma, adenocarcinoma, and large-cell carcinoma. Knowing the stage of cancer progression is a requisite for determining which management approach-surgery, chemotherapy, radiotherapy, and/or immunotherapy-is optimal. Targeted therapeutic approaches with antiangiogenic monoclonal antibodies or tyrosine kinase inhibitors are one option if tumors harbor oncogene mutations. Another, newer approach is directed against cancer-specific molecules and signaling pathways and thus has more limited nonspecific toxicities. This approach targets the epidermal growth factor receptor (EGFR, HER-1/ErbB1), a receptor tyrosine kinase of the ErbB family, which consists of four closely related receptors: HER-1/ErbB1, HER-2/neu/ErbB2, HER-3/ErbB3, and HER-4/ErbB4. Because EGFR is expressed at high levels on the surface of some cancer cells, it has been recognized as an effective anticancer target. EGFR-targeted therapies include monoclonal antibodies (mAbs) and small-molecule tyrosine kinase inhibitors. Tyrosine kinases are an especially important target because they play an important role in the modulation of growth factor signaling. This review highlights various classes of synthetically derived molecules that have been reported in the last few years as potential EGFR-TK inhibitors (TKIs) and their targeted therapies in NSCLC, along with effective strategies for overcoming EGFR-TKI resistance and efforts to develop a novel potent EGFR-TKI as an efficient target of NSCLC treatment in the foreseeable future.

  19. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions

    PubMed Central

    Rajasekaran, Deepa; Gröning, Sabine; Schmitz, Corinna; Zierow, Swen; Drucker, Natalie; Bakou, Maria; Kohl, Kristian; Mertens, André; Lue, Hongqi; Weber, Christian; Xiao, Annie; Luker, Gary; Kapurniotu, Aphrodite; Lolis, Elias; Bernhagen, Jürgen

    2016-01-01

    An emerging number of non-chemokine mediators are found to bind to classical chemokine receptors and to elicit critical biological responses. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that exhibits chemokine-like activities through non-cognate interactions with the chemokine receptors CXCR2 and CXCR4, in addition to activating the type II receptor CD74. Activation of the MIF-CXCR2 and -CXCR4 axes promotes leukocyte recruitment, mediating the exacerbating role of MIF in atherosclerosis and contributing to the wealth of other MIF biological activities. Although the structural basis of the MIF-CXCR2 interaction has been well studied and was found to engage a pseudo-ELR and an N-like loop motif, nothing is known about the regions of CXCR4 and MIF that are involved in binding to each other. Using a genetic strain of Saccharomyces cerevisiae that expresses a functional CXCR4 receptor, site-specific mutagenesis, hybrid CXCR3/CXCR4 receptors, pharmacological reagents, peptide array analysis, chemotaxis, fluorescence spectroscopy, and circular dichroism, we provide novel molecular information about the structural elements that govern the interaction between MIF and CXCR4. The data identify similarities with classical chemokine-receptor interactions but also provide evidence for a partial allosteric agonist compared with CXCL12 that is possible due to the two binding sites of CXCR4. PMID:27226569

  20. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  1. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, David Yin-wei; Tanaka, Yoshimasa; Iwasaki, Masashi

    2008-07-29

    Signaling through the programmed death 1 (PD-1) inhibitory receptor upon binding its ligand, PD-L1, suppresses immune responses against autoantigens and tumors and plays an important role in the maintenance of peripheral immune tolerance. Release from PD-1 inhibitory signaling revives 'exhausted' virus-specific T cells in chronic viral infections. Here we present the crystal structure of murine PD-1 in complex with human PD-L1. PD-1 and PD-L1 interact through the conserved front and side of their Ig variable (IgV) domains, as do the IgV domains of antibodies and T cell receptors. This places the loops at the ends of the IgV domains onmore » the same side of the PD-1/PD-L1 complex, forming a surface that is similar to the antigen-binding surface of antibodies and T cell receptors. Mapping conserved residues allowed the identification of residues that are important in forming the PD-1/PD-L1 interface. Based on the structure, we show that some reported loss-of-binding mutations involve the PD-1/PD-L1 interaction but that others compromise protein folding. The PD-1/PD-L1 interaction described here may be blocked by antibodies or by designed small-molecule drugs to lower inhibitory signaling that results in a stronger immune response. The immune receptor-like loops offer a new surface for further study and potentially the design of molecules that would affect PD-1/PD-L1 complex formation and thereby modulate the immune response.« less

  2. N‐methyl‐D‐aspartate receptor antibody production from germinal center reactions: Therapeutic implications

    PubMed Central

    Makuch, Mateusz; Wilson, Robert; Al‐Diwani, Adam; Varley, James; Kienzler, Anne‐Kathrin; Taylor, Jennifer; Berretta, Antonio; Fowler, Darren; Lennox, Belinda; Leite, M. Isabel; Waters, Patrick

    2018-01-01

    Introduction N‐methyl‐D‐aspartate receptor (NMDAR) antibody encephalitis is mediated by immunoglobulin G (IgG) autoantibodies directed against the NR1 subunit of the NMDAR. Around 20% of patients have an underlying ovarian teratoma, and the condition responds to early immunotherapies and ovarian teratoma removal. However, despite clear therapeutic relevance, mechanisms of NR1‐IgG production and the contribution of germinal center B cells to NR1‐IgG levels are unknown. Methods Clinical data and longitudinal paired serum NR1‐reactive IgM and IgG levels from 10 patients with NMDAR‐antibody encephalitis were determined. Peripheral blood mononuclear cells from these 10 patients, and two available ovarian teratomas, were stimulated with combinations of immune factors and tested for secretion of total IgG and NR1‐specific antibodies. Results In addition to disease‐defining NR1‐IgG, serum NR1‐IgM was found in 6 of 10 patients. NR1‐IgM levels were typically highest around disease onset and detected for several months into the disease course. Moreover, circulating patient B cells were differentiated into CD19+CD27++CD38++ antibody‐secreting cells in vitro and, from 90% of patients, secreted NR1‐IgM and NR1‐IgG. Secreted levels of NR1‐IgG correlated with serum NR1‐IgG (p < 0.0001), and this was observed across the varying disease durations, suggestive of an ongoing process. Furthermore, ovarian teratoma tissue contained infiltrating lymphocytes which produced NR1‐IgG in culture. Interpretation Serum NR1‐IgM and NR1‐IgG, alongside the consistent production of NR1‐IgG from circulating B cells and from ovarian teratomas suggest that ongoing germinal center reactions may account for the peripheral cell populations which secrete NR1‐IgG. Cells participating in germinal center reactions might be a therapeutic target for the treatment of NMDAR‐antibody encephalitis. Ann Neurol 2018;83:553–561 PMID:29406578

  3. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development.

    PubMed

    Costa, Ricardo; Shah, Ami N; Santa-Maria, Cesar A; Cruz, Marcelo R; Mahalingam, Devalingam; Carneiro, Benedito A; Chae, Young Kwang; Cristofanilli, Massimo; Gradishar, William J; Giles, Francis J

    2017-02-01

    Triple negative breast cancer (TNBC) accounts for 10-20% of cases in breast cancer. Despite recent advances in the treatment of hormonal receptor+ and HER2+ breast cancers, there are no targeted therapies available for TNBC. Evidence supports that most patients with TNBC express the transmembrane Epidermal Growth Factor Receptor (EGFR). However, early phase clinical trials failed to demonstrate significant activity of EGFR-targeted monoclonal antibodies and/or tyrosine kinase inhibitors. Here, we review the recent discoveries related to the underlying biology of the EGFR pathway in TNBC, clinical progress to date and suggest rational future approaches for investigational therapies in TNBC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    PubMed

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  5. Recombinant immunotoxins and retargeted killer cells: employing engineered antibody fragments for tumor-specific targeting of cytotoxic effectors.

    PubMed

    Wels, Winfried; Biburger, Markus; Müller, Tina; Dälken, Benjamin; Giesübel, Ulrike; Tonn, Torsten; Uherek, Christoph

    2004-03-01

    Over the past years, monoclonal antibodies have attracted enormous interest as targeted therapeutics, and a number of such reagents are in clinical use. However, responses could not be achieved in all patients with tumors expressing high levels of the respective target antigens, suggesting that other factors such as limited recruitment of endogenous immune effector mechanisms can also influence treatment outcome. This justifies the search for alternative, potentially more effective reagents. Antibody-toxins and cytolytic effector cells genetically modified to carry antibody-based receptors on the surface, represent such tailor-made targeting vehicles with the potential of improved tumor localization and enhanced efficacy. In this way, advances in recombinant antibody technology have made it possible to circumvent problems inherent in chemical coupling of antibodies and toxins, and have allowed construction via gene fusion of recombinant molecules which combine antibody-mediated recognition of tumor cells with specific delivery of potent protein toxins of bacterial or plant origin. Likewise, recombinant antibody fragments provide the basis for the construction of chimeric antigen receptors that, upon expression in cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells, link antibody-mediated recognition of tumor antigens with these effector cells' potent cytolytic activities, thereby making them promising cellular therapeutics for adoptive cancer therapy. Here, general principles for the derivation of cytotoxic proteins and effector cells with antibody-dependent tumor specificity are summarized, and current strategies to employ these molecules and cells for directed cancer therapy are discussed, focusing mainly on the tumor-associated antigens epidermal growth factor receptor (EGFR) and the closely related ErbB2 (HER2) as targets.

  6. Coordinate regulation of estrogen-mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30.

    PubMed

    Quinn, Jeffrey A; Graeber, C Thomas; Frackelton, A Raymond; Kim, Minsoo; Schwarzbauer, Jean E; Filardo, Edward J

    2009-07-01

    Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.

  7. Striational antibodies in myasthenia gravis: reactivity and possible clinical significance.

    PubMed

    Romi, Fredrik; Skeie, Geir Olve; Gilhus, Nils Erik; Aarli, Johan Arild

    2005-03-01

    Myasthenia gravis is an autoimmune disease caused, in most cases, by antibodies attaching to the acetylcholine receptor. Some myasthenia gravis patients have antibodies that bind in a cross-striational pattern to skeletal and heart muscle tissue sections (striational antibodies). These antibodies react with epitopes on the muscle proteins titin and ryanodine receptor, are found mainly in sera of patients with thymoma and late-onset myasthenia gravis, and may correlate with myasthenia gravis severity. Their presence may predict an unsatisfactory outcome after thymectomy. The detection of titin and ryanodine receptor antibodies provides more specific clinical information than the immunofluorescent demonstration of striational antibodies.

  8. Nodding syndrome in Tanzania may not be associated with circulating anti-NMDA-and anti-VGKC receptor antibodies or decreased pyridoxal phosphate serum levels-a pilot study.

    PubMed

    Dietmann, Anelia; Wallner, Bernd; König, Rebekka; Friedrich, Katrin; Pfausler, Bettina; Deisenhammer, Florian; Griesmacher, Andrea; Seger, Christoph; Matuja, William; JilekAall, Louise; Winkler, Andrea S; Schmutzhard, Erich

    2014-06-01

    Nodding syndrome (NS) is a seemingly progressive epilepsy disorder of unknown underlying cause. We investigated association of pyridoxal-phosphate serum levels and occurrence of anti-neuronal antibodies against N-methyl-D-aspartate (NMDA) receptor and voltage gated potassium channel (VGKC) complex in NS patients. Sera of a Tanzanian cohort of epilepsy and NS patients and community controls were tested for the presence of anti-NMDA-receptor and anti-VGKC complex antibodies by indirect immunofluorescence assay. Furthermore pyridoxal-phosphate levels were measured. Auto-antibodies against NMDA receptor or VGKC (LG1 or Caspr2) complex were not detected in sera of patients suffering from NS (n=6), NS plus other seizure types (n=16), primary generalized epilepsy (n=1) and community controls without epilepsy (n=7). Median Pyridoxal-phosphate levels in patients with NS compared to patients with primary generalized seizures and community controls were not significantly different. However, these median pyridoxal-phosphate levels are significantly lower compared to the range considered normal in Europeans. In this pilot study NS was not associated with serum anti-NMDA receptor or anti-VGKC complex antibodies and no association to pyridoxal-phosphate serum levels was found.

  9. Can anti-vascular endothelial growth factor antibody reverse radiation necrosis? A preclinical investigation.

    PubMed

    Duan, Chong; Perez-Torres, Carlos J; Yuan, Liya; Engelbach, John A; Beeman, Scott C; Tsien, Christina I; Rich, Keith M; Schmidt, Robert E; Ackerman, Joseph J H; Garbow, Joel R

    2017-05-01

    Anti-vascular endothelial growth factor (anti-VEGF) antibodies are a promising new treatment for late time-to-onset radiation-induced necrosis (RN). We sought to evaluate and validate the response to anti-VEGF antibody in a mouse model of RN. Mice were irradiated with the Leksell Gamma Knife Perfexion™ and then treated with anti-VEGF antibody, beginning at post-irradiation (PIR) week 8. RN progression was monitored via anatomic and diffusion MRI from weeks 4-12 PIR. Standard histology, using haematoxylin and eosin (H&E), and immunohistochemistry staining were used to validate the response to treatment. After treatment, both post-contrast T1-weighted and T2-weighted image-derived lesion volumes decreased (P < 0.001), while the lesion volumes for the control group increased. The abnormally high apparent diffusion coefficient (ADC) for RN also returned to the ADC range for normal brain following treatment (P < 0.001). However, typical RN pathology was still present histologically. Large areas of focal calcification were observed in ~50% of treated mouse brains. Additionally, VEGF and hypoxia-inducible factor 1-alpha (HIF-1α) were continually upregulated in both the anti-VEGF and control groups. Despite improvements observed radiographically following anti-VEGF treatment, lesions were not completely resolved histologically. The subsequent calcification and the continued upregulation of VEGF and HIF-1α merit further preclinical/clinical investigation.

  10. Can anti-Vascular Endothelial Growth Factor Antibody Reverse Radiation Necrosis? A Preclinical Investigation

    PubMed Central

    Duan, Chong; Perez-Torres, Carlos J; Yuan, Liya; Engelbach, John A; Beeman, Scott C; Tsien, Christina I; Rich, Keith M; Schmidt, Robert E; Ackerman, Joseph JH; Garbow, Joel R

    2017-01-01

    Anti-vascular endothelial growth factor (anti-VEGF) antibodies are a promising new treatment for late time-to-onset radiation-induced necrosis (RN). We sought to evaluate and validate the response to anti-VEGF antibody in a mouse model of RN. Mice were irradiated with the Leksell Gamma Knife PerfexionTM and then treated with anti-VEGF antibody, beginning at post-irradiation (PIR) week 8. RN progression was monitored via anatomic and diffusion MRI from weeks 4 to 12 PIR. Standard histology, using haematoxylin and eosin (H&E), and immunohistochemistry staining were used to validate the response to treatment. After treatment, both post-contrast T1-weighted and T2-weighted image-derived lesion volumes decreased (P<0.001), while the lesion volumes for the control group increased. The abnormally high apparent diffusion coefficient (ADC) for RN also returned to the ADC range for normal brain following treatment (P<0.001). However, typical RN pathology was still present histologically. Large areas of focal calcification were observed in ~50% of treated mouse brains. Additionally, VEGF and hypoxia-inducible factor 1-alpha (HIF-1α) were continually upregulated in both the anti-VEGF and control groups. Despite improvements observed radiographically following anti-VEGF treatment, lesions were not completely resolved histologically. The subsequent calcification and the continued upregulation of VEGF and HIF-1α merit further preclinical/clinical investigation. PMID:28425047

  11. Fc gamma receptor 3a genotype predicts overall survival in follicular lymphoma patients treated on SWOG trials with combined monoclonal antibody plus chemotherapy but not chemotherapy alone

    PubMed Central

    Persky, Daniel O.; Dornan, David; Goldman, Bryan H.; Braziel, Rita M.; Fisher, Richard I.; LeBlanc, Michael; Maloney, David G.; Press, Oliver W.; Miller, Thomas P.; Rimsza, Lisa M.

    2012-01-01

    Background Fc gamma receptor polymorphisms were linked to outcome in follicular lymphoma patients treated with single-agent rituximab, an anti-CD20 monoclonal antibody. In particular, 158F/F genotype of Fc gamma receptor 3A and 131R/R genotype of Fc gamma receptor 2A correlated with worse outcome compared to high-affinity 158V/V and 131H/H, respectively. We examined this association in the context of anti-CD20 monoclonal antibody combined with chemotherapy, as compared to chemotherapy alone, in follicular lymphoma patients treated on SWOG clinical trials. Design and Methods Tissue from 142 SWOG patients treated with chemotherapy alone (protocol S8809, n=70) or combined chemotherapy and anti-CD20 monoclonal antibody (rituximab and Iodine I-131 tositumomab on protocols S9800 and S9911, n=30 and 42, respectively) was analyzed. DNA was extracted and assayed for Fc gamma receptor 3A V158F and 2A R131H polymorphisms using a TaqMan SNP assay. Stratified Cox’s regression was used to assess association with overall survival. Results For Fc gamma receptor 3A, there was an association with overall survival in the combination therapy trials but not in the chemotherapy-only trial. Having at least one Fc gamma receptor 3A V allele was associated with improved overall survival versus F/F (HR=0.33, 95% CI, 0.11, 0.96, P=0.042). For overall survival, there was evidence of a statistical interaction between the use of mAb and the number of V alleles (0, 1, or 2) (P=0.006). There was no such association for Fc gamma receptor 2A. Conclusions Fc gamma receptor 3A polymorphism status may be predictive of survival in follicular lymphoma patients receiving treatments containing an anti-CD20 antibody but not treatment with chemotherapy alone. Thus, Fc gamma receptor 3A polymorphisms may be important to consider in designing new follicular lymphoma trials and new anti-CD20 monoclonal antibodies. PMID:22271896

  12. Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein.

    PubMed

    Kampmeier, Florian; Niesen, Judith; Koers, Alexander; Ribbert, Markus; Brecht, Andreas; Fischer, Rainer; Kiessling, Fabian; Barth, Stefan; Thepen, Theo

    2010-10-01

    The epidermal growth factor receptor (EGFR) is overexpressed in several types of cancer and its inhibition can effectively inhibit tumour progression. The purpose of this study was to design an EGFR-specific imaging probe that combines efficient tumour targeting with rapid systemic clearance to facilitate non-invasive assessment of EGFR expression. Genetic fusion of a single-chain antibody fragment with the SNAP-tag produced a 48-kDa antibody derivative that can be covalently and site-specifically labelled with substrates containing 0 (6)-benzylguanine. The EGFR-specific single-chain variable fragment (scFv) fusion protein 425(scFv)SNAP was labelled with the near infrared (NIR) dye BG-747, and its accumulation, specificity and kinetics were monitored using NIR fluorescence imaging in a subcutaneous pancreatic carcinoma xenograft model. The 425(scFv)SNAP fusion protein accumulates rapidly and specifically at the tumour site. Its small size allows efficient renal clearance and a high tumour to background ratio (TBR) of 33.2 +/- 6.3 (n = 4) 10 h after injection. Binding of the labelled antibody was efficiently competed with a 20-fold excess of unlabelled probe, resulting in an average TBR of 6 +/- 1.35 (n = 4), which is similar to that obtained with a non-tumour-specific probe (5.44 +/- 1.92, n = 4). When compared with a full-length antibody against EGFR (cetuximab), 425(scFv)SNAP-747 showed significantly higher TBRs and complete clearance 72 h post-injection. The 425(scFv)SNAP fusion protein combines rapid and specific targeting of EGFR-positive tumours with a versatile and robust labelling technique that facilitates the attachment of fluorophores for use in optical imaging. The same approach could be used to couple a chelating agent for use in nuclear imaging.

  13. Modulation of Insulin-Like Growth Factor-1 Receptor and its Signaling Network for the Treatment of Cancer: Current Status and Future Perspectives

    PubMed Central

    Jin, Meizhong; Buck, Elizabeth; Mulvihill, Mark J.

    2013-01-01

    Based on over three decades of pre-clinical data, insulin-like growth factor-1 receptor (IGF-1R) signaling has gained recognition as a promoter of tumorogenesis, driving cell survival and proliferation in multiple human cancers. As a result, IGF-1R has been pursued as a target for cancer treatment. Early pioneering efforts targeting IGF-1R focused on highly selective monoclonal antibodies, with multiple agents advancing to clinical trials. However, despite some initial promising results, recent clinical disclosures have been less encouraging. Moreover, recent studies have revealed that IGF-1R participates in a dynamic and complex signaling network, interacting with additional targets and pathways thereof through various crosstalk and compensatory signaling mechanisms. Such mechanisms of bypass signaling help to shed some light on the decreased effectiveness of selective IGF-1R targeted therapies (e.g. monoclonal antibodies) and suggest that targeting multiple nodes within this signaling network might be necessary to produce a more effective therapeutic response. Additionally, such findings have led to the development of small molecule IGF-1R inhibitors which also co-inhibit additional targets such as insulin receptor and epidermal growth factor receptor. Such findings have helped to guide the design rationale of numerous drug combinations that are currently being evaluated in clinical trials. PMID:25992224

  14. The effects of MEK1/2 inhibition on cigarette smoke exposure-induced ET receptor upregulation in rat cerebral arteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Lei

    Cigarette smoking, a major stroke risk factor, upregulates endothelin receptors in cerebral arteries. The present study examined the effects of MEK1/2 pathway inhibition on cigarette smoke exposure-induced ET receptor upregulation. Rats were exposed to the secondhand smoke (SHS) for 8 weeks followed by intraperitoneal injection of MEK1/2 inhibitor, U0126 for another 4 weeks. The urine cotinine levels were assessed with high-performance liquid chromatography. Contractile responses of isolated cerebral arteries were recorded by a sensitive wire myograph. The mRNA and protein expression levels of receptor and MEK/ERK1/2 pathway molecules were examined by real-time PCR and Western blotting, respectively. Cerebral artery receptormore » localization was determined with immunohistochemistry. The results showed the urine cotinine levels from SHS exposure group were significantly higher than those from the fresh group. In addition, the MEK1/2 inhibitor, U0126 significantly reduced SHS exposure-increased ET{sub A} receptor mRNA and protein levels as well as contractile responses mediated by ET{sub A} receptors. The immunoreactivity of increased ET{sub A} receptor expression was primarily cytoplasmic in smooth muscle cells. In contrast, ET{sub B} receptor was noted in endothelial cells. However, the SHS-induced decrease in endothelium-dependent relaxation was unchanged after U0126 treatment. Furthermore, SHS increased the phosphorylation of MEK1/2 and ERK1/2 protein in cerebral arteries. By using U0126 could inhibit the phosphorylated ERK1/2 protein but not MEK1/2. Taken together, our data show that treatment with MEK1/2 pathway inhibitor offsets SHS exposure-induced ET{sub A} receptor upregulation in rat cerebral arteries. - Highlights: • Cigarette smoke exposure induces ET{sub A} receptor upregulation in rat cerebral arteries. • U0126 can alleviate the receptor upregulation. • The mechanism relies on MEK/ERK1/2 pathway activation. • We may provide a new target for

  15. Intrinsic factor antibody negative atrophic gastritis; is it different from pernicious anaemia?

    PubMed

    Amarapurkar, D N; Amarapurkar, A D

    2010-01-01

    H. pylori gastritis and autoimmune gastritis are the two main types of chronic atrophic gastritis. Parietal cell antibody (PCA) and intrinsic factor antibody (IFA) are characteristic of autoimmune gastritis, of which IFA is more specific. Patients who are IFA negative are considered under the category of chronic atrophic gastritis. To differentiate IFA positive from IFA negative chronic atrophic gastritis. Fifty consecutive patients of biopsy proven chronic atrophic gastritis were included in this study. All patients underwent haematological and biochemical tests including serum LDH, vitamin B12 and fasting serum gastrin levels. PCA and IFA antibodies were tested in all patients. Multiple gastric biopsies from body and antrum of the stomach were taken and evaluated for presence of intestinal metaplasia, endocrine cell hyperplasia, carcinoid and H. pylori infection. Patients were grouped as group A (IFA positive) and group B (IFA negative). The mean laboratory values and histological parameters were compared between the two groups using appropriate statistical methods. Eighteen patients were in group A (mean age 55.5 +/- 13 years, male: female = 16:2) and thirty-two in group B (mean age 49.7 +/- 13 years, male: female = 25:7). There was no statistically significant difference between median values of haemoglobin, MCV, LDH, Vitamin B12 and serum gastrin in both the groups. None of the histological parameters showed any significant difference. There was no statistically significant difference in haematological, biochemical and histological parameters in IFA positive and negative gastritis. These may be the spectrum of the same disease, where H. pylori may be responsible for initiating the process.

  16. Treatment of psoriasis with interleukin-12/23 monoclonal antibody: a systematic review.

    PubMed

    Wu, Yan; Chen, Jing; Li, Yuan-Hong; Ma, Guo-Zhang; Chen, John Z S; Gao, Xing-Hua; Chen, Hong-Duo

    2012-01-01

    To systematically review the efficacy and safety of interleukin-12/23 monoclonal antibody (IL-12/23 mAb) on psoriasis. Relevant randomized controlled trials (RCTs) were identified by systematic literature searches in MEDLINE, OVID, EMBASE, Cochrane Library, and the metaRegister of Controlled Trials. The efficacy outcomes and adverse effects of included RCTs were critically assessed. A total of 3365 participants in 5 multicenter RCTs were included. The RRs of most efficacy outcomes showed significant differences between i) IL-12/23 mAb and placebo at week 12/16; ii) IL-12/23 mAb and etanercept at week 12; iii) IL-12/23 mAb in high dose and IL-12/23 mAb in low dose at week 24/28. Increasing treatment times did not obviously provide additional benefit to efficacy improvement. The adverse events of IL-12/23 mAb were similar to those of controls. Antibodies to IL-12/23 mAb were mostly undetected or shown at low titer. Treatment with IL-12/23 mAb did not influence related biochemical markers. IL-12/23 mAb was effective in the treatment of psoriasis on skin lesions, health-related quality of life and psoriatic arthritis in the short-term. The increase in treatment time points was not associated with additional efficacy and dose-dependence was observed with the ongoing treatment up to week 24/28. The adverse effects were minimal and tolerable.

  17. Fibroblast growth factor receptor inhibitors.

    PubMed

    Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma

    2013-01-01

    Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.

  18. Increased serum anti-N-methyl-D-aspartate receptor antibody immunofluorescence in psychiatric patients with past catatonia

    PubMed Central

    Lin, Chin-Chuen; Hung, Yi-Yung; Tsai, Meng-Chang

    2017-01-01

    Objective Anti-N-methyl-D-aspartate receptor (NMDAR) antibody was thought to be the cause of anti-NMDAR encephalitis, with manifestations similar to catatonia and schizophrenia. Anti-NMDAR antibody in neuropsychiatric patients who had catatonia before were investigated in a follow-up evaluation. The intensity of antibody immunofluorescence was quantified and compared with healthy controls. Method Nineteen patients (eight males and eleven females) agreed to be followed-up. Thirteen had the diagnosis of schizophrenia, two had the diagnosis of major depressive disorder, two had bipolar disorder, one had postpartum depression, and one had herpes simplex encephalitis. No patient had catatonia during the follow-up. Nineteen sex-matched healthy controls were recruited. Results Using Mann-Whitney U test, patients had greater intensity of anti-NMDAR antibody immunofluorescence than the healthy controls (121,979 ± 86,526 vs. 47,692 ± 26,102, p = 0.003). No correlation was found between immunofluorescence intensity and catatonia scales or symptom severity scores. Neuropsychiatric patients with past catatonia showed greater anti-NMDAR antibody response than the healthy controls. Conclusion NMDAR dysfunction might play a role in the mechanism underlying catatonia. Further studies are needed to confirm this finding. PMID:29073246

  19. Increased serum anti-N-methyl-D-aspartate receptor antibody immunofluorescence in psychiatric patients with past catatonia.

    PubMed

    Lin, Chin-Chuen; Hung, Yi-Yung; Tsai, Meng-Chang; Huang, Tiao-Lai

    2017-01-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) antibody was thought to be the cause of anti-NMDAR encephalitis, with manifestations similar to catatonia and schizophrenia. Anti-NMDAR antibody in neuropsychiatric patients who had catatonia before were investigated in a follow-up evaluation. The intensity of antibody immunofluorescence was quantified and compared with healthy controls. Nineteen patients (eight males and eleven females) agreed to be followed-up. Thirteen had the diagnosis of schizophrenia, two had the diagnosis of major depressive disorder, two had bipolar disorder, one had postpartum depression, and one had herpes simplex encephalitis. No patient had catatonia during the follow-up. Nineteen sex-matched healthy controls were recruited. Using Mann-Whitney U test, patients had greater intensity of anti-NMDAR antibody immunofluorescence than the healthy controls (121,979 ± 86,526 vs. 47,692 ± 26,102, p = 0.003). No correlation was found between immunofluorescence intensity and catatonia scales or symptom severity scores. Neuropsychiatric patients with past catatonia showed greater anti-NMDAR antibody response than the healthy controls. NMDAR dysfunction might play a role in the mechanism underlying catatonia. Further studies are needed to confirm this finding.

  20. Thyroid stimulating antibodies in sarcoidosis.

    PubMed

    Attali, J R; Valensi, P; Valeyre, D; Sandre-Banon, D; Sebaoun, J; Battesti, J P

    1994-06-01

    Thyroid disorders, particularly euthyroid goiters and hyperthyroidism, can be observed in sarcoidosis. The aim of this study was to analyze the presence of thyroid stimulating antibodies (TSAb) in 21 patients with sarcoidosis. 12 patients out of 21 had simultaneous euthyroid goiter. The others were euthyroid and free of goiter. The TSAb testing was carried out using the rat thyroid fragment perifusion technique. Thyroid response to IgG was determined by the mean rate of T4 release (R) during a 30-min perifusion and the secretion peak (Imax). Antibodies inhibiting TSH binding to its receptors were also looked for. Ten patients were TSAb+ and eleven were TSAb-. There was no difference between the TSAb+ and TSAb- groups in the clinical parameters for sarcoidosis, nor in the number of goiters found (n = 6 for both groups). In 5 out of the 6 cases where goiter was present in the TSAb+ group it was homogeneous and diagnosed at the same time as or after the first signs of sarcoidosis, whereas in 5 out of the 6 cases of goiter in TSAb- patients, it was nodular, diagnosed before sarcoidosis in 3 of them, endemic in one of them, and familial in another. The search for antibodies inhibiting TSH binding to its receptors was negative in 10 out of 21 patients tested. Although the presence of thyroid-stimulating antibodies in the serum of patients with sarcoidosis, found here for the first time, remains to be explained, it pleads in favor of the immunologic nature of the association of sarcoidosis with thyroid disorders.

  1. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    PubMed Central

    Alonso-Camino, Vanesa; Sánchez-Martín, David; Compte, Marta; Nuñez-Prado, Natalia; Diaz, Rosa M; Vile, Richard; Alvarez-Vallina, Luis

    2013-01-01

    A human single-chain variable fragment (scFv) antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs). The repertoire was fused to a first-generation T cell receptor ζ (TCRζ)-based chimeric antigen receptor (CAR). We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2) bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR) and the selection context (cell synapse), which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells. PMID:23695536

  2. Activated protein C (APC) can increase bone anabolism via a protease-activated receptor (PAR)1/2 dependent mechanism.

    PubMed

    Shen, Kaitlin; Murphy, Ciara M; Chan, Ben; Kolind, Mille; Cheng, Tegan L; Mikulec, Kathy; Peacock, Lauren; Xue, Meilang; Park, Sang-Youel; Little, David G; Jackson, Chris J; Schindeler, Aaron

    2014-12-01

    Activated Protein C (APC) is an anticoagulant with strong cytoprotective properties that has been shown to promote wound healing. In this study APC was investigated for its potential orthopedic application using a Bone Morphogenetic Protein 2 (rhBMP-2) induced ectopic bone formation model. Local co-administration of 10 µg rhBMP-2 with 10 µg or 25 µg APC increased bone volume at 3 weeks by 32% (N.S.) and 74% (p<0.01) compared to rhBMP-2 alone. This was associated with a significant increase in CD31+ and TRAP+ cells in tissue sections of ectopic bone, consistent with enhanced vascularity and bone turnover. The actions of APC are largely mediated by its receptors endothelial protein C receptor (EPCR) and protease-activated receptors (PARs). Cultured pre-osteoblasts and bone nodule tissue sections were shown to express PAR1/2 and EPCR. When pre-osteoblasts were treated with APC, cell viability and phosphorylation of ERK1/2, Akt, and p38 were increased. Inhibition with PAR1 and sometimes PAR2 antagonists, but not with EPCR blocking antibodies, ameliorated the effects of APC on cell viability and kinase phosphorylation. These data indicate that APC can affect osteoblast viability and signaling, and may have in vivo applications with rhBMP-2 for bone repair. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Coagulation factor VII variants resistant to inhibitory antibodies.

    PubMed

    Branchini, Alessio; Baroni, Marcello; Pfeiffer, Caroline; Batorova, Angelika; Giansily-Blaizot, Muriel; Schved, Jean F; Mariani, Guglielmo; Bernardi, Francesco; Pinotti, Mirko

    2014-11-01

    Replacement therapy is currently used to prevent and treat bleeding episodes in coagulation factor deficiencies. However, structural differences between the endogenous and therapeutic proteins might increase the risk for immune complications. This study was aimed at identifying factor (F)VII variants resistant to inhibitory antibodies developed after treatment with recombinant activated factor VII (rFVIIa) in a FVII-deficient patient homozygous for the p.A354V-p.P464Hfs mutation, which predicts trace levels of an elongated FVII variant in plasma. We performed fluorescent bead-based binding, ELISA-based competition as well as fluorogenic functional (activated FX and thrombin generation) assays in plasma and with recombinant proteins. We found that antibodies displayed higher affinity for the active than for the zymogen FVII (half-maximal binding at 0.54 ± 0.04 and 0.78 ± 0.07 BU/ml, respectively), and inhibited the coagulation initiation phase with a second-order kinetics. Isotypic analysis showed a polyclonal response with a large predominance of IgG1. We hypothesised that structural differences in the carboxyl-terminus between the inherited FVII and the therapeutic molecules contributed to the immune response. Intriguingly, a naturally-occurring, poorly secreted and 5-residue truncated FVII (FVII-462X) escaped inhibition. Among a series of truncated rFVII molecules, we identified a well-secreted and catalytically competent variant (rFVII-464X) with reduced binding to antibodies (half-maximal binding at 0.198 ± 0.003 BU/ml) as compared to the rFVII-wt (0.032 ± 0.002 BU/ml), which led to a 40-time reduced inhibition in activated FX generation assays. Taken together our results provide a paradigmatic example of mutation-related inhibitory antibodies, strongly support the FVII carboxyl-terminus as their main target and identify inhibitor-resistant FVII variants.

  4. Effective therapy for a murine model of human anaplastic large-cell lymphoma with the anti-CD30 monoclonal antibody, HeFi-1, does not require activating Fc receptors

    PubMed Central

    Zhang, Meili; Yao, Zhengsheng; Zhang, Zhuo; Garmestani, Kayhan; Goldman, Carolyn K.; Ravetch, Jeffrey V.; Janik, John; Brechbiel, Martin W.; Waldmann, Thomas A.

    2006-01-01

    CD30 is a member of the tumor necrosis factor receptor family. Overexpression of CD30 on some neoplasms versus its limited expression on normal tissues makes this receptor a promising target for antibody-based therapy. Anaplastic large-cell lymphoma (ALCL) represents a heterogeneous group of aggressive non-Hodgkin lymphomas characterized by the strong expression of CD30. We investigated the therapeutic efficacy of HeFi-1, a mouse IgG1 monoclonal antibody, which recognizes the ligand-binding site on CD30, and humanized anti-Tac antibody (daclizumab), which recognizes CD25, in a murine model of human ALCL. The ALCL model was established by intravenous injection of karpas299 cells into nonobese diabetic/severe combined immuno-deficient (SCID/NOD) wild-type or SCID/NOD Fc receptor common γ chain–deficient (FcRγ–/–) mice. HeFi-1, given at a dose of 100 μg weekly for 4 weeks, significantly prolonged survival of the ALCL-bearing SCID/NOD wild-type and SCID/NOD FcRγ–/– mice (P < .01) as compared with the control groups. In vitro studies showed that HeFi-1 inhibited the proliferation of karpas299 cells, whereas daclizumab did not inhibit cell proliferation. We demonstrated that the expression of FcRγ on polymorphonuclear leukocytes and monocytes was not required for HeFi-1–mediated tumor growth inhibition in vivo, although it was required for daclizumab. PMID:16551968

  5. Anti-interleukin-6 receptor antibody (tocilizumab) treatment of multicentric Castleman's disease.

    PubMed

    Matsuyama, Masashi; Suzuki, Takeshi; Tsuboi, Hiroto; Ito, Satoshi; Mamura, Mizuko; Goto, Daisuke; Matsumoto, Isao; Tsutsumi, Akito; Sumida, Takayuki

    2007-01-01

    We report three cases of multicentric Castleman's disease (MCD) successfully treated with anti-interleukin-6 receptor antibody (tocilizumab). Tocilizumab was administered intravenously at a dose of 8 mg/kg every 2 weeks. In each case, tocilizumab alleviated symptoms, including generalized fatigue, pyrexia, and alleviated biochemical abnormalities, including anemia, hypoalbuminemia, hypergammaglobulinemia, and increased C-reactive protein (CRP). Side effects included hypercholesterolemia, acute pyelonephritis, mild inflammation of the parotid glands, and upper respiratory system inflammation. Other severe side effects were not observed. These results indicate that tocilizumab is effective for the treatment of MCD. This is the first report on tocilizumab efficacy for Castleman's disease after approval for use for Castleman's disease.

  6. Vaccination of rhesus macaques with the anthrax vaccine adsorbed vaccine produces a serum antibody response that effectively neutralizes receptor-bound protective antigen in vitro.

    PubMed

    Clement, Kristin H; Rudge, Thomas L; Mayfield, Heather J; Carlton, Lena A; Hester, Arelis; Niemuth, Nancy A; Sabourin, Carol L; Brys, April M; Quinn, Conrad P

    2010-11-01

    Anthrax toxin (ATx) is composed of the binary exotoxins lethal toxin (LTx) and edema toxin (ETx). They have separate effector proteins (edema factor and lethal factor) but have the same binding protein, protective antigen (PA). PA is the primary immunogen in the current licensed vaccine anthrax vaccine adsorbed (AVA [BioThrax]). AVA confers protective immunity by stimulating production of ATx-neutralizing antibodies, which could block the intoxication process at several steps (binding of PA to the target cell surface, furin cleavage, toxin complex formation, and binding/translocation of ATx into the cell). To evaluate ATx neutralization by anti-AVA antibodies, we developed two low-temperature LTx neutralization activity (TNA) assays that distinguish antibody blocking before and after binding of PA to target cells (noncomplexed [NC] and receptor-bound [RB] TNA assays). These assays were used to investigate anti-PA antibody responses in AVA-vaccinated rhesus macaques (Macaca mulatta) that survived an aerosol challenge with Bacillus anthracis Ames spores. Results showed that macaque anti-AVA sera neutralized LTx in vitro, even when PA was prebound to cells. Neutralization titers in surviving versus nonsurviving animals and between prechallenge and postchallenge activities were highly correlated. These data demonstrate that AVA stimulates a myriad of antibodies that recognize multiple neutralizing epitopes and confirm that change, loss, or occlusion of epitopes after PA is processed from PA83 to PA63 at the cell surface does not significantly affect in vitro neutralizing efficacy. Furthermore, these data support the idea that the full-length PA83 monomer is an appropriate immunogen for inclusion in next-generation anthrax vaccines.

  7. A monoclonal antibody specific for Δ12-prostaglandin J2 and its utilization in the immunological assay in cell culture system of adipocytes.

    PubMed

    Syeda, Pinky Karim; Hossain, Mohammad Salim; Chowdhury, Abu Asad; Rahman, Mohammad Sharifur; Khan, Ferdous; Nishimura, Kohji; Jisaka, Mitsuo; Nagaya, Tsutomu; Shono, Fumiaki; Yokota, Kazushige

    2012-10-01

    Prostaglandin (PG) D(2) can be produced in adipocytes and dehydrated to PGs of J(2) series, including Δ(12)-PGJ(2) and 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)), which serve as pro-adipogenic prostanoids through the activation of peroxisome proliferator-activated receptor γ. To accomplish the quantification of Δ(12)-PGJ(2) in the cell culture system of adipocytes, the present study aimed to develop a sensitive and specific immunological assay for Δ(12)-PGJ(2). Here, we established a cloned hybridoma cell line secreting a monoclonal antibody specifically recognizing Δ(12)-PGJ(2) and utilized for the development of its solid-phase enzyme-linked immunosorbent assay (ELISA). The immobilized antigen using a conjugate of Δ(12)-PGJ(2) and γ-globulin was competitively allowed to react with the monoclonal antibody in the presence of free Δ(12)-PGJ(2). The assay provided a sensitive calibration curve for Δ(12)-PGJ(2), allowing us to determine a range from 0.16 pg to 0.99 ng with a value of 13 pg at 50% displacement in one assay. The monoclonal antibody showed almost no cross-reactivity with other related prostanoids since PGJ(2) and 15d-PGJ(2) were only recognized with much lower values of 0.5% and 0.2%, respectively. The accuracy for determining Δ(12)-PGJ(2) in the culture medium of adipocytes was confirmed by measurement after the culture medium was fortified with known amounts of authentic Δ(12)-PGJ(2) in a range from 10 to 200 pg/mL. The application of our ELISA revealed that the formation of Δ(12)-PGJ(2) became more pronounced after several hours of incubation of PGD(2) at 37°C in fresh maturation medium of cultured adipocytes. Furthermore, we provide evidence for the increased ability of cultured adipocytes to synthesize endogenous Δ(12)-PGJ(2) during the progression of adipogenesis. These results indicate the reliability and usefulness of our solid-phase ELISA for stable Δ(12)-PGJ(2), reflecting the biosynthesis of unstable PGD(2) in the culture

  8. Mechanisms of Action of Therapeutic Antibodies for Cancer

    PubMed Central

    Redman, JM; Hill, EM; AlDeghaither, D; Weiner, LM

    2015-01-01

    The therapeutic utility of antibodies and their derivatives is achieved by various means. The FDA has approved several targeted antibodies that disrupt signaling of various growth factor receptors for the treatment of a number of cancers. Rituximab, and other anti-CD20 monoclonal antibodies are active in B cell malignancies. As more experience has been gained with anti-CD20 monoclonal antibodies, the multifactorial nature of their anti-tumor mechanisms has emerged. Other targeted antibodies function to dampen inhibitory checkpoints. These checkpoint inhibitors have recently achieved dramatic results in several cancers, including melanoma. These and related antibodies continue to be investigated in the clinical and pre-clinical settings. Novel antibody structures that target two or more antigens have also made their way into clinical use. Tumor targeted antibodies can also be conjugated to chemo- or radiotherapeutic agents, or catalytic toxins, as a means to deliver toxic payloads to cancer cells. Here we provide a review of these mechanisms and a discussion of their relevance to current and future clinical applications. PMID:25911943

  9. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library.

    PubMed

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei

    2016-09-11

    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.

  10. Prognostic value of sex-hormone receptor expression in non-muscle-invasive bladder cancer.

    PubMed

    Nam, Jong Kil; Park, Sung Woo; Lee, Sang Don; Chung, Moon Kee

    2014-09-01

    We investigated sex-hormone receptor expression as predicting factor of recurrence and progression in patients with non-muscle invasive bladder cancer. We retrospectively evaluated tumor specimens from patients treated for transitional cell carcinoma of the bladder at our institution between January 2006 and January 2011. Performing immunohistochemistry using a monoclonal androgen receptor antibody and monoclonal estrogen receptor-beta antibody on paraffin-embedded tissue sections, we assessed the relationship of immunohistochemistry results and prognostic factors such as recurrence and progression. A total of 169 patients with bladder cancer were evaluated in this study. Sixty-threepatients had expressed androgen receptors and 52 patients had estrogen receptor beta. On univariable analysis, androgen receptor expression was significant lower in recurrence rates (p=0.001), and estrogen receptor beta expression was significant higher in progression rates (p=0.004). On multivariable analysis, significant association was found between androgen receptor expression and lower recurrence rates (hazard ratio=0.500; 95% confidence interval, 0.294 to 0.852; p=0.011), but estrogen receptor beta expression was not significantly associated with progression rates. We concluded that the possibility of recurrence was low when the androgen receptor was expressed in the bladder cancer specimen and it could be the predicting factor of the stage, number of tumors, carcinoma in situ lesion and recurrence.

  11. The role of Fc-receptors in the uptake and transport of therapeutic antibodies in the retinal pigment epithelium.

    PubMed

    Dithmer, Michaela; Hattermann, Kirsten; Pomarius, Prasti; Aboul Naga, Shereen Hassan; Meyer, Tim; Mentlein, Rolf; Roider, Johann; Klettner, Alexa

    2016-04-01

    In the ophthalmological clinic, intravitreally applied antibodies or Fc-containing fusion proteins are frequently used, but the biology and pharmacokinetics of these therapeutics in the retina are not well understood. We have previously shown intracellular uptake of Fc-containing molecules in RPE cells. In this study, we investigated the involvement of Fc-receptors, both Fcγ-receptors and the neonatal Fc-receptor (FcRn) in the uptake and intracellular trafficking of the VEGF-antagonists bevacizumab, aflibercept and the anti-CD20 antibody rituximab in three different model systems, primary porcine RPE cells, ARPE-19 cells and porcine RPE/choroid explants. The expression of Fcγ-receptors was tested in primary porcine RPE cells, and the expression of Fcγ-receptors I and II could be shown in RT-PCR and qRT-PCR, while the expression of FcRn was additionally confirmed in Western blot and immunocytochemistry. All three compounds, bevacizumab, rituximab and aflibercept, were taken up into the cells and displayed a characteristic time-dependent pattern, as shown in Western blot and immunohistochemistry. The uptake was not altered by the inhibition of Fcγ-receptors using different inhibitors (TruStain FcX, genistein, R406). However, the inhibition of FcRn with an antagonistic antibody reduced intracellular IgG in porcine RPE cells (rituximab) and ARPE-19 cells (bevacizumab, rituximab). Colocalisations between the tested compounds and myosin7a could be found. In addition, limited colocalization with FcRn and the tested compounds, as well as triple localization between compound, FcRn and myosin7a could be detected, indicating a role of myosin7a in FcRn mediated transport. However, the colocalizations are restricted to small fractions of the Fc-containing compounds. Furthermore, the FcRn is mainly found in the membrane section, where only minute amounts of the Fc-containing compounds are seen, suggesting a limited interaction. An apical to choroidal transport of Ig

  12. UV-B radiation induces macrophage migration inhibitory factor-mediated melanogenesis through activation of protease-activated receptor-2 and stem cell factor in keratinocytes.

    PubMed

    Enomoto, Akiko; Yoshihisa, Yoko; Yamakoshi, Takako; Ur Rehman, Mati; Norisugi, Osamu; Hara, Hiroshi; Matsunaga, Kenji; Makino, Teruhiko; Nishihira, Jun; Shimizu, Tadamichi

    2011-02-01

    UV radiation indirectly regulates melanogenesis in melanocytes through a paracrine regulatory mechanism involving keratinocytes. Protease-activated receptor (PAR)-2 activation induces melanosome transfer by increasing phagocytosis of melanosomes by keratinocytes. This study demonstrated that macrophage migration inhibitory factor (MIF) stimulated PAR-2 expression in human keratinocytes. In addition, we showed that MIF stimulated stem cell factor (SCF) release in keratinocytes; however, MIF had no effect on the release of endothelin-1 or prostaglandin E2 in keratinocytes. In addition, MIF had no direct effect on melanin and tyrosinase synthesis in cultured human melanocytes. The effect of MIF on melanogenesis was also examined using a three-dimensional reconstituted human epidermal culture model, which is a novel, commercially available, cultured human epidermis containing functional melanocytes. Migration inhibitory factor induced an increase in melanin content in the epidermis after a 9-day culture period. Moreover, melanin synthesis induced by UV-B stimulation was significantly down-regulated by anti-MIF antibody treatment. An in vivo study showed that the back skin of MIF transgenic mice had a higher melanin content than that of wild-type mice after 12 weeks of UV-B exposure. Therefore, MIF-mediated melanogenesis occurs mainly through the activation of PAR-2 and SCF expression in keratinocytes after exposure to UV-B radiation. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Impact of antibody subclass and disulfide isoform differences on the biological activity of CD200R and βklotho agonist antibodies.

    PubMed

    Grujic, Ognjen; Stevens, Jennitte; Chou, Robert Y-T; Weiszmann, Jennifer V; Sekirov, Laura; Thomson, Christy; Badh, Anita; Grauer, Stephanie; Chan, Brian; Graham, Kevin; Manchulenko, Kathy; Dillon, Thomas M; Li, Yang; Foltz, Ian N

    2017-05-13

    Agonism of cell surface receptors by monoclonal antibodies is dependent not only on its ability to bind the target, but also to deliver a biological signal through receptors to the cell. Immunoglobulin G2 antibodies (IgG2s) are made up of a mixture of distinct isoforms (IgG2-A, -B and A/B), which differ by the disulfide connectivity at the hinge region. When evaluating panels of agonistic antibodies against CD200 receptor (CD200R) or βklotho receptor (βklotho), we noticed striking activity differences of IgG1 or IgG2 antibodies with the same variable domains. For the CD200R antibody, the IgG2 antibody demonstrated higher activity than the IgG1 or IgG4 antibody. More significantly, for βklotho, agonist antibodies with higher biological activity as either IgG2 or IgG1 were identified. In both cases, ion exchange chromatography was able to isolate the bioactivity to the IgG2-B isoform from the IgG2 parental mixture. The subclass-related increase in agonist activity was not correlated with antibody aggregation or binding affinity, but was driven by enhanced avidity for the CD200R antibody. These results add to the growing body of evidence that show that conformational differences in the antibody hinge region can have a dramatic impact on the antibody activity and must be considered when screening and engineering therapeutic antibody candidates. The results also demonstrate that the IgG1 (IgG2-A like) or the IgG2-B form may provide the most active form of agonist antibodies for different antibodies and targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Analysis of Receptor for Vibrio cholerae El Tor Hemolysin with a Monoclonal Antibody That Recognizes Glycophorin B of Human Erythrocyte Membrane

    PubMed Central

    Zhang, Dongyan; Takahashi, Junko; Seno, Taiko; Tani, Yoshihiko; Honda, Takeshi

    1999-01-01

    El Tor hemolysin (ETH), a pore-forming toxin secreted by Vibrio cholerae O1 biotype El Tor and most Vibrio cholerae non-O1 isolates, is able to lyse erythrocytes and other mammalian cells. To study the receptor for this toxin or the related molecule(s) on erythrocyte, we first isolated a monoclonal antibody, B1, against human erythrocyte membrane, which not only blocks the binding of ETH to human erythrocyte but also inhibits the hemolytic activity of ETH. Biochemical characterization and immunoblotting revealed that this antibody recognized an epitope on the extracellular domain of glycophorin B, a sialoglycoprotein of erythrocyte membrane. Erythrocytes lacking glycophorin B but not glycophorin A were less sensitive to the toxin than were normal human erythrocytes. These results indicate that glycophorin B is a receptor for ETH or at least an associated molecule of the receptor for ETH on human erythrocytes. PMID:10496913

  15. Contribution of enhanced engagement of antigen presentation machinery to the clinical immunogenicity of a human interleukin (IL)-21 receptor-blocking therapeutic antibody.

    PubMed

    Xue, L; Hickling, T; Song, R; Nowak, J; Rup, B

    2016-01-01

    Reliable risk assessment for biotherapeutics requires accurate evaluation of risk factors associated with immunogenicity. Immunogenicity risk assessment tools were developed and applied to investigate the immunogenicity of a fully human therapeutic monoclonal antibody, ATR-107 [anti-interleukin (IL)-21 receptor] that elicited anti-drug antibodies (ADA) in 76% of healthy subjects in a Phase 1 study. Because the ATR-107 target is expressed on dendritic cells (DCs), the immunogenicity risk related to engagement with DC and antigen presentation pathways was studied. Despite the presence of IL-21R on DCs, ATR-107 did not bind to the DCs more extensively than the control therapeutic antibody (PF-1) that had elicited low clinical ADA incidence. However, ATR-107, but not the control therapeutic antibody, was translocated to the DC late endosomes, co-localized with intracellular antigen-D related (HLA-DR) molecules and presented a dominant T cell epitope overlapping the complementarity determining region 2 (CDR2) of the light chain. ATR-107 induced increased DC activation exemplified by up-regulation of DC surface expression of CD86, CD274 (PD-L1) and CD40, increased expansion of activated DC populations expressing CD86(hi), CD40(hi), CD83(hi), programmed death ligand 1 (PD-L1)(hi), HLA-DR(hi) or CCR7(hi), as well as elevated secretion of tumour necrosis factor (TNF)-α by DCs. DCs exposed to ATR-107 stimulated an autologous T cell proliferative response in human donor cells, in concert with the detection of immunoglobulin (Ig)G-type anti-ATR-107 antibody response in clinical samples. Collectively, the enhanced engagement of antigen presentation machinery by ATR-107 was suggested. The approaches and findings described in this study may be relevant to identifying lower immunogenicity risk targets and therapeutic molecules. © 2015 British Society for Immunology.

  16. Simultaneous application of bevacizumab and anti-CTGF antibody effectively suppresses proangiogenic and profibrotic factors in human RPE cells.

    PubMed

    Bagheri, Abouzar; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Samiei, Shahram; Sheibani, Nader; Astaneh, Shamila Darvishalipour; Kanavi, Mozhgan Rezaei; Mohammadian, Azam

    2015-01-01

    Retinal pigment epithelial (RPE) cells play key roles in the development of choroidal neovascularization and subsequent fibrosis. We investigated the impact of bevacizumab, antihuman vascular endothelial growth factor (VEGF) antibody, and anticonnective tissue growth factor (anti-CTGF) neutralizing antibody, individually or in combination, on proangiogenic and profibrotic properties of RPE cells. Primary cultures of human RPE cells were incubated with different concentrations of bevacizumab (0.25, 0.5, and 0.8 mg/ml) and/or anti-CTGF (10 μg/ml), and cell proliferation and apoptosis were determined. Expression and activity of proangiogenic and profibrotic genes including matrix metalloproteinases (MMP)-2 and 9, VEGFA, CTGF, vascular endothelial growth factor receptor-1 (VEGFR-1), cathepsin D, tissue inhibitor of metalloproteinases (TIMP) -1 and -2, and alpha smooth muscle actin (α-SMA) were assessed with slot blot, real-time RT-PCR, and zymography. Bevacizumab alone inhibited proliferation of RPE cells while anti-CTGF or bevacizumab and anti-CTGF combined had no inhibitory effect in this regard. Bevacizumab increased MMP-2, MMP-9, and cathepsin D but decreased VEGFA and VEGFR-1 expression. The CTGF level was increased by using 0.25 mg/ml bevacizumab but decreased at the 0.8 mg/ml concentration of bevacizumab. Treatment with anti-CTGF antibody decreased MMP-2 expression whereas combined treatment with bevacizumab and anti-CTGF resulted in decreased expression of MMP-2, TIMP-1, cathepsin D, VEGFA, CTGF, and α-SMA in the treated cultures. Treatment of RPE cells with the combination of bevacizumab and anti-CTGF could effectively suppress the proangiogenic and profibrotic activity of RPE cells.

  17. Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies

    PubMed Central

    Bentley, Carol; Yates, Jenna; Salimi, Maryam; Greig, Jenny; Wiblin, Sarah; Hassanali, Tasneem; Banham, Alison H.

    2017-01-01

    Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy. PMID:28448627

  18. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4*

    PubMed Central

    Dolezal, Olan; Cao, Benjamin; See, Heng B.; Pfleger, Kevin D. G.; Gorry, Paul R.; Pow, Andrew; Viduka, Katerina; Lim, Kevin; Lu, Bernadine G. C.; Chang, Denison H. C.; Murray-Rust, Thomas; Dogovski, Con; Doerflinger, Marcel; Zhang, Yuan; Parisi, Kathy; Casey, Joanne L.; Nuttall, Stewart D.; Foley, Michael

    2016-01-01

    CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an “i-body,” the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor. PMID:27036939

  19. Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine.

    PubMed

    Ovsyannikova, Inna G; Jacobson, Robert M; Dhiman, Neelam; Vierkant, Robert A; Pankratz, V Shane; Poland, Gregory A

    2008-05-01

    Mumps outbreaks continue to occur throughout the world, including in highly vaccinated populations. Vaccination against mumps has been successful; however, humoral and cellular immune responses to mumps vaccines vary significantly from person to person. We set out to assess whether HLA and cytokine gene polymorphisms are associated with variations in the immune response to mumps viral vaccine. To identify genetic factors that might contribute to variations in mumps vaccine-induced immune responses, we performed HLA genotyping in a group of 346 healthy schoolchildren (12-18 years of age) who previously received 2 doses of live mumps vaccine. Single-nucleotide polymorphisms (minor allele frequency of >5%) in cytokine and cytokine receptor genes were genotyped for a subset of 118 children. Median values for mumps-specific antibody titers and lymphoproliferative stimulation indices were 729 IU/mL and 4.8, respectively. Girls demonstrated significantly higher mumps antibody titers than boys, indicating gender-linked genetic differences in humoral immune response. Significant associations were found between the HLA-DQB1*0303 alleles and lower mumps-specific antibody titers. An interesting finding was the association of several HLA class II alleles with mumps-specific lymphoproliferation. Alleles of the DRB1 (*0101, *0301, *0801, *1001, *1201, and *1302), DQA1 (*0101, *0105, *0401, and *0501), and DQB1 (*0201, *0402, and *0501) loci were associated with significant variations in lymphoproliferative immune responses to mumps vaccine. Additional associations were observed with single-nucleotide polymorphisms in the interleukin-10RA, interleukin-12RB1, and interleukin-12RB2 cytokine receptor genes. Minor alleles for 4 single-nucleotide polymorphisms within interleukin-10RA and interleukin-12RB genes were associated with variations in humoral and cellular immune responses to mumps vaccination. These data suggest the important role of HLA and immunoregulatory cytokine receptor

  20. Establishment of EMab-134, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody for Detecting Squamous Cell Carcinoma Cells of the Oral Cavity.

    PubMed

    Itai, Shunsuke; Yamada, Shinji; Kaneko, Mika K; Chang, Yao-Wen; Harada, Hiroyuki; Kato, Yukinari

    2017-12-01

    Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, activates downstream signaling cascades in many tumors. In this study, we established novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. We immunized mice with a combination of the extracellular domain of EGFR and EGFR-overexpressing LN229 glioblastoma cells (LN229/EGFR) and performed the first screening using enzyme-linked immunosorbent assay. Next, we selected mAbs using flow cytometry. Among 156 established clones, two mAbs, EMab-51 (IgG 1 , kappa) and EMab-134 (IgG 1 , kappa), reacted with EGFR in Western blot analysis; EMab-134 showed a much higher sensitivity compared with EMab-51. We compared the binding affinities of EMab-51 and EMab-134 using flow cytometry; the calculated K D values for EMab-51 and EMab-134 against SAS cells/HSC-2 cells were 9.2 × 10 -9 M/9.9 × 10 -9 M and 2.6 × 10 -9 M/8.3 × 10 -9 M, respectively, indicating that EMab-134 has a higher affinity to EGFR-expressing cells. Immunohistochemical analysis of EMab-51 and EMab-134 showed sensitive and specific reactions against oral cancer cells; EMab-134 demonstrated a much higher sensitivity (36/38 cases; 94.7%) to oral squamous cell carcinomas compared with EMab-51 (6/38 cases; 15.8%). This novel anti-EGFR mAb, EMab-134, could be advantageous for detecting EGFR in the pathological analysis of EGFR-expressing cancers.

  1. Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody.

    PubMed

    Willett, Brian J; Kraase, Martin; Logan, Nicola; McMonagle, Elizabeth L; Samman, Ayman; Hosie, Margaret J

    2010-04-26

    In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo. Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134. The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.

  2. Prevalence of thyrotropin receptor germline mutations and clinical courses in 89 hyperthyroid patients with diffuse goiter and negative anti-thyrotropin receptor antibodies.

    PubMed

    Nishihara, Eijun; Fukata, Shuji; Hishinuma, Akira; Amino, Nobuyuki; Miyauchi, Akira

    2014-05-01

    We studied the frequency of thyrotropin (TSH) receptor mutations in hyperthyroid patients with diffuse goiter and negative TSH receptor antibodies (TRAb), and the clinical pictures of the hyperthyroid patients in the presence and absence of mutations. From 2003 through 2012, 89 hyperthyroid patients with diffuse goiter and negative TRAb based on a second- or third-generation assay underwent sequence analysis of the TSH receptor gene from peripheral leukocytes. The outcome of hyperthyroidism in patients with a TSH receptor mutation and their affected family members was compared with that in patients without any mutation after a 1-10-year follow-up. Germline mutations of the TSH receptor occurred in 4 of the 89 patients (4.5%), including 3 definitive constitutively activating mutations (L512Q, E575K, and D617Y). The main difference in the clinical outcome of hyperthyroidism was that no patients with a TSH receptor mutation achieved euthyroidism throughout the follow-up, while 23.5% of patients without any mutation entered remission. The progression from subclinical to overt hyperthyroidism was not significantly different between patients with or without a mutation. Meanwhile, 10.3% of TRAb-negative patients without any TSH receptor mutation developed TRAb-positive Graves' hyperthyroidism during the follow-up. The prevalence of nonautoimmune hyperthyroidism with TSH receptor mutations is lower than that of latent Graves' disease in TRAb-negative patients with hyperthyroidism. However, all affected patients with a TSH receptor mutation showed persistent hyperthyroidism regardless of subclinical or overt hyperthyroidism throughout the follow-up.

  3. Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding

    DOE PAGES

    Pan, Ruimin; Chen, Yuxin; Vaine, Michael; ...

    2015-07-15

    The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitopemore » peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence 433AMYAPPI 439, it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system.« less

  4. Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Ruimin; Chen, Yuxin; Vaine, Michael

    The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitopemore » peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence 433AMYAPPI 439, it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system.« less

  5. Platelet factor 4/heparin antibodies in blood bank donors.

    PubMed

    Hursting, Marcie J; Pai, Poulomi J; McCracken, Julianna E; Hwang, Fred; Suvarna, Shayela; Lokhnygina, Yuliya; Bandarenko, Nicholas; Arepally, Gowthami M

    2010-11-01

    Platelet factor 4 (PF4)/heparin antibody, typically associated with heparin therapy, is reported in some heparin-naive people. Seroprevalence in the general population, however, remains unclear. We prospectively evaluated PF4/heparin antibody in approximately 4,000 blood bank donors using a commercial enzyme-linked immunosorbent assay for initial and then repeated (confirmatory) testing. Antibody was detected initially in 249 (6.6%; 95% confidence interval [CI], 5.8%-7.4%) of 3,795 donors and repeatedly in 163 (4.3%; 95% CI, 3.7%-5.0%) of 3,789 evaluable donors. "Unconfirmed" positives were mostly (93%) low positives (optical density [OD] = 0.40-0.59). Of 163 repeatedly positive samples, 116 (71.2%) were low positives, and 124 (76.1%) exhibited heparin-dependent binding. Predominant isotypes of intermediate to high seropositive samples (OD >0.6) were IgG (20/39 [51%]), IgM (9/39 [23%]), and indeterminate (10/39 [26%]). The marked background seroprevalence of PF4/heparin antibody (4.3%-6.6%) with the preponderance of low (and frequently nonreproducible) positives in blood donors suggests the need for further assay calibration, categorization of antibody level, and studies evaluating clinical relevance of "naturally occurring" PF4/heparin antibodies.

  6. Expression, Biochemistry, and Stabilization with Camel Antibodies of Membrane Proteins: Case Study of the Mouse 5-HT3 Receptor.

    PubMed

    Hassaïne, Ghérici; Deluz, Cédric; Grasso, Luigino; Wyss, Romain; Hovius, Ruud; Stahlberg, Henning; Tomizaki, Takashi; Desmyter, Aline; Moreau, Christophe; Peclinovska, Lucie; Minniberger, Sonja; Mebarki, Lamia; Li, Xiao-Dan; Vogel, Horst; Nury, Hugues

    2017-01-01

    There is growing interest in the use of mammalian protein expression systems, and in the use of antibody-derived chaperones, for structural studies. Here, we describe protocols ranging from the production of recombinant membrane proteins in stable inducible cell lines to biophysical characterization of purified membrane proteins in complex with llama antibody domains. These protocols were used to solve the structure of the mouse 5-HT3 serotonin receptor but are of broad applicability for crystallization or cryo-electron microscopy projects.

  7. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease.

    PubMed

    Tabrizi, Mohammad; Bornstein, Gadi Gazit; Suria, Hamza

    2010-03-01

    The monoclonal antibody market continues to witness an impressive rate of growth and has become the leading source of expansion in the biologic segment within the pharmaceutical industry. Currently marketed monoclonal antibodies target a diverse array of antigens. These antigens are distributed in a variety of tissues such as tumors, lungs, synovial fluid, psoriatic plaques, and lymph nodes. As the concentration of drug at the proximity of the biological receptor determines the magnitude of the observed pharmacological responses, a significant consideration in effective therapeutic application of monoclonal antibodies is a thorough understanding of the processes that regulate antibody biodistribution. Monoclonal antibody distribution is affected by factors such as molecular weight, blood flow, tissue and tumor heterogeneity, structure and porosity, target antigen density, turnover rate, and the target antigen expression profile.

  8. A unique mouse strain that develops spontaneous, iodine-accelerated, pathogenic antibodies to the human thyrotrophin receptor 1

    PubMed Central

    Rapoport, Basil; Aliesky, Holly A.; Banuelos, Bianca; Chen, Chun-Rong; McLachlan, Sandra M.

    2015-01-01

    Antibodies that stimulate the thyrotropin receptor (TSHR), the cause of Graves’ hyperthyroidism, only develop in humans. TSHR antibodies can be induced in mice by immunization but studying pathogenesis and therapeutic intervention requires a model without immunization. Spontaneous, iodine-accelerated, thyroid autoimmunity develops in NOD.H2h4 mice associated with thyroglobulin and thyroid-peroxidase, but not TSHR, antibodies. We hypothesized that transferring the human (h)TSHR A-subunit to NOD.H2h4 mice would result in loss of tolerance to this protein. BALB/c hTSHR A-subunit mice were bred to NOD.H2h4 mice and transgenic offspring were repeatedly backcrossed to NOD.H2h4 mice. All offspring developed antibodies to thyroglobulin and thyroid-peroxidase. However, only TSHR-transgenic NOD.H2h4 mice (TSHR/NOD.H2h4) developed pathogenic TSHR antibodies as detected using clinical Graves’ disease assays. As in humans, TSHR/NOD.H2h4 females were more prone than males to developing pathogenic TSHR antibodies. Fortunately, in view of the confounding effect of excess thyroid hormone on immune responses, spontaneously arising pathogenic (h)TSHR antibodies cross-react poorly with the mouse TSHR and do not cause thyrotoxicosis. In summary, the TSHR/NOD.H2h4 mouse strain develops spontaneous, iodine-accelerated, pathogenic TSHR antibodies in females, providing a unique model to investigate disease pathogenesis and test novel TSHR-antigen specific immunotherapies aimed at curing Graves’ disease in humans. PMID:25825442

  9. Clinical utility of random anti-tumor necrosis factor drug-level testing and measurement of antidrug antibodies on the long-term treatment response in rheumatoid arthritis.

    PubMed

    Jani, Meghna; Chinoy, Hector; Warren, Richard B; Griffiths, Christopher E M; Plant, Darren; Fu, Bo; Morgan, Ann W; Wilson, Anthony G; Isaacs, John D; Hyrich, KimmeL; Barton, Anne

    2015-05-01

    To investigate whether antidrug antibodies and/or drug non-trough levels predict the long-term treatment response in a large cohort of patients with rheumatoid arthritis (RA) treated with adalimumab or etanercept and to identify factors influencing antidrug antibody and drug levels to optimize future treatment decisions. A total of 331 patients from an observational prospective cohort were selected (160 patients treated with adalimumab and 171 treated with etanercept). Antidrug antibody levels were measured by radioimmunoassay, and drug levels were measured by enzyme-linked immunosorbent assay in 835 serial serum samples obtained 3, 6, and 12 months after initiation of therapy. The association between antidrug antibodies and drug non-trough levels and the treatment response (change in the Disease Activity Score in 28 joints) was evaluated. Among patients who completed 12 months of followup, antidrug antibodies were detected in 24.8% of those receiving adalimumab (31 of 125) and in none of those receiving etanercept. At 3 months, antidrug antibody formation and low adalimumab levels were significant predictors of no response according to the European League Against Rheumatism (EULAR) criteria at 12 months (area under the receiver operating characteristic curve 0.71 [95% confidence interval (95% CI) 0.57, 0.85]). Antidrug antibody-positive patients received lower median dosages of methotrexate compared with antidrug antibody-negative patients (15 mg/week versus 20 mg/week; P = 0.01) and had a longer disease duration (14.0 versus 7.7 years; P = 0.03). The adalimumab level was the best predictor of change in the DAS28 at 12 months, after adjustment for confounders (regression coefficient 0.060 [95% CI 0.015, 0.10], P = 0.009). Etanercept levels were associated with the EULAR response at 12 months (regression coefficient 0.088 [95% CI 0.019, 0.16], P = 0.012); however, this difference was not significant after adjustment. A body mass index of ≥30 kg/m(2

  10. Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites.

    PubMed Central

    He, M; Taussig, M J

    1997-01-01

    We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries. PMID:9396828

  11. Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites.

    PubMed

    He, M; Taussig, M J

    1997-12-15

    We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries.

  12. Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation

    PubMed Central

    Willard, Melinda D; Willard, Francis S; Li, Xiaoyan; Cappell, Steven D; Snider, William D; Siderovski, David P

    2007-01-01

    Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by heterotrimeric G-protein α subunits and thus inhibit signaling by many G protein-coupled receptors. Several RGS proteins have a multidomain architecture that adds further complexity to their roles in cell signaling in addition to their GTPase-accelerating activity. RGS12 contains a tandem repeat of Ras-binding domains but, to date, the role of this protein in Ras-mediated signal transduction has not been reported. Here, we show that RGS12 associates with the nerve growth factor (NGF) receptor tyrosine kinase TrkA, activated H-Ras, B-Raf, and MEK2 and facilitates their coordinated signaling to prolonged ERK activation. RGS12 is required for NGF-mediated neurite outgrowth of PC12 cells, but not outgrowth stimulated by basic fibroblast growth factor. siRNA-mediated knockdown of RGS12 expression also inhibits NGF-induced axonal growth in dissociated cultures of primary dorsal root ganglia neurons. These data suggest that RGS12 may play a critical, and receptor-selective, role in coordinating Ras-dependent signals that are required for promoting and/or maintaining neuronal differentiation. PMID:17380122

  13. Type 1 receptor tyrosine kinases are differentially phosphorylated in mammary carcinoma and differentially associated with steroid receptors.

    PubMed Central

    Bacus, S. S.; Chin, D.; Yarden, Y.; Zelnick, C. R.; Stern, D. F.

    1996-01-01

    The neu/erbB-2/HER-2 proto-oncogene is amplified and/or overexpressed in up to 30% of mammary carcinomas and has been variably correlated with poor prognosis. The signaling activity of the encoded receptor tyrosine kinase is regulated by interactions with other type 1 receptors and their ligands. We have used a novel approach, phosphorylation-sensitive anti-Neu antibodies, to quantify signaling by Neu and epidermal growth factor receptor in a panel of frozen sections of mammary carcinoma specimens. We also determined the relationship of Neu, phosphorylated Neu (and epidermal growth factor receptor), and phosphotyrosine to the expression of Neu-related receptors (epidermal growth factor receptor, HER-3, and HER-4) and to prognostic factors (estrogen and progesterone receptor). We found that tyrosine phosphorylation of Neu (and hence signaling activity) is highly variable among mammary carcinomas. Neu and HER-4 were associated with divergent correlates, suggesting that they have profoundly different biological activities. These results have implications for etiology of mammary carcinoma for clinical evaluation of mammary carcinoma patients, and for development of Neu-targeted therapeutic strategies. Images Figure 1 Figure 2 PMID:8579117

  14. Development of a Fully Human Anti-PDGFRβ Antibody That Suppresses Growth of Human Tumor Xenografts and Enhances Antitumor Activity of an Anti-VEGFR2 Antibody

    PubMed Central

    Shen, Juqun; Vil, Marie Danielle; Prewett, Marie; Damoci, Chris; Zhang, Haifan; Li, Huiling; Jimenez, Xenia; Deevi, Dhanvanthri S; Iacolina, Michelle; Kayas, Anthony; Bassi, Rajiv; Persaud, Kris; Rohoza-Asandi, Anna; Balderes, Paul; Loizos, Nick; Ludwig, Dale L; Tonra, James; Witte, Larry; Zhu, Zhenping

    2009-01-01

    Platelet-derived growth factor receptor β (PDGFRβ) is upregulated in most of solid tumors. It is expressed by pericytes/smooth muscle cells, fibroblast, macrophage, and certain tumor cells. Several PDGF receptor-related antagonists are being developed as potential antitumor agents and have demonstrated promising antitumor activity in both preclinical and clinical settings. Here, we produced a fully human neutralizing antibody, IMC-2C5, directed against PDGFRβ from an antibody phage display library. IMC-2C5 binds to both human and mouse PDGFRβ and blocks PDGF-B from binding to the receptor. IMC-2C5 also blocks ligand-stimulated activation of PDGFRβ and downstream signaling molecules in tumor cells. In animal studies, IMC-2C5 significantly delayed the growth of OVCAR-8 and NCI-H460 human tumor xenografts in nude mice but failed to show antitumor activities in OVCAR-5 and Caki-1 xenografts. Our results indicate that the antitumor efficacy of IMC-2C5 is primarily due to its effects on tumor stroma, rather than on tumor cells directly. Combination of IMC-2C5 and DC101, an anti-mouse vascular endothelial growth factor receptor 2 antibody, resulted in significantly enhanced antitumor activity in BxPC-3, NCI-H460, and HCT-116 xenografts, compared with DC101 alone, and the trend of additive effects to DC101 treatment in several other tumor models. ELISA analysis of NCI-H460 tumor homogenates showed that IMC-2C5 attenuated protein level of vascular endothelial growth factor and basic fibroblast growth factor elevated by DC101 treatment. Finally, IMC-2C5 showed a trend of additive effects when combined with DC101/chemotherapy in MIA-PaCa-2 and NCI-H460 models. Taken together, these results lend great support to the use of PDGFRβ antagonists in combination with other antiangiogenic agents in the treatment of a broad range of human cancers. PMID:19484148

  15. Antiglutamate Receptor Antibodies and Cognitive Impairment in Primary Antiphospholipid Syndrome and Systemic Lupus Erythematosus

    PubMed Central

    Gerosa, Maria; Poletti, Barbara; Pregnolato, Francesca; Castellino, Gabriella; Lafronza, Annalisa; Silani, Vincenzo; Riboldi, Piersandro; Meroni, Pier Luigi; Merrill, Joan T.

    2016-01-01

    Systemic lupus erythematosus (SLE) and antiphospholipid syndrome have an increased risk to develop cognitive impairment. A possible role for antiphospholipid antibodies (aPL) and antiglutamate receptor (anti-NMDA) antibodies in the pathogenesis of neurological manifestations of these two conditions, have been suggested. In particular, the role of anti-NMDA antibodies in the pathogenesis of neuropsychiatric SLE is supported by several experimental studies in animal models and by the finding of a correlation between anti-NMDA positivity in cerebrospinal fluid and neurological manifestations of SLE. However, data from the literature are controversial, as several studies have reported a correlation of these antibodies with mild cognitive impairment in SLE, but more recent studies have not confirmed this finding. The synergism between anti-NMDA and other concomitant autoantibodies, such as aPL, can be hypothesized to play a role in inducing the tissue damage and eventually the functional abnormalities. In line with this hypothesis, we have found a high incidence of at least one impaired cognitive domain in a small cohort of patients with primary APS (PAPS) and SLE. Interestingly, aPL were associated with low scoring for language ability and attention while anti-NMDA titers and mini-mental state examination scoring were inversely correlated. However, when patients were stratified according to the presence/absence of aPL, the correlation was confirmed in aPL positive patients only. Should those findings be confirmed, the etiology of the prevalent defects found in PAPS patients as well as the synergism between aPL and anti-NMDA antibodies would need to be explored. PMID:26870034

  16. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  17. [Screening of full human anthrax lethal factor neutralizing antibody in transgenic mice].

    PubMed

    Wang, Xiaolin; Chi, Xiangyang; Liu, Ju; Liu, Weicen; Liu, Shuling; Qiu, Shunfang; Wen, Zhonghua; Fan, Pengfei; Liu, Kun; Song, Xiaohong; Fu, Ling; Zhang, Jun; Yu, Changming

    2016-11-25

    Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. The major virulence factor of B. anthracis consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA binds with LF to form lethal toxin (LT), and PA binds with EF to form edema toxin (ET). Antibiotics is hard to work in advanced anthrax infections, because injuries and deaths of the infected are mainly caused by lethal toxin (LT). Thus, the therapeutic neutralizing antibody is the most effective treatment of anthrax. Currently most of the anthrax toxin antibodies are monoclonal antibodies (MAbs) for PA and US FDA has approved ABTHRAX humanized PA monoclonal antibody for the treatment of inhalational anthrax. Once B. anthracis was artificially reconstructed or PA had mutations within recognized neutralization epitopes, anti-PA MAbs would no longer be effective. Therefore, anti-LF MAbs is an important supplement for anthrax treatment. Most of the anti-LF antibodies are murine or chimeric antibodies. By contrast, fully human MAbs can avoid the high immunogenicity of murine antibodies. First, we used LF to immunize the transgenic mice and used fluorescent cell sorting to get antigen-specific memory B cells from transgenic mice spleen lymphocytes. By single cell PCR method, we quickly found two strains of anti-LF MAbs with binding activity, 1D7 and 2B9. Transiently transfected Expi 293F cells to obtain MAbs protein after purification. Both 1D7 and 2B9 efficiently neutralized LT in vitro, and had good synergistic effect when mixed with anti-PA MAbs. In summary, combining the advantages of transgenic mice, fluorescent cell sorting and single-cell PCR methods, this study shows new ideas and methods for the rapid screening of fully human monoclonal antibodies.

  18. Lupus erythematosus cell preparation, antinuclear factor and antideoxyribonucleic acid antibody incongruity in systemic lupus erythematosus.

    PubMed

    Chee, Y C

    1983-01-01

    'Total antinuclear antibody' (ANF) is detected by the fluorescent antinuclear antibody technique which is a screening test, positive in 99% of systemic lupus erythematosus (SLE) sera. The LE factor (positive in 75% of SLE sera), like the anti-DNA antibody, is an antinuclear antibody but directed against DNA-histone. ANF-negative SLE is a clinical entity with absence of these antibodies. A false negative ANF, in the presence of high titre anti-DNA antibody and/or LE cells, is illustrated in two cases of SLE. Postulated mechanisms for this phenomenon are interference in ANF detection by rheumatoid factor, and the prozone effect on the immunofluorescent tests.

  19. Nicotinic receptor-dependent and -independent effects of galantamine, an acetylcholinesterase inhibitor, on the non-neuronal acetylcholine system in C2C12 cells.

    PubMed

    Oikawa, Shino; Mano, Asuka; Iketani, Mitsue; Kakinuma, Yoshihiko

    2015-11-01

    We previously reported that satellite cells possess the ability to produce angiogenic factors, including fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) in vivo. However, whether C2C12 cells possess a non-neuronal cholinergic system (NNCS) or non-neuronal ACh (NNA) remains to be studied; therefore, we investigated the system using C2C12 cells and its regulatory mechanisms. C2C12 cells synthesized ACh, the level of which was comparable with that of cardiomyocytes, and the synthesis was augmented by the acetylcholinesterase inhibitor galantamine. The ChAT promoter activity was upregulated by nicotine or galantamine, partly through nicotinic receptors for both agents as well as through a non-nicotinic receptor pathway for galantamine. Further, VEGF secretion by C2C12 cells was also increased by nicotine or galantamine through nicotinic receptors as well as partly through non-nicotinic pathways in the case of galantamine. These results suggest that C2C12 cells are equipped with NNCS or NNA, which is positively regulated through nicotinic or non-nicotinic pathways, particularly in the case of galantamine. These results provide a novel concept that myogenic cells expressing NNA can be a therapeutic target for regulating angiogenic factor synthesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Antitumor activity of a novel anti-vascular endothelial growth factor receptor-1 monoclonal antibody that does not interfere with ligand binding

    PubMed Central

    Tentori, Lucio; Scimeca, Manuel; Dorio, Annalisa S.; Atzori, Maria Grazia; Failla, Cristina M.; Morea, Veronica; Bonanno, Elena; D'Atri, Stefania; Lacal, Pedro M.

    2016-01-01

    Vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase transmembrane receptor that has also a soluble isoform containing most of the extracellular ligand binding domain (sVEGFR-1). VEGF-A binds to both VEGFR-2 and VEGFR-1, whereas placenta growth factor (PlGF) interacts exclusively with VEGFR-1. In this study we generated an anti-VEGFR-1 mAb (D16F7) by immunizing BALB/C mice with a peptide that we had previously reported to inhibit angiogenesis and endothelial cell migration induced by PlGF. D16F7 did not affect binding of VEGF-A or PlGF to VEGFR-1, thus allowing sVEGFR-1 to act as decoy receptor for these growth factors, but it hampered receptor homodimerization and activation. D16F7 inhibited both the chemotactic response of human endothelial, myelomonocytic and melanoma cells to VEGFR-1 ligands and vasculogenic mimicry by tumor cells. Moreover, D16F7 exerted in vivo antiangiogenic effects in a matrigel plug assay. Importantly, D16F7 inhibited tumor growth and was well tolerated by B6D2F1 mice injected with syngeneic B16F10 melanoma cells. The antitumor effect was associated with melanoma cell apoptosis, vascular abnormalities and decrease of both monocyte/macrophage infiltration and myeloid progenitor mobilization. For all the above, D16F7 may be exploited in the therapy of metastatic melanoma and other tumors or pathological conditions involving VEGFR-1 activation. PMID:27655684

  1. Interleukin‑12B is upregulated by decoy receptor 3 in rheumatoid synovial fibroblasts.

    PubMed

    Fukuda, Koji; Miura, Yasushi; Maeda, Toshihisa; Hayashi, Shinya; Kurosaka, Masahiro

    2016-04-01

    Decoy receptor 3 (DcR3) competitively binds to three ligands, Fas ligand, lymphotoxin‑related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells and tumor necrosis factor‑like ligand 1A (TL1A), to prevent their effects. Recent studies have suggested that DcR3 directly affects cells as a ligand. Using a microarray assay, our group newly identified interleukin (IL)‑12B, which encodes the p40 subunit common to IL‑12 and IL‑23, as one of the genes for which expression in fibroblast‑like synoviocytes from patients with rheumatoid arthritis (RA‑FLS) is induced by DcR3. The present study demonstrated that IL‑12B mRNA expression was upregulated by DcR3‑Fc in RA‑FLS in a dose‑dependent manner, but not in OA‑FLS. IL‑12B p40 protein in RA‑FLS was increased when stimulated with DcR3‑Fc. Pre‑treatment with anti‑TL1A antibody suppressed the upregulation of IL‑12B mRNA in RA‑FLS stimulated with DcR3‑Fc. DcR3 mRNA expression in RA‑FLS was induced by IL‑23, but not by IL‑12. These results indicated that DcR3 may increase IL‑12 or IL‑23 by inducing IL‑12B p40 expression via membrane‑bound TL1A on RA‑FLS and that IL‑23 reciprocally induces DcR3 expression in RA‑FLS. DcR3 and IL‑23 may interact in a feedback loop that aggravates local inflammation in patients with RA.

  2. Factors determining anti-poliovirus type 3 antibodies among orally immunised Indian infants.

    PubMed

    Kaliappan, Saravanakumar Puthupalayam; Venugopal, Srinivasan; Giri, Sidhartha; Praharaj, Ira; Karthikeyan, Arun S; Babji, Sudhir; John, Jacob; Muliyil, Jayaprakash; Grassly, Nicholas; Kang, Gagandeep

    2016-09-22

    Among the three poliovirus serotypes, the lowest responses after vaccination with trivalent oral polio vaccine (tOPV) are to serotype 3. Although improvements in routine immunisation and supplementary immunisation activities have greatly increased vaccine coverage, there are limited data on antibody prevalence in Indian infants. Children aged 5-11months with a history of not having received inactivated polio vaccine were screened for serum antibodies to poliovirus serotype 3 (PV3) by a micro-neutralisation assay according to a modified World Health Organization (WHO) protocol. Limited demographic information was collected to assess risk-factors for a lack of protective antibodies. Student's t-test, logistic regression and multilevel logistic regression (MLR) model were used to estimate model parameters. Of 8454 children screened at a mean age of 8.3 (standard deviation [SD]-1.8) months, 88.1% (95% confidence interval (CI): 87.4-88.8) had protective antibodies to PV3. The number of tOPV doses received was the main determinant of seroprevalence; the maximum likelihood estimate yields a 37.7% (95% CI: 36.2-38.3) increase in seroprevalence per dose of tOPV. In multivariable logistic regression analysis increasing age, male sex, and urban residence were also independently associated with seropositivity (Odds Ratios (OR): 1.17 (95% CI: 1.12-1.23) per month of age, 1.27 (1.11-1.46) and 1.24 (1.05-1.45) respectively). Seroprevalence of antibodies to PV3 is associated with age, gender and place of residence, in addition to the number of tOPV doses received. Ensuring high coverage and monitoring of response are essential as long as oral vaccines are used in polio eradication. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Monoclonal antibodies against colonization factor antigen I pili from enterotoxigenic Escherichia coli.

    PubMed

    Worobec, E A; Shastry, P; Smart, W; Bradley, R; Singh, B; Paranchych, W

    1983-09-01

    Hybridomas secreting monoclonal antibodies directed against intact colonization factor antigen I pili have been produced by the fusion of spleen cells from immunized BALB/c mice with NS1/SP2 myeloma cells. The four monoclones with the highest antibody titer, as detected by enzyme-linked immunosorbant assay (ELISA), were chosen for antibody amplification by production of mouse ascitic fluid. These four were examined for antibody specificity by ELISA and immunoblot assays, using six different pilus types. Three of the four monoclonal isolates were specific for only colonization factor antigen I pili in both assays, whereas the remaining isolate showed a distinct cross-reactivity with K99 pili in the ELISA assay but not in immunoblot analysis. These results indicate that this monoclone may be recognizing a common structural element between the two adhesive pilus types.

  4. Monoclonal antibodies against colonization factor antigen I pili from enterotoxigenic Escherichia coli.

    PubMed Central

    Worobec, E A; Shastry, P; Smart, W; Bradley, R; Singh, B; Paranchych, W

    1983-01-01

    Hybridomas secreting monoclonal antibodies directed against intact colonization factor antigen I pili have been produced by the fusion of spleen cells from immunized BALB/c mice with NS1/SP2 myeloma cells. The four monoclones with the highest antibody titer, as detected by enzyme-linked immunosorbant assay (ELISA), were chosen for antibody amplification by production of mouse ascitic fluid. These four were examined for antibody specificity by ELISA and immunoblot assays, using six different pilus types. Three of the four monoclonal isolates were specific for only colonization factor antigen I pili in both assays, whereas the remaining isolate showed a distinct cross-reactivity with K99 pili in the ELISA assay but not in immunoblot analysis. These results indicate that this monoclone may be recognizing a common structural element between the two adhesive pilus types. Images PMID:6136463

  5. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors.

    PubMed

    Annenkov, Alexander; Rigby, Anne; Amor, Sandra; Zhou, Dun; Yousaf, Nasim; Hemmer, Bernhard; Chernajovsky, Yuti

    2011-08-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 ‎‎(IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single ‎chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional. 2011 Elsevier B.V. All rights reserved.

  6. Insulin-like growth factor-I receptor activity is essential for Kaposi's sarcoma growth and survival.

    PubMed

    Catrina, S-B; Lewitt, M; Massambu, C; Dricu, A; Grünler, J; Axelson, M; Biberfeld, P; Brismar, K

    2005-04-25

    Kaposi's sarcoma (KS) is a highly vascular tumour and is the most common neoplasm associated with human immunodeficiency virus (HIV-1) infection. Growth factors, in particular vascular endothelial growth factor (VEGF), have been shown to play an important role in its development. The role of insulin-like growth factors (IGFs) in the pathophysiology of different tumours led us to evaluate the role of IGF system in KS. The IGF-I receptors (IGF-IR) were identified by immunohistochemistry in biopsies taken from patients with different AIDS/HIV-related KS stages and on KSIMM cells (an established KS-derived cell line). Insulin-like growth factor-I is a growth factor for KSIMM cells with a maximum increase of 3H-thymidine incorporation of 130 +/- 27.6% (P < 0.05) similar to that induced by VEGF and with which it is additive (281 +/- 13%) (P < 0.05). Moreover, specific blockade of the receptor (either by alpha IR3 antibody or by picropodophyllin, a recently described selective IGF-IR tyrosine phosphorylation inhibitor) induced KSIMM apoptosis, suggesting that IGF-IR agonists (IGF-I and -II) mediate antiapoptotic signals for these cells. We were able to identify an autocrine loop essential for KSIMM cell survival in which IGF-II is the IGF-IR agonist secreted by the cells. In conclusion, IGF-I pathway inhibition is a promising therapeutical approach for KS tumours.

  7. Role of polymorphic Fc receptor Fc gammaRIIa in cytokine release and adverse effects of murine IgG1 anti-CD3/T cell receptor antibody (WT31).

    PubMed

    Tax, W J; Tamboer, W P; Jacobs, C W; Frenken, L A; Koene, R A

    1997-01-15

    Anti-CD3 monoclonal antibody (mAb) OKT3 is immunosuppressive, but causes severe adverse effects during the first administration ("first-dose reaction"). These adverse effects are presumably caused by cytokine release that results from T-cell activation. In vitro, T-cell activation by anti-CD3 mAb requires interaction with monocyte Fc receptors. The Fc receptor for murine IgG1, Fc gammaRIIa, is polymorphic. In some individuals, murine IgG1 anti-CD3 mAb causes T-cell proliferation and cytokine release in vitro (high responders [HR]), whereas in individuals with the low-responder (LR) phenotype it does not. We have now investigated the role of this Fc gammaRIIa polymorphism in the release of cytokines in vivo and the occurrence of adverse effects after the administration of WT31, a murine IgG1 anti-CD3/T cell receptor mAb. WT31 caused an increase of plasma tumor necrosis factor-alpha in all four HR patients and none of the five LR patients. In all HR patients except one, plasma gamma-interferon and interleukin 6 also increased, and a first-dose response was observed, whereas no cytokine release or adverse effects occurred in any of the LR patients. WT31 caused lymphopenia in all HR and none of the LR patients. FACS analysis demonstrated that in HR patients, after the initial disappearance of CD3+ cells from peripheral blood, modulation of CD3 occurred, whereas in LR patients a high degree of coating of the lymphocytes was observed. Surprisingly, WT31 also induced a marked granulocytopenia, as well as a decrease of thrombocytes, in three of the four HR patients (and in none of the LR patients). These data provide direct clinical evidence that Fc receptor interaction determines the release of cytokines and the occurrence of adverse effects after administration of anti-CD3/T cell receptor mAb. Furthermore, these data suggest that tumor necrosis factor-alpha by itself is not sufficient to induce the first-dose reaction.

  8. Targeting the Insulin-Like Growth Factor 1 Receptor in Ewing's Sarcoma: Reality and Expectations

    PubMed Central

    Olmos, David; Martins, Ana Sofia; Jones, Robin L.; Alam, Salma; Scurr, Michelle; Judson, Ian R.

    2011-01-01

    Ewing's sarcoma family of tumours comprises a group of very aggressive diseases that are potentially curable with multimodality treatment. Despite the undoubted success of current treatment, approximately 30% of patients will relapse and ultimately die of disease. The insulin-like growth factor 1 receptor (IGF-1R) has been implicated in the genesis, growth, proliferation, and the development of metastatic disease in Ewing's sarcoma. In addition, IGF1-R has been validated, both in vitro and in vivo, as a potential therapeutic target in Ewing's sarcoma. Phase I studies of IGF-1R monoclonal antibodies reported several radiological and clinical responses in Ewing's sarcoma patients, and initial reports of several Phase II studies suggest that about a fourth of the patients would benefit from IGF-1R monoclonal antibodies as single therapy, with approximately 10% of patients achieving objective responses. Furthermore, these therapies are well tolerated, and thus far severe toxicity has been rare. Other studies assessing IGF-1R monoclonal antibodies in combination with traditional cytotoxics or other targeted therapies are expected. Despite, the initial promising results, not all patients benefit from IGF-1R inhibition, and consequently, there is an urgent need for the identification of predictive markers of response. PMID:21647361

  9. Simultaneous application of bevacizumab and anti-CTGF antibody effectively suppresses proangiogenic and profibrotic factors in human RPE cells

    PubMed Central

    Bagheri, Abouzar; Ahmadieh, Hamid; Samiei, Shahram; Sheibani, Nader; Astaneh, Shamila Darvishalipour; Kanavi, Mozhgan Rezaei; Mohammadian, Azam

    2015-01-01

    Purpose Retinal pigment epithelial (RPE) cells play key roles in the development of choroidal neovascularization and subsequent fibrosis. We investigated the impact of bevacizumab, antihuman vascular endothelial growth factor (VEGF) antibody, and anticonnective tissue growth factor (anti-CTGF) neutralizing antibody, individually or in combination, on proangiogenic and profibrotic properties of RPE cells. Methods Primary cultures of human RPE cells were incubated with different concentrations of bevacizumab (0.25, 0.5, and 0.8 mg/ml) and/or anti-CTGF (10 μg/ml), and cell proliferation and apoptosis were determined. Expression and activity of proangiogenic and profibrotic genes including matrix metalloproteinases (MMP)-2 and 9, VEGFA, CTGF, vascular endothelial growth factor receptor-1 (VEGFR-1), cathepsin D, tissue inhibitor of metalloproteinases (TIMP) −1 and −2, and alpha smooth muscle actin (α-SMA) were assessed with slot blot, real-time RT–PCR, and zymography. Results Bevacizumab alone inhibited proliferation of RPE cells while anti-CTGF or bevacizumab and anti-CTGF combined had no inhibitory effect in this regard. Bevacizumab increased MMP-2, MMP-9, and cathepsin D but decreased VEGFA and VEGFR-1 expression. The CTGF level was increased by using 0.25 mg/ml bevacizumab but decreased at the 0.8 mg/ml concentration of bevacizumab. Treatment with anti-CTGF antibody decreased MMP-2 expression whereas combined treatment with bevacizumab and anti-CTGF resulted in decreased expression of MMP-2, TIMP-1, cathepsin D, VEGFA, CTGF, and α-SMA in the treated cultures. Conclusions Treatment of RPE cells with the combination of bevacizumab and anti-CTGF could effectively suppress the proangiogenic and profibrotic activity of RPE cells. PMID:25883524

  10. Development of a cell-based qualitative assay for detection of neutralizing anti-human interleukin-1 receptor antagonist (hIL-1Ra) antibodies in rats.

    PubMed

    Gao, Jin; Li, Jingjing; Yang, Minmin; Wu, Mingyuan; Tu, Ping; Yu, Yan; Han, Wei

    2015-01-01

    To determine the incidence of the positive neutralizing anti-human interleukin receptor antagonist (anti-IL-1Ra), a novel assay based on the proliferation of human melanoma A375.S2 cells was developed and validated. In the presence of a growth-limiting concentration of IL-1β, A375.S2 cells were able to regain proliferation following the addition of IL-1Ra in a concentration-dependent manner. This dose-response effect enabled the validation of a standard curve for calculation of the concentration of IL-1Ra or, inversely, the concentration of neutralizing anti-IL-1Ra antibodies in cell culture medium or sera. The assay used CCK-8 as an indicator of proliferation. The dose-response relationship between rhIL-1Ra (dose range of 5-75 ng/ml rhIL-1Ra) and A375.S2 cell proliferation was sigmoidal and fitted a four-parameter logistic model. The percent coefficients of variation (%CVs) of quality control samples were 12.5 and 11.9% for intra-assay repeatability and 14.5 and 19.5% for inter-assay repeatability, while the total accuracy was in the range of 97.2-103.6%. For the neutralization assay, the optimal sample dilution factor was found to be 40-fold and the reasonable standard for positive and negative decision was calculated to be 59.4% neutralization rate. The %CVs of quality control samples were 12.7 and 24.0% for intra-assay repeatability and 11.6 and 30.0% for inter-assay repeatability. Analysis using the assay showed that rats could produce neutralizing anti-IL-1Ra antibodies after repeated intramuscular injection with rhIL-1Ra, and this response was not significantly dependent on the dose injected.

  11. Rapid Activation of Bone Morphogenic Protein 9 by Receptor-mediated Displacement of Pro-domains*

    PubMed Central

    Kienast, Yvonne; Jucknischke, Ute; Scheiblich, Stefan; Thier, Martina; de Wouters, Mariana; Haas, Alexander; Lehmann, Christian; Brand, Verena; Bernicke, Dirk; Honold, Konrad; Lorenz, Stefan

    2016-01-01

    By non-covalent association after proteolytic cleavage, the pro-domains modulate the activities of the mature growth factor domains across the transforming growth factor-β family. In the case of bone morphogenic protein 9 (BMP9), however, the pro-domains do not inhibit the bioactivity of the growth factor, and the BMP9·pro-domain complexes have equivalent biological activities as the BMP9 mature ligand dimers. By using real-time surface plasmon resonance, we could demonstrate that either binding of pro-domain-complexed BMP9 to type I receptor activin receptor-like kinase 1 (ALK1), type II receptors, co-receptor endoglin, or to mature BMP9 domain targeting antibodies leads to immediate and complete displacement of the pro-domains from the complex. Vice versa, pro-domain binding by an anti-pro-domain antibody results in release of the mature BMP9 growth factor. Based on these findings, we adjusted ELISA assays to measure the protein levels of different BMP9 variants. Although mature BMP9 and inactive precursor BMP9 protein were directly detectable by ELISA, BMP9·pro-domain complex could only be measured indirectly as dissociated fragments due to displacement of mature growth factor and pro-domains after antibody binding. Our studies provide a model in which BMP9 can be readily activated upon getting into contact with its receptors. This increases the understanding of the underlying biology of BMP9 activation and also provides guidance for ELISA development for the detection of circulating BMP9 variants. PMID:26677222

  12. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  13. Influenza virus resistance to human neutralizing antibodies.

    PubMed

    Crowe, James E

    2012-01-01

    The human antibody repertoire has an exceptionally large capacity to recognize new or changing antigens through combinatorial and junctional diversity established at the time of V(D)J recombination and through somatic hypermutation. Influenza viruses exhibit a relentless capacity to escape the human antibody response by altering the amino acids of their surface proteins in hypervariable domains that exhibit a high level of structural plasticity. Both parties in this high-stakes game of shape shifting drive structural evolution of their functional proteins (the B cell receptor/antibody on one side and the viral hemagglutinin and neuraminidase proteins on the other) using error-prone polymerase systems. It is likely that most of the genetic mutations that occur in these systems are deleterious, resulting in the failure of the B cell or virus with mutations to propagate in the immune repertoire or viral quasispecies. A subset of mutations is tolerated in functional surface proteins that enter the B cell or virus progeny pool. In both cases, selection occurs in the population of mutated and unmutated species. In cases where the functional avidity of the B cell receptor is increased significantly, that clone may be selected for preferential expansion. In contrast, an influenza virus that "escapes" the inhibitory effect of secreted antibodies may represent a high proportion of the progeny virus in that host. The recent paper by O'Donnell et al. [C. D. O'Donnell et al., mBio 3(3):e00120-12, 2012] identifies a mechanism for antibody resistance that does not require escape from binding but rather achieves a greater efficiency in replication.

  14. Stromal cell-derived factor-1{alpha} (SDF-1{alpha}/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porcile, Carola; Bajetto, Adriana; Barbieri, Federica

    2005-08-15

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1{alpha} treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro.more » In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1{alpha} induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer.« less

  15. Specificity of the Antibody Receptor Site to D-Lysergamide: Model of a Physiological Receptor for Lysergic Acid Diethylamide

    PubMed Central

    Vunakis, Helen Van; Farrow, John T.; Gjika, Hilda B.; Levine, Lawrence

    1971-01-01

    Antibodies to D-lysergic acid have been produced in rabbits and guinea pigs and a radioimmunoassay for the hapten was developed. The specificity of this lysergamide-antilysergamide reaction was determined by competitive binding with unlabeled lysergic acid diethylamide (LSD), psychotomimetic drugs, neurotransmitters, and other compounds with diverse structures. LSD and several related ergot alkaloids were potent competitors, three to seven times more potent than lysergic acid itself. The N,N-dimethyl derivatives of several compounds, including tryptamine, 5-hydroxytryptamine, 4-hydroxytryptamine, 5-methoxytryptamine, tyramine, and mescaline, were only about ten times less effective than lysergic acid, even though these compounds lack some of the ring systems of lysergic acid. The pattern of inhibition by related compounds with various substituents suggests that the antibody receptor site recognizes structural features resembling the LSD molecule. In particular, the aromatic nucleus and the dimethylated ethylamine side chain in phenylethylamine and tryptamine derivatives may assume in solution a conformation resembling ring A and the methylated nitrogen in ring C of LSD. Among the tryptamine derivatives, a large percentage of the most potent competitors are also psychotomimetic compounds. PMID:5283939

  16. A novel recombinant anti-epidermal growth factor receptor peptide vaccine capable of active immunization and reduction of tumor volume in a mouse model.

    PubMed

    Asadi-Ghalehni, Majid; Rasaee, Mohamad Javad; RajabiBazl, Masoumeh; Khosravani, Masood; Motaghinejad, Majid; Javanmardi, Masoud; Khalili, Saeed; Modjtahedi, Helmout; Sadroddiny, Esmaeil

    2017-12-01

    Over-expression of epidermal growth factor receptor (EGFR) has been reported in a number of human malignancies. Strong expression of this receptor has been associated with poor survival in many such patients. Active immunizations that elicit antibodies of the desired type could be an appealing alternative to conventional passive immunization. In this regard, a novel recombinant peptide vaccine capable of prophylactic and therapeutic effects was constructed. A novel fusion recombinant peptide base vaccine consisting of L2 domain of murine extra-cellular domain-EGFR and EGFR mimotope (EM-L2) was constructed and its prophylactic and therapeutic effects in a Lewis lung carcinoma mouse (C57/BL6) model evaluated. Constructed recombinant peptide vaccine is capable of reacting with anti-EGFR antibodies. Immunization of mice with EM-L2 peptide resulted in antibody production against EM-L2. The constructed recombinant peptide vaccine reduced tumor growth and increased the survival rate. Designing effective peptide vaccines could be an encouraging strategy in contemporary cancer immunotherapy. Investigating the efficacy of such cancer immunotherapy approaches may open exciting possibilities concerning hyperimmunization, leading to more promising effects on tumor regression and proliferation. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  17. Significance of decoy receptor 3 (Dcr3) and external-signal regulated kinase 1/2 (Erk1/2) in gastric cancer.

    PubMed

    Yang, Donghai; Fan, Xin; Yin, Ping; Wen, Qiang; Yan, Feng; Yuan, Sibo; Liu, Bin; Zhuang, Guohong; Liu, Zhongchen

    2012-06-06

    Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor (TNFR) superfamily, is associated with anti-tumor immunity suppression. It is highly expressed in many tumors, and its expression can be regulated by the MAPK/MEK/ERK signaling pathway. The MAPK/MEK/ERK pathway has been reported to be a regulator in tumor occurrence, development and clonal expansion. External-signal regulated kinase (ERK) is a vital member of this pathway. The expression of DcR3 and ERK1/2 in tumor tissues of gastric cancer patients was significantly higher than the non-cancerous group (P < 0.05). There was no statistical difference among tumor tissues from patients with different ages or gender, and even of different differentiation (P > 0.05). However, in patients with stage I gastric cancer, the DcR3 and ERK1/2 levels were significantly lower than patients with more advanced stages. DcR3 and ERK1/2 play a vital role in the development of gastric cancer, and they may be new markers for indicating the efficiency of gastric cancer treatment in the future.

  18. Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, T.; Burgess, A; Gan, H

    2009-01-01

    Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells. However, the mechanism for this activity was unclear. Crystallographic structures for Fab:EGFR{sub 287-302} complexes of mAb806 (and a second, related antibody, mAb175) show that this peptide epitope adopts conformations similar to those found in the wtEGFR.more » However, in both conformations observed for wtEGFR, tethered and untethered, antibody binding would be prohibited by significant steric clashes with the CR1 domain. Thus, these antibodies must recognize a cryptic epitope in EGFR. Structurally, it appeared that breaking the disulfide bond preceding the epitope might allow the CR1 domain to open up sufficiently for antibody binding. The EGFR{sub C271A/C283A} mutant not only binds mAb806, but binds with 1:1 stoichiometry, which is significantly greater than wtEGFR binding. Although mAb806 and mAb175 decrease tumor growth in xenografts displaying mutant, overexpressed, or autocrine stimulated EGFR, neither antibody inhibits the in vitro growth of cells expressing wtEGFR. In contrast, mAb806 completely inhibits the ligand-associated stimulation of cells expressing EGFR{sub C271A/C283A}. Clearly, the binding of mAb806 and mAb175 to the wtEGFR requires the epitope to be exposed either during receptor activation, mutation, or overexpression. This mechanism suggests the possibility of generating antibodies to target other wild-type receptors on tumor cells.« less

  19. Natural Killer Cell Mediated Antibody-Dependent Cellular Cytotoxicity in Tumor Immunotherapy with Therapeutic Antibodies

    PubMed Central

    Seidel, Ursula J. E.; Schlegel, Patrick; Lang, Peter

    2013-01-01

    In the last decade several therapeutic antibodies have been Federal Drug Administration (FDA) and European Medicines Agency (EMEA) approved. Although their mechanisms of action in vivo is not fully elucidated, antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells is presumed to be a key effector function. A substantial role of ADCC has been demonstrated in vitro and in mouse tumor models. However, a direct in vivo effect of ADCC in tumor reactivity in humans remains to be shown. Several studies revealed a predictive value of FcγRIIIa-V158F polymorphism in monoclonal antibody treatment, indicating a potential effect of ADCC on outcome for certain indications. Furthermore, the use of therapeutic antibodies after allogeneic hematopoietic stem cell transplantation is an interesting option. Studying the role of the FcγRIIIa-V158F polymorphism and the influence of Killer-cell Immunoglobuline-like Receptor (KIR) receptor ligand incompatibility on ADCC in this approach may contribute to future transplantation strategies. Despite the success of approved second-generation antibodies in the treatment of several malignancies, efforts are made to further augment ADCC in vivo by antibody engineering. Here, we review currently used therapeutic antibodies for which ADCC has been suggested as effector function. PMID:23543707

  20. Familial autoimmune myasthenia gravis with different pathogenetic antibodies.

    PubMed Central

    Provenzano, C; Arancio, O; Evoli, A; Rocca, B; Bartoccioni, E; de Grandis, D; Tonali, P

    1988-01-01

    Two cases of familial myasthenia gravis are reported. One patient is a typical case of autoimmune myasthenia with positive anti acetylcholine receptor antibodies, while in the second patient the impairment of neuromuscular transmission is likely to be due to antibodies directed against determinants other than the acetylcholine receptors. PMID:3225607

  1. Infection of CD4{sup +} T lymphocytes by the human T cell leukemia virus type 1 is mediated by the glucose transporter GLUT-1: Evidence using antibodies specific to the receptor's large extracellular domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Qingwen; Agrawal, Lokesh; VanHorn-Ali, Zainab

    2006-05-25

    To analyze HTLV-1 cytotropism, we developed a highly sensitive vaccinia virus-based assay measuring activation of a reporter gene upon fusion of two distinct cell populations. We used this system in a functional cDNA screening to isolate and confirm that the glucose transporter protein 1 (GLUT-1) is a receptor for HTLV-1. GLUT-1 is a ubiquitously expressed plasma membrane glycoprotein with 12 transmembrane domains and 6 extracellular loops (ECL). We demonstrate for the first time that peptide antibodies (GLUT-IgY) raised in chicken to the large extracellular loop (ECL1) detect GLUT-1 at the cell surface and inhibit envelope (Env)-mediated fusion and infection. Efficientmore » GLUT-IgY staining was detected with peripheral blood CD4{sup +} lymphocytes purified by positive selection. Further, GLUT-IgY caused efficient inhibition of Env-mediated fusion and infection of CD4{sup +} T and significantly lower inhibition of CD8{sup +} T lymphocytes. The specificity of GLUT-IgY antibodies to GLUT-1 was demonstrated by ECL1 peptide competition studies. Grafting ECL1 of GLUT-1 onto the receptor-negative GLUT-3 conferred significant receptor activity. In contrast, grafting ECL1 of GLUT-3 onto GLUT-1 resulted in a significant loss of the receptor activity. The ECL1-mediated receptor activity was efficiently blocked with four different human monoclonal antibody (HMab) to HTLV-1 Env. The ECL1-derived peptide blocked HTLV-1 Env-mediated fusion with several nonhuman mammalian cell lines. The results demonstrate the utilization of cell surface GLUT-1 in HTLV-1 infection of CD4{sup +} T lymphocytes and implicate a critical role for the ECL1 region in viral tropism.« less

  2. Active antitumor immunity elicited by vaccine based on recombinant form of epidermal growth factor receptor.

    PubMed

    Hu, Bing; Wei, Yuquan; Tian, Ling; Zhao, Xia; Lu, You; Wu, Yang; Yao, Bing; Liu, Jiyan; Niu, Ting; Wen, Yanjun; He, Qiuming; Su, Jingmei; Huang, Meijuan; Lou, Yanyan; Luo, Yan; Kan, Bing

    2005-01-01

    Active immunotherapy targeting epidermal growth factor receptor (EGFR) should be another attractive approach to the treatment of EGFR-positive tumors. To test this concept, the authors evaluated the potential immune responses and antitumor activities elicited by dendritic cells pulsed with recombinant ectodomain of mouse EGFR (DC-edMER). Spleen cells isolated from DC-edMER-vaccinated mice showed a high quantity of EGFR-specific antibody-producing cells. EGFR-reactive antibody in sera isolated from vaccinated mice was identified and shown to be effective against tumors in vitro and in vivo by adoptive transfer. DC-edMER vaccine also elicited cytotoxic T-lymphocyte responses that could mediate antitumor effects in vitro and adoptive transfer in vivo. In addition, EGFR-specific cytokines responses were elicited by DC-edMER vaccine. Immunization with DC-edMER resulted in tumor regression and prolonged survival in mice challenged with Lewis lung carcinomas and mammary cancer models. Depletion of CD4+ T lymphocytes could completely abrogate the antitumor activity and EGFR-specific antibody responses, whereas the depletion of CD8+ T lymphocytes showed partial abrogation of the antitumor activity but antibody was still detected. Furthermore, tumor-induced angiogenesis was suppressed in DC-edMER-vaccinated mice or mice treated with antibody adoptive transfer. Taken together, these findings suggest the antitumor immunity could be induced by DC-edMER, which may involve both humoral and cellular immunity, and may provide insight into the treatment of EGFR-positive tumors through the induction of active immunity against EGFR.

  3. The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins.

    PubMed

    Birn, Henrik

    2006-07-01

    Over the past 10 years, animal studies have uncovered the molecular mechanisms for the renal tubular recovery of filtered vitamin and vitamin carrier proteins. Relatively few endocytic receptors are responsible for the proximal tubule uptake of a number of different vitamins, preventing urinary losses. In addition to vitamin conservation, tubular uptake by endocytosis is important to vitamin metabolism and homeostasis. The present review focuses on the receptors involved in renal tubular recovery of folate, vitamin B12, and their carrier proteins. The multiligand receptor megalin is important for the uptake and tubular accumulation of vitamin B12. During vitamin load, the kidney accumulates large amounts of free vitamin B12, suggesting a possible storage function. In addition, vitamin B12 is metabolized in the kidney, suggesting a role in vitamin homeostasis. The folate receptor is important for the conservation of folate, mediating endocytosis of the vitamin. Interaction between the structurally closely related, soluble folate-binding protein and megalin suggests that megalin plays an additional role in the uptake of folate bound to filtered folate-binding protein. A third endocytic receptor, the intrinsic factor-B12 receptor cubilin-amnionless complex, is essential to the renal tubular uptake of albumin, a carrier of folate. In conclusion, uptake is mediated by interaction with specific endocytic receptors also involved in the renal uptake of other vitamins and vitamin carriers. Little is known about the mechanisms regulating intracellular transport and release of vitamins, and whereas tubular uptake is a constitutive process, this may be regulated, e.g., by vitamin status.

  4. Deep Sequencing-guided Design of a High Affinity Dual Specificity Antibody to Target Two Angiogenic Factors in Neovascular Age-related Macular Degeneration* ♦

    PubMed Central

    Koenig, Patrick; Lee, Chingwei V.; Sanowar, Sarah; Wu, Ping; Stinson, Jeremy; Harris, Seth F.; Fuh, Germaine

    2015-01-01

    The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies. PMID:26088137

  5. Vascular endothelial growth factor c/vascular endothelial growth factor receptor 3 signaling regulates chemokine gradients and lymphocyte migration from tissues to lymphatics.

    PubMed

    Iwami, Daiki; Brinkman, C Colin; Bromberg, Jonathan S

    2015-04-01

    Circulation of leukocytes via blood, tissue and lymph is integral to adaptive immunity. Afferent lymphatics form CCL21 gradients to guide dendritic cells and T cells to lymphatics and then to draining lymph nodes (dLN). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 (VEGFR-3) are the major lymphatic growth factor and receptor. We hypothesized these molecules also regulate chemokine gradients and lymphatic migration. CD4 T cells were injected into the foot pad or ear pinnae, and migration to afferent lymphatics and dLN quantified by flow cytometry or whole mount immunohistochemistry. Vascular endothelial growth factor receptor 3 or its signaling or downstream actions were modified with blocking monoclonal antibodies (mAbs) or other reagents. Anti-VEGFR-3 prevented migration of CD4 T cells into lymphatic lumen and significantly decreased the number that migrated to dLN. Anti-VEGFR-3 abolished CCL21 gradients around lymphatics, although CCL21 production was not inhibited. Heparan sulfate (HS), critical to establish CCL21 gradients, was down-regulated around lymphatics by anti-VEGFR-3 and this was dependent on heparanase-mediated degradation. Moreover, a Phosphoinositide 3-kinase (PI3K)α inhibitor disrupted HS and CCL21 gradients, whereas a PI3K activator prevented the effects of anti-VEGFR-3. During contact hypersensitivity, VEGFR-3, CCL21, and HS expression were all attenuated, and anti-heparanase or PI3K activator reversed these effects. Vascular endothelial growth factor C/VEGFR-3 signaling through PI3Kα regulates the activity of heparanase, which modifies HS and CCL21 gradients around lymphatics. The functional and physical linkages of these molecules regulate lymphatic migration from tissues to dLN. These represent new therapeutic targets to influence immunity and inflammation.

  6. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    PubMed

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  7. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers

    PubMed Central

    Nielsen, Christoffer Fagernæs; van Putten, Sander Maarten; Lund, Ida Katrine; Melander, Maria Carlsén; Nørregaard, Kirstine Sandal; Jürgensen, Henrik Jessen; Reckzeh, Kristian; Christensen, Kristine Rothaus; Ingvarsen, Signe Ziir; Gårdsvoll, Henrik; Jensen, Kamilla Ellermann; Hamerlik, Petra; Engelholm, Lars Henning; Behrendt, Niels

    2017-01-01

    A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly into the endosomal-lysosomal system, thus opening a potential route of entry into receptor-positive cells. This combination of specific expression and endocytic function appears well suited for targeting of uPARAP/Endo180-positive cancers by antibody-drug conjugate (ADC) mediated drug delivery. Therefore, we utilized a specific monoclonal antibody against uPARAP/Endo180, raised through immunization of a uPARAP/Endo180 knock-out mouse, which reacts with both the human and the murine receptor, to construct a uPARAP-directed ADC. This antibody was coupled to the highly toxic dolastatin derivative, monomethyl auristatin E, via a cathepsin-labile valine-citrulline linker. With this ADC, we show strong and receptor-dependent cytotoxicity in vitro in uPARAP/Endo180-positive cancer cell lines of sarcoma, glioblastoma and leukemic origin. Furthermore, we demonstrate the potency of the ADC in vivo in a xenograft mouse model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types. PMID:28574834

  8. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the rangemore » of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.« less

  9. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    PubMed

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  10. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection

    PubMed Central

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR–HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants. PMID:28066408

  11. Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.

    PubMed

    Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta

    2016-04-01

    Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be

  12. Site-Selective Regulation of Platelet-Derived Growth Factor β Receptor Tyrosine Phosphorylation by T-Cell Protein Tyrosine Phosphatase

    PubMed Central

    Persson, Camilla; Sävenhed, Catrine; Bourdeau, Annie; Tremblay, Michel L.; Markova, Boyka; Böhmer, Frank D.; Haj, Fawaz G.; Neel, Benjamin G.; Elson, Ari; Heldin, Carl-Henrik; Rönnstrand, Lars; Östman, Arne; Hellberg, Carina

    2004-01-01

    The platelet-derived growth factor (PDGF) β receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF β receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF β receptor, we compared PDGF β receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF β receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cγ1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cγ1 activity and migratory hyperresponsiveness to PDGF. PDGF β receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPɛ ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF β receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors. PMID:14966296

  13. Myocardial and vascular adrenergic alterations in a rat model of endotoxin shock: reversal by an anti-tumor necrosis factor-alpha monoclonal antibody.

    PubMed

    Boillot, A; Massol, J; Maupoil, V; Grelier, R; Bernard, B; Capellier, G; Berthelot, A; Barale, F

    1997-03-01

    a) To investigate responsiveness to exogenous catecholamines in rat endotoxin shock by studying both myocardial and vascular functional parameters, and to determine the relationship of these parameters with other relevant biological parameters of the adrenergic pathway, such as myocardial beta-adrenergic receptors and cyclic adenosine monophosphate (cAMP); b) to investigate the role of tumor necrosis factor (TNF)-alpha via prophylactic anti-TNF-alpha monoclonal antibody administration. Experimental, comparative hospital. Laboratory in a university hospital. Male Sprague-Dawley rats, weighing 280 to 340 g. Intravenous injection of Escherichia coli endotoxin (5 mg/100 g) in the first group; injection of the same dose of endotoxin preceded by 2 mg/100 g of anti-TNF-alpha monoclonal antibody in the second group; injection of saline in the third (control) group. TNF-alpha concentration was measured before and during the first 3 hrs in all three groups. Myocardial and vascular functional parameters were obtained, respectively, from Langendorff perfused hearts and isolated aortic rings. Adrenergic biochemical parameters (catecholamines, density and affinity of beta-receptors, and isoproterenol-stimulated myocardial cAMP) were determined 3 hrs after injections in the three groups. After endotoxin injection, serum TNF-alpha concentrations peaked at 60 mins (2496 +/- 412 pg/mL) and returned slowly to control values at 3 hrs; serum TNF-alpha concentrations remained under the limit of detection in the other two groups. When compared with the control group, plasma concentrations of epinephrine and norepinephrine were significantly (p < .05) increased. Baseline values for differential left ventricular pressure and coronary flow were significantly (p < .001, p < .01, respectively) reduced in the endotoxin group; heart rate remained unchanged. In the endotoxin and control groups, isoproterenol induced a similar increase in differential left ventricular pressure and in heart rate

  14. Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies

    PubMed Central

    Lehmann, Christian H. K.; Heger, Lukas; Heidkamp, Gordon F.; Baranska, Anna; Lühr, Jennifer J.; Hoffmann, Alana; Dudziak, Diana

    2016-01-01

    Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques. PMID:27043640

  15. Myasthenic Crisis Complicated with Myxedema, Positive for Both Anti-acetylcholine Receptor and Anti-muscle-specific Tyrosine Kinase Antibodies

    PubMed Central

    Horiuchi, Kazuhiro; Nagai, Azusa; Wakita, Masahiro; Ito, Shotaro; Takamura, Kei; Houzen, Hideki

    2017-01-01

    We herein report the case of myasthenic crisis occurring in a 51-year-old man. He had experienced ptosis, increased body weight with edema, and fatigue with dyspnea. He presented at our emergency department with disturbed consciousness. He was originally diagnosed with myxedema coma, and he required artificial respiration. Because his weakness persisted and he was positive for anti-acetylcholine receptor antibodies and anti-muscle-specific tyrosine kinase antibodies, we diagnosed myasthenic crisis after various examinations. His clinical response to treatment was good and he was discharged in an ambulatory status 3 months after admission. This case demonstrates that myasthenic crisis may occur in association with myxedema. PMID:29093409

  16. Myasthenic Crisis Complicated with Myxedema, Positive for Both Anti-acetylcholine Receptor and Anti-muscle-specific Tyrosine Kinase Antibodies.

    PubMed

    Horiuchi, Kazuhiro; Nagai, Azusa; Wakita, Masahiro; Ito, Shotaro; Takamura, Kei; Houzen, Hideki

    2018-01-15

    We herein report the case of myasthenic crisis occurring in a 51-year-old man. He had experienced ptosis, increased body weight with edema, and fatigue with dyspnea. He presented at our emergency department with disturbed consciousness. He was originally diagnosed with myxedema coma, and he required artificial respiration. Because his weakness persisted and he was positive for anti-acetylcholine receptor antibodies and anti-muscle-specific tyrosine kinase antibodies, we diagnosed myasthenic crisis after various examinations. His clinical response to treatment was good and he was discharged in an ambulatory status 3 months after admission. This case demonstrates that myasthenic crisis may occur in association with myxedema.

  17. Enhancement of Glioma Radiotherapy and Chemotherapy Response With Targeted Antibody Therapy Against Death Receptor 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiveash, John B.; Gillespie, G. Yancey; Oliver, Patsy G.

    2008-06-01

    Purpose: TRA-8 is an agonistic mouse monoclonal antibody that binds to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor 5, which induces apoptosis in cancer cells through a caspase-8-dependent mechanism. We investigated the ability of TRA-8 to augment the radiotherapy (RT) and chemotherapy response of human glioma cells in vitro and in vivo. Methods and Materials: The in vitro cytotoxicity of TRA-8 and temozolomide (Tmz) or RT was examined using adenosine triphosphate-dependent viability and clonogenic survival assays with five glioma cell lines. Death receptor 5 expression was determined by flow cytometry. In vivo studies included subcutaneous and intracranial xenograft modelsmore » testing various combination treatments, including RT, Tmz, and TRA-8. Results: TRA-8, combined with Tmz or RT, produced enhanced cytotoxicity against five glioma cell lines compared with the use of the individual agents alone. Death receptor 5 upregulation occurred in response to RT. Complete tumor regression in the subcutaneous experiments was the most common in animals that received combination therapy with TRA-8/Tmz/RT. TRA-8 enhanced tumor growth delay in combination with RT or Tmz. TRA-8 alone had limited activity against intracranial tumors. In contrast, the median survival of mice treated with TRA-8/Tmz/RT was significantly greater than the control or TRA-8-alone-treated mice. The median survival of the mice treated with TRA-8/Tmz/RT or chemoradiotherapy only was significantly greater than the control or TRA-8-treated mice. A trend toward improved survival was observed between TRA-8/Tmz/RT-treated and Tmz/RT-treated mice. Conclusions: These preliminary findings support the hypothesis that TRA-8 will augment the RT and chemotherapy response in gliomas. A humanized version of TRA-8 is being evaluated in a Phase II clinical trial.« less

  18. The ubiquitin ligase Nedd4 mediates oxidized low-density lipoprotein-induced downregulation of insulin-like growth factor-1 receptor

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Parthasarathy, Sampath; Delafontaine, Patrice

    2008-01-01

    Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 μg/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2 ± 1.7 h from 24.4 ± 4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. PMID:18723765

  19. Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis.

    PubMed

    Chernyavsky, Alex; Chen, Yumay; Wang, Ping H; Grando, Sergei A

    2015-11-01

    The mechanism of detachment and death of keratinocytes in pemphigus vulgaris (PV) involves pro-apoptotic action of constellations of autoantibodies determining disease severity and response to treatment. The presence of antibodies to nicotinic acetylcholine receptors (nAChRs) and the therapeutic efficacy of cholinomimetics in PV is well-established. Recently, adsorption of anti-mitochondrial antibodies abolished the ability of PVIgGs to cause acantholysis, demonstrating their pathophysiological significance. Since, in addition to cell membrane, nAChRs are also present on the mitochondrial outer membrane, wherein they act to prevent activation of intrinsic (mitochondrial apoptosis), we hypothesized that mitochondrial (mt)-nAChRs might be targeted by PVIgGs. To test this hypothesis, we employed the immunoprecipitation-western blot assay of keratinocyte mitochondrial proteins that visualized the α3, α5, α7, α9, α10, β2 and β4 mt-nAChR subunits precipitated by PV IgGs, suggesting that functions of mt-nAChRs are compromised in PV. To pharmacologically counteract the pro-apoptotic action of anti-mitochondrial antibodies in PV, we exposed naked keratinocyte mitochondria to PVIgGs in the presence of the nicotinic agonist nicotine ± antagonists, and measured cytochrome c (CytC) release. Nicotine abolished PVIgG-dependent CytC release, showing a dose-dependent effect, suggesting that protection of mitochondria can be a novel mechanism of therapeutic action of nicotinic agonists in PV. The obtained results indicated that the mt-nAChRs targeted by anti-mitochondrial antibodies produced by PV patients are coupled to inhibition of CytC release, and that nicotinergic stimulation can abolish PVIgG-dependent activation of intrinsic apoptosis in KCs. Future studies should determine if and how the distinct anti-mt-nAChR antibodies penetrate KCs and correlate with disease severity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Characterization of a novel function-blocking antibody targeted against the platelet P2Y1 receptor.

    PubMed

    Karim, Zubair A; Vemana, Hari Priya; Alshbool, Fatima Z; Lin, Olivia A; Alshehri, Abdullah M; Javaherizadeh, Payam; Paez Espinosa, Enma V; Khasawneh, Fadi T

    2015-03-01

    Platelet hyperactivity is associated with vascular disease and contributes to the genesis of thrombotic disorders. ADP plays an important role in platelet activation and activates platelets through 2 G-protein-coupled receptors, the Gq-coupled P2Y1 receptor (P2Y1R), and the Gi-coupled P2Y12 receptor. Although the involvement of the P2Y1R in thrombogenesis is well established, there are no antagonists that are currently available for clinical use. Our goal is to determine whether a novel antibody targeting the ligand-binding domain, ie, second extracellular loop (EL2) of the P2Y1R (EL2Ab) could inhibit platelet function and protect against thrombogenesis. Our results revealed that the EL2Ab does indeed inhibit ADP-induced platelet aggregation, in a dose-dependent manner. Furthermore, EL2Ab was found to inhibit integrin GPIIb-IIIa activation, dense and α granule secretion, and phosphatidylserine exposure. These inhibitory effects translated into protection against thrombus formation, as evident by a prolonged time for occlusion in a FeCl3-induced thrombosis model, but this was accompanied by a prolonged tail bleeding time. We also observed a dose-dependent displacement of the radiolabeled P2Y1R antagonist [(3)H]MRS2500 from its ligand-binding site by EL2Ab. Collectively, our findings demonstrate that EL2Ab binds to and exhibits P2Y1R-dependent function-blocking activity in the context of platelets. These results add further evidence for a role of the P2Y1R in thrombosis and validate the concept that targeting it is a relevant alternative or complement to current antiplatelet strategies. © 2015 American Heart Association, Inc.

  1. Deep Sequencing-guided Design of a High Affinity Dual Specificity Antibody to Target Two Angiogenic Factors in Neovascular Age-related Macular Degeneration.

    PubMed

    Koenig, Patrick; Lee, Chingwei V; Sanowar, Sarah; Wu, Ping; Stinson, Jeremy; Harris, Seth F; Fuh, Germaine

    2015-09-04

    The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Investigation of a panel of monoclonal antibodies and polyclonal sera against anthrax toxins resulted in identification of an anti-lethal factor antibody with disease-enhancing characteristics.

    PubMed

    Kulshreshtha, Parul; Tiwari, Ashutosh; Priyanka; Joon, Shikha; Sinha, Subrata; Bhatnagar, Rakesh

    2015-12-01

    Hybridomas were created using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor). Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immnized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies secreted by all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H10 and H8) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). Single chain variable fragment (LETscFv) was derived from H10 hybridoma. H11 was found to have disease-enhancing property. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature. This in vitro abrogation of disease-enhancement provides the proof of concept that in polyclonal sera the disease enhancing character of a fraction of antibodies is overshadowed by the protective nature of the rest of the antibodies generated on active immunization. Copyright © 2015. Published by Elsevier Ltd.

  3. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacymore » and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.« less

  4. Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells

    PubMed Central

    Kang, Jeffrey C; Poovassery, Jayakumar S; Bansal, Pankaj; You, Sungyong; Manjarres, Isabel M; Ober, Raimund J; Ward, E Sally

    2014-01-01

    The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert. PMID:24492289

  5. Ocular Safety of Intravitreal Connective Tissue Growth Factor Neutralizing Antibody.

    PubMed

    Motevasseli, Tahmineh; Daftarian, Narsis; Kanavi, Mozhgan Rezaei; Ahmadieh, Hamid; Bagheri, Abouzar; Hosseini, Seyed Bagher; Ansari, Shabnam; Soheili, Zahra-Soheila

    2017-08-01

    To detect the safety of intravitreal injection of anti-connective tissue growth factor (CTGF) (IVAC) in rat eyes in order to apply this neutralizing antibody for experimental animal studies. Forty-five Lister Hooded male pigmented rats were divided into five groups that received IVAC (2 μl) corresponding to the doses of 10 (B), 20 (C), 50 (D), and 100 μg/ml (E), equal to 1.25, 2.5, 6.25, and 12.5 µg/ml of antibody concentration in rat vitreous, respectively. The sham group (A) received 2 μl of normal saline. Full field electroretinography (ERG) was performed at baseline and on days 7 and 28 after IVAC. The animals were euthanized and the corresponding eyes were subjected to routine histopathology, immunohistochemistry for glial fibrillary acidic protein (GFAP), and terminal transferase dUTP nick end-labeling (TUNEL) assay. Scotopic rod b-wave amplitude and maximal combined b-wave amplitude were 111.89 ± 71.2 and 178.57 ± 55.58 μV, respectively, at baseline which significantly reduced to 79.31 ± 52.59 and 128.73 ± 41.61 μV, respectively, after 28 days in group E (p < 0.05). There was no significant reduction of amplitudes in other groups with lower doses of anti-CTGF antibody. Retinal ganglion cells were significantly decreased in group E as compared to other groups. GFAP immune reactivity was not significant in any of the groups. TUNEL test showed inner retinal neural cell apoptosis only in group E. ERG, histopathologic, and apoptotic assays revealed no toxic effects of 10-50 μg/ml of IVAC in rat eyes. Using 100 μg/ml IVAC led to a significant toxic effect in terms of functional, histopathologic, and TUNEL findings.

  6. Mn-doped Zinc Sulphide nanocrystals for immunofluorescent labeling of epidermal growth factor receptors on cells and clinical tumor tissues

    NASA Astrophysics Data System (ADS)

    J, Aswathy; V, Seethalekshmy N.; R, Hiran K.; R, Bindhu M.; K, Manzoor; Nair, Shantikumar V.; Menon, Deepthy

    2014-11-01

    The field of molecular detection and targeted imaging has evolved considerably with the introduction of fluorescent semiconductor nanocrystals. Manganese-doped zinc sulphide nanocrystals (ZnS:Mn NCs), which are widely used in electroluminescent displays, have been explored for the first time for direct immunofluorescent (IF) labeling of clinical tumor tissues. ZnS:Mn NCs developed through a facile wet chemistry route were capped using amino acid cysteine, conjugated to streptavidin and thereafter coupled to biotinylated epidermal growth factor receptor (EGFR) antibody utilizing the streptavidin-biotin linkage. The overall conjugation yielded stable EGFR antibody conjugated ZnS:Mn NCs (EGFR ZnS:Mn NCs) with a hydrodynamic diameter of 65 ± 15 nm, and having an intense orange-red fluorescence emission at 598 nm. Specific labeling of EGF receptors on EGFR+ve A431 cells in a co-culture with EGFR-ve NIH3T3 cells was demonstrated using these nanoprobes. The primary antibody conjugated fluorescent NCs could also clearly delineate EGFR over-expressing cells on clinical tumor tissues processed by formalin fixation as well as cryopreservation with a specificity of 86% and accuracy of 88%, in comparison to immunohistochemistry. Tumor tissues labeled with EGFR ZnS:Mn NCs showed good fluorescence emission when imaged after storage even at 15 months. Thus, ZnS nanobioconjugates with dopant-dependent and stable fluorescence emission show promise as an efficient, target-specific fluorophore that would enable long term IF labeling of any antigen of interest on clinical tissues.

  7. Tyrosine kinase inhibitor induced growth factor receptor upregulation enhances the efficacy of near-infrared targeted photodynamic therapy in esophageal adenocarcinoma cell lines.

    PubMed

    Hartmans, Elmire; Linssen, Matthijs D; Sikkens, Claire; Levens, Afra; Witjes, Max J H; van Dam, Gooitzen M; Nagengast, Wouter B

    2017-05-02

    Esophageal carcinoma (EC) is a global health problem, with disappointing 5-year survival rates of only 15-25%. Near-infrared targeted photodynamic therapy (NIR-tPDT) is a novel strategy in which cancer-targeted phototoxicity is able to selectively treat malignant cells. In this in vitro report we demonstrate the applicability of antibody-based NIR-tPDT in esophageal adenocarcinoma (EAC), using the phototoxic compounds cetuximab-IRDye700DX and trastuzumab-IRDye700DX, targeting respectively epidermal growth factor receptor 1 (EGFR) and 2 (HER2). Furthermore, we demonstrate that NIR-tPDT can be made more effective by tyrosine kinase inhibitor (TKI) induced growth receptor upregulation. Together, these results unveil a novel strategy for non-invasive EAC treatment, and by pretreatment-induced receptor upregulation its future clinical application may be optimized.

  8. Dopamine-2 receptor extracellular N-terminus regulates receptor surface availability and is the target of human pathogenic antibodies from children with movement and psychiatric disorders.

    PubMed

    Sinmaz, Nese; Tea, Fiona; Pilli, Deepti; Zou, Alicia; Amatoury, Mazen; Nguyen, Tina; Merheb, Vera; Ramanathan, Sudarshini; Cooper, Sandra T; Dale, Russell C; Brilot, Fabienne

    2016-12-01

    Anti-Dopamine-2 receptor (D2R) antibodies have been recently identified in a subgroup of children with autoimmune movement and psychiatric disorders, however the epitope(s) and mechanism of pathogenicity remain unknown. Here we report a major biological role for D2R extracellular N-terminus as a regulator of receptor surface availability, and as a major epitope targeted and impaired in brain autoimmunity. In transfected human cells, purified anti-D2R antibody from patients specifically and significantly reduced human D2R surface levels. Next, human D2R mutants modified in their extracellular domains were subcloned, and we analyzed the region bound by 35 anti-D2R antibody-positive patient sera using quantitative flow cytometry on live transfected cells. We found that N-glycosylation at amino acids N5 and/or N17 was critical for high surface expression in interaction with the last 15 residues of extracellular D2R N-terminus. No anti-D2R antibody-positive patient sera bound to the three extracellular loops, but all patient sera (35/35) targeted the extracellular N-terminus. Overall, patient antibody binding was dependent on two main regions encompassing amino acids 20 to 29, and 23 to 37. Residues 20 to 29 contributed to the majority of binding (77%, 27/35), among which 26% (7/27) sera bound to amino acids R20, P21, and F22, 37% (10/27) patients were dependent on residues at positions 26 and 29, that are different between humans and mice, and 30% (8/27) sera required R20, P21, F22, N23, D26, and A29. Seven patient sera bound to the region 23 to 37 independently of D26 and A29, but most sera exhibited N-glycosylation-independent epitope recognition at N23. Interestingly, no evident segregation of binding pattern according to patient clinical phenotype was observed. D2R N-terminus is a central epitope in autoimmune movement and psychiatric disorders and this knowledge could help the design of novel specific immune therapies tailored to improve patient outcome.

  9. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory.

    PubMed

    Butcher, Adrian J; Bradley, Sophie J; Prihandoko, Rudi; Brooke, Simon M; Mogg, Adrian; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; Edwards, Jennifer M; Bottrill, Andrew R; Challiss, R A John; Broad, Lisa M; Felder, Christian C; Tobin, Andrew B

    2016-04-22

    Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser(228)) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser(228) These data supported the hypothesis that phosphorylation at Ser(228) was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser(228) on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser(228) phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser(228) not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Autoantibodies against β1 receptor and AT1 receptor in type 2 diabetes patients with left ventricular dilatation.

    PubMed

    Zhao, Linshuang; Xu, Chunyan; Xu, Jinling

    2014-01-01

    To explore the relationship between the autoantibodies against the β1 and AT1 receptors and left ventricular dilatation in patients with type 2 diabetes (T2DM). The autoantibodies against the β1 and angiotensin II type 1 (AT1) receptors of T2DM patients with and without hypertension were screened by ELISA. Multiple logistic regression was used to analyze the risk factors for left ventricular dilatation. The reversing effect of left ventricular dilatation was evaluated after receptor blocker treatment. The positive rates of autoantibodies against the β1 and AT1 receptors (43.0 and 44.1%, respectively) in T2DM patients with hypertension were significantly higher than those in normotensive patients (16.0 and 10.4%, respectively; all p < 0.01). Furthermore, among T2DM patients with hypertension, the positive rates (61.4 and 64.9%, respectively) in patients with left ventricular dilatation were remarkably higher than those with normal left ventricular dimensions (34.4 and 36.1%, respectively; all p < 0.01). The presence of β1 receptor antibody and AT1 receptor antibody were risk factors for left ventricular dilatation (p < 0.05). The curative effect of metoprolol tartrate and valsartan in reversing left ventricular hypertrophy in the group positive for autoantibodies was much better than in the negative group. The findings show that autoantibodies against the β1 and AT1 receptors may play a role in predicting left ventricular dilatation in T2DM patients in combination with hypertension. Metoprolol tartrate and valsartan are effective and safe in the treatment of these patients. © 2014 S. Karger AG, Basel.

  11. Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms

    PubMed Central

    Zamykal, Martin; Martens, Tobias; Matschke, Jakob; Günther, Hauke S.; Kathagen, Annegret; Schulte, Alexander; Peters, Regina; Westphal, Manfred; Lamszus, Katrin

    2015-01-01

    Background Signaling by insulin-like growth factor 1 receptor (IGF-1R) can contribute to the formation and progression of many diverse tumor types, including glioblastoma. We investigated the effect of the IGF-1R blocking antibody IMC-A12 on glioblastoma growth in different in vivo models. Methods U87 cells were chosen to establish rapidly growing, angiogenesis-dependent tumors in the brains of nude mice, and the GS-12 cell line was used to generate highly invasive tumors. IMC-A12 was administered using convection-enhanced local delivery. Tumor parameters were quantified histologically, and the functional relevance of IGF-1R activation was analyzed in vitro. Results IMC-A12 treatment inhibited the growth of U87 and GS-12 tumors by 75% and 50%, respectively. In GS-12 tumors, the invasive tumor extension and proliferation rate were significantly reduced by IMC-A12 treatment, while apoptosis was increased. In IMC-A12–treated U87 tumors, intratumoral vascularization was markedly decreased, and tumor cell proliferation was moderately reduced. Flow cytometry showed that <2% of U87 cells but >85% of GS-12 cells expressed IGF-1R. Activation of IGF-1R by IGF-1 and IGF-2 in GS-12 cells was blocked by IMC-A12. Both ligands stimulated GS-12 cell proliferation, and IGF-2 also stimulated migration. IMC-A12 inhibited these stimulatory effects and increased apoptosis. In U87 cells, stimulation with either ligand had no functional effect. Conclusions IGF-1R blockade can inhibit glioblastoma growth by different mechanisms, including direct effects on the tumor cells as well as indirect anti-angiogenic effects. Hence, blocking IGF-1R may be useful to target both the highly proliferative, angiogenesis-dependent glioblastoma core component as well as the infiltrative periphery. PMID:25543125

  12. Human Leukocyte Antigen and Cytokine Receptor Gene Polymorphisms Associated With Heterogeneous Immune Responses to Mumps Viral Vaccine

    PubMed Central

    Ovsyannikova, Inna G.; Jacobson, Robert M.; Dhiman, Neelam; Vierkant, Robert A.; Pankratz, V. Shane; Poland, Gregory A.

    2009-01-01

    OBJECTIVES Mumps outbreaks continue to occur throughout the world, including in highly vaccinated populations. Vaccination against mumps has been successful; however, humoral and cellular immune responses to mumps vaccines vary significantly from person to person. We set out to assess whether HLA and cytokine gene polymorphisms are associated with variations in the immune response to mumps viral vaccine. METHODS To identify genetic factors that might contribute to variations in mumps vaccine–induced immune responses, we performed HLA genotyping in a group of 346 healthy schoolchildren (12–18 years of age) who previously received 2 doses of live mumps vaccine. Single-nucleotide polymorphisms (minor allele frequency of >5%) in cytokine and cytokine receptor genes were genotyped for a subset of 118 children. RESULTS Median values for mumps-specific antibody titers and lymphoproliferative stimulation indices were 729 IU/mL and 4.8, respectively. Girls demonstrated significantly higher mumps antibody titers than boys, indicating gender-linked genetic differences in humoral immune response. Significant associations were found between the HLA-DQB1*0303 alleles and lower mumps-specific antibody titers. An interesting finding was the association of several HLA class II alleles with mumps-specific lymphoproliferation. Alleles of the DRB1 (*0101, *0301, *0801, *1001, *1201, and *1302), DQA1 (*0101, *0105, *0401, and *0501), and DQB1 (*0201, *0402, and *0501) loci were associated with significant variations in lymphoproliferative immune responses to mumps vaccine. Additional associations were observed with single-nucleotide polymorphisms in the interleukin-10RA, interleukin-12RB1, and interleukin-12RB2 cytokine receptor genes. Minor alleles for 4 single-nucleotide polymorphisms within interleukin-10RA and interleukin-12RB genes were associated with variations in humoral and cellular immune responses to mumps vaccination. CONCLUSIONS These data suggest the important role of

  13. The Isolation of Novel Phage Display-Derived Human Recombinant Antibodies Against CCR5, the Major Co-Receptor of HIV

    PubMed Central

    Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai

    2013-01-01

    Abstract Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest. PMID:23941674

  14. Protein partners in the life history of activated fibroblast growth factor receptors.

    PubMed

    Vecchione, Anna; Cooper, Helen J; Trim, Kimberley J; Akbarzadeh, Shiva; Heath, John K; Wheldon, Lee M

    2007-12-01

    Fibroblast growth factor receptors (FGFRs) are a family of four transmembrane (TM) receptor tyrosine kinases (RTKs) which bind to a large family of fibroblast growth factor (FGF) ligands with varying affinity and specificity. FGFR signaling regulates many physiological and pathological processes in development and tissue homeostasis. Understanding FGFR signaling processes requires the identification of partner proteins which regulate receptor function and biological outputs. In this study, we employ an epitope-tagged, covalently dimerized, and constitutively activated form of FGFR1 to identify potential protein partners by MS. By this approach, we sample candidate FGFR effectors throughout the life history of the receptor. Functional classification of the partners identified revealed specific subclasses involved in protein biosynthesis and folding; structural and regulatory components of the cytoskeleton; known signaling effectors and small GTPases implicated in endocytosis and vesicular trafficking. The kinase dependency of the interaction was determined for a subset of previously unrecognized partners by coimmunoprecipitation, Western blotting, and immunocytochemistry. From this group, the small GTPase Rab5 was selected for functional interrogation. We show that short hairpin (sh) RNA-mediated depletion of Rab5 attenuates the activation of the extracellular-regulated kinase (ERK) 1/2 pathway by FGFR signaling. The strategic approach adopted in this study has revealed bona fide novel effectors of the FGFR signaling pathway.

  15. Bacterial production and structure-functional validation of a recombinant antigen-binding fragment (Fab) of an anti-cancer therapeutic antibody targeting epidermal growth factor receptor.

    PubMed

    Kim, Ji-Hun; Sim, Dae-Won; Park, Dongsun; Jung, Tai-Geun; Lee, Seonghwan; Oh, Taeheun; Ha, Jong-Ryul; Seok, Seung-Hyeon; Seo, Min-Duk; Kang, Ho Chul; Kim, Young Pil; Won, Hyung-Sik

    2016-12-01

    Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.

  16. Studies of the antibody nature of the rheumatoid factor

    PubMed Central

    Aho, K.; Harboe, M.; Leikola, J.

    1964-01-01

    The reaction of the rheumatoid factor (RF) with 7S γ-globulin antibodies of nine persons immunized with sheep erythrocytes was studied. All of a panel of rheumatoid sera with high Waaler-Rose titres agglutinated sheep cells sensitized with the human anti-sheep cell antibodies and O Rh positive cells sensitized with the `diagnostic' anti-CD serum Ripley. The RF measurable with these systems could be absorbed to diphtheria toxoid—human antitoxin precipitate, whereas the absorption with egg albumin—rabbit anti-egg albumin precipitate did not result in any appreciable titre reduction. However, the eluate from the rabbit precipitate was highly active in these systems, whereas Rh positive cells sensitized with anti-Rh sera suitable for Gm(a) typing were not regularly agglutinated. A markedly greater concentration of native than of heat-aggregated γ-globulin was needed for inhibition of the agglutination by the RF of cells heavily sensitized with the human anti-sheep cell antibodies. No appreciable difference in this respect was seen when using lightly sensitized cells. Only the heavily sensitized cells fixed complement. The `natural' 7S γ-globulin antibodies against sheep cells were neither suited for demonstration of RF nor did they fix complement. Sheep cells coated with 7S γ-globulin antibodies of a Gm(a+) person were agglutinated by a non-rheumatoid anti-Gm(a) serum, and this system was well suited for Gm(a) typing, whereas cells coated with antibodies of a Gm(a-) person were not agglutinated. Rheumatoid anti-Gm(a) sera agglutinated cells sensitized with antibodies of both Gm(a+) and Gm(a-) persons. Using cells coated with Gm(a+) antibodies, some distinction between Gm(a+) and Gm(a-) sera could be obtained under carefully controlled conditions. The use of a Gm(a-) coat resulted in a slight difference in the inhibiting capacity, which had no relation to the serum's Gm(a) type. The results suggest that the reaction of the RF with sheep cells heavily sensitized

  17. Age-related changes in expression of transforming growth factor-beta and receptors in cells of intervertebral discs.

    PubMed

    Matsunaga, Shunji; Nagano, Satoshi; Onishi, Toshiyuki; Morimoto, Norio; Suzuki, Shusaku; Komiya, Setsuro

    2003-01-01

    The authors conducted a study to determine age-related changes in expression of transforming growth factor (TGF)-beta1, -beta2, -beta3, and Type I and Type II receptors in various cells in the nucleus pulposus and anulus fibrosus. Immunolocalization of TGFbetas and Type I and II receptors was examined during the aging process of cervical intervertebral discs in senescence-accelerated mice (SAM). The TGFbeta family has important roles for cellular function of various tissues. Its role in disc aging, however, is unknown. Detailed information on the temporal and spatial localization of TGFbetas and their receptors in discs is required before discussing introduction of them clinically into the intervertebral disc. Three groups of five SAM each were used. The groups of SAM were age 8, 24, and 50 weeks, respectively. Hematoxylin and eosin staining and immunohistochemical study involving specific antibodies for TGFbeta1, -beta2, -beta3, and Types I and II TGF receptors were performed. Intervertebral discs exhibited degenerative change with advancing age. The TGFbetas and their receptors were present in the fibrocartilaginous cells within the anulus fibrosus and notochord-like cells within the nucleus pulposus of young mice. Expression of TGFbetas and Type I and Type II receptors changed markedly in the cells within the anulus fibrosus during the aging process. The TGFbetas and their receptors were present in cells within the nucleus pulposus and the anulus fibrosus of young mice, and their expression decreased with age.

  18. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    USDA-ARS?s Scientific Manuscript database

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  19. Mechanism of human antibody-mediated neutralization of Marburg virus.

    PubMed

    Flyak, Andrew I; Ilinykh, Philipp A; Murin, Charles D; Garron, Tania; Shen, Xiaoli; Fusco, Marnie L; Hashiguchi, Takao; Bornholdt, Zachary A; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Ward, Andrew B; Saphire, Erica Ollmann; Bukreyev, Alexander; Crowe, James E

    2015-02-26

    The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Neuronal surface antigen antibodies in limbic encephalitis: clinical-immunologic associations.

    PubMed

    Graus, F; Saiz, A; Lai, M; Bruna, J; López, F; Sabater, L; Blanco, Y; Rey, M J; Ribalta, T; Dalmau, J

    2008-09-16

    To report the frequency and type of antibodies against neuronal surface antigens (NSA-ab) in limbic encephalitis (LE). Analysis of clinical features, neuropathologic findings, and detection of NSA-ab using immunochemistry on rat tissue and neuronal cultures in a series of 45 patients with paraneoplastic (23) or idiopathic (22) LE. NSA-ab were identified in 29 patients (64%; 12 paraneoplastic, 17 idiopathic). Thirteen patients had voltage-gated potassium channels (VGKC)-ab, 11 novel NSA (nNSA)-ab, and 5 NMDA receptor (NMDAR)-ab. nNSA-ab did not identify a common antigen and were more frequent in paraneoplastic than idiopathic LE (39% vs 9%; p = 0.03). When compared with VGKC-ab or NMDAR-ab, the nNSA associated more frequently with intraneuronal antibodies (11% vs 73%; p = 0.001). Of 12 patients (9 nNSA-ab, 2 VGKC-ab, 1 NMDAR-ab) with paraneoplastic LE and NSA-ab, concomitant intraneuronal antibodies occurred in 9 (75%). None of these 12 patients improved with immunotherapy. The autopsy of three of them showed neuronal loss, microgliosis, and cytotoxic T cell infiltrates in the hippocampus and amygdala. These findings were compatible with a T-cell mediated neuronal damage. In contrast, 13 of 17 (76%) patients with idiopathic LE and NSA-ab (8 VGKC-ab, 4 NMDAR-ab, 1 nNSA-ab) and 1 of 5 (20%) without antibodies had clinical improvement (p = 0.04). In paraneoplastic limbic encephalitis (LE), novel antibodies against neuronal surface antigens (nNSA-ab) occur frequently, coexist with antibodies against intracellular antigens, and these cases are refractory to immunotherapy. In idiopathic LE, the likelihood of improvement is significantly higher in patients with NSA-ab than in those without antibodies.

  1. Antibody neutralization of retargeted measles viruses

    PubMed Central

    Lech, Patrycja J.; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J.; Nara, Peter L.; Russell, Stephen J.

    2014-01-01

    The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. PMID:24725950

  2. Anemia and hematinic deficiencies in gastric parietal cell antibody-positive and antibody-negative erosive oral lichen planus patients with thyroid antibody positivity.

    PubMed

    Chang, Julia Y-F; Chen, I-Chang; Wang, Yi-Ping; Wu, Yu-Hsueh; Chen, Hsin-Ming; Sun, Andy

    2016-11-01

    Serum gastric parietal cell antibody (GPCA), thyroglobulin antibody (TGA), and thyroid microsomal antibody (TMA) are found in some erosive oral lichen planus (EOLP) patients. This study assessed whether serum GPCA, TGA and TMA and EOLP itself played significant roles in causing anemia and hematinic deficiencies in TGA/TMA-positive EOLP patients with GPCA positivity (GPCA + /TGA/TMA/EOLP patients) or negativity (GPCA - /TGA/TMA/EOLP patients). The mean corpuscular volume (MCV) and mean blood hemoglobin (Hb), iron, vitamin B12, and folic acid levels were measured and compared between any two of the four groups of 29 GPCA + /TGA/TMA/EOLP patients, 80 GPCA - /TGA/TMA/EOLP patients, 198 all antibodies-negative EOLP patients (Abs - /EOLP patients), and 218 healthy control individuals. GPCA + /TGA/TMA/EOLP patients had significantly lower mean Hb and vitamin B12 levels as well as significantly greater frequencies of Hb, iron, and vitamin B12 deficiencies than healthy controls. GPCA + /TGA/TMA/EOLP patients had significantly lower serum vitamin B12 level and higher MCV as well as a significantly greater frequency of vitamin B12 deficiency than GPCA - /TGA/TMA/EOLP patients. Furthermore, both GPCA - /TGA/TMA/EOLP and Abs - /EOLP patients did have significantly lower mean Hb, MCV, and iron (for women only) levels, as well as significantly greater frequencies of Hb and iron deficiencies than healthy controls. However, there were no significant differences in measured blood data between GPCA - /TGA/TMA/EOLP and Abs - /EOLP patients. We conclude that serum GPCA is the major factor causing vitamin B12 deficiency, macrocytosis and pernicious anemia in GPCA + /TGA/TMA/EOLP patients. ELOP itself but not TGA/TMA positivity plays a significant role in causing anemia and hematinic deficiencies in GPCA - /TGA/TMA/EOLP patients. Copyright © 2016. Published by Elsevier B.V.

  3. Blocking p75 (NTR) receptors alters polyinnervationz of neuromuscular synapses during development.

    PubMed

    Garcia, Neus; Tomàs, Marta; Santafe, Manel M; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2011-09-01

    High-resolution immunohistochemistry shows that the receptor protein p75(NTR) is present in the nerve terminal, muscle cell, and glial Schwann cell at the neuromuscular junction (NMJ) of postnatal rats (P4-P6) during the synapse elimination period. Blocking the receptor with the antibody anti-p75-192-IgG (1-5 μg/ml, 1 hr) results in reduced endplate potentials (EPPs) in mono- and polyinnervated synapses ex vivo, but the mean number of functional inputs per NMJ does not change for as long as 3 hr. Incubation with exogenous brain-derived neurotrophic factor (BDNF) for 1 hr (50 nM) resulted in a significant increase in the size of the EPPs in all nerve terminals, and preincubation with anti-p75-192-IgG prevented this potentiation. Long exposure (24 hr) in vivo of the NMJs to the antibody anti-p75-192-IgG (1-2 μg/ml) results in a delay of postnatal synapse elimination and even some regrowth of previously withdrawn axons, but also in some acceleration of the morphologic maturation of the postsynaptic nicotinic acetylcholine receptor (nAChR) clusters. The results indicate that p75(NTR) is involved in both ACh release and axonal retraction during postnatal axonal competition and synapse elimination. Copyright © 2011 Wiley-Liss, Inc.

  4. Dual agonist Surrobody™ simultaneously activates death receptors DR4 and DR5 to induce cancer cell death

    PubMed Central

    Milutinovic, Snezana; Kashyap, Arun K.; Yanagi, Teruki; Wimer, Carina; Zhou, Sihong; O' Neil, Ryann; Kurtzman, Aaron L.; Faynboym, Alexsandr; Xu, Li; Hannum, Charles H.; Diaz, Paul W.; Matsuzawa, Shu-ichi; Horowitz, Michael; Horowitz, Lawrence; Bhatt, Ramesh R.; Reed, John C.

    2015-01-01

    Death receptors of the Tumor Necrosis Factor (TNF) family are found on surface of most cancer cells and their activation typically kills cancer cells through the stimulation of the extrinsic apoptotic pathway. The endogenous ligand for death receptors-4 and -5 (DR4 and DR5) is Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, TRAIL (Apo2L). Since most untransformed cells are not susceptible to TRAIL-induced apoptosis, death receptor activators have emerged as promising cancer therapeutic agents. One strategy to stimulate death receptors in cancer patients is to use soluble human recombinant TRAIL protein, but this agent has limitations of a short half-life and decoy receptor sequestration. Another strategy that attempted to evade decoy receptor sequestration and to provide improved pharmacokinetic properties was to generate DR4 or DR5 agonist antibodies. The resulting monoclonal agonist antibodies overcame the limitations of short half-life and avoided decoy receptor sequestration, but are limited by activating only one of the two death receptors. Here, we describe a DR4 and DR5 dual agonist produced using Surrobody™ technology that activates both DR4 and DR5 to induce apoptotic death of cancer cells in vitro and in vivo and also avoids decoy receptor sequestration. This fully human anti-DR4/DR5 Surrobody displays superior potency to DR4- and DR5-specific antibodies, even when combined with TRAIL-sensitizing pro-apoptotic agents. Moreover, cancer cells were less likely to acquire resistance to Surrobody than either anti-DR4 or anti-DR5 mono-specific antibodies. Taken together, Surrobody shows promising preclinical pro-apoptotic activity against cancer cells, meriting further exploration of its potential as a novel cancer therapeutic agent. PMID:26516157

  5. A tissue microarray study of toll-like receptor 4, decoy receptor 3, and external signal regulated kinase 1/2 expressions in astrocytoma.

    PubMed

    Lin, Chih-Kung; Ting, Chun-Chieh; Tsai, Wen-Chiuan; Chen, Yuan-Wu; Hueng, Dueng-Yuan

    2016-01-01

    Decoy receptor 3 (DcR3) functions as a death decoy inhibiting apoptosis mediated by the tumor necrosis factor receptor family. It is highly expressed in many tumors and its expression can be regulated by the MAPK/ERK signaling pathway and ERK is a vital member of this pathway. Toll-like receptor 4 (TLR4) is expressed on immune cells. Increased TLR4 expression has been associated with various types of cancers. The study was conducted to investigate the expression of DcR3, ERK1/2, and TLR4 in astrocytomas and evaluate if they are validating markers for discriminating glioblastoma from anaplastic astrocytoma in limited surgical specimen. Expression of DcR3, ERK1/2, and TLR4 was determined by immunohistochemical staining of tissue microarray from 48 paraffin-embedded tissues. A binary logistic regression method was used to generate functions that discriminate between anaplastic astrocytomas and glioblastomas. The expression of TLR4 and DcR3 was significantly higher in glioblastomas than in anaplastic astrocytomas. DcR3 could discriminate anaplastic astrocytomas from glioblastomas with high sensitivity (93.8%), specificity (90%), and accuracy (92.3%). Our results suggest that DcR3 may be a useful marker for discriminating anaplastic astrocytomas from glioblastomas.

  6. Assembly and activation of neurotrophic factor receptor complexes.

    PubMed

    Simi, Anastasia; Ibáñez, Carlos F

    2010-04-01

    Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.

  7. 'Decoy peptide' region (RIFLKRMPSI) of prorenin prosegment plays a crucial role in prorenin binding to the (pro)renin receptor.

    PubMed

    Nabi, A H M Nurun; Biswas, Kazal Boron; Nakagawa, Tsutomu; Ichihara, Atsuhiro; Inagami, Tadashi; Suzuki, Fumiaki

    2009-07-01

    This study investigated a role of decoy peptide region (R10PIFLKRMPSI19P) in prorenin prosegment for prorenin binding to the (pro)renin receptor using the surface plasmon resonance technique. Three kinds of anti-receptor antibodies labeled as anti-107/121, anti-221/235 and anti-His tag antibody were prepared. The respective antigens D107SVANSIHSLFSEET121 (close to the N-terminal side of receptor), E221IGKRYGEDSEQFRD235 (N-terminal side of the transmembrane part of receptor) and 10xHis sequence (C-terminus) were designed based on the sequence of the receptor. These antibodies were immobilized on the CM5 sensor chip by amine coupling and allowed to bind to the receptor. Human prorenin, renin and the decoy bound to the receptor associated with antibodies. Their association (ka) and dissociation (kd) rate constants were measured and the dissociation constants (KD) were determined using Langmuir 1:1 kinetic binding model. The KD for interaction of prorenin and receptor associated to anti-107/121, anti-221/235 and anti-His tag antibodies were 2.9, 1.2 and 7.8 nM, respectively and for renin they were 9.3, 4.4 and 7.1 nM. The decoy bound to the respective immobilized receptor-antibody complexes at KD's of 6.2, 3.5 and 15.2 nM. Prorenin, renin and decoy had lower KD at the nanomolar ranges compared to those of L1PPTD4P in the prorenin prosegment and A248KKRLFDYVV257 in the C-domain of mature renin. The decoy reduced the binding of not only prorenin but also renin to (P)RR. These data are direct evidence that prorenin, renin and the peptides bind to (P)RR and the decoy reduces prorenin binding, supporting our hypothesis that decoy peptide region has a crucial role in prorenin binding.

  8. A glioma-derived analog to platelet-derived growth factor: demonstration of receptor competing activity and immunological crossreactivity.

    PubMed Central

    Nistér, M; Heldin, C H; Wasteson, A; Westermark, B

    1984-01-01

    A human clonal glioma cell line, U-343 MGa Cl 2, cultured under serum-free conditions, was found to release a factor that competed with 125I-labeled platelet-derived growth factor (125I-PDGF) for binding to human foreskin fibroblasts. The concentration of competing activity in conditioned medium was equal to 20-30 ng of PDGF per ml. The PDGF receptor competing activity had an elution position on Sephadex G-200 close to that of tracer PDGF. The same fractions in the chromatogram also contained growth-promoting activity and material active in a PDGF radioimmunoassay. Incubation of partially purified, 125I-labeled glioma factor with fibroblasts, or rabbit anti-PDGF serum, led to the selective binding of a component with an estimated Mr of 31,000, as shown by NaDodSO4/gel electrophoresis under nonreducing conditions. After reduction this component migrated as a Mr 18,000 protein. Thus, the behavior in NaDodSO4/gel electrophoresis was similar to that of PDGF. Furthermore, incubation of partially purified glioma factor with immobilized PDGF antibodies markedly decreased the amount of PDGF receptor competing activity remaining in the supernatant. These results suggest that the factor produced by glioma cells has structural, immunological, and functional resemblance to PDGF. We previously reported that a human osteosarcoma cell line produces a PDGF-like molecule with growth-promoting activity. Taken together with the recent finding that PDGF is homologous to the transforming gene product of simian sarcoma virus, our present data give additional support for the idea that an autocrine activation of the PDGF receptor may be operational in the growth of human tumors of mesenchymal or glial origin. Images PMID:6322178

  9. Expression of chemokine CXCL12 and its receptor CXCR4 in folliculostellate (FS) cells of the rat anterior pituitary gland: the CXCL12/CXCR4 axis induces interconnection of FS cells.

    PubMed

    Horiguchi, Kotaro; Ilmiawati, Cimi; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2012-04-01

    The anterior pituitary gland is composed of five types of hormone-producing cells plus folliculostellate (FS) cells, which do not produce classical anterior pituitary hormones. FS cells are interconnected by cytoplasmic processes and encircle hormone-producing cells or aggregate homophilically. Using living-cell imaging of primary culture, we recently reported that some FS cells precisely extend their cytoplasmic processes toward other FS cells and form interconnections with them. These phenomena suggest the presence of a chemoattractant factor that facilitates the interconnection. In this study, we attempted to discover the factor that induces interconnection of FS cells and succeeded in identifying chemokine (CXC)-L12 and its receptor CXCR4 as potential candidate molecules. CXCL12 is a chemokine of the CXC subfamily. It exerts its effects via CXCR4, a G protein-coupled receptor. The CXCL12/CXCR4 axis is a potent chemoattractant for many types of neural cells. First, we revealed that CXCL12 and CXCR4 are expressed by FS cells in rat anterior pituitary gland. Next, to clarify the function of the CXCL12/CXCR4 axis in FS cells, we observed living anterior pituitary cells in primary culture with specific CXCL12 inhibitor or CXCR4 antagonist and noted that extension of cytoplasmic processes and interconnection of FS cells were inhibited. Finally, we examined FS cell migration and invasion by using Matrigel matrix assays. CXCL12 treatment resulted in markedly increased FS cell migration and invasion. These data suggest that FS cells express chemokine CXCL12 and its receptor CXCR4 and that the CXCL12/CXCR4 axis evokes interconnection of FS cells.

  10. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism.

    PubMed

    Liu, Zhi; Leng, Esther C; Gunasekaran, Kannan; Pentony, Martin; Shen, Min; Howard, Monique; Stoops, Janelle; Manchulenko, Kathy; Razinkov, Vladimir; Liu, Hua; Fanslow, William; Hu, Zhonghua; Sun, Nancy; Hasegawa, Haruki; Clark, Rutilio; Foltz, Ian N; Yan, Wei

    2015-03-20

    Producing pure and well behaved bispecific antibodies (bsAbs) on a large scale for preclinical and clinical testing is a challenging task. Here, we describe a new strategy for making monovalent bispecific heterodimeric IgG antibodies in mammalian cells. We applied an electrostatic steering mechanism to engineer antibody light chain-heavy chain (LC-HC) interface residues in such a way that each LC strongly favors its cognate HC when two different HCs and two different LCs are co-expressed in the same cell to assemble a functional bispecific antibody. We produced heterodimeric IgGs from transiently and stably transfected mammalian cells. The engineered heterodimeric IgG molecules maintain the overall IgG structure with correct LC-HC pairings, bind to two different antigens with comparable affinity when compared with their parental antibodies, and retain the functionality of parental antibodies in biological assays. In addition, the bispecific heterodimeric IgG derived from anti-HER2 and anti-EGF receptor (EGFR) antibody was shown to induce a higher level of receptor internalization than the combination of two parental antibodies. Mouse xenograft BxPC-3, Panc-1, and Calu-3 human tumor models showed that the heterodimeric IgGs strongly inhibited tumor growth. The described approach can be used to generate tools from two pre-existent antibodies and explore the potential of bispecific antibodies. The asymmetrically engineered Fc variants for antibody-dependent cellular cytotoxicity enhancement could be embedded in monovalent bispecific heterodimeric IgG to make best-in-class therapeutic antibodies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Combination of Anti-IGF-1R Antibody A12 and Ionizing Radiation in Upper Respiratory Tract Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riesterer, Oliver; Yang Qiuan; Raju, Uma

    2011-03-15

    Purpose: The IGF1/IGF-1R signaling pathway has emerged as a potential determinant of radiation resistance in human cancer cell lines. Therefore we investigated the potency of monoclonal anti-IGF-1R antibody, A12, to enhance radiation response in upper respiratory tract cancers. Methods and Materials: Cell lines were assessed for IGF-1R expression and IGF1-dependent response to A12 or radiation using viability and clonogenic cancer cell survival assays. In vivo response of tumor xenografts to 10 or 20 Gy and A12 (0.25-2 mg x 3) was assessed using growth delay assays. Combined treatment effects were also analyzed by immunohistochemical assays for tumor cell proliferation, apoptosis,more » necrosis, and vascular endothelial growth factor expression at Days 1 and 6 after start of treatment. Results: A12 enhanced the radiosensitivity of HN5 and FaDu head-and-neck carcinomas in vitro (p < 0.05) and amplified the radioresponse of FaDu xenografts in a dose-dependent manner, with enhancement factors ranging from 1.2 to 1.8 (p < 0.01). Immunohistochemical analysis of FaDu xenografts demonstrated that A12 inhibited tumor cell proliferation (p < 0.05) and vascular endothelial growth factor expression. When A12 was combined with radiation, this resulted in apoptosis induction that persisted until 6 days from the start of treatment and in increased necrosis at Day 1 (p < 0.01, respectively). Combined treatment with A12 and radiation resulted in additive or subadditive growth delay in H460 or A549 xenografts, respectively. Conclusions: The results of this study strengthen the evidence for investigating how anti-IGF-1R strategies can be integrated into radiation and radiation-cetuximab regimen in the treatment of cancer of the upper aerodigestive tract cancers.« less

  12. Monoclonal antibody binding to the macrophage-specific receptor sialoadhesin alters the phagocytic properties of human and mouse macrophages.

    PubMed

    De Schryver, Marjorie; Cappoen, Davie; Elewaut, Dirk; Nauwynck, Hans J; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2017-02-01

    Sialoadhesin (Sn) is a surface receptor expressed on macrophages in steady state conditions, but during inflammation, Sn can be upregulated both on macrophages and on circulating monocytes. It was shown for different species that Sn becomes internalized after binding with monoclonal antibodies. These features suggest that Sn is a potential target for immunotherapies. In this study, human and mouse macrophages were treated with anti-Sn monoclonal antibodies or F(ab') 2 fragments and the effect of their binding to Sn on phagocytosis was analyzed. Binding of antibodies to Sn resulted in delayed and reduced phagocytosis of fluorescent beads. No effect was observed on Fc-mediated phagocytosis or phagocytosis of bacteria by human macrophages. In contrast, an enhanced phagocytosis of bacteria by mouse macrophages was detected. These results showed that stimulation of Sn could have different effects on macrophage phagocytosis, depending both on the type of phagocytosis and cellular background. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Development and validation of receptor occupancy pharmacodynamic assays used in the clinical development of the monoclonal antibody vedolizumab.

    PubMed

    Wyant, Tim; Estevam, Jose; Yang, Lili; Rosario, Maria

    2016-03-01

    Vedolizumab is a monoclonal antibody approved for use in ulcerative colitis and Crohn's disease. By specifically binding to α4 β7 integrin, vedolizumab prevents trafficking of lymphocytes to the gut, thereby interfering with disease pathology. During the clinical development program, the pharmacodynamic effect of vedolizumab was evaluated by 2 flow cytometry receptor occupancy assays: act-1 (ACT-1) and mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Here we describe the development and validation of these assays. The ACT-1 assay is a receptor occupancy free-site assay that uses a monoclonal antibody with the same binding epitope as vedolizumab to detect free (unbound) sites on α4 β7 integrin. The MAdCAM-1 assay used a soluble version of the natural ligand for α4 β7 integrin to detect free sites. The assays were validated using a fit-for-purpose approach throughout the clinical development of vedolizumab. Both the ACT-1 assay and the MAdCAM-1 assay demonstrated acceptable reproducibility and repeatability. The assays were sufficiently stable to allow for clinical use. During clinical testing the assays demonstrated that vedolizumab was able to saturate peripheral cells at all doses tested. Two pharmacodynamic receptor occupancy assays were developed and validated to assess the effect of vedolizumab on peripheral blood cells. The results of these assays demonstrated the practical use of flow cytometry to examine pharmacodynamic response in clinical trials. © 2015 International Clinical Cytometry Society.

  14. Understanding Cytokine and Growth Factor Receptor Activation Mechanisms

    PubMed Central

    Atanasova, Mariya; Whitty, Adrian

    2012-01-01

    Our understanding of the detailed mechanism of action of cytokine and growth factor receptors – and particularly our quantitative understanding of the link between structure, mechanism and function – lags significantly behind our knowledge of comparable functional protein classes such as enzymes, G protein-coupled receptors, and ion channels. In particular, it remains controversial whether such receptors are activated by a mechanism of ligand-induced oligomerization, versus a mechanism in which the ligand binds to a pre-associated receptor dimer or oligomer that becomes activated through subsequent conformational rearrangement. A major limitation to progress has been the relative paucity of methods for performing quantitative mechanistic experiments on unmodified receptors expressed at endogenous levels on live cells. In this article we review the current state of knowledge on the activation mechanisms of cytokine and growth factor receptors, critically evaluate the evidence for and against the different proposed mechanisms, and highlight other key questions that remain unanswered. New approaches and techniques have led to rapid recent progress in this area, and the field is poised for major advances in the coming years, which promises to revolutionize our understanding of this large and biologically and medically important class of receptors. PMID:23046381

  15. Connective Tissue Growth Factor Domain 4 Amplifies Fibrotic Kidney Disease through Activation of LDL Receptor-Related Protein 6.

    PubMed

    Johnson, Bryce G; Ren, Shuyu; Karaca, Gamze; Gomez, Ivan G; Fligny, Cécile; Smith, Benjamin; Ergun, Ayla; Locke, George; Gao, Benbo; Hayes, Sebastian; MacDonnell, Scott; Duffield, Jeremy S

    2017-06-01

    Connective tissue growth factor (CTGF), a matrix-associated protein with four distinct cytokine binding domains, has roles in vasculogenesis, wound healing responses, and fibrogenesis and is upregulated in fibroblasts and myofibroblasts in disease. Here, we investigated the role of CTGF in fibrogenic cells. In mice, tissue-specific inducible overexpression of CTGF by kidney pericytes and fibroblasts had no bearing on nephrogenesis or kidney homeostasis but exacerbated inflammation and fibrosis after ureteral obstruction. These effects required the WNT receptor LDL receptor-related protein 6 (LRP6). Additionally, pericytes isolated from these mice became hypermigratory and hyperproliferative on overexpression of CTGF. CTGF is cleaved in vivo into distinct domains. Treatment with recombinant domain 1, 1+2 (N terminus), or 4 (C terminus) independently activated myofibroblast differentiation and wound healing responses in cultured pericytes, but domain 4 showed the broadest profibrotic activity. Domain 4 exhibited low-affinity binding to LRP6 in in vitro binding assays, and inhibition of LRP6 or critical signaling cascades downstream of LRP6, including JNK and WNT/ β -catenin, inhibited the biologic activity of domain 4. Administration of blocking antibodies specifically against CTGF domain 4 or recombinant Dickkopf-related protein-1, an endogenous inhibitor of LRP6, effectively inhibited inflammation and fibrosis associated with ureteral obstruction in vivo Therefore, domain 4 of CTGF and the WNT signaling pathway are important new targets in fibrosis. Copyright © 2017 by the American Society of Nephrology.

  16. Far-western blotting as a solution to the non-specificity of the anti-erythropoietin receptor antibody

    PubMed Central

    Fecková, Barbora; Kimáková, Patrícia; Ilkovičová, Lenka; Szentpéteriová, Erika; Debeljak, Nataša; Solárová, Zuzana; Sačková, Veronika; Šemeláková, Martina; Bhide, Mangesh; Solár, Peter

    2016-01-01

    The erythropoietin receptor (EpoR) is a member of the cytokine receptor family. The interaction between erythropoietin (Epo) and EpoR is important for the production and maturation of erythroid cells, resulting in the stimulation of hematopoiesis. The fact that EpoR was also detected in neoplastic cells has opened the question about the relevance of anemia treatment with recombinant Epo in cancer patients. Numerous studies have reported pro-stimulating and anti-apoptotic effects of Epo in cancer cells, thus demonstrating EpoR functionality in these cells. By contrast, a previous study claims the absence of EpoR in tumor cells. This apparent discrepancy is based, according to certain authors, on the use of non-specific anti-EpoR antibodies. With the aim of bypassing the direct detection of EpoR with an anti-EpoR antibody, the present authors propose a far-western blot methodology, which in addition, confirms the interaction of Epo with EpoR. Applying this technique, the presence of EpoR and its interaction with Epo in human ovarian adenocarcinoma A2780 and normal human umbilical vein endothelial cells was confirmed. Furthermore, modified immunoprecipitation of EpoR followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis confirmed a 57 kDa protein as a human Epo-interacting protein in both cell lines. PMID:27446474

  17. Next Generation Antibody Therapeutics Using Bispecific Antibody Technology.

    PubMed

    Igawa, Tomoyuki

    2017-01-01

    Nearly fifty monoclonal antibodies have been approved to date, and the market for monoclonal antibodies is expected to continue to grow. Since global competition in the field of antibody therapeutics is intense, we need to establish novel antibody engineering technologies to provide true benefit for patients, with differentiated product values. Bispecific antibodies are among the next generation of antibody therapeutics that can bind to two different target antigens by the two arms of immunoglobulin G (IgG) molecule, and are thus believed to be applicable to various therapeutic needs. Until recently, large scale manufacturing of human IgG bispecific antibody was impossible. We have established a technology, named asymmetric re-engineering technology (ART)-Ig, to enable large scale manufacturing of bispecific antibodies. Three examples of next generation antibody therapeutics using ART-Ig technology are described. Recent updates on bispecific antibodies against factor IXa and factor X for the treatment of hemophilia A, bispecific antibodies against a tumor specific antigen and T cell surface marker CD3 for cancer immunotherapy, and bispecific antibodies against two different epitopes of soluble antigen with pH-dependent binding property for the elimination of soluble antigen from plasma are also described.

  18. Detection of Circulating Tumor Cells in Hepatocellular Carcinoma Using Antibodies against Asialoglycoprotein Receptor, Carbamoyl Phosphate Synthetase 1 and Pan-Cytokeratin

    PubMed Central

    Zhang, Yu; Liu, Huiying; Sun, Bin; Zhao, Linlin; Ge, Naijian; Qian, Haihua; Yang, Yefa; Wu, Mengchao; Yin, Zhengfeng

    2014-01-01

    Background Asialoglycoprotein receptor (ASGPR)-ligand-based separation combined with identification with Hep Par 1 or pan-cytokeratin (P-CK) antibody have been demonstrated to detect circulating tumor cells (CTCs) in hepatocellular carcinoma (HCC). The aim of this study was to develop an improved enrichment and identification system that allows the detection of all types of HCC CTCs. Methods The specificity of the prepared anti-ASGPR monoclonal antibody was characterized. HCC cells were bound by ASGPR antibody and subsequently magnetically isolated by second antibody-coated magnetic beads. Isolated HCC cells were identified by immunofluorescence staining using a combination of anti-P-CK and anti-carbamoyl phosphate synthetase 1 (CPS1) antibodies. Blood samples spiked with HepG2 cells were used to determine recovery and sensitivity. CTCs were detected in blood samples from HCC patients and other patients. Results ASGPR was exclusively expressed in human hepatoma cell line, normal hepatocytes and HCC cells in tissue specimens detected by the ASGPR antibody staining. More HCC cells could be identified by the antibody cocktail for CPS1 and P-CK compared with a single antibody. The current approach obtained a higher recovery rate of HepG2 cells and more CTC detection from HCC patients than the previous method. Using the current method CTCs were detected in 89% of HCC patients and no CTCs were found in the other test subjects. Conclusions Our anti-ASGPR antibody could be used for specific and efficient HCC CTC enrichment, and anti-P-CK combined with anti-CPS1 antibodies is superior to identification with one antibody alone in the sensitivity for HCC CTC detection. PMID:24763545

  19. Lethal factor antibodies contribute to lethal toxin neutralization in recipients of anthrax vaccine precipitated.

    PubMed

    Dumas, Eric K; Garman, Lori; Cuthbertson, Hannah; Charlton, Sue; Hallis, Bassam; Engler, Renata J M; Choudhari, Shyamal; Picking, William D; James, Judith A; Farris, A Darise

    2017-06-08

    A major difference between two currently licensed anthrax vaccines is presence (United Kingdom Anthrax Vaccine Precipitated, AVP) or absence (United States Anthrax Vaccine Adsorbed, AVA) of quantifiable amounts of the Lethal Toxin (LT) component Lethal Factor (LF). The primary immunogen in both vaccine formulations is Protective Antigen (PA), and LT-neutralizing antibodies directed to PA are an accepted correlate of vaccine efficacy; however, vaccination studies in animal models have demonstrated that LF antibodies can be protective. In this report we compared humoral immune responses in cohorts of AVP (n=39) and AVA recipients (n=78) matched 1:2 for number of vaccinations and time post-vaccination, and evaluated whether the LF response contributes to LT neutralization in human recipients of AVP. PA response rates (≥95%) and PA IgG concentrations were similar in both groups; however, AVP recipients exhibited higher LT neutralization ED 50 values (AVP: 1464.0±214.7, AVA: 544.9±83.2, p<0.0001) and had higher rates of LF IgG positivity (95%) compared to matched AVA vaccinees (1%). Multiple regression analysis revealed that LF IgG makes an independent and additive contribution to the LT neutralization response in the AVP group. Affinity purified LF antibodies from two independent AVP recipients neutralized LT and bound to LF Domain 1, confirming contribution of LF antibodies to LT neutralization. This study documents the benefit of including an LF component to PA-based anthrax vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [N-methyl-D-aspartate receptor antibody encephalitis: value of immunomodulatory therapy].

    PubMed

    Le Moigno, L; Ternant, D; Paintaud, G; Thibault, G; Cloarec, S; Tardieu, M; Lagrue, E; Castelnau, P

    2014-06-01

    Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is little known to pediatricians and likely underdiagnosed. The child's vital and cognitive prognosis is at stake. The use of immunomodulatory drugs, such as rituximab has led to spectacular results, but many questions remain about its mode of action in this type of pathology. We report the case of a 6-year-old girl with no medical history, admitted for status epilepticus preceded by behavior symptoms and sleep disorders. Gradually, the child became bedridden, mute, and animated by predominantly orofacial dyskinesia. Examinations were normal (cerebrospinal fluid [CSF] analysis, brain MRI). The diagnosis was established by the presence of NMDA-R antibodies in the CSF. After exclusion of a tumor-associated syndrome, treatment was started initially by intravenous immunoglobulins, then by plasma exchange, and finally rituximab. The patient was cured with rituximab despite an unusually early recovery of the B-cell pool. Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a severe but potentially reversible neurologic disorder only recently described, even in childhood. It may be reversible without sequelae if diagnosed and treated early. The use of immunomodulatory therapy, such as rituximab seemingly improves the outcome. Immunological monitoring is needed to better understand its mechanism of action in autoimmune diseases of the nervous system in childhood. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. [Monoclonal antibodies against inflammatory mediators for the treatment of patients with sepsis].

    PubMed

    Matsubara, Tomoyo

    2002-03-01

    Sepsis is a common cause of morbidity and mortality, particularly in immunocompromised and critically ill patients. Recently, a new designation, systemic inflammatory response syndrome(SIRS), has been studied. When an abnormal generalized inflammatory reaction is due to an infection, the terms sepsis and SIRS are synonymous. The systemic response to infection is mediated via the macrophage-derived cytokines that target end organ receptors in response to injury or infection. One strategy used to perturb the septic cascade is to block a particular inflammatory molecule. Results have been published on clinical trials in sepsis patients treated with several monoclonal antibodies, such as antiendotoxin antibodies, anti-tumor necrosis factor antibodies, and anti CD14 antibodies. In this chapter, the results of clinical trials in patients and in vivo data from animal models of sepsis are summarized.

  2. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody.

    PubMed Central

    Kume, S.; Takeya, M.; Mori, T.; Araki, N.; Suzuki, H.; Horiuchi, S.; Kodama, T.; Miyauchi, Y.; Takahashi, K.

    1995-01-01

    To elucidate the deposition of advanced glycation end products (AGEs) in aortic atherosclerosis, aortic walls were obtained from 25 autopsy cases and examined immunohistochemically and immunoelectron microscopically with a monoclonal antibody specific for AGEs, 6D12. Among the autopsy cases, atherosclerotic lesions were found in the aortas of 22 cases and were composed of diffuse intimal thickening, fatty streaks, atherosclerotic plaques, and/or complicated lesions. In these cases, intracellular AGE accumulation was demonstrated in the intimal lesions of aortic atherosclerosis in 12 cases. Compared with the diffuse intimal thickening, intracellular AGE accumulation was marked in the fatty streaks and atherosclerotic plaques. Immunohistochemical double staining with 6D12 and monoclonal antibodies for macrophages or muscle actin or a polyclonal antibody for scavenger receptors demonstrated that the AGE accumulation in macrophages or their related foam cells was marked in the diffuse intimal thickening and fatty streak lesions and that almost all macrophages and macrophage-derived foam cells possessed scavenger receptors. Immunoelectron microscopic observation revealed the localization of 6D12-positive reaction in lysosomal lipid vacuoles or electron-dense granules of the foam cells. These results indicate that AGE accumulation occurs in macrophages, smooth muscle cells, and their related foam cells. Images Figure 2 Figure 3 Figure 6 PMID:7545874

  3. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory*♦

    PubMed Central

    Butcher, Adrian J.; Bradley, Sophie J.; Prihandoko, Rudi; Brooke, Simon M.; Mogg, Adrian; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; Edwards, Jennifer M.; Bottrill, Andrew R.; Challiss, R. A. John; Broad, Lisa M.; Felder, Christian C.; Tobin, Andrew B.

    2016-01-01

    Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo. Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser228) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser228. These data supported the hypothesis that phosphorylation at Ser228 was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser228 on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser228 phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser228 not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning. PMID:26826123

  4. Higher serum levels of rheumatoid factor and anti-nuclear antibodies in helicobacter pylori-infected peptic ulcer patients.

    PubMed

    Jafarzadeh, Abdollah; Nemati, Maryam; Rezayati, Mohammad Taghi; Nabizadeh, Mansooreh; Ebrahimi, Medhi

    2013-07-01

    H. pylori infection has been associated with some autoimmune disorders. The aim of this study was to evaluate the serum concentrations of rheumatoid factor and anti-nuclear antibodies in H. pylori-infected peptic ulcer patients, H. pylori-infected asymptomatic carriers and a healthy control group. A Total of 100 H. pylori-infected peptic ulcer patients, 65 asymptomatic carriers and 30 healthy H. pylori-negative subjects (as a control group) were enrolled into study. Serum samples of participants tested for the levels of rheumatoid factor and anti-nuclear antibodies by use of ELISA. The mean serum levels of rheumatoid factor and anti-nuclear antibodies in peptic ulcer group was significantly higher in comparison to the control group (p<0.05). Although, the mean serum levels of rheumatoid factor and anti-nuclear antibodies in the asymptomatic carriers group was higher than those in the control group, the difference was not statistically significant. No significant differences were observed between peptic ulcer patients and asymptomatic carriers groups regarding the mean serum levels of rheumatoid factor and anti-nuclear antibodies. The mean serum levels of rheumatoid factor in men with peptic ulcer was significantly higher compared to the group of healthy men (p<0.05). Although in female of peptic ulcer patients or asymptomatic carriers groups, the mean serum levels of rheumatoid factor was higher than that in healthy women, but the differences were not statistically significant. Also, no significant differences were observed between men and women with peptic ulcer, asymptomatic carriers control groups based on the serum levels of anti-nuclear antibodies. The results showed higher serum levels of rheumatoid factor and anti-nuclear antibodies in H. pylori-infected patients with peptic ulcer disease which represent the H. pylori-related immune disturbance in these patients. Additional follow-up studies are necessary to clarify the clinical significance of these

  5. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    PubMed

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  6. Activated platelet-derived growth factor β receptor and Ras-mitogen-activated protein kinase pathway in natural bovine urinary bladder carcinomas.

    PubMed

    Corteggio, Annunziata; Di Geronimo, Ornella; Roperto, Sante; Roperto, Franco; Borzacchiello, Giuseppe

    2012-03-01

    Bovine papillomavirus types 1 or 2 (BPV-1/2) are involved in the aetiopathogenesis of bovine urinary bladder cancer. BPV-1/2 E5 activates the platelet-derived growth factor β receptor (PDGFβR). The aim of this study was to analyse the Ras/mitogen-activated protein kinase (MAPK) pathway in relation to activation of PDGFβR in natural bovine urinary bladder carcinomas. Co-immunoprecipitation and Western blot analysis demonstrated that recruitment of growth factor receptor bound protein 2 (GRB-2) and Sos-1 to the activated PDGFβR was increased in carcinomas compared to normal tissues. Higher grade bovine urinary bladder carcinomas were associated with activation of Ras, but not with activation of downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (Mek 1/2) or extracellular signal-regulated kinase (Erk 1/2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Interplay between Natural Killer Cells and Anti-HER2 Antibodies: Perspectives for Breast Cancer Immunotherapy

    PubMed Central

    Muntasell, Aura; Cabo, Mariona; Servitja, Sonia; Tusquets, Ignasi; Martínez-García, María; Rovira, Ana; Rojo, Federico; Albanell, Joan; López-Botet, Miguel

    2017-01-01

    Overexpression of the human epidermal growth factor receptor 2 (HER2) defines a subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted antibodies (i.e., trastuzumab, pertuzumab) to chemotherapy significantly improves relapse-free and overall survival in patients with early-stage and advanced disease. Nonetheless, considerable proportions of patients develop resistance to treatment, highlighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific antibodies can trigger natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-dependent NK cell activation results in the release of cytotoxic granules as well as the secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα) and chemokines. Hence, NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene expression signatures associated to the presence of cytotoxic lymphocyte infiltrates benefit from trastuzumab-based treatment, NK cell-related biomarkers of response/resistance to HER2-specific therapeutic antibodies in breast cancer patients remain elusive. Several variables, including (i) the configuration of the patient NK cell repertoire; (ii) tumor molecular features (i.e., estrogen receptor expression); (iii) concomitant therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors); and (iv) evasion mechanisms developed by progressive breast tumors, have been shown to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this review, we discuss possible interventions for restoring/enhancing the therapeutic activity of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through combinatorial

  8. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis.

    PubMed

    Miraoui, Hichem; Marie, Pierre J

    2010-11-02

    Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.

  9. N-methyl-d-aspartate (NMDA) receptor antibodies encephalitis mimicking an autistic regression.

    PubMed

    Hacohen, Yael; Wright, Sukhvir; Gadian, Jonathan; Vincent, Angela; Lim, Ming; Wassmer, Evangeline; Lin, Jean-Pierre

    2016-10-01

    Expressive dysphasia and mutism are common clinical features in children and adults with N-methyl-d-aspartate receptor antibodies (NMDAR-Ab) encephalitis, and are likely to result from NMDAR hypofunction. A prodromal loss of social and communication skills can typify that of an autistic regression, particularly when presenting under the age of 3 years. Here we describe two toddlers who presented with developmental regression, particularly of their social communication skills, mimicking an autistic regression, who were found to have NMDAR-Ab in the serum and cerebrospinal fluid. Although both patients had some other neurological features, they were subtle, which resulted in delayed diagnosis of NMDAR-Ab encephalitis. Importantly, immunotherapy was beneficial in both patients, with significant improvement of their language skills and behaviour. © 2016 Mac Keith Press.

  10. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  11. Ultrasonic atomization and subsequent desolvation for monoclonal antibody (mAb) to the glycoprotein (GP) IIIa receptor into drug eluting stent.

    PubMed

    Wang, G X; Luo, L L; Yin, T Y; Li, Y; Jiang, T; Ruan, C G; Guidoin, R; Chen, Y P; Guzman, R

    2010-01-01

    An eluting-stent system with mAb dispersed in the PLLA (poly (L-lactic acid)) was validated in vitro. Specifically designed spray equipment based on the principle of ultrasonic atomization was used to produce a thin continuous PLLA (poly (L-lactic acid)) polymer coating incorporating monoclonal antibody (mAb). This PLLA coating was observed in light microscopy (LM) and scanning electron microscopy (SEM). The concentration of the monoclonal antibody (mAb) to the platelet glycoprotein (GP) IIIa receptor and the eluting rate were then measured by a radioisotope technique with (125)I-labelled GP IIIa mAb. An in vitro perfusion circuit was designed to evaluate the release rates at different velocities (10 or 20 ml min(-1)). The PLLA coating was thin and transparent, uniformly distributed on the surface of the stent. Three factors influenced its thickness: PLLA concentration, duration and gas pressure. The concentration of mAb was influenced by the duration of absorption and the concentration of the mAb solution; the maximum was 1662.23 + or - 38.83 ng. The eluting rate was fast for the first 2 h, then decreased slowly and attained 80% after 2 weeks. This ultrasonic atomization spray equipment and technological process to prepare protein eluting-stents were proved to be effective and reliable.

  12. Genetics Home Reference: tumor necrosis factor receptor-associated periodic syndrome

    MedlinePlus

    ... Email Facebook Twitter Home Health Conditions TRAPS Tumor necrosis factor receptor-associated periodic syndrome Printable PDF Open ... to view the expand/collapse boxes. Description Tumor necrosis factor receptor-associated periodic syndrome (commonly known as ...

  13. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody

    PubMed Central

    Fallon, Jonathan K.; Vandeveer, Amanda J.

    2017-01-01

    The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γ‒dependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1‒expressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies. PMID:28423552

  14. Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors.

    PubMed

    Marcus-Samuels, Bernice; Krieger, Christine C; Boutin, Alisa; Kahaly, George J; Neumann, Susanne; Gershengorn, Marvin C

    2018-05-01

    Graves' ophthalmopathy (GO) pathogenesis involves thyrotropin (TSH) receptor (TSHR)-stimulating autoantibodies. Whether there are autoantibodies that directly stimulate insulin-like growth factor 1 receptors (IGF-1Rs), stimulating insulin-like growth factor receptor antibodies (IGFRAbs), remains controversial. This study attempted to determine whether there are stimulating IGFRAbs in patients with GO. Immunoglobulins (Igs) were purified from normal volunteers (NV-Igs) and patients with GO (GO-Igs). The effects of TSH, IGF-1, NV-Igs, and GO-Igs on pAKT and pERK1/2, members of pathways used by IGF-1R and TSHR, were compared in orbital fibroblasts from GO patients (GOFs) and U2OS-TSHR cells overexpressing TSHRs, and U2OS cells that express TSHRs at very low endogenous levels. U2OS-TSHR and U2OS cells were used because GOFs are not easily manipulated using molecular techniques such as transfection, and U2OS cells because they express TSHRs at levels that do not measurably stimulate signaling. Thus, comparing U2OS-TSHR and U2OS cells permits specifically distinguishing signaling mediated by the TSHR and IGF-1R. In GOFs, all GO-Igs stimulated pERK1/2 formation and 69% stimulated pAKT. In U2OS-TSHR cells, 15% of NV-IGs and 83% of GO-Igs stimulated increases in pERK1/2, whereas all NV-Igs and GO-Igs stimulated increases in pAKT. In U2OS cells, 70% of GO-Igs stimulated small increases in pAKT. Knockdown of IGF-1R caused a 65 ± 6.3% decrease in IGF-1-stimulated pAKT but had no effect on GO-Igs stimulation of pAKT. Thus, GO-Igs contain factor(s) that stimulate pAKT formation. However, this factor(s) does not directly activate IGF-1R. Based on the findings analyzing these two signaling pathways, it is concluded there is no evidence of stimulating IGFRAbs in GO patients.

  15. Epidermal growth factor receptor inhibition with erlotinib ameliorates anti-Thy 1.1-induced experimental glomerulonephritis.

    PubMed

    Rintala, Jukka M; Savikko, Johanna; Rintala, Sini E; Palin, Niina; Koskinen, Petri K

    2016-06-01

    Mesangial proliferative glomerulonephritis is a common glomerular disorder that may lead to end-stage renal disease. Epidermal growth factor (EGF) plays an important role in the regulation of cell growth, proliferation, and differentiation and in the pathology of various renal diseases. Erlotinib is a novel, oral, highly selective tyrosine kinase inhibitor of the EGF receptor. It is clinically used to treat non-small cell lung and pancreatic cancers. Here, we investigated the effect of erlotinib on the progression of mesangioproliferative glomerulonephritis in an experimental model. Mesangial glomerulonephritis was induced with anti-rat Thy-1.1 antibody in male Wistar rats weighing 150-160 g. Rats were treated with erlotinib (10 mg/kg/day p.o.) or vehicle only (polyethylene glycol). Native Wistar rat kidneys were used as histological controls. Serum creatinine levels were measured at day 7. Kidneys were harvested 7 days after antibody administration for histology. Native controls showed no histological signs of glomerular pathology. In the vehicle group, intense glomerular inflammation developed after 7 days and prominent mesangial cell proliferation and glomerular matrix accumulation was seen. Erlotinib was well tolerated and there were no adverse effects during the follow-up period. Erlotinib significantly prevented progression of the glomerular inflammatory response and glomerular mesangial cell proliferation as well as matrix accumulation when compared with the vehicle group. Erlotinib also preserved renal function. These results indicate that erlotinib prevents the early events of experimental mesangial proliferative glomerulonephritis. Therefore, inhibition of the EGF receptor with erlotinib could prevent the progression of glomerulonephritis also in clinical nephrology.

  16. Selective uptake and efflux of cholesteryl linoleate in LDL by macrophages expressing 12/15-lipoxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yoshitaka; Zhu, Hong; Xu, Wanpeng

    Oxidation of low density lipoprotein (LDL) is a critical step for airtightness, and the role of the 12/15-lipoxygenase (12/15-Lox) as well as LDL receptor-related protein (Lp) expressed in macrophages in this process has been suggested. The oxygenation of cholesteryl linoleate in LDL by mouse macrophage-like Joe.1 cells over expressing 12/15-Lox was inhibited by an anti-Lp antibody but not by an anti-LDL receptor antibody. When the cells were incubated with LDL double-labeled by [{sup 3}H]cholesteryl linoleate and [{sup 125}I]apo B, association with the cells of [{sup 3}H]cholesteryl linoleate expressed as LDL protein equivalent exceeded that of [{sup 125}I]apo B, indicating selectivemore » uptake of [{sup 3}H]cholesteryl linoleate from LDL to these cells. An anti-Lp antibody inhibited the selective uptake of [{sup 3}H]cholesteryl ester by 62% and 81% with the 12/15-Lox-expressing cells and macrophages, respectively. Furthermore, addition of LDL to the culture medium of the [{sup 3}H]cholesteryl linoleate-labeled 12/15-Lox-expressing cells increased the release of [{sup 3}H]cholesteryl linoleate to the medium in LDL concentration- and time-dependent manners. The transport of [{sup 3}H]cholesteryl linoleate from the cells to LDL was also inhibited by an anti-Lp antibody by 75%. These results strongly suggest that Lp contributes to the LDL oxidation by 12/15-Lox in macrophages by selective uptake and efflux of cholesteryl ester in the LDL particle.« less

  17. Steroid hormone and epidermal growth factor receptors in meningiomas.

    PubMed

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  18. Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy.

    PubMed

    Basilico, Cristina; Modica, Chiara; Maione, Federica; Vigna, Elisa; Comoglio, Paolo M

    2018-04-25

    MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and subsequent neutralization-we identified a single aminoacid in the extracellular domain of MET-lysine 842-that is critical for MvDN30 binding and engineered the corresponding recombinant decoyMET (K842E). DecoyMET K842E retains the ability to bind HGF with high affinity and inhibits HGF-induced MET phosphorylation. In HGF-dependent cellular models, MvDN30 antibody and decoyMET K842E used in combination cooperate in restraining invasive growth, and synergize in blocking cancer cell "scattering." The antibody and the decoy unbridle apoptosis of colon cancer stem cells grown in vitro as spheroids. In a preclinical model, built by orthotopic transplantation of a human pancreatic carcinoma in SCID mice engineered to express human HGF, concomitant treatment with antibody and decoy significantly reduces metastatic spread. The data reported indicate that vertical targeting of the MET/HGF axis results in powerful inhibition of ligand-dependent MET activation, providing proof of concept in favor of combined target therapy of MET "expedience." © 2018 UICC.

  19. Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5.

    PubMed

    Fieblinger, Tim; Sebastianutto, Irene; Alcacer, Cristina; Bimpisidis, Zisis; Maslava, Natallia; Sandberg, Sabina; Engblom, David; Cenci, M Angela

    2014-03-26

    In animal models of Parkinson's disease, striatal overactivation of ERK1/2 via dopamine (DA) D1 receptors is the hallmark of a supersensitive molecular response associated with dyskinetic behaviors. Here we investigate the pathways involved in D1 receptor-dependent ERK1/2 activation using acute striatal slices from rodents with unilateral 6-hydroxydopamine (6-OHDA) lesions. Application of the dopamine D1-like receptor agonist SKF38393 induced ERK1/2 phosphorylation and downstream signaling in the DA-denervated but not the intact striatum. This response was mediated through a canonical D1R/PKA/MEK1/2 pathway and independent of ionotropic glutamate receptors but blocked by antagonists of L-type calcium channels. Coapplication of an antagonist of metabotropic glutamate receptor type 5 (mGluR5) or its downstream signaling molecules (PLC, PKC, IP3 receptors) markedly attenuated SKF38393-induced ERK1/2 activation. The role of striatal mGluR5 in D1-dependent ERK1/2 activation was confirmed in vivo in 6-OHDA-lesioned animals treated systemically with SKF38393. In one experiment, local infusion of the mGluR5 antagonist MTEP in the DA-denervated rat striatum attenuated the activation of ERK1/2 signaling by SKF38393. In another experiment, 6-OHDA lesions were applied to transgenic mice with a cell-specific knockdown of mGluR5 in D1 receptor-expressing neurons. These mice showed a blunted striatal ERK1/2 activation in response to SFK38393 treatment. Our results reveal that D1-dependent ERK1/2 activation in the DA-denervated striatum depends on a complex interaction between PKA- and Ca(2+)-dependent signaling pathways that is critically modulated by striatal mGluR5.

  20. Antibody neutralization of retargeted measles viruses.

    PubMed

    Lech, Patrycja J; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J; Nara, Peter L; Russell, Stephen J

    2014-04-01

    The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Characterization of early and late endocytic compartments of the transferrin cycle. Transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome.

    PubMed

    Killisch, I; Steinlein, P; Römisch, K; Hollinshead, R; Beug, H; Griffiths, G

    1992-09-01

    We describe a detailed morphological characterization of the endocytic pathway in differentiating chicken erythroblasts transformed by a temperature-sensitive mutant of avian erythroblastosis virus (AEV). These cells express high levels of transferrin receptors (TfR) when induced to differentiate at 42 degrees C. Biochemical analysis showed that most (approximately 90%) of the internalized 125I-Tf recycled within approximately 30 min while a smaller fraction of 125I-Tf required up to 2 h for recycling. By immunocytochemistry, the bulk of Tf and TfR was localized at the plasma membrane and in tubuloreticular early endosomes. This structure contained coated buds that labelled with an antibody specific for the clathrin light chain. Decreasing amounts of both Tf and TfR were detected in two distal compartments, spherical endosome vesicles resembling multivesicular bodies and the prelysosomal compartment (PLC) enriched in cation-independent mannose 6-phosphate receptor. As shown by fluorescent (FITC-Tf) labelling of living cells, the movement of Tf/TfR complex into these late structures was accompanied by a significant drop in pH from about 6, the value displayed by early endosomes, to values below pH 5.0. Since no detectable 125I-Tf degradation was observed during a 4 h period we believe that the Tf/TfR detected in these late endocytic structures avoids degradation and recycles back to the cell surface. The addition of an anti-TfR monoclonal antibody to the culture medium of these cells blocks their differentiation. Under this condition the antibody-TfR complex was trapped in an early endosome compartment that enlarged to more than twice its normal size. However, this condition did not affect the transport kinetics of horseradish peroxidase from the medium to the PLC.

  2. Simultaneous Vascular Targeting and Tumor Targeting of Cerebral Breast Cancer Metastases Using a T-Cell Receptor Mimic Antibody

    DTIC Science & Technology

    2014-05-01

    in May 2013, the difference between nude mice (which lack T- cells , but still have a partially functional adaptive and innate immune system) and NSG...Mangada J, Greiner DL, Handgretinger R. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human...Targeting of Cerebral Breast Cancer Metastases Using a T- Cell Receptor Mimic Antibody PRINCIPAL INVESTIGATOR: Ulrich Bickel

  3. Internalization and Down-Regulation of the ALK Receptor in Neuroblastoma Cell Lines upon Monoclonal Antibodies Treatment

    PubMed Central

    Mazot, Pierre; Cazes, Alex; Dingli, Florent; Degoutin, Joffrey; Irinopoulou, Théano; Boutterin, Marie-Claude; Lombard, Bérangère; Loew, Damarys; Hallberg, Bengt; Palmer, Ruth Helen; Delattre, Olivier

    2012-01-01

    Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALKWT), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALKWT and ALKF1174L receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALKWT whereas both ALKWT and ALKF1174L were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALKWT. We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization. PMID:22479414

  4. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  5. Antibody-Dependent Cell-Mediated Cytotoxicity Effector-Enhanced EphA2 Agonist Monoclonal Antibody Demonstrates Potent Activity against Human Tumors1

    PubMed Central

    Bruckheimer, Elizabeth M; Fazenbaker, Christine A; Gallagher, Sandra; Mulgrew, Kathy; Fuhrmann, Stacy; Coffman, Karen T; Walsh, William; Ready, Shannon; Cook, Kim; Damschroder, Melissa; Kinch, Michael; Kiener, Peter A; Woods, Rob; Gao, Changshou; Dall'Acqua, William; Wu, Herren; Coats, Steven

    2009-01-01

    EphA2 is a receptor tyrosine kinase that has been shown to be overexpressed in a variety of human tumor types. Previous studies demonstrated that agonist monoclonal antibodies targeting EphA2 induced the internalization and degradation of the receptor, thereby abolishing its oncogenic effects. In this study, the in vitro and in vivo antibody-dependent cell-mediated cytotoxicity (ADCC) activity of EphA2 effector-enhanced agonist monoclonal antibodies was evaluated. With tumor cell lines and healthy human peripheral blood monocytes, the EphA2 antibodies demonstrated ∼80% tumor cell killing. In a dose-dependent manner, natural killer (NK) cells were required for the in vitro ADCC activity and became activated as demonstrated by the induction of cell surface expression of CD107a. To assess the role of NK cells on antitumor efficacy in vivo, the EphA2 antibodies were evaluated in xenograft models in severe compromised immunodeficient (SCID) mice (which have functional NK cells and monocytes) and SCID nonobese diabetic (NOD) mice (which largely lack functional NK cells and monocytes). Dosing of EphA2 antibody in the SCID murine tumor model resulted in a 6.2-fold reduction in tumor volume, whereas the SCID/nonobese diabetic model showed a 1.6-fold reduction over the isotype controls. Together, these results demonstrate that the anti-EphA2 monoclonal antibodies may function through at least two mechanisms of action: EphA2 receptor activation and ADCC-mediated activity. These novel EphA2 monoclonal antibodies provide additional means by which host effector mechanisms can be activated for selective destruction of EphA2-expressing tumor cells. PMID:19484140

  6. Apoptosis gene expression and death receptor signaling in mitomycin-C-treated human tenon capsule fibroblasts.

    PubMed

    Crowston, Jonathan G; Chang, Lydia H; Constable, Peter H; Daniels, Julie T; Akbar, Arne N; Khaw, Peng T

    2002-03-01

    To examine the effect of mitomycin-C on the expression of apoptosis genes in human Tenon capsule fibroblasts and to evaluate whether death receptor signaling modulates mitomycin-C cytotoxicity. Bcl-2, Bax, Bcl-x, Fas (CD95) and tumor necrosis factor (TNF) receptor expression was determined by flow cytometry in control and mitomycin-C-treated Tenon fibroblasts. Fibroblast death was quantified using a lactate dehydrogenase release assay. The effect of Fas and TNF-receptor signaling was evaluated using Fas-specific antibodies and soluble TNF-alpha. Tenon fibroblasts constitutively express Bcl-2, Bax, and Bcl-x in culture. Mitomycin-C (0.4 mg/mL) induced a small but consistent increase in the expression of all three proteins. Tenon fibroblasts express low levels of Fas but are resistant to the effects of Fas-receptor ligation. Mitomycin-C (0.01-1.0 mg/mL) led to a significant increase in Fas expression at all concentrations tested (P < 0.01). Pretreatment with mitomycin-C (0.4 mg/mL) rendered fibroblasts susceptible to agonistic anti-Fas monoclonal IgM antibodies (50-500 ng/mL) and led to a further 50% reduction in viable fibroblasts at 48 hours, compared with mitomycin-C alone (P < 0.05). Antibodies that block the Fas receptor did not inhibit mitomycin-C-induced apoptosis. Mitomycin-C alters apoptosis gene expression and primes fibroblasts to the effects of Fas receptor ligation. Factors other than the level of Fas receptor expression modulate the response to Fas receptor signaling. Determining the signals that regulate fibroblast apoptosis may help to refine therapeutic strategies for switching off the subconjunctival healing response and maintaining intraocular pressure control.

  7. [Targeting of membrane receptor tyrosine kinases: is there resistance in the HER?].

    PubMed

    Monnier, Lucile; Milano, Gérard; Penault-Llorca, Frédérique; Merlin, Jean-Louis

    2004-09-01

    Human Epidermal growth factor Receptors (HER) play an important role in cellular proliferation, and differentiation. Their overexpression in tumor tissues is often associated with a poor prognosis. Consequently, HER receptors are interesting therapeutic targets for cancer treatment. Two strategies are proposed. First, monoclonal antibodies can be used to inhibit the binding of one ligand to its receptor. The second approach is based upon the designing of tyrosine kinase inhibitors capable to bind into the phosphorylation site of the receptor. Consequently, both approaches block the signal transduction downstream. Resistance to anti receptor tyrosine kinase therapy can lead to enhanced morbidity associated with high therapeutic cost. Different mechanisms can be implicated. Non specific mechanisms include alterations of the signal transduction pathways (PI3K/AKT), recruitment of alternative receptor tyrosine kinase pathways (IGFR, VEGFR) and proteasome degradation inhibition. Other mechanisms are specific to HER and rely on inhibition of the binding of monoclonal antibodies (sialomucin-MUC4), heterodimerisation of HER, truncated soluble receptors intervention and mutated variants, as demonstrated very recently with EGF receptors, or genetic polymorphism. This paper reviews these different resistance mechanisms that have been identified in preclinical and clinical situations.

  8. Antibodies against CD20 or B-Cell Receptor Induce Similar Transcription Patterns in Human Lymphoma Cell Lines

    PubMed Central

    Franke, Andreas; Niederfellner, Gerhard J.; Klein, Christian; Burtscher, Helmut

    2011-01-01

    Background CD20 is a cell surface protein exclusively expressed on B cells. It is a clinically validated target for Non-Hodgkin's lymphomas (NHL) and autoimmune diseases. The B cell receptor (BCR) plays an important role for development and proliferation of pre-B and B cells. Physical interaction of CD20 with BCR and components of the BCR signaling cascade has been reported but the consequences are not fully understood. Methodology In this study we employed antibodies against CD20 and against the BCR to trigger the respective signaling. These antibodies induced very similar expression patterns of up- and down-regulated genes in NHL cell lines indicating that CD20 may play a role in BCR signaling and vice versa. Two of the genes that were rapidly and transiently induced by both stimuli are CCL3 and CCL4. 4 hours after stimulation the concentration of these chemokines in culture medium reaches a maximum. Spleen tyrosine kinase Syk is a cytoplasmic tyrosine kinase and a key component of BCR signaling. Both siRNA mediated silencing of Syk and inhibition by selective small molecule inhibitors impaired CCL3/CCL4 protein induction after treatment with either anti-CD20 or anti-BCR antibodies. Conclusion Our results suggest that treatment with anti-CD20 antibodies triggers at least partially a BCR activation-like response in NHL cell lines. PMID:21364752

  9. The Bordetella Adenylate Cyclase Repeat-in-Toxin (RTX) Domain Is Immunodominant and Elicits Neutralizing Antibodies*

    PubMed Central

    Wang, Xianzhe; Maynard, Jennifer A.

    2015-01-01

    The adenylate cyclase toxin (ACT) is a multifunctional virulence factor secreted by Bordetella species. Upon interaction of its C-terminal hemolysin moiety with the cell surface receptor αMβ2 integrin, the N-terminal cyclase domain translocates into the host cell cytosol where it rapidly generates supraphysiological cAMP concentrations, which inhibit host cell anti-bacterial activities. Although ACT has been shown to induce protective immunity in mice, it is not included in any current acellular pertussis vaccines due to protein stability issues and a poor understanding of its role as a protective antigen. Here, we aimed to determine whether any single domain could recapitulate the antibody responses induced by the holo-toxin and to characterize the dominant neutralizing antibody response. We first immunized mice with ACT and screened antibody phage display libraries for binding to purified ACT. The vast majority of unique antibodies identified bound the C-terminal repeat-in-toxin (RTX) domain. Representative antibodies binding two nonoverlapping, neutralizing epitopes in the RTX domain prevented ACT association with J774A.1 macrophages and soluble αMβ2 integrin, suggesting that these antibodies inhibit the ACT-receptor interaction. Sera from mice immunized with the RTX domain showed similar neutralizing activity as ACT-immunized mice, indicating that this domain induced an antibody response similar to that induced by ACT. These data demonstrate that RTX can elicit neutralizing antibodies and suggest it may present an alternative to ACT. PMID:25505186

  10. Human epidermal growth factor receptor 2 overexpression in breast cancer of patients with anti-Yo--associated paraneoplastic cerebellar degeneration.

    PubMed

    Rojas-Marcos, Iñigo; Picard, Geraldine; Chinchón, David; Gelpi, Ellen; Psimaras, Dimitri; Giometto, Bruno; Delattre, J Y; Honnorat, J; Graus, F

    2012-04-01

    Isolated case reports suggest that breast tumors from patients with paraneoplastic cerebellar degeneration (PCD) and Yo antibodies overexpress human epidermal growth factor receptor 2 (HER2). HER2 overexpression is present in 15%-25% of breast cancers and is associated with poor prognosis. We retrospectively analyzed the status of HER2 in breast tumors of 27 patients with anti-Yo-associated PCD to evaluate whether HER2 overexpression in this group of patients is higher than expected. In addition, we analyzed HER2 status of 19 breast tumors from patients with paraneoplastic neurological syndromes and Ri antibodies to see whether HER2 was specifically related to anti-Yo-associated PCD. We also assessed cdr2 expression (the onconeural antigen recognized by Yo antibodies) in 21 HER2-positive breast tumors from patients without paraneoplastic neurological syndromes. HER2 was overexpressed in 26 patients (96.3%) with anti-Yo-associated PCD but only in 2 patients (10.5%) with paraneoplastic neurological syndromes associated with Ri antibodies (P< .0001). Only 5 (23.8%) of the 21 HER2-positive breast tumors showed cdr2 immunoreactivity. This study shows a very high frequency of HER2 overexpression in breast cancers in patients with anti-Yo-associated PCD but not in those from patients with Ri antibodies. Although the expression of cdr2 onconeural antigen is not high in HER2-positive breast cancers, HER2 overexpression seems to be an important requirement to develop an anti-Yo-associated PCD.

  11. Fluorescent immunolabeling of cancer cells by quantum dots and antibody scFv fragment.

    PubMed

    Zdobnova, Tatiana A; Dorofeev, Sergey G; Tananaev, Piter N; Vasiliev, Roman B; Balandin, Taras G; Edelweiss, Eveline F; Stremovskiy, Oleg A; Balalaeva, Irina V; Turchin, Ilya V; Lebedenko, Ekaterina N; Zlomanov, Vladimir P; Deyev, Sergey M

    2009-01-01

    Semiconductor quantum dots (QDs) coupled with cancer-specific targeting ligands are new promising agents for fluorescent visualization of cancer cells. Human epidermal growth factor receptor 2/neu (HER2/neu), overexpressed on the surface of many cancer cells, is an important target for cancer diagnostics. Antibody scFv fragments as a targeting agent for direct delivery of fluorophores offer significant advantages over full-size antibodies due to their small size, lower cross-reactivity, and immunogenicity. We have used quantum dots linked to anti-HER2/neu 4D5 scFv antibody to label HER2/neu-overexpressing live cells. Labeling of target cells was shown to have high brightness, photostability, and specificity. The results indicate that construction based on quantum dots and scFv antibody can be successfully used for cancer cell visualization.

  12. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.

    PubMed

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah

    2012-12-01

    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII.

  13. Naive T-cell receptor transgenic T cells help memory B cells produce antibody

    PubMed Central

    Duffy, Darragh; Yang, Chun-Ping; Heath, Andrew; Garside, Paul; Bell, Eric B

    2006-01-01

    Injection of the same antigen following primary immunization induces a classic secondary response characterized by a large quantity of high-affinity antibody of an immunoglobulin G class produced more rapidly than in the initial response – the products of memory B cells are qualitatively distinct from that of the original naive B lymphocytes. Very little is known of the help provided by the CD4 T cells that stimulate memory B cells. Using antigen-specific T-cell receptor transgenic CD4 T cells (DO11.10) as a source of help, we found that naive transgenic T cells stimulated memory B cells almost as well (in terms of quantity and speed) as transgenic T cells that had been recently primed. There was a direct correlation between serum antibody levels and the number of naive transgenic T cells transferred. Using T cells from transgenic interleukin-2-deficient mice we showed that interleukin-2 was not required for a secondary response, although it was necessary for a primary response. The results suggested that the signals delivered by CD4 T cells and required by memory B cells for their activation were common to both antigen-primed and naive CD4 T cells. PMID:17067314

  14. Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies

    PubMed Central

    2017-01-01

    Human immunodeficiency virus (HIV) hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR). This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS). Quantitative enzyme-linked immunoadsorption assays (ELISA) demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10−8 to 10−9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections. PMID:28972547

  15. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody.

    PubMed

    Fallon, Jonathan K; Vandeveer, Amanda J; Schlom, Jeffrey; Greiner, John W

    2017-03-28

    The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γ‒dependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1‒expressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies.

  16. Intra-articular administration of an antibody against CSF-1 receptor reduces pain-related behaviors and inflammation in CFA-induced knee arthritis.

    PubMed

    Alvarado-Vazquez, P A; Morado-Urbina, C E; Castañeda-Corral, G; Acosta-Gonzalez, R I; Kitaura, H; Kimura, K; Takano-Yamamoto, T; Jiménez-Andrade, J M

    2015-01-01

    Several studies have shown that blockade of colony stimulating factor-1 (CSF-1) or its receptor (CSF-1R) inhibits disease progression in rodent models of rheumatoid arthritis (RA); however, the role of the CSF-1/CSF-1R pathway in RA-induced pain and functional deficits has not been studied. Thus, we examined the effect of chronic intra-articular administration of a monoclonal anti-CSF-1R antibody (AFS98) on spontaneous pain, knee edema and functional disabilities in mice with arthritis. Unilateral arthritis was produced by multiple injections of complete Freund's adjuvant (CFA) into the right knee joint of adult male ICR mice. CFA-injected mice were then treated twice weekly from day 10 until day 25 with anti-CSF-1R antibody (3 and 10 μg/5 μL per joint), isotype control (rat IgG 10 μg/5 μL per joint) or PBS (5 μl/joint). Knee edema, spontaneous flinching, vertical rearing and horizontal exploratory activity were assessed at different days. Additionally, counts of peripheral leukocytes and body weight were measured to evaluate general health status. Intra-articular treatment with anti-CSF-1R antibody significantly increased horizontal exploratory activity and vertical rearing as well as reduced spontaneous flinching behavior and knee edema as compared to CFA-induced arthritis mice treated with PBS. Treatment with this antibody neither significantly affect mouse body weight nor the number of peripheral leukocytes. These results suggest that blockade of CSF-1R at the initial injury site (joint) could represent a therapeutic alternative for improving the functional disabilities and attenuating pain and inflammation in patients with RA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Muscle-Specific Tyrosine Kinase and Myasthenia Gravis Owing to Other Antibodies.

    PubMed

    Rivner, Michael H; Pasnoor, Mamatha; Dimachkie, Mazen M; Barohn, Richard J; Mei, Lin

    2018-05-01

    Around 20% of patients with myasthenia gravis are acetylcholine receptor antibody negative; muscle-specific tyrosine kinase antibodies (MuSK) were identified as the cause of myasthenia gravis in 30% to 40% of these cases. Anti MuSK myasthenia gravis is associated with specific clinical phenotypes. One is a bulbar form with fewer ocular symptoms. Others show an isolated head drop or symptoms indistinguishable from acetylcholine receptor-positive myasthenia gravis. These patients usually respond well to immunosuppressive therapy, but not as well to cholinesterase inhibitors. Other antibodies associated with myasthenia gravis, including low-density lipoprotein receptor-related protein 4, are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A Linear Epitope in the N-Terminal Domain of CCR5 and Its Interaction with Antibody

    PubMed Central

    Chain, Benny; Arnold, Jack; Akthar, Samia; Brandt, Michael; Davis, David; Noursadeghi, Mahdad; Lapp, Thabo; Ji, Changhua; Sankuratri, Surya; Zhang, Yanjing; Govada, Lata; Saridakis, Emmanuel; Chayen, Naomi

    2015-01-01

    The CCR5 receptor plays a role in several key physiological and pathological processes and is an important therapeutic target. Inhibition of the CCR5 axis by passive or active immunisation offers one very selective strategy for intervention. In this study we define a new linear epitope within the extracellular domain of CCR5 recognised by two independently produced monoclonal antibodies. A short peptide encoding the linear epitope can induce antibodies which recognise the intact receptor when administered colinear with a tetanus toxoid helper T cell epitope. The monoclonal antibody RoAb 13 is shown to bind to both cells and peptide with moderate to high affinity (6x10^8 and 1.2x107 M-1 respectively), and binding to the peptide is enhanced by sulfation of tyrosines at positions 10 and 14. RoAb13, which has previously been shown to block HIV infection, also blocks migration of monocytes in response to CCR5 binding chemokines and to inflammatory macrophage conditioned medium. A Fab fragment of RoAb13 has been crystallised and a structure of the antibody is reported to 2.1 angstrom resolution. PMID:26030924

  19. UV-B Radiation Induces Macrophage Migration Inhibitory Factor–Mediated Melanogenesis through Activation of Protease-Activated Receptor-2 and Stem Cell Factor in Keratinocytes

    PubMed Central

    Enomoto, Akiko; Yoshihisa, Yoko; Yamakoshi, Takako; Ur Rehman, Mati; Norisugi, Osamu; Hara, Hiroshi; Matsunaga, Kenji; Makino, Teruhiko; Nishihira, Jun; Shimizu, Tadamichi

    2011-01-01

    UV radiation indirectly regulates melanogenesis in melanocytes through a paracrine regulatory mechanism involving keratinocytes. Protease-activated receptor (PAR)-2 activation induces melanosome transfer by increasing phagocytosis of melanosomes by keratinocytes. This study demonstrated that macrophage migration inhibitory factor (MIF) stimulated PAR-2 expression in human keratinocytes. In addition, we showed that MIF stimulated stem cell factor (SCF) release in keratinocytes; however, MIF had no effect on the release of endothelin-1 or prostaglandin E2 in keratinocytes. In addition, MIF had no direct effect on melanin and tyrosinase synthesis in cultured human melanocytes. The effect of MIF on melanogenesis was also examined using a three-dimensional reconstituted human epidermal culture model, which is a novel, commercially available, cultured human epidermis containing functional melanocytes. Migration inhibitory factor induced an increase in melanin content in the epidermis after a 9-day culture period. Moreover, melanin synthesis induced by UV-B stimulation was significantly down-regulated by anti-MIF antibody treatment. An in vivo study showed that the back skin of MIF transgenic mice had a higher melanin content than that of wild-type mice after 12 weeks of UV-B exposure. Therefore, MIF-mediated melanogenesis occurs mainly through the activation of PAR-2 and SCF expression in keratinocytes after exposure to UV-B radiation. PMID:21281800

  20. Quantitative cumulative biodistribution of antibodies in mice: effect of modulating binding affinity to the neonatal Fc receptor.

    PubMed

    Yip, Victor; Palma, Enzo; Tesar, Devin B; Mundo, Eduardo E; Bumbaca, Daniela; Torres, Elizabeth K; Reyes, Noe A; Shen, Ben Q; Fielder, Paul J; Prabhu, Saileta; Khawli, Leslie A; Boswell, C Andrew

    2014-01-01

    The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn's role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn's role in antibody PK and catabolism at the tissue level.

  1. The stem cell growth factor receptor KIT is not expressed on interstitial cells in bladder.

    PubMed

    Gevaert, Thomas; Ridder, Dirk De; Vanstreels, Els; Daelemans, Dirk; Everaerts, Wouter; Aa, Frank Van Der; Pintelon, Isabel; Timmermans, Jean-Pierre; Roskams, Tania; Steiner, Clara; Neuhaus, Jochen

    2017-06-01

    The mast/stem cell growth factor receptor KIT has long been assumed to be a specific marker for interstitial cells of Cajal (ICC) in the bladder, with possible druggable perspectives. However, several authors have challenged the presence of KIT + ICC in recent years. The aim of this study was therefore to attempt to clarify the conflicting reports on KIT expression in the bladder of human beings, rat, mouse and guinea pig and to elucidate the possible role of antibody-related issues and interspecies differences in this matter. Fresh samples were obtained from human, rat, mouse and guinea pig cystectomies and processed for single/double immunohistochemistry/immunofluorescence. Specific antibodies against KIT, mast cell tryptase (MCT), anoctamin-1 (ANO1) and vimentin were used to characterize the cell types expressing KIT. Gut (jejunum) tissue was used as an external antibody control. Our results revealed KIT expression on mast cells but not on ICC in human, rat, mouse and guinea pig bladder. Parallel immunohistochemistry showed KIT expression on ICC in human, rat, mouse and guinea pig gut, which confirmed the selectivity of the KIT antibody clones. In conclusion, we have shown that KIT + cells in human, rat, mouse and guinea pig bladder are mast cells and not ICC. The present report is important as it opposes the idea that KIT + ICC are present in bladder. In this perspective, functional concepts of KIT + ICC being involved in sensory and/or motor aspects of bladder physiology should be revised. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001.

    PubMed

    Costa, Matthew R; Pollara, Justin; Edwards, Regina Whitney; Seaman, Michael S; Gorny, Miroslaw K; Montefiori, David C; Liao, Hua-Xin; Ferrari, Guido; Lu, Shan; Wang, Shixia

    2016-11-15

    HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost

  3. Structure of the human factor VIII C2 domain in complex with the 3E6 inhibitory antibody

    DOE PAGES

    Wuerth, Michelle E.; Cragerud, Rebecca K.; Spiegel, P. Clint

    2015-11-24

    Blood coagulation factor VIII is a glycoprotein cofactor that is essential for the intrinsic pathway of the blood coagulation cascade. Inhibitory antibodies arise either spontaneously or in response to therapeutic infusion of functional factor VIII into hemophilia A patients, many of which are specific to the factor VIII C2 domain. The immune response is largely parsed into “classical” and “non-classical” inhibitory antibodies, which bind to opposing faces cooperatively. In this study, the 2.61 Å resolution structure of the C2 domain in complex with the antigen-binding fragment of the 3E6 classical inhibitory antibody is reported. The binding interface is largely conservedmore » when aligned with the previously determined structure of the C2 domain in complex with two antibodies simultaneously. Further inspection of the B factors for the C2 domain in various X-ray crystal structures indicates that 3E6 antibody binding decreases the thermal motion behavior of surface loops in the C2 domain on the opposing face, thereby suggesting that cooperative antibody binding is a dynamic effect. Furthermore, understanding the structural nature of the immune response to factor VIII following hemophilia A treatment will help lead to the development of better therapeutic reagents.« less

  4. Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells

    PubMed Central

    Rossotti, Martín; Tabares, Sofía; Alfaya, Lucía; Leizagoyen, Carmen; Moron, Gabriel; González-Sapienza, Gualberto

    2015-01-01

    BACKGROUND Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domain (nanobody) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle. METHODS Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct used for pull-down/MS target identification. RESULTS The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells. CONCLUSIONS This strategy streamline the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents. GENERAL SIGNIFICANCE This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets. PMID:25819371

  5. B cell receptor editing in tolerance and autoimmunity

    PubMed Central

    Luning Prak, Eline T.; Monestier, Marc; Eisenberg, Robert A.

    2010-01-01

    Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by “editing” the specificities of their receptors with additional antibody gene rearrangements. Nemazee points out, “receptor editing separates receptor selection from cellular selection.”1 As such, editing complicates the Clonal Selection Hypothesis, because edited cells are not simply endowed for life with a single, invariant antigen receptor.2 For example, an edited B cell changes the specificity of its B cell receptor (BCR), and if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated, and the B cell can exhibit two specificities. Here we will describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire. PMID:21251012

  6. Comparison between sensitivity of autologous skin serum test and autologous plasma skin test in patients with Chronic Idiopathic Urticaria for detection of antibody against IgE or IgE receptor (FcεRIα).

    PubMed

    Sajedi, Vahid; Movahedi, Masoud; Aghamohammadi, Asghar; Aghamohamadi, Asghar; Gharagozlou, Mohammad; Ghareguzlou, Mohammad; Shafiei, Alireza; Soheili, Habib; Sanajian, Nahal

    2011-06-01

    Intradermal injection of autologous serum and plasma elicit a cutaneous reactivity in almost 45-60% of patients with Chronic Idiopathic Urticaria (CIU). This reactivity is associated with the presence of auto antibodies against IgE or IgE receptors. This study was carried out to compare the cutaneous reactivity of autologous serum and plasma skin tests in a series of patients with CIU for diagnosis of auto antibodies against IgE or IgE receptor. Fifty eight patients with CIU were injected intradermally with autologous serum and plasma (anticoagulated by citrate). Histamine was used as positive control and normal saline as negative control. The study group was checked by routine laboratory tests (CBC, U/A etc), allergens with skin prick tests, and serum IgE level, and auto antibodies against thyroid as well. Duration of urticaria was another factor which was assessed.There was no significant difference between positive ASST and positive APST patients for the above mentioned tests. 77.6% of the patients were Positive for APST and 65.5% were ASST positive. Duration of urticaria was longer in patients with positive ASST and APST than ASST and APST negative patients, although the difference was not statistically significant.Autologus serum skin test (ASST) and autologous plasma skin test (APST) could be used for estimation of duration and severity of urticaria and planning for the treatment.

  7. Huntingtin interacting protein 1 is a novel brain tumor marker that associates with epidermal growth factor receptor.

    PubMed

    Bradley, Sarah V; Holland, Eric C; Liu, Grace Y; Thomas, Dafydd; Hyun, Teresa S; Ross, Theodora S

    2007-04-15

    Huntingtin interacting protein 1 (HIP1) is a multidomain oncoprotein whose expression correlates with increased epidermal growth factor receptor (EGFR) levels in certain tumors. For example, HIP1-transformed fibroblasts and HIP1-positive breast cancers have elevated EGFR protein levels. The combined association of HIP1 with huntingtin, the protein that is mutated in Huntington's disease, and the known overexpression of EGFR in glial brain tumors prompted us to explore HIP1 expression in a group of patients with different types of brain cancer. We report here that HIP1 is overexpressed with high frequency in brain cancers and that this overexpression correlates with EGFR and platelet-derived growth factor beta receptor expression. Furthermore, serum samples from patients with brain cancer contained anti-HIP1 antibodies more frequently than age-matched brain cancer-free controls. Finally, we report that HIP1 physically associates with EGFR and that this association is independent of the lipid, clathrin, and actin interacting domains of HIP1. These findings suggest that HIP1 may up-regulate or maintain EGFR overexpression in primary brain tumors by directly interacting with the receptor. This novel HIP1-EGFR interaction may work with or independent of HIP1 modulation of EGFR degradation via clathrin-mediated membrane trafficking pathways. Further investigation of HIP1 function in brain cancer biology and validation of its use as a prognostic or predictive brain tumor marker are now warranted.

  8. Coengagement of CD16 and CD94 receptors mediates secretion of chemokines and induces apoptotic death of naive natural killer cells.

    PubMed

    Jewett, Anahid; Cacalano, Nicholas A; Head, Christian; Teruel, Antonia

    2006-04-01

    Down-modulation of CD16 (FcgammaRIII) receptors and loss of natural killer (NK) cell function have been observed in oral cancer patients. However, neither the mechanisms nor the significance of the decrease in CD16 receptors have been fully understood. The cytotoxic activity and survival of NK cells are negatively regulated by antibodies directed against CD16 surface receptor. The addition of anti-CD94 antibody in combination with either F(ab')(2) fragment or intact anti-CD16 antibody to NK cells resulted in significant inhibition of NK cell cytotoxic function and induction of apoptosis in resting human peripheral blood NK cells. Addition of interleukin-2 to anti-CD16 and/or anti-CD94 antibody-treated NK cells significantly inhibited apoptosis and increased the function of NK cells. There was a significant increase in tumor necrosis factor-alpha (TNF-alpha) but not IFN-gamma secretion in NK cells treated either with anti-CD16 antibody alone or in combination with anti-CD94 antibodies. Consequently, the addition of anti-TNF-alpha antibody partially inhibited apoptosis of NK cells mediated by the combination of anti-CD94 and anti-CD16 antibodies. Increase in apoptotic death of NK cells also correlated with an increase in type 2 inflammatory cytokines and in the induction of chemokines. Thus, we conclude that binding of antibodies to CD16 and CD94 NK cell receptors induces death of the NK cells and signals for the release of chemokines.

  9. Induction of chemokine receptor CXCR4 expression by transforming growth factor-β1 in human basal cell carcinoma cells.

    PubMed

    Chu, Chia-Yu; Sheen, Yi-Shuan; Cha, Shih-Ting; Hu, Yeh-Fang; Tan, Ching-Ting; Chiu, Hsien-Ching; Chang, Cheng-Chi; Chen, Min-Wei; Kuo, Min-Liang; Jee, Shiou-Hwa

    2013-11-01

    Higher CXCR4 expression enhances basal cell carcinoma (BCC) invasion and angiogenesis. The underlying mechanism of increased CXCR4 expression in invasive BCC is still not well understood. To investigate the mechanisms involved in the regulation of CXCR4 expression in invasive BCC. We used qRT-PCR, RT-PCR, Western blot, and flow cytometric analyses to examine different CXCR4 levels among the clinical samples, co-cultured BCC cells and BCC cells treated with recombinant transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). Immunohistochemical studies were used to demonstrate the correlation between TGF-β1 and CXCR4 expressions. The signal transduction pathway and transcriptional regulation were confirmed by treatments with chemical inhibitors, neutralizing antibodies, or short interfering RNAs, as well as luciferase reporter activity. Invasive BCC has higher TGF-β1 and CTGF levels compared to non-invasive BCC. Non-contact dermal fibroblasts co-culture with human BCC cells also increases the expression of CXCR4 in BCC cells. Treatment with recombinant human TGF-β1, but not CTGF, enhanced the CXCR4 levels in time- and dose-dependent manners. The protein level and surface expression of CXCR4 in human BCC cells was increased by TGF-β1 treatment. TGF-β1 was intensely expressed in the surrounding fibroblasts of invasive BCC and was positively correlated with the CXCR4 expression of BCC cells. The transcriptional regulation of CXCR4 by TGF-β1 is mediated by its binding to the TGF-β receptor II and phosphorylation of the extracellular signal-related kinase 1/2 (ERK1/2)-ETS-1 pathway. TGF-β1 induces upregulation of CXCR4 in human BCC cells by phosphorylation of ERK1/2-ETS-1 pathway. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. [Massive bleeding symptoms in two patients with factor V inhibitor and antiphospholipid antibodies after treatment with ciprofloxacin].

    PubMed

    Miesbach, Wolfgang; Voigt, Jochen; Peetz, Dirk; Scharrer, Inge

    2003-06-15

    The development of factor V inhibitor is very rare, especially in combination with antiphospholipid antibodies. The paper describes the course of two patients with factor V inhibitor, antiphospholipid antibodies and massive bleeding symptoms after treatment with ciprofloxacin. At that time, ciprofloxacin was the only new drug given. DIAGNOSIS AND CLINICAL COURSE: First changes of the coagulation system were detected 4 days after start of treatment. In one case, occurrence was transient, and normalization was observed after terminating ciprofloxacin treatment. The other case ended with massive muscular and visceral bleedings and cardiovascular failure. Factor V inhibitor and antiphospholipid antibodies could be demonstrated even after termination of ciprofloxacin therapy. The association of treatment with ciprofloxacin and development of factor V inhibitor and antiphospholipid antibodies is probably diagnosed to rarely. These two cases emphasize the necessity of meticulous clarification of a prolonged activated partial thromboplastin time (aPTT) and a drop in prothrombin time (PT) during and after ciprofloxacin treatment.

  11. Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility.

    PubMed

    Hsiao, Jordy J; Ng, Brandon H; Smits, Melinda M; Wang, Jiahui; Jasavala, Rohini J; Martinez, Harryl D; Lee, Jinhee; Alston, Jhullian J; Misonou, Hiroaki; Trimmer, James S; Wright, Michael E

    2015-03-31

    Identifying cellular signaling pathways that become corrupted in the presence of androgens that increase the metastatic potential of organ-confined tumor cells is critical to devising strategies capable of attenuating the metastatic progression of hormone-naïve, organ-confined tumors. In localized prostate cancers, gene fusions that place ETS-family transcription factors under the control of androgens drive gene expression programs that increase the invasiveness of organ-confined tumor cells. C-X-C chemokine receptor type 4 (CXCR4) is a downstream target of ERG, whose upregulation in prostate-tumor cells contributes to their migration from the prostate gland. Recent evidence suggests that CXCR4-mediated proliferation and metastasis of tumor cells is regulated by CXCR7 through its scavenging of chemokine CXCL12. However, the role of androgens in regulating CXCR4-mediated motility with respect to CXCR7 function in prostate-cancer cells remains unclear. Immunocytochemistry, western blot, and affinity-purification analyses were used to study how androgens influenced the expression, subcellular localization, and function of CXCR7, CXCR4, and androgen receptor (AR) in LNCaP prostate-tumor cells. Moreover, luciferase assays and quantitative polymerase chain reaction (qPCR) were used to study how chemokines CXCL11 and CXCL12 regulate androgen-regulated genes (ARGs) in LNCaP prostate-tumor cells. Lastly, cell motility assays were carried out to determine how androgens influenced CXCR4-dependent motility through CXCL12. Here we show that, in the LNCaP prostate-tumor cell line, androgens coordinate the expression of CXCR4 and CXCR7, thereby promoting CXCL12/CXCR4-mediated cell motility. RNA interference experiments revealed functional interactions between AR and CXCR7 in these cells. Co-localization and affinity-purification experiments support a physical interaction between AR and CXCR7 in LNCaP cells. Unexpectedly, CXCR7 resided in the nuclear compartment and modulated AR

  12. Diabody-based recombinant formats of humanized IgG-like bispecific antibody with effective retargeting of lymphocytes to tumor cells.

    PubMed

    Asano, Ryutaro; Kawaguchi, Hiroko; Watanabe, Yasuhiro; Nakanishi, Takeshi; Umetsu, Mitsuo; Hayashi, Hiroki; Katayose, Yu; Unno, Michiaki; Kudo, Toshio; Kumagai, Izumi

    2008-10-01

    Recently, recombinant antibodies have been dissected into antigen-binding regions and rebuilt into multivalent high-avidity formats. These new structural designs are expected to improve in vivo pharmacokinetics and efficacy in clinical use. Here, we designed effective recombinant bispecific antibody (BsAb) formats based on hEx3, a humanized bispecific diabody with epidermal growth factor receptor and CD3 retargeting. The bispecific and bivalent IgG-like antibodies engineered from hEx3 (or its single-chain form, hEx3-scDb) and the human Fc region showed stronger binding to each target cell than did monovalent diabody formats, and their affinity was identical to that of the corresponding parent IgG. The bivalent effect of the constructed IgG-like BsAbs resulted in cell cytotoxicity 10 times that of monovalent diabodies, and further, the fusion of Fc portion contributed intense cytotoxicity in peripheral blood mononuclear cells by the induction of the antibody-dependent cellular cytotoxicity. The growth-inhibition effects of IgG-like BsAbs were superior to those of the approved therapeutic antibody cetuximab, which recognizes the same epidermal growth factor receptor antigen, even when peripheral blood mononuclear cells were used as effector cells. We thus demonstrated a critical improvement in the effect of hEx3 by the bottom-up construction of IgG-like BsAbs; in adoptive immunotherapy, monotherapy without supplemental molecules may be able to induce antibody-dependent cellular cytotoxicity.

  13. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor.

    PubMed

    Gilmore, Andrew P; Valentijn, Anthony J; Wang, Pengbo; Ranger, Ann M; Bundred, Nigel; O'Hare, Michael J; Wakeling, Alan; Korsmeyer, Stanley J; Streuli, Charles H

    2002-08-02

    Novel cancer chemotherapeutics are required to induce apoptosis by activating pro-apoptotic proteins. Both epidermal growth factor (EGF) and insulin-like growth factor (IGF) provide potent survival stimuli in many epithelia, and activation of their receptors is commonly observed in solid human tumors. Here we demonstrate that blockade of the EGF receptor by a new drug in phase III clinical trails for cancer, ZD1839, potently induces apoptosis in mammary epithelial cell lines and primary cultures, as well as in a primary pleural effusion from a breast cancer patient. We identified the mechanism of apoptosis induction by ZD1839. We showed that it prevents cell survival by activating the pro-apoptotic protein BAD. Moreover, we demonstrate that IGF transactivates the EGF receptor and that ZD1839 blocks IGF-mediated phosphorylation of MAPK and BAD. Many cancer therapies kill tumor cells by inducing apoptosis as a consequence of targeting DNA; however, the threshold at which apoptosis can be triggered through DNA damage is often different from that in normal cells. Our results indicate that by targeting a growth factor-mediated survival signaling pathway, BAD phosphorylation can be manipulated therapeutically to induce apoptosis.

  14. Lack of antibodies to NMDAR or VGKC-complex in GAD and cardiolipin antibody-positive refractory epilepsy.

    PubMed

    Liimatainen, Suvi; Peltola, Jukka; Hietaharju, Aki; Sabater, Lidia; Lang, Bethan

    2014-03-01

    Over the last few years autoantibodies against neuronal proteins have been identified in several forms of autoimmune encephalitis and epilepsy. NMDA receptor (NMDAR) and voltage gated potassium channel (VGKC) complex antibodies are mainly associated with limbic encephalitis (LE) whereas glutamic acid decarboxylase antibodies (GADA) and anticardiolipin (ACL) antibodies are more commonly detected in patients with chronic epilepsy. Clinical features vary between these antibodies suggesting the specificity of different neuronal antibodies in seizures. Serum samples of 14 GADA positive and 24 ACL positive patients with refractory epilepsy were analyzed for the presence of VGKC or NMDAR antibodies. No positive VGKC or NMDAR antibodies were found in these patients. The results confirm the different significance of these neuronal antibodies in seizure disorders. Different autoantibodies have different significance in seizures and probably have different pathophysiological mechanisms of actions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF ormore » thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).« less

  16. Kainate Receptors in the Striatum: Implications for Excitotoxicity in Huntington’s Disease

    DTIC Science & Technology

    2005-08-01

    called ionotropic glutamate receptors. Using specific antibodies and glutamate-related compounds, we have achieved successfully a series of studies of the...them from AMPA receptors. However, the recent development of specific antibodies and selective AMPA receptor antagonists allowed various groups to...highly specific antibodies and/or cDNA probes allowed the better characterization of the cellular localization of various GABA and glutamate receptor

  17. Antibody-mediated inhibition of ricin toxin retrograde transport.

    PubMed

    Yermakova, Anastasiya; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten; Mantis, Nicholas J

    2014-04-08

    Ricin is a member of the ubiquitous family of plant and bacterial AB toxins that gain entry into the cytosol of host cells through receptor-mediated endocytosis and retrograde traffic through the trans-Golgi network (TGN) and endoplasmic reticulum (ER). While a few ricin toxin-specific neutralizing monoclonal antibodies (MAbs) have been identified, the mechanisms by which these antibodies prevent toxin-induced cell death are largely unknown. Using immunofluorescence confocal microscopy and a TGN-specific sulfation assay, we demonstrate that 24B11, a MAb against ricin's binding subunit (RTB), associates with ricin in solution or when prebound to cell surfaces and then markedly enhances toxin uptake into host cells. Following endocytosis, however, toxin-antibody complexes failed to reach the TGN; instead, they were shunted to Rab7-positive late endosomes and LAMP-1-positive lysosomes. Monovalent 24B11 Fab fragments also interfered with toxin retrograde transport, indicating that neither cross-linking of membrane glycoproteins/glycolipids nor the recently identified intracellular Fc receptor is required to derail ricin en route to the TGN. Identification of the mechanism(s) by which antibodies like 24B11 neutralize ricin will advance our fundamental understanding of protein trafficking in mammalian cells and may lead to the discovery of new classes of toxin inhibitors and therapeutics for biodefense and emerging infectious diseases. IMPORTANCE Ricin is the prototypic member of the AB family of medically important plant and bacterial toxins that includes cholera and Shiga toxins. Ricin is also a category B biothreat agent. Despite ongoing efforts to develop vaccines and antibody-based therapeutics against ricin, very little is known about the mechanisms by which antibodies neutralize this toxin. In general, it is thought that antibodies simply prevent toxins from attaching to cell surface receptors or promote their clearance through Fc receptor (FcR)-mediated uptake

  18. CD14(hi)CD16+ monocytes phagocytose antibody-opsonised Plasmodium falciparum infected erythrocytes more efficiently than other monocyte subsets, and require CD16 and complement to do so.

    PubMed

    Zhou, Jingling; Feng, Gaoqian; Beeson, James; Hogarth, P Mark; Rogerson, Stephen J; Yan, Yan; Jaworowski, Anthony

    2015-07-07

    With more than 600,000 deaths from malaria, mainly of children under five years old and caused by infection with Plasmodium falciparum, comes an urgent need for an effective anti-malaria vaccine. Limited details on the mechanisms of protective immunity are a barrier to vaccine development. Antibodies play an important role in immunity to malaria and monocytes are key effectors in antibody-mediated protection by phagocytosing antibody-opsonised infected erythrocytes (IE). Eliciting antibodies that enhance phagocytosis of IE is therefore an important potential component of an effective vaccine, requiring robust assays to determine the ability of elicited antibodies to stimulate this in vivo. The mechanisms by which monocytes ingest IE and the nature of the monocytes which do so are unknown. Purified trophozoite-stage P. falciparum IE were stained with ethidium bromide, opsonised with anti-erythrocyte antibodies and incubated with fresh whole blood. Phagocytosis of IE and TNF production by individual monocyte subsets was measured by flow cytometry. Ingestion of IE was confirmed by imaging flow cytometry. CD14(hi)CD16+ monocytes phagocytosed antibody-opsonised IE and produced TNF more efficiently than CD14(hi)CD16- and CD14(lo)CD16+ monocytes. Blocking experiments showed that Fcγ receptor IIIa (CD16) but not Fcγ receptor IIa (CD32a) or Fcγ receptor I (CD64) was necessary for phagocytosis. CD14(hi)CD16+ monocytes ingested antibody-opsonised IE when peripheral blood mononuclear cells were reconstituted with autologous serum but not heat-inactivated autologous serum. Antibody-opsonised IE were rapidly opsonised with complement component C3 in serum (t1/2 = 2-3 minutes) and phagocytosis of antibody-opsonised IE was inhibited in a dose-dependent manner by an inhibitor of C3 activation, compstatin. Compared to other monocyte subsets, CD14(hi)CD16+ monocytes expressed the highest levels of complement receptor 4 (CD11c) and activated complement receptor 3 (CD11b) subunits

  19. Differential effect of isotype on efficacy of anti-tumor necrosis factor alpha chimeric antibodies in experimental septic shock

    PubMed Central

    1994-01-01

    Immune complexes containing human gamma (g)1 or murine g2a antibodies generate secondary effector mechanisms via Fc receptor binding or complement activation, whereas those containing human g4 or murine g1 antibodies generally do not. Therefore, isotype selection of therapeutic antibodies may have important clinical consequences. In a rabbit model of human tumor necrosis factor (rhuTNF)-induced pyrexia, a murine/human chimeric g4 anti-human TNF-alpha monoclonal antibody (mAb) (cCB0011) showed a dose-dependent inhibition of pyrexia, whereas a g1 isotype variant of the same mAb gave a marked pyrexia that was seen at all doses indicative of an immune complex-mediated response. To investigate whether isotype difference could influence mAb efficacy in pathological disease states, hamster/murine chimeric g1 and g2a anti- murine TNF-alpha mAbs (TN3g1, TN3g2a) were studied in experimental shock in mice and rats. In lipopolysaccharide-induced shock in mice, treatment with TN3g1 mAb at 30 and 3 mg/kg resulted in 90% survival by 72 h (p < or = 0.004), and prolonged survival to 45 h (p < or = 0.05), respectively, compared with 100% mortality by 27 h in controls. In contrast, a g2a isotype variant of the same mAb (30 mg/kg) resulted in only 10% survival by 72 h (p < or = 0.05). In a neutropenic sepsis model in rats there was greater survival in animals receiving the g1 isotype of TN3 compared with g2a isotype variant (70 vs. 27%; p < or = 0.005) with 100% mortality in the controls. These differences were not due to the pharmacokinetic profiles of the mAbs. In models of experimental shock antibody isotype can affect outcome with inactive isotypes (human g4 and murine g1) being more efficacious than active isotypes (human g1 and murine g2a). PMID:8113678

  20. Determination of the exact molecular requirements for type 1 angiotensin receptor epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy.

    PubMed

    Smith, Nicola J; Chan, Hsiu-Wen; Qian, Hongwei; Bourne, Allison M; Hannan, Katherine M; Warner, Fiona J; Ritchie, Rebecca H; Pearson, Richard B; Hannan, Ross D; Thomas, Walter G

    2011-05-01

    Major interest surrounds how angiotensin II triggers cardiac hypertrophy via epidermal growth factor receptor transactivation. G protein-mediated transduction, angiotensin type 1 receptor phosphorylation at tyrosine 319, and β-arrestin-dependent scaffolding have been suggested, yet the mechanism remains controversial. We examined these pathways in the most reductionist model of cardiomyocyte growth, neonatal ventricular cardiomyocytes. Analysis with [(32)P]-labeled cardiomyocytes, wild-type and [Y319A] angiotensin type 1 receptor immunoprecipitation and phosphorimaging, phosphopeptide analysis, and antiphosphotyrosine blotting provided no evidence for tyrosine phosphorylation at Y319 or indeed of the receptor, and mutation of Y319 (to A/F) did not prevent either epidermal growth factor receptor transactivation in COS-7 cells or cardiomyocyte hypertrophy. Instead, we demonstrate that transactivation and cardiomyocyte hypertrophy are completely abrogated by loss of G-protein coupling, whereas a constitutively active angiotensin type 1 receptor mutant was sufficient to trigger transactivation and growth in the absence of ligand. These results were supported by the failure of the β-arrestin-biased ligand SII angiotensin II to transactivate epidermal growth factor receptor or promote hypertrophy, whereas a β-arrestin-uncoupled receptor retained these properties. We also found angiotensin II-mediated cardiomyocyte hypertrophy to be attenuated by a disintegrin and metalloprotease inhibition. Thus, G-protein coupling, and not Y319 phosphorylation or β-arrestin scaffolding, is required for epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy via the angiotensin type 1 receptor.