Sample records for factor receptor blockade

  1. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease.

    PubMed

    Kelsen, Silvia; Hall, John E; Chade, Alejandro R

    2011-07-01

    Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg(-1)·day(-1)) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD.

  2. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease

    PubMed Central

    Kelsen, Silvia; Hall, John E.

    2011-01-01

    Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg−1·day−1) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD. PMID:21478482

  3. Intra-Articular Blockade of P2X7 Receptor Reduces the Articular Hyperalgesia and Inflammation in the Knee Joint Synovitis Especially in Female Rats.

    PubMed

    Teixeira, Juliana Maia; Dias, Elayne Vieira; Parada, Carlos Amílcar; Tambeli, Cláudia Herrera

    2017-02-01

    Synovitis is a key factor in joint disease pathophysiology, which affects a greater proportion of women than men. P2X7 receptor activation contributes to arthritis, but whether it plays a role in articular inflammatory pain in a sex-dependent manner is unknown. We investigated whether the P2X7 receptor blockade in the knee joint of male and female rats reduces the articular hyperalgesia and inflammation induced by a carrageenan knee joint synovitis model. Articular hyperalgesia was quantified using the rat knee joint incapacitation test and the knee joint inflammation, characterized by the concentration of cytokines tumor necrosis factor-α, interleukin-1β, interleukin-6, and cytokine-induced neutrophil chemoattractant-1, and by neutrophil migration, was quantified using enzyme-linked immunosorbent assay and by myeloperoxidase enzyme activity measurement, respectively. P2X7 receptor blockade by the articular coadministration of selective P2X7 receptor antagonist A740003 with carrageenan significantly reduced articular hyperalgesia, pro-inflammatory cytokine concentrations, and myeloperoxidase activity induced by carrageenan injection into the knee joint of male and estrus female rats. However, a lower dose of P2X7 receptor antagonist was sufficient to significantly induce the antihyperalgesic and anti-inflammatory effects in estrus female but not in male rats. These results suggest that P2X7 receptor activation by endogenous adenosine 5'-triphosphate is essential to articular hyperalgesia and inflammation development in the knee joint of male and female rats. However, female rats are more responsive than male rats to the antihyperalgesic and anti-inflammatory effects induced by P2X7 receptor blockade. P2X7 receptors could be promising therapeutic targets in the treatment of knee joint disease symptoms, especially in women, who are more affected than men by these conditions. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Sex-specific effect of endothelin in the blood pressure response to acute angiotensin II in growth-restricted rats

    PubMed Central

    Intapad, Suttira; Ojeda, Norma B.; Varney, Elliott; Royals, Thomas P.; Alexander, Barbara T.

    2015-01-01

    The renal endothelin system contributes to sex differences in blood pressure with males demonstrating greater endothelin type-A receptor-mediated responses relative to females. Intrauterine growth restriction programs hypertension and enhanced renal sensitivity to acute angiotensin II in male growth-restricted rats. Endothelin is reported to work synergistically with angiotensin II. Thus, this study tested the hypothesis that endothelin augments the blood pressure response to acute angiotensin II in male growth-restricted rats. Systemic and renal hemodynamics were determined in response to acute angiotensin II (100 nanogram/kilogram/minute for 30 minutes) with and without the endothelin type-A receptor antagonist, ABT 627(10 nanogram/kilogram/minute for 30 minutes), in rats pretreated with enalapril (250 milligram/Liter for one week) to normalize the endogenous renin angiotensin system. Endothelin type-A receptor blockade reduced angiotensin II-mediated increases in blood pressure in male control and male growth-restricted rats. Endothelin type-A receptor blockade also abolished hyper-responsiveness to acute angiotensin II in male growth-restricted rats. Yet, blood pressure remained significantly elevated above baseline following endothelin type-A receptor blockade suggesting that factors in addition to endothelin contribute to the basic angiotensin II-induced pressor response in male rats. We also determined sex-specific effects of endothelin on acute angiotensin II-mediated hemodynamic responses. Endothelin type-A receptor blockade did not reduce acute angiotensin II-mediated increases in blood pressure in female control or growth-restricted rats, intact or ovariectomized. Thus, these data suggest that endothelin type-A receptor blockade contributes to hypersensitivity to acute angiotensin II in male growth-restricted rats and further supports the sex-specific effect of endothelin on blood pressure. PMID:26459423

  5. BLOCKADE OF NERVE GROWTH FACTOR (NGF) RECEPTOR TRKA ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC INFLAMMATION

    EPA Science Inventory


    Recent studies have shown that asthmatics have increased levels of the neurotrophin, NGF, in their lungs. In addition, antibody blockade of NGF in mice attenuates airway resistance associated with allergic airway responses. DEP has been linked to asthma exacerbation in many c...

  6. Plasticity of cardiovascular function in snapping turtle embryos (Chelydra serpentina): chronic hypoxia alters autonomic regulation and gene expression.

    PubMed

    Eme, John; Rhen, Turk; Tate, Kevin B; Gruchalla, Kathryn; Kohl, Zachary F; Slay, Christopher E; Crossley, Dane A

    2013-06-01

    Reptile embryos tolerate large decreases in the concentration of ambient oxygen. However, we do not fully understand the mechanisms that underlie embryonic cardiovascular short- or long-term responses to hypoxia in most species. We therefore measured cardiac growth and function in snapping turtle embryos incubated under normoxic (N21; 21% O₂) or chronic hypoxic conditions (H10; 10% O₂). We determined heart rate (fH) and mean arterial pressure (Pm) in acute normoxic (21% O₂) and acute hypoxic (10% O₂) conditions, as well as embryonic responses to cholinergic, adrenergic, and ganglionic pharmacological blockade. Compared with N21 embryos, chronic H10 embryos had smaller bodies and relatively larger hearts and were hypotensive, tachycardic, and following autonomic neural blockade showed reduced intrinsic fH at 90% of incubation. Unlike other reptile embryos, cholinergic and ganglionic receptor blockade both increased fH. β-Adrenergic receptor blockade with propranolol decreased fH, and α-adrenergic blockade with phentolamine decreased Pm. We also measured cardiac mRNA expression. Cholinergic tone was reduced in H10 embryos, but cholinergic receptor (Chrm2) mRNA levels were unchanged. However, expression of adrenergic receptor mRNA (Adrb1, Adra1a, Adra2c) and growth factor mRNA (Igf1, Igf2, Igf2r, Pdgfb) was lowered in H10 embryos. Hypoxia altered the balance between cholinergic receptors, α-adrenoreceptor and β-adrenoreceptor function, which was reflected in altered intrinsic fH and adrenergic receptor mRNA levels. This is the first study to link gene expression with morphological and cardioregulatory plasticity in a developing reptile embryo.

  7. Selective endothelin ETA and dual ET(A)/ET(B) receptor blockade improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease.

    PubMed

    Rafnsson, Arnar; Shemyakin, Alexey; Pernow, John

    2014-11-24

    Endothelin-1 contributes to endothelial dysfunction in patients with atherosclerosis and type 2 diabetes. In healthy arteries the ETA receptor mediates the main part of the vasoconstriction induced by endothelin-1 whilst the ETB receptor mediates vasodilatation. The ETB receptor expression is upregulated on vascular smooth muscle cells in atherosclerosis and may contribute to the increased vasoconstrictor tone and endothelial dysfunction observed in this condition. Due to these opposing effects of the ETB receptor it remains unclear whether ETB blockade together with ETA blockade may be detrimental or beneficial. The aim was therefore to compare the effects of selective ETA and dual ETA/ETB blockade on endothelial function in patients with type 2 diabetes and coronary artery disease. Forearm endothelium-dependent and endothelium-independent vasodilatation was assessed by venous occlusion plethysmography in 12 patients before and after selective ETA or dual ETA/ETB receptor blockade. Dual ETA/ETB receptor blockade increased baseline forearm blood flow by 30±14% (P<0.01) whereas selective ETA blockade did not (14±8%). Both selective ETA blockade and dual ETA/ETB blockade significantly improved endothelium-dependent vasodilatation. The improvement did not differ between the two treatments. There was also an increase in endothelium-independent vasodilatation with both treatments. Dual ETA/ETB blockade did not significantly increase microvascular flow but improved transcutaneous pO2. Both selective ETA and dual ETA/ETB improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease. ETB blockade increases basal blood flow but does not additionally improve endothelium-dependent vasodilatation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    PubMed

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  9. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    PubMed Central

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  10. Renin-angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats.

    PubMed

    Sedláková, Lenka; Čertíková Chábová, Věra; Doleželová, Šárka; Škaroupková, Petra; Kopkan, Libor; Husková, Zuzana; Červenková, Lenka; Kikerlová, Soňa; Vaněčková, Ivana; Sadowski, Janusz; Kompanowska-Jezierska, Elzbieta; Kujal, Petr; Kramer, Herbert J; Červenka, Luděk

    2017-01-01

    Early addition of endothelin (ET) type A (ET A ) receptor blockade to complex renin-angiotensin system (RAS) blockade has previously been shown to provide better renoprotection against progression of chronic kidney disease (CKD) in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX). In this study, we examined if additional protection is provided when ET A blockade is applied in rats with already developed CKD. For complex RAS inhibition, an angiotensin-converting enzyme inhibitor along with angiotensin II type 1 receptor blocker was used. Alternatively, ET A receptor blocker was added to the RAS blockade. The treatments were initiated 6 weeks after 5/6 NX and the follow-up period was 50 weeks. When applied in established CKD, addition of ET A receptor blockade to the complex RAS blockade brought no further improvement of the survival rate (30% in both groups); surprisingly, aggravated albuminuria (588 ± 47 vs. 245 ± 38 mg/24 h, p < 0.05) did not reduce renal glomerular injury index (1.25 ± 0.29 vs. 1.44 ± 0.26), did not prevent the decrease in creatinine clearance (203 ± 21 vs. 253 ± 17 µl/min/100 g body weight), and did not attenuate cardiac hypertrophy to a greater extent than observed in 5/6 NX TGR treated with complex RAS blockade alone. When applied in the advanced phase of CKD, addition of ET A receptor blockade to the complex RAS blockade brings no further beneficial renoprotective effects on the CKD progression in 5/6 NX TGR, in addition to those seen with RAS blockade alone.

  11. Smoking-associated lung cancer prevention by blockade of the beta-adrenergic receptor-mediated insulin-like growth factor receptor activation.

    PubMed

    Min, Hye-Young; Boo, Hye-Jin; Lee, Ho Jin; Jang, Hyun-Ji; Yun, Hye Jeong; Hwang, Su Jung; Smith, John Kendal; Lee, Hyo-Jong; Lee, Ho-Young

    2016-10-25

    Activation of receptor tyrosine kinases (RTKs) is associated with carcinogenesis, but its contribution to smoking-associated lung carcinogenesis is poorly understood. Here we show that a tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced insulin-like growth factor 1 receptor (IGF-1R) activation via β-adrenergic receptor (β-AR) is crucial for smoking-associated lung carcinogenesis. Treatment with NNK stimulated the IGF-1R signaling pathway in a time- and dose-dependent manner, which was suppressed by pharmacological or genomic blockade of β-AR and the downstream signaling including a Gβγ subunit of β-AR and phospholipase C (PLC). Consistently, β-AR agonists led to increased IGF-1R phosphorylation. The increase in IGF2 transcription via β-AR, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-kappa B (NF-κB) was associated with NNK-induced IGF-1R activation. Finally, treatment with β-AR antagonists suppressed the acquisition of transformed phenotypes in lung epithelial cells and lung tumor formation in mice. These results suggest that blocking β-AR-mediated IGF-1R activation can be an effective strategy for lung cancer prevention in smokers.

  12. NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling.

    PubMed

    Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R

    2014-12-01

    N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.

  13. Impact of endothelin blockade on acute exercise-induced changes in blood flow and endothelial function in type 2 diabetes mellitus.

    PubMed

    Schreuder, Tim H A; van Lotringen, Jaap H; Hopman, Maria T E; Thijssen, Dick H J

    2014-09-01

    Positive vascular effects of exercise training are mediated by acute increases in blood flow. Type 2 diabetes patients show attenuated exercise-induced increases in blood flow, possibly mediated by the endothelin pathway, preventing an optimal stimulus for vascular adaptation. We examined the impact of endothelin receptor blockade (bosentan) on exercise-induced blood flow in the brachial artery and on pre- and postexercise endothelial function in type 2 diabetes patients (n = 9, 60 ± 7 years old) and control subjects (n = 10, 60 ± 5 years old). Subjects reported twice to the laboratory to perform hand-grip exercise in the presence of endothelin receptor blockade or placebo. We examined brachial artery endothelial function (via flow-mediated dilatation) before and after exercise, as well as blood flow during exercise. Endothelin receptor blockade resulted in a larger increase in blood flow during exercise in type 2 diabetes patients (P = 0.046), but not in control subjects (P = 0.309). Exercise increased shear rate across the exercise protocol, unaffected by endothelin receptor blockade. Exercise did not alter brachial artery diameter in either group, but endothelin receptor blockade resulted in a larger brachial artery diameter in type 2 diabetes patients (P = 0.033). Exercise significantly increased brachial artery flow-mediated dilatation in both groups, unaffected by endothelin receptor blockade. Endothelin receptor blockade increased exercise-induced brachial artery blood flow in type 2 diabetes patients, but not in control subjects. Despite this effect of endothelin receptor blockade on blood flow, we found no impact on baseline or post-exercise endothelial function in type 2 diabetes patients or control subjects, possibly related to normalization of the shear stimulus during exercise. The successful increase in blood flow during exercise in type 2 diabetes patients through endothelin receptor blockade may have beneficial effects in repeated exercise training. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  14. Antagonism of corticotropin-releasing factor CRF1 receptors blocks the enhanced response to cocaine after social stress.

    PubMed

    Ferrer-Pérez, Carmen; Reguilón, Marina D; Manzanedo, Carmen; Aguilar, M Asunción; Miñarro, José; Rodríguez-Arias, Marta

    2018-03-15

    Numerous studies have shown that social defeat stress induces an increase in the rewarding effects of cocaine. In this study we have investigated the role played by the main hypothalamic stress hormone, corticotropin-releasing factor (CRF), in the effects that repeated social defeat (RSD) induces in the conditioned rewarding effects and locomotor sensitization induced by cocaine. A total of 220 OF1 mice were divided into experimental groups according to the treatment received before each social defeat: saline, 5 or 10 mg/kg of the nonpeptidic corticotropin-releasing factor CRF 1 receptor antagonist CP-154,526, or 15 or 30 µg/kg of the peptidic corticotropin-releasing factor CRF 2 receptor antagonist Astressin 2 -B. Three weeks after the last defeat, conditioned place preference (CPP) induced by 1 mg/kg of cocaine was evaluated. Motor response to 10 mg/kg of cocaine was also studied after a sensitization induction. Blockade of corticotropin-releasing factor CRF 1 receptor reversed the increase in cocaine CPP induced by social defeat. Conversely, peripheral corticotropin-releasing factor CRF 2 receptor blockade produced similar effects to those observed in socially stressed animals. The effect of RSD on cocaine sensitization was again blocked by the corticotropin-releasing factor CRF 1 receptor antagonist, while peripheral CRF 2 receptor antagonist did not show effect. Acute administration of Astressin 2 -B induced an anxiogenic response. Our results confirm that CRF modulates the effects of social stress on reinforcement and sensitization induced by cocaine in contrasting ways. These findings highlight CRF receptors as potential therapeutic targets to be explored by research about stress-related addiction problems. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Is age-dependent, ketamine-induced apoptosis in the rat somatosensory cortex influenced by temperature?

    PubMed Central

    Gutierrez, Silvia; Carnes, Ansley; Finucane, Beth; Oelsner, Gabrielle Musci William; Hicks, Lucretia; Russell, Gregory B.; Liu, Chun; Turner, Christopher P.

    2010-01-01

    General anesthetics have long been thought to be relatively safe but recent clinical studies have revealed that exposure of very young children (4 years or less) to agents that act by blocking the N-methyl-D-aspartate receptor (NMDAR) can lead to cognitive deficits as they mature. In rodent and non-human primate studies, blockade of this receptor during the perinatal period leads to a number of molecular, cellular and behavioral pathologies. Despite the overwhelming evidence from such studies, doubt remains as to their clinical relevance. A key issue is whether the primary injury (apoptotic cell death) is specific to receptor blockade or due to non-specific, patho-physiological changes. Principal to this argument is that loss of core body temperature following NMDAR blockade could explain why injury is observed hours later. We therefore examined the neurotoxicity of the general anesthetic ketamine in P7, P14 and P21 rats while monitoring core body temperature. We found that, at P7, ketamine induced the pro-apoptotic enzyme activated caspase-3 in a dose-dependent manner. As expected, injury was greatly diminished by P14 and absent by P21. However, contrary to expectations, we found that core body temperature was not a factor in determining injury. Our data imply that injury is directly related to receptor blockade and is unlikely to be overcome by artificially changing core body temperature. PMID:20298758

  16. Present and Future in the Treatment of Diabetic Kidney Disease

    PubMed Central

    de Arriba, Gabriel

    2015-01-01

    Diabetic kidney disease is the leading cause of end-stage renal disease. Albuminuria is recognized as the most important prognostic factor for chronic kidney disease progression. For this reason, blockade of renin-angiotensin system remains the main recommended strategy, with either angiotensin converting enzyme inhibitors or angiotensin II receptor blockers. However, other antiproteinuric treatments have begun to be studied, such as direct renin inhibitors or aldosterone blockers. Beyond antiproteinuric treatments, other drugs such as pentoxifylline or bardoxolone have yielded conflicting results. Finally, alternative pathogenic pathways are being explored, and emerging therapies including antifibrotic agents, endothelin receptor antagonists, or transcription factors show promising results. The aim of this review is to explain the advances in newer agents to treat diabetic kidney disease, along with the background of the renin-angiotensin system blockade. PMID:25945357

  17. GABAa and GABAc receptor-mediated modulation of responses to color stimuli: electroretinographic study in the turtle Emys orbicularis.

    PubMed

    Kupenova, Petia; Vitanova, Lily; Popova, Elka

    2010-04-01

    GABAergic transmission is involved in color coding in the retina. The specific contribution of different GABA receptors to spectral sensitivity of the retinal responses is not well characterized. We studied GABAa and GABAc receptor-mediated effects on the intensity-response functions of the electroretinographic ON (b-wave) and OFF (d-wave) responses to color stimuli. For this purpose, we compared the effects of GABAa receptor blockade by bicuculline with the effects of GABAa + GABAc receptor blockade by picrotoxin. The blockade of both GABAa and GABAc receptors caused an amplitude increase of the electroretinographic responses, but the effects of the two blockades depended in a specific manner on stimulus intensity and wavelength. The effects of GABAa receptor blockade showed distinct color ON/OFF asymmetry. The absolute and relative sensitivities of the ON responses to blue stimuli and OFF responses to red stimuli were increased to the greatest degree while the sensitivity of the ON responses to red stimuli and OFF responses to blue stimuli was least increased. In contrast, color ON/OFF asymmetry was not typical of the effects of GABAc receptor blockade. The most prominent GABAc effect was the sensitivity increase of the ON and OFF responses to blue stimuli and, to some lesser extent, to green stimuli. The results of this study indicate a specific role of GABAa and GABAc receptor-mediated influences in processing of chromatic information in the distal retina.

  18. Cannabinoid reward and aversion effects in the posterior ventral tegmental area are mediated through dissociable opiate receptor subtypes and separate amygdalar and accumbal dopamine receptor substrates.

    PubMed

    Ahmad, Tasha; Laviolette, Steven R

    2017-08-01

    The ventral tegmental area (VTA) and its projections to the basolateral amygdala (BLA) and nucleus accumbens (NAc) are critical for cannabinoid-related motivational effects. Cannabinoid CB1 receptor (CB1R) transmission modulates VTA dopamine (DA) neuron activity and previous reports demonstrate anatomically segregated effects of CB1R transmission in the VTA. However, the underlying pharmacological and anatomical regions responsible for these effects are currently unknown. The objective of the study is to characterize the motivational effects of localized anterior vs. posterior intra-VTA activation vs. blockade of CB1R transmission and the potential role of intra-BLA and intra-NAc DA transmission in these phenomena. Using a conditioned place preference (CPP) procedure, we administered a CB1 agonist (WIN-55,212-2) or antagonist (AM 251) into the posterior VTA (pVTA) or anterior VTA (aVTA) of rats, combined with intra-BLA or intra-NAc DA receptor blockade and intra-VTA co-administration of selective mu vs. kappa opiate-receptor antagonists. Intra-pVTA CB1R activation produced robust rewarding effects through a mu-opiate receptor mechanism whereas CB1R blockade produced conditioned place aversions (CPA) through a kappa-opiate receptor substrate. In contrast, modulation of aVTA CB1R transmission produced no observable effects. Intra-BLA DA receptor blockade prevented the rewarding effects of pVTA CB1R activation, but had no effects on CB1R blockade-induced aversions. In contrast, intra-NAc DA receptor blockade selectively blocked the aversive effects of pVTA CB1R antagonism. Activation vs. blockade of CB1R transmission in the posterior VTA produces bivalent rewarding or aversive effects through separate mu vs. kappa-opiate receptor substrates. These dissociable effects depend on separate DA receptor transmission substrates in the BLA or NAc, respectively.

  19. Inhibition of the renin-angiotensin-aldosterone system: is there room for dual blockade in the cardiorenal continuum?

    PubMed

    Volpe, Massimo; Danser, A H Jan; Menard, Joël; Waeber, Bernard; Mueller, Dominik N; Maggioni, Aldo P; Ruilope, Luis M

    2012-04-01

    Antagonism of renin-angiotensin-aldosterone system is exerted through angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, renin inhibitors and mineralocorticoid receptor antagonists. These drugs have been successfully tested in numerous trials and in different clinical settings. The original indications of renin-angiotensin-aldosterone system blockers have progressively expanded from the advanced stages to the earlier stages of cardiorenal continuum. To optimize the degree of blockade of renin-angiotensin-aldosterone system, dose uptitrations of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists or the use of a dual blockade, initially identified with the combination of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists, have been proposed. The data from the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET) study do not support this specific dual blockade approach. However, the dual blockade of angiotensin-converting enzyme inhibitors/angiotensin receptor antagonists with direct renin inhibitors is currently under investigation while that based on an aldosterone blocker with any of the previous three drugs requires more evidence beyond heart failure. In this review, we revisited potential advantages of dual blockade of renin-angiotensin-aldosterone system in arterial hypertension and diabetes.

  20. Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer.

    PubMed

    Baker, Cheryl H; Solorzano, Carmen C; Fidler, Isaiah J

    2002-04-01

    We determined whether concurrent blockage of vascular endothelial growth factor (VEGF) receptor and epidermal growth factor (EGF) receptor signaling by two novel tyrosine kinase inhibitors, PTK 787 and PKI 166, respectively, can inhibit angiogenesis and, hence, the growth and metastasis of human pancreatic carcinoma in nude mice. Highly metastatic human pancreatic carcinoma L3.6pl cells were injected into the pancreas of nude mice. Seven days later, groups of mice began receiving oral doses of PTK 787 and PKI 166 three times weekly. Some groups of mice also received i.p. injections of gemcitabine twice a week. The mice were necropsied when the control mice became moribund. Treatment with PTK 787 and PKI 166, with gemcitabine alone, or with the combination of PTK 787, PKI 166, and gemcitabine produced 69, 50, and 97% reduction in the volume of pancreatic tumors, respectively. Administration of protein tyrosine kinase inhibitors and gemcitabine also significantly decreased the incidence of lymph node and liver metastasis. The therapeutic efficacy directly correlated with a decrease in circulating proangiogenic molecules (VEGF, interleukin-8), a decrease in microvessel density, a decrease in proliferating cell nuclear antigen staining, and an increase in apoptosis of tumor cells and endothelial cells. Therapies produced by combining gemcitabine with either PKI 166 or PTK 787 were similar to those produced by combining gemcitabine with both PKI 166 and PTK 787. These results suggest that blockade of either epidermal growth factor receptor or VEGF receptor signaling combined with chemotherapy provides an effective approach to the therapy of pancreatic cancer.

  1. Human epidermal growth factor receptor bispecific ligand trap RB200: abrogation of collagen-induced arthritis in combination with tumour necrosis factor blockade

    PubMed Central

    2011-01-01

    Introduction Rheumatoid arthritis (RA) is a chronic disease associated with inflammation and destruction of bone and cartilage. Although inhibition of TNFα is widely used to treat RA, a significant number of patients do not respond to TNFα blockade, and therefore there is a compelling need to continue to identify alternative therapeutic strategies for treating chronic inflammatory diseases such as RA. The anti-epidermal growth factor (anti-EGF) receptor antibody trastuzumab has revolutionised the treatment of patients with EGF receptor-positive breast cancer. Expression of EGF ligands and receptors (known as HER) has also been documented in RA. The highly unique compound RB200 is a bispecific ligand trap that is composed of full-length extracellular domains of HER1 and HER3 EGF receptors. Because of its pan-HER specificity, RB200 inhibits responses mediated by HER1, HER2 and HER3 in vitro and in vivo. The objective of this study was to assess the effect of RB200 combined with TNF blockade in a murine collagen-induced arthritis (CIA) model of RA. Methods Arthritic mice were treated with RB200 alone or in combination with the TNF receptor fusion protein etanercept. We performed immunohistochemistry to assess CD31 and in vivo fluorescent imaging using anti-E-selectin antibody labelled with fluorescent dye to elucidate the effect of RB200 on the vasculature in CIA. Results RB200 significantly abrogated CIA by reducing paw swelling and clinical scores. Importantly, low-dose RB200 combined with a suboptimal dose of etanercept led to complete abrogation of arthritis. Moreover, the combination of RB200 with etanercept abrogated the intensity of the E-selectin-targeted signal to the level seen in control animals not immunised to CIA. Conclusions The human pan-EGF receptor bispecific ligand trap RB200, when combined with low-dose etanercept, abrogates CIA, suggesting that inhibition of events downstream of EGF receptor activation, in combination with TNFα inhibitors, may hold promise as a future therapy for patients with RA. PMID:21982514

  2. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression.

    PubMed

    Wincewicz, D; Juchniewicz, A; Waszkiewicz, N; Braszko, J J

    2016-09-01

    Physical and psychological aspects of chronic stress continue to be a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. By the results of our previous work it has been demonstrated that telmisartan (TLM), an angiotensin type 1 receptor (AT1) blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor gamma (PPARγ), alleviates stress-induced cognitive decline. Understanding of mechanistic background of this phenomenon is hampered by both dual binding sites of TLM and limited data on the consequences of central AT1 blockade and PPARγ activation. Therefore, a critical need exists for progress in the characterization of this target for pro-cognitive drug discovery. An unusual ability of novel ARBs to exert various PPARγ binding activities is commonly being viewed as predominant over angiotensin blockade in terms of neuroprotection. Here we aimed to verify this hypothesis using an animal model of chronic psychological stress (Wistar rats restrained 2.5h daily for 21days) with simultaneous oral administration of TLM (1mg/kg), GW9662 - PPARγ receptor antagonist (0.5mg/kg), or both in combination, followed by a battery of behavioral tests (open field, elevated plus maze, inhibitory avoidance - IA, object recognition - OR), quantitative determination of serum corticosterone (CORT) and evaluation of brain-derived neurotrophic factor (BDNF) gene expression in the medial prefrontal cortex (mPFC) and hippocampus (HIP). Stressed animals displayed decreased recall of the IA behavior (p<0.001), decreased OR (p<0.001), substantial CORT increase (p<0.001) and significantly downregulated expression of BDNF in the mPFC (p<0.001), which were attenuated in rats receiving TLM and TLM+GW9662. These data indicate that procognitive effect of ARBs in stressed subjects do not result from PPAR-γ activation, but AT1 blockade and subsequent hypothalamus-pituitary-adrenal axis deactivation associated with changes in primarily cortical gene expression. This study confirms the dual activities of TLM that controls hypertension and cognition through AT1 blockade. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Pro-tumorigenic effects of transforming growth factor beta 1 in canine osteosarcoma.

    PubMed

    Portela, R F; Fadl-Alla, B A; Pondenis, H C; Byrum, M L; Garrett, L D; Wycislo, K L; Borst, L B; Fan, T M

    2014-01-01

    Transforming growth factor beta 1 (TGFβ1) is a pleiotropic cytokine that contributes to reparative skeletal remodeling by inducing osteoblast proliferation, migration, and angiogenesis. Organic bone matrix is the largest bodily reservoir for latent TGFβ1, and active osteoblasts express cognate receptors for TGFβ1 (TGFβRI and TGFβRII). During malignant osteolysis, TGFβ1 is liberated from eroded bone matrix and promotes local progression of osteotropic solid tumors by its mitogenic and prosurvival activities. Canine osteosarcoma (OS) cells will possess TGFβ1 signaling machinery. Blockade of TGFβ1 signaling will attenuate pro-tumorigenic activities in OS cells. Naturally occurring primary OS samples will express cognate TGFβ1 receptors; and in dogs with OS, focal malignant osteolysis will contribute to circulating TGFβ1 concentrations. Thirty-three dogs with appendicular OS. Expression of TGFβ1 and its cognate receptors, as well as the biologic effects of TGFβ1 blockade, was characterized in OS cells. Ten spontaneous OS samples were characterized for TGFβRI/II expressions by immunohistochemistry. In 33 dogs with OS, plasma TGFβ1 concentrations were quantified and correlated with bone resorption. Canine OS cells secrete TGFβ1, express cognate receptors, and TGFβ1 signaling blockade decreases proliferation, migration, and vascular endothelial growth factor secretion. Naturally occurring OS samples abundantly and uniformly express TGFβRI/II, and in OS-bearing dogs, circulating TGFβ1 concentrations correlate with urine N-telopeptide excretion. Canine OS cells possess TGFβ1 signaling machinery, potentially allowing for the establishment of an autocrine and paracrine pro-tumorigenic signaling loop. As such, TGFβ1 inhibitors might impede localized OS progression in dogs. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  4. Pharmacological endothelin receptor interaction does not occur in veins from ET(B) receptor deficient rats.

    PubMed

    Thakali, Keshari; Galligan, James J; Fink, Gregory D; Gariepy, Cheryl E; Watts, Stephanie W

    2008-07-01

    Heterodimerization of G-protein coupled receptors can alter receptor pharmacology. ET A and ET B receptors heterodimerize when co-expressed in heterologous expression lines. We hypothesized that ET A and ET B receptors heterodimerize and pharmacologically interact in vena cava from wild-type (WT) but not ET B receptor deficient (sl/sl) rats. Pharmacological endothelin receptor interaction was assessed by comparing ET-1-induced contraction in rings of rat thoracic aorta and thoracic vena cava from male Sprague Dawley rats under control conditions, ET A receptor blockade (atrasentan, 10 nM), ET B receptor blockade (BQ-788, 100 nM) or ET B receptor desensitization (Sarafotoxin 6c, 100 nM) and ET A plus ET B receptor blockade or ET A receptor blockade plus ET B receptor desensitization. In addition, similar pharmacological ET receptor antagonism experiments were performed in rat thoracic aorta and vena cava from WT and sl/sl rats. ET A but not ET B receptor blockade or ET B receptor desensitization inhibited aortic and venous ET-1-induced contraction. In vena cava but not aorta, when ET B receptors were blocked (BQ-788, 100 nM) or desensitized (S6c, 100 nM), atrasentan caused a greater inhibition of ET-1-induced contraction. Vena cava from WT but not sl/sl rats exhibited similar pharmacological ET receptor interaction. Immunocytochemistry was performed on freshly dissociated aortic and venous vascular smooth muscle cells to determine localization of ET A and ET B receptors. ET A and ET B receptors qualitatively co-localized more strongly to the plasma membrane of aortic compared to venous vascular smooth muscle cells. Our data suggest that pharmacological ET A and ET B receptor interaction may be dependent on the presence of functional ET B receptors and independent of receptor location.

  5. Hemodynamic and proinflammatory actions of endothelin-1 in guinea pig small intestine submucosal microcirculation.

    PubMed

    King-VanVlack, C E; Mewburn, J D; Chapler, C K; MacDonald, P H

    2003-06-01

    The hemodynamic and proinflammatory effects of endothelin-1 (ET-1) in proximal (1st/2nd order) and terminal (3rd/4th order) arterioles and venules were examined in small intestine submucosa of anesthetized guinea pigs. Vessel diameter (D), red blood cell velocity, and blood flow (Q) were determined in eight proximal and eight terminal microvessels before and at 20 min of ET-1 suffusion (10(-10), 10(-9), and 10(-8) M) and then with endothelin-A (ET(A))-receptor blockade with BQ-123 (10(-5) M). This protocol was repeated with platelet-activating factor (PAF) inhibition (WEB-2086, 1.0 mg/kg iv; n = 16). The ET-1-mediated microvascular responses were also examined with endothelin-B (ET(B))-receptor blockade using BQ-788 (10(-5) M; n = 11) alone or with ET(A+B)-receptor blockade with BQ-123 + BQ-788 (n = 10). Microvascular permeability was assessed by FITC-albumin (25 mg/kg iv) extravasation in seven series: 1) buffered modified Krebs solution suffusion (n = 6), 2) histamine suffusion (HIS; 10(-3) M, n = 5), 3) ET-1 suffusion (10(-8) M, n = 5), 4) BQ-123 (10(-5) M) plus ET-1 suffusion (n = 5), 5) PAF inhibition before ET-1 suffusion (n = 5), 6) histamine-1 (H1)-receptor blockade (diphenhydramine, 20 mg/kg iv) before ET-1 suffusion (n = 5), and 7) ET(B)-receptor blockade before (BQ-788 10(-5) M; n = 3) or with ET-1 suffusion (n = 3). D and Q decreased at 10(-8) M ET-1 and returned to control values with BQ-123 and BQ-123+BQ788 but not with BQ-788 in proximal microvessels. D did not change in terminal microvessels with ET-1 (10(-8) M) but decreased with BQ-788 and increased with BQ-123. PAF inhibition did not affect the D and Q responses of proximal microvessels to ET-1 but prevented the fall in Q in terminal microvessels with ET-1. ET-1 increased vascular permeability to approximately 1/3 of that with HIS; this response was prevented with BQ-123 and WEB-2086 but not with H1-receptor blockade. This is the first evidence that submucosal terminal microvessel flow is reduced with ET-1 independent of vessel diameter changes and that this response is associated with increased microvascular permeability mediated via ET(A)-receptor stimulation and PAF activation.

  6. D-1 and D-2 receptor blockade have additive cataleptic effects in mice, but receptor effects may interact in opposite ways.

    PubMed

    Klemm, W R; Block, H

    1988-02-01

    The dopaminergic role of D-1 and D-2 receptors in catalepsy was evaluated using drugs with preferential receptor affinities. The D-1 antagonist, SCH 23390, caused distinct catalepsy in mice at 1, 2, and 10 mg/kg, IP, but not at two lower doses. The selective D-1 blocker, molindone, also caused catalepsy at 5 and 10 mg/kg; and blockade of both receptor types produced additive cataleptogenic effects. Apomorphine (4 mg/kg), which is an agonist for both receptors, potentiated SCH 23390-induced catalepsy much more than it did the catalepsy induced by molindone; the potentiation was produced by higher, not lower, doses of apomorphine. To determine if the apomorphine potentiation was mediated by D-1 or D-2 receptors, we tested selective agonists in mice that were concurrently injected with selective blockers. SCH 23390-induced catalepsy was potentiated by a large dose of the D-2 agonist, bromocriptine. The catalepsy of D-2 blockade with molindone was not potentiated by the D-1 agonist, SKF 38393, which slightly disrupted the catalepsy of D-2 blockade. We conclude that catalepsy is not a simple D-2 blockade phenomenon and that preferential antagonism of either receptor type can cause catalepsy. Catalepsy is most profound when both receptor types are blocked. Dopamine agonists, in large concentrations, are known to promote movements, and thus it is not surprising that they tend to disrupt catalepsy.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. [Influence of hydrocortisone and adrenaline against the background of mu- and delta-opiate receptors blockade on local immune response in mice].

    PubMed

    Geĭn, S V; Chizhova, E G; Tendriakova, S P

    2006-07-01

    In the induced phase of the immune response, the immunosuppressive effects of hydrocortisone and adrenaline were enhanced under mu- and delta-opiate receptor blockade. No changes were observed in the effects of hydrocortisone and adrenaline under mu- and delta-opiate receptor blockade in effector phase. In the induced phase of the immune response, selective agonists of mu- and delta-opiate receptors DAGO and DADLE enhanced antibody response, delayed-type hypersensitivity, and reduced the number of cells in the regional lymph node. Thus, our data suggest an equal role of mu- and delta-opiate receptors in regulation of expressiveness of local immune response.

  8. Association between Kinin B1 Receptor Expression and Leukocyte Trafficking across Mouse Mesenteric Postcapillary Venules

    PubMed Central

    McLean, Peter G.; Ahluwalia, Amrita; Perretti, Mauro

    2000-01-01

    Using intravital microscopy, we examined the role played by B1 receptors in leukocyte trafficking across mouse mesenteric postcapillary venules in vivo. B1 receptor blockade attenuated interleukin (IL)-1β–induced (5 ng intraperitoneally, 2 h) leukocyte–endothelial cell interactions and leukocyte emigration (∼50% reduction). The B1 receptor agonist des-Arg9bradykinin (DABK), although inactive in saline- or IL-8–treated mice, caused marked neutrophil rolling, adhesion, and emigration 24 h after challenge with IL-1β (when the cellular response to IL-1β had subsided). Reverse transcriptase polymerase chain reaction and Western blot revealed a temporal association between the DABK-induced response and upregulation of mesenteric B1 receptor mRNA and de novo protein expression after IL-1β treatment. DABK-induced leukocyte trafficking was antagonized by the B1 receptor antagonist des-arg10HOE 140 but not by the B2 receptor antagonist HOE 140. Similarly, DABK effects were maintained in B2 receptor knockout mice. The DABK-induced responses involved the release of neuropeptides from C fibers, as capsaicin treatment inhibited the responses. Treatment with the neurokinin (NK)1 and NK3 receptor antagonists attenuated the responses, whereas NK2, calcitonin gene-related peptide, or platelet-activating factor receptor antagonists had no effect. Substance P caused leukocyte recruitment that, similar to DABK, was inhibited by NK1 and NK3 receptor blockade. Mast cell depletion using compound 48/80 reduced DABK-induced leukocyte trafficking, and DABK treatment was shown histologically to induce mast cell degranulation. DABK-induced trafficking was inhibited by histamine H1 receptor blockade. Our findings provide clear evidence that B1 receptors play an important role in the mediation of leukocyte–endothelial cell interactions in postcapillary venules, leading to leukocyte recruitment during an inflammatory response. This involves activation of C fibers and mast cells, release of substance P and histamine, and stimulation of NK1, NK3, and H1 receptors. PMID:10934225

  9. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity

    PubMed Central

    Ifergan, Igal; Davidson, Todd S.; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M.; Hunter, Zoe N.; Pittet, Camille L.; Beddow, Sara; Jones, Clare A.; Prat, Alexandre; Sleeman, Matthew A.; Miller, Stephen D.

    2017-01-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα+ myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. PMID:28641926

  10. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity.

    PubMed

    Ifergan, Igal; Davidson, Todd S; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M; Hunter, Zoe N; Pittet, Camille L; Beddow, Sara; Jones, Clare A; Prat, Alexandre; Sleeman, Matthew A; Miller, Stephen D

    2017-11-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα + myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The antihypertensive effectiveness and safety of dual RAAS blockade with aliskiren and valsartan.

    PubMed

    Chrysant, Steven G

    2010-03-01

    The renin-angiotensin-aldosterone system (RAAS) is a major factor for the development and maintenance of hypertension and a major cause for cardiovascular remodeling and cardiovascular complications through its active peptide angiotensin (Ang) II. Blockade of RAAS with ACE inhibitors (ACEIs) results in suppression of Ang II levels, which eventually return to baseline levels after prolonged ACEI administration. This leads to an escape phenomenon through generation of Ang II from enzymes other than ACE and led to the hypothesis that dual blockade of RAAS with an ACEI/Ang receptor blocker (ARB) combination could lead to total blockade of RAAS, since ARBs block the action of Ang II at the AT1 receptor level, irrespective of the mechanism of Ang II generation and will have an additive blood pressure (BP)-lowering effect. However, this hypothesis has not materialized clinically, as the ACEI/ARB combination produces modest BP reductions that are not significantly greater than monotherapy with the component drugs, and is frequently associated with higher incidence of side effects. A new dual RAAS blockade with the direct renin inhibitor aliskiren and the ARB valsartan produces greater BP reductions than monotherapy with the component drugs and is safe and well tolerated. The combination of aliskiren with valsartan, and with other antihypertensive drugs is discussed. Copyright 2010 Prous Science, S.A.U. or its licensors. All rights reserved.

  12. INHIBITION OF PAN NEUROTROPHIN RECEPTOR P75 ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAY RESPONSES IN C57/BL6J MICE

    EPA Science Inventory

    Recent investigations have linked neurotrophins including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle...

  13. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial.

    PubMed

    Slagman, Maartje C J; Waanders, Femke; Hemmelder, Marc H; Woittiez, Arend-Jan; Janssen, Wilbert M T; Lambers Heerspink, Hiddo J; Navis, Gerjan; Laverman, Gozewijn D

    2011-07-26

    To compare the effects on proteinuria and blood pressure of addition of dietary sodium restriction or angiotensin receptor blockade at maximum dose, or their combination, in patients with non-diabetic nephropathy receiving background treatment with angiotensin converting enzyme (ACE) inhibition at maximum dose. Multicentre crossover randomised controlled trial. Outpatient clinics in the Netherlands. 52 patients with non-diabetic nephropathy. All patients were treated during four 6 week periods, in random order, with angiotensin receptor blockade (valsartan 320 mg/day) or placebo, each combined with, consecutively, a low sodium diet (target 50 mmol Na(+)/day) and a regular sodium diet (target 200 mmol Na(+)/day), with a background of ACE inhibition (lisinopril 40 mg/day) during the entire study. The drug interventions were double blind; the dietary interventions were open label. The primary outcome measure was proteinuria; the secondary outcome measure was blood pressure. Mean urinary sodium excretion, a measure of dietary sodium intake, was 106 (SE 5) mmol Na(+)/day during a low sodium diet and 184 (6) mmol Na(+)/day during a regular sodium diet (P<0.001). Geometric mean residual proteinuria was 1.68 (95% confidence interval 1.31 to 2.14) g/day during ACE inhibition plus a regular sodium diet. Addition of angiotensin receptor blockade to ACE inhibition reduced proteinuria to 1.44 (1.07 to 1.93) g/day (P=0.003), addition of a low sodium diet reduced it to 0.85 (0.66 to 1.10) g/day (P<0.001), and addition of angiotensin receptor blockade plus a low sodium diet reduced it to 0.67 (0.50 to 0.91) g/day (P<0.001). The reduction of proteinuria by the addition of a low sodium diet to ACE inhibition (51%, 95% confidence interval 43% to 58%) was significantly larger (P<0.001) than the reduction of proteinuria by the addition of angiotensin receptor blockade to ACE inhibition (21%, (8% to 32%) and was comparable (P=0.009, not significant after Bonferroni correction) to the reduction of proteinuria by the addition of both angiotensin receptor blockade and a low sodium diet to ACE inhibition (62%, 53% to 70%). Mean systolic blood pressure was 134 (3) mm Hg during ACE inhibition plus a regular sodium diet. Mean systolic blood pressure was not significantly altered by the addition of angiotensin receptor blockade (131 (3) mm Hg; P=0.12) but was reduced by the addition of a low sodium diet (123 (2) mm Hg; P<0.001) and angiotensin receptor blockade plus a low sodium diet (121 (3) mm Hg; P<0.001) to ACE inhibition. The reduction of systolic blood pressure by the addition of a low sodium diet (7% (SE 1%)) was significantly larger (P=0.003) than the reduction of systolic blood pressure by the addition of angiotensin receptor blockade (2% (1)) and was similar (P=0.14) to the reduction of systolic blood pressure by the addition of both angiotensin receptor blockade and low sodium diet (9% (1)), to ACE inhibition. Dietary sodium restriction to a level recommended in guidelines was more effective than dual blockade for reduction of proteinuria and blood pressure in non-diabetic nephropathy. The findings support the combined endeavours of patients and health professionals to reduce sodium intake. Trial registration Netherlands Trial Register NTR675.

  14. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial

    PubMed Central

    Slagman, Maartje C J; Waanders, Femke; Hemmelder, Marc H; Woittiez, Arend-Jan; Janssen, Wilbert M T; Lambers Heerspink, Hiddo J; Navis, Gerjan

    2011-01-01

    Objective To compare the effects on proteinuria and blood pressure of addition of dietary sodium restriction or angiotensin receptor blockade at maximum dose, or their combination, in patients with non-diabetic nephropathy receiving background treatment with angiotensin converting enzyme (ACE) inhibition at maximum dose. Design Multicentre crossover randomised controlled trial. Setting Outpatient clinics in the Netherlands. Participants 52 patients with non-diabetic nephropathy. Interventions All patients were treated during four 6 week periods, in random order, with angiotensin receptor blockade (valsartan 320 mg/day) or placebo, each combined with, consecutively, a low sodium diet (target 50 mmol Na+/day) and a regular sodium diet (target 200 mmol Na+/day), with a background of ACE inhibition (lisinopril 40 mg/day) during the entire study. The drug interventions were double blind; the dietary interventions were open label. Main outcome measures The primary outcome measure was proteinuria; the secondary outcome measure was blood pressure. Results Mean urinary sodium excretion, a measure of dietary sodium intake, was 106 (SE 5) mmol Na+/day during a low sodium diet and 184 (6) mmol Na+/day during a regular sodium diet (P<0.001). Geometric mean residual proteinuria was 1.68 (95% confidence interval 1.31 to 2.14) g/day during ACE inhibition plus a regular sodium diet. Addition of angiotensin receptor blockade to ACE inhibition reduced proteinuria to 1.44 (1.07 to 1.93) g/day (P=0.003), addition of a low sodium diet reduced it to 0.85 (0.66 to 1.10) g/day (P<0.001), and addition of angiotensin receptor blockade plus a low sodium diet reduced it to 0.67 (0.50 to 0.91) g/day (P<0.001). The reduction of proteinuria by the addition of a low sodium diet to ACE inhibition (51%, 95% confidence interval 43% to 58%) was significantly larger (P<0.001) than the reduction of proteinuria by the addition of angiotensin receptor blockade to ACE inhibition (21%, (8% to 32%) and was comparable (P=0.009, not significant after Bonferroni correction) to the reduction of proteinuria by the addition of both angiotensin receptor blockade and a low sodium diet to ACE inhibition (62%, 53% to 70%). Mean systolic blood pressure was 134 (3) mm Hg during ACE inhibition plus a regular sodium diet. Mean systolic blood pressure was not significantly altered by the addition of angiotensin receptor blockade (131 (3) mm Hg; P=0.12) but was reduced by the addition of a low sodium diet (123 (2) mm Hg; P<0.001) and angiotensin receptor blockade plus a low sodium diet (121 (3) mm Hg; P<0.001) to ACE inhibition. The reduction of systolic blood pressure by the addition of a low sodium diet (7% (SE 1%)) was significantly larger (P=0.003) than the reduction of systolic blood pressure by the addition of angiotensin receptor blockade (2% (1)) and was similar (P=0.14) to the reduction of systolic blood pressure by the addition of both angiotensin receptor blockade and low sodium diet (9% (1)), to ACE inhibition. Conclusions Dietary sodium restriction to a level recommended in guidelines was more effective than dual blockade for reduction of proteinuria and blood pressure in non-diabetic nephropathy. The findings support the combined endeavours of patients and health professionals to reduce sodium intake. Trial registration Netherlands Trial Register NTR675. PMID:21791491

  15. Neuropeptide systems and new treatments for nicotine addiction

    PubMed Central

    Bruijnzeel, Adriaan W.

    2017-01-01

    RATIONALE The mildly euphoric and cognitive enhancing effects of nicotine play a role in the initiation of smoking, while dysphoria and anxiety associated with smoking cessation contribute to relapse. After the acute withdrawal phase, smoking cues, a few cigarettes (i.e., lapse), and stressors can cause relapse. Human and animal studies have shown that neuropeptides play a critical role in nicotine addiction. OBJECTIVES The goal of this paper is to describe the role of neuropeptide systems in the initiation of nicotine intake, nicotine withdrawal, and the reinstatement of extinguished nicotine seeking. RESULTS The reviewed studies indicate that several drugs that target neuropeptide systems diminish the rewarding effects of nicotine by preventing the activation of dopaminergic systems. Other peptide-based drugs diminish the hyperactivity of brain stress systems and diminish withdrawal-associated symptom severity. Blockade of hypocretin-1 and nociceptin receptors and stimulation of galanin and neurotensin receptors diminishes the rewarding effects of nicotine. Both corticotropin-releasing factor type 1 and kappa-opioid receptor antagonists diminish dysphoria and anxiety-like behavior associated with nicotine withdrawal and inhibit stress-induced reinstatement of nicotine seeking. Furthermore, blockade of vasopressin 1b receptors diminishes dysphoria during nicotine withdrawal and melanocortin 4 receptor blockade prevents stress-induced reinstatement of nicotine seeking. The role of neuropeptide systems in nicotine-primed and cue-induced reinstatement is largely unexplored, but there is evidence for a role of hypocretin-1 receptors in cue-induced reinstatement of nicotine seeking. CONCLUSION Drugs that target neuropeptide systems might decrease the euphoric effects of smoking and improve relapse rates by diminishing withdrawal symptoms and improving stress resilience. PMID:28028605

  16. Loss of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 Confers Resistance to the Antiatherogenic Effects of Tumor Necrosis Factor-α Inhibition.

    PubMed

    Zhu, Lin; Giunzioni, Ilaria; Tavori, Hagai; Covarrubias, Roman; Ding, Lei; Zhang, Youmin; Ormseth, Michelle; Major, Amy S; Stafford, John M; Linton, MacRae F; Fazio, Sergio

    2016-08-01

    Antiatherosclerotic effects of tumor necrosis factor-α (TNF-α) blockade in patients with systemic inflammatory states are not conclusively demonstrated, which suggests that effects depend on the cause of inflammation. Macrophage LRP1 (low-density lipoprotein receptor-related protein 1) and apoE contribute to inflammation through different pathways. We studied the antiatherosclerosis effects of TNF-α blockade in hyperlipidemic mice lacking either LRP1 (MΦLRP1(-/-)) or apoE from macrophages. Lethally irradiated low-density lipoprotein receptor (LDLR)(-/-) mice were reconstituted with bone marrow from either wild-type, MΦLRP1(-/-), apoE(-/-) or apoE(-/-)/MΦLRP1(-/-)(DKO) mice, and then treated with the TNF-α inhibitor adalimumab while fed a Western-type diet. Adalimumab reduced plasma TNF-α concentration, suppressed blood ly6C(hi) monocyte levels and their migration into the lesion, and reduced lesion cellularity and inflammation in both wild-type→LDLR(-/-) and apoE(-/-)→LDLR(-/-) mice. Overall, adalimumab reduced lesion burden by 52% to 57% in these mice. Adalimumab reduced TNF-α and blood ly6C(hi) monocyte levels in MΦLRP1(-/-)→LDLR(-/-) and DKO→LDLR(-/-) mice, but it did not suppress ly6C(hi) monocyte migration into the lesion or atherosclerosis progression. Our results show that TNF-α blockade exerts antiatherosclerotic effects that are dependent on the presence of macrophage LRP1. © 2016 American Heart Association, Inc.

  17. The effects of AMPA receptor blockade in the prelimbic cortex on systemic and ventral tegmental area opiate reward sensitivity.

    PubMed

    De Jaeger, Xavier; Bishop, Stephanie F; Ahmad, Tasha; Lyons, Danika; Ng, Garye Ami; Laviolette, Steven R

    2013-02-01

    The medial prefrontal cortex (mPFC) is a key neural region involved in opiate-related reward memory processing. AMPA receptor transmission in the mPFC modulates opiate-related reward memory processing, and chronic opiate exposure is associated with alterations in intra-mPFC AMPA receptor function. The objectives of this study were to examine how pharmacological blockade of AMPA receptor transmission in the prelimbic (PLC) division of the mPFC may modulate opiate reward memory acquisition and whether opiate exposure state may modulate the functional role of intra-PLC AMPA receptor transmission during opiate reward learning. Using an unbiased conditioned place preference (CPP) procedure in rats, we performed discrete, bilateral intra-PLC microinfusions of the AMPA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione, prior to behavioral morphine CPP conditioning, using sub-reward threshold conditioning doses of either systemic (0.05 mg/kg; i.p.) or intra-ventral tegmental area (VTA) morphine (250 ng/0.5 μl). We show that, in both opiate-naïve and opiate-dependent states, intra-PLC blockade of AMPA receptor transmission, but not the infralimbic cortex, increases the behavioral reward magnitude of systemic or intra-VTA morphine. This effect is dependent on dopamine (DA)ergic signaling because pre-administration of cis-(Z)-flupenthixol-dihydrochloride (α-flu), a broad-spectrum dopamine receptor antagonist, blocked the morphine-reward potentiating effects of AMPA receptor blockade. These findings suggest a critical role for intra-PLC AMPA receptor transmission in the processing of opiate reward signaling. Furthermore, blockade of AMPA transmission specifically within the PLC is capable of switching opiate reward processing to a DA-dependent reward system, independently of previous opiate exposure history.

  18. Interleukin-15 receptor blockade in non-human primate kidney transplantation.

    PubMed

    Haustein, Silke; Kwun, Jean; Fechner, John; Kayaoglu, Ayhan; Faure, Jean-Pierre; Roenneburg, Drew; Torrealba, Jose; Knechtle, Stuart J

    2010-04-27

    Interleukin (IL)-15 is a chemotactic factor to T cells. It induces proliferation and promotes survival of activated T cells. IL-15 receptor blockade in mouse cardiac and islet allotransplant models has led to long-term engraftment and a regulatory T-cell environment. This study investigated the efficacy of IL-15 receptor blockade using Mut-IL-15/Fc in an outbred non-human primate model of renal allotransplantation. Male cynomolgus macaque donor-recipient pairs were selected based on ABO typing, major histocompatibility complex class I typing, and carboxy-fluorescein diacetate succinimidyl ester-based mixed lymphocyte responses. Once animals were assigned to one of six treatment groups, they underwent renal transplantation and bilateral native nephrectomy. Serum creatinine level was monitored twice weekly and as indicated, and protocol biopsies were performed. Rejection was defined as a increase in serum creatinine to 1.5 mg/dL or higher and was confirmed histologically. Complete blood counts and flow cytometric analyses were performed periodically posttransplant; pharmacokinetic parameters of Mut-IL-15/Fc were assessed. Compared with control animals, Mut-IL-15/Fc-treated animals did not demonstrate increased graft survival despite adequate serum levels of Mut-IL-15/Fc. Flow cytometric analysis of white blood cell subgroups demonstrated a decrease in CD8 T-cell and natural killer cell numbers, although this did not reach statistical significance. Interestingly, two animals receiving Mut-IL-15/Fc developed infectious complications, but no infection was seen in control animals. Renal pathology varied widely. Peritransplant IL-15 receptor blockade does not prolong allograft survival in non-human primate renal transplantation; however, it reduces the number of CD8 T cells and natural killer cells in the peripheral blood.

  19. Low-dose naltrexone targets the opioid growth factor-opioid growth factor receptor pathway to inhibit cell proliferation: mechanistic evidence from a tissue culture model.

    PubMed

    Donahue, Renee N; McLaughlin, Patricia J; Zagon, Ian S

    2011-09-01

    Naltrexone (NTX) is an opioid antagonist that inhibits or accelerates cell proliferation in vivo when utilized in a low (LDN) or high (HDN) dose, respectively. The mechanism of opioid antagonist action on growth is not well understood. We established a tissue culture model of LDN and HDN using short-term and continuous opioid receptor blockade, respectively, in human ovarian cancer cells, and found that the duration of opioid receptor blockade determines cell proliferative response. The alteration of growth by NTX also was detected in cells representative of pancreatic, colorectal and squamous cell carcinomas. The opioid growth factor (OGF; [Met(5)]-enkephalin) and its receptor (OGFr) were responsible for mediating the action of NTX on cell proliferation. NTX upregulated OGF and OGFr at the translational but not at the transcriptional level. The mechanism of inhibition by short-term NTX required p16 and/or p21 cyclin-dependent inhibitory kinases, but was not dependent on cell survival (necrosis, apoptosis). Sequential administration of short-term NTX and OGF had a greater inhibitory effect on cell proliferation than either agent alone. Given the parallels between short-term NTX in vitro and LDN in vivo, we now demonstrate at the molecular level that the OGF-OGFr axis is a common pathway that is essential for the regulation of cell proliferation by NTX.

  20. Leiomyoma-derived transforming growth factor-β impairs bone morphogenetic protein-2-mediated endometrial receptivity.

    PubMed

    Doherty, Leo F; Taylor, Hugh S

    2015-03-01

    To determine whether transforming growth factor (TGF)-β3 is a paracrine signal secreted by leiomyoma that inhibits bone morphogenetic protein (BMP)-mediated endometrial receptivity and decidualization. Experimental. Laboratory. Women with symptomatic leiomyomas. Endometrial stromal cells (ESCs) and leiomyoma cells were isolated from surgical specimens. Leiomyoma-conditioned media (LCM) was applied to cultured ESC. The TGF-β was blocked by two approaches: TGF-β pan-specific antibody or transfection with a mutant TGF-β receptor type II. Cells were then treated with recombinant human BMP-2 to assess BMP responsiveness. Expression of BMP receptor types 1A, 1B, 2, as well as endometrial receptivity mediators HOXA10 and leukemia inhibitory factor (LIF). Enzyme-linked immunosorbent assay showed elevated TGF-β levels in LCM. LCM treatment of ESC reduced expression of BMP receptor types 1B and 2 to approximately 60% of pretreatment levels. Preincubation of LCM with TGF-β neutralizing antibody or mutant TGF receptor, but not respective controls, prevented repression of BMP receptors. HOXA10 and LIF expression was repressed in recombinant human BMP-2 treated, LCM exposed ESC. Pretreatment of LCM with TGF-β antibody or transfection with mutant TGF receptor prevented HOXA10 and LIF repression. Leiomyoma-derived TGF-β was necessary and sufficient to alter endometrial BMP-2 responsiveness. Blockade of TGF-β prevents repression of BMP-2 receptors and restores BMP-2-stimulated expression of HOXA10 and LIF. Blockade of TGF signaling is a potential strategy to improve infertility and pregnancy loss associated with uterine leiomyoma. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Xinchun

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, andmore » improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.« less

  2. MEK blockade converts AML differentiating response to retinoids into extensive apoptosis.

    PubMed

    Milella, Michele; Konopleva, Marina; Precupanu, Cristina M; Tabe, Yoko; Ricciardi, Maria Rosaria; Gregorj, Chiara; Collins, Steven J; Carter, Bing Z; D'Angelo, Carmen; Petrucci, Maria Teresa; Foà, Robin; Cognetti, Francesco; Tafuri, Agostino; Andreeff, Michael

    2007-03-01

    The aberrant function of transcription factors and/or kinase-based signaling pathways that regulate the ability of hematopoietic cells to proliferate, differentiate, and escape apoptosis accounts for the leukemic transformation of myeloid progenitors. Here, we demonstrate that simultaneous retinoid receptor ligation and blockade of the MEK/ERK signaling module, using the small-molecule inhibitor CI-1040, result in a strikingly synergistic induction of apoptosis in both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells with constitutive ERK activation. This proapoptotic synergism requires functional RAR and RXR retinoid receptors, as demonstrated using RAR- and RXR-selective ligands and RAR-defective cells. In the presence of MEK inhibitors, however, retinoid-induced chromatin remodeling, target-gene transcription, and granulocytic differentiation are strikingly inhibited and apoptosis induction becomes independent of death-inducing ligand/receptor pairs; this suggests that apoptosis induction by combined retinoids and MEK inhibitors is entirely distinct from the classical "postmaturation" apoptosis induced by retinoids alone. Finally, we identify disruption of Bcl-2-dependent mitochondrial homeostasis as a possible point of convergence for the proapoptotic synergism observed with retinoids and MEK inhibitors. Taken together, these results indicate that combined retinoid treatment and MEK blockade exert powerful antileukemic effects and could be developed into a novel therapeutic strategy for both AML and APL.

  3. Mineralocorticoid receptor blockade—a novel approach to fight hyperkalaemia in chronic kidney disease

    PubMed Central

    Ritz, E.; Pitt, B.

    2013-01-01

    Hyperkalaemia continues to be a major hazard of mineralocorticoid receptor blockade in an effort to retard the progression of chronic kidney disease (CKD). In cardiac patients on mineralocorticoid receptor blockade, RLY-5016 which captures K+ in the colon has been effective in reducing the risk of hyperkalaemia. This compound might be useful in CKD as well. PMID:26120440

  4. Combined unilateral blockade of cholinergic, peptidergic, and serotonergic receptors in the ventral respiratory column does not affect breathing in awake or sleeping goats

    PubMed Central

    Muere, Clarissa; Neumueller, Suzanne; Olesiak, Samantha; Miller, Justin; Langer, Thomas; Hodges, Matthew R.; Pan, Lawrence

    2015-01-01

    Previous work in intact awake and sleeping goats has found that unilateral blockade of excitatory inputs in the ventral respiratory column (VRC) elicits changes in the concentrations of multiple neurochemicals, including serotonin (5-HT), substance P, glycine, and GABA, while increasing or having no effect on breathing. These findings are consistent with the concept of interdependence between neuromodulators, whereby attenuation of one modulator elicits compensatory changes in other modulators to maintain breathing. Because there is a large degree of redundancy and multiplicity of excitatory inputs to the VRC, we herein tested the hypothesis that combined unilateral blockade of muscarinic acetylcholine (mACh), neurokinin-1 (NK1, the receptor for substance P), and 5-HT2A receptors would elicit changes in multiple neurochemicals, but would not change breathing. We unilaterally reverse-dialyzed a cocktail of antagonists targeting these receptors into the VRC of intact adult goats. Breathing was continuously monitored while effluent fluid from dialysis was collected for quantification of neurochemicals. We found that neither double blockade of mACh and NK1 receptors, nor triple blockade of mACh, NK1, and 5-HT2A receptors significantly affected breathing (P ≥ 0.05) in goats that were awake or in non-rapid eye movement (NREM) sleep. However, both double and triple blockade increased the effluent concentration of substance P (P < 0.001) and decreased GABA concentrations. These findings support our hypothesis and, together with past data, suggest that both in wakefulness and NREM sleep, multiple neuromodulator systems collaborate to stabilize breathing when a deficit in one or multiple excitatory neuromodulators exists. PMID:26023224

  5. Striatal D2/3 Binding Potential Values in Drug-Naïve First-Episode Schizophrenia Patients Correlate With Treatment Outcome

    PubMed Central

    Wulff, Sanne; Pinborg, Lars Hageman; Svarer, Claus; Jensen, Lars Thorbjørn; Nielsen, Mette Ødegaard; Allerup, Peter; Bak, Nikolaj; Rasmussen, Hans; Frandsen, Erik; Rostrup, Egill; Glenthøj, Birte Yding

    2015-01-01

    One of best validated findings in schizophrenia research is the association between blockade of dopamine D2 receptors and the effects of antipsychotics on positive psychotic symptoms. The aim of the present study was to examine correlations between baseline striatal D2/3 receptor binding potential (BPp) values and treatment outcome in a cohort of antipsychotic-naïve first-episode schizophrenia patients. Additionally, we wished to investigate associations between striatal dopamine D2/3 receptor blockade and alterations of negative symptoms as well as functioning and subjective well-being. Twenty-eight antipsychotic-naïve schizophrenia patients and 26 controls were included in the study. Single-photon emission computed tomography (SPECT) with [123I]iodobenzamide ([123I]-IBZM) was used to examine striatal D2/3 receptor BPp. Patients were examined before and after 6 weeks of treatment with the D2/3 receptor antagonist amisulpride. There was a significant negative correlation between striatal D2/3 receptor BPp at baseline and improvement of positive symptoms in the total group of patients. Comparing patients responding to treatment to nonresponders further showed significantly lower baseline BPp in the responders. At follow-up, the patients demonstrated a negative correlation between the blockade and functioning, whereas no associations between blockade and negative symptoms or subjective well-being were observed. The results show an association between striatal BPp of dopamine D2/3 receptors in antipsychotic-naïve first-episode patients with schizophrenia and treatment response. Patients with a low BPp have a better treatment response than patients with a high BPp. The results further suggest that functioning may decline at high levels of dopamine receptor blockade. PMID:25698711

  6. VEGF-Trap: a VEGF blocker with potent antitumor effects.

    PubMed

    Holash, Jocelyn; Davis, Sam; Papadopoulos, Nick; Croll, Susan D; Ho, Lillian; Russell, Michelle; Boland, Patricia; Leidich, Ray; Hylton, Donna; Burova, Elena; Ioffe, Ella; Huang, Tammy; Radziejewski, Czeslaw; Bailey, Kevin; Fandl, James P; Daly, Tom; Wiegand, Stanley J; Yancopoulos, George D; Rudge, John S

    2002-08-20

    Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. Initial attempts to block VEGF by using a humanized monoclonal antibody are beginning to show promise in human cancer patients, underscoring the importance of optimizing VEGF blockade. Previous studies have found that one of the most effective ways to block the VEGF-signaling pathway is to prevent VEGF from binding to its normal receptors by administering decoy-soluble receptors. The highest-affinity VEGF blocker described to date is a soluble decoy receptor created by fusing the first three Ig domains of VEGF receptor 1 to an Ig constant region; however, this fusion protein has very poor in vivo pharmacokinetic properties. By determining the requirements to maintain high affinity while extending in vivo half life, we were able to engineer a very potent high-affinity VEGF blocker that has markedly enhanced pharmacokinetic properties. This VEGF-Trap effectively suppresses tumor growth and vascularization in vivo, resulting in stunted and almost completely avascular tumors. VEGF-Trap-mediated blockade may be superior to that achieved by other agents, such as monoclonal antibodies targeted against the VEGF receptor.

  7. Factors that affect the onset of action of non-depolarizing neuromuscular blocking agents

    PubMed Central

    Kim, Yong Byum; Sung, Tae-Yun

    2017-01-01

    Neuromuscular blockade plays an important role in the safe management of patient airways, surgical field improvement, and respiratory care. Rapid-sequence induction of anesthesia is indispensable to emergency surgery and obstetric anesthesia, and its purpose is to obtain a stable airway, adequate depth of anesthesia, and appropriate respiration within a short period of time without causing irritation or damage to the patient. There has been a continued search for new neuromuscular blocking drugs (NMBDs) with a rapid onset of action. Factors that affect the onset time include the potency of the NMBDs, the rate of NMBDs reaching the effect site, the onset time by dose control, metabolism and elimination of NMBDs, buffered diffusion to the effect site, nicotinic acetylcholine receptor subunit affinity, drugs that affect acetylcholine (ACh) production and release at the neuromuscular junction, drugs that inhibit plasma cholinesterase, presynaptic receptors responsible for ACh release at the neuromuscular junction, anesthetics or drugs that affect muscle contractility, site and methods for monitoring neuromuscular function, individual variability, and coexisting disease. NMBDs with rapid onset without major adverse events are expected in the next few years, and the development of lower potency NMBDs will continue. Anesthesiologists should be aware of the use of NMBDs in the management of anesthesia. The choice of NMBD and determination of the appropriate dosage to modulate neuromuscular blockade characteristics such as onset time and duration of neuromuscular blockade should be considered along with factors that affect the effects of the NMBDs. In this review, we discuss the factors that affect the onset time of NMBDs. PMID:29046769

  8. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    PubMed Central

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  9. BLOCKADE OF TRKA OR P75 NEUROTROPHIN RECEPTORS ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAYS RESPONSES IN BALB/C MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway resistance. Exposure to diesel exhaust particles (DEP) associated with the combustion of diesel fuel exacerbates allergic airways responses. We tested t...

  10. Phase III, Randomized Study of Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade With Lapatinib Plus Trastuzumab in Combination With an Aromatase Inhibitor in Postmenopausal Women With HER2-Positive, Hormone Receptor-Positive Metastatic Breast Cancer: ALTERNATIVE.

    PubMed

    Johnston, Stephen R D; Hegg, Roberto; Im, Seock-Ah; Park, In Hae; Burdaeva, Olga; Kurteva, Galina; Press, Michael F; Tjulandin, Sergei; Iwata, Hiroji; Simon, Sergio D; Kenny, Sarah; Sarp, Severine; Izquierdo, Miguel A; Williams, Lisa S; Gradishar, William J

    2018-03-10

    Purpose Human epidermal growth factor receptor 2 (HER2) targeting plus endocrine therapy (ET) improved clinical benefit in HER2-positive, hormone receptor (HR)-positive metastatic breast cancer (MBC) versus ET alone. Dual HER2 blockade enhances clinical benefit versus single HER2 blockade. The ALTERNATIVE study evaluated the efficacy and safety of dual HER2 blockade plus aromatase inhibitor (AI) in postmenopausal women with HER2-positive/HR-positive MBC who received prior ET and prior neo(adjuvant)/first-line trastuzumab (TRAS) plus chemotherapy. Methods Patients were randomly assigned (1:1:1) to receive lapatinib (LAP) + TRAS + AI, TRAS + AI, or LAP + AI. Patients for whom chemotherapy was intended were excluded. The primary end point was progression-free survival (PFS; investigator assessed) with LAP + TRAS + AI versus TRAS + AI. Secondary end points were PFS (comparison of other arms), overall survival, overall response rate, clinical benefit rate, and safety. Results Three hundred fifty-five patients were included in this analysis: LAP + TRAS + AI (n = 120), TRAS + AI (n = 117), and LAP + AI (n = 118). Baseline characteristics were balanced. The study met its primary end point; superior PFS was observed with LAP + TRAS + AI versus TRAS + AI (median PFS, 11 v 5.7 months; hazard ratio, 0.62; 95% CI, 0.45 to 0.88; P = .0064). Consistent PFS benefit was observed in predefined subgroups. Overall response rate, clinical benefit rate, and overall survival also favored LAP + TRAS + AI. The median PFS with LAP + AI versus TRAS + AI was 8.3 versus 5.7 months (hazard ratio, 0.71; 95% CI, 0.51 to 0.98; P = .0361). Common adverse events (AEs; ≥ 15%) with LAP + TRAS + AI, TRAS + AI, and LAP + AI were diarrhea (69%, 9%, and 51%, respectively), rash (36%, 2%, and 28%, respectively), nausea (22%, 9%, and 22%, respectively), and paronychia (30%, 0%, and 15%, respectively), mostly grade 1 or 2. Serious AEs were reported similarly across the three groups, and AEs leading to discontinuation were lower with LAP + TRAS + AI. Conclusion Dual HER2 blockade with LAP + TRAS + AI showed superior PFS benefit versus TRAS + AI in patients with HER2-positive/HR-positive MBC. This combination offers an effective and safe chemotherapy-sparing alternative treatment regimen for this patient population.

  11. Comparison of the phenotype of NK1R-/- mice with pharmacological blockade of the substance P (NK1 ) receptor in assays for antidepressant and anxiolytic drugs.

    PubMed

    Rupniak, N M; Carlson, E J; Webb, J K; Harrison, T; Porsolt, R D; Roux, S; de Felipe, C; Hunt, S P; Oates, B; Wheeldon, A

    2001-11-01

    The phenotype of NK1R-/- mice was compared with that of acute pharmacological blockade of the tachykinin NK1 receptor on sensorimotor function and in assays relevant to depressive illness and anxiety. The dose range for L-760735 and GR205171 that was associated with functional blockade of central NK1 receptors in the target species was established by antagonism of the behavioural effects of intracerebroventricular NK1 agonist challenge in gerbils, mice and rats. The caudal grooming and scratching response to GR73632 was absent in NK1R-/- mice, confirming that the receptor had been genetically ablated. There was no evidence of sedation or motor impairment in NK1R-/- mice or following administration of L-760735 to gerbils, even at doses in excess of those required for central NK1 receptor occupancy. In the resident-intruder and forced swim test, the behaviour of NK1R-/- mice, or animals treated acutely with L-760735 or GR205171, resembled that seen with the clinically used antidepressant drug fluoxetine. However, the effects of GR205171 were not clearly enantioselective in mice. In contrast, although NK1R-/- mice also exhibited an increase in the duration of struggle behaviour in the tail suspension test, this was not observed following pharmacological blockade with L-760735 in gerbils or GR205171 in mice, suggesting that this may reflect a developmental alteration in the knockout mouse. There was no effect of NK1 receptor blockade with L-760735 in guinea-pigs or GR205171 in rats, or deletion of the NK1 receptor in mice, on behaviour in the elevated plus-maze test for anxiolytic activity. These findings extend previous observations on the phenotype of the NK1R-/- mouse and establish a broadly similar profile following acute pharmacological blockade of the receptor. These studies also serve to underscore the limitations of currently available antagonists that are suitable for use in rat and mouse behavioural assays.

  12. In vitro contractile effects of neurokinin receptor blockade in the human ureter.

    PubMed

    Nakada, S Y; Jerde, T J; Bjorling, D E; Saban, R

    2001-10-01

    We identified the predominance of neurokinin-2 receptors and evaluated the inhibition of spontaneous contraction via the blockade of neurokinin-2 receptors in human ureteral segments. Excess ureteral segments from human subjects undergoing donor nephrectomy or reconstructive procedures were suspended in tissue baths containing Krebs buffer. After spontaneous contractions were recorded, tissues were incubated with 1 microM. solutions of phosphoramidon and captopril (to inhibit peptide degradation) and either the neurokinin-1 receptor antagonist CP 99,994, the neurokinin-2 receptor antagonist SR 48,968, the neurokinin-3 receptor antagonist SR 142,801 or dimethyl sulfoxide (control) for 1 hour. Contraction magnitude and frequency were again recorded and compared with spontaneous levels. Concentration-response curves to the tachykinins substance P, and neurokinins A and B were determined in the presence and absence of antagonists. Neurokinin A increased contractility at lower concentrations than substance P or neurokinin B (p <0.013). Neurokinin-2 receptor blockade produced a 100-fold rightward shift of the concentration-response curves (p <0.013), while neurokinins 1 and 3 receptor blockade had no effect. SR 48,968 significantly reduced contractility during the 1-hour incubation period, causing a 97% reduction in spontaneous rates compared with a 29% reduction in control tissues. CP 99,994 and SR 142,801 had no significant effect. Neurokinin-2 is the predominant receptor subtype responsible for tachykinin induced contraction of human ureteral smooth muscle. In vitro treatment with the neurokinin-2 antagonist SR 48,968 reduces the spontaneous contraction rate by 97% in vitro. Neurokinin-2 receptor antagonists may have clinical applications for ureteral disease.

  13. Effects of NMDA receptor blockade during the early development period on the retest performance of adult Wistar rats in the elevated plus maze.

    PubMed

    Kocahan, Sayad; Akillioglu, Kubra

    2013-07-01

    The elevated plus maze (EPM) is an animal model of anxiety used to test the effects of anxioselective drugs. The loss of the anxiolytic effect of drugs during the second exposure to the EPM is called the "one trial tolerance" (OTT) phenomenon. The present study was designed to investigate the relationship between the OTT phenomenon and N-methyl-D-aspartate (NMDA) receptor blockade in the early developmental period of rats. NMDA receptor blockade was accomplished using MK-801 treatment given between postnatal days 20-30. Beginning on postnatal day 20, the rats were subcutaneously injected with MK-801 twice a day at the nape of the neck for a period of 10 days (0.25 mg/kg). Increased open arm exploration was observed in MK-801-treated rats during trial 1 (p = 0.001) and trial 2 (p = 0.003). The rats spent less time in the closed arms as compared to the saline animals in trial 1 (p = 0.006), and this time decreased further in trial 2 (p = 0.02). The fecal boli of the MK-801 group was decreased in trial 1 as compared to the saline group (p = 0.01), but was not significantly different in trial 2 (p = 0.08). In conclusion, NMDA receptor blockade using MK-801 produced an anxiolytic-like effect in trials 1 and 2. Furthermore, OTT was not affected by NMDA receptor blockade.

  14. Renin-angiotensin system (RAS) blockade attenuates growth and metastatic potential of renal cell carcinoma in mice.

    PubMed

    Araújo, Wedson F; Naves, Marcelo A; Ravanini, Juliana N; Schor, Nestor; Teixeira, Vicente P C

    2015-09-01

    Renal cell carcinoma (RCC) is the most frequent type of cancer among renal neoplasms in adults and responds poorly to radiotherapy and chemotherapy. There is evidence that blockade of the renin-angiotensin system (RAS) might have antineoplastic effects. The aim of this study was to investigate the effects of RAS blockade on RCC in a murine model. Murine renal cancer cells (Renca) were injected (1 × 10(5)) into the subcapsular space of the left kidney of BALB/c mice (8 wk of age). The animals were divided into 4 groups: a control group (no treatment), angiotensin-receptor blockers group (losartan 100mg/kg/d), angiotensin-converting enzyme inhibitor group (captopril 10mg/kg/d), and angiotensin-receptor blockers +angiotensin-converting enzyme inhibitor group (losartan 100mg/kg/d +captopril 10mg/kg/d). The animals received the drugs by gavage for 21 days after inoculation, beginning 2 days before tumor induction, and were then euthanized. After killing the animals, the kidneys and lungs were removed, weighed, and processed for histopathological and immunohistochemical analyses. Angiogenesis and vascular microvessels were assessed with the antibodies anti-vascular endothelial growth factor and anti-CD34. Angiotensin II-inoculated animals developed renal tumors. Treated animals presented smaller tumors, regardless of the therapeutic regimen, and far fewer lung metastases in both quantity and dimension compared with the controls. The expression of vascular endothelial growth factor and CD34 were significantly decreased in renal tumors of treated animals compared with the controls. Our findings suggest that blockade of RAS decreases tumor proliferation and metastatic capacity of RCC in this experimental model. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Endothelin B receptor blockade attenuates pulmonary vasodilation in oxygen-ventilated fetal lambs.

    PubMed

    Ivy, D Dunbar; Lee, Dong-Seok; Rairigh, Robyn L; Parker, Thomas A; Abman, Steven H

    2004-01-01

    Endothelin-1 (ET-1) contributes to the regulation of pulmonary vascular tone in the normal ovine fetus and in models of perinatal pulmonary hypertension. In the fetal lamb lung, the effects of ET-1 depend on the balance of at least two endothelin receptor subtypes: ETA and ETB. ETA receptors are located on smooth muscle cells and mediate vasoconstriction and smooth muscle proliferation. Stimulation of endothelial ETB receptors causes vasodilation through release of nitric oxide and also functions to remove ET-1 from the circulation. However, whether activation of ETB receptors contributes to the fall in pulmonary vascular tone at birth is unknown. To determine the role of acute ETB receptor blockade in pulmonary vasodilation in response to birth-related stimuli, we studied the hemodynamic effects of selective ETB receptor blockade with BQ-788 during mechanical ventilation with low (<10%) and high FiO2 (100%) in near-term fetal sheep. Intrapulmonary infusion of BQ-788 did not change left pulmonary artery (LPA) blood flow and pulmonary vascular resistance (PVR) at baseline. In comparison with controls, BQ-788 treatment attenuated the rise in LPA flow with low and high FiO2 ventilation (p <0.001 vs. control for each FiO2 concentration). PVR progressively decreased during mechanical ventilation with low and high FiO2 in both groups, but PVR remained higher after BQ-788 treatment throughout the study period (p <0.001). We conclude that selective ETB receptor blockade attenuates pulmonary vasodilation at birth. We speculate that ETB receptor stimulation contributes to pulmonary vasodilation at birth in the ovine fetus.

  16. CDK4/6 or MAPK blockade enhances efficacy of EGFR inhibition in oesophageal squamous cell carcinoma.

    PubMed

    Zhou, Jin; Wu, Zhong; Wong, Gabrielle; Pectasides, Eirini; Nagaraja, Ankur; Stachler, Matthew; Zhang, Haikuo; Chen, Ting; Zhang, Haisheng; Liu, Jie Bin; Xu, Xinsen; Sicinska, Ewa; Sanchez-Vega, Francisco; Rustgi, Anil K; Diehl, J Alan; Wong, Kwok-Kin; Bass, Adam J

    2017-01-06

    Oesophageal squamous cell carcinoma is a deadly disease where systemic therapy has relied upon empiric chemotherapy despite the presence of genomic alterations pointing to candidate therapeutic targets, including recurrent amplification of the gene encoding receptor tyrosine kinase epidermal growth factor receptor (EGFR). Here, we demonstrate that EGFR-targeting small-molecule inhibitors have efficacy in EGFR-amplified oesophageal squamous cell carcinoma (ESCC), but may become quickly ineffective. Resistance can occur following the emergence of epithelial-mesenchymal transition and by reactivation of the mitogen-activated protein kinase (MAPK) pathway following EGFR blockade. We demonstrate that blockade of this rebound activation with MEK (mitogen-activated protein kinase kinase) inhibition enhances EGFR inhibitor-induced apoptosis and cell cycle arrest, and delays resistance to EGFR monotherapy. Furthermore, genomic profiling shows that cell cycle regulators are altered in the majority of EGFR-amplified tumours and a combination of cyclin-dependent kinase 4/6 (CDK4/6) and EGFR inhibitors prevents the emergence of resistance in vitro and in vivo. These data suggest that upfront combination strategies targeting EGFR amplification, guided by adaptive pathway reactivation or by co-occurring genomic alterations, should be tested clinically.

  17. Myogenic constriction is increased in mesenteric resistance arteries from rats with chronic heart failure: instantaneous counteraction by acute AT1 receptor blockade

    PubMed Central

    Gschwend, S; Henning, R H; Pinto, Y M; de Zeeuw, D; van Gilst, W H; Buikema, H

    2003-01-01

    Increased vascular resistance in chronic heart failure (CHF) has been attributed to stimulated neurohumoral systems. However, local mechanisms may also importantly contribute to set arterial tone. Our aim, therefore, was to test whether pressure-induced myogenic constriction of resistance arteries in vitro – devoid of acute effects of circulating factors – is increased in CHF and to explore underlying mechanisms. At 12 weeks after coronary ligation-induced myocardial infarction or SHAM-operations in rats, we studied isolated mesenteric arteries for myogenic constriction, determined as the active constriction (% of passive diameter) in response to stepwise increase in intraluminal pressure (20 – 160 mmHg), in the absence and presence of inhibitors of potentially involved modulators of myogenic constriction. We found that myogenic constriction in mesenteric arteries from CHF rats was markedly increased compared to SHAM over the whole pressure range, the difference being most pronounced at 60 mmHg (24±2 versus 4±3%, respectively, P<0.001). Both removal of the endothelium as well as inhibition of NO production (L-NG-monomethylarginine, 100 μM) significantly increased myogenic constriction (+16 and +25%, respectively), the increase being similar in CHF- and SHAM-arteries (P=NS). Neither endothelin type A (ETA)-receptor blockade (BQ123, 1 μM) nor inhibition of perivascular (sympathetic) nerve conduction (tetrodotoxin, 100 nM) affected the myogenic response in either group. Interestingly, increased myogenic constriction in CHF was fully reversed after angiotensin II type I (AT1)-receptor blockade (candesartan, 100 nM; losartan, 10 μM), which was without effect in SHAM. In contrast, neither angiotensin-converting enzyme (ACE) inhibition (lisinopril, 1 μM; captopril, 10 μM) or AT2-receptor blockade (PD123319, 1 μM), nor inhibition of superoxide production (superoxide dismutase, 50 U ml−1), TXA2-receptor blockade (SQ29,548, 1 μM) or inhibition of cyclooxygenase-derived prostaglandins (indomethacin, 10 μM) affected myogenic constriction. Sensitivity of mesenteric arteries to angiotensin II (10 nM – 100 μM) was increased (P<0.05) in CHF (pD2 7.1±0.4) compared to SHAM (pD2 6.2±0.3), while the sensitivity to KCl and phenylephrine was not different. Our results demonstrate increased myogenic constriction in small mesenteric arteries of rats with CHF, potentially making it an important target for therapy in counteracting increased vascular resistance in CHF. Our results further suggest active and instantaneous participation of AT1-receptors in increased myogenic constriction in CHF, involving increased sensitivity of AT1-receptors rather than apparent ACE-mediated local angiotensin II production. PMID:12890711

  18. Endocannabinoids in Liver Disease

    PubMed Central

    Tam, Joseph; Liu, Jie; Mukhopadhyay, Bani; Cinar, Resat; Godlewski, Grzegorz; Kunos, George

    2010-01-01

    Endocannabinoids are lipid mediators of the same cannabinoid (CB) receptors that mediate the effects of marijuana. The endocannabinoid system (ECS) consists of CB receptors, endocannabinoids, and the enzymes involved in their biosynthesis and degradation, and is present both in brain and peripheral tissues, including the liver. The hepatic ECS is activated in various liver diseases, which contributes to the underlying pathologies. In cirrhosis of various etiologies, activation of vascular and cardiac CB1 receptors by macrophage- and platelet-derived endocannabinoids contribute to the vasodilated state and cardiomyopathy, which can be reversed by CB1 blockade. In mouse models of liver fibrosis, activation of CB1 receptors on hepatic stellate cells is fibrogenic, and CB1 blockade slows the progression of fibrosis. Fatty liver induced by high-fat diets or chronic alcohol feeding depend on activation of peripheral, including hepatic CB1 receptors, which also contribute to insulin resistance and dyslipidemias. Although the documented therapeutic potential of CB1 blockade is limited by neuropsychiatric side effects, these may be mitigated by using novel, peripherally restricted CB1 antagonists. PMID:21254182

  19. Opioid Facilitation of β-Adrenergic Blockade: A New Pharmacological Condition?

    PubMed Central

    Vamecq, Joseph; Mention-Mulliez, Karine; Leclerc, Francis; Dobbelaere, Dries

    2015-01-01

    Recently, propranolol was suggested to prevent hyperlactatemia in a child with hypovolemic shock through β-adrenergic blockade. Though it is a known inhibitor of glycolysis, propranolol, outside this observation, has never been reported to fully protect against lactate overproduction. On the other hand, literature evidence exists for a cross-talk between β-adrenergic receptors (protein targets of propranolol) and δ-opioid receptor. In this literature context, it is hypothesized here that anti-diarrheic racecadotril (a pro-drug of thiorphan, an inhibitor of enkephalinases), which, in the cited observation, was co-administered with propranolol, might have facilitated the β-blocker-driven inhibition of glycolysis and resulting lactate production. The opioid-facilitated β-adrenergic blockade would be essentially additivity or even synergism putatively existing between antagonism of β-adrenergic receptors and agonism of δ-opioid receptor in lowering cellular cAMP and dependent functions. PMID:26426025

  20. The investigation of neonatal MK-801 administration and physical environmental enrichment on emotional and cognitive functions in adult Balb/c mice.

    PubMed

    Akillioglu, Kubra; Babar Melik, Emine; Melik, Enver; Kocahan, Sayad

    2012-09-01

    N-methyl-D-aspartate (NMDA) receptors play an important role in brain maturation and developmental processes. It is known that growing up in an enriched environment has effects on emotional and cognitive performance. In our study, we evaluated the effects of physically enriched environment on the emotional and cognitive functions of the adult brain in the setting of previous NMDA receptor hypoactivity during the critical developmental period of the nervous system. In this study, NMDA receptor blockade was induced 5-10 days postnatally (PD5-10) using MK-801 in mice Balb/c (twice a day 0.25 mg/kg, for 5 days, intraperitoneal). MK-801 was given to developing mice living in a standard (SE) and an enrichment environment (EE) and once the animals reached adulthood, emotional behaviors were evaluated using an open field test (OF) and an elevated plus maze (EPM) test whereas cognitive processes were evaluated using the Morris water-maze (MWM). The EE group showed decreased locomotor activity (p<0.05) in the OF and increased exploratory behaviour (p<0.01) and decreased fear of heights/anxiety-like behaviour (p<0.05) in the EPM test. The EE had positive effects on spatial learning in the MWM (p<0.05). Blockade of the NMDA receptor increased the fear of height (p<0.05), decreased exploratory behaviour and locomotor activity (p<0.001). Also, it led to decreased spatial learning (p<0.05). The decreases in spatial learning and exploratory behaviours and the increase in fear of heights/anxiety-like behaviour with NMDA receptor blockade was not reversed by EE. NMDA receptor blockade during the critical period of development led to deterioration in the emotional and cognitive processes during adulthood. An enriched environmental did not reverse the deleterious effects of the NMDA receptor blockade on emotional and cognitive functions. Copyright © 2012. Published by Elsevier Inc.

  1. Effects of dopamine D1 receptor blockade on the ERG b- and d-waves during blockade of ionotropic GABA receptors.

    PubMed

    Popova, Elka; Kostov, Momchil; Kupenova, Petia

    2016-01-01

    Some data indicate that the dopaminergic and GABAergic systems interact in the vertebrate retina, but the type of interactions is not well understood. In this study we investigated the effect of dopamine D 1 receptor blockade by 75 μM SCH 23390 on the electroretinographic ON (b-wave) and OFF (d-wave) responses in intact frog eyecup preparations and in eyecups where the ionotropic GABA receptors were blocked by 50 μM picrotoxin. Student's t -test, One-way repeated measures ANOVA with Bonferroni post-hoc test and Two-way ANOVA were used for statistical evaluation of the data. We found that SCH 23390 alone significantly enhanced the amplitude of the b- and d-waves without altering their latency. The effect developed rapidly and was fully expressed within 8-11 min after the blocker application. Picrotoxin alone also markedly enhanced the amplitude of the ERG ON and OFF responses and increased their latency significantly. The effect was fully expressed within 25-27 min after picrotoxin application and remained very stable in the next 20 min. The effects of SCH 23390 and picrotoxin are similar to that reported in our previous studies. When SCH 23390 was applied on the background of the fully developed picrotoxin effect, it diminished the amplitude of the b- and d-waves in comparison to the corresponding values obtained during application of picrotoxin alone. Our results demonstrate that the enhancing effect of D 1 receptor blockade on the amplitude of the ERG b- and d-waves is not evident during the ionotropic GABA receptor blockade, indicating an interaction between these neurotransmitter systems in the frog retina. We propose that the inhibitory effect of endogenous dopamine mediated by D 1 receptors on the ERG ON and OFF responses in the frog retina may be due to the dopamine-evoked GABA release.

  2. Effect of K+ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure.

    PubMed

    Traverse, Jay H; Chen, YingJie; Hou, MingXiao; Li, Yunfang; Bache, Robert J

    2007-06-08

    K(+)(ATP) channels are important metabolic regulators of coronary blood flow (CBF) that are activated in the setting of reduced levels of ATP or perfusion pressure. In the normal heart, blockade of K(+)(ATP) channels results in a approximately 20% reduction in resting CBF but does not impair the increase in CBF that occurs during exercise. In contrast, adenosine receptor blockade fails to alter CBF or myocardial oxygen consumption (MVO(2)) in the normal heart but contributes to the increase in CBF during exercise when vascular K(+)(ATP) channels are blocked. Congestive heart failure (CHF) is associated with a decrease in CBF that is matched to a decrease in MVO(2) suggesting downregulation of myocardial energy utilization. Because myocardial ATP levels and coronary perfusion pressure are reduced in CHF, this study was undertaken to examine the role of K(+)(ATP) channels and adenosine in dogs with pacing-induced CHF. Myocardial blood flow (MBF) and MVO(2) were measured during rest and treadmill exercise before and after K(+)(ATP) channel blockade with glibenclamide (50 microg/kg/min ic) or adenosine receptor blockade with 8-phenyltheophylline (8-PT; 5 mg/kg iv). Inhibition of K(+)(ATP) channels resulted in a decrease in CBF and MVO(2) at rest and during exercise without a change in the relationship between CBF and MVO(2). In contrast, adenosine receptor blockade caused a significant increase in CBF that occurred secondary to an increase of MVO(2). These findings demonstrate that coronary K(+)(ATP) channel activity contribute to the regulation of resting MBF in CHF, and that endogenous adenosine may act to inhibit MVO(2) in the failing heart.

  3. Urothelium muscarinic activation phosphorylates CBSSer227 via cGMP/PKG pathway causing human bladder relaxation through H2S production

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-01-01

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser227 following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders. PMID:27509878

  4. Urothelium muscarinic activation phosphorylates CBS(Ser227) via cGMP/PKG pathway causing human bladder relaxation through H2S production.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-08-11

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser(227) following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders.

  5. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures

    PubMed Central

    Kiyatkin, Eugene A.

    2010-01-01

    Although pharmacological blockade of both dopamine (DA) and opiate receptors has an inhibiting effect on appetitive motivated behaviors, it is still unclear which physiological mechanisms affected by these treatments underlie the behavioral deficit. To clarify this issue, we examined how pharmacological blockade of either DA (SCH23390 + eticlopride at 0.2 mg/kg each) or opioid receptors (naloxone 1 mg/kg) affects motor activity and temperature fluctuations in the nucleus acumens (NAcc), temporal muscle, and facial skin associated with motivated Coca-Cola drinking behavior in rats. In drug-free conditions, presentation of a cup containing 5 ml of Coca-Cola induced locomotor activation and rapid NAcc temperature increases, which both transiently decreased during drinking, and phasically increased again after the cup was emptied. Muscle temperatures followed this pattern, but increases were weaker and more delayed than those in the NAcc. Skin temperature rapidly dropped after cup presentation, remained at low levels during consumption, and slowly restored during post-consumption behavioral activation. By itself, DA receptor blockade induced robust decrease in spontaneous locomotion, moderate increases in brain and muscle temperatures, and a relative increase in skin temperatures, suggesting metabolic activation coupled with adynamia. Following this treatment (∼180 min), motor activation to cup presentation and Coca-Cola consumption were absent, but rats showed NAcc and muscle temperature increases following cup presentation comparable to control. Therefore, DA receptor blockade does not affect significantly central and peripheral autonomic responses to appetitive stimuli, but eliminates their behavior-activating effects, thus disrupting appetitive behavior and blocking consumption. Naloxone alone slightly decreased brain and muscle temperatures and increased skin temperatures, pointing at the enhanced heat loss and possible minor inhibition of basal metabolic activity. This treatment (∼60 min) had minimal effects on the latencies of drinking, but increased its total duration, with licking interrupted by pauses and retreats. This behavioral attenuation was coupled with weaker than in control locomotor activation and diminished temperature fluctuations in each recording location. Therefore, attenuation of normal behavioral and physiological responses to appetitive stimuli appears to underlie modest inhibiting effects of opiate receptor blockade on motivated behavior and consumption. PMID:20167257

  6. Interaction of medullary P2 and glutamate receptors mediates the vasodilation in the hindlimb of rat.

    PubMed

    Korim, Willian Seiji; Ferreira-Neto, Marcos L; Pedrino, Gustavo R; Pilowsky, Paul M; Cravo, Sergio L

    2012-12-01

    In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,β-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.

  7. G-protein-coupled receptors signaling pathways in new antiplatelet drug development.

    PubMed

    Gurbel, Paul A; Kuliopulos, Athan; Tantry, Udaya S

    2015-03-01

    Platelet G-protein-coupled receptors influence platelet function by mediating the response to various agonists, including ADP, thromboxane A2, and thrombin. Blockade of the ADP receptor, P2Y12, in combination with cyclooxygenase-1 inhibition by aspirin has been among the most widely used pharmacological strategies to reduce cardiovascular event occurrence in high-risk patients. The latter dual pathway blockade strategy is one of the greatest advances in the field of cardiovascular medicine. In addition to P2Y12, the platelet thrombin receptor, protease activated receptor-1, has also been recently targeted for inhibition. Blockade of protease activated receptor-1 has been associated with reduced thrombotic event occurrence when added to a strategy using P2Y12 and cyclooxygenase-1 inhibition. At this time, the relative contributions of these G-protein-coupled receptor signaling pathways to in vivo thrombosis remain incompletely defined. The observation of treatment failure in ≈10% of high-risk patients treated with aspirin and potent P2Y12 inhibitors provides the rationale for targeting novel pathways mediating platelet function. Targeting intracellular signaling downstream from G-protein-coupled receptor receptors with phosphotidylionisitol 3-kinase and Gq inhibitors are among the novel strategies under investigation to prevent arterial ischemic event occurrence. Greater understanding of the mechanisms of G-protein-coupled receptor-mediated signaling may allow the tailoring of antiplatelet therapy. © 2015 American Heart Association, Inc.

  8. Blockade of epidermal growth factor receptor signaling leads to inhibition of renal cell carcinoma growth in the bone of nude mice.

    PubMed

    Weber, Kristy L; Doucet, Michele; Price, Janet E; Baker, Cheryl; Kim, Sun Jin; Fidler, Isaiah J

    2003-06-01

    Renal cell carcinoma (RCC) frequently produces metastases to the musculoskeletal system that are a major source of morbidity in the form of pain, immobilization, fractures, neurological compromise, and a decreased ability to perform activities of daily living. Patients with metastatic RCC therefore have a dismal prognosis because there is no effective adjuvant treatment for this disease. Because the epidermal growth factor receptor (EGF-R) signaling cascade is important in the growth and metastasis of RCC, its blockade has been hypothesized to inhibit tumor growth and hence prevent resultant bone destruction. We determined whether blockade of EGF-R by the tyrosine kinase inhibitor PKI 166 inhibited the growth of RCC in bone. We use a novel cell line, RBM1-IT4, established from a human RCC bone metastasis. Protein and mRNA expression of the ligands and receptors was assessed by Western and Northern blots. The stimulation of RBM1-IT4 cells with epidermal growth factor or transforming growth factor alpha resulted in increased cellular proliferation and tyrosine kinase autophosphorylation. PKI 166 prevented these effects. First, RBM1-IT4 cells were implanted into the tibia of nude mice, where they established lytic, progressively growing lesions, after which the mice were treated with PKI 166 alone or in combination with paclitaxel (Taxol). Immunohistochemical analysis revealed that tumor cells and tumor-associated endothelial cells in control mice expressed activated EGF-R. Treatment of mice with PKI 166 alone or in combination with Taxol produced a significant decrease in the incidence and size of bone lesions as compared with the results in control or Taxol-treated mice (P < 0.001). Treatment with PKI 166 also decreased the expression of phosphorylated EGF-R by tumor cells and tumor-associated endothelial cells, and this was even more pronounced with PKI 166 plus Taxol treatment. The PKI 166 plus Taxol combination produced apoptosis of tumor cells and tumor-associated endothelial cells. Tumor cell proliferation, shown by proliferating cell nuclear antigen positivity, was decreased in all treatment groups. In addition, the integrity of the bone was maintained in mice treated with PKI 166 or PKI 166 plus Taxol, whereas massive bone destruction was seen in control and Taxol-treated mice. These results suggest that blockade of EGF-R signaling inhibits growth of RCC in the bone by its effect on tumor cells and tumor-associated endothelial cells.

  9. Dual HER2 blockade in the neoadjuvant and adjuvant treatment of HER2-positive breast cancer

    PubMed Central

    Advani, Pooja; Cornell, Lauren; Chumsri, Saranya; Moreno-Aspitia, Alvaro

    2015-01-01

    Human epidermal growth factor receptor 2 (HER2) is a tyrosine kinase transmembrane receptor that is overexpressed on the surface of 15%–20% of breast tumors and has been associated with poor prognosis. Consistently improved pathologic response and survival rates have been demonstrated with use of trastuzumab in combination with standard chemotherapy in both early and advanced breast cancer. However, resistance to trastuzumab may pose a major problem in the effective treatment of HER2-positive breast cancer. Dual HER2 blockade, using agents that work in a complimentary fashion to trastuzumab, has more recently been explored to evade resistance in both the preoperative (neoadjuvant) and adjuvant settings. Increased effectiveness of dual anti-HER2 agents over single blockade has been recently reported in clinical studies. Pertuzumab in combination with trastuzumab and taxane is currently approved in the metastatic and neoadjuvant treatment of HER2-positive breast cancer. Various biomarkers have also been investigated to identify subsets of patients with HER2-positive tumors who would likely respond best to these targeted therapy combinations. In this article, available trial data regarding efficacy and toxicity of treatment with combination HER2 agents in the neoadjuvant and adjuvant setting have been reviewed, and relevant correlative biomarker data from these trials have been discussed. PMID:26451122

  10. Regulation of apical blebbing in the porcine epididymis.

    PubMed

    Hughes, Jennifer R; Berger, Trish

    2018-03-01

    Apical blebbing, a non-classical secretion mechanism, occurs in the mature porcine epididymis as part of its normal function. Proteins secreted by this mechanism contribute to the modification of the sperm plasma membrane during epididymal transit and are thought to contribute to acquisition of fertilizing ability. However, little is known about the regulation of this secretion mechanism in an in vivo model. Previous work demonstrated apical blebbing in the epididymis developed pubertally, suggesting androgens, sperm or other luminal factors regulated this process. Hence, the objective was to evaluate the hypothesized regulation of apical blebbing in the epididymis of pubertal boars by androgens and luminal factors. Androgen receptor blockade (flutamide) and surgical interventions (efferent duct ligation, orchidectomy or transection of the caput epididymis) were used to alter signaling, and the subsequent effects on apical blebbing were evaluated histologically. Apical blebbing was not altered by androgen receptor blockade with flutamide, but was significantly reduced 24 h after efferent duct ligation and after orchidectomy, treatments that eliminated luminal flow from the testis (P < 0.05). Like efferent duct ligation, epididymal transection altered luminal flow without removing the androgen source and significantly reduced the appearance of apical blebbing (P < 0.05). In conclusion, apical blebbing in the porcine epididymis appears to be regulated by luminal factors. © 2017 Anatomical Society.

  11. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    PubMed

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  12. Combination use of medicines from two classes of renin-angiotensin system blocking agents: risk of hyperkalemia, hypotension, and impaired renal function.

    PubMed

    Esteras, Raquel; Perez-Gomez, Maria Vanessa; Rodriguez-Osorio, Laura; Ortiz, Alberto; Fernandez-Fernandez, Beatriz

    2015-08-01

    European and United States regulatory agencies recently issued warnings against the use of dual renin-angiotensin system (RAS) blockade therapy through the combined use of angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs) or aliskiren in any patient, based on absence of benefit for most patients and increased risk of hyperkalemia, hypotension, and renal failure. Special emphasis was made not to use these combinations in patients with diabetic nephropathy. The door was left open to therapy individualization, especially for patients with heart failure, when the combined use of an ARB and ACEI is considered absolutely essential, although renal function, electrolytes and blood pressure should be closely monitored. Mineralocorticoid receptor antagonists were not affected by this warning despite increased risk of hyperkalemia. We now critically review the risks associated with dual RAS blockade and answer the following questions: What safety issues are associated with dual RAS blockade? Can the safety record of dual RAS blockade be improved? Is it worth trying to improve the safety record of dual RAS blockade based on the potential benefits of the combination? Is dual RAS blockade dead? What is the role of mineralocorticoid antagonists in combination with other RAS blocking agents: RAAS blockade?

  13. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor.

    PubMed

    Gilmore, Andrew P; Valentijn, Anthony J; Wang, Pengbo; Ranger, Ann M; Bundred, Nigel; O'Hare, Michael J; Wakeling, Alan; Korsmeyer, Stanley J; Streuli, Charles H

    2002-08-02

    Novel cancer chemotherapeutics are required to induce apoptosis by activating pro-apoptotic proteins. Both epidermal growth factor (EGF) and insulin-like growth factor (IGF) provide potent survival stimuli in many epithelia, and activation of their receptors is commonly observed in solid human tumors. Here we demonstrate that blockade of the EGF receptor by a new drug in phase III clinical trails for cancer, ZD1839, potently induces apoptosis in mammary epithelial cell lines and primary cultures, as well as in a primary pleural effusion from a breast cancer patient. We identified the mechanism of apoptosis induction by ZD1839. We showed that it prevents cell survival by activating the pro-apoptotic protein BAD. Moreover, we demonstrate that IGF transactivates the EGF receptor and that ZD1839 blocks IGF-mediated phosphorylation of MAPK and BAD. Many cancer therapies kill tumor cells by inducing apoptosis as a consequence of targeting DNA; however, the threshold at which apoptosis can be triggered through DNA damage is often different from that in normal cells. Our results indicate that by targeting a growth factor-mediated survival signaling pathway, BAD phosphorylation can be manipulated therapeutically to induce apoptosis.

  14. Prostate Cancer Cell–Stromal Cell Cross-Talk via FGFR1 Mediates Antitumor Activity of Dovitinib in Bone Metastases

    PubMed Central

    Wan, Xinhai; Corn, Paul G.; Yang, Jun; Palanisamy, Nallasivam; Starbuck, Michael W.; Efstathiou, Eleni; Li-Ning Tapia, Elsa M.; Zurita, Amado J.; Aparicio, Ana; Ravoori, Murali K.; Vazquez, Elba S.; Robinson, Dan R.; Wu, Yi-Mi; Cao, Xuhong; Iyer, Matthew K.; McKeehan, Wallace; Kundra, Vikas; Wang, Fen; Troncoso, Patricia; Chinnaiyan, Arul M.; Logothetis, Christopher J.; Navone, Nora M.

    2015-01-01

    Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell–bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors. PMID:25186177

  15. Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases.

    PubMed

    Wan, Xinhai; Corn, Paul G; Yang, Jun; Palanisamy, Nallasivam; Starbuck, Michael W; Efstathiou, Eleni; Li Ning Tapia, Elsa M; Tapia, Elsa M Li-Ning; Zurita, Amado J; Aparicio, Ana; Ravoori, Murali K; Vazquez, Elba S; Robinson, Dan R; Wu, Yi-Mi; Cao, Xuhong; Iyer, Matthew K; McKeehan, Wallace; Kundra, Vikas; Wang, Fen; Troncoso, Patricia; Chinnaiyan, Arul M; Logothetis, Christopher J; Navone, Nora M

    2014-09-03

    Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell-bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in serum prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors. Copyright © 2014, American Association for the Advancement of Science.

  16. [Significance of CRF and dopamine receptors in amygdala for reinforcing effects of opiates and opioids on self-stimulation of lateral hypothalamus in rats].

    PubMed

    Shabanov, P D; Lebedev, A A; Liubimov, A V; Kornilov, V A

    2011-01-01

    Bipolar electrodes were implanted in the lateral hypothalamus in a group of 44 Wistar male rats in order to study self-stimulation reaction in the Skinner box. Simultaneously, microcanules were implanted into the central nucleus of the amygdala to inject the drugs (1 microl per injection). The blockade of corticoliberin (CRF) receptors (astressin, 1 microg) or Na+influx currents (xycaine or lidocain 1 microg) by the intrastructural administration of drugs into the amygdala decreased self-stimulation reaction of the lateral hypothalamus in rats by 29-55%. The inhibition of D1 and D2 dopamine receptors in the amygdala with SCH23390 (1 microg) or sulpiride (1 microg) respectively, also reduced self-stimulation but to a lower degree. On the background of blockade of CRF (astressin) and dopamine (sulpiride) receptors as well as sodium influx ionic currents (lidocain) in the amygdala neurons, psychomotor stimulant amphetamine (1 mg/kg) and barbiturate sodium ethaminal (5 mg/kg) retained their psychoactivating effect on self-stimulation (+30-37%), while fentanyl (0.1 mg/kg) and leu-enkephaline (0.1 mg/kg) did not produce this effect. Fentanyl moderately activated self-stimulation only after the blockade of D1 dopamine receptors with SCH23390. After the blockade of CRF receptors, leu-enkephaline strengthened its depressant effect on self-stimulation reaction (-89%). Therefore, if the modulating action of amygdala on the hypothalamus is eliminated, the enhancing effects of opiates (fentanyl) and opioids (leu-encephaline) are blocked, but the effects of psychomotor stimulant amphetamine and barbiturate sodium ethaminal are retained.

  17. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance

    PubMed Central

    Roh, Whijae; Chen, Pei-Ling; Reuben, Alexandre; Spencer, Christine N.; Prieto, Peter A.; Miller, John P.; Gopalakrishnan, Vancheswaran; Wang, Feng; Cooper, Zachary A.; Reddy, Sangeetha M.; Gumbs, Curtis; Little, Latasha; Chang, Qing; Chen, Wei-Shen; Wani, Khalida; Petaccia De Macedo, Mariana; Chen, Eveline; Austin-Breneman, Jacob L.; Jiang, Hong; Roszik, Jason; Tetzlaff, Michael T.; Davies, Michael A.; Gershenwald, Jeffrey E.; Tawbi, Hussein; Lazar, Alexander J.; Hwu, Patrick; Hwu, Wen-Jen; Diab, Adi; Glitza, Isabella C.; Patel, Sapna P.; Woodman, Scott E.; Amaria, Rodabe N.; Prieto, Victor G.; Hu, Jianhua; Sharma, Padmanee; Allison, James P.; Chin, Lynda; Zhang, Jianhua; Wargo, Jennifer A.; Futreal, P. Andrew

    2018-01-01

    Immune checkpoint blockade produces clinical benefit in many patients. However better biomarkers of response are still needed, and mechanisms of resistance remain incompletely understood. To address this, we recently studied a cohort of melanoma patients treated with sequential checkpoint blockade against cytotoxic T lymphocyte antigen-4 (CTLA-4) followed by programmed death receptor-1 (PD-1), and identified immune markers of response and resistance. Building on these studies, we performed deep molecular profiling including T-cell receptor sequencing (TCR-seq) and whole exome sequencing (WES) within the same cohort, and demonstrated that a more clonal T cell repertoire was predictive of response to PD-1 but not CTLA-4 blockade. Analysis of copy number alterations identified a higher burden of copy number loss in non-responders to CTLA-4 and PD-1 blockade and found that it was associated with decreased expression of genes in immune-related pathways. The effect of mutational load and burden of copy number loss on response was non-redundant, suggesting the potential utility of a combinatorial biomarker to optimize patient care with checkpoint blockade therapy. PMID:28251903

  18. α2-adrenergic blockade mimics the enhancing effect of chronic stress on breast cancer progression

    PubMed Central

    Lamkin, Donald M.; Sung, Ha Yeon; Yang, Gyu Sik; David, John M.; Ma, Jeffrey C.Y.; Cole, Steve W.; Sloan, Erica K.

    2014-01-01

    Experimental studies in preclinical mouse models of breast cancer have shown that chronic restraint stress can enhance disease progression by increasing catecholamine levels and subsequent signaling of β-adrenergic receptors. Catecholamines also signal α-adrenergic receptors, and greater α-adrenergic signaling has been shown to promote breast cancer in vitro and in vivo. However, antagonism of α-adrenergic receptors can result in elevated catecholamine levels, which may increase β-adrenergic signaling, because pre-synaptic α2-adrenergic receptors mediate an autoinhibition of sympathetic transmission. Given these findings, we examined the effect of α-adrenergic blockade on breast cancer progression under non-stress and stress conditions (chronic restraint) in an orthotopic mouse model with MDA-MB-231HM cells. Chronic restraint increased primary tumor growth and metastasis to distant tissues as expected, and non-selective α-adrenergic blockade by phentolamine significantly inhibited those effects. However, under non-stress conditions, phentolamine increased primary tumor size and distant metastasis. Sympatho-neural gene expression for catecholamine biosynthesis enzymes was elevated by phentolamine under non-stress conditions, and the non-selective β-blocker propranolol inhibited the effect of phentolamine on breast cancer progression. Selective α2-adrenergic blockade by efaroxan also increased primary tumor size and distant metastasis under non-stress conditions, but selective α1-adrenergic blockade by prazosin did not. These results are consistent with the hypothesis that α2-adrenergic signaling can act through an autoreceptor mechanism to inhibit sympathetic catecholamine release and, thus, modulate established effects of β-adrenergic signaling on tumor progression-relevant biology. PMID:25462899

  19. Randomized controlled trial using bosentan to enhance the impact of exercise training in subjects with type 2 diabetes mellitus.

    PubMed

    Schreuder, Tim H A; Duncker, Dirk J; Hopman, Maria T E; Thijssen, Dick H J

    2014-11-01

    In type 2 diabetes patients, endothelin (ET) receptor blockade may enhance blood flow responses to exercise training. The combination of exercise training and ET receptor blockade may represent a more potent stimulus than training alone to improve vascular function, physical fitness and glucose homeostasis. We assessed the effect of an 8 week exercise training programme combined with either ET blockade or placebo on vasculature, fitness and glucose homeostasis in people with type 2 diabetes. In a double-blind randomized controlled trial, brachial endothelium-dependent and ‑independent dilatation (using flow-mediated dilatation and glyceryl trinitrate, respectively), glucose homeostasis (using Homeostasis Model Assessment for Insulin Resistance (HOMA-IR)) and physical fitness (maximal cycling test) were assessed in 18 men with type 2 diabetes (60 ± 6 years old). Subjects underwent an 8 week exercise training programme, with half of the subjects receiving ET receptor blockade (bosentan) and the other half a placebo, followed by reassessment of the tests above. Exercise training improved physical fitness to a similar extent in both groups, but we did not detect changes in vascular function in either group. This study suggests that there is no adaptation in brachial and femoral artery endothelial function after 8 weeks of training in type 2 diabetes patients. Endothelin receptor blockade combined with exercise training does not additionally alter conduit artery endothelial function or physical fitness in type 2 diabetes. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  20. Endothelin-A Receptor Antagonism after Renal Angioplasty Enhances Renal Recovery in Renovascular Disease

    PubMed Central

    Tullos, Nathan; Stewart, Nicholas J.; Surles, Bret

    2015-01-01

    Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD. PMID:25377076

  1. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    PubMed Central

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J.; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2–neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.—Fan, X., Krieg, S., Kuo, C. J., Wiegand, S. J., Rabinovitch, M., Druzin, M. L., Brenner, R. M., Giudice, L. C., Nayak, N. R. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. PMID:18606863

  2. Role of vagal afferents in the ventilatory response to naloxone during loaded breathing in the rabbit.

    PubMed

    Delpierre, S; Pugnat, C; Duté, N; Jammes, Y

    1995-02-15

    It was previously shown that inspiratory resistive loading (IRL) increases the cerebrospinal fluid (CSF) level of beta endorphin in awake goats, and also that the slower ventilation induced by injection of this substance into the CSF of anesthetized dogs is suppressed after vagotomy. In the present study, performed on anesthetized rabbits, we evaluated the part played by vagal afferents in the ventilatory response to IRL after opioid receptor blockade by naloxone. During unloaded breathing, naloxone injection did not modify baseline ventilation. Conversely, naloxone partially reversed IRL-induced hypoventilation through an increase in respiratory rate. This effect was abolished after either vagotomy or cold blockade of large vagal fibers, but it persisted after procaine blockade of thin vagal fibers. These results suggest that pulmonary stretch receptors, which are connected to some large vagal afferent fibers, would play a major role in the ventilatory response to IRL under opioid receptor inhibition.

  3. Acute Bradykinin Receptor Blockade During Hemorrhagic Shock in Mice Prevents the Worsening Hypotensive Effect of Angiotensin-Converting Enzyme Inhibitor.

    PubMed

    Charbonneau, Hélène; Buléon, Marie; Minville, Vincent; Faguer, Stanislas; Girolami, Jean-Pierre; Bascands, Jean-Loup; Tack, Ivan; Mayeur, Nicolas

    2016-09-01

    Angiotensin-converting enzyme inhibitors are associated with deleterious hypotension during anesthesia and shock. Because the pharmacologic effects of angiotensin-converting enzyme inhibitors are partly mediated by increased bradykinin B2 receptor activation, this study aimed to determine the impact of acute B2 receptor blockade during hemorrhagic shock in angiotensin-converting enzyme inhibitor-treated mice. In vivo study. University research unit. C57/Bl6 mice. The hemodynamic effect of B2 receptor blockade using icatibant (B2 receptor antagonist) was studied using a pressure-targeted hemorrhagic shock and a volume-targeted hemorrhagic shock. Animals were anesthetized with ketamine and xylazine (250 mg/kg and 10 mg/kg, respectively), intubated using intratracheal cannula, and ventilated (9 mL/kg, 150 min). Five groups were studied: 1) sham-operated animals, 2) control shocked mice, 3) shocked mice treated with ramipril for 7 days (angiotensin-converting enzyme inhibitors) before hemorrhagic shock, 4) shocked mice treated with angiotensin-converting enzyme inhibitors and a single bolus of icatibant (HOE-140) immediately before anesthesia (angiotensin-converting enzyme inhibitors + icatibant), and 5) shocked mice treated with a single bolus of icatibant. One hour after volume-targeted hemorrhagic shock, blood lactate was measured to evaluate organ failure. During pressure-targeted hemorrhagic shock, the mean blood volume withdrawn was significantly lower in the angiotensin-converting enzyme inhibitor group than in the other groups (p < 0.001). During volume-targeted hemorrhagic shock, icatibant prevented blood pressure lowering in the angiotensin-converting enzyme inhibitor group (p < 0.001). Blood lactate was significantly higher in the angiotensin-converting enzyme inhibitor group than in the other groups, particularly the HOE groups. During hemorrhagic shock, acute B2 receptor blockade significantly attenuates the deleterious hemodynamic effect of angiotensin-converting enzyme inhibitor treatment in mice. This beneficial effect of B2 receptor blockade is rapidly reached and sustained with a single bolus of icatibant. This benefit could be of interest in angiotensin-converting enzyme inhibitor-treated patients during both emergency anesthesia and resuscitation.

  4. NMDA Receptors Regulate Genes Responsible for Major Immune Functions of Mononuclears in Human Peripheral Blood.

    PubMed

    Kuzmina, U Sh; Zainullina, L F; Sadovnikov, S V; Vakhitov, V A; Vakhitova, Yu V

    2018-06-19

    To determine the role of NMDA receptors in the functional regulation of immunocompetent cells, comparative assay was carried out for genes expressed in the mononuclears in peripheral blood of healthy persons under normal conditions and after blockade of these receptors. The genes, whose expression changed in response to blockade of NMDA receptors in mononuclears, encode the products involved in regulation of the major functions of immune cells, such as proliferation (IL4, VCAM1, and CDKN2A), apoptosis (BAX, MYC, CDKN2A, HSPB1, and CADD45A), activation (IL4R, IL4, VCAM1, and CDKN2A), and differentiation (IL4, VCAM1, and BAX).

  5. Have we fallen off target with concerns surrounding dual RAAS blockade?

    PubMed

    Lattanzio, Michael R; Weir, Matthew R

    2010-09-01

    A misinterpretation of the results from ONTARGET (Ongoing Telmisartan alone and in combination with ramipril Global Endpoint Trial) has sparked both efficacy and safety concerns within the nephrology community regarding the utilization of dual RAAS blockade to achieve more desirable renal outcomes. Two important considerations are requisite prior to interpreting these results, specifically: the context of the cohort studied (non-proteinuric CKD patients at low risk of progression) and the inadequate power of the study to assess renal outcomes. The cardiac and renal protection afforded from dual RAAS blockade in select populations, particularly proteinuric CKD and CHF, is supported by literature. Moreover, the response to dual RAAS blockade involving different combinations of ACE inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and direct renin inhibitors, may not be uniform amongst all patient populations. Will we continue to withhold the appropriate medical therapy from certain individuals based on misconstrued data? The proceedings provide a critical analysis of the ONTARGET study and an evidence-based substantiation for the utilization of various forms of dual RAAS blockade in proteinuric kidney disease and beyond.

  6. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures.

    PubMed

    Kiyatkin, E A

    2010-05-05

    Although pharmacological blockade of both dopamine (DA) and opiate receptors has an inhibiting effect on appetitive motivated behaviors, it is still unclear which physiological mechanisms affected by these treatments underlie the behavioral deficit. To clarify this issue, we examined how pharmacological blockade of either DA (SCH23390+eticlopride at 0.2 mg/kg each) or opioid receptors (naloxone 1 mg/kg) affects motor activity and temperature fluctuations in the nucleus accumbens (NAcc), temporal muscle, and facial skin associated with motivated Coca-Cola drinking behavior in rats. In drug-free conditions, presentation of a cup containing 5 ml of Coca-Cola induced locomotor activation and rapid NAcc temperature increases, which both transiently decreased during drinking, and phasically increased again after the cup was emptied. Muscle temperatures followed this pattern, but increases were weaker and more delayed than those in the NAcc. Skin temperature rapidly dropped after cup presentation, remained at low levels during consumption, and slowly restored during post-consumption behavioral activation. By itself, DA receptor blockade induced robust decrease in spontaneous locomotion, moderate increases in brain and muscle temperatures, and a relative increase in skin temperatures, suggesting metabolic activation coupled with adynamia. Following this treatment (approximately 180 min), motor activation to cup presentation and Coca-Cola consumption were absent, but rats showed NAcc and muscle temperature increases following cup presentation comparable to control. Therefore, DA receptor blockade does not affect significantly central and peripheral autonomic responses to appetitive stimuli, but eliminates their behavior-activating effects, thus disrupting appetitive behavior and blocking consumption. Naloxone alone slightly decreased brain and muscle temperatures and increased skin temperatures, pointing at the enhanced heat loss and possible minor inhibition of basal metabolic activity. This treatment (approximately 60 min) had minimal effects on the latencies of drinking, but increased its total duration, with licking interrupted by pauses and retreats. This behavioral attenuation was coupled with weaker than in control locomotor activation and diminished temperature fluctuations in each recording location. Therefore, attenuation of normal behavioral and physiological responses to appetitive stimuli appears to underlie modest inhibiting effects of opiate receptor blockade on motivated behavior and consumption. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Blockade of NMDA receptors prevents analgesic tolerance to repeated transcutaneous electrical nerve stimulation (TENS) in rats

    PubMed Central

    Hingne, Priyanka M.; Sluka, Kathleen A.

    2008-01-01

    Repeated daily application transcutaneous electrical nerve stimulation (TENS) results in tolerance, at spinal opioid receptors, to the anti-hyperalgesia produced by TENS. Since N-Methyl-D-Aspartate (NMDA) receptor antagonists prevent analgesic tolerance to opioid agonists we hypothesized that blockade of NMDA receptors will prevent tolerance to TENS. In rats with knee joint inflammation, TENS was applied for 20 minute daily at high frequency (100 Hz), low frequency (4 Hz), or sham TENS. Rats were treated with the NMDA antagonist MK-801 (0.01 mg/kg-0.1 mg/kg) or vehicle daily before TENS. Paw withdrawal thresholds were tested before and after inflammation, and before and after TENS treatment for 4 days. On day 1 TENS reversed the decreased mechanical withdrawal threshold induced by joint inflammation. On day 4 TENS had no effect on the decreased withdrawal threshold in the group treated with vehicle demonstrating development of tolerance. However, in the group treated with 0.1 mg/kg MK-801, TENS significantly reversed the mechanical withdrawal thresholds on day 4 demonstrating that tolerance did not develop. Vehicle treated animals developed cross-tolerance at spinal opioid receptors. Treatment with MK-801 reversed this cross-tolerance at spinal opioid receptors. In summary, blockade of NMDA receptors prevents analgesic tolerance to daily TENS by preventing tolerance at spinal opioid receptors. Perspective Tolerance observed to the clinical treatment of TENS could be prevented by administration of pharmaceutical agents with NMDA receptors activity such as ketamine or dextromethorphan. PMID:18061543

  8. Modulation of GITR for cancer immunotherapy

    PubMed Central

    Schaer, David A; Murphy, Judith T; Wolchok, Jedd D

    2012-01-01

    Modulation of co-inhibitory and co-stimulatory receptors of the immune system has become a promising new approach for immunotherapy of cancer. With the recent FDA approval of CTLA-4 blockade serving as an important proof of principal, many new targets are now being translated into the clinic. Preclinical research has demonstrated that targeting glucocorticoid-induced tumor necrosis factor (TNF) receptor related gene (GITR), a member of TNF receptor superfamily, by agonist antibodies or natural ligand, can serve as an effective anti-tumor therapy. In this review, we will cover this research and the rationale that has led to initiation of two phase 1 clinical trials targeting GITR as a new immunotherapeutic approach for cancer. PMID:22245556

  9. Periostin Limits Tumor Response to VEGFA Inhibition.

    PubMed

    Keklikoglou, Ioanna; Kadioglu, Ece; Bissinger, Stefan; Langlois, Benoît; Bellotti, Axel; Orend, Gertraud; Ries, Carola H; De Palma, Michele

    2018-03-06

    Resistance to antiangiogenic drugs limits their applicability in cancer therapy. Here, we show that revascularization and progression of pancreatic neuroendocrine tumors (PNETs) under extended vascular-endothelial growth factor A (VEGFA) blockade are dependent on periostin (POSTN), a matricellular protein expressed by stromal cells. Genetic deletion of Postn in RIP1-Tag2 mice blunted tumor rebounds of M2-like macrophages and αSMA + stromal cells in response to prolonged VEGFA inhibition and suppressed PNET revascularization and progression on therapy. POSTN deficiency also impeded the upregulation of basic fibroblast growth factor (FGF2), an adaptive mechanism previously implicated in PNET evasion from antiangiogenic therapy. Higher POSTN expression correlated with markers of M2-like macrophages in human PNETs, and depleting macrophages with a colony-stimulating factor 1 receptor (CSF1R) antibody inhibited PNET revascularization and progression under VEGFA blockade despite continued POSTN production. These findings suggest a role for POSTN in orchestrating resistance to anti-VEGFA therapy in PNETs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Pharmacological Analysis of Ionotropic Glutamate Receptor Function in Neuronal Circuits of the Zebrafish Olfactory Bulb

    PubMed Central

    Tabor, Rico; Friedrich, Rainer W.

    2008-01-01

    Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1) interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2) interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3) AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4) ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb. PMID:18183297

  11. Behavioral analysis of the consequences of chronic blockade of NMDA-type glutamate receptors in the early postnatal period in rats.

    PubMed

    Latysheva, N V; Raevskii, K S

    2003-02-01

    Considering data on the possible glutamatergic nature of the pathogenesis of schizophrenia, we attempted to model cognitive derangements in animals by chronic blockade of NMDA glutamate receptors. Wistar rats received daily s.c. injections of the non-competitive NMDA glutamate receptor antagonist MK-801 (0.05 mg/kg) from days 7 to day 49 of postnatal life. One day after the antagonist injections given on days 27 and 28 of life, animals of the experimental group showed decreased levels of spontaneous movement and orientational-investigative activity as compared with controls, where there was no change in the elevated locomotor reaction produced in response to the direct action of MK-801. These animals showed decreases in the level of anxiety (on day 40 of life) and derangement in spatial learning with food reinforcement (days 50-54 of life). It is suggested that early neonatal blockade of NMDA glutamate receptors leads to the development in animals of disturbances to situational perception and assessment of incoming sensory information.

  12. Hypertension: renin-angiotensin-aldosterone system alterations.

    PubMed

    Te Riet, Luuk; van Esch, Joep H M; Roks, Anton J M; van den Meiracker, Anton H; Danser, A H Jan

    2015-03-13

    Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension. © 2015 American Heart Association, Inc.

  13. Clinical utility of sympathetic blockade in cardiovascular disease management.

    PubMed

    Park, Chan Soon; Lee, Hae-Young

    2017-04-01

    A dysregulated sympathetic nervous system is a major factor in the development and progression of cardiovascular disease; thus, understanding the mechanism and function of the sympathetic nervous system and appropriately regulating sympathetic activity to treat various cardiovascular diseases are crucial. Areas covered: This review focused on previous studies in managing hypertension, atrial fibrillation, coronary artery disease, heart failure, and perioperative management with sympathetic blockade. We reviewed both pharmacological and non-pharmacological management. Expert commentary: Chronic sympathetic nervous system activation is related to several cardiovascular diseases mediated by various pathways. Advancement in measuring sympathetic activity makes visualizing noninvasively and evaluating the activation level even in single fibers possible. Evidence suggests that sympathetic blockade still has a role in managing hypertension and controlling the heart rate in atrial fibrillation. For ischemic heart disease, beta-adrenergic receptor antagonists have been considered a milestone drug to control symptoms and prevent long-term adverse effects, although its clinical implication has become less potent in the era of successful revascularization. Owing to pathologic involvement of sympathetic nervous system activation in heart failure progression, sympathetic blockade has proved its value in improving the clinical course of patients with heart failure.

  14. Optimum AT1 receptor-neprilysin inhibition has superior cardioprotective effects compared with AT1 receptor blockade alone in hypertensive rats.

    PubMed

    Roksnoer, Lodi C W; van Veghel, Richard; de Vries, René; Garrelds, Ingrid M; Bhaggoe, Usha M; Friesema, Edith C H; Leijten, Frank P J; Poglitsch, Marko; Domenig, Oliver; Clahsen-van Groningen, Marian C; Hoorn, Ewout J; Jan Danser, A H; Batenburg, Wendy W

    2015-07-01

    Neprilysin inhibitors prevent the breakdown of bradykinin and natriuretic peptides, promoting vasodilation and natriuresis. However, they also increase angiotensin II and endothelin-1. Here we studied the effects of a low and a high dose of the neprilysin inhibitor thiorphan on top of AT1 receptor blockade with irbesartan versus vehicle in TGR(mREN2)27 rats with high renin hypertension. Mean arterial blood pressure was unaffected by vehicle or thiorphan alone. Irbesartan lowered blood pressure, but after 7 days pressure started to increase again. Low- but not high-dose thiorphan prevented this rise. Only during exposure to low-dose thiorphan plus irbesartan did heart weight/body weight ratio, cardiac atrial natriuretic peptide expression, and myocyte size decrease significantly. Circulating endothelin-1 was not affected by low-dose thiorphan with or without irbesartan, but increased after treatment with high-dose thiorphan plus irbesartan. This endothelin-1 rise was accompanied by an increase in renal sodium-hydrogen exchanger 3 protein abundance, and an upregulation of constrictor vascular endothelin type B receptors. Consequently, the endothelin type B receptor antagonist BQ788 no longer enhanced endothelin-1-induced vasoconstriction (indicative of endothelin type B receptor-mediated vasodilation), but prevented it. Thus, optimal neprilysin inhibitor dosing reveals additional cardioprotective effects on top of AT1 receptor blockade in renin-dependent hypertension.

  15. Long-term AT1 receptor blockade improves metabolic function and provides renoprotection in Fischer-344 rats.

    PubMed

    Gilliam-Davis, Shea; Payne, Valerie S; Kasper, Sherry O; Tommasi, Ellen N; Robbins, Michael E; Diz, Debra I

    2007-09-01

    Fischer-344 (F344) rats exhibit proteinuria and insulin resistance in the absence of hypertension as they age. We determined the effects of long-term (1 yr) treatment with the angiotensin (ANG) II type 1 (AT(1)) receptor blocker L-158,809 on plasma and urinary ANG peptide levels, systolic blood pressure (SBP), and indexes of glucose metabolism in 15-mo-old male F344 rats. Young rats at 3 mo of age (n = 8) were compared with two separate groups of older rats: one control group (n = 7) and one group treated with L-158,809 (n = 6) orally (20 mg/l) for 1 yr. SBP was not different between control and treated rats but was higher in young rats. Serum leptin, insulin, and glucose levels were comparable between treated and young rats, whereas controls had higher glucose and leptin with a similar trend for insulin. Plasma ANG I and ANG II were higher in treated than untreated young or older rats, as evidence of effective AT(1) receptor blockade. Urinary ANG II and ANG-(1-7) were higher in controls compared with young animals, and treated rats failed to show age-related increases. Protein excretion was markedly lower in treated and young rats compared with control rats (young: 8 +/- 2 mg/day vs. control: 129 +/- 51 mg/day vs. treated: 9 +/- 3 mg/day, P < 0.05). Long-term AT(1) receptor blockade improves metabolic parameters and provides renoprotection. Differential regulation of systemic and intrarenal (urinary) ANG systems occurs during blockade, and suppression of the intrarenal system may contribute to reduced proteinuria. Thus, insulin resistance, renal injury, and activation of the intrarenal ANG system during early aging in normotensive animals can be averted by renin-ANG system blockade.

  16. RAS blockade with ARB and ACE inhibitors: current perspective on rationale and patient selection.

    PubMed

    Werner, Christian; Baumhäkel, Magnus; Teo, Koon K; Schmieder, Roland; Mann, Johannes; Unger, Thomas; Yusuf, Salim; Böhm, Michael

    2008-07-01

    Cardiovascular disease represents a continuum that starts with risk factors such as hypertension and progresses to atherosclerosis, target organ damage, and ultimately to myocardial infarction, heart failure, stroke or death. Renin-angiotensin system (RAS) blockade with angiotensin converting enzyme (ACE) inhibitors or angiotensin AT(1)-receptor blockers (ARBs) has turned out to be beneficial at all stages of this continuum. Both classes of agent can prevent or reverse endothelial dysfunction and atherosclerosis, thereby reducing the risk of cardiovascular events. Such a reduction has been shown mainly for ACE inhibitors in patients with coronary artery disease, but recent studies revealed that ARBs are not inferior in this respect. However, no such data are currently available on the combination of these drugs. Both ACE inhibitors and ARBs have been shown to reduce target organ damage in organs such as the kidney, brain and heart, and to decrease cardiovascular mortality and morbidity in patients with congestive heart failure. Experimental data point to an influence of ACE inhibitors and ARBs on the number and function of endothelial progenitor cells revealing additional mechanisms of action of these drugs. The VALIANT trial has shown equivalent effects of ARB valsartan and the ACE-inhibitor captopril in patients post myocardial infarction, but the dual RAS-blockade, compared to monotherapy, did not further reduce events. In secondary prevention, the most-recently published ONTARGET study provides evidence that on top of a better tolerability AT(1)-receptors antagonists are equal to ACE inhibitors in the prevention of clinical endpoints like cardiovascular mortality and morbidity, myocardial infarction and stroke. The combined RAS blockade, however, achieved no further benefits in vascular high-risk patients and was associated with more adverse events. In chronic heart failure, ValHeFT and CHARM-ADDED have shown that combined RAS inhibition with ACE inhibitor and valsartan or candesartan reduced morbidity and mortality in certain patient subgroups. Accumulating evidence also points to benefits of the combination therapy in individuals with proteinuric nephropathies. In conclusion, while combined RAS-inhibition is not generally indicated in patients along the cardio-reno-vascular continuum, it has already proven to be effective in heart failure patients with incomplete neuroendocrine blockade. In secondary prevention, monotherapy with either RAS inhibitor is equally efficacious. Furthermore, novel pharmacologic agents such as renin inhibitors may prove useful in preventing common side effects of RAS blockade such as angiotensin escape and AT(1)-receptor upregulation, giving clinicians additional therapeutic tools to optimally treat the individual patient.

  17. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium.

    PubMed

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L; Brenner, Robert M; Giudice, Linda C; Nayak, Nihar R

    2008-10-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2-neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.

  18. A CONSTITUTIVELY ACTIVE FORM OF NEUROKININ 1 RECEPTOR AND NEUROKININ 1 RECEPTOR-MEDIATED APOPTOSIS IN GLIOBLASTOMAS

    PubMed Central

    Akazawa, Toshimasa; Kwatra, Shawn G.; Goldsmith, Laura E.; Richardson, Mark D.; Cox, Elizabeth A.; Sampson, John H.; Kwatra, Madan M.

    2009-01-01

    Previous studies have shown that neurokinin 1 receptor (NK1R) occurs naturally in human glioblastomas and its stimulation causes cell proliferation. In the present study we show that stimulation of NK1R in human U373 glioblastoma cells by substance P (SP) increases Akt phosphorylation by 2.5-fold, with an EC50 of 57 nM. Blockade of NK1R lowers basal phosphorylation of Akt, indicating the presence of a constitutively active form of NK1R; similar results are seen in U251 MG and DBTRG-05 glioblastoma cells. Linkage of NK1R to Akt implicates NK1R in apoptosis of glioblastoma cells. Indeed, treatment of serum-starved U373 cells with SP reduces apoptosis by 53 ± 1% (P < 0.05), and treatment with NK1R antagonist L-733,060 increases apoptosis by 64 ± 16 % (P < 0.01). Further, the blockade of NK1R in human glioblastoma cells with L-733,060 causes cleavage of Caspase-3 and proteolysis of poly (ADP-ribose) polymerase (PARP). Experiments designed to elucidate the mechanism of NK1R-mediated Akt phosphorylation revealed total involvement of non-receptor tyrosine kinase Src and PI-3-kinase, a partial involvement of epidermal growth factor receptor (EGFR), and no involvement of MEK. Taken together, the results of the present study indicate a key role for NK1R in glioblastoma apoptosis. PMID:19519779

  19. Concomitant manipulation of murine NMDA- and AMPA-receptors to produce pro-cognitive drug effects in mice.

    PubMed

    Vignisse, Julie; Steinbusch, Harry W M; Grigoriev, Vladimir; Bolkunov, Alexei; Proshin, Alexey; Bettendorff, Lucien; Bachurin, Sergey; Strekalova, Tatyana

    2014-02-01

    Bifunctional drug therapy targeting distinct receptor signalling systems can generate increased efficacy at lower concentrations compared to monofunctional therapy. Non-competitive blockade of the NMDA receptors or the potentiation of AMPA receptors is well documented to result in memory enhancement. Here, we compared the efficacy of the low-affinity NMDA receptor blocker memantine or the positive modulator of AMPA receptor QXX (in C57BL/6J at 1 or 5mg/kg, ip) with new derivatives of isothiourea (0.5-1 mg/kg, ip) that have bifunctional efficacy. Low-affinity NMDA blockade by these derivatives was achieved by introducing greater flexibility into the molecule, and AMPA receptor stimulation was produced by a sulfamide-containing derivative of isothiourea. Contextual learning was examined in a step-down avoidance task and extinction of contextual memory was studied in a fear-conditioning paradigm. Memantine enhanced contextual learning while QXX facilitated memory extinction; both drugs were effective at 5 mg/kg. The new derivative IPAC-5 elevated memory scores in both tasks at the dose 0.5 mg/kg and exhibited the lowest IC₅₀ values of NMDA receptor blockade and highest potency of AMPA receptor stimulation. Thus, among the new drugs tested, IPAC-5 replicated the properties of memantine and QXX in one administration with increased potency. Our data suggest that a concomitant manipulation of NMDA- and AMPA-receptors results in pro-cognitive effects and supports the concept bifunctional drug therapy as a promising strategy to replace monofunctional therapies with greater efficacy and improved compliance. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  20. Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats.

    PubMed

    Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas

    2014-11-01

    Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome.

  1. Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats

    PubMed Central

    Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas

    2014-01-01

    Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. Methods: In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. Results: In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Conclusion: Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome. PMID:25429176

  2. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets.

    PubMed

    Kanamarlapudi, Venkateswarlu; Owens, Sian E; Saha, Keya; Pope, Robert J; Mundell, Stuart J

    2012-01-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1) and P2Y(12) purinoceptors. Recently, we demonstrated that P2Y(1) and P2Y(12) purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y(1) and P2Y(12) purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1) or P2Y(12) purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.

  3. Endocannabinoids as mediators in the heart: a potential target for therapy of remodelling after myocardial infarction?

    PubMed Central

    Hiley, C Robin; Ford, William R

    2003-01-01

    Endocannabinoid production by platelets and macrophages is increased in circulatory shock. This may be protective of the cardiovascular system as blockade of CB1 cannabinoid receptors exacerbates endothelial dysfunction in haemorrhagic and endotoxin shock and reduces survival. Now evidence suggests that blockade of CB1 receptors starting 24 h after myocardial infarction in rats has a deleterious effect on cardiac performance, while use of a nonselective cannabinoid receptor agonist prevents hypotension and reduces endothelial dysfunction, although left ventricular end diastolic pressure is elevated. Cannabinoids and endocannabinoid systems may therefore present useful targets for therapy following myocardial infarction. PMID:12711614

  4. Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia.

    PubMed

    Enomoto, Takeshi; Tse, Maric T; Floresco, Stan B

    2011-03-01

    Perturbations in gamma-aminobutyric acid (GABA)-related markers have been reported in the prefrontal cortex of schizophrenic patients. However, a preclinical assessment of how suppression of prefrontal cortex GABA activity may reflect behavioral and cognitive pathologies observed in schizophrenia is forthcoming. We assessed the effects of pharmacologic blockade of prefrontal cortex GABA(A) receptors in rats on executive functions and other behaviors related to schizophrenia, as well as neural activity of midbrain dopamine neurons. Blockade of prefrontal cortex GABA(A) receptors with bicuculline (12.5-50 ng) did not affect working memory accuracy but did increase response latencies, resembling speed of processing deficits observed in schizophrenia. Prefrontal cortex GABA(A) blockade did not impede simple discrimination or reversal learning but did impair set-shifting in a manner dependent on when these treatments were given. Reducing GABA activity before the set-shift impaired the ability to acquire a novel strategy, whereas treatment before the initial discrimination increased perseveration during the shift. Latent inhibition was unaffected by bicuculline infusions before the preexposure/conditioning phases, suggesting that reduced prefrontal cortex GABA activity does not impair "learned irrelevance." GABA(A) blockade increased locomotor activity and showed synergic effects with a subthreshold dose of amphetamine. Furthermore, reducing medial prefrontal cortex GABA activity selectively increased phasic burst firing of ventral tegmental area dopamine neurons, without altering the their overall population activity. These results suggest that prefrontal cortex GABA hypofunction may be a key contributing factor to deficits in speed of processing, cognitive flexibility, and enhanced phasic dopamine activity observed in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    EPA Science Inventory

    ABSTRACT BODY:
    Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  6. [Combined blockade of AMPA- and NMDA-receptors has maximum effect to eliminate development of pentylenetetrazole-induced kindling in rats].

    PubMed

    Serdiuk, S E; Gmiro, V E; Veselkina, O S

    2013-05-01

    Peroral chronic administration the standard antiepileptic drug sodium valproate in a dose of 200 mg/kg eliminates development of generalized clonic-tonic pentylenetetrazol kindling seizures in 100% of rats, but only in 57% of rats this treatment prevents clonic kindling seizures. In the specified dose sodium valproate decreases in 1.7 times average severity of pentylenetetrazol kindling seizures compare with control. IEM-2121, causing combined blockade of NMDA- and AMPA-glutamate receptors, as well as IEM-1676, which also blocks AMPA-, NMDA- and N-cholinoreceptors, both after peroral chronic administration in a doses 10 mg/kg and 20 mg/kg accordingly, possess higher, than sodium valproate, anticonvulsant activity because reduce average severity of pentylenetetrazol kindling seizures in 2.4-2.7 times in comparison with control and prevents clonic kindling seizures in 87% of rats. Combined blockade of AMPA- and NMDA-receptors and perhars N-cholinoreceptors has maximum effect to eliminate epileptogenesis both clonic, and clonic-tonic pentylenetetrazol kindling seizures.

  7. Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.

    PubMed

    Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N

    2015-03-04

    The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. Copyright © 2015 the authors 0270-6474/15/354104-08$15.00/0.

  8. Endocannabinoid receptor blockade increases vascular endothelial growth factor and inflammatory markers in obese women with polycystic ovary syndrome.

    PubMed

    Sathyapalan, Thozhukat; Javed, Zeeshan; Kilpatrick, Eric S; Coady, Anne-Marie; Atkin, Stephen L

    2017-03-01

    Animal studies suggest that cannabinoid receptor-1 (CB-1) blockade reduces inflammation and neovascularization by decreasing vascular endothelial growth factor (VEGF) levels associated with a reduction in inflammatory markers, thereby potentially reducing cardiovascular risk. To determine the impact of CB1 antagonism by rimonabant on VEGF and inflammatory markers in obese PCOS women. Randomized, open-labelled parallel study. Endocrinology outpatient clinic in a referral centre. Twenty patients with PCOS (PCOS) and biochemical hyperandrogenaemia with a body mass index of ≥30 kg/m 2 were recruited. Patients were randomized to 1·5 g daily of metformin or 20 mg daily of rimonabant. Post hoc review to detect VEGF and pro-inflammatory cytokines TNF-α, IL-1β, IL-1ra, IL-2, IL6, IL-8, IL-10 and MCP-1 before and after 12 weeks of treatment. After 12 weeks of rimonabant treatment, there was a significant increase in VEGF (99·2 ± 17·6 vs 116·2 ± 15·8 pg/ml, P < 0·01) and IL-8 (7·4 ± 11·0 vs 18·1 ± 13·2 pg/ml, P < 0·05) but not after metformin (VEGF P = 0·7; IL-8 P = 0·9). There was no significant difference in the pro-inflammatory cytokines TNF-α, IL-1β, IL-1ra, IL-2, IL6, IL-8, IL-10 and MCP-1 following either treatment. This study suggests that rimonabant CB-I blockade paradoxically raised VEGF and the cytokine IL-8 in obese women with PCOS that may have offset the potential benefit associated with weight loss. © 2016 John Wiley & Sons Ltd.

  9. InsR/IGF1R pathway mediates resistance to EGFR inhibitors in glioblastoma

    PubMed Central

    Ma, Yufang; Tang, Nan; Thompson, Reid; Mobley, Bret C.; Clark, Steven W.; Sarkaria, Jann N.; Wang, Jialiang

    2015-01-01

    Purpose Aberrant activation of epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. However, EGFR inhibitors exhibit at best modest efficacy in glioblastoma. This is in sharp contrast to the observations in EGFR-mutant lung cancer. We examined whether activation of functionally redundant receptor tyrosine kinases (RTKs) conferred resistance to EGFR inhibitors in glioblastoma. Experimental Design We collected a panel of patient-derived glioblastoma xenograft (PDX) lines that maintained expression of wild type or mutant EGFR in serial xenotransplantation and tissue cultures. Using this physiologically relevant platform, we tested the abilities of several RTK ligands to protect glioblastoma cells against an EGFR inhibitor, gefitinib. Based on the screening results, we further developed a combination therapy co-targeting EGFR and insulin receptor (InsR)/insulin-like growth factor 1 receptor (IGF1R). Results Insulin and IGF1 induced significant protection against gefitinib in the majority of EGFR-dependent PDX lines with one exception that did not expression InsR or IGF1R. Blockade of the InsR/IGF1R pathway synergistically improved sensitivity to gefitinib or dacomitinib. Gefitinib alone effectively attenuated EGFR activities and the downstream MEK/ERK pathway. However, repression of AKT and induction of apoptosis required concurrent inhibition of both EGFR and InsR/IGF1R. A combination of gefitinib and OSI-906, a dual InsR/IGF1R inhibitor, was more effective than either agent alone to treat subcutaneous glioblastoma xenograft tumors. Conclusions Our results suggest that activation of the InsR/IGF1R pathway confers resistance to EGFR inhibitors in EGFR-dependent glioblastoma through AKT regulation. Concurrent blockade of these two pathways holds promise to treat EGFR-dependent glioblastoma. PMID:26561558

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, M.; Czernin, J.; Sun, K.

    The {beta}{sub 1} receptor blockade reduces cardiac work and may thereby lower myocardial blood flow (MBF) at rest. The effect of {beta}{sub 1} receptor blockade on hyperemic MBF is unknown. To evaluate the effect of selective {beta}{sub 1} receptor blockade on MBF at rest and during dipyridamole induced hyperemia, 10 healthy volunteers (8 men, 2 women, mean age 24 {+-} 5 yr) were studied using {sup 13}N-ammonia PET (two-compartment model) under control conditions and again during metoprolol (50 mg orally 12 hr and 1 hr before the study). The resting rate pressure product (6628 {+-} 504 versus 5225 {+-} 807)more » and heart rate (63 {+-} 6-54 {plus_minus} 5 bpm) declined during metoprolol (p < 0.05). Similarly, heart rate and rate pressure product declined from the baseline dipyridamole study to dipyridamole plus metoprolol (p < 0.05). Resting MBF declined in proportion to cardiac work by approximately 20% from 0.61 {+-} 0.09-0.51 {+-} 0.10 ml/g/min (p < 0.05). In contrast, hyperemic MBF increased when metoprolol was added to dipyridamole (1.86 {plus_minus} 0.27 {+-} 0.45 ml/g/min; p<0.05). The decrease in resting MBF together with the increase in hyperemic MBF resulted in a significant increase in the myocardial flow reserve during metoprolol (3.14 {+-} 0.80-4.61 {+-} 0.68; p<0.01). The {beta}{sub 1} receptor blockade increases coronary vasodilatory capacity and myocardial flow reserve. However, the mechanisms accounting for this finding remain uncertain. 32 refs., 2 figs., 2 tabs.« less

  11. The role of aldosterone antagonism agents in diabetic kidney disease.

    PubMed

    Wombwell, Eric; Naglich, Andrew

    2015-03-01

    Diabetic kidney disease is a common consequence of the development of diabetes. In the United Kingdom 18-30% of chronic kidney disease cases and 44% of end-stage renal disease cases in the United States have been attributed to complications of diabetic kidney disease. Angiotensin blockade using angiotensin converting enzyme inhibitors or angiotensin receptor blockers is the standard for slowing the progression of diabetic kidney disease. Evidence suggests that aldosterone antagonism added to standard therapy may be beneficial. This paper aims to explore the pathophysiological contribution of aldosterone in diabetic kidney disease and review available literature for aldosterone antagonism through mineralocorticoid receptor blockade. A comprehensive literature search was conducted. Results were analysed and summarised. Nine trials evaluating a total of 535 patients with diabetic kidney disease were identified that evaluated the use of aldosterone antagonists for reducing the signs of diabetic kidney disease. All trials demonstrated a marked decrease in urinary protein excretion when compared to, or added to angiotensin converting enzyme inhibition or angiotensin receptor blockade. The most commonly reported side effect in all of the trials was hyperkalaemia, which occurred in 6.1% of all patients evaluated. Aldosterone antagonists were generally well tolerated in the evaluated patient populations. Aldosterone antagonism may represent a safe and effective complimentary therapy to the use of angiotensin converting enzyme inhibition, or angiotensin receptor blockade, for slowing the progression of diabetic kidney disease. © 2014 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  12. Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization

    PubMed Central

    Rama, Nicolas; Dubrac, Alexandre; Mathivet, Thomas; Chárthaigh, Róisín-Ana Ní; Genet, Gael; Cristofaro, Brunella; Pibouin-Fragner, Laurence; Ma, Le; Eichmann, Anne; Chédotal, Alain

    2016-01-01

    Ocular neovascular diseases are a leading cause of blindness. Vascular endothelial growth factor (VEGF) blockade improves vision, but not all individuals respond to anti-VEGF treatment, making additional means to prevent neovascularization necessary. Slit-family proteins (Slits) are ligands of Roundabout (Robo) receptors that repel developing axons in the nervous system. Robo1 expression is altered in ocular neovascular diseases, and previous in vitro studies have reported both pro- and anti-angiogenic effects of Slits. However, genetic evidence supporting a role for Slits in ocular neovascularization is lacking. Here we generated conditional knockout mice deficient in various Slit and Robo proteins and found that Slit2 potently and selectively promoted angiogenesis via Robo1 and Robo2 in mouse postnatal retina and in a model of ocular neovascular disease. Mechanistically, Slit2 acting through Robo1 and Robo2 promoted the migration of endothelial cells. These receptors are required for both Slit2- and VEGF-induced Rac1 activation and lamellipodia formation. Thus, Slit2 blockade could potentially be used therapeutically to inhibit angiogenesis in individuals with ocular neovascular disease. PMID:25894826

  13. Neurokinin-1 receptor antagonists CP-96,345 and L-733,060 protect mice from cytokine-mediated liver injury.

    PubMed

    Bang, Renate; Sass, Gabriele; Kiemer, Alexandra K; Vollmar, Angelika M; Neuhuber, Winfried L; Tiegs, Gisa

    2003-04-01

    Previously, we have shown that primary afferent sensory neurons are necessary for disease activity in T cell-mediated immune hepatitis in mice. In the present study, we analyzed the possible role of substance P (SP), an important proinflammatory neuropeptide of these nerve fibers, in an in vivo mouse model of liver inflammation. Liver injury was induced by bacterial lipopolysaccharide (LPS) in D-galactosamine (GalN)-sensitized mice. Depletion of primary afferent nerve fibers by neonatal capsaicin treatment down-regulated circulating levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNFalpha) and interferon-gamma (IFNgamma) and protected mice from GalN/LPS-induced liver injury. Likewise, pretreatment of mice with antagonists of the SP-specific neurokinin-1 receptor (NK-1R), i.e., (2S,3S)-cis-2-(diphenylmethyl)-N-((2-methoxyphenyl)-methyl)-1-azabicyclo(2.2.2.)-octan-3-amine (CP-96,345) and (2S,3S)3-([3,5-bis(trifluoromethyl)phenyl]methoxy)-2-phenylpiperidine (L-733,060), dose dependently protected mice from GalN/LPS-induced liver injury. The presence of the NK-1R in the murine liver was demonstrated by reverse transcription-polymerase chain reaction, sequence analysis, and immunocytochemistry. NK-1R blockade reduced inflammatory liver damage, i.e., edema formation, neutrophil infiltration, hepatocyte apoptosis, and necrosis. To get further insight into the mechanism by which receptor blockade attenuated GalN/LPS-induced liver damage, we analyzed plasma levels and intrahepatic expression of TNFalpha, IFNgamma, interleukin (IL)-6, and IL-10. NK-1R blockade clearly inhibited GalN/LPS-induced production of TNFalpha and IFNgamma, whereas synthesis of the hepatoprotective cytokines IL-6 and IL-10 was increased. NK-1 receptor antagonists might be potent drugs for treatment of inflammatory liver disease, most likely by inhibiting SP effects.

  14. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T

    PubMed Central

    Yoon, Dok Hyun; Osborn, Mark J.; Tolar, Jakub; Kim, Chong Jai

    2018-01-01

    Chimeric antigen receptor (CAR) T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade. PMID:29364163

  15. Frontal D2/3 Receptor Availability in Schizophrenia Patients Before and After Their First Antipsychotic Treatment: Relation to Cognitive Functions and Psychopathology.

    PubMed

    Nørbak-Emig, Henrik; Ebdrup, Bjørn H; Fagerlund, Birgitte; Svarer, Claus; Rasmussen, Hans; Friberg, Lars; Allerup, Peter N; Rostrup, Egill; Pinborg, Lars H; Glenthøj, Birte Y

    2016-05-01

    We have previously reported associations between frontal D2/3 receptor binding potential positive symptoms and cognitive deficits in antipsychotic-naïve schizophrenia patients. Here, we examined the effect of dopamine D2/3 receptor blockade on cognition. Additionally, we explored the relation between frontal D2/3 receptor availability and treatment effect on positive symptoms. Twenty-five antipsychotic-naïve first-episode schizophrenia patients were examined with the Positive and Negative Syndrome Scale, tested with the cognitive test battery Cambridge Neuropsychological Test Automated Battery, scanned with single-photon emission computerized tomography using the dopamine D2/3 receptor ligand [(123)I]epidepride, and scanned with MRI. After 3 months of treatment with either risperidone (n=13) or zuclopenthixol (n=9), 22 patients were reexamined. Blockade of extrastriatal dopamine D2/3 receptors was correlated with decreased attentional focus (r = -0.615, P=.003) and planning time (r = -0.436, P=.048). Moreover, baseline frontal dopamine D2/3 binding potential and positive symptom reduction correlated positively (D2/3 receptor binding potential left frontal cortex rho = 0.56, P=.003; D2/3 receptor binding potential right frontal cortex rho = 0.48, P=.016). Our data support the hypothesis of a negative influence of D2/3 receptor blockade on specific cognitive functions in schizophrenia. This is highly clinically relevant given the well-established association between severity of cognitive disturbances and a poor functional outcome in schizophrenia. Additionally, the findings support associations between frontal D2/3 receptor binding potential at baseline and the effect of antipsychotic treatment on positive symptoms. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  16. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    PubMed

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. Substance P receptor blockade decreases stretch-induced lung cytokines and lung injury in rats.

    PubMed

    Brégeon, Fabienne; Steinberg, Jean Guillaume; Andreotti, Nicolas; Sabatier, Jean-Marc; Delpierre, Stéphane; Ravailhe, Sylvie; Jammes, Yves

    2010-04-15

    Overdistension of lung tissue during mechanical ventilation causes cytokine release, which may be facilitated by the autonomic nervous system. We used mechanical ventilation to cause lung injury in rats, and studied how cervical section of the vagus nerve, or substance P (SP) antagonism, affected the injury. The effects of 40 or 25 cmH(2)O high airway pressure injurious ventilation (HV(40) and HV(25)) were studied and compared with low airway pressure ventilation (LV) and spontaneous breathing (controls). Lung mechanics, lung weight, gas exchange, lung myeloperoxidase activity, lung concentrations of interleukin (IL)-1 beta and IL-6, and amounts of lung SP were measured. Control rats were intact, others were bivagotomized, and in some animals we administered the neurokinin-1 (NK-1) receptor blocking agent SR140333. We first determined the durations of HV(40) and HV(25) that induced the same levels of lung injury and increased lung contents of IL-1 beta and IL-6. They were 90 min and 120 min, respectively. Both HV(40) and HV(25) increased lung SP, IL-1 beta and IL-6 levels, these effects being markedly reduced by NK-1 receptor blockade. Bivagotomy reduced to a lesser extent the HV(40)- and HV(25)-induced increases in SP but significantly reduced cytokine production. Neither vagotomy nor NK-1 receptor blockade prevented HV(40)-induced lung injury but, in the HV(25) group, they made it possible to maintain lung injury indices close to those measured in the LV group. This study suggests that both neuronal and extra-neuronal SP might be involved in ventilator-induced lung inflammation and injury. NK-1 receptor blockade could be a pharmacological tool to minimize some adverse effects of mechanical ventilation.

  18. Uridine Adenosine Tetraphosphate-Induced Coronary Relaxation Is Blunted in Swine With Pressure Overload: A Role for Vasoconstrictor Prostanoids

    PubMed Central

    Zhou, Zhichao; Lankhuizen, Inge M.; van Beusekom, Heleen M.; Cheng, Caroline; Duncker, Dirk J.; Merkus, Daphne

    2018-01-01

    Plasma levels of the vasoactive substance uridine adenosine tetraphosphate (Up4A) are elevated in hypertensive patients and Up4A-induced vascular contraction is exacerbated in various arteries isolated from hypertensive animals, suggesting a potential role of Up4A in development of hypertension. We previously demonstrated that Up4A produced potent and partially endothelium-dependent relaxation in the porcine coronary microvasculature. Since pressure-overload is accompanied by structural abnormalities in the coronary microvasculature as well as by endothelial dysfunction, we hypothesized that pressure-overload blunts the coronary vasodilator response to Up4A, and that the involvement of purinergic receptors and endothelium-derived factors is altered. The effects of Up4A were investigated using wire-myography in isolated coronary small arteries from Sham-operated swine and swine with prolonged (8 weeks) pressure overload of the left ventricle induced by aortic banding (AoB). Expression of purinergic receptors and endothelium-derived factors was assessed in isolated coronary small arteries using real-time PCR. Up4A (10-9 to 10-5 M) failed to produce contraction in isolated coronary small arteries from either Sham or AoB swine, but produced relaxation in preconstricted arteries, which was significantly blunted in AoB compared to Sham. Blockade of purinergic P1, and P2 receptors attenuated Up4A-induced coronary relaxation more, while the effect of P2X1-blockade was similar and the effects of A2A- and P2Y1-blockade were reduced in AoB as compared to Sham. mRNA expression of neither A1, A2, A3, nor P2X1, P2X7, P2Y1, P2Y2, nor P2Y6-receptors was altered in AoB as compared to Sham, while P2Y12 expression was higher in AoB. eNOS inhibition attenuated Up4A-induced coronary relaxation in both Sham and AoB. Additional blockade of cyclooxygenase enhanced Up4A-induced coronary relaxation in AoB but not Sham swine, suggesting the involvement of vasoconstrictor prostanoids. In endothelium-denuded coronary small arteries from normal swine, thromboxane synthase (TxS) inhibition enhanced relaxation to Up4A compared to endothelium-intact arteries, to a similar extent as P2Y12 inhibition, while the combination inhibition of P2Y12 and TxS had no additional effect. In conclusion, Up4A-induced coronary relaxation is blunted in swine with AoB, which appears to be due to the production of a vasoconstrictor prostanoid, likely thromboxane A2. PMID:29632487

  19. Uridine Adenosine Tetraphosphate-Induced Coronary Relaxation Is Blunted in Swine With Pressure Overload: A Role for Vasoconstrictor Prostanoids.

    PubMed

    Zhou, Zhichao; Lankhuizen, Inge M; van Beusekom, Heleen M; Cheng, Caroline; Duncker, Dirk J; Merkus, Daphne

    2018-01-01

    Plasma levels of the vasoactive substance uridine adenosine tetraphosphate (Up 4 A) are elevated in hypertensive patients and Up 4 A-induced vascular contraction is exacerbated in various arteries isolated from hypertensive animals, suggesting a potential role of Up 4 A in development of hypertension. We previously demonstrated that Up 4 A produced potent and partially endothelium-dependent relaxation in the porcine coronary microvasculature. Since pressure-overload is accompanied by structural abnormalities in the coronary microvasculature as well as by endothelial dysfunction, we hypothesized that pressure-overload blunts the coronary vasodilator response to Up 4 A, and that the involvement of purinergic receptors and endothelium-derived factors is altered. The effects of Up 4 A were investigated using wire-myography in isolated coronary small arteries from Sham-operated swine and swine with prolonged (8 weeks) pressure overload of the left ventricle induced by aortic banding (AoB). Expression of purinergic receptors and endothelium-derived factors was assessed in isolated coronary small arteries using real-time PCR. Up 4 A (10 -9 to 10 -5 M) failed to produce contraction in isolated coronary small arteries from either Sham or AoB swine, but produced relaxation in preconstricted arteries, which was significantly blunted in AoB compared to Sham. Blockade of purinergic P1, and P2 receptors attenuated Up 4 A-induced coronary relaxation more, while the effect of P2X 1 -blockade was similar and the effects of A 2A - and P2Y 1 -blockade were reduced in AoB as compared to Sham. mRNA expression of neither A1, A2, A3, nor P2X 1 , P2X 7 , P2Y 1 , P2Y 2 , nor P2Y 6 -receptors was altered in AoB as compared to Sham, while P2Y 12 expression was higher in AoB. eNOS inhibition attenuated Up 4 A-induced coronary relaxation in both Sham and AoB. Additional blockade of cyclooxygenase enhanced Up 4 A-induced coronary relaxation in AoB but not Sham swine, suggesting the involvement of vasoconstrictor prostanoids. In endothelium-denuded coronary small arteries from normal swine, thromboxane synthase (TxS) inhibition enhanced relaxation to Up 4 A compared to endothelium-intact arteries, to a similar extent as P2Y 12 inhibition, while the combination inhibition of P2Y 12 and TxS had no additional effect. In conclusion, Up 4 A-induced coronary relaxation is blunted in swine with AoB, which appears to be due to the production of a vasoconstrictor prostanoid, likely thromboxane A 2 .

  20. Neuroleptic-induced catalepsy: a D2 blockade phenomenon?

    PubMed

    Klemm, W R

    1985-12-01

    Typical neuroleptics, such as haloperidol, are cataleptogenic. But since such drugs block both D1 and D2 receptors, it is not clear if there is a differential receptor role in catalepsy. To test this issue in a mouse model of catalepsy, these experiments tested molindone, a D2-blocking neuroleptic with almost no ability to block D1 receptors. If D1 receptor blockade is necessary for catalepsy, molindone should not cause catalepsy. But molindone was cataleptogenic, albeit less potent than haloperidol. There was also a "training effect" with haloperidol, but not saline or molindone, in that the catalepsy produced by 5 mg/kg of haloperidol was much greater when tests were performed repeatedly at short intervals after injection. Concurrent administration of apomorphine (4 or 8 mg/kg) markedly potentiated haloperidol catalepsy, but had no effect on molindone catalepsy. Such results are not readily interpretable solely in terms of current concepts of D1 and D2 receptors.

  1. The effect of neonatal N-methyl-D-aspartate receptor blockade on exploratory and anxiety-like behaviors in adult BALB/c and C57BL/6 mice.

    PubMed

    Akillioglu, Kubra; Binokay, Secil; Kocahan, Sayad

    2012-07-15

    N-methyl-D-aspartate (NMDA) receptors play an important role in brain maturation and developmental processes. In our study, we evaluated the effects of neonatal NMDA receptor blockade on exploratory locomotion and anxiety-like behaviors of adult BALB/c and C57BL/6 mice. In this study, NMDA receptor hypofunction was induced 7-10 days after birth using MK-801 in BALB/c and C57BL/6 mice (0.25mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF) and elevated plus maze (EPM) tests were used to evaluate exploratory locomotion and anxiety-like behaviors. In the OF, BALB/c mice spent less time in the center of the field (p<0.05) and had less vertical locomotor activity (p<0.01) compared to C57BL/6 mice. In BALB/c mice, MK-801 caused a decrease in vertical and horizontal locomotor activity in the OF test, compared to the control group (p<0.05). In C57BL/6 mice, MK-801 treatment increased horizontal locomotor activity and decreased time spent in the center in the OF test (p<0.05). In the EPM, the number of open-arm entries, the percentage of open-arm time (p<0.01) and total arm entries (p<0.05) were lower in BALB/c mice compared to C57BL/6 mice. In BALB/c mice, MK-801 caused an increase in the percentage of open-arm time compared to the control group (p<0.05). In C57BL/6 mice, MK-801 caused a decrease in the percentage of open-arm time compared to the control group (p<0.05). MK-801 decreased exploratory and anxiety-like behaviors in BALB/c mice. In contrast, MK-801 increased exploratory and anxiety-like behaviors in C57BL/6 mice. In conclusion, hereditary factors may play an important role in neonatal NMDA receptor blockade-induced responses. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Deterioration of kidney function by the (pro)renin receptor blocker handle region peptide in aliskiren-treated diabetic transgenic (mRen2)27 rats.

    PubMed

    te Riet, Luuk; van den Heuvel, Mieke; Peutz-Kootstra, Carine J; van Esch, Joep H M; van Veghel, Richard; Garrelds, Ingrid M; Musterd-Bhaggoe, Usha; Bouhuizen, Angelique M; Leijten, Frank P J; Danser, A H Jan; Batenburg, Wendy W

    2014-05-15

    Dual renin-angiotensin system (RAS) blockade in diabetic nephropathy is no longer feasible because of the profit/side effect imbalance. (Pro)renin receptor [(P)RR] blockade with handle region peptide (HRP) has been reported to exert beneficial effects in various diabetic models in a RAS-independent manner. To what degree (P)RR blockade adds benefits on top of RAS blockade is still unknown. In the present study, we treated diabetic TGR(mREN2)27 rats, a well-established nephropathy model with high prorenin levels [allowing continuous (P)RR stimulation in vivo], with HRP on top of renin inhibition with aliskiren. Aliskiren alone lowered blood pressure and exerted renoprotective effects, as evidenced by reduced glomerulosclerosis, diuresis, proteinuria, albuminuria, and urinary aldosterone levels as well as diminished renal (P)RR and ANG II type 1 receptor expression. It also suppressed plasma and tissue RAS activity and suppressed cardiac atrial natriuretic peptide and brain natriuretic peptide expression. HRP, when given on top of aliskiren, did not alter the effects of renin inhibition on blood pressure, RAS activity, or aldosterone. However, it counteracted the beneficial effects of aliskiren in the kidney, induced hyperkalemia, and increased plasma plasminogen activator-inhibitor 1, renal cyclooxygenase-2, and cardiac collagen content. All these effects have been linked to (P)RR stimulation, suggesting that HRP might, in fact, act as a partial agonist. Therefore, the use of HRP on top of RAS blockade in diabetic nephropathy is not advisable. Copyright © 2014 the American Physiological Society.

  3. Long-term systemic angiotensin II type 1 receptor blockade regulates mRNA expression of dorsomedial medulla renin-angiotensin system components.

    PubMed

    Gilliam-Davis, Shea; Gallagher, Patricia E; Payne, Valerie S; Kasper, Sherry O; Tommasi, Ellen N; Westwood, Brian M; Robbins, Michael E; Chappell, Mark C; Diz, Debra I

    2011-07-14

    In Fischer 344 (F344) rats, renin-angiotensin system (RAS) blockade for 1 yr with the angiotensin II type 1 (AT(1)) receptor blocker L-158,809 prevents age-related impairments in metabolic function, similar to transgenic rats with low glial angiotensinogen (Aogen). Brain RAS regulation may contribute to the benefits of long-term systemic AT(1) antagonism. We assessed the mRNA of RAS components in the dorsomedial medulla of F344 rats at 3 (young; n = 8) or 15 mo of age (old; n = 7) and in rats treated from 3 to 15 mo of age with 20 mg/l of the AT(1) receptor antagonist L-158,809 (Old+L; n = 6). Aogen and renin mRNA were lower in the young compared with old group. Angiotensin-converting enzyme (ACE) mRNA was lower in the old and Old+L compared with the young group. ACE2 and neprilysin expression were significantly higher in Old+L compared with young or old rats. AT(1b), AT(2), and Mas receptor mRNA were higher with treatment. Leptin receptor mRNA was lower in the old rats and this was prevented by L-158,809 treatment. Dual-specificity phosphatase 1 (DUSP1) mRNA was highest in the Old+L group. Aggregate correlate summation revealed a positive relationship for Mas receptor mRNA with food intake. The findings provide evidence for regulation of dorsomedial medullary renin and Aogen mRNA during aging. Long-term AT(1) receptor blockade increases the mRNA of the enzymes ACE2 and neprilysin and the MAS receptor, which could potentially shift the balance from ANG II to ANG-(1-7) and prevent age-related declines in the leptin receptor and its signaling pathway.

  4. Coping with dehydration: sympathetic activation and regulation of glutamatergic transmission in the hypothalamic PVN

    PubMed Central

    Bardgett, Megan E.; Chen, Qing-Hui; Guo, Qing; Calderon, Alfredo S.; Andrade, Mary Ann

    2014-01-01

    Autonomic and endocrine profiles of chronic hypertension and heart failure resemble those of acute dehydration. Importantly, all of these conditions are associated with exaggerated sympathetic nerve activity (SNA) driven by glutamatergic activation of the hypothalamic paraventricular nucleus (PVN). Here, studies sought to gain insight into mechanisms of disease by determining the role of PVN ionotropic glutamate receptors in supporting SNA and mean arterial pressure (MAP) during dehydration and by elucidating mechanisms regulating receptor activity. Blockade of PVN N-methyl-d-aspartate (NMDA) receptors reduced (P < 0.01) renal SNA and MAP in urethane-chloralose-anesthetized dehydrated (DH) (48 h water deprivation) rats, but had no effect in euhydrated (EH) controls. Blockade of PVN α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors had no effect in either group. NMDA in PVN caused dose-dependent increases of renal SNA and MAP in both groups, but the maximum agonist evoked response (Emax) of the renal SNA response was greater (P < 0.05) in DH rats. The latter was not explained by increased PVN expression of NMDA receptor NR1 subunit protein, increased PVN neuronal excitability, or decreased brain water content. Interestingly, PVN injection of the pan-specific excitatory amino acid transporter (EAAT) inhibitor dl-threo-β-benzyloxyaspartic acid produced smaller sympathoexcitatory and pressor responses in DH rats, which was associated with reduced glial expression of EAAT2 in PVN. Like chronic hypertension and heart failure, dehydration increases excitatory NMDA receptor tone in PVN. Reduced glial-mediated glutamate uptake was identified as a key contributing factor. Defective glutamate uptake in PVN could therefore be an important, but as yet unexplored, mechanism driving sympathetic hyperactivity in chronic cardiovascular diseases. PMID:24671240

  5. Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats.

    PubMed

    Wallace, Ashley; Pehrson, Alan L; Sánchez, Connie; Morilak, David A

    2014-10-01

    Current treatments for depression, including serotonin-specific reuptake inhibitors (SSRIs), are only partially effective, with a high incidence of residual symptoms, relapse, and treatment resistance. Loss of cognitive flexibility, a component of depression, is associated with dysregulation of the prefrontal cortex. Reversal learning, a form of cognitive flexibility, is impaired by chronic stress, a risk factor for depression, and the stress-induced impairment in reversal learning is sensitive to chronic SSRI treatment, and is mimicked by serotonin (5-HT) depletion. Vortioxetine, a novel, multimodal-acting antidepressant, is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist, and inhibits the 5-HT transporter. Using adult male rats, we first investigated the direct effects of vortioxetine, acting at post-synaptic 5-HT receptors, on reversal learning that was compromised by 5-HT depletion using 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), effectively eliminating any contribution of 5-HT reuptake blockade. PCPA induced a reversal learning impairment that was alleviated by acute or sub-chronic vortioxetine administration, suggesting that post-synaptic 5-HT receptor activation contributes to the effects of vortioxetine. We then investigated the effects of chronic dietary administration of vortioxetine on reversal learning that had been compromised in intact animals exposed to chronic intermittent cold (CIC) stress, to assess vortioxetine's total pharmacological effect. CIC stress impaired reversal learning, and chronic vortioxetine administration prevented the reversal-learning deficit. Together, these results suggest that the direct effect of vortioxetine at 5-HT receptors may contribute to positive effects on cognitive flexibility deficits, and may enhance the effect of 5-HT reuptake blockade.

  6. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    PubMed

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB 1 receptor (CB 1 R)-induced memory deficits through an adenosine A 1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A 2A receptors (A 2A Rs) affects long-term episodic memory deficits induced by a single injection of a selective CB 1 R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB 1 /CB 2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A 2A R blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A 2A Rs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB 1 Rs was assessed by using the CB 1 R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB 1 R-mediated memory disruption is prevented by antagonism of adenosine A 2A Rs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB 1 R drugs is desired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of activation and blockade of dopamine receptors on the extinction of a passive avoidance reaction in mice with a depressive-like state.

    PubMed

    Dubrovina, N I; Zinov'eva, D V

    2010-01-01

    Learning and extinction of a conditioned passive avoidance reaction resulting from neuropharmacological actions on dopamine D(1) and D(2) receptors were demonstrated to be specific in intact mice and in mice with a depressive-like state. Learning was degraded only after administration of the D(2) receptor antagonist sulpiride and was independent of the initial functional state of the mice. In intact mice, activation of D(2) receptors with quinpirole led to a deficit of extinction, consisting of a reduction in the ability to acquire new inhibitory learning in conditions associated with the disappearance of the expected punishment. In mice with the "behavioral despair" reaction, characterized by delayed extinction, activation of D(1) receptors with SKF38393 normalized this process, while the D(2) agonist was ineffective. A positive effect consisting of accelerated extinction of the memory of fear of the dark ("dangerous") sector of the experimental chamber was also seen on blockade of both types of dopamine receptor.

  8. Inhibition of β2-adrenergic receptor reduces triple-negative breast cancer brain metastases: The potential benefit of perioperative β-blockade.

    PubMed

    Choy, Cecilia; Raytis, John L; Smith, David D; Duenas, Matthew; Neman, Josh; Jandial, Rahul; Lew, Michael W

    2016-06-01

    In response to recent studies, we investigated an association between perioperative β-blockade and breast cancer metastases. First, a retrospective study examining perioperative β-blocker use and cancer recurrence and metastases was conducted on 1,029 patients who underwent breast cancer surgery at the City of Hope Cancer Center between 2000 and 2010. We followed the clinical study and examined proliferation, migration, and invasion in vitro of primary and brain-metastatic breast cancer cells in response to β2-activation and inhibition. We also investigated in vivo the metastatic potential of propranolol-treated metastatic cells. For stage II breast cancer patients, perioperative β-blockade was associated with decreased cancer recurrence using Cox regression analysis (hazard's ratio =0.51; 95% CI: 0.23-0.97; p=0.041). Triple-negative (TN) brain-metastatic cells were found to have increased β2-adrenergic receptor mRNA and protein expression relative to TN primary cells. In response to β2-adrenergic receptor activation, TN brain-metastatic cells also exhibited increased cell proliferation and migration relative to the control. These effects were abrogated by propranolol. Propranolol decreased β2-adrenergic receptor-activated invasion. In vivo, propranolol treatment of TN brain-metastatic cells decreased establishment of brain metastases. Our results suggest that stress and corresponding β2-activation may promote the establishment of brain metastases of TN breast cancer cells. In addition, our data suggest a benefit to perioperative β-blockade during surgery-induced stress with respect to breast cancer recurrence and metastases.

  9. Inhibition of β2-adrenergic receptor reduces triple-negative breast cancer brain metastases: The potential benefit of perioperative β-blockade

    PubMed Central

    CHOY, CECILIA; RAYTIS, JOHN L.; SMITH, DAVID D.; DUENAS, MATTHEW; NEMAN, JOSH; JANDIAL, RAHUL; LEW, MICHAEL W.

    2016-01-01

    In response to recent studies, we investigated an association between perioperative β-blockade and breast cancer metastases. First, a retrospective study examining perioperative β-blocker use and cancer recurrence and metastases was conducted on 1,029 patients who underwent breast cancer surgery at the City of Hope Cancer Center between 2000 and 2010. We followed the clinical study and examined proliferation, migration, and invasion in vitro of primary and brain-metastatic breast cancer cells in response to β2-activation and inhibition. We also investigated in vivo the metastatic potential of propranolol-treated metastatic cells. For stage II breast cancer patients, perioperative β-blockade was associated with decreased cancer recurrence using Cox regression analysis (hazard's ratio =0.51; 95% CI: 0.23–0.97; p=0.041). Triple-negative (TN) brain-metastatic cells were found to have increased β2-adrenergic receptor mRNA and protein expression relative to TN primary cells. In response to β2-adrenergic receptor activation, TN brain-metastatic cells also exhibited increased cell proliferation and migration relative to the control. These effects were abrogated by propranolol. Propranolol decreased β2-adrenergic receptor-activated invasion. In vivo, propranolol treatment of TN brain-metastatic cells decreased establishment of brain metastases. Our results suggest that stress and corresponding β2-activation may promote the establishment of brain metastases of TN breast cancer cells. In addition, our data suggest a benefit to perioperative β-blockade during surgery-induced stress with respect to breast cancer recurrence and metastases. PMID:27035124

  10. Neonatal NMDA receptor blockade alters anxiety- and depression-related behaviors in a sex-dependent manner in mice.

    PubMed

    Amani, Mohammad; Samadi, Hanieh; Doosti, Mohammad-Hossein; Azarfarin, Maryam; Bakhtiari, Amir; Majidi-Zolbanin, Naime; Mirza-Rahimi, Mehrdad; Salari, Ali-Akbar

    2013-10-01

    There is increasing evidence that N-methyl-D-aspartate (NMDA) receptor blockade in the neonatal period has a long-lasting influence on brain and behavior development and has been linked to an increased risk for neuropsychiatric disorders in later life. We sought to determine whether postnatal NMDA receptor blockade can affect normal development of body weight, corticosterone levels, anxiety- and depression-related behaviors in male and female mice in adulthood. For this purpose, male and female NMRI mice were treated with either saline or phencyclidine (PCP; 5 and 10 mg/kg, s.c.) on postnatal days (PND) 7, 9, and 11, and then subjected to different behavioral tests, including open field, elevated plus-maze, elevated zero-maze, light-dark box, tail suspension test and forced swimming test in adulthood. The results indicated that neonatal PCP treatment reduced body weight during neonatal and adulthood periods, and did not alter baseline corticosterone levels in both male and female mice. Moreover, this study obtained some experimental evidence showing the PCP at dose of 10 mg/kg increases stress-induced corticosterone levels, anxiety- and depression-related behaviors in males, while decreasing levels of anxiety without any significant effect on depression in female mice in adulthood. These data support the argument that neonatal NMDA receptor blockade can lead to behavioral abnormalities and psychiatric diseases in adulthood. Collectively, our findings suggest that neonatal exposure to PCP may have profound effects on the development of anxiety- and depression-related behaviors in a sex- and dose-dependent manner in mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The exhausted CD4+CXCR5+ T cells involve the pathogenesis of human tuberculosis disease.

    PubMed

    Bosco, Munyemana Jean; Wei, Ming; Hou, Hongyan; Yu, Jing; Lin, Qun; Luo, Ying; Sun, Ziyong; Wang, Feng

    2018-06-21

    The CD4 + CXCR5 + T cells have been previously established. However, their decreased frequency during tuberculosis (TB) disease is partially understood. The aim of this study was to explore the depletion of CD4 + CXCR5 + T cells in human TB. The frequency and function of CD4 + CXCR5 + T cells were evaluated in active TB (ATB) patients and healthy control (HC) individuals. The function of CD4 + CXCR5 + T cells was determined after blockade of inhibitory receptors. The frequency of CD4 + CXCR5 + T cells was decreased in ATB patients. The expression of activation markers (HLA-DR and ICOS) and inhibitory receptors (Tim-3 and PD-1) on CD4 + CXCR5 + T cells was increased in ATB group. TB-specific antigen stimulation induced higher expression of inhibitory receptors than phytohemagglutinin stimulation in ATB group. In contrast, TB antigen stimulation did not induce a significantly increased expression of IL-21 and Ki-67 on CD4 + CXCR5 + T cells. However, blockade of inhibitory receptors Tim-3 and PD-1 not only increased the frequency of CD4 + CXCR5 + T cells, but also restored their proliferation and cytokine secretion potential. An increased expression of inhibitory receptors involves the depletion of CD4 + CXCR5 + T cells, and blockade of inhibitory receptors can restore the function of CD4 + CXCR5 + T cells in ATB patients. Copyright © 2018. Published by Elsevier Ltd.

  12. Local GABA receptor blockade reveals hindlimb responses in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Lane, Richard D; Rhoades, Robert W

    2004-07-01

    In adult rats that sustained forelimb amputation on the day of birth, there are numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to cutaneous stimulation of the hindlimb when cortical receptors for GABA are blocked. These normally suppressed hindlimb inputs originate in the SI hindlimb representation and synapse in the dysgranular cortex before exciting SI forelimb-stump neurons. In our previous studies, GABA (A + B) receptor blockade was achieved by topically applying a bicuculline methiodide/saclofen solution (BMI/SAC) to the cortical surface. This treatment blocks receptors throughout SI and does not allow determination of where along the above circuit the GABA-mediated suppression of hindlimb information occurs. In this study, focal injections of BMI/SAC were delivered to three distinct cortical regions that are involved in the hindlimb-to-forelimb-stump pathway. Blocking GABA receptors in the SI hindlimb representation and in the dysgranular cortex was largely ineffective in revealing hindlimb inputs ( approximately 10% of hindlimb inputs were revealed in both cases). In contrast, when the blockade was targeted at forelimb-stump recording sites, >80% of hindlimb inputs were revealed. Thus GABAergic interneurons within the forelimb-stump representation suppress the expression of reorganized hindlimb inputs to the region. A circuit model incorporating these and previous observations is presented and discussed.

  13. The effects of N-Methyl-D-Aspartate receptor blockade during the early neurodevelopmental period on emotional behaviors and cognitive functions of adolescent Wistar rats.

    PubMed

    Kocahan, Sayad; Akillioglu, Kubra; Binokay, Secil; Sencar, Leman; Polat, Sait

    2013-05-01

    The N-Methyl-D-Aspartate (NMDA) receptor is expressed abundantly in the brain and plays an important role in neuronal development, learning and memory, neurodegenerative diseases, and neurogenesis. In this study, we evaluated the effects of NMDA receptor blockade during the early neurodevelopmental period on exploratory locomotion, anxiety-like behaviors and cognitive functions of adolescent Wistar rats. NMDA receptor hypofunction was induced 7-10 days after birth using MK-801 in rats (0.25 mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF), elevated plus maze (EPM) and passive avoidance (PA) tests were used to evaluate exploratory locomotion, anxiety-like behaviors and cognitive functions. In the OF test, MK-801 caused an increase in locomotion behavior (p < 0.01) and in the frequency of rearing (p < 0.05). In the EPM test, MK-801 treatment increased the time spent in the open arms, the number of open arm entries and the amount of head dipping (p < 0.01). MK-801 treatment caused no statistical difference compared to the control group in the PA test (p > 0.05). Chronic NMDA receptor blockade during the critical period of maturation for the glutamatergic brain system (postnatal days 7-10) produces locomotor hyperactivity and decreased anxiety levels, but has no significant main effect on cognitive function during adolescence.

  14. Ablation of type I hypersensitivity in experimental allergic conjunctivitis by eotaxin-1/CCR3 blockade

    PubMed Central

    Nakamura, Takao; Ohbayashi, Masaharu; Kuo, Chuan Hui; Komatsu, Naoki; Yakura, Keiko; Tominaga, Takeshi; Inoue, Yoshitsugu; Higashi, Hidemitsu; Murata, Meguru; Takeda, Shuzo; Fukushima, Atsuki; Liu, Fu-Tong; Rothenberg, Marc E.; Ono, Santa Jeremy

    2009-01-01

    The immune response is regulated, in part, by effector cells whose activation requires multiple signals. For example, T cells require signals emanating from the T cell antigen receptor and co-stimulatory molecules for full activation. Here, we present evidence indicating that IgE-mediated hypersensitivity reactions in vivo also require cognate signals to activate mast cells. Immediate hypersensitivity reactions in the conjunctiva are ablated in mice deficient in eotaxin-1, despite normal numbers of tissue mast cells and levels of IgE. To further define the co-stimulatory signals mediated by chemokine receptor 3 (CCR3), an eotaxin-1 receptor, effects of CCR3 blockade were tested with an allergic conjunctivitis model and in ex vivo isolated connective tissue-type mast cells. Our results show that CCR3 blockade significantly suppresses allergen-mediated hypersensitivity reactions as well as IgE-mediated mast cell degranulation. We propose that a co-stimulatory axis by CCR3, mainly stimulated by eotaxin-1, is pivotal in mast cell-mediated hypersensitivity reactions. PMID:19147836

  15. Adenosine A2A receptor blockade attenuates spatial memory deficit and extent of demyelination areas in lyolecithin-induced demyelination model.

    PubMed

    Akbari, Atefeh; Khalili-Fomeshi, Mohsen; Ashrafpour, Manouchehr; Moghadamnia, Ali Akbar; Ghasemi-Kasman, Maryam

    2018-05-03

    In recent years, inactivation of A 2A adenosine receptors has been emerged as a novel strategy for treatment of several neurodegenerative diseases. Although numerous studies have shown the beneficial effects of A 2A receptors blockade on spatial memory, the impacts of selective adenosine A 2A receptors on memory performance has not yet been examined in the context of demyelination. In the present study, we evaluated the effect of A 2A receptor antagonist SCH58261 on spatial memory and myelination in an experimental model of focal demyelination in rat fimbria. Demyelination was induced by local injection of lysolecithin (LPC) 1% (2 μl) into the hippocampus fimbria. SCH58261 (20 μg/0.5 μl or 40 μg/0.5 μl) was daily injected intracerebroventricularly (i.c.v.) for 10 days post LPC injection. The Morris water maze test was used to assess the spatial learning and memory on day 6 post lesion. Myelin staining and immunostaining against astrocytes/microglia were carried out 10 days post LPC injection. The administration of adenosine A 2A receptor antagonist prevented the spatial memory impairment in LPC receiving animals. Myelin staining revealed that application of SCH58261 reduces the extent of demyelination areas in the fimbria. Furthermore, the level of astrocytes and microglia activation was attenuated following administration of A 2A receptor antagonist. Collectively, the results of this study suggest that A 2A receptor blockade can improve the spatial memory and protect myelin sheath, which might be considered as a novel therapeutic approach for multiple sclerosis disease. Copyright © 2017. Published by Elsevier Inc.

  16. Rheumatoid arthritis synovial fibroblasts produce a soluble form of the interleukin-7 receptor in response to pro-inflammatory cytokines

    PubMed Central

    Badot, V; Durez, P; Van den Eynde, BJ; Nzeusseu-Toukap, A; Houssiau, FA; Lauwerys, BR

    2011-01-01

    Abstract We previously demonstrated that baseline synovial overexpression of the interleukin-7 receptor α-chain (IL-7R) is associated with poor response to tumour necrosis factor (TNF) blockade in rheumatoid arthritis (RA). We found that IL-7R gene expression is induced in fibroblast-like synovial cells (FLS) by the addition of TNF-α, IL-1β and combinations of TNF-α+ IL-1β or TNF-α+ IL-17, thereby suggesting that these cytokines play a role in the resistance to TNF blockade in RA. Because FLS and CD4 T cells also produce a soluble form of IL-7R (sIL-7R), resulting from an alternative splicing of the full-length transcript, we wondered whether expression of sIL-7R is similarly regulated by pro-inflammatory cytokines. We also investigated whether sIL-7R is detectable in the serum of RA patients and associated with response to TNF blockade. RA FLS were cultured in the presence of pro-inflammatory cytokines and sIL-7R concentrations were measured in culture supernatants. Similarly, sIL-7R titres were measured in sera obtained from healthy individuals, early untreated RA patients with active disease and disease-modifying anti-rheumatic drug (DMARD)-resistant RA patients prior to initiation of TNF-blockade. Baseline serum sIL-7R titres were correlated with validated clinical measurements of disease activity. We found that exposure of RA FLS to pro-inflammatory cytokines (TNF-α, IL-1β and combinations of TNF-α and IL-1β or TNF-α and IL-17) induces sIL-7R secretion. Activated CD4 T cells also produce sIL-7R. sIL-7R serum levels are higher in RA patients as compared to controls. In DMARD-resistant patients, high sIL-7R serum concentrations are strongly associated with poor response to TNF-blockade. In conclusion, sIL-7R is induced by pro-inflammatory cytokines in RA FLS. sIL-7R could qualify as a new biomarker of response to therapy in RA. PMID:21129157

  17. Assessing the role of metabotropic glutamate receptor 5 in multiple nociceptive modalities.

    PubMed

    Zhu, Chang Z; Wilson, Sonya G; Mikusa, Joseph P; Wismer, Carol T; Gauvin, Donna M; Lynch, James J; Wade, Carrie L; Decker, Michael W; Honore, Prisca

    2004-12-15

    Preclinical data, performed in a limited number of pain models, suggest that functional blockade of metabotropic glutamate (mGlu) receptors may be beneficial for pain management. In the present study, effects of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective mGlu5 receptor antagonist, were examined in a wide variety of rodent nociceptive and hypersensitivity models in order to fully characterize the potential analgesic profile of mGlu5 receptor blockade. Effects of 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), as potent and selective as MPEP at mGlu5/mGlu1 receptors but more selective than MPEP at N-methyl-aspartate (NMDA) receptors, were also evaluated in selected nociceptive and side effect models. MPEP (3-30 mg/kg, i.p.) produced a dose-dependent reversal of thermal and mechanical hyperalgesia following complete Freund's adjuvant (CFA)-induced inflammatory hypersensitivity. Additionally, MPEP (3-30 mg/kg, i.p.) decreased thermal hyperalgesia observed in carrageenan-induced inflammatory hypersensitivity without affecting paw edema, abolished acetic acid-induced writhing activity in mice, and was shown to reduce mechanical allodynia and thermal hyperalgesia observed in a model of post-operative hypersensitivity and formalin-induced spontaneous pain. Furthermore, at 30 mg/kg, i.p., MPEP significantly attenuated mechanical allodynia observed in three neuropathic pain models, i.e. spinal nerve ligation, sciatic nerve constriction and vincristine-induced neuropathic pain. MTEP (3-30 mg/kg, i.p.) also potently reduced CFA-induced thermal hyperalgesia. However, at 100 mg/kg, i.p., MPEP and MTEP produced central nerve system (CNS) side effects as measured by rotarod performance and exploratory locomotor activity. These results suggest a role for mGlu5 receptors in multiple nociceptive modalities, though CNS side effects may be a limiting factor in developing mGlu5 receptor analgesic compounds.

  18. Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics.

    PubMed

    Tonini, M; Cipollina, L; Poluzzi, E; Crema, F; Corazza, G R; De Ponti, F

    2004-02-15

    Antidopaminergic gastrointestinal prokinetics (bromopride, clebopride, domperidone, levosulpiride and metoclopramide) have been exploited clinically for the management of motor disorders of the upper gastrointestinal tract, including functional dyspepsia, gastric stasis of various origins and emesis. The prokinetic effect of these drugs is mediated through the blockade of enteric (neuronal and muscular) inhibitory D2 receptors. The pharmacological profiles of the marketed compounds differ in terms of their molecular structure, affinity at D2 receptors, ability to interact with other receptor systems [5-hydroxytryptamine-3 (5-HT3) and 5-HT4 receptors for metoclopramide; 5-HT4 receptors for levosulpiride) and ability to permeate the blood-brain barrier (compared with the other compounds, domperidone does not easily cross the barrier). It has been suggested that the serotonergic (5-HT4) component of some antidopaminergic prokinetics may enhance their therapeutic efficacy in gastrointestinal disorders, such as functional dyspepsia and diabetic gastroparesis. The antagonism of central D2 receptors may lead to both therapeutic (e.g. anti-emetic effect due to D2 receptor blockade in the area postrema) and adverse (including hyperprolactinaemia and extrapyramidal dystonic reactions) effects. As the pituitary (as well as the area postrema) is outside the blood-brain barrier, hyperprolactinaemia is a side-effect occurring with all antidopaminergic prokinetics, although to different extents. Extrapyramidal reactions are most commonly observed with compounds crossing the blood-brain barrier, although with some differences amongst the various agents. Prokinetics with a high dissociation constant compared with that of dopamine at the D2 receptor (i.e. compounds that bind loosely to D2 receptors in the nigrostriatal pathway) elicit fewer extrapyramidal signs and symptoms. A knowledge of central and peripheral D2 receptor pharmacology can help the clinician to choose between the antidopaminergic prokinetics to obtain a more favourable risk/benefit ratio.

  19. N(N)-nicotinic blockade as an acute human model of autonomic failure

    NASA Technical Reports Server (NTRS)

    Jordan, J.; Shannon, J. R.; Black, B. K.; Lance, R. H.; Squillante, M. D.; Costa, F.; Robertson, D.

    1998-01-01

    Pure autonomic failure has been conceptualized as deficient sympathetic and parasympathetic innervation. Several recent observations in chronic autonomic failure, however, cannot be explained simply by loss of autonomic innervation, at least according to our current understanding. To simulate acute autonomic failure, we blocked N(N)-nicotinic receptors with intravenous trimethaphan (6+/-0.4 mg/min) in 7 healthy subjects (4 men, 3 women, aged 32+/-3 years, 68+/-4 kg, 171+/-5 cm). N(N)-Nicotinic receptor blockade resulted in near-complete interruption of sympathetic and parasympathetic efferents as indicated by a battery of autonomic function tests. With trimethaphan, small postural changes from the horizontal were associated with significant blood pressure changes without compensatory changes in heart rate. Gastrointestinal motility, pupillary function, saliva production, and tearing were profoundly suppressed with trimethaphan. Plasma norepinephrine level decreased from 1.1+/-0.12 nmol/L (180+/-20 pg/mL) at baseline to 0.23+/-0.05 nmol/L (39+/-8 pg/mL) with trimethaphan (P<.001). There was a more than 16-fold increase in plasma vasopressin (P<.01) and no change in plasma renin activity. We conclude that blockade of N(N)-cholinergic receptors is useful to simulate the hemodynamic alterations of acute autonomic failure in humans. The loss of function with acute N(N)-cholinergic blockade is more complete than in most cases of chronic autonomic failure. This difference may be exploited to elucidate the contributions of acute denervation and chronic adaptation to the pathophysiology of autonomic failure. N(N)-Cholinergic blockade may also be applied to study human cardiovascular physiology and pharmacology in the absence of confounding baroreflexes.

  20. Enhancement of islet engraftment and achievement of long-term islet allograft survival by Toll-like receptor 4 blockade.

    PubMed

    Giovannoni, Laurianne; Muller, Yannick D; Lacotte, Stéphanie; Parnaud, Géraldine; Borot, Sophie; Meier, Raphaël P H; Lavallard, Vanessa; Bédat, Benoît; Toso, Christian; Daubeuf, Bruno; Elson, Greg; Shang, Limin; Morel, Philippe; Kosco-Vilbois, Marie; Bosco, Domenico; Berney, Thierry

    2015-01-01

    Toll-like receptors are key players in sterile inflammation phenomena and can link the innate and adaptive immune systems by enhancing graft immunogenicity. They are also considered mediators of types 1 and 2 diabetes development. The aim of the present study was to assess the role of Toll-like receptor-4 (TLR4) in mediating the inflammatory and immune responses to pancreatic islets, thereby promoting inflammatory destruction and immune rejection of islet grafts. Experiments were conducted in murine and human in vitro systems and in vivo murine islet transplant models, using species-specific anti-TLR4 monoclonal antibodies. In vitro, mixed lymphocyte-islet reaction experiments were performed to assess T-cell activation and proliferation. In vivo, both a syngeneic (B6-to-B6) marginal mass islet transplant model to assess the impact of TLR4 blockade on islet engraftment and an allogeneic (DBA1-to-B6) model were used. In vitro TLR4 blockade decreased lipopolysaccharide-mediated β-cell apoptosis and T-cell activation and proliferation against allogeneic islets. In vivo, TLR4 blockade resulted in significantly better syngeneic marginal mass islet engraftment and in indefinite allogeneic islet graft survival. Tolerance was not observed because donor-specific skin graft rechallenge in nonrejecting animals resulted in rejection of both skin and islets, but without accelerated rejection as compared to naive animals. Taken together, our data indicate that TLR4 blockade leads to a significant improvement of syngeneic islet engraftment and of allogeneic islet graft survival. A mechanism of graft accommodation with concurrent inhibition of donor-specific immune memory is likely to be involved.

  1. Neural control of colonic cell proliferation.

    PubMed

    Tutton, P J; Barkla, D H

    1980-03-15

    The mitotic rate in rat colonic crypts and in dimethylhydrazine-induced colonic carcinomas was measured using a stathmokinetic technique. In sympathectomized animals cell proliferation was retarded in the crypts but not in the tumors, whereas in animals treated with Metaraminol, a drug which releases norepinephrine from nerve terminals, crypt cell but not tumor cell proliferation was accelerated. Blockade of alpha-adrenoceptors also inhibited crypt cell proliferation. However, stimulation of beta-adrenoceptors inhibited and blockade of beta-adrenoceptors accelerated tumor cell proliferation without influencing crypt cell proliferation. Injection of either serotonin or histamine stimulated tumor but not crypt cell proliferation and blockade or serotonin receptors or histamine H2-receptors inhibited tumor cell proliferation. It is postulated that cell proliferation in the colonic crypts, like that in the jejunal crypts, is under both endocrine and autonomic neural control whereas colonic tumor cell division is subject to endocrine regulation alone.

  2. [Comparative analysis of metabotropic and ionotropic glutamate striatal receptors blockade influence on rats locomotor behaviour].

    PubMed

    Iakimovskiĭ, A F; Kerko, T V

    2013-02-01

    The influence of NMDA and metabotropic neostriatal glutamate receptors blockade to avoidance conditioning (in shuttle box) and free locomotor behavior (in open field) in chronic experiments in rats were investigated. The glutamate receptor antagonists were injected bilateral into striatum separately and with the GABA-A receptor antagonist picrotoxin (2 microg), that produced in rats the impairment of avoidance conditioning and choreo-myoklonic hyperkinesis. The most effective in preventing of negative picrotoxin influence on behavior was 5-type metabotropic glutamate receptors antagonist MTEP (3 microg). Separately injected MTEP did not influence on avoidance conditioning and free locomotor behavior. Unlike that, 1-type metabotropic glutamate receptors antagonist EMQMCM (3 microg) impaired normal locomotor behavior and did not prevent the picrotoxin effects. The NMDA glutamate receptors MK 801 (disocilpin--1 and 5 microg) impaired the picrotoxin-induced hyperkinesis, but did not to prevent the negative effects on avoidance conditioning; separately injected MK 801 reduced free locomotor activity. Based on location of investigated receptor types in neostriatal neurons membranes, we proposed that the most effective influence on 5-type metabotropic glutamate receptors is associated with their involvement in "indirect" efferent pathway, suffered in hyperkinetic extrapyramidal motor dysfunction--Huntington's chorea in human.

  3. Muscarinic cholinergic receptor binding: in vivo depiction using single photon emission computed tomography and radioiodinated quinuclidinyl benzilate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drayer, B.; Jaszczak, R.; Coleman, E.

    1982-06-01

    An attempt was made to characterize, in vivo, specific binding to the muscarinic cholinergic receptor in the calf using the radioiodinated ligand quinuclidinyl benzilate (/sup 123/I-OH-QNB) and single photon detection emission computed tomography (SPECT). The supratentorial brain activity was significantly increased after the intravenous infusion of /sup 123/I-OH-QNB as compared to free /sup 123/I. Scopolamine, a muscarinic cholinergic receptor antagonist, decreased the measured brain activity when infused prior to /sup 123/I-OH-QNB consistent with pharmacologic blockade of specific receptor binding. Quantitative in vitro tissue distribution studies obtained following SPECT imaging were consistent with regionally distinct specific receptor binding in the striatummore » and cortical gray matter, nonspecific binding in the cerebellum, and pharmacologic blockade of specific binding sites with scopolamine. Although /sup 123/I-OH-QNB is not the ideal radioligand, our limited success will hopefully encourage the development of improved binding probes for SPECT imaging and quantitation.« less

  4. GABAA overactivation potentiates the effects of NMDA blockade during the brain growth spurt in eliciting locomotor hyperactivity in juvenile mice.

    PubMed

    Oliveira-Pinto, Juliana; Paes-Branco, Danielle; Cristina-Rodrigues, Fabiana; Krahe, Thomas E; Manhães, Alex C; Abreu-Villaça, Yael; Filgueiras, Cláudio C

    2015-01-01

    Both NMDA receptor blockade and GABAA receptor overactivation during the brain growth spurt may contribute to the hyperactivity phenotype reminiscent of attention-deficit/hyperactivity disorder. Here, we evaluated the effects of exposure to MK801 (a NMDA antagonist) and/or to muscimol (a GABAA agonist) during the brain growth spurt on locomotor activity of juvenile Swiss mice. This study was carried out in two separate experiments. In the first experiment, pups received a single i.p. injection of either saline solution (SAL), MK801 (MK, 0.1, 0.3 or 0.5 mg/kg) or muscimol (MU, 0.02, 0.1 or 0.5 mg/kg) at the second postnatal day (PND2), and PNDs 4, 6 and 8. In the second experiment, we investigated the effects of a combined injection of MK (0.1 mg/kg) and MU (doses: 0.02, 0.1 or 0.5 mg/kg) following the same injection schedule of the first experiment. In both experiments, locomotor activity was assessed for 15 min at PND25. While MK promoted a dose-dependent increase in locomotor activity, exposure to MU failed to elicit significant effects. The combined exposure to the highest dose of MU and the lowest dose of MK induced marked hyperactivity. Moreover, the combination of the low dose of MK and the high dose of MU resulted in a reduced activity in the center of the open field, suggesting an increased anxiety-like behavior. These findings suggest that, during the brain growth spurt, the blockade of NMDA receptors induces juvenile locomotor hyperactivity whereas hyperactivation of GABAA receptors does not. However, GABAA overactivation during this period potentiates the effects of NMDA blockade in inducing locomotor hyperactivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Vascular Effects of Endothelin Receptor Antagonists Depends on Their Selectivity for ETA Versus ETB Receptors and on the Functionality of Endothelial ETB Receptors.

    PubMed

    Iglarz, Marc; Steiner, Pauline; Wanner, Daniel; Rey, Markus; Hess, Patrick; Clozel, Martine

    2015-10-01

    The goal of this study was to characterize the role of Endothelin (ET) type B receptors (ETB) on vascular function in healthy and diseased conditions and demonstrate how it affects the pharmacological activity of ET receptor antagonists (ERAs). The contribution of the ETB receptor to vascular relaxation or constriction was characterized in isolated arteries from healthy and diseased rats with systemic (Dahl-S) or pulmonary hypertension (monocrotaline). Because the role of ETB receptors is different in pathological vis-à-vis normal conditions, we compared the efficacy of ETA-selective and dual ETA/ETB ERAs on blood pressure in hypertensive rats equipped with telemetry. In healthy vessels, ETB receptors stimulation with sarafotoxin S6c induced vasorelaxation and no vasoconstriction. In contrast, in arteries of rats with systemic or pulmonary hypertension, endothelial ETB-mediated relaxation was lost while vasoconstriction on stimulation by sarafotoxin S6c was observed. In hypertensive rats, administration of the dual ETA/ETB ERA macitentan on top of a maximal effective dose of the ETA-selective ERA ambrisentan further reduced blood pressure, indicating that ETB receptors blockade provides additional benefit. Taken together, these data suggest that in pathology, dual ETA/ETB receptor antagonism can provide superior vascular effects compared with ETA-selective receptor blockade.

  6. Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis.

    PubMed

    Huby, Anne-Cécile; Antonova, Galina; Groenendyk, Jake; Gomez-Sanchez, Celso E; Bollag, Wendy B; Filosa, Jessica A; Belin de Chantemèle, Eric J

    2015-12-01

    In obesity, the excessive synthesis of aldosterone contributes to the development and progression of metabolic and cardiovascular dysfunctions. Obesity-induced hyperaldosteronism is independent of the known regulators of aldosterone secretion, but reliant on unidentified adipocyte-derived factors. We hypothesized that the adipokine leptin is a direct regulator of aldosterone synthase (CYP11B2) expression and aldosterone release and promotes cardiovascular dysfunction via aldosterone-dependent mechanisms. Immunostaining of human adrenal cross-sections and adrenocortical cells revealed that adrenocortical cells coexpress CYP11B2 and leptin receptors. Measurements of adrenal CYP11B2 expression and plasma aldosterone levels showed that increases in endogenous (obesity) or exogenous (infusion) leptin dose-dependently raised CYP11B2 expression and aldosterone without elevating plasma angiotensin II, potassium or corticosterone. Neither angiotensin II receptors blockade nor α and β adrenergic receptors inhibition blunted leptin-induced aldosterone secretion. Identical results were obtained in cultured adrenocortical cells. Enhanced leptin signaling elevated CYP11B2 expression and plasma aldosterone, whereas deficiency in leptin or leptin receptors blunted obesity-induced increases in CYP11B2 and aldosterone, ruling out a role for obesity per se. Leptin increased intracellular calcium, elevated calmodulin and calmodulin-kinase II expression, whereas calcium chelation blunted leptin-mediated increases in CYP11B2, in adrenocortical cells. Mineralocorticoid receptor blockade blunted leptin-induced endothelial dysfunction and increases in cardiac fibrotic markers. Leptin is a newly described regulator of aldosterone synthesis that acts directly on adrenal glomerulosa cells to increase CYP11B2 expression and enhance aldosterone production via calcium-dependent mechanisms. Furthermore, leptin-mediated aldosterone secretion contributes to cardiovascular disease by promoting endothelial dysfunction and the expression of profibrotic markers in the heart. © 2015 American Heart Association, Inc.

  7. The role of excitatory amino acids and substance P in the mediation of the cough reflex within the nucleus tractus solitarii of the rabbit.

    PubMed

    Mutolo, Donatella; Bongianni, Fulvia; Fontana, Giovanni A; Pantaleo, Tito

    2007-09-28

    We hypothesized that cough evoked by mechanical stimulation of the tracheobronchial tree in the rabbit is primarily mediated by glutamatergic neurotransmission at the level of the caudal portions of the medial subnucleus of the nucleus tractus solitarii (NTS) and the lateral commissural NTS where cough-related afferents terminate, and that this reflex is potentiated by local release of substance P. To test our hypothesis, we performed bilateral microinjections (30-50 nl) of ionotropic glutamate receptor antagonists or substance P into these locations in pentobarbitone anaesthetized, spontaneously breathing rabbits. Blockade of NMDA and non-NMDA receptors by 50mM kynurenic acid abolished the cough reflex without affecting the Breuer-Hering inflation reflex or the pulmonary chemoreflex. Blockade of non-NMDA receptors using 10mM CNQX or 5mM NBQX caused identical effects. Blockade of NMDA receptors by 10mM D-AP5 strongly reduced, but did not abolish cough responses. Microinjections of 1mM substance P increased peak and rate of rise of abdominal muscle activity as well as cough number. These results are the first to provide evidence that ionotropic glutamate receptors, especially non-NMDA receptors, located within specific regions of NTS are primarily involved in the mediation of cough evoked by mechanical stimulation of the tracheobronchial tree in the rabbit. Present findings on substance P cough-enhancing effects extend previous observations and are relevant to the tachykinin-mediated central sensitization of the cough reflex. They also may provide hints for further studies on centrally acting antitussive drugs.

  8. NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus.

    PubMed

    McDonald, Robert J; Hong, Nancy S; Craig, Laura A; Holahan, Matthew R; Louis, Meira; Muller, Robert U

    2005-09-01

    Recent evidence suggests that N-methyl-D-aspartate (NMDA)-receptor mediated plasticity in hippocampus has a more subtle role in memory-based behaviours than originally thought. One idea is that NMDA-based plasticity is essential for the consolidation of post-training memory but not for the initial encoding or for short-term memory. To further test this idea we used a three-phase variant of the hidden goal water maze task. In the first phase, rats were pre-trained to an initial location. Next, intense, massed training was done in a 2-h interval to teach the rats to go to a new location after either an injection of the NMDA receptor antagonist (6)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or of vehicle. Finally, under drug-free conditions 24 h after new location training, a competition test was done between the original and new locations. We find that N-methyl-D-aspartate (NMDA)-receptor blockade has little or no effect on new location training. In contrast, when tested 24 h later, the strength of the trace for the new location learned during NMDA-receptor blockade was much weaker compared with the trace for the new location learned after saline injection. Further experiments showed similar effects when NMDA-receptors were blocked immediately after the new location training, suggesting that this is a memory consolidation effect. Our results therefore reinforce the notion that hippocampal NMDA-receptors participate in post-training memory consolidation but are not essential for the processes necessary to learn or retain navigational information in the short term.

  9. Acute effects of a sarin-like organophosphorus agent, bis(isopropyl methyl)phosphonate, on cardiovascular parameters in anaesthetized, artificially ventilated rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoshimasa; Itoh, Takeo, E-mail: titoh@med.nagoya-cu.ac.jp; Shiraishi, Hiroaki

    The organophosphorus compound sarin irreversibly inhibits acetylcholinesterase. We examined the acute cardiovascular effects of a sarin-like organophosphorus agent, bis(isopropyl methyl)phosphonate (BIMP), in anaesthetized, artificially ventilated rats. Intravenous administration of BIMP (0.8 mg/kg; the LD50 value) induced a long-lasting increase in blood pressure and tended to increase heart rate. In rats pretreated with the non-selective muscarinic-receptor antagonist atropine, BIMP significantly increased both heart rate and blood pressure. In atropine-treated rats, hexamethonium (antagonist of ganglionic nicotinic receptors) greatly attenuated the BIMP-induced increase in blood pressure without changing the BIMP-induced increase in heart rate. In rats treated with atropine plus hexamethonium, intravenous phentolaminemore » (non-selective α-adrenergic receptor antagonist) plus propranolol (non-selective β-adrenergic receptor antagonist) completely blocked the BIMP-induced increases in blood pressure and heart rate. In atropine-treated rats, the reversible acetylcholinesterase inhibitor neostigmine (1 mg/kg) induced a transient increase in blood pressure, but had no effect on heart rate. These results suggest that in anaesthetized rats, BIMP induces powerful stimulation of sympathetic as well as parasympathetic nerves and thereby modulates heart rate and blood pressure. They may also indicate that an action independent of acetylcholinesterase inhibition contributes to the acute cardiovascular responses induced by BIMP. - Highlights: • A sarin-like agent BIMP markedly increased blood pressure in anaesthetized rats. • Muscarinic receptor blockade enhanced the BIMP-induced increase in blood pressure. • Ganglionic nicotinic receptor blockade attenuated the BIMP-induced response. • Blockade of α- as well as β-receptors attenuated the BIMP-induced response.« less

  10. Boronic acid-containing CXCR1/2 antagonists: optimization of metabolic stability, in vivo evaluation, and a proposed receptor binding model

    PubMed Central

    Maeda, Dean Y.; Peck, Angela M.; Schuler, Aaron D.; Quinn, Mark T.; Kirpotina, Liliya N.; Wicomb, Winston N.; Auten, Richard L.; Gundla, Rambabu; Zebala, John A.

    2015-01-01

    Blockade of undesired neutrophil migration to sites of inflammation remains an area of substantial pharmaceutical interest. To effect this blockade, a validated therapeutic target is antagonism of the chemokine receptor CXCR2. Herein we report the discovery of 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide 6, an antagonist with activity at both CXCR1 and CXCR2 receptors (IC50 values 31 and 21 nM, respectively). Compound 6 exhibited potent inhibition of neutrophil influx in a rat model of pulmonary inflammation, and is hypothesized to interact with a unique intracellular binding site on CXCR2. Compound 6 (SX-576) is undergoing further investigation as a potential therapy for pulmonary inflammation. PMID:25933594

  11. Influence of myocardial oxygen demand on the coronary vascular response to arterial blood gas changes in humans.

    PubMed

    Vermeulen, Tyler Dennis; Boulet, Lindsey M; Stembridge, Mike; Williams, Alexandra Mackenzie; Anholm, James D; Subedi, Prajan; Gasho, Chris; Ainslie, Philip N; Feigl, Eric O; Foster, Glen Edward

    2018-03-30

    It remains unclear if the human coronary vasculature is inherently sensitive to changes in arterial PO 2 and PCO 2 or if coronary vascular responses are the result of concomitant increases in myocardial O 2 consumption/demand (MVO 2 ). We hypothesized that the coronary vascular response to PO 2 and PCO 2 would be attenuated in healthy men when MVO 2 was attenuated with β 1 -adrenergic receptor blockade. Healthy men (n=11; age: 25 {plus minus} 1 years) received intravenous esmolol (β 1 -adrenergic receptor antagonist) or volume-matched saline in a double-blind, randomized, crossover study, and were exposed to poikilocapnic hypoxia, isocapnic hypoxia, and hypercapnic hypoxia. Measurements made at baseline and following 5-min of steady state at each gas manipulation included left anterior descending coronary blood velocity (LAD V ; Doppler echocardiography), heart rate and arterial blood pressure. LAD V values at the end of each hypoxic condition were compared between esmolol and placebo. Rate pressure product (RPP) and left-ventricular mechanical energy (ME LV ) were calculated as indices of MVO 2 . All gas manipulations augmented RPP, ME LV , and LAD V but only RPP and ME LV were attenuated (4-18%) following β 1 -adrenergic receptor blockade (P<0.05). Despite attenuated RPP and MELV responses, β 1 -adrenergic receptor blockade did not attenuate the mean LADV vasodilatory response when compared to placebo during poikilocapnic hypoxia (29.4{plus minus}2.2 vs. 27.3{plus minus}1.6 cm/s) and isocapnic hypoxia (29.5{plus minus}1.5 vs. 30.3{plus minus}2.2 cm/s). Hypercapnic hypoxia elicited a feed-forward coronary dilation that was blocked by β 1 -adrenergic receptor blockade. These results indicate a direct influence of arterial PO 2 on coronary vascular regulation that is independent of MVO 2 .

  12. Disparate effects of single endothelin A and B receptor blocker therapy on the progression of renal injury in advanced renovascular disease

    PubMed Central

    Chade, Alejandro R.; Stewart, Nicholas J.; Peavy, Patrick R.

    2013-01-01

    We hypothesized that chronic specific endothelin (ET)-A receptor blockade therapy would reverse renal dysfunction and injury in advanced experimental renovascular disease. To test this, unilateral renovascular disease was induced in 19 pigs and after 6 weeks, single-kidney hemodynamics and function was quantified in vivo using computed-tomography. All pigs with renovascular disease were divided such that 7 were untreated, 7 were treated with ET-A blockers, and 5 were treated with ET-B blockers. Four weeks later, all pigs were re-studied in vivo, then euthanized and ex vivo studies performed on the stenotic kidney to quantify microvascular density, remodeling, renal oxidative stress, inflammation, and fibrosis. RBF, GFR, and redox status were significantly improved in the stenotic kidney after ET-A but not ET-B blockade. Furthermore, only ET-A blockade therapy reversed renal microvascular rarefaction and diminished remodeling, which was accompanied by a marked decreased in renal inflammatory and fibrogenic activity. Thus, ET-A but not ET-B blockade ameliorated renal injury in pigs with advanced renovascular disease by stimulating microvascular proliferation and decreasing the progression of microvascular remodeling, renal inflammation and fibrosis in the stenotic kidney. These effects were functionally consequential since ET-A blockade improved single kidney microvascular endothelial function, RBF, and GFR, and decreased albuminuria. PMID:24352153

  13. Blockade of serotonin 5-HT2A receptors potentiates dopamine D2 activation-induced disruption of pup retrieval on an elevated plus maze, but has no effect on D2 blockade-induced one.

    PubMed

    Nie, Lina; Di, Tianqi; Li, Yu; Cheng, Peng; Li, Ming; Gao, Jun

    2018-06-23

    Appetitive aspect of rat maternal behavior, such as pup retrieval, is motivationally driven and sensitive to dopamine disturbances. Activation or blockade of dopamine D 2 receptors causes a similar disruption of pup retrieval, which may also reflect an increase in maternal anxiety and/or a disruption of executive function. Recent work indicates that serotonin 5-HT 2A receptors also play an important role in rat maternal behavior. Given the well-known modulation of 5-HT 2A on the mesolimbic and mesocortical dopamine functions, the present study examined the extent to which blockade of 5-HT 2A receptors on dopamine D 2 -mediated maternal effects using a pup retrieval on the elevated plus maze (EPM) test. Sprague-Dawley postpartum female rats were acutely injected with quinpirole (a D 2 agonist, 0.10 and 0.25 mg/kg, sc), or haloperidol (a D 2 antagonist, 0.1 or 0.2 mg/kg, sc), in combination of MDL100907 (a 5-HT 2A receptor antagonist, 1.0 mg/kg, sc, 30 min before quinpirole or haloperidol injection) or saline and tested at 30, 90 and 240 min after quinpirole or haloperidol injection on postpartum days 3 and 7. Quinpirole and haloperidol decreased the number of pup retrieved (an index of maternal motivation) and sequential retrieval score (an index of executive function), prolonged the pup retrieval latencies, reduced the percentage of time spent on the open arms (an index of maternal anxiety), and decreased the distance travelled on the maze in a dose-dependent and time-dependent fashion. MDL100907 treatment by itself had no effect on pup retrieval, but it exacerbated the quinpirole-induced disruption of pup retrieval, but had no effect on the haloperidol-induced one. These findings suggest a complex interactive effect between 5-HT 2A and D 2 receptors on one or several maternal processes (maternal motivation, anxiety and executive function), and support the idea that one molecular mechanism by which 5-HT 2A receptors mediate maternal behavior is through its modulation of D 2 receptors. Copyright © 2018. Published by Elsevier Inc.

  14. Differential control of collagen synthesis by the sympathetic and renin-angiotensin systems in the rat left ventricle.

    PubMed

    Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel

    2009-12-03

    In the present study, we tested the hypothesis of the indirect (via the sympathetic nervous system (SNS)) and direct (via AT1 receptors) contributions of Angiotensin II (Ang II) on the synthesis of collagen types I and III in the left ventricle (LV) in vivo. Sympathectomy and blockade of the Ang II receptor AT1 were performed alone or in combination in normotensive rats. The mRNA and protein synthesis of collagen types I and III were examined by Q-RT-PCR and immunoblotting in the LV. Collagen types I and III mRNA were decreased respectively by 53% and 22% after sympathectomy and only collagen type I mRNA was increased by 52% after AT1 receptor blockade. mRNA was not changed for collagen type I but was decreased by 25% for collagen type III after double treatment. Only collagen protein type III was decreased after sympathectomy by 12%, but collagen proteins were increased respectively for types I and III by 145% and 52% after AT1 receptor blockade and by 45% and 60% after double treatment. Deducted interpretations from our experimental approach suggest that Ang II stimulates indirectly (via SNS) and inhibits directly (via AT1 receptors) the collagen type I at transcriptional and protein levels. For collagen type III, it stimulates indirectly the transcription and inhibited directly the protein level. Therefore, the Ang II regulates collagen synthesis differently through indirect and direct pathways.

  15. The effect of dopamine receptor blockade in the rodent nucleus accumbens on local field potential oscillations and motor activity in response to ketamine.

    PubMed

    Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark Jeremy

    2010-12-17

    Altered functioning of the nucleus accumbens (NAc) has been implicated in the psychotomimetic actions of NMDA receptor (NMDAR) antagonists and the pathophysiology of schizophrenia. We have shown previously that NMDAR antagonists enhance the power of high-frequency oscillations (HFO) in the NAc in a dose-dependent manner, as well as increase locomotor activity. Systemic administration of NMDAR antagonists is known to increase the release of dopamine in the NAc and dopamine antagonists can reduce ketamine-induced hyperactivity. In this study, we examined the effect of 0.5 μl intra-NAc infusion of 3.2 μg SCH23390 (D1 antagonist), 10 μg raclopride (D2 antagonist) and saline on ketamine-induced changes in motor and oscillatory activity. We found that local blockade of D1 receptors attenuated ketamine-induced increases in motor activity and blockade of D2 receptors produced a much weaker effect, with respect to saline-infused control groups. In contrast, none of the antagonists, infused separately or together, significantly modified the power or dominant frequency of ketamine-induced increases in HFO, but changes in delta and theta frequency bands were observed. Together, these findings suggest, that, in contrast to delta and theta frequency bands, the generation of ketamine enhanced-HFO in the NAc is not causally related to locomotor activation and occurs largely independently of local changes in dopamine receptor activation. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. The Non-Classical Renin-Angiotensin System and Renal Function

    PubMed Central

    Chappell, Mark C.

    2014-01-01

    The renin-angiotensin-system (RAS) constitutes one of the most important hormonal systems in the physiological regulation of blood pressure through renal and non-renal mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies including kidney injury and blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or blockade of the angiotensin type 1 receptor (AT1R) by selective antagonists constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS within the kidney and other tissues that the system is actually composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II AT1R axis that promotes vasoconstriction, water intake, sodium retention and other mechanisms to maintain blood pressure, as well as increase oxidative stress, fibrosis, cellular growth and inflammation in pathological conditions. In contrast, the non-classical RAS composed primarily of the AngII/Ang III–AT2R pathway and the ACE2-Ang-(1-7)-AT7R axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and a reduced oxidative stress. Moreover, increasing evidence suggests that these non-classical RAS components contribute to the therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury, as well as contribute to normal renal function. PMID:23720263

  17. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys

    PubMed Central

    Wu, Wei; Saunders, Richard C.; Mishkin, Mortimer; Turchi, Janita

    2012-01-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. PMID:22561485

  18. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    PubMed

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. Published by Elsevier Inc.

  19. Dopamine Receptor-Specific Contributions to the Computation of Value.

    PubMed

    Burke, Christopher J; Soutschek, Alexander; Weber, Susanna; Raja Beharelle, Anjali; Fehr, Ernst; Haker, Helene; Tobler, Philippe N

    2018-05-01

    Dopamine is thought to play a crucial role in value-based decision making. However, the specific contributions of different dopamine receptor subtypes to the computation of subjective value remain unknown. Here we demonstrate how the balance between D1 and D2 dopamine receptor subtypes shapes subjective value computation during risky decision making. We administered the D2 receptor antagonist amisulpride or placebo before participants made choices between risky options. Compared with placebo, D2 receptor blockade resulted in more frequent choice of higher risk and higher expected value options. Using a novel model fitting procedure, we concurrently estimated the three parameters that define individual risk attitude according to an influential theoretical account of risky decision making (prospect theory). This analysis revealed that the observed reduction in risk aversion under amisulpride was driven by increased sensitivity to reward magnitude and decreased distortion of outcome probability, resulting in more linear value coding. Our data suggest that different components that govern individual risk attitude are under dopaminergic control, such that D2 receptor blockade facilitates risk taking and expected value processing.

  20. Hydronephrosis alters cardiac ACE2 and Mas receptor expression in mice.

    PubMed

    Zhang, Yanling; Ma, Lulu; Wu, Junyan; Chen, Tingting

    2015-06-01

    Hydronephrosis is characterized by substantial loss of tubules and affects renin secretion in the kidney. However, whether alterations of angiotensin-converting enzyme (ACE), ACE2 and Mas receptor in the heart are observed in hydronephrosis is unknown. Thus, we assessed these components in hydronephrotic mice treated with AT1 receptor blockade and ACE inhibitor. Hydronephrosis was induced by left ureteral ligation in Balb/C mice except sham-operated animals. The levels of cardiac ACE, ACE2 and Mas receptor were measured after treatment of losartan or enalapril. Hydronephrosis led to an increase of ACE level and a decrease of ACE2 and Mas receptor in the heart. Losartan decreased cardiac ACE level, but ACE2 and Mas receptor levels significantly increased in hydronephrotic mice (p < 0.01). Enalapril increased ACE2 levels (p < 0.01), but did not affect Mas receptor in the heart. Plasma renin activity (PRA) and Ang II decreased in hydronephrotic mice, but significantly increased after treatment with losartan or enalapril. Hydronephrosis increased cardiac ACE and suppressed ACE2 and Mas receptor levels. AT1 blockade caused sustained activation of cardiac ACE2 and Mas receptor, but ACE inhibitor had the limitation of such activation of Mas receptor in hydronephrotic animals. © The Author(s) 2015.

  1. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis.

    PubMed

    Huang, Yan; Di Lorenzo, Annarita; Jiang, Weidong; Cantalupo, Anna; Sessa, William C; Giordano, Frank J

    2013-09-01

    Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings.

  2. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors

    PubMed Central

    Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346

  3. CB1 cannabinoid receptor-mediated anandamide signalling reduces the defensive behaviour evoked through GABAA receptor blockade in the dorsomedial division of the ventromedial hypothalamus.

    PubMed

    Dos Anjos-Garcia, Tayllon; Ullah, Farhad; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2017-02-01

    The effects of cannabinoids in brain areas expressing cannabinoid receptors, such as hypothalamic nuclei, are not yet well known. Several studies have demonstrated the role of hypothalamic nuclei in the organisation of behavioural responses induced through innate fear and panic attacks. Panic-prone states are experimentally induced in laboratory animals through a reduction in the GABAergic activity. The aim of the present study was to examine panic-like elaborated defensive behaviour evoked by GABA A receptor blockade with bicuculline (BIC) in the dorsomedial division of the ventromedial hypothalamus (VMHdm). We also aimed to characterise the involvement of endocannabinoids and the CB 1 cannabinoid receptor in the modulation of elaborated defence behavioural responses organised with the VMHdm. The guide-cannula was stereotaxicaly implanted in VMHdm and the animals were treated with anandamide (AEA) at different doses, and the effective dose was used after the pre-treatment with the CB 1 receptor antagonist AM251, followed by GABA A receptor blockade in VMHdm. The results showed that the intra-hypothalamic administration of AEA at an intermediate dose (5 pmol) attenuated defence responses induced through the intra-VMHdm microinjection of bicuculline (40 ng). This effect, however, was inhibited when applied central microinjection of the CB 1 receptor antagonist AM251 in the VMHdm. Moreover, AM251 potentiates de non-oriented escape induced by bicuculline, effect blocked by pre-treatment with the TRPV 1 channel antagonist 6-I-CPS. These results indicate that AEA modulates the pro-aversive effects of intra-VMHdm-bicuculline treatment, recruiting CB 1 cannabinoid receptors and the TRPV1 channel is involved in the AM251-related potentiation of bicuculline effects on non-oriented escape behaviour. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Involvement of α₂-adrenoceptors, imidazoline, and endothelin-A receptors in the effect of agmatine on morphine and oxycodone-induced hypothermia in mice.

    PubMed

    Bhalla, Shaifali; Andurkar, Shridhar V; Gulati, Anil

    2013-10-01

    Potentiation of opioid analgesia by endothelin-A (ET(A)) receptor antagonist, BMS182874, and imidazoline receptor/α₂-adrenoceptor agonists such as clonidine and agmatine are well known. It is also known that agmatine blocks morphine hyperthermia in rats. However, the effect of agmatine on morphine or oxycodone hypothermia in mice is unknown. The present study was carried out to study the role of α₂-adrenoceptors, imidazoline, and ET(A) receptors in morphine and oxycodone hypothermia in mice. Body temperature was determined over 6 h in male Swiss Webster mice treated with morphine, oxycodone, agmatine, and combination of agmatine with morphine or oxycodone. Yohimbine, idazoxan, and BMS182874 were used to determine involvement of α₂-adrenoceptors, imidazoline, and ET(A) receptors, respectively. Morphine and oxycodone produced significant hypothermia that was not affected by α₂-adrenoceptor antagonist yohimbine, imidazoline receptor/α₂ adrenoceptor antagonist idazoxan, or ET(A) receptor antagonist, BMS182874. Agmatine did not produce hypothermia; however, it blocked oxycodone but not morphine-induced hypothermia. Agmatine-induced blockade of oxycodone hypothermia was inhibited by idazoxan and yohimbine. The blockade by idazoxan was more pronounced compared with yohimbine. Combined administration of BMS182874 and agmatine did not produce changes in body temperature in mice. However, when BMS182874 was administered along with agmatine and oxycodone, it blocked agmatine-induced reversal of oxycodone hypothermia. This is the first report demonstrating that agmatine does not affect morphine hypothermia in mice, but reverses oxycodone hypothermia. Imidazoline receptors and α₂-adrenoceptors are involved in agmatine-induced reversal of oxycodone hypothermia. Our findings also suggest that ET(A) receptors may be involved in blockade of oxycodone hypothermia by agmatine. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  5. Long-term systemic angiotensin II type 1 receptor blockade regulates mRNA expression of dorsomedial medulla renin-angiotensin system components

    PubMed Central

    Gilliam-Davis, Shea; Gallagher, Patricia E.; Payne, Valerie S.; Kasper, Sherry O.; Tommasi, Ellen N.; Westwood, Brian M.; Robbins, Michael E.; Chappell, Mark C.

    2011-01-01

    In Fischer 344 (F344) rats, renin-angiotensin system (RAS) blockade for 1 yr with the angiotensin II type 1 (AT1) receptor blocker L-158,809 prevents age-related impairments in metabolic function, similar to transgenic rats with low glial angiotensinogen (Aogen). Brain RAS regulation may contribute to the benefits of long-term systemic AT1 antagonism. We assessed the mRNA of RAS components in the dorsomedial medulla of F344 rats at 3 (young; n = 8) or 15 mo of age (old; n = 7) and in rats treated from 3 to 15 mo of age with 20 mg/l of the AT1 receptor antagonist L-158,809 (Old+L; n = 6). Aogen and renin mRNA were lower in the young compared with old group. Angiotensin-converting enzyme (ACE) mRNA was lower in the old and Old+L compared with the young group. ACE2 and neprilysin expression were significantly higher in Old+L compared with young or old rats. AT1b, AT2, and Mas receptor mRNA were higher with treatment. Leptin receptor mRNA was lower in the old rats and this was prevented by L-158,809 treatment. Dual-specificity phosphatase 1 (DUSP1) mRNA was highest in the Old+L group. Aggregate correlate summation revealed a positive relationship for Mas receptor mRNA with food intake. The findings provide evidence for regulation of dorsomedial medullary renin and Aogen mRNA during aging. Long-term AT1 receptor blockade increases the mRNA of the enzymes ACE2 and neprilysin and the MAS receptor, which could potentially shift the balance from ANG II to ANG-(1–7) and prevent age-related declines in the leptin receptor and its signaling pathway. PMID:21540301

  6. Treatment of established left ventricular hypertrophy with fibroblast growth factor receptor blockade in an animal model of CKD

    PubMed Central

    Di Marco, Giovana Seno; Reuter, Stefan; Kentrup, Dominik; Grabner, Alexander; Amaral, Ansel Philip; Fobker, Manfred; Stypmann, Jörg; Pavenstädt, Hermann; Wolf, Myles; Faul, Christian; Brand, Marcus

    2014-01-01

    Background Activation of fibroblast growth factor receptor (FGFR)-dependent signalling by FGF23 may contribute to the complex pathogenesis of left ventricular hypertrophy (LVH) in chronic kidney disease (CKD). Pan FGFR blockade by PD173074 prevented development of LVH in the 5/6 nephrectomy rat model of CKD, but its ability to treat and reverse established LVH is unknown. Methods CKD was induced in rats by 5/6 nephrectomy. Two weeks later, rats began treatment with vehicle (0.9% NaCl) or PD173074, 1 mg/kg once-daily for 3 weeks. Renal function was determined by urine and blood analyses. Left ventricular (LV) structure and function were determined by echocardiography, histopathology, staining for myocardial fibrosis (Sirius-Red) and investigating cardiac gene expression profiles by real-time PCR. Results Two weeks after inducing CKD by 5/6 nephrectomy, rats manifested higher (mean ± SEM) systolic blood pressure (208 ± 4 versus 139 ± 3 mmHg; P < 0.01), serum FGF23 levels (1023 ± 225 versus 199 ± 9 pg/mL; P < 0.01) and LV mass (292 ± 9 versus 220 ± 3 mg; P < 0.01) when compared with sham-operated animals. Thereafter, 3 weeks of treatment with PD173074 compared with vehicle did not significantly change blood pressure, kidney function or metabolic parameters, but significantly reduced LV mass (230 ± 14 versus 341 ± 33 mg; P < 0.01), myocardial fibrosis (2.5 ± 0.7 versus 5.4 ± 0.95% staining/field; P < 0.01) and cardiac expression of genes associated with pathological LVH, while significantly increasing ejection fraction (18 versus 2.5% post-treatment increase; P < 0.05). Conclusions FGFR blockade improved cardiac structure and function in 5/6 nephrectomy rats with previously established LVH. These data support FGFR activation as a potentially modifiable, blood pressure-independent molecular mechanism of LVH in CKD. PMID:24875663

  7. Vascular endothelial growth factor (VEGF) inhibition--a critical review.

    PubMed

    Moreira, Irina Sousa; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2007-03-01

    Angiogenesis, or formation of new blood capillaries from preexisting vessels, plays both beneficial and damaging roles in the organism. It is a result of a complex balance of positive and negative regulators, and vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic factors involved in tumor angiogenesis. VEGF increases vascular permeability, which might facilitate tumor dissemination via the circulation causing a greater delivery of oxygen and nutrients; it recruits circulating endothelial precursor cells, and acts as a survival factor for immature tumor blood vessels. The endotheliotropic activities of VEGF are mediated through the VEGF-specific tyrosine-kinase receptors: VEGFR-1, VEGFR-2 and VEGFR-3. VEGF and its receptors play a central role in tumor angiogenesis, and therefore the blockade of this pathway is a promising therapeutic strategy for inhibiting angiogenesis and tumor growth. A number of different strategies to inhibit VEGF signal transduction are in development and they include the development of humanized neutralizing anti-VEGF monoclonal antibodies, receptor antagonists, soluble receptors, antagonistic VEGF mutants, and inhibitors of VEGF receptor function. These agents can be divided in two broad classes, namely agents designed to target the VEGF activity and agents designed to target the surface receptor function. The main purpose of this review is to summarize all the available information regarding the importance of the pro-angiogenic factor VEGF in cancer therapy. After an overview of the VEGF family and their respective receptors, we shall focus our attention on the different VEGF-inhibitors existent nowadays. Agents based upon anti-VEGF therapy have provided solid proofs about their success, and therefore we believe that a critical review is of the utmost importance to help researchers in their future work.

  8. Enhanced motivation for food reward induced by stress and attenuation by corticotrophin-releasing factor receptor antagonism in rats: implications for overeating and obesity

    PubMed Central

    Liu, Xiu

    2014-01-01

    Rationale Overeating beyond individuals’ homeostatic needs critically contributes to obesity. The neurobehavioral mechanisms underlying the motivation to consume excessive foods with high calories are not fully understood. Objective The present study examined whether a pharmacological stressor, yohimbine enhances the motivation to procure food reward with an emphasis on comparisons between standard lab chow and high-fat foods. The effects of corticotropin-releasing factor receptor (CRF1) blockade by a CFR1 selective antagonist NBI on the stress-enhanced motivation for food reward were also assessed. Methods Male Sprague-Dawley rats with chow available ad libitum in their home cages were trained to press a lever under a progressive-ratio schedule for deliveries of either standard or high-fat food pellets. For testing yohimbine stress effects, rats received an intraperitoneal administration of yohimbine 10 min before start of the test sessions. For testing effects of CRF1 receptor blockade on stress responses, NBI was administered 20 min prior to yohimbine challenge. Results The rats emitted higher levels of lever responses to procure the high-fat food pellets compared with their counterparts on standard food pellets. Yohimbine challenge facilitated lever responses for the reward in all of the rats, whereas the effect was more robust in the rats on high-fat food pellets compared with their counterparts on standard food pellets. An inhibitory effect of pretreatment with NBI was observed on the enhancing effect of yohimbine challenge but not on the responses under baseline condition without yohimbine administration. Conclusions Stress challenge significantly enhanced the motivation of satiated rats to procure extra food reward, especially the high-fat food pellets. Activation of CRF1 receptors is required for the stress-enhanced motivation for food reward. These results may have implications for our better understanding of the biobehavioral mechanisms of overeating and obesity. PMID:25510859

  9. Enhanced motivation for food reward induced by stress and attenuation by corticotrophin-releasing factor receptor antagonism in rats: implications for overeating and obesity.

    PubMed

    Liu, Xiu

    2015-06-01

    Overeating beyond individuals' homeostatic needs critically contributes to obesity. The neurobehavioral mechanisms underlying the motivation to consume excessive foods with high calories are not fully understood. The present study examined whether a pharmacological stressor, yohimbine, enhances the motivation to procure food reward with an emphasis on comparisons between standard lab chow and high-fat foods. The effects of corticotropin-releasing factor (CRF) receptor blockade by a CRF1-selective antagonist NBI on the stress-enhanced motivation for food reward were also assessed. Male Sprague-Dawley rats with chow available ad libitum in their home cages were trained to press a lever under a progressive ratio schedule for deliveries of either standard or high-fat food pellets. For testing yohimbine stress effects, rats received an intraperitoneal administration of yohimbine 10 min before start of the test sessions. For testing effects of CRF1 receptor blockade on stress responses, NBI was administered 20 min prior to yohimbine challenge. The rats emitted higher levels of lever responses to procure the high-fat food pellets compared with their counterparts on standard food pellets. Yohimbine challenge facilitated lever responses for the reward in all of the rats, whereas the effect was more robust in the rats on high-fat food pellets compared with their counterparts on standard food pellets. An inhibitory effect of pretreatment with NBI was observed on the enhancing effect of yohimbine challenge but not on the responses under baseline condition without yohimbine administration. Stress challenge significantly enhanced the motivation of satiated rats to procure extra food reward, especially the high-fat food pellets. Activation of CRF1 receptors is required for the stress-enhanced motivation for food reward. These results may have implications for our better understanding of the biobehavioral mechanisms of overeating and obesity.

  10. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    PubMed Central

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion but not with the prevention of cocaine-induced sensitization. PMID:24409127

  11. Renal failure and concurrent RAAS blockade in older CKD patients with renal artery stenosis: an extended Mayo Clinic prospective 63-month experience.

    PubMed

    Onuigbo, Macaulay A C; Onuigbo, Nnonyelum T C

    2008-01-01

    Concerns have been raised regarding a possible link between the increasing utilization of RAAS blocking strategies in the United States and the increasing ESRD epidemic. Most reports of accelerated renal failure in CKD patients with renal artery stenosis on RAAS blockade are retrospective. We hypothesized that this syndrome is therefore poorly understood, may be under-recognized, and demanded prospective analysis. As part of a larger cohort of 100 CKD patients on RAAS blockade presenting with worsening renal failure (>25% increased serum creatinine from baseline) while concurrently on an ACE inhibitor and/or an angiotensin receptor blocker, 26 patients (26%) enrolled between September 2002 and February 2005 had hemodynamically significant renal artery stenosis. RAAS blockade was discontinued, standard nephrology care applied, and eGFR by MDRD monitored. They consisted of 26 Caucasian patients, M:F = 10:16, age 75.3 +/- 6.4 (63-87) years. Mean follow-up was 26.4 +/- 16.4 (1-49) months. Duration of RAAS blockade prior to enrollment was 20.2 +/- 16.4 (0.5-48) months. Contrary to previous reports, precipitating factors were often absent (15/26), unilateral RAS lesions in patients with dual kidneys was common (19/26), and progression to ESRD was frequent (5/26). Four-fifths of the ESRD patients were dead after 5.5 +/- 4.1 (1-11) months. A fifth patient with improved eGFR died after 14 months from metastatic gastric cancer. Excluding five patients who progressed to ESRD and two patients lost early to follow-up, in 19 patients, eGFR increased from 27.8 +/- 9.5 (11-47) to 36.7 +/- 16 (14-68) mL/min/1.73 m(2) BSA (p = 0.014) after 34.8 +/- 10.1 (14-49) months of follow-up. This improvement in eGFR was evident after weeks to months of stopping RAAS blockade in these patients with and without renal PTA and stenting. Nevertheless, renal PTA/stenting further improved eGFR in selected patients. We conclude that renal failure/ESRD associated with concurrent RAAS blockade in older CKD patients with renal stenosis remains poorly understood and mostly unrecognized. Unilateral lesions in patients with dual kidneys, absent precipitating factors, and progression to ESRD with high mortality, despite discontinuation of RAAS blockade, are more common than previously thought. Lower baseline eGFR (<35) predicted ESRD. Our findings call for a larger prospective study, especially given growing concerns of iatrogenic renal failure from RAAS blockade in the aging U.S. population. An aging U.S. population further raises the probability of the presence of increasing and unrecognized renal artery stenosis in our CKD patient population.

  12. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components,more » oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade reduced levels of oxidative stress and apoptosis in renal tissue. • P2X7R blockade may be a novel adjunctive therapy strategy for this disease.« less

  13. Boronic acid-containing CXCR1/2 antagonists: Optimization of metabolic stability, in vivo evaluation, and a proposed receptor binding model.

    PubMed

    Maeda, Dean Y; Peck, Angela M; Schuler, Aaron D; Quinn, Mark T; Kirpotina, Liliya N; Wicomb, Winston N; Auten, Richard L; Gundla, Rambabu; Zebala, John A

    2015-06-01

    Blockade of undesired neutrophil migration to sites of inflammation remains an area of substantial pharmaceutical interest. To effect this blockade, a validated therapeutic target is antagonism of the chemokine receptor CXCR2. Herein we report the discovery of 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide 6, an antagonist with activity at both CXCR1 and CXCR2 receptors (IC50 values 31 and 21 nM, respectively). Compound 6 exhibited potent inhibition of neutrophil influx in a rat model of pulmonary inflammation, and is hypothesized to interact with a unique intracellular binding site on CXCR2. Compound 6 (SX-576) is undergoing further investigation as a potential therapy for pulmonary inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dopamine Transporter Blockade Increases LTP in the CA1 Region of the Rat Hippocampus via Activation of the D3 Dopamine Receptor

    ERIC Educational Resources Information Center

    Swant, Jarod; Wagner, John J.

    2006-01-01

    Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…

  15. New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies.

    PubMed

    Schmitt, Thomas M; Stromnes, Ingunn M; Chapuis, Aude G; Greenberg, Philip D

    2015-12-01

    The immune system, T cells in particular, have the ability to target and destroy malignant cells. However, antitumor immune responses induced from the endogenous T-cell repertoire are often insufficient for the eradication of established tumors, as illustrated by the failure of cancer vaccination strategies or checkpoint blockade for most tumors. Genetic modification of T cells to express a defined T-cell receptor (TCR) can provide the means to rapidly generate large numbers of tumor-reactive T cells capable of targeting tumor cells in vivo. However, cell-intrinsic factors as well as immunosuppressive factors in the tumor microenvironment can limit the function of such gene-modified T cells. New strategies currently being developed are refining and enhancing this approach, resulting in cellular therapies that more effectively target tumors and that are less susceptible to tumor immune evasion. ©2015 American Association for Cancer Research.

  16. Acute suppression of spontaneous neurotransmission drives synaptic potentiation.

    PubMed

    Nosyreva, Elena; Szabla, Kristen; Autry, Anita E; Ryazanov, Alexey G; Monteggia, Lisa M; Kavalali, Ege T

    2013-04-17

    The impact of spontaneous neurotransmission on neuronal plasticity remains poorly understood. Here, we show that acute suppression of spontaneous NMDA receptor-mediated (NMDAR-mediated) neurotransmission potentiates synaptic responses in the CA1 regions of rat and mouse hippocampus. This potentiation requires protein synthesis, brain-derived neurotrophic factor expression, eukaryotic elongation factor-2 kinase function, and increased surface expression of AMPA receptors. Our behavioral studies link this same synaptic signaling pathway to the fast-acting antidepressant responses elicited by ketamine. We also show that selective neurotransmitter depletion from spontaneously recycling vesicles triggers synaptic potentiation via the same pathway as NMDAR blockade, demonstrating that presynaptic impairment of spontaneous release, without manipulation of evoked neurotransmission, is sufficient to elicit postsynaptic plasticity. These findings uncover an unexpectedly dynamic impact of spontaneous glutamate release on synaptic efficacy and provide new insight into a key synaptic substrate for rapid antidepressant action.

  17. A review on adverse event profiles of epidermal growth factor receptor-tyrosine kinase inhibitors in nonsmall cell lung cancer patients.

    PubMed

    Biswas, B; Ghadyalpatil, N; Krishna, M V; Deshmukh, J

    2017-12-01

    The epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of EGFR-mutant nonsmall cell lung cancer (NSCLC). These EGFR TKIs demonstrate a different adverse event (AE) profile as compared to conventional chemotherapy agents. They are more commonly associated with cutaneous AEs and diarrhea while hematological AEs occurred commonly with chemotherapy agents. These AEs are the extension of pharmacological effect and occur as a result of blockade of EGFR-regulated pathways in the skin and gastrointestinal tract. This review article sheds light on the safety profile of first-, second-, and third-generation EGFR TKIs based on data obtained from several clinical trials conducted in NSCLC patients and highlights trials comparing these agents with the conventional chemotherapy agents. The strategies to manage EGFR TKI-related AEs are also reviewed.

  18. Differential control of MMP and t-PA/PAI-1 expressions by sympathetic and renin-angiotensin systems in rat left ventricle.

    PubMed

    Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel

    2009-10-05

    In the present study, we tested the hypothesis that angiotensin II (Ang II) has both direct (via AT1 receptors) and indirect (via sympathostimulator pathway) actions on the synthesis and activity of the enzymes involved in the extracellular matrix degradation in vivo. For this purpose, sympathectomy and blockade of the Ang II receptor AT1 were performed alone or in combination in normotensive rats. The mRNA of the plasminogen activator (t-PA) and its inhibitor (PAI-1), the mRNA, protein and activity of the matrix metalloproteinases MMP-2 and MMP-9 were examined by Q-RT-PCR, immunoblotting and zymographic methods in the left ventricle. t-PA and PAI-1 mRNA were decreased after sympathectomy and remained unchanged after AT1 receptors blockade. mRNA was increased for t-PA and decreased by similar degree for PAI-1 after double treatment. MMPs mRNA and protein levels were decreased either after sympathectomy or AT1 receptors blockade and an additive effect was acquired after double treatment. MMPs activity was decreased by similar degree in the three treated groups. Deducted interpretations from our experimental approach suggest that Ang II inhibits directly (via AT1 receptors) and indirectly (via sympathostimulator pathway) t-PA mRNA synthesis. It seems unable to influence directly PAI-1 mRNA, but stimulates indirectly PAI-1 mRNA synthesis. Ang II stimulates directly (via AT1 receptors) and indirectly (via sympathostimulator pathway) MMPs synthesis at both transcriptional and protein levels. The enzymatic activity of MMPs does not seem to be influenced directly by Ang II but it could be stimulated indirectly (via sympathostimulator pathway).

  19. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    PubMed

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-07

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  20. Mineralocorticoid receptor blockade in addition to angiotensin converting enzyme inhibitor or angiotensin II receptor blocker treatment: an emerging paradigm in diabetic nephropathy: a systematic review.

    PubMed

    Mavrakanas, Thomas A; Gariani, Karim; Martin, Pierre-Yves

    2014-02-01

    Blockade of the renin-angiotensin-aldosterone system (RAAS) is a standard therapeutic intervention in diabetic patients with chronic kidney disease (CKD). Concomitant mineralocorticoid receptor blockade has been studied as a novel approach to further slow down CKD progression. We used PubMed and EMBASE databases to search for relevant literature. We included in our review eight studies in patients of at least 18 years of age, with a diagnosis of type 1 or type 2 diabetes mellitus and diabetic nephropathy, under an angiotensin converting enzyme inhibitor (ACEI) and/or an angiotensin II receptor blocker (ARB) as standard treatment. A subset of patients in each study also received a mineralocorticoid receptor blocker (MRB) (either spironolactone or eplerenone) in addition to standard treatment. Combined treatment with a mineralocorticoid receptor blocker further reduced albuminuria by 23 to 61% compared with standard treatment. Estimated glomerular filtration rate values upon study completion slightly decreased under combined treatment. Blood pressure levels upon study completion were significantly lower with combined treatment in three studies. Hyperkalemia prevalence increased in patients under combined treatment raising dropout rate up to 17%. Therefore, combined treatment by an ACEI/ARB and a MRB may further decrease albuminuria in diabetic nephropathy. This effect may be due to the specific properties of the MRB treatment. Clinicians should regularly check potassium levels because of the increased risk of hyperkalemia. Available evidence should be confirmed by an adequately powered comparative trial of the standard treatment (ACEI or ARB) versus combined treatment by an ACEI/ARB and a MRB. Copyright © 2013 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  1. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    PubMed

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  2. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunetto de Farias, Caroline; Children's Cancer Institute, 90420-140 Porto Alegre, RS; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling canmore » protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.« less

  3. Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection.

    PubMed

    Ng, Cherie T; Sullivan, Brian M; Teijaro, John R; Lee, Andrew M; Welch, Megan; Rice, Stephanie; Sheehan, Kathleen C F; Schreiber, Robert D; Oldstone, Michael B A

    2015-05-13

    Although type I interferon (IFN-I) is thought to be beneficial against microbial infections, persistent viral infections are characterized by high interferon signatures suggesting that IFN-I signaling may promote disease pathogenesis. During persistent lymphocytic choriomeningitis virus (LCMV) infection, IFNα and IFNβ are highly induced early after infection, and blocking IFN-I receptor (IFNAR) signaling promotes virus clearance. We assessed the specific roles of IFNβ versus IFNα in controlling LCMV infection. While blockade of IFNβ alone does not alter early viral dissemination, it is important in determining lymphoid structure, lymphocyte migration, and anti-viral T cell responses that lead to accelerated virus clearance, approximating what occurs during attenuation of IFNAR signaling. Comparatively, blockade of IFNα was not associated with improved viral control, but with early dissemination of virus. Thus, despite their use of the same receptor, IFNβ and IFNα have unique and distinguishable biologic functions, with IFNβ being mainly responsible for promoting viral persistence. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Blockade of the receptor for advanced glycation end products attenuates acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Ekong, Udeme; Zeng, Shan; Dun, Hao; Feirt, Nikki; Guo, Jiancheng; Ippagunta, Nikalesh; Guarrera, James V; Lu, Yan; Weinberg, Alan; Qu, Wu; Ramasamy, Ravichandran; Schmidt, Ann Marie; Emond, Jean C

    2006-04-01

    Severe injury to the liver, such as that induced by toxic doses of acetaminophen, triggers a cascade of events leading to hepatocyte death. It is hypothesized that activation of the receptor for advanced glycation end products (RAGE) might contribute to acetaminophen-induced liver toxicity by virtue of its ability to generate reactive oxygen species, at least in part via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and thereby activate downstream signaling pathways leading to cellular injury. A model was employed in which toxic doses of acetaminophen (1125 mg/kg) were administered to C57BL/6 mice. To block RAGE, mice received murine soluble (s) RAGE, the extracellular ligand binding domain of the receptor that acts as a decoy to interrupt ligand-RAGE signaling. Animals treated with sRAGE displayed increased survival compared with vehicle treatment, and markedly decreased hepatic necrosis. Consistent with an important role for RAGE-triggered oxidant stress in acetaminophen-induced injury, a significant reduction of nitrotyrosine protein adducts was observed in hepatic tissue in sRAGE-treated versus vehicle-treated mice receiving acetaminophen, in parallel with significantly increased levels of glutathione. In addition, pro-regenerative cytokines tumor necrosis factor-alpha and interleukin-6 were increased in sRAGE-treated versus vehicle-treated mice. These findings implicate RAGE-dependent mechanisms in acetaminophen-induced liver damage and suggest that blockade of this pathway may impart beneficial effects in toxin-induced liver injury.

  5. Effects of calcium channel blockers comparing to angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in patients with hypertension and chronic kidney disease stage 3 to 5 and dialysis: A systematic review and meta-analysis

    PubMed Central

    Lin, Yen-Chung; Lin, Jheng-Wei; Wu, Mai-Szu; Chen, Kuan-Chou; Peng, Chiung-Chi

    2017-01-01

    Background Calcium channel blocker (CCB) or two renin angiotensin aldosterone system blockades (RAAS), angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), are major potent and prevalently used as initial antihypertensive agents for mild to moderate hypertension, but no uniform agreement as to which antihypertensive drugs should be given for initial therapy, especially among chronic kidney disease (CKD) patients. Design A systematic review and meta-analysis comparing CCBs and the two RAAS blockades for hypertensive patients with CKD stage 3 to 5D. The inclusion criteria for this systematic review was RCT that compared the effects of CCBs and the two RAAS blockades in patients with hypertension and CKD. The exclusion criteria were (1) renal transplantation, (2) CKD stage 1 or 2, (3) combined therapy (data cannot be extracted separately). Outcomes were blood pressure change, mortality, heart failure, stroke or cerebrovascular events, and renal outcomes. Results 21 randomized controlled trials randomized 9,492 patients with hypertensive and CKD into CCBs and the two RAAS blockades treatments. The evidence showed no significant differences in blood presser change, mortality, heart failure, stroke or cerebrovascular events, and renal outcomes between CCBs group and the two RAAS blockades group. The publication bias of pooled mean blood presser change that was detected by Egger’s test was non-significant. Conclusions CCBs has similar effects on long term blood pressure, mortality, heart failure, stroke or cerebrovascular events, and renal function to RAAS blockades in patients CKD stage 3 to 5D and hypertension. PMID:29240784

  6. Peristalsis and propulsion of colonic content can occur after blockade of major neuroneuronal and neuromuscular transmitters in isolated guinea pig colon.

    PubMed

    Sia, T C; Brookes, S J; Dinning, P G; Wattchow, D A; Spencer, N J

    2013-12-01

    We recently identified hexamethonium-resistant peristalsis in the guinea pig colon. We showed that, following acute blockade of nicotinic receptors, peristalsis recovers, leading to normal propagation velocities of fecal pellets along the colon. This raises the fundamental question: what mechanisms underlie hexamethonium-resistant peristalsis? We investigated whether blockade of the major receptors that underlie excitatory neuromuscular transmission is required for hexamethonium-resistant peristalsis. Video imaging of colonic wall movements was used to make spatiotemporal maps and determine the velocity of peristalsis. Propagation of artificial fecal pellets in the guinea pig distal colon was studied in hexamethonium, atropine, ω-conotoxin (GVIA), ibodutant (MEN-15596), and TTX. Hexamethonium and ibodutant alone did not retard peristalsis. In contrast, ω-conotoxin abolished peristalsis in some preparations and reduced the velocity of propagation in all remaining specimens. Peristalsis could still occur in some animals in the presence of hexamethonium + atropine + ibodutant + ω-conotoxin. Peristalsis never occurred in the presence of TTX. The major finding of the current study is the unexpected observation that peristalsis can occur after blockade of the major excitatory neuroneuronal and neuromuscular transmitters. Also, the colon retained an intrinsic polarity in the presence of these antagonists and was only able to expel pellets in an aboral direction. The nature of the mechanism(s)/neurotransmitter(s) that generate(s) peristalsis and facilitate(s) natural fecal pellet propulsion, after blockade of major excitatory neurotransmitters, at the neuroneuronal and neuromuscular junction remains to be identified.

  7. Notch2 blockade enhances hematopoietic stem cell mobilization and homing.

    PubMed

    Wang, Weihuan; Yu, Shuiliang; Myers, Jay; Wang, Yiwei; Xin, William W; Albakri, Marwah; Xin, Alison W; Li, Ming; Huang, Alex Y; Xin, Wei; Siebel, Christian W; Lazarus, Hillard M; Zhou, Lan

    2017-10-01

    Despite use of newer approaches, some patients being considered for autologous hematopoietic cell transplantation (HCT) may only mobilize limited numbers of hematopoietic progenitor cells (HPCs) into blood, precluding use of the procedure, or being placed at increased risk of complications due to slow hematopoietic reconstitution. Developing more efficacious HPC mobilization regimens and strategies may enhance the mobilization process and improve patient outcome. Although Notch signaling is not essential for homeostasis of adult hematopoietic stem cells (HSCs), Notch-ligand adhesive interaction maintains HSC quiescence and niche retention. Using Notch receptor blocking antibodies, we report that Notch2 blockade, but not Notch1 blockade, sensitizes hematopoietic stem cells and progenitors (HSPCs) to mobilization stimuli and leads to enhanced egress from marrow to the periphery. Notch2 blockade leads to transient myeloid progenitor expansion without affecting HSC homeostasis and self-renewal. We show that transient Notch2 blockade or Notch2-loss in mice lacking Notch2 receptor lead to decreased CXCR4 expression by HSC but increased cell cycling with CXCR4 transcription being directly regulated by the Notch transcriptional protein RBPJ. In addition, we found that Notch2-blocked or Notch2-deficient marrow HSPCs show an increased homing to the marrow, while mobilized Notch2-blocked, but not Notch2-deficient stem cells and progenitors, displayed a competitive repopulating advantage and enhanced hematopoietic reconstitution. These findings suggest that blocking Notch2 combined with the current clinical regimen may further enhance HPC mobilization and improve engraftment during HCT. Copyright© 2017 Ferrata Storti Foundation.

  8. AT1-receptor blockade, but not renin inhibition, reduces aneurysm growth and cardiac failure in fibulin-4 mice.

    PubMed

    Te Riet, Luuk; van Deel, Elza D; van Thiel, Bibi S; Moltzer, Els; van Vliet, Nicole; Ridwan, Yanto; van Veghel, Richard; van Heijningen, Paula M; Robertus, Jan Lukas; Garrelds, Ingrid M; Vermeij, Marcel; van der Pluijm, Ingrid; Danser, A H Jan; Essers, Jeroen

    2016-04-01

    Increasing evidence supports a role for the angiotensin II-AT1-receptor axis in aneurysm development. Here, we studied whether counteracting this axis via stimulation of AT2 receptors is beneficial. Such stimulation occurs naturally during AT1-receptor blockade with losartan, but not during renin inhibition with aliskiren. Aneurysmal homozygous fibulin-4 mice, displaying a four-fold reduced fibulin-4 expression, were treated with placebo, losartan, aliskiren, or the β-blocker propranolol from day 35 to 100. Their phenotype includes cystic media degeneration, aortic regurgitation, left ventricular dilation, reduced ejection fraction, and fractional shortening. Although losartan and aliskiren reduced hemodynamic stress and increased renin similarly, only losartan increased survival. Propranolol had no effect. No drug rescued elastic fiber fragmentation in established aneurysms, although losartan did reduce aneurysm size. Losartan also increased ejection fraction, decreased LV diameter, and reduced cardiac pSmad2 signaling. None of these effects were seen with aliskiren or propranolol. Longitudinal micro-CT measurements, a novel method in which each mouse serves as its own control, revealed that losartan reduced LV growth more than aneurysm growth, presumably because the heart profits both from the local (cardiac) effects of losartan and its effects on aortic root remodeling. Losartan, but not aliskiren or propranolol, improved survival in fibulin-4 mice. This most likely relates to its capacity to improve structure and function of both aorta and heart. The absence of this effect during aliskiren treatment, despite a similar degree of blood pressure reduction and renin-angiotensin system blockade, suggests that it might be because of AT2-receptor stimulation.

  9. Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice.

    PubMed

    Gillis, Caitlin M; Jönsson, Friederike; Mancardi, David A; Tu, Naxin; Beutier, Héloïse; Van Rooijen, Nico; Macdonald, Lynn E; Murphy, Andrew J; Bruhns, Pierre

    2017-04-01

    Anaphylaxis can proceed through distinct IgE- or IgG-dependent pathways, which have been investigated in various mouse models. We developed a novel mouse strain in which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been inserted into the equivalent murine locus, corresponding to a locus swap. We sought to determine the capabilities of hFcγRs to induce systemic anaphylaxis and identify the cell types and mediators involved. hFcγR expression on mouse and human cells was compared to validate the model. Passive systemic anaphylaxis was induced by injection of heat-aggregated human intravenous immunoglobulin and active systemic anaphylaxis after immunization and challenge. Anaphylaxis severity was evaluated based on hypothermia and mortality. The contribution of receptors, mediators, or cell types was assessed based on receptor blockade or depletion. The human-to-mouse low-affinity FcγR locus swap engendered hFcγRIIA/IIB/IIIA/IIIB expression in mice comparable with that seen in human subjects. Knock-in mice were susceptible to passive and active anaphylaxis, accompanied by downregulation of both activating and inhibitory hFcγR expression on specific myeloid cells. The contribution of hFcγRIIA was predominant. Depletion of neutrophils protected against hypothermia and mortality. Basophils contributed to a lesser extent. Anaphylaxis was inhibited by platelet-activating factor receptor or histamine receptor 1 blockade. Low-affinity FcγR locus-switched mice represent an unprecedented model of cognate hFcγR expression. Importantly, IgG-related anaphylaxis proceeds within a native context of activating and inhibitory hFcγRs, indicating that, despite robust hFcγRIIB expression, activating signals can dominate to initiate a severe anaphylactic reaction. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. NMDA Receptors Subserve Persistent Neuronal Firing During Working Memory In Dorsolateral Prefrontal Cortex

    PubMed Central

    Wang, Min; Yang, Yang; Wang, Ching-Jung; Gamo, Nao J.; Jin, Lu E.; Mazer, James A.; Morrison, John H.; Wang, Xiao-Jing; Arnsten, Amy F.T.

    2013-01-01

    Summary Neurons in the primate dorsolateral prefrontal cortex (dlPFC) generate persistent firing in the absence of sensory stimulation, the foundation of mental representation. Persistent firing arises from recurrent excitation within a network of pyramidal Delay cells. Here, we examined glutamate receptor influences underlying persistent firing in primate dlPFC during a spatial working memory task. Computational models predicted dependence on NMDA receptor (NMDAR) NR2B stimulation, and Delay cell persistent firing was abolished by local NR2B NMDAR blockade or by systemic ketamine administration. AMPA receptors (AMPAR) contributed background depolarization to sustain network firing. In contrast, many Response cells -which likely predominate in rodent PFC- were sensitive to AMPAR blockade and increased firing following systemic ketamine, indicating that models of ketamine actions should be refined to reflect neuronal heterogeneity. The reliance of Delay cells on NMDAR may explain why insults to NMDARs in schizophrenia or Alzheimer’s Disease profoundly impair cognition. PMID:23439125

  11. The tuberal lateral hypothalamus is a major target for GABAA--but not GABAB-mediated control of food intake.

    PubMed

    Turenius, Christine I; Charles, Jonathan R; Tsai, Donna H; Ebersole, Priscilla L; Htut, Myat H; Ngo, Phuong T; Lara, Raul N; Stanley, B Glenn

    2009-08-04

    The lateral hypothalamus (LH) is a site of integration for control mechanisms of feeding behavior as it has extensive reciprocal connections with multiple intrahypothalamic and extrahypothalamic brain areas. Evidence suggests that blockade of ionotropric gamma-aminobutyric acid (GABA) receptors in the LH elicits eating in satiated rats. To determine whether this GABA(A) receptor antagonist effect is specific to the LH, the antagonist picrotoxin was injected into one of six nearby sites and food intake was measured. Picrotoxin at 133 pmol elicited eating in the LH, but not in surrounding sites (thalamus, lateral preoptic area, ventral tegmental area, dorsomedial hypothalamus, and entopeduncular nucleus). More specifically, picrotoxin injected into the tuberal LH (tLH) elicited eating, but was ineffective when injected into the anterior or posterior LH. We also investigated whether GABA(B) receptors in the LH participated in the control of food intake and found that neither blockade nor activation of these receptors under multiple conditions changed food intake. Collectively, our findings suggest that GABA(A) but not GABA(B) receptors in the tLH act to suppress feeding behavior.

  12. Role of AMPA glutamate receptors in the conditioned rewarding effects of MDMA in mice.

    PubMed

    García-Pardo, M P; Miñarro, J; Aguilar, M A

    2018-07-16

    Currently, there is not an effective treatment for 3,4-methylenedioxymethamphetamine (MDMA) dependence but pharmacotherapies targeting glutamate neurotransmission are a promising strategy. Previously, we showed that blockade of glutamate NMDA and AMPA receptors impairs the conditioned rewarding effects of MDMA and cocaine, respectively. In this study we evaluated the role of AMPA receptors in the rewarding effects of MDMA in mice using the conditioned place preference (CPP) paradigm. Mice were conditioned with MDMA (1.25 mg/kg) 60 min after the treatment with saline or different doses (0.25, 1 and 5 mg/kg) of the AMPA/kainate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Mice conditioned with MDMA acquired CPP while those treated with any dose of CNQX + MDMA did not. These results supported the involvement of the glutamatergic system in the rewarding properties of MDMA, and suggest that AMPA receptor blockade could be a new therapeutic option for the treatment of those individuals that develop MDMA dependence. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  14. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    PubMed Central

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  15. Colony stimulating factor 1 receptor blockade improves the efficacy of chemotherapy against human neuroblastoma in the absence of T lymphocytes.

    PubMed

    Webb, Matthew W; Sun, Jianping; Sheard, Michael A; Liu, Wei-Yao; Wu, Hong-Wei; Jackson, Jeremy R; Malvar, Jemily; Sposto, Richard; Daniel, Dylan; Seeger, Robert C

    2018-04-17

    Tumor-associated macrophages can promote growth of cancers. In neuroblastoma, tumor-associated macrophages have greater frequency in metastatic versus loco-regional tumors, and higher expression of genes associated with macrophages helps to predict poor prognosis in the 60% of high-risk patients who have MYCN-non-amplified disease. The contribution of cytotoxic T-lymphocytes to anti-neuroblastoma immune responses may be limited by low MHC class I expression and low exonic mutation frequency. Therefore, we modelled human neuroblastoma in T-cell deficient mice to examine whether depletion of monocytes/macrophages from the neuroblastoma microenvironment by blockade of CSF-1R can improve the response to chemotherapy. In vitro, CSF-1 was released by neuroblastoma cells, and topotecan increased this release. In vivo, neuroblastomas formed by subcutaneous co-injection of human neuroblastoma cells and human monocytes into immunodeficient NOD/SCID mice had fewer human CD14 + and CD163 + cells and mouse F4/80 + cells after CSF-1R blockade. In subcutaneous or intra-renal models in immunodeficient NSG or NOD/SCID mice, CSF-1R blockade alone did not affect tumor growth or mouse survival. However, when combined with cyclophosphamide plus topotecan, the CSF-1R inhibitor BLZ945, either without or with anti-human and anti-mouse CSF-1 mAbs, inhibited neuroblastoma growth and synergistically improved mouse survival. These findings indicate that depletion of tumor-associated macrophages from neuroblastomas can be associated with increased chemotherapeutic efficacy without requiring a contribution from T-lymphocytes, suggesting the possibility that combination of CSF-1R blockade with chemotherapy might be effective in patients who have limited anti-tumor T-cell responses. © 2018 UICC.

  16. Blockade of PD-1/PD-L1 Promotes Adoptive T-Cell Immunotherapy in a Tolerogenic Environment

    PubMed Central

    Kenna, Tony J.; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J.

    2015-01-01

    Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells. PMID:25741704

  17. Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment.

    PubMed

    Blake, Stephen J P; Ching, Alan L H; Kenna, Tony J; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J

    2015-01-01

    Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells.

  18. Characterization of methadone as a β-arrestin-biased μ-opioid receptor agonist

    PubMed Central

    Doi, Seira; Mori, Tomohisa; Uzawa, Naoki; Arima, Takamichi; Takahashi, Tomoyuki; Uchida, Masashi; Yawata, Ayaka; Narita, Michiko; Uezono, Yasuhito; Suzuki, Tsutomu

    2016-01-01

    Background Methadone is a unique µ-opioid receptor agonist. Although several researchers have insisted that the pharmacological effects of methadone are mediated through the blockade of NMDA receptor, the underlying mechanism by which methadone exerts its distinct pharmacological effects compared to those of other µ-opioid receptor agonists is still controversial. In the present study, we further investigated the pharmacological profile of methadone compared to those of fentanyl and morphine as measured mainly by the discriminative stimulus effect and in vitro assays for NMDA receptor binding, µ-opioid receptor-internalization, and µ-opioid receptor-mediated β-arrestin recruitment. Results We found that fentanyl substituted for the discriminative stimulus effects of methadone, whereas a relatively high dose of morphine was required to substitute for the discriminative stimulus effects of methadone in rats. Under these conditions, the non-competitive NMDA receptor antagonist MK-801 did not substitute for the discriminative stimulus effects of methadone. In association with its discriminative stimulus effect, methadone failed to displace the receptor binding of MK801 using mouse brain membrane. Methadone and fentanyl, but not morphine, induced potent µ-opioid receptor internalization accompanied by the strong recruitment of β-arrestin-2 in µ-opioid receptor-overexpressing cells. Conclusions These results suggest that methadone may, at least partly, produce its pharmacological effect as a β-arrestin-biased µ-opioid receptor agonist, similar to fentanyl, and NMDA receptor blockade is not the main contributor to the pharmacological profile of methadone. PMID:27317580

  19. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    PubMed

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  20. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    PubMed Central

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  1. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients.

    PubMed

    Siravegna, Giulia; Mussolin, Benedetta; Buscarino, Michela; Corti, Giorgio; Cassingena, Andrea; Crisafulli, Giovanni; Ponzetti, Agostino; Cremolini, Chiara; Amatu, Alessio; Lauricella, Calogero; Lamba, Simona; Hobor, Sebastijan; Avallone, Antonio; Valtorta, Emanuele; Rospo, Giuseppe; Medico, Enzo; Motta, Valentina; Antoniotti, Carlotta; Tatangelo, Fabiana; Bellosillo, Beatriz; Veronese, Silvio; Budillon, Alfredo; Montagut, Clara; Racca, Patrizia; Marsoni, Silvia; Falcone, Alfredo; Corcoran, Ryan B; Di Nicolantonio, Federica; Loupakis, Fotios; Siena, Salvatore; Sartore-Bianchi, Andrea; Bardelli, Alberto

    2015-07-01

    Colorectal cancers (CRCs) evolve by a reiterative process of genetic diversification and clonal evolution. The molecular profile of CRC is routinely assessed in surgical or bioptic samples. Genotyping of CRC tissue has inherent limitations; a tissue sample represents a single snapshot in time, and it is subjected to spatial selection bias owing to tumor heterogeneity. Repeated tissue samples are difficult to obtain and cannot be used for dynamic monitoring of disease progression and response to therapy. We exploited circulating tumor DNA (ctDNA) to genotype colorectal tumors and track clonal evolution during treatment with the epidermal growth factor receptor (EGFR)-specific antibodies cetuximab or panitumumab. We identified alterations in ctDNA of patients with primary or acquired resistance to EGFR blockade in the following genes: KRAS, NRAS, MET, ERBB2, FLT3, EGFR and MAP2K1. Mutated KRAS clones, which emerge in blood during EGFR blockade, decline upon withdrawal of EGFR-specific antibodies, indicating that clonal evolution continues beyond clinical progression. Pharmacogenomic analysis of CRC cells that had acquired resistance to cetuximab reveals that upon antibody withdrawal KRAS clones decay, whereas the population regains drug sensitivity. ctDNA profiles of individuals who benefit from multiple challenges with anti-EGFR antibodies exhibit pulsatile levels of mutant KRAS. These results indicate that the CRC genome adapts dynamically to intermittent drug schedules and provide a molecular explanation for the efficacy of rechallenge therapies based on EGFR blockade.

  2. [STUDYING THE ROLE OF BRAIN MELANOCORTIN RECEPTORS IN THE SUPPRESSING OF FOOD INTAKE UNDER ETHER STRESS IN MICE].

    PubMed

    Bazhan, N M; Kulikova, E V; Makarova, E N; Yakovleva, T V; Kazantseva, A Yu

    2015-12-01

    Melanocortin (MC) system regulates food intake under the rest conditions. Stress inhibits food intake. It is not clear whether brain MC system is involved in stress-induced anorexia in mice. The aim of the work was to investigate the effect of pharmacological blockade and activation of brain MC receptors on food intake under stress. C57B1/6J male mice were subjected to ether stress (0.5 minute ether anesthesia) before the administration of saline solution or synthetic non-selective blocker (SHU9119) or agonist (Melanotan II) of MC receptors into the lateral brain ventricle. Food intake was pre-stimulated with 17 hours of fasting in all mice. Ether stress decreased food intake, increased the plasma corticosterone level and hypothalamic mRNA AgRP (natural MC receptor antagonist) level at 1 hour after the stress. Pharmacological blockade of the MC receptors weakened stress-induced anorexia and decreased mRNA AgRP level in the hypothalamus. Pharmacological stimulation of the MC receptors enhanced ether stress-induced anorexia and hypercortisolism. Thus, our data demonstrated that the central MC system was involved in the development of stress-induced anorexia in mice.

  3. IL-7 receptor blockade following T cell depletion promotes long-term allograft survival

    PubMed Central

    Mai, Hoa-Le; Boeffard, Françoise; Longis, Julie; Danger, Richard; Martinet, Bernard; Haspot, Fabienne; Vanhove, Bernard; Brouard, Sophie; Soulillou, Jean-Paul

    2014-01-01

    T cell depletion is commonly used in organ transplantation for immunosuppression; however, a restoration of T cell homeostasis following depletion leads to increased memory T cells, which may promote transplant rejection. The cytokine IL-7 is important for controlling lymphopoiesis under both normal and lymphopenic conditions. Here, we investigated whether blocking IL-7 signaling with a mAb that targets IL-7 receptor α (IL-7Rα) alone or following T cell depletion confers an advantage for allograft survival in murine transplant models. We found that IL-7R blockade alone induced indefinite pancreatic islet allograft survival if anti–IL-7R treatment was started 3 weeks before graft. IL-7R blockade following anti-CD4– and anti-CD8–mediated T cell depletion markedly prolonged skin allograft survival. Furthermore, IL-7 inhibition in combination with T cell depletion synergized with either CTLA-4Ig administration or suboptimal doses of tacrolimus to induce long-term skin graft acceptance in this stringent transplant model. Together, these therapies inhibited T cell reconstitution, decreased memory T cell numbers, increased the relative frequency of Tregs, and abrogated both cellular and humoral alloimmune responses. Our data suggest that IL-7R blockade following T cell depletion has potential as a robust, immunosuppressive therapy in transplantation. PMID:24569454

  4. Histone deacetylase inhibition prevents the impairing effects of hippocampal gastrin-releasing peptide receptor antagonism on memory consolidation and extinction.

    PubMed

    Petry, Fernanda S; Dornelles, Arethuza S; Lichtenfels, Martina; Valiati, Fernanda E; de Farias, Caroline Brunetto; Schwartsmann, Gilberto; Parent, Marise B; Roesler, Rafael

    2016-07-01

    Hippocampal gastrin-releasing peptide receptors (GRPR) regulate memory formation and extinction, and disturbances in GRPR signaling may contribute to cognitive impairment associated with neurodevelopmental disorders. Histone acetylation is an important epigenetic mechanism that regulates gene expression involved in memory formation, and histone deacetylase inhibitors (HDACis) rescue memory deficits in several models. The present study determined whether inhibiting histone deacetylation would prevent memory impairments produced by GRPR blockade in the hippocampus. Male Wistar rats were given an intrahippocampal infusion of saline (SAL) or the HDACi sodium butyrate (NaB) shortly before inhibitory avoidance (IA) training, followed by an infusion of either SAL or the selective GRPR antagonist RC-3095 immediately after training. In a second experiment, the infusions were administered before and after a retention test trial that served as extinction training. As expected, RC-3095 significantly impaired consolidation and extinction of IA memory. More importantly, pretraining administration of NaB, at a dose that had no effect when given alone, prevented the effects of RC-3095. In addition, the combination of NaB and RC-3095 increased hippocampal levels of the brain-derived neurotrophic factor (BDNF). These findings indicate that HDAC inhibition can protect against memory impairment caused by GRPR blockade. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats.

    PubMed

    Muñoz, Mercedes; Sánchez, Ana; Pilar Martínez, María; Benedito, Sara; López-Oliva, Maria-Elvira; García-Sacristán, Albino; Hernández, Medardo; Prieto, Dolores

    2015-07-01

    Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes.

    PubMed

    Clare, Susan E; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z; Kim, J Julie; Khan, Seema A

    2016-05-23

    The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer.

  7. The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics.

    PubMed

    Silva, Luiz Eduardo Virgilio; Silva, Carlos Alberto Aguiar; Salgado, Helio Cesar; Fazan, Rubens

    2017-03-01

    Analysis of heart rate variability (HRV) by nonlinear approaches has been gaining interest due to their ability to extract additional information from heart rate (HR) dynamics that are not detectable by traditional approaches. Nevertheless, the physiological interpretation of nonlinear approaches remains unclear. Therefore, we propose long-term (60 min) protocols involving selective blockade of cardiac autonomic receptors to investigate the contribution of sympathetic and parasympathetic function upon nonlinear dynamics of HRV. Conscious male Wistar rats had their electrocardiogram (ECG) recorded under three distinct conditions: basal, selective (atenolol or atropine), or combined (atenolol plus atropine) pharmacological blockade of autonomic muscarinic or β 1 -adrenergic receptors. Time series of RR interval were assessed by multiscale entropy (MSE) and detrended fluctuation analysis (DFA). Entropy over short (1 to 5, MSE 1-5 ) and long (6 to 30, MSE 6-30 ) time scales was computed, as well as DFA scaling exponents at short (α short , 5 ≤ n ≤ 15), mid (α mid , 30 ≤ n ≤ 200), and long (α long , 200 ≤ n ≤ 1,700) window sizes. The results show that MSE 1-5 is reduced under atropine blockade and MSE 6-30 is reduced under atropine, atenolol, or combined blockade. In addition, while atropine expressed its maximal effect at scale six, the effect of atenolol on MSE increased with scale. For DFA, α short decreased during atenolol blockade, while the α mid increased under atropine blockade. Double blockade decreased α short and increased α long Results with surrogate data show that the dynamics during combined blockade is not random. In summary, sympathetic and vagal control differently affect entropy (MSE) and fractal properties (DFA) of HRV. These findings are important to guide future studies. NEW & NOTEWORTHY Although multiscale entropy (MSE) and detrended fluctuation analysis (DFA) are recognizably useful prognostic/diagnostic methods, their physiological interpretation remains unclear. The present study clarifies the effect of the cardiac autonomic control on MSE and DFA, assessed during long periods (1 h). These findings are important to help the interpretation of future studies. Copyright © 2017 the American Physiological Society.

  8. The Role of Endorphins in the Pathophysiology of Hemorrhagic and Endotoxic Shock in the Subhuman Primate.

    DTIC Science & Technology

    1985-03-15

    by either a- or e-adrenergic blockade (phenoxybenzamine or metoprolol , respectively) and potentiated by cholinergic receptor *blockade with...which was blocked by e-adrenergic blockade with metoprolol . Naloxone had no effect on plasma catecholamine levels (Table V). The sustained cardiovascular...58±8 213±134 57:5C Shock Saline 19.3:3.7 8.6±2.8 1.4:0.2 Metoprolol 21.1±7.0 5.2t1.3 1.0:0.2 Phenox y- benzamine 9.4:1.5 4.2±0.5 1.0:0.2 Both 14.1±3.5

  9. Indirect androgen doping by oestrogen blockade in sports

    PubMed Central

    Handelsman, D J

    2008-01-01

    Androgens can increase muscular mass and strength and remain the most frequently abused and widely available drugs used in sports doping. Banning the administration of natural or synthetic androgens has led to a variety of strategies to circumvent the ban of the most effective ergogenic agents for power sports. Among these, a variety of indirect androgen doping strategies aiming to produce a sustained rise in endogenous testosterone have been utilized. These include oestrogen blockade by drugs that act as oestrogen receptor antagonists (antioestrogen) or aromatase inhibitors. The physiological and pharmacological basis for the effects of oestrogen blockade in men, but not women, are reviewed. PMID:18500381

  10. Methylxanthine reversal of opioid-evoked inspiratory depression via phosphodiesterase-4 blockade.

    PubMed

    Ruangkittisakul, Araya; Ballanyi, Klaus

    2010-07-31

    Hypothetic mechanisms for respirogenic methylxanthine actions include blockade of adenosine receptors or phosphodiesterase-4 (PDE4) in inspiratory pre-Bötzinger complex (preBötC) networks. Here, we studied this by analyzing stimulating caffeine and theophylline actions on mu-opioid-depressed inspiratory-related rhythm in the ventrolateral aspect of rat brainstem slices. The methylxanthines restored DAMGO (0.5-1 microM) depressed rhythm only at >1mM, which is approximately 10-fold higher than selective for adenosine receptors. Adenosine receptor blockers did neither counter DAMGO inhibition nor change control rhythm, similar to adenosine (0.1-2.5 mM). The specific PDE4 blocker rolipram (5 microM) restored DAMGO-depressed rhythm incompletely, but effectively reversed similar inhibition by clinical mu-agonist (fentanyl, 0.1 microM). At 0.25 microM, rolipram boosted incomplete recovery by 1 mM theophylline of DAMGO-depressed rhythm. Findings indicate that methylxanthines excite rhythmogenic preBötC networks via blockade of cAMP dependent PDE4 and suggest that specific PDE4 inhibitors (plus low methylxanthine doses) stimulate breathing effectively. We discuss why methylxanthine doses for preBötC stimulation need to be higher than those for respirogenic effects in vivo. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Systemic and regional flow distribution in normotensive and spontaneously hypertensive young rats subjected to lifetime beta-adrenergic receptor blockade.

    PubMed

    Nishiyama, K; Nishiyama, A; Pfeffer, M A; Frohlich, E D

    1978-01-01

    To determine quantitatively organ blood flow distribution as the result of lifelong beta-adrenergic receptor blockade, 23 and 24 normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats, respectively, were treated from conception with tap water (control; 10 WKY and 8 SHR), propranolol (0.5 mg/ml drinking water; 6 WKY and 8 SHR), or timolol (0.5 mg/ml drinking water; 7 WKY and 8 SHR) via placental circulation, mothers' milk, and drinking water. At 12 weeks of age all six groups were studied hemodynamically under ether anesthesia using an electromagnetic flowmeter and radioactive carbonized (15 micrometer) microspheres. Untreated SHR demonstrated normal cardiac output (CO) and CO distribution to all organs except for myocardium and testes, thereby confirming our previous work. With either propranolol or timolol treatment the course of development and maintenance of arterial pressure was no different than the pure-tap-water-fed WKY and SHR despite an approximate 30% reduction in CO. Further, with both beta-receptor antagonists CO distribution was significantly reduced to skeletal muscle (p less than 0.001), unchanged to the heart, and increased (p less than 0.05) to the remaining organs (including kidneys and brain) in both groups. Thus, as a result of lifelong beta-adrenergic receptor blockade, CO was reduced; and this was associated with a redistribution of blood flow so that flow to the kidney, brain, and splanchnic organs could be maintained at the expense of skeletal muslce perfusion.

  12. Amphetamine modulation of long-term potentiation in the prefrontal cortex: dose dependency, monoaminergic contributions, and paradoxical rescue in hyperdopaminergic mutant.

    PubMed

    Xu, Tai-Xiang; Ma, Qi; Spealman, Roger D; Yao, Wei-Dong

    2010-12-01

    Amphetamine can improve cognition in healthy subjects and patients with schizophrenia, attention-deficit hyperactivity disorder, and other neuropsychiatric diseases; higher doses, however, can impair cognitive function, especially those mediated by the prefrontal cortex. We investigated how amphetamine affects prefrontal cortex long-term potentiation (LTP), a cellular correlate of learning and memory, in normal and hyperdopaminergic mice lacking the dopamine transporter. Acute amphetamine treatment in wild-type mice produced a biphasic dose-response modulation of LTP, with a low dose enhancing LTP and a high dose impairing it. Amphetamine-induced LTP enhancement was prevented by pharmacological blockade of D(1) - (but not D(2)-) class dopamine receptors, by blockade of β-adrenergic receptors, or by inhibition of cAMP-PKA signaling. In contrast, amphetamine-induced LTP impairment was prevented by inhibition of post-synaptic protein phosphatase-1, a downstream target of PKA signaling, or by blockade of either D(1) - or D(2)-class dopamine, but not noradrenergic, receptors. Thus, amphetamine biphasically modulates LTP via cAMP-PKA signaling orchestrated mainly through dopamine receptors. Unexpectedly, amphetamine restored the loss of LTP in dopamine transporter-knockout mice primarily by activation of the noradrenergic system. Our results mirror the biphasic effectiveness of amphetamine in humans and provide new mechanistic insights into its effects on cognition under normal and hyperdopaminergic conditions. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  13. GluN2B-containing NMDA receptors blockade rescues bidirectional synaptic plasticity in the bed nucleus of the stria terminalis of cocaine self-administering rats.

    PubMed

    deBacker, Julian; Hawken, Emily R; Normandeau, Catherine P; Jones, Andrea A; Di Prospero, Cynthia; Mechefske, Elysia; Gardner Gregory, James; Hayton, Scott J; Dumont, Éric C

    2015-01-01

    Drugs of abuse have detrimental effects on homeostatic synaptic plasticity in the motivational brain network. Bidirectional plasticity at excitatory synapses helps keep neural circuits within a functional range to allow for behavioral flexibility. Therefore, impaired bidirectional plasticity of excitatory synapses may contribute to the behavioral hallmarks of addiction, yet this relationship remains unclear. Here we tracked excitatory synaptic strength in the oval bed nucleus of the stria terminalis (ovBNST) using whole-cell voltage-clamp recordings in brain slices from rats self-administering sucrose or cocaine. In the cocaine group, we measured both a persistent increase in AMPA to NMDA ratio (A:N) and slow decay time of NMDA currents throughout the self-administration period and after withdrawal from cocaine. In contrast, the sucrose group exhibited an early increase in A:N ratios (acquisition) that returned toward baseline values with continued self-administration (maintenance) and after withdrawal. The sucrose rats also displayed a decrease in NMDA current decay time with continued self-administration (maintenance), which normalized after withdrawal. Cocaine self-administering rats exhibited impairment in NMDA-dependent long-term depression (LTD) that could be rescued by GluN2B-containing NMDA receptor blockade. Sucrose self-administering rats demonstrated no impairment in NMDA-dependent LTD. During the maintenance period of self-administration, in vivo (daily intraperitoneally for 5 days) pharmacologic blockade of GluN2B-containing NMDA receptors did not reduce lever pressing for cocaine. However, in vivo GluN2B blockade did normalize A:N ratios in cocaine self-administrating rats, and dissociated the magnitude of ovBNST A:N ratios from drug-seeking behavior after protracted withdrawal. Altogether, our data demonstrate when and how bidirectional plasticity at ovBNST excitatory synapses becomes dysfunctional with cocaine self-administration and that NMDA-mediated potentiation of AMPA receptors in this region may be part of the neural circuits of drug relapse.

  14. Beta Ca2+/CaM-dependent kinase type II triggers upregulation of GluA1 to coordinate adaptation to synaptic inactivity in hippocampal neurons.

    PubMed

    Groth, Rachel D; Lindskog, Maria; Thiagarajan, Tara C; Li, Li; Tsien, Richard W

    2011-01-11

    Prolonged AMPA-receptor blockade in hippocampal neuron cultures leads to both an increased expression of GluA1 postsynaptically and an increase in vesicle pool size and turnover rate presynaptically, adaptive changes that extend beyond simple synaptic scaling. As a molecular correlate, expression of the β Ca(2+)/CaM-dependent kinase type II (βCaMKII) is increased in response to synaptic inactivity. Here we set out to clarify the role of βCaMKII in the various manifestations of adaptation. Knockdown of βCaMKII by lentiviral-mediated expression of shRNA prevented the synaptic inactivity-induced increase in GluA1, as did treatment with the CaM kinase inhibitor KN-93, but not the inactive analog KN-92. These results demonstrate that, spurred by AMPA-receptor blockade, up-regulation of βCaMKII promotes increased GluA1 expression. Indeed, transfection of βCaMKII, but not a kinase-dead mutant, increased GluA1 expression on dendrites and elevated vesicle turnover (Syt-Ab uptake), mimicking the effect of synaptic inactivity on both sides of the synapse. In cells with elevated βCaMKII, relief of synaptic-activity blockade uncovered an increase in the frequency of miniature excitatory postsynaptic currents that could be rapidly and fully suppressed by PhTx blockade of GluA1 receptors. This increased mini frequency involved a genuine presynaptic enhancement, not merely an increased abundance of synapses. This finding suggests that Ca(2+) flux through GluA1 receptors may trigger the acute release of a retrograde messenger. Taken together, our results indicate that synaptic inactivity-induced increases in βCaMKII expression set in motion a series of events that culminate in coordinated pre- and postsynaptic adaptations in synaptic transmission.

  15. The potential role of dopamine D3 receptor neurotransmission in cognition

    PubMed Central

    Nakajima, Shinichiro; Gerretsen, Philip; Takeuchi, Hiroyoshi; Caravaggio, Fernando; Chow, Tiffany; Le Foll, Bernard; Mulsant, Benoit; Pollock, Bruce; Graff-Guerrero, Ariel

    2013-01-01

    Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson’s disease and Alzheimer’s disease. The primary objective of this work is to review the literature on the role of dopamine D3 receptors in cognition, and propose dopamine D3 receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D3 receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included “dopamine D3 receptor” and “cognition”. The literature search identified 164 articles. The results revealed: (1) D3 receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D3 receptor blockade appears to enhance while D3 receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D3 receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D3 receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects. PMID:23791072

  16. Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice.

    PubMed

    Kim, Sun-Jin; Uehara, Hisanori; Karashima, Takashi; Shepherd, David L; Killion, Jerald J; Fidler, Isaiah J

    2003-03-01

    We determined whether blockade of the epidermal growth factor receptor (EGF-R) signaling pathway by oral administration of the EGF-R tyrosine kinase inhibitor (PKI 166) alone or in combination with injectable Taxol inhibits the growth of PC-3MM2 human prostate cancer cells in the bone of nude mice. Male nude mice implanted with PC-3MM2 cells in the tibia were treated with oral administrations of PKI 166 or PKI 166 plus injectable Taxol beginning 3 days after implantation. The incidence and size of bone tumors and destruction of bone were determined by digitalized radiography. Expression of epidermal growth factor (EGF), EGF-R, and activated EGF-R in tumor cells and tumor-associated endothelial cells was determined by immunohistochemistry. Oral administration of PKI 166 or PKI 166 plus injectable Taxol reduced the incidence and size of bone tumors and destruction of bone. Immunohistochemical analysis revealed that PC-3MM2 cells growing adjacent to the bone expressed high levels of EGF and activated EGF-R, whereas tumor cells in the adjacent musculature did not. Moreover, endothelial cells within the bone tumor lesions, but not in uninvolved bone or tumors in the muscle, expressed high levels of activated EGF-R. Treatment with PKI 166 and more so with PKI 166 plus Taxol significantly inhibited phosphorylation of EGF-R on tumor and endothelial cells and induced significant apoptosis and endothelial cells within tumor lesions. These data indicate that endothelial cells exposed to EGF produced by tumor cells express activated EGF-R and that targeting EGF-R can produce significant therapeutic effects against prostate cancer bone metastasis.

  17. Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats.

    PubMed

    Vorel, Stanislav R; Ashby, Charles R; Paul, Mousumi; Liu, Xinhe; Hayes, Robert; Hagan, Jim J; Middlemiss, Derek N; Stemp, Geoffrey; Gardner, Eliot L

    2002-11-01

    dopamine D3 receptor is preferentially localized to the mesocorticolimbic dopaminergic system and has been hypothesized to play a role in cocaine addiction. To study the involvement of the D3 receptor in brain mechanisms and behaviors commonly assumed to be involved in the addicting properties of cocaine, the potent and selective D3 receptor antagonist trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl] cyclohexyl]-4-quinolininecarboxamide (SB-277011-A) was administered to laboratory rats, and the following measures were assessed: (1) cocaine-enhanced electrical brain-stimulation reward, (2) cocaine-induced conditioned place preference, and (3) cocaine-triggered reinstatement of cocaine seeking behavior. Systemic injections of SB-277011-A were found to (1) block enhancement of electrical brain stimulation reward by cocaine, (2) dose-dependently attenuate cocaine-induced conditioned place preference, and (3) dose-dependently attenuate cocaine-triggered reinstatement of cocaine seeking behavior. Thus, D3 receptor blockade attenuates both the rewarding effects of cocaine and cocaine-induced drug-seeking behavior. These data suggest an important role for D3 receptors in mediating the addictive properties of cocaine and suggest that blockade of dopamine D3 receptors may constitute a new and useful target for prospective pharmacotherapies for cocaine addiction.

  18. Insulin-like growth factor-I receptor activity is essential for Kaposi's sarcoma growth and survival.

    PubMed

    Catrina, S-B; Lewitt, M; Massambu, C; Dricu, A; Grünler, J; Axelson, M; Biberfeld, P; Brismar, K

    2005-04-25

    Kaposi's sarcoma (KS) is a highly vascular tumour and is the most common neoplasm associated with human immunodeficiency virus (HIV-1) infection. Growth factors, in particular vascular endothelial growth factor (VEGF), have been shown to play an important role in its development. The role of insulin-like growth factors (IGFs) in the pathophysiology of different tumours led us to evaluate the role of IGF system in KS. The IGF-I receptors (IGF-IR) were identified by immunohistochemistry in biopsies taken from patients with different AIDS/HIV-related KS stages and on KSIMM cells (an established KS-derived cell line). Insulin-like growth factor-I is a growth factor for KSIMM cells with a maximum increase of 3H-thymidine incorporation of 130 +/- 27.6% (P < 0.05) similar to that induced by VEGF and with which it is additive (281 +/- 13%) (P < 0.05). Moreover, specific blockade of the receptor (either by alpha IR3 antibody or by picropodophyllin, a recently described selective IGF-IR tyrosine phosphorylation inhibitor) induced KSIMM apoptosis, suggesting that IGF-IR agonists (IGF-I and -II) mediate antiapoptotic signals for these cells. We were able to identify an autocrine loop essential for KSIMM cell survival in which IGF-II is the IGF-IR agonist secreted by the cells. In conclusion, IGF-I pathway inhibition is a promising therapeutical approach for KS tumours.

  19. Analysis of G-Protein Coupled Receptor 30 (GPR30) on Endothelial Inflammation.

    PubMed

    Chakrabarti, Subhadeep; Davidge, Sandra T

    2016-01-01

    The female sex hormone estrogen (the most common form 17-β-estradiol or E2) is known to have both anti-inflammatory and pro-inflammatory effects. Given the diversity of estrogen responses mediated through its three distinct receptors, namely, estrogen receptor α (ERα), ERβ, and the G-protein coupled receptor 30 (GPR30), it is plausible that different receptors have specific modulatory effects on inflammation in different tissues. We have shown that activation of GPR30 exerted anti-inflammatory effects as demonstrated by significant attenuation of tumor necrosis factor (TNF)-mediated upregulation of adhesion molecules in isolated human umbilical vein endothelial cells. Interestingly, estrogen alone had no such effect and blockade of classical ERs restored the anti-inflammatory effect, suggesting that this effect was dependent on GPR30 and opposed to classical ERs. These findings were further validated by the negation of anti-inflammatory GPR30 effects by classical ER agonists. This chapter focuses on multiple pharmacological options to activate GPR30 and the use of TNF activated endothelial cells as a model system for inflammatory response as assessed by adhesion molecule detection through western blotting.

  20. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    ERIC Educational Resources Information Center

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  1. The role of β-adrenergic blockers in Parkinson's disease: possible genetic and cell-signaling mechanisms.

    PubMed

    Luong, Khanh vinh quoc; Nguyen, Lan Thi Hoàng

    2013-06-01

    Genetic studies have identified numerous factors linking β-adrenergic blockade to Parkinson's disease (PD), including human leukocyte antigen genes, the renin-angiotensin system, poly(adenosine diphosphate-ribose) polymerase 1, nerve growth factor, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate. β-Adrenergic blockade has also been implicated in PD via its effects on matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase 2, and nitric oxide synthase. β-Adrenergic blockade may have a significant role in PD; therefore, the characterization of β-adrenergic blockade in patients with PD is needed.

  2. Oxidative activation of CaMKIIδ in acute myocardial ischemia/reperfusion injury: A role of angiotensin AT1 receptor-NOX2 signaling axis.

    PubMed

    Rajtik, Tomas; Carnicka, Slavka; Szobi, Adrian; Giricz, Zoltan; O-Uchi, Jin; Hassova, Veronika; Svec, Pavel; Ferdinandy, Peter; Ravingerova, Tanya; Adameova, Adriana

    2016-01-15

    During ischemia/reperfusion (IR), increased activation of angiotensin AT1 receptors recruits NADPH oxidase 2 (NOX2) which contributes to oxidative stress. It is unknown whether this stimulus can induce oxidative activation of Ca(2+)/calmodulin-dependent protein kinase IIδ (CaMKIIδ) leading into the aggravation of cardiac function and whether these effects can be prevented by angiotensin AT1 receptors blockade. Losartan, a selective AT1 blocker, was used. Its effects were compared with effects of KN-93, an inhibitor of CaMKIIδ. Global IR was induced in Langendorff-perfused rat hearts. Protein expression was evaluated by immunoblotting and lipoperoxidation was measured by TBARS assay. Losartan improved LVDP recovery by 25%; however, it did not reduce reperfusion arrhythmias. Oxidized CaMKIIδ (oxCaMKIIδ) was downregulated at the end of reperfusion compared to before ischemia and losartan did not change these levels. Phosphorylation of CaMKIIδ mirrored the pattern of changes in oxCaMKIIδ levels. Losartan did not prevent the higher lipoperoxidation due to IR and did not influence NOX2 expression. Inhibition of CaMKII ameliorated cardiac IR injury; however, this was not accompanied with changes in the levels of either active form of CaMKIIδ in comparison to the angiotensin AT1 receptor blockade. In spite of no changes of oxCaMKIIδ, increased cardiac recovery of either therapy was abolished when combined together. This study showed that oxidative activation of CaMKIIδ is not elevated at the end of R phase. NOX2-oxCAMKIIδ signaling is unlikely to be involved in cardioprotective action of angiotensin AT1 receptor blockade which is partially abolished by concomitant CaMKII inhibition. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Immune checkpoints PVR and PVRL2 are prognostic markers in AML and their blockade represents a new therapeutic option.

    PubMed

    Stamm, Hauke; Klingler, Felix; Grossjohann, Eva-Maria; Muschhammer, Jana; Vettorazzi, Eik; Heuser, Michael; Mock, Ulrike; Thol, Felicitas; Vohwinkel, Gabi; Latuske, Emily; Bokemeyer, Carsten; Kischel, Roman; Dos Santos, Cedric; Stienen, Sabine; Friedrich, Matthias; Lutteropp, Michael; Nagorsen, Dirk; Wellbrock, Jasmin; Fiedler, Walter

    2018-05-31

    Immune checkpoints are promising targets in cancer therapy. Recently, poliovirus receptor (PVR) and poliovirus receptor-related 2 (PVRL2) have been identified as novel immune checkpoints. In this investigation we show that acute myeloid leukemia (AML) cell lines and AML patient samples highly express the T-cell immunoreceptor with Ig and ITIM domains (TIGIT) ligands PVR and PVRL2. Using two independent patient cohorts, we could demonstrate that high PVR and PVRL2 expression correlates with poor outcome in AML. We show for the first time that antibody blockade of PVR or PVRL2 on AML cell lines or primary AML cells or TIGIT blockade on immune cells increases the anti-leukemic effects mediated by PBMCs or purified CD3 + cells in vitro. The cytolytic activity of the BiTE® antibody construct AMG 330 against leukemic cells could be further enhanced by blockade of the TIGIT-PVR/PVRL2 axis. This increased immune reactivity is paralleled by augmented secretion of Granzyme B by immune cells. Employing CRISPR/Cas9-mediated knockout of PVR and PVRL2 in MV4-11 cells, the cytotoxic effects of antibody blockade could be recapitulated in vitro. In NSG mice reconstituted with human T cells and transplanted with either MV4-11 PVR/PVRL2 knockout or wildtype cells, prolonged survival was observed for the knockout cells. This survival benefit could be further extended by treating the mice with AMG 330. Therefore, targeting the TIGIT-PVR/PVRL2 axis with blocking antibodies might represent a promising future therapeutic option in AML.

  4. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18.

    PubMed

    Im, S H; Barchan, D; Maiti, P K; Raveh, L; Souroujon, M C; Fuchs, S

    2001-10-01

    Interleukin-18 (IL-18) is a pleiotropic proinflammatory cytokine that plays an important role in interferon gamma (IFN-gamma) production and IL-12-driven Th1 phenotype polarization. Increased expression of IL-18 has been observed in several autoimmune diseases. In this study we have analyzed the role of IL-18 in an antibody-mediated autoimmune disease and elucidated the mechanisms involved in disease suppression mediated by blockade of IL-18, using experimental autoimmune myasthenia gravis (EAMG) as a model. EAMG is a T cell-regulated, antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1- and Th2-type responses are both implicated in EAMG development. We show that treatment by anti-IL-18 during ongoing EAMG suppresses disease progression. The protective effect can be adoptively transferred to naive recipients and is mediated by increased levels of the immunosuppressive Th3-type cytokine TGF-beta and decreased AChR-specific Th1-type cellular responses. Suppression of EAMG is accompanied by down-regulation of the costimulatory factor CD40L and up-regulation of CTLA-4, a key negative immunomodulator. Our results suggest that IL-18 blockade may potentially be applied for immunointervention in myasthenia gravis.

  5. Targeting TORC1/2 enhances sensitivity to EGFR inhibitors in head and neck cancer preclinical models.

    PubMed

    Cassell, Andre; Freilino, Maria L; Lee, Jessica; Barr, Sharon; Wang, Lin; Panahandeh, Mary C; Thomas, Sufi M; Grandis, Jennifer R

    2012-11-01

    Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC.

  6. Targeting TORC1/2 Enhances Sensitivity to EGFR Inhibitors in Head and Neck Cancer Preclinical Models1

    PubMed Central

    Cassell, Andre; Freilino, Maria L; Lee, Jessica; Barr, Sharon; Wang, Lin; Panahandeh, Mary C; Thomas, Sufi M; Grandis, Jennifer R

    2012-01-01

    Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC. PMID:23226094

  7. Resistant Hypertension On Treatment (ResHypOT): sequential nephron blockade compared to dual blockade of the renin-angiotensin-aldosterone system plus bisoprolol in the treatment of resistant arterial hypertension - study protocol for a randomized controlled trial.

    PubMed

    Cestário, Elizabeth do Espirito Santo; Fernandes, Letícia Aparecida Barufi; Giollo-Júnior, Luiz Tadeu; Uyemura, Jéssica Rodrigues Roma; Matarucco, Camila Suemi Sato; Landim, Manoel Idelfonso Paz; Cosenso-Martin, Luciana Neves; Tácito, Lúcia Helena Bonalume; Moreno, Heitor; Vilela-Martin, José Fernando; Yugar-Toledo, Juan Carlos

    2018-02-12

    Resistant hypertension is characterized when the blood pressure (BP) remains above the recommended goal after taking three antihypertensive drugs with synergistic actions at their maximum recommended tolerated doses, preferably including a diuretic. Identifying the contribution of intravascular volume and serum renin in maintaining BP levels could help tailor more effective hypertension treatment, whether acting on the control of intravascular volume or sodium balance, or acting on the effects of the renin-angiotensin-aldosterone system (RAAS) on the kidney. This is a randomized, open-label, clinical trial is designed to compare sequential nephron blockade and its contribution to the intravascular volume component with dual blockade of the RAAS plus bisoprolol and the importance of serum renin in maintaining BP levels. The trial has two arms: sequential nephron blockade versus dual blockade of the RAAS (with an angiotensin converting enzyme (ACE) inhibitor plus a beta-blocker) both added-on to a thiazide diuretic, a calcium-channel blocker and an angiotensin receptor-1 blocker (ARB). Sequential nephron blockade consists in a progressive increase in sodium depletion using a thiazide diuretic, an aldosterone-receptor blocker, furosemide and, finally, amiloride. On the other hand, the dual blockade of the RAAS consists of the progressive addition of an ACE inhibitor until the maximum dose and then the administration of a beta-blocker until the maximum dose. The primary outcomes will be reductions in the systolic BP, diastolic BP, mean BP and pulse pressure (PP) after 20 weeks of treatment. The secondary outcomes will evaluate treatment safety and tolerability, biochemical changes, evaluation of renal function and recognition of hypotension (ambulatory BP monitoring (ABPM)). The sample size was calculated assuming an alpha error of 5% to reject the null hypothesis with a statistical power of 80% giving a total of 40 individuals per group. In recent years, the cost of resistant hypertension (RH) treatment has increased. Thus, identifying the contribution of intravascular volume and serum renin in maintaining BP levels could help tailor more effective hypertension treatment, whether by acting on the control of intravascular volume or sodium balance, or by acting on the effects of the RAAS on the kidney. Sequential Nephron Blockade vs. Dual Blockade Renin-angiotensin System + Bisoprolol in Resistant Arterial Hypertension (ResHypOT). ClinicalTrials.gov, ID: NCT02832973 . Registered on 14 July 2016. First received: 12 June 2016. Last updated: 18 July 2016.

  8. Horizon 2020 in Diabetic Kidney Disease: The Clinical Trial Pipeline for Add-On Therapies on Top of Renin Angiotensin System Blockade

    PubMed Central

    Perez-Gomez, Maria Vanessa; Sanchez-Niño, Maria Dolores; Sanz, Ana Belen; Martín-Cleary, Catalina; Ruiz-Ortega, Marta; Egido, Jesus; Navarro-González, Juan F.; Ortiz, Alberto; Fernandez-Fernandez, Beatriz

    2015-01-01

    Diabetic kidney disease is the most frequent cause of end-stage renal disease. This implies failure of current therapeutic approaches based on renin-angiotensin system (RAS) blockade. Recent phase 3 clinical trials of paricalcitol in early diabetic kidney disease and bardoxolone methyl in advanced diabetic kidney disease failed to meet the primary endpoint or terminated on safety concerns, respectively. However, various novel strategies are undergoing phase 2 and 3 randomized controlled trials targeting inflammation, fibrosis and signaling pathways. Among agents currently undergoing trials that may modify the clinical practice on top of RAS blockade in a 5-year horizon, anti-inflammatory agents currently hold the most promise while anti-fibrotic agents have so far disappointed. Pentoxifylline, an anti-inflammatory agent already in clinical use, was recently reported to delay estimated glomerular filtration rate (eGFR) loss in chronic kidney disease (CKD) stage 3–4 diabetic kidney disease when associated with RAS blockade and promising phase 2 data are available for the pentoxifylline derivative CTP-499. Among agents targeting chemokines or chemokine receptors, the oral small molecule C-C chemokine receptor type 2 (CCR2) inhibitor CCX140 decreased albuminuria and eGFR loss in phase 2 trials. A dose-finding trial of the anti-IL-1β antibody gevokizumab in diabetic kidney disease will start in 2015. However, clinical development is most advanced for the endothelin receptor A blocker atrasentan, which is undergoing a phase 3 trial with a primary outcome of preserving eGFR. The potential for success of these approaches and other pipeline agents is discussed in detail. PMID:26239562

  9. Redistribution of blood within the body is important for thermoregulation in an ectothermic vertebrate (Crocodylus porosus).

    PubMed

    Seebacher, Frank; Franklin, Craig E

    2007-11-01

    Changes in blood flow are a principal mechanism of thermoregulation in vertebrates. Changes in heart rate will alter blood flow, although multiple demands for limited cardiac output may compromise effective thermoregulation. We tested the hypothesis that regional differences in blood flow during heating and cooling can occur independently from changes in heart rate. We measured heart rate and blood pressure concurrently with blood flow in the crocodile, Crocodylus porosus. We measured changes in blood flow by laser Doppler flowmetry, and by injecting coloured microspheres. All measurements were made under different heat loads, with and without blocking cholinergic and beta-adrenergic receptors (autonomic blockade). Heart rates were significantly faster during heating than cooling in the control animals, but not when autonomic receptors were blocked. There were no significant differences in blood flow distribution between the control and autonomic blockade treatments. In both treatments, blood flow was directed to the dorsal skin and muscle and away from the tail and duodenum during heating. When the heat source was switched off, there was a redistribution of blood from the dorsal surface to the duodenum. Blood flow to the leg skin and muscle, and to the liver did not change significantly with thermal state. Blood pressure was significantly higher during the autonomic blockade than during the control. Thermal time constants of heating and cooling were unaffected by the blockade of autonomic receptors. We concluded that animals partially compensated for a lack of differential heart rates during heating and cooling by redistributing blood within the body, and by increasing blood pressure to increase flow. Hence, measures of heart rate alone are insufficient to assess physiological thermoregulation in reptiles.

  10. Prolonged Exposure to NMDAR Antagonist Induces Cell-type Specific Changes of Glutamatergic Receptors in Rat Prefrontal Cortex

    PubMed Central

    Wang, Huai-Xing; Gao, Wen-Jun

    2011-01-01

    N-methyl-D-aspartic acid (NMDA) receptors are critical for both normal brain functions and the pathogenesis of schizophrenia. We investigated the functional changes of glutamatergic receptors in the pyramidal cells and fast-spiking (FS) interneurons in the adolescent rat prefrontal cortex in MK-801 model of schizophrenia. We found that although both pyramidal cells and FS interneurons were affected by in vivo subchronic blockade of NMDA receptors, MK-801 induced distinct changes in αamino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptors in the FS interneurons compared with pyramidal cells. Specifically, the amplitude, but not the frequency, of AMPA-mediated miniature excitatory postsynaptic currents (mEPSCs) in FS interneurons was significantly decreased whereas both the frequency and amplitude in pyramidal neurons were increased. In addition, MK-801-induced new presynaptic NMDA receptors were detected in the glutamatergic terminals targeting pyramidal neurons but not FS interneurons. MK-801 also induced distinct alterations in FS interneurons but not in pyramidal neurons, including significantly decreased rectification index and increased calcium permeability. These data suggest a distinct cell-type specific and homeostatic synaptic scaling and redistribution of AMPA and NMDA receptors in response to the subchronic blockade of NMDA receptors and thus provide a direct mechanistic explanation for the NMDA hypofunction hypothesis that have long been proposed for the schizophrenia pathophysiology. PMID:22182778

  11. Evidence for involvement of nitric oxide and GABAB receptors in MK-801- stimulated release of glutamate in rat prefrontal cortex

    PubMed Central

    Roenker, Nicole L.; Gudelsky, Gary A.; Ahlbrand, Rebecca; Horn, Paul S.; Richtand, Neil M.

    2012-01-01

    Systemic administration of NMDA receptor antagonists elevates extracellular glutamate within prefrontal cortex. The cognitive and behavioral effects of NMDA receptor blockade have direct relevance to symptoms of schizophrenia, and recent studies demonstrate an important role for nitric oxide and GABAB receptors in mediating the effects of NMDA receptor blockade on these behaviors. We sought to extend those observations by directly measuring the effects of nitric oxide and GABAB receptor mechanisms on MK-801-induced glutamate release in the prefrontal cortex. Systemic MK-801 injection (0.3 mg/kg) to male Sprague-Dawley rats significantly increased extracellular glutamate levels in prefrontal cortex, as determined by microdialysis. This effect was blocked by pretreatment with the nitric oxide synthase inhibitor L-NAME (60 mg/kg). Reverse dialysis of the nitric oxide donor SNAP (0.5 – 5 mM) directly into prefrontal cortex mimicked the effect of systemic MK-801, dose-dependently elevating cortical extracellular glutamate. The effect of MK-801 was also blocked by systemic treatment with the GABAB receptor agonist baclofen (5 mg/kg). In combination, these data suggest increased nitric oxide formation is necessary for NMDA antagonist-induced elevations of extracellular glutamate in the prefrontal cortex. Additionally, the data suggest GABAB receptor activation can modulate the NMDA antagonist-induced increase in cortical glutamate release. PMID:22579658

  12. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors

    PubMed Central

    Akbay, Esra A; Koyama, Shohei; Carretero, Julian; Altabef, Abigail; Tchaicha, Jeremy H; Christensen, Camilla L; Mikse, Oliver R; Cherniack, Andrew D; Beauchamp, Ellen M; Pugh, Trevor J; Wilkerson, Matthew D; Fecci, Peter E; Butaney, Mohit; Reibel, Jacob B; Soucheray, Margaret; Cohoon, Travis J; Janne, Pasi A; Meyerson, Matthew; Hayes, D. Neil; Shapiro, Geoffrey I; Shimamura, Takeshi; Sholl, Lynette M; Rodig, Scott J; Freeman, Gordon J; Hammerman, Peter S; Dranoff, Glenn; Wong, Kwok-Kin

    2013-01-01

    The success in lung cancer therapy with Programmed Death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between Epidermal Growth Factor Receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, cytotoxic T lymphocyte antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased cytotoxic T cells and increased markers of T cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape, and mechanistically link treatment response to PD-1 inhibition. PMID:24078774

  13. PD-1-PD-L1 immune-checkpoint blockade in malignant lymphomas.

    PubMed

    Wang, Yi; Wu, Ling; Tian, Chen; Zhang, Yizhuo

    2018-02-01

    Tumor cells can evade immune surveillance through overexpressing the ligands of checkpoint receptors on tumor cells or adjacent cells, leading T cells to anergy or exhaustion. Growing evidence of the interaction between tumor cells and microenvironment promoted the emergence of immune-checkpoint blockade. By targeting programmed cell death-1 (PD-1) pathway, cytotoxic activity of T cell is enhanced significantly and tumor cell lysis is induced subsequently. Currently, various antibodies against PD-1 and programmed death-ligand 1 (PD-L1) are under clinical studies in lymphomas. In this review, we outline the rationale for investigation of PD-1-PD-L1 immune-checkpoint blockade in lymphomas and discuss their prospect of applications in clinical treatment.

  14. [Importance of the new biologicals and cytokine antagonists in the treatment of juvenile idiopathic arthritis (JIA)].

    PubMed

    Horneff, G

    2005-06-01

    Juvenile idiopathic arthritis is group of diseases of unknown aetiology characterised by the occurrence of chronic arthritis during childhood. Compared to adult onset rheumatoid arthritis, its course is more variable. Increasing knowledge of the inflammatory process as well as in molecular genetics and biotechnology has enable the production of new drugs, the biologicals. These are able to specifically block mechanisms of immune activation and thereby interfere with the inflammatory process. An increasing number of biologicals have been tried in clinical studies in adults suffering from rheumatoid arthritis, psoriasis or psoriasis arthritis and a couple of them were already licensed for treatment. Treatment of juvenile idiopathic arthritis by blockade of tumournecrosis-factor (TNF) using the soluble receptor Etanercept or the monoclonal antibodies Infliximab and Adalimumab showed comparable clinical efficacy. Blockade of TNF therefore already reached a certain place in the therapeutic algorythm for treatment of juvenile idiopathic arthritis. Currently, only Etanercept is licensed for treatment of active juvenile polyarthritis refractory to methotrexate. Studies using Infliximab and Adalimumab will be completed in the near future. However, antibodies blocking TNF may already be used in patients suffering from active uncontrolled chronic uveitis in whom visual impairment is threatening. TNF blockers may also be indicated in juvenile ankylosing spondylitis. The use of further biologicals, the interleukin-1 receptor antagonist Anakinra, Atlizumab (MRA) blocking the receptor for interleukin-6 or Abatacept, an inhibitory ligand of the co-stimulatory T cell membrane molecule CD28, remain experimental and should be preserved for clinical studies.

  15. The non-competitive blockade of GABAA receptors by an aqueous extract of water hemlock (Cicuta douglassi) tubers

    USDA-ARS?s Scientific Manuscript database

    Teratogenic alkaloids can cause developmental defects due to the inhibition of fetal movement from the desensitization of fetal muscle-type nicotinic acetylcholine receptors (nAChR). In this study, we tested the hypothesis that the piperidine alkaloid anabaseine a 1,2-dehydropiperidine and anabasin...

  16. Activated HGF-c-Met Axis in Head and Neck Cancer

    PubMed Central

    Arnold, Levi; Enders, Jonathan; Thomas, Sufi Mary

    2017-01-01

    Head and neck squamous cell carcinoma (HNSCC) is a highly morbid disease. Recent developments including Food and Drug Administration (FDA) approved molecular targeted agent’s pembrolizumab and cetuximab show promise but did not improve the five-year survival which is currently less than 40%. The hepatocyte growth factor receptor; also known as mesenchymal–epithelial transition factor (c-Met) and its ligand hepatocyte growth factor (HGF) are overexpressed in head and neck squamous cell carcinoma (HNSCC); and regulates tumor progression and response to therapy. The c-Met pathway has been shown to regulate many cellular processes such as cell proliferation, invasion, and angiogenesis. The c-Met pathway is involved in cross-talk, activation, and perpetuation of other signaling pathways, curbing the cogency of a blockade molecule on a single pathway. The receptor and its ligand act on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K) alpha serine/threonine-protein kinase (Akt), mitogen activate protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. They are also known to cross-talk with other receptors; namely epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) and specifically contribute to treatment resistance. Clinical trials targeting the c-Met axis in HNSCC have been undertaken because of significant preclinical work demonstrating a relationship between HGF/c-Met signaling and cancer cell survival. Here we focus on HGF/c-Met impact on cellular signaling in HNSCC to potentiate tumor growth and disrupt therapeutic efficacy. Herein we summarize the current understanding of HGF/c-Met signaling and its effects on HNSCC. The intertwining of c-Met signaling with other signaling pathways provides opportunities for more robust and specific therapies, leading to better clinical outcomes. PMID:29231907

  17. The effect of RAAS blockade on the progression of diabetic nephropathy.

    PubMed

    Roscioni, Sara S; Heerspink, Hiddo J Lambers; de Zeeuw, Dick

    2014-02-01

    The renin-angiotensin-aldosterone system (RAAS) has a key role in the regulation of blood pressure, sodium and water balance, and cardiovascular and renal homeostasis. In diabetic nephropathy, excessive activation of the RAAS results in progressive renal damage. RAAS blockade using angiotensin-converting-enzyme inhibitors or angiotensin-receptor blockers is the cornerstone of treatment of diabetic renal disease. Alternative RAAS-blockade strategies include renin inhibition and aldosterone blockade. Data from small initial studies of these agents are promising. However, single-agent interventions do not fully block the RAAS and patients treated with these therapies remain at high residual renal risk. Approaches to optimize drug responses include dietary changes and increasing dosages. The theoretically attractive option of combining different RAAS interventions has also been tested in clinical trials but long-term outcomes were disappointing. However, dual RAAS blockade might represent a good therapeutic option for specific patients. A better knowledge of the pathophysiology of the RAAS is crucial to fully understand the mechanisms of action of RAAS blockers and to exploit their renoprotective effects. Moreover, lifestyle interventions or diagnostic tools might be used to optimize RAAS blockade and identify those patients who are most likely to benefit from the therapy.

  18. Inhibition of Hippocampal β-Adrenergic Receptors Impairs Retrieval But Not Reconsolidation of Cocaine-Associated Memory and Prevents Subsequent Reinstatement

    PubMed Central

    Otis, James M; Fitzgerald, Michael K; Mueller, Devin

    2014-01-01

    Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment. PMID:23907403

  19. Inhibition of hippocampal β-adrenergic receptors impairs retrieval but not reconsolidation of cocaine-associated memory and prevents subsequent reinstatement.

    PubMed

    Otis, James M; Fitzgerald, Michael K; Mueller, Devin

    2014-01-01

    Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment.

  20. Cannabinoid 1 receptor blockade in the dorsal hippocampus prevents the reinstatement but not acquisition of morphine-induced conditioned place preference in rats.

    PubMed

    Zhao, Xin; Yao, Li; Wang, Fang; Zhang, Han; Wu, Li

    2017-07-05

    The cannabinoid 1 receptors (CB1Rs) signaling is strongly linked to conditioned rewarding effects of opiates. Learned associations between environmental contexts and discrete cues and drug use play an important role in the maintenance and/or relapse of morphine addiction. Although previous studies suggest that context-dependent morphine treatment alters endocannabinoid signaling and synaptic plasticity in the hippocampus, the role of endocannabinoid in morphine conditioned place preference (CPP) and reinstatement remains unknown. In the present study, we found daily escalating doses of morphine induce significant CPP in rats. After the extinction of CPP, a priming dose of morphine was sufficient to reinstate morphine CPP and was associated with the elevated CB1R levels compared with saline control groups, suggesting upregulation of CB1R pathway in the hippocampus contribute to the reinstatement of morphine CPP. By using a pharmacological inhibitor of CB1R administered into the dorsal hippocampus, we showed that blockade of CB1R signaling did not alter the morphine CPP acquisition but inhibited the reinstatement of morphine CPP. In addition, no effects were induced upon CB1R blockade in the prefrontal cortex on reinstatement of morphine CPP. These studies reveal region-specific effects of hippocampal blockade of CB1R signaling pathway on the reinstatement of morphine CPP.

  1. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse".

    PubMed

    Perez-Burgos, Azucena; Mao, Yu-Kang; Bienenstock, John; Kunze, Wolfgang A

    2014-07-01

    It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse." © FASEB.

  2. Is the Acute NMDA Receptor Hypofunction a Valid Model of Schizophrenia?

    PubMed Central

    Adell, Albert; Jiménez-Sánchez, Laura; López-Gil, Xavier; Romón, Tamara

    2012-01-01

    Several genetic, neurodevelopmental, and pharmacological animal models of schizophrenia have been established. This short review examines the validity of one of the most used pharmacological model of the illness, ie, the acute administration of N-methyl-D-aspartate (NMDA) receptor antagonists in rodents. In some cases, data on chronic or prenatal NMDA receptor antagonist exposure have been introduced for comparison. The face validity of acute NMDA receptor blockade is granted inasmuch as hyperlocomotion and stereotypies induced by phencyclidine, ketamine, and MK-801 are regarded as a surrogate for the positive symptoms of schizophrenia. In addition, the loss of parvalbumin-containing cells (which is one of the most compelling finding in postmortem schizophrenia brain) following NMDA receptor blockade adds construct validity to this model. However, the lack of changes in glutamic acid decarboxylase (GAD67) is at variance with human studies. It is possible that changes in GAD67 are more reflective of the neurodevelopmental condition of schizophrenia. Finally, the model also has predictive validity, in that its behavioral and transmitter activation in rodents are responsive to antipsychotic treatment. Overall, although not devoid of drawbacks, the acute administration of NMDA receptor antagonists can be considered as a good model of schizophrenia bearing a satisfactory degree of validity. PMID:21965469

  3. The hypocretin/orexin system mediates the extinction of fear memories.

    PubMed

    Flores, África; Valls-Comamala, Victòria; Costa, Giulia; Saravia, Rocío; Maldonado, Rafael; Berrendero, Fernando

    2014-11-01

    Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias.

  4. The Hypocretin/Orexin System Mediates the Extinction of Fear Memories

    PubMed Central

    Flores, África; Valls-Comamala, Victòria; Costa, Giulia; Saravia, Rocío; Maldonado, Rafael; Berrendero, Fernando

    2014-01-01

    Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias. PMID:24930888

  5. Seeing is believing: anti-PD-1/PD-L1 monoclonal antibodies in action for checkpoint blockade tumor immunotherapy

    PubMed Central

    Tan, Shuguang; Zhang, Catherine W-H; Gao, George F

    2016-01-01

    Structural immunology, focusing on structures of host immune related molecules, enables the immunologists to see what the molecules look like, and more importantly, how they work together. Antibody-based PD-1/PD-L1 blockade therapy has achieved brilliant successes in clinical applications. The recent breakthrough of the complex structures of checkpoint blockade antibodies with their counterparts, pembrolizumab with PD-1 and avelumab with PD-L1, have made it clear how these monoclonal antibodies compete the binding of PD-1/PD-L1 and function to blockade the receptor-ligand interaction. Herein, we summarize the structural findings of these two reports and look into the future for how this information would facilitate the development of more efficient PD-1/PD-L1 targeting antibodies, small molecule drugs, and other protein or non-protein inhibitors. PMID:29263905

  6. Retinal vasculopathy is reduced by dietary salt restriction: involvement of Glia, ENaCα, and the renin-angiotensin-aldosterone system.

    PubMed

    Deliyanti, Devy; Armani, Roksana; Casely, David; Figgett, William A; Agrotis, Alex; Wilkinson-Berka, Jennifer L

    2014-09-01

    Neovascularization and vaso-obliteration are vision-threatening events that develop by interactions between retinal vascular and glial cells. A high-salt diet is causal in cardiovascular and renal disease, which is linked to modulation of the renin-angiotensin-aldosterone system. However, it is not known whether dietary salt influences retinal vasculopathy and if the renin-angiotensin-aldosterone system is involved. We examined whether a low-salt (LS) diet influenced vascular and glial cell injury and the renin-angiotensin-aldosterone system in ischemic retinopathy. Pregnant Sprague Dawley rats were fed LS (0.03% NaCl) or normal salt (0.3% NaCl) diets, and ischemic retinopathy was induced in the offspring. An LS diet reduced retinal neovascularization and vaso-obliteration, the mRNA and protein levels of the angiogenic factors, vascular endothelial growth factor, and erythropoietin. Microglia, which influence vascular remodeling in ischemic retinopathy, were reduced by LS as was tumor necrosis factor-α. Macroglial Müller cells maintain the integrity of the blood-retinal barrier, and in ischemic retinopathy, LS reduced their gliosis and also vascular leakage. In retina, LS reduced mineralocorticoid receptor, angiotensin type 1 receptor, and renin mRNA levels, whereas, as expected, plasma levels of aldosterone and renin were increased. The aldosterone/mineralocorticoid receptor-sensitive epithelial sodium channel alpha (ENaCα), which is expressed in Müller cells, was increased in ischemic retinopathy and reduced by LS. In cultured Müller cells, high salt increased ENaCα, which was prevented by mineralocorticoid receptor and angiotensin type 1 receptor blockade. Conversely, LS reduced ENaCα, angiotensin type 1 receptor, and mineralocorticoid receptor expression. An LS diet reduced retinal vasculopathy, by modulating glial cell function and the retinal renin-angiotensin-aldosterone system. © 2014 American Heart Association, Inc.

  7. A randomized trial on mineralocorticoid receptor blockade in men: effects on stress responses, selective attention, and memory.

    PubMed

    Cornelisse, Sandra; Joëls, Marian; Smeets, Tom

    2011-12-01

    Corticosteroids, released in high amounts after stress, exert their effects via two different receptors in the brain: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). GRs have a role in normalizing stress-induced effects and promoting consolidation, while MRs are thought to be important in determining the threshold for activation of the hypothalamic-pituitary-adrenal (HPA) axis. We investigated the effects of MR blockade on HPA axis responses to stress and stress-induced changes in cognitive function. In a double-blind, placebo-controlled study, 64 healthy young men received 400 mg of the MR antagonist spironolactone or placebo. After 1.5 h, they were exposed to either a Trier Social Stress Test or a non-stressful control task. Responses to stress were evaluated by hormonal, subjective, and physiological measurements. Afterwards, selective attention, working memory, and long-term memory performance were assessed. Spironolactone increased basal salivary cortisol levels as well as cortisol levels in response to stress. Furthermore, spironolactone significantly impaired selective attention, but only in the control group. The stress group receiving spironolactone showed impaired working memory performance. By contrast, long-term memory was enhanced in this group. These data support a role of MRs in the regulation of the HPA axis under basal conditions as well as in response to stress. The increased availability of cortisol after spironolactone treatment implies enhanced GR activation, which, in combination with MR blockade, presumably resulted in a decreased MR/GR activation ratio. This condition influences both selective attention and performance in various memory tasks.

  8. Full central neurokinin-1 receptor blockade is required for efficacy in depression: evidence from orvepitant clinical studies.

    PubMed

    Ratti, Emiliangelo; Bettica, Paolo; Alexander, Robert; Archer, Graeme; Carpenter, David; Evoniuk, Gary; Gomeni, Roberto; Lawson, Erica; Lopez, Monica; Millns, Helen; Rabiner, Eugenii A; Trist, David; Trower, Michael; Zamuner, Stefano; Krishnan, Ranga; Fava, Maurizio

    2013-05-01

    Full, persistent blockade of central neurokinin-1 (NK1) receptors may be a potential antidepressant mechanism. The selective NK1 antagonist orvepitant (GW823296) was used to test this hypothesis. A preliminary positron emission tomography study in eight male volunteers drove dose selection for two randomized six week studies in patients with major depressive disorder (MDD). Displacement of central [(11)C]GR205171 binding indicated that oral orvepitant doses of 30-60 mg/day provided >99% receptor occupancy for ≥24 h. Studies 733 and 833 randomized patients with MDD and 17-item Hamilton Depression Rating Scale (HAM-D)≥22 to double-blind treatment with orvepitant 30 mg/day, orvepitant 60 mg/day or placebo (1:1:1). Primary outcome measure was change from baseline in 17-item HAM-D total score at Week 6 analyzed using mixed models repeated measures. Study 733 (n=328) demonstrated efficacy on the primary endpoint (estimated drug-placebo differences of 30 mg: -2.41, 95% confidence interval (CI) (-4.50 to -0.31) p=0.0245; 60 mg: -2.86, 95% CI (-4.97 to -0.75) p=0.0082). Study 833 (n=345) did not show significance (estimated drug-placebo differences of 30 mg: -1.67, 95% CI (-3.73 to 0.39) p=0.1122; 60 mg: -0.76, 95% CI (-2.85 to 1.32) p=0.4713). The results support the hypothesis that full, long lasting blockade of central NK1 receptors may be an efficacious mechanism for the treatment of MDD.

  9. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.

    PubMed

    Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E

    2010-12-29

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Peripheral cannabinoid-1 receptor blockade restores hypothalamic leptin signaling.

    PubMed

    Tam, Joseph; Szanda, Gergő; Drori, Adi; Liu, Ziyi; Cinar, Resat; Kashiwaya, Yoshihiro; Reitman, Marc L; Kunos, George

    2017-10-01

    In visceral obesity, an overactive endocannabinoid/CB 1 receptor (CB 1 R) system promotes increased caloric intake and decreases energy expenditure, which are mitigated by global or peripheral CB 1 R blockade. In mice with diet-induced obesity (DIO), inhibition of food intake by the peripherally restricted CB 1 R antagonist JD5037 could be attributed to endogenous leptin due to the rapid reversal of hyperleptinemia that maintains leptin resistance, but the signaling pathway engaged by leptin has remained to be determined. We analyzed the hypothalamic circuitry targeted by leptin following chronic treatment of DIO mice with JD5037. Leptin treatment or an increase in endogenous leptin following fasting/refeeding induced STAT3 phosphorylation in neurons in the arcuate nucleus (ARC) in lean and JD5037-treated DIO mice, but not in vehicle-treated DIO animals. Co-localization of pSTAT3 in leptin-treated mice was significantly less common with NPY + than with POMC + ARC neurons. The hypophagic effect of JD5037 was absent in melanocortin-4 receptor (MC4R) deficient obese mice or DIO mice treated with a MC4R antagonist, but was maintained in NPY -/- mice kept on a high-fat diet. Peripheral CB 1 R blockade in DIO restores sensitivity to endogenous leptin, which elicits hypophagia via the re-activation of melanocortin signaling in the ARC. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. Late onset azotemia from RAAS blockade in CKD patients with normal renal arteries and no precipitating risk factors.

    PubMed

    Onuigbo, Macaulay A C; Onuigbo, Nnonyelum T C

    2008-01-01

    Despite proven renoprotection from RAAS blockade and its increased application since the early 1990s, we have experienced an increasing CKD/ESRD epidemic, especially among U.S. diabetics. Consequently, some concerns regarding iatrogenic azotemia from RAAS blockade have surfaced. We hypothesized that susceptible CKD patients with normal renal arteries on conventional angiography, including MRA, but who have microvascular arteriolar narrowing in the renal circulation - mimicking large vessel renal artery stenosis, even without precipitating risk factors - could experience worsening azotemia after periods of time exceeding three months on stable doses of RAAS blockade. Between September 2002 and February 2005, as part of a larger prospective study of renal failure in CKD patients on RAAS blockade, we studied five patients with >25% higher serum creatinine and normal MRA without precipitating factors. RAAS blockade was discontinued. eGFR by MDRD was monitored. Five Caucasians (M:F = 1:4; age 68 years) were enrolled and followed-up at 29.6 months. The duration of RAAS blockade at enrollment was 34.6 months. The baseline eGFR had decreased from 28.4 +/- 7.1 to 17.0 +/- 7.4 ml/min/1.73 m(2) BSA (p < 0.001) at enrollment. One required temporary hemodialysis; no deaths occurred. eGFR increased from 17.0 +/- 7.4 to 24.6 +/- 9.5 ml/min/1.73 m(2) BSA (p = 0.009), 29.6 (20-43) months after stopping the RAAS blockade. We conclude that worsening azotemia occurs in susceptible CKD patients on stable doses of RAAS blockade after long periods of time, despite normal renal arteries without precipitating risk factors. We submit that microvascular renal arteriolar narrowing is the pathophysiologic mechanism. These observations call for further study.

  12. Growth Factors and COX2 Expression in Canine Perivascular Wall Tumors.

    PubMed

    Avallone, G; Stefanello, D; Boracchi, P; Ferrari, R; Gelain, M E; Turin, L; Tresoldi, E; Roccabianca, P

    2015-11-01

    Canine perivascular wall tumors (PWTs) are a group of subcutaneous soft tissue sarcomas developing from vascular mural cells. Mural cells are involved in angiogenesis through a complex crosstalk with endothelial cells mediated by several growth factors and their receptors. The evaluation of their expression may have relevance since they may represent a therapeutic target in the control of canine PWTs. The expression of vascular endothelial growth factor (VEGF) and receptors VEGFR-I/II, basic fibroblast growth factor (bFGF) and receptor Flg, platelet-derived growth factor B (PDGFB) and receptor PDGFRβ, transforming growth factor β1 (TGFβ1) and receptors TGFβR-I/II, and cyclooxygenase 2 (COX2) was evaluated on frozen sections of 40 PWTs by immunohistochemistry and semiquantitatively scored to identify their potential role in PWT development. Statistical analysis was performed to analyze possible correlations between Ki67 labeling index and the expression of each molecule. Proteins of the VEGF-, PDGFB-, and bFGF-mediated pathways were highly expressed in 27 (67.5%), 30 (75%), and 19 (47.5%) of 40 PWTs, respectively. Proteins of the TGFβ1- and COX2-mediated pathways were highly expressed in 4 (10%) and 14 (35%) of 40 cases. Statistical analysis identified an association between VEGF and VEGFR-I/II (P = .015 and .003, respectively), bFGF and Flg (P = .038), bFGF and PDGFRβ (P = .003), and between TGFβ1 and COX2 (P = .006). These findings were consistent with the mechanisms that have been reported to play a role in angiogenesis and in tumor development. No association with Ki67 labeling index was found. VEGF-, PDGFB-, and bFGF-mediated pathways seem to have a key role in PWT development and growth. Blockade of tyrosine kinase receptors after surgery could represent a promising therapy with the aim to reduce the PWT relapse rate and prolong the time to relapse. © The Author(s) 2015.

  13. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma.

    PubMed

    Ma, Si-Rui; Deng, Wei-Wei; Liu, Jian-Feng; Mao, Liang; Yu, Guang-Tao; Bu, Lin-Lin; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-06-07

    Cancer immunotherapy offers a promising approach in cancer treatment. The adenosine A2A receptor (A2AR) could protect cancerous tissues from immune clearance via inhibiting T cells response. To date, the role of A2AR in head and neck squamous cell carcinoma (HNSCC) has not been investigated. Here, we sought to explore the expression and immunotherapeutic value of A2AR blockade in HNSCC. The expression of A2AR was evaluated by immunostaining in 43 normal mucosae, 48 dysplasia and 165 primary HNSCC tissues. The immunotherapeutic value of A2AR blockade was assessed in vivo in genetically defined immunocompetent HNSCC mouse model. Immunostaining of HNSCC tissue samples revealed that increased expression of A2AR on tumor infiltrating immune cells correlated with advanced pathological grade, larger tumor size and positive lymph node status. Elevated A2AR expression was also detected in recurrent HNSCC and HNSCC tissues with induction chemotherapy. The expression of A2AR was found to be significantly correlated with HIF-1α, CD73, CD8 and Foxp3. Furthermore, the increased population of CD4 + Foxp3 + regulatory T cells (Tregs), which partially expressed A2AR, was observed in an immunocompetent mouse model that spontaneously develops HNSCC. Pharmacological blockade of A2AR by SCH58261 delayed the tumor growth in the HNSCC mouse model. Meanwhile, A2AR blockade significantly reduced the population of CD4 + Foxp3 + Tregs and enhanced the anti-tumor response of CD8 + T cells. These results offer a preclinical proof for the administration of A2AR inhibitor on prophylactic experimental therapy of HNSCC and suggest that A2AR blockade can be a potential novel strategy for HNSCC immunotherapy.

  14. Effects of acute and subchronic AT1 receptor blockade on cardiovascular, hydromineral and neuroendocrine responses in female rats.

    PubMed

    Araujo, Iracema Gomes; Elias, Lucila Leico Kagohara; Antunes-Rodrigues, José; Reis, Luís Carlos; Mecawi, Andre Souza

    2013-10-02

    Female Wistar rats were ovariectomized (OVX) and separated into two groups that received either estradiol cypionate (EC, 40 μg/kg, sc; OVX-EC) or vehicle (corn oil, sc; OVX-oil) for 14 consecutive days. On the 7th day of treatment, a subset of animals from both the OVX-oil and OVX-EC groups was subjected to subchronic losartan (AT1 receptor antagonist) treatment (0.1g/L in drinking water; ~15 mg/kg/day) for 7 days. Other group of OVX-oil and OVX-EC rats was submitted to an acute losartan injection (100mg/kg, ip) on the 14th day of hormone replacement. In both protocols, the following parameters were measured: I) mean arterial pressure (MAP) and heart rate (HR); II) water and 0.3M saline intake; III) angiotensin II (ANG II), atrial natriuretic peptide (ANP), vasopressin (AVP) and oxytocin (OT) plasma concentrations; and IV) urinary and plasma sodium concentrations. Acute AT1 blockade induced a significant reduction in the MAP in the OVX rats, resulting in increased HR and water intake, which were attenuated by estradiol therapy. Acute AT1 blockade also increased ANG II and OT and reduced ANP plasma concentrations, with no changes in AVP secretion. In addition, acute hypotension was accompanied by a decrease in natriuresis, which was unaltered by estradiol. Subchronic AT1 blockade induced a significant decrease in MAP without changing HR in both groups. Additionally, subchronic losartan treatment induced sodium appetite in OVX rats. Prolonged AT1 blockade increased ANG II and AVP and reduced ANP plasma concentrations. Moreover, it increased natriuresis but did not alter plasma OT concentrations. Finally, estradiol treatment attenuated the increase in salt intake and plasma ANG II concentrations induced by subchronic AT1 blockade. In conclusion, our results suggest differential adaptive responses to the acute or subchronic losartan treatment in OVX and OVX-EC rats. © 2013.

  15. Multiple functions of GABA A and GABA B receptors during pattern processing in the zebrafish olfactory bulb.

    PubMed

    Tabor, Rico; Yaksi, Emre; Friedrich, Rainer W

    2008-07-01

    gamma-Aminobutyric acid (GABA)ergic synapses are thought to play pivotal roles in the processing of activity patterns in the olfactory bulb (OB), but their functions have been difficult to study during odor responses in the intact system. We pharmacologically manipulated GABA(A) and GABA(B) receptors in the OB of zebrafish and analysed the effects on odor responses of the output neurons, the mitral cells (MCs), by electrophysiological recordings and temporally deconvolved two-photon Ca2+ imaging. The blockade of GABA(B) receptors enhanced presynaptic Ca2+ influx into afferent axon terminals, and changed the amplitude and time course of a subset of MC responses, indicating that GABA(B) receptors have a modulatory influence on OB output activity. The blockade of GABA(A) receptors induced epileptiform firing, enhanced excitatory responses and abolished fast oscillations in the local field potential. Moreover, the topological reorganization and decorrelation of MC activity patterns during the initial phase of the response was perturbed. These results indicate that GABA(A) receptor-containing circuits participate in the balance of excitation and inhibition, the regulation of total OB output activity, the synchronization of odor-dependent neuronal ensembles, and the reorganization of odor-encoding activity patterns. GABA(A) and GABA(B) receptors are therefore differentially involved in multiple functions of neuronal circuits in the OB.

  16. The Epidermal Growth Factor Receptor Promotes Glomerular Injury and Renal Failure in Rapidly Progressive Crescentic Glomerulonephritis; the Identification of Possible Therapy

    PubMed Central

    Bollée, Guillaume; Flamant, Martin; Schordan, Sandra; Fligny, Cécile; Rumpel, Elisabeth; Milon, Marine; Schordan, Eric; Sabaa, Nathalie; Vandermeersch, Sophie; Galaup, Ariane; Rodenas, Anita; Casal, Ibrahim; Sunnarborg, Susan W; Salant, David J; Kopp, Jeffrey B.; Threadgill, David W; Quaggin, Susan E; Dussaule, Jean-Claude; Germain, Stéphane; Mesnard, Laurent; Endlich, Karlhans; Boucheix, Claude; Belenfant, Xavier; Callard, Patrice; Endlich, Nicole; Tharaux, Pierre-Louis

    2011-01-01

    Rapidly progressive glomerulonephritis (RPGN) is a clinical a morphological expression of severe glomerular injury. Glomerular injury manifests as a proliferative histological pattern (“crescents”) with accumulation of T cells and macrophages, and proliferation of intrinsic glomerular cells. We show de novo induction of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in intrinsic glomerular epithelial cells (podocytes) from both mice and humans with RPGN. HB-EGF induction increases phosphorylation of the EGFR/ErbB1 receptor in mice with RPGN. In HB-EGF-deficient mice, EGFR activation in glomeruli is absent and the course of RPGN is improved. Autocrine HB-EGF induces a phenotypic switch in podocytes in vitro. Conditional deletion of the Egfr gene from podocytes of mice alleviates the severity of RPGN. Pharmacological blockade of EGFR also improves the course of RPGN, even when started 4 days after the induction of experimental RPGN. This suggests that targeting the HB-EGF/EGFR pathway could also be beneficial for treatment of human RPGN. PMID:21946538

  17. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma

    PubMed Central

    Snuderl, Matija; Batista, Ana; Kirkpatrick, Nathaniel D.; de Almodovar, Carmen Ruiz; Riedemann, Lars; Walsh, Elisa C.; Anolik, Rachel; Huang, Yuhui; Martin, John D.; Kamoun, Walid; Knevels, Ellen; Schmidt, Thomas; Farrar, Christian T.; Vakoc, Benjamin J.; Mohan, Nishant; Chung, Euiheon; Roberge, Sylvie; Peterson, Teresa; Bais, Carlos; Zhelyazkova, Boryana H.; Yip, Stephen; Hasselblatt, Martin; Rossig, Claudia; Niemeyer, Elisabeth; Ferrara, Napoleone; Klagsbrun, Michael; Duda, Dan G.; Fukumura, Dai; Xu, Lei; Carmeliet, Peter; Jain, Rakesh K.

    2013-01-01

    SUMMARY Medulloblastoma is the most common pediatric malignant brain tumor. Although current therapies improve survival, these regimens are highly toxic and associated with significant morbidity. Here, we report that placental growth factor (PlGF) is expressed in the majority of medulloblastomas independent of their subtype. Moreover, high expression of PlGF receptor neuropilin 1 (Nrp1) correlates with poor overall survival in patients. We demonstrate that PlGF and Nrp1 are required for the growth and spread of medulloblastoma: PlGF/Nrp1 blockade results in direct antitumor effects in vivo, resulting in medulloblastoma regression, decreased metastases, and increased mouse survival. We reveal that PlGF is produced in the cerebellar stroma via tumor-derived Sonic hedgehog (Shh) and show that PlGF acts through Nrp1—and not vascular endothelial growth factor receptor 1 (VEGFR1)—to promote tumor cell survival. This critical tumor-stroma interaction—mediated by Shh, PlGF, and Nrp1 across medulloblastoma subtypes—supports the development of therapies targeting PlGF/Nrp1 pathway. PMID:23452854

  18. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia.

    PubMed

    Ola, Roxana; Dubrac, Alexandre; Han, Jinah; Zhang, Feng; Fang, Jennifer S; Larrivée, Bruno; Lee, Monica; Urarte, Ana A; Kraehling, Jan R; Genet, Gael; Hirschi, Karen K; Sessa, William C; Canals, Francesc V; Graupera, Mariona; Yan, Minhong; Young, Lawrence H; Oh, Paul S; Eichmann, Anne

    2016-11-29

    Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.

  19. The Effect of Opioid Receptor Blockade on the Neural Processing of Thermal Stimuli

    PubMed Central

    Schoell, Eszter D.; Bingel, Ulrike; Eippert, Falk; Yacubian, Juliana; Christiansen, Kerrin; Andresen, Hilke; May, Arne; Buechel, Christian

    2010-01-01

    The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent) signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone. PMID:20811582

  20. Vestibulo-oculomotor behaviour in rats following a transient unilateral vestibular loss induced by lidocaine.

    PubMed

    Magnusson, A K; Tham, R

    2003-01-01

    The effects of a transient vestibular nerve blockade, achieved by intra-tympanic instillation of lidocaine, were studied in rats by recording horizontal eye movements in darkness. Evaluation of the dose-response relationship showed that a maximal effect was attained with a concentration of 4% lidocaine. Within 15 min of lidocaine instillation, a vigorous spontaneous nystagmus was observed which reached maximal frequency and velocity of the slow phase after about 20 min. Subsequently, the nystagmus failed for approximately half an hour before it reappeared. This could be avoided by providing visual feedback in between the recordings in darkness or by a contralateral instillation of 2.5% lidocaine. It is suggested that the failure reflects an overload of the vestibulo-oculomotor circuits. After recovery from the nerve blockade, when the gaze was stable, dynamic vestibular tests were performed. They revealed that a decrease of the slow phase velocity gain and the dominant time constant during, respectively, sinusoidal- and step stimulation toward the unanaesthetised side, had developed with the nerve blockade. These modulations were impaired by a nodulo-uvulectomy but not by bilateral flocculectomy, which is consistent with the concept of vestibular habituation. A GABA(B) receptor antagonist, CGP 56433A, given systemically during the nerve blockade, aggravated the vestibular asymmetry. The same effect has previously been demonstrated in both short- (days) and long-term (months) compensated rats, by antagonising the GABA(B) receptor. In summary, this study provides the first observations of vestibulo-oculomotor disturbances during the first hour after a rapid and transient unilateral vestibular loss in the rat. By using this method, it is possible to study immediate behavioural consequences and possible neural changes that might outlast the nerve blockade.

  1. Blockade of Nociceptin Signaling Reduces Biochemical, Structural and Cognitive Deficits after Traumatic Brain Injury

    DTIC Science & Technology

    2010-07-01

    also will determine if ORL1 antagonists block downstream gene transcription subsequent to enzyme activation. BODY: Task 1a was to optimize blast...value between 60 and 80 psi at which defects in vestibulomotor function can be detected. These findings could potentially become a clinical...nociceptin-mediated desensitization of opioid receptor-like 1 receptor and mu opioid receptors involves protein kinase C: a molecular mechanism for

  2. Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum

    DTIC Science & Technology

    2010-06-17

    Pennsylvania State University College of Medicine, Hershey , Pennsylvania, United States of America Abstract Plasmodium falciparum is a highly lethal malaria...www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000968 Zimmerli S, Edwards S, Ernst JD ( 1996 ) Selective receptor blockade...in field isolates. J Immunol 165: 6341–6346. 22. Baruch DI, Gormely JA, Ma C, Howard RJ, Pasloske BL ( 1996 ) Plasmodium falciparum erythrocyte

  3. Interaction of Tacrine at M1 and M2 Cholinoceptors in Guinea Pig Brain

    DTIC Science & Technology

    1993-01-01

    NUMBERS cholinoceptors in Guinea Pig Brain 6 AUTHOR Maria Szilagyi and Wai-Man Lau 7 FOAMING ORG KES/eADORENESS DEFENCE SCIENCE AND S PEFORMING Wa REPO...rat heart muscarinic receptors using 3 Freeman SE, Lau W-M, Szilagyi M: M2 muscarinic receptors. Neurosci the new M2 selective antagonist Blockade of

  4. Systemic Blockade of D2-Like Dopamine Receptors Facilitates Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Ponnusamy, Ravikumar; Nissim, Helen A.; Barad, Mark

    2005-01-01

    Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized…

  5. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    PubMed

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors.

  6. Adenosine signaling contributes to ethanol-induced fatty liver in mice

    PubMed Central

    Peng, Zhongsheng; Borea, Pier Andrea; Wilder, Tuere; Yee, Herman; Chiriboga, Luis; Blackburn, Michael R.; Azzena, Gianfranco; Resta, Giuseppe; Cronstein, Bruce N.

    2009-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5′-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:19221436

  7. Immunotherapeutic implications of IL-6 blockade for cytokine storm.

    PubMed

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2016-07-01

    IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis.

  8. The Union Blockade and Demoralization of the South: Relative Prices in the Confederacy.

    ERIC Educational Resources Information Center

    Ekelund, Robert B., Jr.; Thornton, Mark

    1992-01-01

    Applies the economic concept of relative prices to the blockaded Confederacy during the U.S. Civil War. Describes how the Union blockade encouraged blockade runners to supply luxury items while soldiers lacked food, clothing, and ammunition. Contends that the resultant demoralization was a factor in the demise of the Confederacy. (CFR)

  9. The tyrosine kinase inhibitor ZD6474 blocks proliferation of RET mutant medullary thyroid carcinoma cells.

    PubMed

    Vitagliano, Donata; De Falco, Valentina; Tamburrino, Anna; Coluzzi, Sabrina; Troncone, Giancarlo; Chiappetta, Gennaro; Ciardiello, Fortunato; Tortora, Giampaolo; Fagin, James A; Ryan, Anderson J; Carlomagno, Francesca; Santoro, Massimo

    2011-02-01

    Oncogenic conversion of the RET tyrosine kinase is a frequent feature of medullary thyroid carcinoma (MTC). ZD6474 (vandetanib) is an ATP-competitive inhibitor of RET, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor receptors kinases. In this study, we have studied ZD6474 mechanism of action in TT and MZ-CRC-1 human MTC cell lines, carrying cysteine 634 to tryptophan (C634W) and methionine 918 to threonine (M918T) RET mutation respectively. ZD6474 blunted MTC cell proliferation and RET, Shc and p44/p42 mitogen-activated protein kinase (MAPK) phosphorylation. Single receptor knockdown by RNA interference showed that MTC cells depended on RET for proliferation. Adoptive expression of the ZD6474-resistant V804M RET mutant rescued proliferation of TT cells under ZD6474 treatment, showing that RET is a key ZD6474 target in these MTC cells. Upon RET inhibition, adoptive stimulation of EGFR partially rescued TT cell proliferation, MAPK signaling, and expression of cell-cycle-related genes. This suggests that simultaneous inhibition of RET and EGFR by ZD6474 may overcome the risk of MTC cells to escape from RET blockade through compensatory over-activation of EGFR.

  10. Increased CRF signaling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal

    PubMed Central

    Zhao-Shea, Rubing; DeGroot, Steven R.; Liu, Liwang; Vallaster, Markus; Pang, Xueyan; Su, Qin; Gao, Guangping; Rando, Oliver J.; Martin, Gilles E.; George, Olivier; Gardner, Paul D.; Tapper, Andrew R.

    2015-01-01

    Increased anxiety is a predominant withdrawal symptom in abstinent smokers, yet the neuroanatomical and molecular bases underlying it are unclear. Here, we show that withdrawal-induced anxiety increases activity of neurons in the interpeduncular intermediate (IPI), a subregion of the interpeduncular nucleus (IPN). IPI activation during nicotine withdrawal was mediated by increased corticotropin releasing factor (CRF) receptor-1 expression and signaling, which modulated glutamatergic input from the medial habenula (MHb). Pharmacological blockade of IPN CRF1 receptors or optogenetic silencing of MHb input reduced IPI activation and alleviated withdrawal-induced anxiety; whereas IPN CRF infusion in mice increased anxiety. We identified a meso-interpeduncular circuit, consisting of ventral tegmental area (VTA) dopaminergic neurons projecting to the IPN, as a potential source of CRF. Knock-down of CRF synthesis in the VTA prevented IPI activation and anxiety during nicotine withdrawal. These data indicate that increased CRF receptor signaling within a VTA-IPN-MHb circuit triggers anxiety during nicotine withdrawal. PMID:25898242

  11. 5-HT1A receptor blockade reverses GABAA receptor α3 subunit-mediated anxiolytic effects on stress-induced hyperthermia

    PubMed Central

    van Oorschot, Ruud; Korte, S. Mechiel; Olivier, Berend; Groenink, Lucianne

    2010-01-01

    Rationale Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABAA and the serotonin receptor system interact, a serotonergic component in the anxiolytic actions of benzodiazepines could be present. Objectives The main aim of the present study was to investigate whether the anxiolytic effects of (non-)selective α subunit GABAA receptor agonists could be reversed with 5-HT1A receptor blockade using the stress-induced hyperthermia (SIH) paradigm. Results The 5-HT1A receptor antagonist WAY-100635 (0.1–1 mg/kg) reversed the SIH-reducing effects of the non-α-subunit selective GABAA receptor agonist diazepam (1–4 mg/kg) and the GABAA receptor α3-subunit selective agonist TP003 (1 mg/kg), whereas WAY-100635 alone was without effect on the SIH response or basal body temperature. At the same time, co-administration of WAY-100635 with diazepam or TP003 reduced basal body temperature. WAY-100635 did not affect the SIH response when combined with the preferential α1-subunit GABAA receptor agonist zolpidem (10 mg/kg), although zolpidem markedly reduced basal body temperature. Conclusions The present study suggests an interaction between GABAA receptor α-subunits and 5-HT1A receptor activation in the SIH response. Specifically, our data indicate that benzodiazepines affect serotonergic signaling via GABAA receptor α3-subunits. Further understanding of the interactions between the GABAA and serotonin system in reaction to stress may be valuable in the search for novel anxiolytic drugs. PMID:20535452

  12. THE REELIN RECEPTORS VLDLR AND ApoER2 REGULATE SENSORIMOTOR GATING IN MICE

    PubMed Central

    Barr, Alasdair M.; Fish, Kenneth N.; Markou, Athina

    2007-01-01

    Summary Postmortem brain loss of reelin is noted in schizophrenia patients. Accordingly, heterozygous reeler mutant mice have been proposed as a putative model of this disorder. Little is known, however, about the involvement of the two receptors for reelin, Very-Low-Density Lipoprotein Receptor (VLDLR) and Apolipoprotein E Receptor 2 (ApoER2), on pre-cognitive processes of relevance to deficits seen in schizophrenia. Thus, we evaluated sensorimotor gating in mutant mice heterozygous or homozygous for the two reelin receptors. Mutant mice lacking one of these reelin receptors were tested for prepulse inhibition (PPI) of the acoustic startle reflex prior to and following puberty, and on a crossmodal PPI task, involving the presentation of acoustic and tactile stimuli. Furthermore, because schizophrenia patients show increased sensitivity to N-methyl-D-aspartate (NMDA) receptor blockade, we assessed the sensitivity of these mice to the PPI-disruptive effects of the NMDA receptor antagonist phencyclidine. The results demonstrated that acoustic PPI did not differ between mutant and wildtype mice. However, VLDLR homozygous mice displayed significant deficits in crossmodal PPI, while ApoER2 heterozygous and homozygous mice displayed significantly increased crossmodal PPI. Both ApoER2 and VLDLR heterozygous and homozygous mice exhibited greater sensitivity to the PPI-disruptive effects of phencyclidine than wildtype mice. These results indicate that partial or complete loss of either one of the reelin receptors results in a complex pattern of alterations in PPI function that include alterations in crossmodal, but not acoustic, PPI and increased sensitivity to NMDA receptor blockade. Thus, reelin receptor function appears to be critically involved in crossmodal PPI and the modulation of the PPI response by NMDA receptors. These findings have relevance to a range of neuropsychiatric disorders that involve sensorimotor gating deficits, including schizophrenia.. PMID:17261317

  13. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse.

    PubMed

    Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani

    2009-07-15

    Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.

  14. Minimally Invasive Surgery (MIS) in Children and Adolescents with Pheochromocytomas and Retroperitoneal Paragangliomas: Experiences in 42 Patients.

    PubMed

    Walz, Martin K; Iova, Laura D; Deimel, Judith; Neumann, Hartmut P H; Bausch, Birke; Zschiedrich, Stefan; Groeben, Harald; Alesina, Pier F

    2018-04-01

    Pheochromocytomas (PH) and paragangliomas (PGL) are rare tumours in children accounting for about 1% of the paediatric hypertension. While minimally invasive surgical techniques are well established in adult patients with PH, the experience in children is extremely limited. To the best of our knowledge, we herewith present the largest series of young patients operated on chromaffin tumours by minimally invasive access. In the setting of a prospective study (1/2001-12/2016), 42 consecutive children and adolescents (33 m, 9 f) were operated on. Thirty-seven patients (88%) suffered from inherited diseases. Twenty-six patients had PH, 11 presented retroperitoneal PGL, and five patients suffered from both. Altogether, 70 tumours (mean size 2.7 cm) were removed (45 PH, 25 PGL). All operations were performed by a minimally invasive access (retroperitoneoscopic, laparoscopic, extraperitoneal). Partial adrenalectomy was the preferred procedure for PH (31 out of 39 patients). Twenty patients received α-receptor blockade preoperatively. One patient died after induction of anaesthesia due to cardiac arrest. All other complications were minor. Conversion to open surgery was necessary in two cases with PGL. Median operating time for unilateral PH was 55 min, in bilateral cases 125, 143 min in PGs, and 180 min in combined cases. Median blood loss was 20 ml (range 0-1000). Blood transfusion was necessary in two cases. Intraoperative, systolic peak pressure was 170 ± 39 mmHg with α-receptor blockade and 191 ± 33 mmHg without α-receptor blockade (p = 0.41). The median post-operative hospital stay was 3 days. After a mean follow-up of 8.5 years, two patients presented ipsilateral recurrence (after partial adrenalectomy). All patients with bilateral PH (n = 13) are steroid independent post-operatively. PH and PGL in children and adolescents should preferably be removed by minimally invasive surgery. Partial adrenalectomy provides long-term steroid independence in bilateral PH and a low rate of (ipsilateral) recurrence. α-Receptor blockade may not be necessary in these patients.

  15. Hedgehog inhibition promotes a switch from Type II to Type I cell death receptor signaling in cancer cells.

    PubMed

    Kurita, Satoshi; Mott, Justin L; Cazanave, Sophie C; Fingas, Christian D; Guicciardi, Maria E; Bronk, Steve F; Roberts, Lewis R; Fernandez-Zapico, Martin E; Gores, Gregory J

    2011-03-31

    TRAIL is a promising therapeutic agent for human malignancies. TRAIL often requires mitochondrial dysfunction, referred to as the Type II death receptor pathway, to promote cytotoxicity. However, numerous malignant cells are TRAIL resistant due to inhibition of this mitochondrial pathway. Using cholangiocarcinoma cells as a model of TRAIL resistance, we found that Hedgehog signaling blockade sensitized these cancer cells to TRAIL cytotoxicity independent of mitochondrial dysfunction, referred to as Type I death receptor signaling. This switch in TRAIL requirement from Type II to Type I death receptor signaling was demonstrated by the lack of functional dependence on Bid/Bim and Bax/Bak, proapoptotic components of the mitochondrial pathway. Hedgehog signaling modulated expression of X-linked inhibitor of apoptosis (XIAP), which serves to repress the Type I death receptor pathway. siRNA targeted knockdown of XIAP mimics sensitization to mitochondria-independent TRAIL killing achieved by Hedgehog inhibition. Regulation of XIAP expression by Hedgehog signaling is mediated by the glioma-associated oncogene 2 (GLI2), a downstream transcription factor of Hedgehog. In conclusion, these data provide additional mechanisms modulating cell death by TRAIL and suggest Hedgehog inhibition as a therapeutic approach for TRAIL-resistant neoplasms.

  16. Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy

    PubMed Central

    Holmgaard, Rikke B.; Brachfeld, Alexandra; Gasmi, Billel; Jones, David R.; Mattar, Marissa; Doman, Thompson; Murphy, Mary; Schaer, David; Wolchok, Jedd D.; Merghoub, Taha

    2016-01-01

    ABSTRACT Colony stimulating factor-1 (CSF-1) is produced by a variety of cancers and recruits myeloid cells that suppress antitumor immunity, including myeloid-derived suppressor cells (MDSCs.) Here, we show that both CSF-1 and its receptor (CSF-1R) are frequently expressed in tumors from cancer patients, and that this expression correlates with tumor-infiltration of MDSCs. Furthermore, we demonstrate that these tumor-infiltrating MDSCs are highly immunosuppressive but can be reprogrammed toward an antitumor phenotype in vitro upon CSF-1/CSF-1R signaling blockade. Supporting these findings, we show that inhibition of CSF-1/CSF-1R signaling using an anti-CSF-1R antibody can regulate both the number and the function of MDSCs in murine tumors in vivo. We further find that treatment with anti-CSF-1R antibody induces antitumor T-cell responses and tumor regression in multiple tumor models when combined with CTLA-4 blockade therapy. However, this occurs only when administered after or concurrent with CTLA-4 blockade, indicating that timing of each therapeutic intervention is critical for optimal antitumor responses. Importantly, MDSCs present within murine tumors after CTLA-4 blockade showed increased expression of CSF-1R and were capable of suppressing T cell proliferation, and CSF-1/CSF-1R expression in the human tumors was not reduced after treatment with CTLA-4 blockade immunotherapy. Taken together, our findings suggest that CSF-1R-expressing MDSCs can be targeted to modulate the tumor microenvironment and that timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to checkpoint based immunotherapy. Significance: Infiltration by immunosuppressive myeloid cells contributes to tumor immune escape and can render patients resistant or less responsive to therapeutic intervention with checkpoint blocking antibodies. Our data demonstrate that blocking CSF-1/CSF-1R signaling using a monoclonal antibody directed to CSF-1R can regulate both the number and function of tumor-infiltrating immunosuppressive myeloid cells. In addition, our findings suggest that reprogramming myeloid responses may be a key in effectively enhancing cancer immunotherapy, offering several new potential combination therapies for future clinical testing. More importantly for clinical trial design, the timing of these interventions is critical to achieving improved tumor protection. PMID:27622016

  17. Ionotropic glutamate receptor antagonists and cancer therapy: time to think out of the box?

    PubMed

    Ribeiro, Mariana P C; Custódio, José B A; Santos, Armanda E

    2017-02-01

    Glutamate has a trophic function in the development of the central nervous system, regulating the proliferation and migration of neuronal progenitors. The resemblance between neuronal embryonic and tumor cells has paved the way for the investigation of the effects of glutamate on tumor cells. Indeed, tumor cells derived from neuronal tissue express ionotropic glutamate receptor (iGluRs) subunits and iGluR antagonists decrease cell proliferation. Likewise, iGluRs subunits are expressed in several peripheral cancer cells and blockade of the N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptor subtypes decreases their proliferation and migration. Although these mechanisms are still being investigated, the inhibition of the mitogen-activated protein kinase pathway was shown to play a key role in the antiproliferative activity of iGluR antagonists. Importantly, MK-801, a NMDAR channel blocker, was effective and well tolerated in animal models of melanoma, lung, and breast cancers, suggesting that the blockade of iGluR signaling may represent a new strategy for cancer treatment. In this review, we focus on the significance of NMDA and AMPA receptor expression in tumor cells, as well as possible therapeutic strategies targeting these receptors.

  18. CSF1/CSF1R Blockade Reprograms Tumor-Infiltrating Macrophages and Improves Response to T Cell Checkpoint Immunotherapy in Pancreatic Cancer Models

    PubMed Central

    Zhu, Yu; Knolhoff, Brett L.; Meyer, Melissa A.; Nywening, Timothy M.; West, Brian L.; Luo, Jingqin; Wang-Gillam, Andrea; Goedegebuure, S Peter; Linehan, David C.; DeNardo, David G.

    2014-01-01

    Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of immune escape in the tumor microenvironment include tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC), which not only mediate immune suppression but also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, strategies to ablate the effects of these myeloid cell populations may offer great therapeutic potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive anti-tumor T cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single agents to restrain PDAC growth, but that that combining these agents with CSF1R blockade potently elicited tumor regressions, even in larger established tumors. Taken together, our findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the tumor microenvironment under conditions that can significantly empower the therapeutic effects of checkpoint-based immunotherapeutics. PMID:25082815

  19. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models.

    PubMed

    Zhu, Yu; Knolhoff, Brett L; Meyer, Melissa A; Nywening, Timothy M; West, Brian L; Luo, Jingqin; Wang-Gillam, Andrea; Goedegebuure, S Peter; Linehan, David C; DeNardo, David G

    2014-09-15

    Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of immune escape in the tumor microenvironment include tumor-associated macrophages and myeloid-derived suppressor cells, which not only mediate immune suppression, but also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, strategies to ablate the effects of these myeloid cell populations may offer great therapeutic potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive antitumor T-cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T-cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single agents to restrain PDAC growth, but that combining these agents with CSF1R blockade potently elicited tumor regressions, even in larger established tumors. Taken together, our findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the tumor microenvironment under conditions that can significantly empower the therapeutic effects of checkpoint-based immunotherapeutics. ©2014 American Association for Cancer Research.

  20. Therapeutic effects of CSF1R-blocking antibodies in multiple myeloma.

    PubMed

    Wang, Q; Lu, Y; Li, R; Jiang, Y; Zheng, Y; Qian, J; Bi, E; Zheng, C; Hou, J; Wang, S; Yi, Q

    2018-01-01

    Our previous studies showed that macrophages (MФs), especially myeloma-associated MФs (MAMs), induce chemoresistance in human myeloma. Here we explored the potential of targeting MФs, by using colony-stimulating factor 1 receptor (CSF1R)-blocking mAbs, to treat myeloma. Our results showed that CSF1R blockade specifically inhibited the differentiation, proliferation and survival of murine M2 MФs and MAMs, and repolarized MAMs towards M1-like MФs in vitro. CSF1R blockade alone inhibited myeloma growth in vivo, by partially depleting MAMs, polarizing MAMs to the M1 phenotype, and inducing a tumor-specific cytotoxic CD4 + T-cell response. Similarly, genetically depleting MФs in myeloma-bearing MM DTR mice retarded myeloma growth in vivo. Furthermore, the combination of CSF1R blockade and chemotherapy such as bortezomib or melphalan displayed an additive therapeutic efficacy against established myeloma. Finally, a fully human CSF1R blocking mAb, similar to its murine counterpart, was able to inhibit the differentiation, proliferation and survival of human MФs. Thus, this study provides the first direct in vivo evidence that MΦs and MAMs are indeed important for myeloma development and progression. Our results also suggest that targeting MAMs by CSF1R blocking mAbs may be promising methods to (re)sensitize myeloma cells to chemotherapy and promote anti-myeloma immune responses in patients.

  1. Peripheral, but not central, CB1 antagonism provides food intake-independent metabolic benefits in diet-induced obese rats.

    PubMed

    Nogueiras, Ruben; Veyrat-Durebex, Christelle; Suchanek, Paula M; Klein, Marcella; Tschöp, Johannes; Caldwell, Charles; Woods, Stephen C; Wittmann, Gabor; Watanabe, Masahiko; Liposits, Zsolt; Fekete, Csaba; Reizes, Ofer; Rohner-Jeanrenaud, Francoise; Tschöp, Matthias H

    2008-11-01

    Blockade of the CB1 receptor is one of the promising strategies for the treatment of obesity. Although antagonists suppress food intake and reduce body weight, the role of central versus peripheral CB1 activation on weight loss and related metabolic parameters remains to be elucidated. We therefore specifically assessed and compared the respective potential relevance of central nervous system (CNS) versus peripheral CB1 receptors in the regulation of energy homeostasis and lipid and glucose metabolism in diet-induced obese (DIO) rats. Both lean and DIO rats were used for our experiments. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR, and euglycemic-hyperinsulinemic clamps were used for insulin sensitivity and glucose metabolism studies. Specific CNS-CB1 blockade decreased body weight and food intake but, independent of those effects, had no beneficial influence on peripheral lipid and glucose metabolism. Peripheral treatment with CB1 antagonist (Rimonabant) also reduced food intake and body weight but, in addition, independently triggered lipid mobilization pathways in white adipose tissue and cellular glucose uptake. Insulin sensitivity and skeletal muscle glucose uptake were enhanced, while hepatic glucose production was decreased during peripheral infusion of the CB1 antagonist. However, these effects depended on the antagonist-elicited reduction of food intake. Several relevant metabolic processes appear to independently benefit from peripheral blockade of CB1, while CNS-CB1 blockade alone predominantly affects food intake and body weight.

  2. Estrogen receptor ERα plays a major role in ethanol-evoked myocardial oxidative stress and dysfunction in conscious female rats.

    PubMed

    Yao, Fanrong; Abdel-Rahman, Abdel A

    2016-02-01

    Our previous studies showed that ethanol elicited estrogen (E2)-dependent myocardial oxidative stress and dysfunction. In the present study we tested the hypothesis that E2 signaling via the estrogen receptor (ER), ERα, mediates this myocardial detrimental effect of alcohol. To achieve this goal, conscious female rats in proestrus phase (highest endogenous E2 level) received a selective ER antagonist (200 μg/kg; intra-venous [i.v.]) for ERα (MPP), ERβ (PHTPP) or GPER (G15) or saline 30 min before ethanol (1 g/kg; i.v.) or saline infusion. ERα blockade virtually abrogated ethanol-evoked myocardial dysfunction and hypotension, while ERβ blockade had little effect on the hypotensive response, but caused delayed attenuation of the ethanol-evoked reductions in left ventricular developed pressure and the rate of left ventricle pressure rise. GPER blockade caused delayed attenuation of all cardiovascular effects of ethanol. All three antagonists attenuated the ethanol-evoked increases in myocardial catalase and ALDH2 activities, Akt, ERK1/2, p38, eNOS, and nNOS phosphorylation, except for a lack of effect of PHTPP on p38. Finally, all three ER antagonists attenuated ethanol-evoked elevation in myocardial ROS, but this effect was most notable with ERα blockade. In conclusion, ERα plays a greater role in, and might serve as a molecular target for ameliorating, the E2-dependent myocardial oxidative stress and dysfunction caused by ethanol. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effects of mineralocorticoid receptor blockade on empathy in patients with major depressive disorder.

    PubMed

    Wingenfeld, Katja; Kuehl, Linn K; Dziobek, Isabel; Roepke, Stefan; Otte, Christian; Hinkelmann, Kim

    2016-10-01

    The mineralocorticoid receptor (MR) is highly expressed in the hippocampus and prefrontal cortex and is involved in social cognition. We recently found that pharmacological stimulation of the MR enhances emotional empathy but does not affect cognitive empathy. In the current study, we examined whether blockade of the MR impairs empathy in patients with major depressive disorder (MDD) and healthy individuals. In a placebo-controlled study, we randomized 28 patients with MDD without psychotropic medication and 43 healthy individuals to either placebo or 300 mg spironolactone, a MR antagonist. Subsequently, all participants underwent two tests of social cognition, the Multifaceted Empathy Test (MET) and the Movie for the Assessment of Social Cognition (MASC), measuring cognitive and emotional facets of empathy. In the MET, we found no significant main effect of treatment or main effect of group for cognitive empathy but a highly significant treatment by group interaction (p < 0.01). Patients had higher cognitive empathy scores compared to controls in the placebo condition but not after spironolactone. Furthermore, in the spironolactone condition reduced cognitive empathy was seen in MDD patients but not in controls. Emotional empathy was not affected by MR blockade. In the MASC, no effect of spironolactone could be revealed. Depressed patients appear to exhibit greater cognitive empathy compared to healthy individuals. Blockade of MR reduced cognitive empathy in MDD patients to the level of healthy individuals. Future studies should further clarify the impact of MR functioning on different domains of social cognition in psychiatric patients.

  4. Effects of Adrenergic Blockade on Postpartum Adaptive Responses Induced by Labor Contractions

    NASA Technical Reports Server (NTRS)

    Ronca, April E.; Mills, N. A.; Lam, K. P.; Hayes, L. E.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Prenatal exposure to labor contractions augments the expression of postnatal adaptive responses in newborn rats. Near-term rat fetuses exposed prenatally to simulated labor contractions and delivered by cesarean section breath and attach to nipples at greater frequencies than non-stimulated fetuses. Plasma NE (norepinephrine) and EPI (epinephrine) was significantly elevated in newborn rats exposed to vaginal birth or simulated labor contractions (compressions) with cesarean delivery as compared to non-compressed fetuses. In the present study, we investigated adrenergic mechanisms underlying labor-induced postnatal adaptive responses. Following spinal transection of late pregnant rat dams, fetuses were administered neurogenic or non-neurogenic adrenergic blockade: 1) bretylium (10 mg/kg sc) to prevent sympathetic neuronal release, 2) hexamethonium (30 mg/kg) to produce ganglionic blockade, 3) phenoxybenzanune (10mg/kg sc), an a- adrenergic receptor antagonist, 4) ICI-118551, 10 mg/kg sc), a b receptor antagonist, or 5) vehicle alone. Fetuses were either compressed (C) or non-compressed (NC) prior to cesarean delivery. a- and b- adrenergic antagonists reduced respiration and nipple attachment rates while sympathetic and vehicle alone did not. These results provide additional support for the hypothesis that adaptive neonatal effects of labor contractions are mediated by adrenal and extra-adrenal catecholamines.

  5. Beneficial Effects of Apelin on Vascular Function in Patients With Central Obesity.

    PubMed

    Schinzari, Francesca; Veneziani, Augusto; Mores, Nadia; Barini, Angela; Di Daniele, Nicola; Cardillo, Carmine; Tesauro, Manfredi

    2017-05-01

    Patients with central obesity have impaired insulin-stimulated vasodilation and increased ET-1 (endothelin 1) vasoconstriction, which may contribute to insulin resistance and vascular damage. Apelin enhances insulin sensitivity and glucose disposal but also acts as a nitric oxide (NO)-dependent vasodilator and a counter-regulator of AT 1 (angiotensin [Ang] II type 1) receptor-induced vasoconstriction. We, therefore, examined the effects of exogenous (Pyr 1 )apelin on NO-mediated vasodilation and Ang II- or ET-1-dependent vasoconstrictor tone in obese patients. In the absence of hyperinsulinemia, forearm blood flow responses to graded doses of acetylcholine and sodium nitroprusside were not different during saline or apelin administration (both P >0.05). During intra-arterial infusion of regular insulin, however, apelin enhanced the vasodilation induced by both acetylcholine and nitroprusside (both P <0.05). Interestingly, the vasodilator effect of concurrent blockade of AT 1 (telmisartan) and AT 2 (PD 123,319) receptors was blunted by apelin (3±5% versus 32±9%; P <0.05). Similarly, during apelin administration, blockade of ET A receptors (BQ-123) resulted in lower vasodilator response than during saline (23±10% versus 65±12%; P <0.05). NO synthase inhibition by L-NMMA (l- N -monometylarginine) during the concurrent blockade of either Ang II or ET A receptors resulted in similar vasoconstriction in the absence or presence of apelin ( P >0.05). In conclusion, in patients with central obesity, apelin has favorable effects not only to improve insulin-stimulated endothelium-dependent and endothelium-independent vasodilator responses but also to blunt Ang II- and ET-1-dependent vasoconstriction by a mechanism not involving NO. Taken together, our results suggest that targeting the apelin system might favorably impact some hemodynamic abnormalities of insulin-resistant states like obesity. © 2017 American Heart Association, Inc.

  6. Dietary restriction but not angiotensin II type 1 receptor blockade improves DNA damage-related vasodilator dysfunction in rapidly aging Ercc1Δ/- mice.

    PubMed

    Wu, Haiyan; van Thiel, Bibi S; Bautista-Niño, Paula K; Reiling, Erwin; Durik, Matej; Leijten, Frank P J; Ridwan, Yanto; Brandt, Renata M C; van Steeg, Harry; Dollé, Martijn E T; Vermeij, Wilbert P; Hoeijmakers, Jan H J; Essers, Jeroen; van der Pluijm, Ingrid; Danser, A H Jan; Roks, Anton J M

    2017-08-01

    DNA damage is an important contributor to endothelial dysfunction and age-related vascular disease. Recently, we demonstrated in a DNA repair-deficient, prematurely aging mouse model ( Ercc1 Δ/- mice) that dietary restriction (DR) strongly increases life- and health span, including ameliorating endothelial dysfunction, by preserving genomic integrity. In this mouse mutant displaying prominent accelerated, age-dependent endothelial dysfunction we investigated the signaling pathways involved in improved endothelium-mediated vasodilation by DR, and explore the potential role of the renin-angiotensin system (RAS). Ercc1 Δ/- mice showed increased blood pressure and decreased aortic relaxations to acetylcholine (ACh) in organ bath experiments. Nitric oxide (NO) signaling and phospho-Ser 1177 -eNOS were compromised in Ercc1 Δ / - DR improved relaxations by increasing prostaglandin-mediated responses. Increase of cyclo-oxygenase 2 and decrease of phosphodiesterase 4B were identified as potential mechanisms. DR also prevented loss of NO signaling in vascular smooth muscle cells and normalized angiotensin II (Ang II) vasoconstrictions, which were increased in Ercc1 Δ/- mice. Ercc1 Δ/ - mutants showed a loss of Ang II type 2 receptor-mediated counter-regulation of Ang II type 1 receptor-induced vasoconstrictions. Chronic losartan treatment effectively decreased blood pressure, but did not improve endothelium-dependent relaxations. This result might relate to the aging-associated loss of treatment efficacy of RAS blockade with respect to endothelial function improvement. In summary, DR effectively prevents endothelium-dependent vasodilator dysfunction by augmenting prostaglandin-mediated responses, whereas chronic Ang II type 1 receptor blockade is ineffective. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. GABA(A) receptor blockade in dorsomedial and ventromedial nuclei of the hypothalamus evokes panic-like elaborated defensive behaviour followed by innate fear-induced antinociception.

    PubMed

    Freitas, Renato Leonardo; Uribe-Mariño, Andrés; Castiblanco-Urbina, Maria Angélica; Elias-Filho, Daoud Hibraim; Coimbra, Norberto Cysne

    2009-12-11

    Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour.

  8. Enduring abolishment of remote but not recent expression of conditioned fear by the blockade of calcium-permeable AMPA receptors before extinction training.

    PubMed

    Zelena, Dóra; Mikics, Éva; Balázsfi, Diána; Varga, János; Klausz, Barbara; Urbán, Eszter; Sipos, Eszter; Biró, László; Miskolczi, Christina; Kovács, Krisztina; Ferenczi, Szilamér; Haller, József

    2016-06-01

    Calcium-permeable (GluA2 subunit-free) AMPA receptors (CP-AMPAR) play prominent roles in fear extinction; however, no blockers of these receptors were studied in tests relevant to extinction learning so far. The CP-AMPAR antagonist IEM-1460 was administered once before extinction trainings, which were started either 1 or 28 days after fear conditioning (FC). We used a mild extinction protocol that durably decreased but did not abolish conditioned fear. The messenger RNA (mRNA) expression of GluA1 and GluA2 subunits were investigated at both time points in the ventromedial prefrontal cortex (vmPFC) and amygdala. IEM-1460 transiently facilitated extinction 1 day after conditioning, but learned fear spontaneously recovered 4 weeks later. When the extinction protocol was applied 28 days after training, IEM-1460 enhanced extinction memory, moreover abolished conditioned fear for at least a month. The expression of GluA1 and GluA2 mRNAs was increased at both time points in the vmPFC. In the basolateral and central amygdala, the GluA1/GluA2 mRNA ratio increased, suggesting a shift towards the preponderance of GluA1 over GluA2 expression. AMPAR blockade lastingly enhanced the extinction of remote but not recent fear memories. Time-dependent changes in AMPA receptor subunit mRNA expression may explain the differential effects of CP-AMPAR blockade on recent and remote conditioned fear, further supporting the notion that the mechanisms maintaining learned fear change over time. Our findings suggest clinical implications for CP-AMPAR blockers, particularly for acquired anxieties (e.g., post-traumatic stress disorder) which have a slow onset and are durable.

  9. Predominance of AT(1) blockade over mas-mediated angiotensin-(1-7) mechanisms in the regulation of blood pressure and renin-angiotensin system in mRen2.Lewis rats.

    PubMed

    Varagic, Jasmina; Ahmad, Sarfaraz; VonCannon, Jessica L; Moniwa, Norihito; Brosnihan, K Bridget; Wysocki, Jan; Batlle, Daniel; Ferrario, Carlos M

    2013-05-01

    We investigated whether the antihypertensive actions of the angiotensin II (Ang II) receptor (AT(1)-R) blocker, olmesartan medoxomil, may in part be mediated by increased Ang-(1-7) in the absence of significant changes in plasma Ang II. mRen2.Lewis congenic hypertensive rats were administered either a vehicle (n = 14) or olmesartan (0.5 mg/kg/day; n = 14) by osmotic minipumps. Two weeks later, rats from both groups were further randomized to receive either the mas receptor antagonist A-779 (0.5 mg/kg/day; n = 7 per group) or its vehicle (n = 7 per group) for the next 4 weeks. Blood pressure was monitored by telemetry, and circulating and tissue components of the renin-angiotensin system (RAS) were measured at the completion of the experiments. Antihypertensive effects of olmesartan were associated with an increase in plasma renin concentration, plasma Ang I, Ang II, and Ang-(1-7), whereas serum aldosterone levels and kidney Ang II content were reduced. Preserved Ang-(1-7) content in kidneys was associated with increases of ACE2 protein but not activity and no changes on serum and kidney ACE activity. There was no change in cardiac peptide levels after olmesartan treatment. The antihypertensive effects of olmesartan were not altered by concomitant administration of the Ang-(1-7) receptor antagonist except for a mild further increase in plasma renin concentration. Our study highlights the independent regulation of RAS among plasma, heart, and kidney tissue in response to AT(1)-R blockade. Ang-(1-7) through the mas receptor does not mediate long-term effects of olmesartan besides counterbalancing renin release in response to AT(1)-R blockade.

  10. Cannabidiol Modulates Fear Memory Formation Through Interactions with Serotonergic Transmission in the Mesolimbic System

    PubMed Central

    Norris, Christopher; Loureiro, Michael; Kramar, Cecilia; Zunder, Jordan; Renard, Justine; Rushlow, Walter; Laviolette, Steven R

    2016-01-01

    Emerging evidence suggests that the largest phytochemical component of cannabis, cannabidiol (CBD), may possess pharmacotherapeutic properties in the treatment of neuropsychiatric disorders. CBD has been reported to functionally interact with both the mesolimbic dopamine (DA) and serotonergic (5-HT) receptor systems. However, the underlying mechanisms by which CBD may modulate emotional processing are not currently understood. Using a combination of in vivo electrophysiological recording and fear conditioning in rats, the present study aimed to characterize the behavioral, neuroanatomical, and pharmacological effects of CBD within the mesolimbic pathway, and its possible functional interactions with 5-HT and DAergic transmission. Using targeted microinfusions of CBD into the shell region of the mesolimbic nucleus accumbens (NASh), we report that intra-NASh CBD potently blocks the formation of conditioned freezing behaviors. These effects were challenged with DAergic, cannabinoid CB1 receptor, and serotonergic (5-HT1A) transmission blockade, but only 5-HT1A blockade restored associative conditioned freezing behaviors. In vivo intra-ventral tegmental area (VTA) electrophysiological recordings revealed that behaviorally effective doses of intra-NASh CBD elicited a predominant decrease in spontaneous DAergic neuronal frequency and bursting activity. These neuronal effects were reversed by simultaneous blockade of 5-HT1A receptor transmission. Finally, using a functional contralateral disconnection procedure, we demonstrated that the ability of intra-NASh CBD to block the formation of conditioned freezing behaviors was dependent on intra-VTA GABAergic transmission substrates. Our findings demonstrate a novel NAc→VTA circuit responsible for the behavioral and neuronal effects of CBD within the mesolimbic system via functional interactions with serotonergic 5-HT1A receptor signaling. PMID:27296152

  11. Influence of age, body temperature, GABAA receptor inhibition and caffeine on the Hering-Breuer inflation reflex in unanesthetized rat pups

    PubMed Central

    Arnal, Ashley V.; Gore, Julie L.; Rudkin, Alison; Bartlett, Donald; Leiter, J.C.

    2013-01-01

    We measured the duration of apnea induced by sustained end-inspiratory lung inflation (the Hering Breuer Reflex; HBR) in unanesthetized infant rat pups aged 4 days (P4) to P20 at body temperatures of 32°C and 36°C. The expiratory prolongation elicited by the HBR lasted longer in the younger pups and lasted longer at the higher body temperature. Blockade of adenosine receptors by caffeine following injection into the cisterna magna (ICM) significantly blunted the thermal prolongation of the HBR. Blockade of gama-amino-butyric acid A (GABAA) receptors by pre-treatment with ICM bicuculline had no effect on the HBR duration at either body temperature. To test the hypothesis that developmental maturation of GABAergic inhibition of breathing was modifying the response to bicuculline, we pretreated rat pups with systemically administered bumetanide to lower the intracellular chloride concentration, and repeated the bicuculline studies. Bicuculline still did not alter the HBR at either temperature after bumetanide treatment. We administered PSB-36, a selective adenosine A1 receptor antagonist, and this drug treatment did not modify the HBR. We conclude that caffeine blunts the thermal prolongation of the HBR, probably by blocking adenosine A2a receptors. The thermally-sensitive adenosinergic prolongation of the HBR in these intact animals does not seem to depend on GABAA receptors PMID:23318703

  12. Activation of µ-opioid receptors and block of KIR3 potassium channels and NMDA receptor conductance by l- and d-methadone in rat locus coeruleus

    PubMed Central

    Matsui, Aya; Williams, John T

    2010-01-01

    BACKGROUND AND PURPOSE Methadone activates opioid receptors to increase a potassium conductance mediated by G-protein-coupled, inwardly rectifying, potassium (KIR3) channels. Methadone also blocks KIR3 channels and N-methyl-D-aspartic acid (NMDA) receptors. However, the concentration dependence and stereospecificity of receptor activation and channel blockade by methadone on single neurons has not been characterized. EXPERIMENTAL APPROACH Intracellular and whole-cell recording were made from locus coeruleus neurons in brain slices and the activation of µ-opioid receptors and blockade of KIR3 and NMDA channels with l- and d-methadone was examined. KEY RESULTS The potency of l-methadone, measured by the amplitude of hyperpolarization was 16.5-fold higher than with d-methadone. A maximum hyperpolarization was caused by both enantiomers (∼30 mV); however, the maximum outward current measured with whole-cell voltage-clamp recording was smaller than the current induced by [Met]5enkephalin. The KIR3 conductance induced by activation of α2-adrenoceptors was decreased with high concentrations of l- and d-methadone (10–30 µM). In addition, methadone blocked the resting inward rectifying conductance (KIR). Both l- and d-methadone blocked the NMDA receptor-dependent current. The block of NMDA receptor-dependent current was voltage-dependent suggesting that methadone acted as a channel blocker. CONCLUSIONS AND IMPLICATIONS Methadone activated µ-opioid receptors at low concentrations in a stereospecific manner. KIR3 and NMDA receptor channel block was not stereospecific and required substantially higher concentrations. The separation in the concentration range suggests that the activation of µ-opioid receptors rather than the channel blocking properties mediate both the therapeutic and toxic actions of methadone. PMID:20659105

  13. Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade.

    PubMed

    Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu

    2016-01-01

    Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named 'beige' or 'brite' adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders.

  14. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension.

    PubMed

    Dumas, Sébastien J; Bru-Mercier, Gilles; Courboulin, Audrey; Quatredeniers, Marceau; Rücker-Martin, Catherine; Antigny, Fabrice; Nakhleh, Morad K; Ranchoux, Benoit; Gouadon, Elodie; Vinhas, Maria-Candida; Vocelle, Matthieu; Raymond, Nicolas; Dorfmüller, Peter; Fadel, Elie; Perros, Frédéric; Humbert, Marc; Cohen-Kaminsky, Sylvia

    2018-05-29

    Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N -methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. K v channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human pulmonary arterial smooth muscle cells involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between proliferating human pulmonary arterial smooth muscle cells via NMDARs. Smooth-muscle NMDAR deficiency in mice attenuated the vascular remodeling triggered by chronic hypoxia, highlighting the role of vascular NMDARs in pulmonary hypertension. Pharmacological NMDAR blockade in the monocrotaline rat model of pulmonary hypertension had beneficial effects on cardiac and vascular remodeling, decreasing endothelial dysfunction, cell proliferation, and apoptosis resistance while disrupting the glutamate-NMDAR pathway in pulmonary arteries. These results reveal a dysregulation of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and identify vascular NMDARs as targets for antiremodeling treatments in PAH. © 2018 American Heart Association, Inc.

  15. Postnatal Deletion of the Type II Transforming Growth Factor-β Receptor in Smooth Muscle Cells Causes Severe Aortopathy in Mice.

    PubMed

    Hu, Jie Hong; Wei, Hao; Jaffe, Mia; Airhart, Nathan; Du, Liang; Angelov, Stoyan N; Yan, James; Allen, Julie K; Kang, Inkyung; Wight, Thomas N; Fox, Kate; Smith, Alexandra; Enstrom, Rachel; Dichek, David A

    2015-12-01

    Prenatal deletion of the type II transforming growth factor-β (TGF-β) receptor (TBRII) prevents normal vascular morphogenesis and smooth muscle cell (SMC) differentiation, causing embryonic death. The role of TBRII in adult SMC is less well studied. Clarification of this role has important clinical implications because TBRII deletion should ablate TGF-β signaling, and blockade of TGF-β signaling is envisioned as a treatment for human aortopathies. We hypothesized that postnatal loss of SMC TBRII would cause aortopathy. We generated mice with either of 2 tamoxifen-inducible SMC-specific Cre (SMC-CreER(T2)) alleles and homozygous floxed Tgfbr2 alleles. Mice were injected with tamoxifen, and their aortas examined 4 and 14 weeks later. Both SMC-CreER(T2) alleles efficiently and specifically rearranged a floxed reporter gene and efficiently rearranged a floxed Tgfbr2 allele, resulting in loss of aortic medial TBRII protein. Loss of SMC TBRII caused severe aortopathy, including hemorrhage, ulceration, dissection, dilation, accumulation of macrophage markers, elastolysis, abnormal proteoglycan accumulation, and aberrant SMC gene expression. All areas of the aorta were affected, with the most severe pathology in the ascending aorta. Cre-mediated loss of SMC TBRII in vitro ablated both canonical and noncanonical TGF-β signaling and reproduced some of the gene expression abnormalities detected in vivo. SMC TBRII plays a critical role in maintaining postnatal aortic homeostasis. Loss of SMC TBRII disrupts TGF-β signaling, acutely alters SMC gene expression, and rapidly results in severe and durable aortopathy. These results suggest that pharmacological blockade of TGF-β signaling in humans could cause aortic disease rather than prevent it. © 2015 American Heart Association, Inc.

  16. Inhibition of Tumor Necrosis Factor Improves Sleep Continuity in Patients with Treatment Resistant Depression and High Inflammation

    PubMed Central

    Weinberger, Jeremy F.; Raison, Charles L.; Rye, David B.; Montague, Amy R.; Woolwine, Bobbi J.; Felger, Jennifer C.; Haroon, Ebrahim; Miller, Andrew H.

    2014-01-01

    Blockade of the inflammatory cytokine tumor necrosis factor (TNF) in depressed patients with increased inflammation has been associated with decreased depressive symptoms. Nevertheless, the impact of TNF blockade on sleep in depressed patients has not been examined. Accordingly, sleep parameters were measured using polysomnography in 36 patients with treatment resistant major depression at baseline and 2 weeks after 3 infusions (week 8) of either the TNF antagonist infliximab (n=19) or placebo (n=17). Markers of inflammation including c-reactive protein (CRP) and TNF and its soluble receptors were assessed along with depression measured by the 17-item Hamilton Depression Rating Scale. No differences in sleep parameters were found as a function of infliximab treatment over time. Nevertheless, Wake After Sleep Onset (WASO), the spontaneous arousal index and sleep period time significantly decreased, and sleep efficiency significantly increased, from baseline to week 8 in infliximab-treated patients with high (CRP>5mg/L)(n=9) versus low inflammation (CRP≤5mg/L)(n=10), controlling for changes in scores of depression. Stage 2 sleep also significantly decreased in infliximab-treated patients with high versus low inflammation. Decreases in soluble TNF receptor 1 significantly correlated with decreases in WASO and increases in sleep efficiency in infliximab-treated subjects with high inflammation. Placebo-treated subjects exhibited no sleep changes as a function of inflammation, and no correlations between inflammatory markers and sleep parameters in placebo-treated patients were found. These data suggest that inhibition of inflammation may be a viable strategy to improve sleep alterations in patients with depression and other disorders associated with increased inflammation. PMID:25529904

  17. Diuretic effects of KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine), a novel adenosine A1 receptor antagonist, in conscious dogs.

    PubMed

    Kobayashi, T; Mizumoto, H; Karasawa, A

    1993-12-01

    The diuretic effects of KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine), a novel adenosine A1 receptor antagonist, were determined and compared with those of trichlormethiazide (TCM) and furosemide in saline-loaded conscious dogs. KW-3902, at doses higher than 0.1 mg/kg (p.o.), produced dose-dependent increases of urine volume and sodium excretion and these effects were statistically significant at doses of 1-100 mg/kg. The increase in potassium excretion was lower than that of sodium, and the ratio of sodium to potassium excretion (Na/K) tended to be elevated. TCM (0.3 mg/kg) and furosemide (3 mg/kg) also induced increases in urine volume and sodium excretion. The diuretic effects of KW-3902 lasted for 4 h after administration, whereas TCM and furosemide caused significant natriuresis for 2 h after administration. Thus, KW-3902 exhibited a longer lasting natriuresis than TCM and furosemide. These results indicate that adenosine A1 receptor blockade by KW-3902 causes consistent diuresis and natriuresis in dogs and suggest that adenosine A1 receptor blockade is a promising approach to diuretic therapy.

  18. Endocannabinoid signaling mediates oxytocin-driven social reward.

    PubMed

    Wei, Don; Lee, DaYeon; Cox, Conor D; Karsten, Carley A; Peñagarikano, Olga; Geschwind, Daniel H; Gall, Christine M; Piomelli, Daniele

    2015-11-10

    Marijuana exerts profound effects on human social behavior, but the neural substrates underlying such effects are unknown. Here we report that social contact increases, whereas isolation decreases, the mobilization of the endogenous marijuana-like neurotransmitter, anandamide, in the mouse nucleus accumbens (NAc), a brain structure that regulates motivated behavior. Pharmacological and genetic experiments show that anandamide mobilization and consequent activation of CB1 cannabinoid receptors are necessary and sufficient to express the rewarding properties of social interactions, assessed using a socially conditioned place preference test. We further show that oxytocin, a neuropeptide that reinforces parental and social bonding, drives anandamide mobilization in the NAc. Pharmacological blockade of oxytocin receptors stops this response, whereas chemogenetic, site-selective activation of oxytocin neurons in the paraventricular nucleus of the hypothalamus stimulates it. Genetic or pharmacological interruption of anandamide degradation offsets the effects of oxytocin receptor blockade on both social place preference and cFos expression in the NAc. The results indicate that anandamide-mediated signaling at CB1 receptors, driven by oxytocin, controls social reward. Deficits in this signaling mechanism may contribute to social impairment in autism spectrum disorders and might offer an avenue to treat these conditions.

  19. NMDA receptor gating of information flow through the striatum in vivo.

    PubMed

    Pomata, Pablo E; Belluscio, Mariano A; Riquelme, Luis A; Murer, M Gustavo

    2008-12-10

    A role of NMDA receptors in corticostriatal synaptic plasticity is widely acknowledged. However, the conditions that allow NMDA receptor activation in the striatum in vivo remain obscure. Here we show that NMDA receptors contribute to sustain the membrane potential of striatal medium spiny projection neurons close to threshold during spontaneous UP states in vivo. Moreover, we found that the blockade of striatal NMDA receptors reduces markedly the spontaneous firing of ensembles of medium spiny neurons during slow waves in urethane-anesthetized rats. We speculate that recurrent activation of NMDA receptors during UP states allows off-line information flow through the striatum and system level consolidation during habit formation.

  20. The evolution of renin-angiotensin blockade: angiotensin-converting enzyme inhibitors as the starting point.

    PubMed

    Sica, Domenic A

    2010-04-01

    The renin-angiotensin system has been a target in the treatment of hypertension for close to three decades. Several medication classes that block specific aspects of this system have emerged as useful therapies, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and, most recently, direct renin inhibitors. There has been a natural history to the development of each of these three drug classes, starting with their use as antihypertensive agents; thereafter, in each case they have been employed as end-organ protective agents. To date, there has been scant evidence to favor angiotensin receptor blockers or direct renin inhibitors over angiotensin-converting enzyme inhibitors in treating hypertension or in affording end-organ protection; thus, angiotensin-converting enzyme inhibitors remain the standard of care when renin-angiotensin system blockade is warranted.

  1. A tryptophan-rich motif in the human parainfluenza virus type 2 V protein is critical for the blockade of toll-like receptor 7 (TLR7)- and TLR9-dependent signaling.

    PubMed

    Kitagawa, Yoshinori; Yamaguchi, Mayu; Zhou, Min; Komatsu, Takayuki; Nishio, Machiko; Sugiyama, Tsuyoshi; Takeuchi, Kenji; Itoh, Masae; Gotoh, Bin

    2011-05-01

    Plasmacytoid dendritic cells (pDCs) do not produce alpha interferon (IFN-α) unless viruses cause a systemic infection or overcome the first-line defense provided by conventional DCs and macrophages. We show here that even paramyxoviruses, whose infections are restricted to the respiratory tract, have a V protein able to prevent Toll-like receptor 7 (TLR7)- and TLR9-dependent IFN-α induction specific to pDCs. Mutational analysis of human parainfluenza virus type 2 demonstrates that the second Trp residue of the Trp-rich motif (Trp-X(3)-Trp-X(9)-Trp) in the C-terminal domain unique to V, a determinant for IRF7 binding, is critical for the blockade of TLR7/9-dependent signaling.

  2. CIRCADIAN REGULATION METABOLIC SIGNALING MECHANISMS OF HUMAN BREAST CANCER GROWTH BY THE NOCTURNAL MELATONIN SIGNAL AND THE CONSEQUENCES OF ITS DISRUPTION BY LIGHT AT NIGHT

    PubMed Central

    Blask, David E.; Hill, Steven M.; Dauchy, Robert T.; Xiang, Shulin; Yuan, Lin; Duplessis, Tamika; Mao, Lulu; Dauchy, Erin; Sauer, Leonard A.

    2011-01-01

    This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular, dietary and metabolic signaling mechanisms involved in human breast cancer growth and the consequences of circadian disruption by exposure to light-at-night (LAN). The antiproliferative effects of the circadian melatonin signal are mediated through a major mechanism involving the activation of MT1 melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT1-induced activation of Gαi2 signaling and reduction of cAMP levels. Melatonin also regulates the transactivation of additional members of the steroid hormone/nuclear receptor super-family, enzymes involved in estrogen metabolism, expression/activation of telomerase and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and the expression of matrix metalloproteinases. Melatonin also inhibits the growth of human breast cancer xenografts via another critical pathway involving MT1-mediated suppression of cAMP leading to blockade of linoleic acid (LA) uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Experimental evidence in rats and humans indicating that LAN-induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism and signaling provides the strongest mechanistic support, thus far, for population and ecological studies demonstrating elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN. PMID:21605163

  3. Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer.

    PubMed

    Hill, Steven M; Blask, David E; Xiang, Shulin; Yuan, Lin; Mao, Lulu; Dauchy, Robert T; Dauchy, Erin M; Frasch, Tripp; Duplesis, Tamika

    2011-09-01

    This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular and metabolic signaling mechanisms involved in human breast cancer growth and the associated consequences of circadian disruption by exposure to light-at-night (LAN). The anti-proliferative effects of the circadian melatonin signal are, in general, mediated through mechanisms involving the activation of MT(1) melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor-positive (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT(1)-induced activation of G(αi2) signaling and reduction of cAMP levels. Melatonin also regulates the transcriptional activity of additional members of the nuclear receptor super-family, enzymes involved in estrogen metabolism, and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and matrix metalloproteinase expression. Melatonin also inhibits the growth of human breast cancer xenografts via MT(1)-mediated suppression of cAMP leading to a blockade of linoleic acid (LA) uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Finally, studies in both rats and humans indicate that light-at-night (LAN) induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling, providing the strongest mechanistic support, thus far, for epidemiological studies demonstrating the elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN.

  4. Effects of angiotensin receptor blockade (ARB) on mortality and cardiovascular outcomes in patients with long-term haemodialysis: a randomized controlled trial.

    PubMed

    Iseki, Kunitoshi; Arima, Hisatomi; Kohagura, Kentaro; Komiya, Ichiro; Ueda, Shinichiro; Tokuyama, Kiyoyuki; Shiohira, Yoshiki; Uehara, Hajime; Toma, Shigeki

    2013-06-01

    Hypertension is a major risk factor for death and cardiovascular disease (CVD) in patients undergoing chronic haemodialysis (HD), but there is uncertainty surrounding the effects of blood pressure (BP) lowering on this high-risk patient group. In a multicenter, prospective, randomized, open-label, blinded-endpoint trial, 469 patients with chronic HD and elevated BP (140-199/90-99 mmHg) were assigned to receive the angiotensin receptor blockade (ARB) olmesartan (at a dose of 10-40 mg daily; n = 235) or another treatment that does not include angiotensin receptor blockers and angiotensin-converting enzyme (ACE) inhibitors (n = 234). The primary outcomes were the following: (i) composite of death, nonfatal stroke, nonfatal myocardial infarction and coronary revascularization and (ii) all-cause death. During a mean follow-up of 3.5 years, the mean BP was 0.9/0.0 mmHg lower in the olmesartan group than in the control group (not significant). A total of 68 patients (28.9%) in the olmesartan group and 67 patients (28.6%) in the control group had subsequent primary composite endpoints [hazard ratio (HR) in the olmesartan group 1.00, 95% confidence interval (CI) 0.71-1.40, P = 0.99]. All-cause deaths occurred in 38 patients (16.2%) in the olmesartan group and 39 (16.7%) in the control group (HR, 0.97; 95% CI, 0.62-1.52, P = 0.91). Olmesartan did not alter the risks of serious adverse events. BP-lowering treatment with an ARB did not significantly lower the risks of major cardiovascular events or death among patients with hypertension on chronic HD. (Cochrane Renal Group Prospective Trial Register number CRG010600030).

  5. Endogenous opioid system: a promising target for future smoking cessation medications.

    PubMed

    Norman, Haval; D'Souza, Manoranjan S

    2017-05-01

    Nicotine addiction continues to be a health challenge across the world. Despite several approved medications, smokers continue to relapse. Several human and animal studies have evaluated the role of the endogenous opioid system as a potential target for smoking cessation medications. In this review, studies that have elucidated the role of the mu (MORs), delta (DORs), and kappa (KORs) opioid receptors in nicotine reward, nicotine withdrawal, and reinstatement of nicotine seeking will be discussed. Additionally, the review will discuss discrepancies in the literature and therapeutic potential of the endogenous opioid system, and suggest studies to address gaps in knowledge with respect to the role of the opioid receptors in nicotine dependence. Data available till date suggest that blockade of the MORs and DORs decreased the rewarding effects of nicotine, while activation of the MORs and DORs decreased nicotine withdrawal-induced aversive effects. In contrast, activation of the KORs decreased the rewarding effects of nicotine, while blockade of the KORs decreased nicotine withdrawal-induced aversive effects. Interestingly, blockade of the MORs and KORs attenuated reinstatement of nicotine seeking. In humans, MOR antagonists have shown benefits in select subpopulations of smokers and further investigation is required to realize their full therapeutic potential. Future work must assess the influence of polymorphisms in opioid receptor-linked genes in nicotine dependence, which will help in both identifying individuals vulnerable to nicotine addiction and the development of opioid-based smoking cessation medications. Overall, the endogenous opioid system continues to be a promising target for future smoking cessation medications.

  6. Blockade of neurokinin-1 receptors in the ventral respiratory column does not affect breathing but alters neurochemical release

    PubMed Central

    Muere, Clarissa; Neumueller, Suzanne; Olesiak, Samantha; Miller, Justin; Hodges, Matthew R.; Pan, Lawrence

    2015-01-01

    Substance P (SP) and its receptor, neurokinin-1 (NK1R), have been shown to be excitatory modulators of respiratory frequency and to stabilize breathing regularity. Studies in anesthetized mice suggest that tonic activation of NK1Rs is particularly important when other excitatory inputs to the pre-Bötzinger complex in the ventral respiratory column (VRC) are attenuated. Consistent with these findings, muscarinic receptor blockade in the VRC of intact goats elicits an increase in breathing frequency associated with increases in SP and serotonin concentrations, suggesting an involvement of these substances in neuromodulator compensation. To gain insight on the contribution to breathing of endogenous SP and NK1R activation, and how NK1R modulates the release of other neurochemicals, we individually dialyzed antagonists to NK1R (133, 267, 500 μM Spantide; 3 mM RP67580) throughout the VRC of awake and sleeping goats. We found that NK1R blockade with either Spantide at any dose or RP67580 had no effect on breathing or regularity. Both antagonists significantly (P < 0.001) increased SP, while RP67580 also increased serotonin and glycine and decreased thyrotropin-releasing hormone concentrations in the dialysate. Taken together, these data support the concept of neuromodulator interdependence, and we believe that the loss of excitatory input from NK1Rs was locally compensated by changes in other neurochemicals. PMID:25635003

  7. Blockade of neurokinin-1 receptors in the ventral respiratory column does not affect breathing but alters neurochemical release.

    PubMed

    Muere, Clarissa; Neumueller, Suzanne; Olesiak, Samantha; Miller, Justin; Hodges, Matthew R; Pan, Lawrence; Forster, Hubert V

    2015-03-15

    Substance P (SP) and its receptor, neurokinin-1 (NK1R), have been shown to be excitatory modulators of respiratory frequency and to stabilize breathing regularity. Studies in anesthetized mice suggest that tonic activation of NK1Rs is particularly important when other excitatory inputs to the pre-Bötzinger complex in the ventral respiratory column (VRC) are attenuated. Consistent with these findings, muscarinic receptor blockade in the VRC of intact goats elicits an increase in breathing frequency associated with increases in SP and serotonin concentrations, suggesting an involvement of these substances in neuromodulator compensation. To gain insight on the contribution to breathing of endogenous SP and NK1R activation, and how NK1R modulates the release of other neurochemicals, we individually dialyzed antagonists to NK1R (133, 267, 500 μM Spantide; 3 mM RP67580) throughout the VRC of awake and sleeping goats. We found that NK1R blockade with either Spantide at any dose or RP67580 had no effect on breathing or regularity. Both antagonists significantly (P < 0.001) increased SP, while RP67580 also increased serotonin and glycine and decreased thyrotropin-releasing hormone concentrations in the dialysate. Taken together, these data support the concept of neuromodulator interdependence, and we believe that the loss of excitatory input from NK1Rs was locally compensated by changes in other neurochemicals. Copyright © 2015 the American Physiological Society.

  8. It is time to reconsider the cardiovascular protection afforded by RAAS blockade -- overview of RAAS systems.

    PubMed

    Tsukamoto, Osamu; Kitakaze, Masafumi

    2013-04-01

    More than a century has passed since the renin-angiotensin-aldosterone system (RAAS) was discovered in 1897. Both circulatory and tissue RAAS have been found to be essential for regulation of the functions of the whole body, organs, tissues and cells. There is no doubt that the RAAS plays fundamental physiological roles in maintaining homeostasis, but it can also contribute to organ pathophysiology and tissue damages in some situations. Today, the usefulness of RAAS blockade is well-established in the management of a variety of cardiovascular disorders worldwide. However, the latest findings in this field are still providing us with new and unexpected insights into the pathophysiology of cardiovascular diseases. Such developments include dual blockade therapy with angiotensin I converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs), and a new class of RAAS blockers, renin inhibitors. These give us the opportunity to revisit the basic principles of the RAAS and reconsider the strategies of RAAS blockade for cardiovascular protection.

  9. Comparison of the effects of antihypertensive treatment with angiotensin II blockade and beta-blockade on carotid wall structure and haemodynamics: protocol and baseline demographics.

    PubMed

    Ariff, Ben; Stanton, Alice; Barratt, Dean; Augst, Alex; Glor, Fadi; Poulter, Neil; Sever, Peter; Xu, Yun; Hughes, Alun; Thom, Simon A Mc G

    2002-06-01

    Several systemic factors have been shown to contribute to the acceleration of large vessel atheroma. Correction of these factors leads to a reduction in the progression of plaque formation and associated arterial wall thickness. Atheroma remains, however, a focal disease, developing at characteristic sites within the arterial tree. These sites are typically at areas of vessel branching or marked curvature, and correspond to regions of high tensile stress and low sheer stress, leading to the hypothesis that local haemodynamic factors and vessel wall mechanics potentiate the focal development of atheroma. Current assessment of vascular haemodynamics suffers from an inability to handle complex flow, and does not allow accurate determination of locally varying flow, and shear stress patterns. The application of computational fluid dynamic (CFD) flow simulation techniques to ultrasound and local pressure data, however, allows a comprehensive, non-invasive appraisal of haemodynamic flow parameters to be performed. The Candesartan cilexetil and Atenolol Carotid Haemodynamic Endpoint Trial (CACHET) study compares the effects of two antihypertensive regimens, one b-blocker-based, the other angiotensin receptor blocker based, on carotid intima-media thickness. The collection of ultrasound and pressure data on each subject provides a unique opportunity to apply these data to the CFD model to study the effects of these antihypertensive regimens on local fluid dynamics. This will lead to a greater understanding of the relationship of these factors to atheroma formation and regression.

  10. Low-dose naltrexone suppresses ovarian cancer and exhibits enhanced inhibition in combination with cisplatin.

    PubMed

    Donahue, Renee N; McLaughlin, Patricia J; Zagon, Ian S

    2011-07-01

    Ovarian cancer is the leading cause of death from gynecological malignancies. Although initial therapeutic modalities are successful, 65% of these women relapse with only palliative treatments available thereafter. Endogenous opioids repress the proliferation of human ovarian cancer cells in vitro, and do so in a receptor-mediated manner. The present study examined whether modulation of opioid systems by the opioid antagonist naltrexone (NTX), alone or in combination with standard of care therapies (taxol/paclitaxel, cisplatin), alters human ovarian cancer cell proliferation in tissue culture and tumor progression in mice. Administration of NTX for six hours every two days, but not continuously, reduced DNA synthesis and cell replication from vehicle-treated controls in tissue culture. Moreover, brief exposure to NTX in combination with taxol or cisplatin had an enhanced anticancer action. Mice with established ovarian tumors and treated with a low dosage of NTX (LDN), which invokes a short period of opioid receptor blockade, repressed tumor progression in a non-toxic fashion by reducing DNA synthesis and angiogenesis but not altering cell survival. The combination of LDN with cisplatin, but not taxol, resulted in an additive inhibitory effect on tumorigenesis with enhanced depression of DNA synthesis and angiogenesis. LDN combined with cisplatin alleviated the toxicity (e.g. weight loss) associated with cisplatin. LDN treatment upregulated the expression of the opioid growth factor (OGF, chemical term ([Met(5)]-enkephalin) and its receptor, OGFr. Previous tissue culture studies have reported that OGF is the only opioid peptide with antiproliferative activity on ovarian cancer cells, with OGF action mediated by OGFr. Thus, the common denominator of intermittent opioid receptor blockade by short-term NTX or LDN on ovarian cancer proliferation and tumorigenesis recorded herein appears to be related to the OGF-OGFr axis. These preclinical data may offer a non-toxic and efficacious pathway-related treatment that can benefit patients with ovarian cancer.

  11. Single Prazosin Infusion in Prelimbic Cortex Fosters Extinction of Amphetamine-Induced Conditioned Place Preference.

    PubMed

    Latagliata, Emanuele C; Lo Iacono, Luisa; Chiacchierini, Giulia; Sancandi, Marco; Rava, Alessandro; Oliva, Valeria; Puglisi-Allegra, Stefano

    2017-01-01

    Exposure to drug-associated cues to induce extinction is a useful strategy to contrast cue-induced drug seeking. Norepinephrine (NE) transmission in medial prefrontal cortex has a role in the acquisition and extinction of conditioned place preference induced by amphetamine. We have reported recently that NE in prelimbic cortex delays extinction of amphetamine-induced conditioned place preference (CPP). A potential involvement of α1-adrenergic receptors in the extinction of appetitive conditioned response has been also suggested, although their role in prelimbic cortex has not been yet fully investigated. Here, we investigated the effects of the α1-adrenergic receptor antagonist prazosin infusion in the prelimbic cortex of C57BL/6J mice on expression and extinction of amphetamine-induced CPP. Acute prelimbic prazosin did not affect expression of amphetamine-induced CPP on the day of infusion, while in subsequent days it produced a clear-cut advance of extinction of preference for the compartment previously paired with amphetamine (Conditioned stimulus, CS). Moreover, prazosin-treated mice that had extinguished CS preference showed increased mRNA expression of brain-derived neurotrophic factor ( BDNF ) and post-synaptic density 95 ( PSD-95 ) in the nucleus accumbens shell or core, respectively, thus suggesting that prelimbic α1-adrenergic receptor blockade triggers neural adaptations in subcortical areas that could contribute to the extinction of cue-induced drug-seeking behavior. These results show that the pharmacological blockade of α1-adrenergic receptors in prelimbic cortex by a single infusion is able to induce extinction of amphetamine-induced CPP long before control (vehicle) animals, an effect depending on contingent exposure to retrieval, since if infused far from or after reactivation it did not affect preference. Moreover, they suggest strongly that the behavioral effects depend on post-treatment neuroplasticity changes in corticolimbic network, triggered by a possible "priming" effect of prazosin, and point to a potential therapeutic power of the antagonist for maladaptive memories.

  12. Recovery of NMDA receptor currents from MK-801 blockade is accelerated by Mg2+ and memantine under conditions of agonist exposure

    PubMed Central

    McKay, Sean; Bengtson, C. Peter; Bading, Hilmar; Wyllie, David J.A.; Hardingham, Giles E.

    2013-01-01

    MK-801 is a use-dependent NMDA receptor open channel blocker with a very slow off-rate. These properties can be exploited to ‘pre-block’ a population of NMDARs, such as synaptic ones, enabling the selective activation of a different population, such as extrasynaptic NMDARs. However, the usefulness of this approach is dependent on the stability of MK-801 blockade after washout. We have revisited this issue, and confirm that recovery of NMDAR currents from MK-801 blockade is enhanced by channel opening by NMDA, and find that it is further increased when Mg2+ is also present. In the presence of Mg2+, 50% recovery from MK-801 blockade is achieved after 10′ of 100 μM NMDA, or 30′ of 15 μM NMDA exposure. In Mg2+-free medium, NMDA-induced MK-801 dissociation was found to be much slower. Memantine, another PCP-site antagonist, could substitute for Mg2+ in accelerating the unblock of MK-801 in the presence of NMDA. This suggests a model whereby, upon dissociation from its binding site in the pore, MK-801 is able to re-bind in a process antagonized by Mg2+ or another PCP-site antagonist. Finally we show that even when all NMDARs are pre-blocked by MK-801, incubation of neurons with 100 μM NMDA in the presence of Mg2+ for 2.5 h triggers sufficient unblocking to kill >80% of neurons. We conclude that while synaptic MK-801 ‘pre-block’ protocols are useful for pharmacologically assessing synaptic vs. extrasynaptic contributions to NMDAR currents, or studying short-term effects, it is problematic to use this technique to attempt to study the effects of long-term selective extrasynaptic NMDAR activation. This article is part of the Special Issue entitled ‘Glutamate Receptor-Dependent Synaptic Plasticity’. PMID:23402996

  13. Uncoupling of the baroreflex by N(N)-cholinergic blockade in dissecting the components of cardiovascular regulation

    NASA Technical Reports Server (NTRS)

    Shannon, J. R.; Jordan, J.; Black, B. K.; Costa, F.; Robertson, D.

    1998-01-01

    Systemic administration of adrenergic agonists and nitric oxide donors is used extensively to determine cardiovascular receptor sensitivity. Conclusions regarding receptor sensitivity in the presence of the baroreflex may be misleading. In 8 normal volunteers, we determined the heart rate and blood pressure changes after incremental bolus doses of isoproterenol, phenylephrine, and sodium nitroprusside before and during neuronal nicotinic cholinergic (N(N)-cholinergic) blockade with trimethaphan. Results are given as median (25th/75th percentile). With trimethaphan, the baroreflex slope (as determined by bolus doses of nitroprusside and phenylephrine) decreased from 24 (22/26) to 0.00 (0.00/0.09) ms/mm Hg (P<0.01). The dose of isoproterenol that decreased systolic blood pressure (SBP) 12.5 mm Hg changed from 0.61 (0.51/5.3) to 0.17 (0.12/0.21) microg (P<0.01); the dose required to increase heart rate 12.5 bpm changed from 0.22 (0.17/0.41) to 0.74 (0.33/2.3) microg (P<0.01). The dose of nitroprusside required to decrease SBP 12.5 mm Hg changed from 2.3 (1.3/3.4) to 0.18 (0.14/0.24) microg/kg (P<0.01). The dose of phenylephrine required to increase SBP 12.5 mm Hg changed from 135 (110/200) to 16 (10/30) microg (P<0.01). We conclude that the efferent arc of the baroreflex can be completely interrupted with N(N)-cholinergic blockade. Estimation of adrenoreceptor sensitivity and sensitivity to nitric oxide donors by systemic administration of agonists is severely confounded by baroreflexes. Uncoupling of the baroreflex by N(N)-cholinergic blockade may be a useful method to obtain an integrated measure of adrenergic receptor sensitivity and sensitivity to nitric oxide donors in humans. This approach would permit the comparison of normal and abnormal physiological states without the "noise" of baroreflex buffering.

  14. Recovery of NMDA receptor currents from MK-801 blockade is accelerated by Mg2+ and memantine under conditions of agonist exposure.

    PubMed

    McKay, Sean; Bengtson, C Peter; Bading, Hilmar; Wyllie, David J A; Hardingham, Giles E

    2013-11-01

    MK-801 is a use-dependent NMDA receptor open channel blocker with a very slow off-rate. These properties can be exploited to 'pre-block' a population of NMDARs, such as synaptic ones, enabling the selective activation of a different population, such as extrasynaptic NMDARs. However, the usefulness of this approach is dependent on the stability of MK-801 blockade after washout. We have revisited this issue, and confirm that recovery of NMDAR currents from MK-801 blockade is enhanced by channel opening by NMDA, and find that it is further increased when Mg(2+) is also present. In the presence of Mg(2+), 50% recovery from MK-801 blockade is achieved after 10' of 100 μM NMDA, or 30' of 15 μM NMDA exposure. In Mg(2+)-free medium, NMDA-induced MK-801 dissociation was found to be much slower. Memantine, another PCP-site antagonist, could substitute for Mg(2+) in accelerating the unblock of MK-801 in the presence of NMDA. This suggests a model whereby, upon dissociation from its binding site in the pore, MK-801 is able to re-bind in a process antagonized by Mg(2+) or another PCP-site antagonist. Finally we show that even when all NMDARs are pre-blocked by MK-801, incubation of neurons with 100 μM NMDA in the presence of Mg(2+) for 2.5 h triggers sufficient unblocking to kill >80% of neurons. We conclude that while synaptic MK-801 'pre-block' protocols are useful for pharmacologically assessing synaptic vs. extrasynaptic contributions to NMDAR currents, or studying short-term effects, it is problematic to use this technique to attempt to study the effects of long-term selective extrasynaptic NMDAR activation. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Evidence for a role of macrophage migration inhibitory factor in vascular disease.

    PubMed

    Chen, Zhiping; Sakuma, Masashi; Zago, Alexandre C; Zhang, Xiaobin; Shi, Can; Leng, Lin; Mizue, Yuka; Bucala, Richard; Simon, Daniel

    2004-04-01

    Inflammation plays an essential role in atherosclerosis and restenosis. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is widely expressed in vascular cells. However, there is no in vivo evidence that MIF participates directly in vascular injury and repair. Therefore, we investigated the effect of MIF blockade on the response to experimental angioplasty in atherosclerosis-susceptible mice. Carotid artery dilation (2.5 atm) and complete endothelial denudation were performed in male C57BL/6J LDL receptor-deficient mice treated with a neutralizing anti-MIF or isotype control monoclonal antibody. After 7 days and 28 days, intimal and medial sizes were measured and intima/media area ratio (I/M) was calculated. Intimal thickening and I/M were reduced significantly by anti-MIF compared with control antibody. Vascular injury was accompanied by progressive vessel enlargement or "positive remodeling" that was comparable in both treatment groups. MIF blockade was associated with reduced inflammation and cellular proliferation and increased apoptosis after injury. Neutralizing MIF bioactivity after experimental angioplasty in atherosclerosis-susceptible mice reduces vascular inflammation, cellular proliferation, and neointimal thickening. Although the molecular mechanisms responsible for these effects are not yet established, these data prompt further research directed at understanding the role of MIF in vascular disease and suggest novel therapeutic interventions for preventing atherosclerosis and restenosis.

  16. Chronic 5-HT2 receptor blockade unmasks the role of 5-HT1F receptors in the inhibition of rat cardioaccelerator sympathetic outflow.

    PubMed

    García-Pedraza, José Ángel; Hernández-Abreu, Oswaldo; García, Mónica; Morán, Asunción; Villalón, Carlos M

    2018-04-01

    Serotonin (5-hydroxytryptamine; 5-HT) inhibits the rat cardioaccelerator sympathetic outflow by 5-HT 1B/1D/5 receptors. Because chronic blockade of sympatho-excitatory 5-HT 2 receptors is beneficial in several cardiovascular pathologies, this study investigated whether sarpogrelate (a 5-HT 2 receptor antagonist) alters the pharmacological profile of the above sympatho-inhibition. Rats were pretreated for 2 weeks with sarpogrelate in drinking water (30 mg/kg per day; sarpogrelate-treated group) or equivalent volumes of drinking water (control group). Animals were pithed and prepared for spinal stimulation (C 7 -T 1 ) of the cardioaccelerator sympathetic outflow or for intravenous (i.v.) bolus injections of noradrenaline. Both procedures produced tachycardic responses remaining unaltered after saline. Continuous i.v. infusions of 5-HT induced a cardiac sympatho-inhibition that was mimicked by the 5-HT receptor agonists 5-carboxamidotryptamine (5-CT; 5-HT 1/5A ), CP 93,129 (5-HT 1B ), or PNU 142633 (5-HT 1D ), but not by indorenate (5-HT 1A ) in both groups; whereas LY344864 (5-HT 1F ) mimicked 5-HT only in sarpogrelate-treated rats. In sarpogrelate-treated animals, i.v. GR 127935 (310 μg/kg; 5-HT 1B/1D/1F receptor antagonist) attenuated 5-CT-induced sympatho-inhibition and abolished LY344864-induced sympatho-inhibition; while GR 127935 plus SB 699551 (1 mg/kg; 5-HT 5A receptor antagonist) abolished 5-CT-induced inhibition. These results confirm the cardiac sympatho-inhibitory role of 5-HT 1B , 5-HT 1D , and 5-HT 5A receptors in both groups; nevertheless, sarpogrelate treatment specifically unmasked a cardiac sympatho-inhibition mediated by 5-HT 1F receptors.

  17. Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy.

    PubMed

    Burgess, Christian R; Tse, Gavin; Gillis, Lauren; Peever, John H

    2010-10-01

    To determine if the dopaminergic system modulates cataplexy, sleep attacks and sleep-wake behavior in narcoleptic mice. Hypocretin/orexin knockout (i.e., narcoleptic) and wild-type mice were administered amphetamine and specific dopamine receptor modulators to determine their effects on sleep, cataplexy and sleep attacks. Hypocretin knockout (n = 17) and wild-type mice (n = 21). Cataplexy, sleep attacks and sleep-wake behavior were identified using electroencephalogram, electromyogram and videography. These behaviors were monitored for 4 hours after an i.p. injection of saline, amphetamine and specific dopamine receptor modulators (D1- and D2-like receptor modulators). Amphetamine (2 mg/kg), which increases brain dopamine levels, decreased sleep attacks and cataplexy by 61% and 67%, suggesting that dopamine transmission modulates such behaviors. Dopamine receptor modulation also had powerful effects on sleep attacks and cataplexy. Activation (SKF 38393; 20 mg/kg) and blockade (SCH 23390; 1 mg/kg) of D1-like receptors decreased and increased sleep attacks by 77% and 88%, without affecting cataplexy. Pharmacological activation of D2-like receptors (quinpirole; 0.5 mg/kg) increased cataplectic attacks by 172% and blockade of these receptors (eticlopride; 1 mg/kg) potently suppressed them by 97%. Manipulation of D2-like receptors did not affect sleep attacks. We show that the dopaminergic system plays a role in regulating both cataplexy and sleep attacks in narcoleptic mice. We found that cataplexy is modulated by a D2-like receptor mechanism, whereas dopamine modulates sleep attacks by a D1-like receptor mechanism. These results support a role for the dopamine system in regulating sleep attacks and cataplexy in a murine model of narcolepsy.

  18. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4.

    PubMed

    Im, S H; Barchan, D; Maiti, P K; Fuchs, S; Souroujon, M C

    2001-06-01

    Myasthenia gravis (MG) and experimental autoimmune MG (EAMG) are T cell-dependent Ab-mediated autoimmune disorders, in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1-type cells and costimulatory factors such as CD40 ligand (CD40L) contribute to disease pathogenesis by producing proinflammatory cytokines and by activating autoreactive B cells. In this study we demonstrate the capacity of CD40L blockade to modulate EAMG, and analyze the mechanism underlying this disease suppression. Anti-CD40L Abs given to rats at the chronic stage of EAMG suppress the clinical progression of the autoimmune process and lead to a decrease in the AChR-specific humoral response and delayed-type hypersensitivity. The cytokine profile of treated rats suggests that the underlying mechanism involves down-regulation of AChR-specific Th1-regulated responses with no significant effect on Th2- and Th3-regulated AChR-specific responses. EAMG suppression is also accompanied by a significant up-regulation of CTLA-4, whereas a series of costimulatory factors remain unchanged. Adoptive transfer of splenocytes from anti-CD40L-treated rats does not protect recipient rats against subsequently induced EAMG. Thus it seems that the suppressed progression of chronic EAMG by anti-CD40L treatment does not induce a switch from Th1 to Th2/Th3 regulation of the AChR-specific immune response and does not induce generation of regulatory cells. The ability of anti-CD40L treatment to suppress ongoing chronic EAMG suggests that blockade of CD40L may serve as a potential approach for the immunotherapy of MG and other Ab-mediated autoimmune diseases.

  19. Interleukin-Driven Insulin-Like Growth Factor Promotes Prostatic Inflammatory Hyperplasia

    PubMed Central

    Hahn, Alana M.; Myers, Jason D.; McFarland, Eliza K.; Lee, Sanghee

    2014-01-01

    Prostatic inflammation is of considerable importance to urologic research because of its association with benign prostatic hyperplasia and prostate cancer. However, the mechanisms by which inflammation leads to proliferation and growth remain obscure. Here, we show that insulin-like growth factors (IGFs), previously known as critical developmental growth factors during prostate organogenesis, are induced by inflammation as part of the proliferative recovery to inflammation. Using genetic models and in vivo IGF receptor blockade, we demonstrate that the hyperplastic response to inflammation depends on interleukin-1–driven IGF signaling. We show that human prostatic hyperplasia is associated with IGF pathway activation specifically localized to foci of inflammation. This demonstrates that mechanisms of inflammation-induced epithelial proliferation and hyperplasia involve the induction of developmental growth factors, further establishing a link between inflammatory and developmental signals and providing a mechanistic basis for the management of proliferative diseases by IGF pathway modulation. PMID:25292180

  20. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  1. Hypothalamic κ-Opioid Receptor Modulates the Orexigenic Effect of Ghrelin

    PubMed Central

    Romero-Picó, Amparo; Vázquez, Maria J; González-Touceda, David; Folgueira, Cintia; Skibicka, Karolina P; Alvarez-Crespo, Mayte; Van Gestel, Margriet A; Velásquez, Douglas A; Schwarzer, Christoph; Herzog, Herbert; López, Miguel; Adan, Roger A; Dickson, Suzanne L; Diéguez, Carlos; Nogueiras, Rubén

    2013-01-01

    The opioid system is well recognized as an important regulator of appetite and energy balance. We now hypothesized that the hypothalamic opioid system might modulate the orexigenic effect of ghrelin. Using pharmacological and gene silencing approaches, we demonstrate that ghrelin utilizes a hypothalamic κ-opioid receptor (KOR) pathway to increase food intake in rats. Pharmacological blockade of KOR decreases the acute orexigenic effect of ghrelin. Inhibition of KOR expression in the hypothalamic arcuate nucleus is sufficient to blunt ghrelin-induced food intake. By contrast, the specific inhibition of KOR expression in the ventral tegmental area does not affect central ghrelin-induced feeding. This new pathway is independent of ghrelin-induced AMP-activated protein kinase activation, but modulates the levels of the transcription factors and orexigenic neuropeptides triggered by ghrelin to finally stimulate feeding. Our novel data implicate hypothalamic KOR signaling in the orexigenic action of ghrelin. PMID:23348063

  2. Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction

    PubMed Central

    Chen, Jeremy Tsung-chieh; Guo, Da; Campanelli, Dario; Frattini, Flavia; Mayer, Florian; Zhou, Luming; Kuner, Rohini; Heppenstall, Paul A.; Knipper, Marlies; Hu, Jing

    2014-01-01

    The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain. PMID:25354791

  3. Adenosine A(2A) receptor antagonists are broad facilitators of antinicotinic neuromuscular blockade monitored either with 2 Hz train-of-four or 50 Hz tetanic stimuli.

    PubMed

    Pereira, Monalisa W; Correia-de-Sá, Paulo; Alves-Do-Prado, Wilson

    2012-10-01

    1. The 2 Hz train-of-four ratio (TOF(ratio)) is used to monitor the degree of patient curarization. Using a rat phrenic nerve-hemidiaphragm preparation, we showed that antinicotinic agents, such as hexamethonium, d-tubocurarine and pancuronium, but not cisatracurium, decreased contractions produced by physiological nerve activity patterns (50 Hz) more efficiently than those caused by 2 Hz trains. Uncertainty about the usefulness of the TOF(ratio) to control safe recovery from curarization prompted us to investigate the muscarinic and adenosine neuromodulation of tetanic (50 Hz) fade induced by antinicotinic agents at concentrations that cause a 25% reduction in the TOF(ratio) (TOF(fade)). 2. Tetanic fade caused by d-tubocurarine (1.1 μmol/L), pancuronium (3 μmol/L) and hexamethonium (5.47 mmol/L) was attenuated by blocking presynaptic inhibitory muscarinic M(2) and adenosine A(1) receptors with methoctramine (1 μmol/L) and 1,3-dipropyl-8-cyclopentylxanthine (2.5 nmol/L), respectively. These compounds enhanced rather than decreased tetanic fade induced by cisatracurium (2.2 μmol/L), but they consistently attenuated cisatracurium-induced TOF(fade). The effect of the M(1) receptor antagonist pirenzepine (10 nmol/L) on fade produced by antinicotinic agents at 50 Hz was opposite to that observed with TOF stimulation. Blockade of adenosine A(2A) receptors with ZM 241385 (10 nmol/L) attenuated TOF(fade) caused by all antinicotinic drugs tested, with the exception of the 'pure' presynaptic nicotinic antagonist hexamethonium. ZM 241385 was the only compound tested in this series that facilitated recovery from tetanic fade produced by cisatracurium. 3. The data suggest that distinct antinicotinic relaxants interfere with fine-tuning neuromuscular adaptations to motor nerve stimulation patterns via activation of presynaptic muscarinic and adenosine receptors. These results support the use of A(2A) receptor antagonists together with atropine to facilitate recovery from antinicotinic neuromuscular blockade. © 2012 The Authors Clinical and Experimental Pharmacology and Physiology © 2012 Wiley Publishing Asia Pty Ltd.

  4. Regulation of prostate cancer by hormone-responsive G protein-coupled receptors.

    PubMed

    Wang, Wei; Chen, Zhao-Xia; Guo, Dong-Yu; Tao, Ya-Xiong

    2018-06-15

    Regulation of prostate cancer by androgen and androgen receptor (AR), and blockade of AR signaling by AR antagonists and steroidogenic enzyme inhibitors have been extensively studied. G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate almost all physiological processes. Nearly 40% of FDA-approved drugs in the market target GPCRs. A variety of GPCRs that mediate reproductive function have been demonstrated to be involved in the regulation of prostate cancer. These GPCRs include gonadotropin-releasing hormone receptor, luteinizing hormone receptor, follicle-stimulating hormone receptor, relaxin receptor, ghrelin receptor, and kisspeptin receptor. We highlight here GPCR regulation of prostate cancer by these GPCRs. Further therapeutic approaches targeting these GPCRs for the treatment of prostate cancer are summarized. Copyright © 2018. Published by Elsevier Inc.

  5. [Effect of non-selective alpha-adrenergic receptor antagonist nicergoline on the activity of neurons in the ventral lateral thalamic nucleus].

    PubMed

    Lukhanina, O P; Pil'kevych, N A

    2005-01-01

    In experiments on rats microionophoretic administration of nicergoline mainly showed the dual effect on the background activity of the ventrolateral thalamic nucleus (VL) neurons and their reactions evoked by the superior cerebellum peduncle stimulation: inhibitory under weak (2-10 nA) and excitatory under stronger (20-40 nA) currents. Microionophoresis (25 nA) of nicergoline led to decrease of the postexcitatory inhibitory processes during paired stimulation of the cerebellum fibers. Paired-pulse ratio (number of spikes in the short-latency neuronal responses elicited by the second pulse/number of spikes by the first pulse) increased, which support a presynaptic mode of drug action. Hence excitatory effect of nicergoline may be related to the blockade of the presynaptic alpha2-receptors, while inhibitory effect by the blockade of the postsynaptic alphal-receptors. Present data reveal the essential participation of the alpha-adrenoreceptor system in the modulation of background and evoked neuronal activity of the motor thalamus. The possible role of noradrenergic denervation in the development of movement disorders accompanying Parkinson's disease is discussed.

  6. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    PubMed

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  7. Pertuzumab and Erlotinib in Patients With Relapsed Non-Small Cell Lung Cancer: A Phase II Study Using 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging

    PubMed Central

    Mileshkin, Linda; Townley, Peter; Gitlitz, Barbara; Eaton, Keith; Mitchell, Paul; Hicks, Rodney; Wood, Katie; Amler, Lucas; Fine, Bernard M.; Loecke, David; Pirzkall, Andrea

    2014-01-01

    Background. Combination blockade of human epidermal growth factor receptor (HER) family signaling may confer enhanced antitumor activity than single-agent blockade. We performed a single-arm study of pertuzumab, a monoclonal antibody that inhibits HER2 dimerization, and erlotinib in relapsed non-small cell lung cancer (NSCLC). Methods. Patients received pertuzumab (840-mg loading dose and 420-mg maintenance intravenously every 3 weeks) and erlotinib (150-mg or 100-mg dose orally, daily). The primary endpoint was response rate (RR) by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) at day 56 in all patients and those with EGFR wild-type tumors. Results. Of 41 patients, 28 (68.3%) experienced treatment-related grade ≥3 adverse events, including pneumatosis intestinalis (3 patients), resulting in early cessation of enrollment. Tissue samples from 32 patients showed mutated EGFR status in 9 of 41 (22%) and wild-type EGFR in 23 of 41 (56%). The FDG-PET RR for patients with assessments at day 56 was 19.5% in all patients (n = 41) and 8.7% in patients with wild-type EGFR NSCLC (n = 23). Investigator-assessed computed tomography RR at day 56 was 12.2%. Conclusion. FDG-PET suggests that pertuzumab plus erlotinib is an active combination, but combination therapy was poorly tolerated, which limits its clinical applicability. More research is warranted to identify drug combinations that disrupt HER receptor signaling but that exhibit improved tolerability profiles. PMID:24457379

  8. TrkB blockade in the hippocampus after training or retrieval impairs memory: protection from consolidation impairment by histone deacetylase inhibition.

    PubMed

    Blank, Martina; Petry, Fernanda S; Lichtenfels, Martina; Valiati, Fernanda E; Dornelles, Arethuza S; Roesler, Rafael

    2016-03-01

    Relatively little is known about the requirement of signaling initiated by brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), in the early phases of memory consolidation, as well as about its possible functional interactions with epigenetic mechanisms. Here we show that blocking TrkB in the dorsal hippocampus after learning or retrieval impairs retention of memory for inhibitory avoidance (IA). More importantly, the impairing effect of TrkB antagonism on consolidation was completely prevented by the histone deacetylase (HDAC) inhibitor sodium butyrate (NaB). Male Wistar rats were given an intrahippocampal infusion of saline (SAL) or NaB before training, followed by an infusion of either vehicle (VEH) or the selective TrkB antagonist ANA-12 immediately after training. In a second experiment, the infusions were administered before and after retrieval. ANA-12 after either training or retrieval produced a significant impairment in a subsequent memory retention test. Pretraining administration of NaB prevented the effect of ANA-12, although NaB given before retrieval did not alter the impairment resulting from TrkB blockade. The results indicate that inhibition of BDNF/TrkB in the hippocampus can hinder consolidation and reconsolidation of IA memory. However, TrkB activity is not required for consolidation in the presence of NaB, suggesting that a dysfunction in BDNF/TrkB signaling can be fully compensated by HDAC inhibition to allow hippocampal memory formation.

  9. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression.

    PubMed

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-04-14

    Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells, which are not protective against PDA progression in mice with intact RIP3 or Mincle signalling, are reprogrammed into indispensable mediators of anti-tumour immunity in the absence of RIP3 or Mincle. Our work describes parallel networks of necroptosis-induced CXCL1 and Mincle signalling that promote macrophage-induced adaptive immune suppression and thereby enable PDA progression.

  10. Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production

    PubMed Central

    Curran, Michael A.; Kim, Myoungjoo; Montalvo, Welby; Al-Shamkhani, Aymen; Allison, James P.

    2011-01-01

    Background The co-inhibitory receptor Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) attenuates immune responses and prevent autoimmunity, however, tumors exploit this pathway to evade the host T-cell response. The T-cell co-stimulatory receptor 4-1BB is transiently upregulated on T-cells following activation and increases their proliferation and inflammatory cytokine production when engaged. Antibodies which block CTLA-4 or which activate 4-1BB can promote the rejection of some murine tumors, but fail to cure poorly immunogenic tumors like B16 melanoma as single agents. Methodology/Principal Findings We find that combining αCTLA-4 and α4-1BB antibodies in the context of a Flt3-ligand, but not a GM-CSF, based B16 melanoma vaccine promoted synergistic levels of tumor rejection. 4-1BB activation elicited strong infiltration of CD8+ T-cells into the tumor and drove the proliferation of these cells, while CTLA-4 blockade did the same for CD4+ effector T-cells. Anti-4-1BB also depressed regulatory T-cell infiltration of tumors. 4-1BB activation strongly stimulated inflammatory cytokine production in the vaccine and tumor draining lymph nodes and in the tumor itself. The addition of CTLA-4 blockade further increased IFN-γ production from CD4+ effector T-cells in the vaccine draining node and the tumor. Anti 4-1BB treatment, with or without CTLA-4 blockade, induced approximately 75% of CD8+ and 45% of CD4+ effector T-cells in the tumor to express the killer cell lectin-like receptor G1 (KLRG1). Tumors treated with combination antibody therapy showed 1.7-fold greater infiltration by these KLRG1+CD4+ effector T-cells than did those treated with α4-1BB alone. Conclusions/Significance This study shows that combining T-cell co-inhibitory blockade with αCTLA-4 and active co-stimulation with α4-1BB promotes rejection of B16 melanoma in the context of a suitable vaccine. In addition, we identify KLRG1 as a useful marker for monitoring the anti-tumor immune response elicited by this therapy. These findings should aid in the design of future trials for the immunotherapy of melanoma. PMID:21559358

  11. The renin-angiotensin-aldosterone system blockade in patients with advanced diabetic kidney disease.

    PubMed

    Bermejo, Sheila; García, Carles Oriol; Rodríguez, Eva; Barrios, Clara; Otero, Sol; Mojal, Sergi; Pascual, Julio; Soler, María José

    Diabetic kidney disease is the leading cause of end-stage chronic kidney disease. The renin-angiotensin-aldosterone system (RAAS) blockade has been shown to slow the progression of diabetic kidney disease. Our objectives were: to study the percentage of patients with diabetic kidney disease treated with RAAS blockade, to determine its renal function, safety profile and assess whether its administration is associated with increased progression of CKD after 3 years of follow-up. Retrospective study. 197 diabetic kidney disease patients were included and divided into three groups according to the treatment: patients who had never received RAAS blockade (non-RAAS blockade), patients who at some point had received RAAS blockade (inconstant-RAAS blockade) and patients who received RAAS blockade (constant-RAAS blockade). Clinical characteristics and analytical variables such as renal function, electrolytes, glycosylated haemoglobin and glomerular filtration rate according to chronic kidney disease -EPI and MDRD formulas were assessed. We also studied their clinical course (baseline, 1 and 3 years follow-up) in terms of treatment group, survival, risk factors and renal prognosis. Non-RAAS blockade patients had worse renal function and older age (p<0.05) at baseline compared to RAAS blockade patients. Patients who received RAAS blockade were not found to have greater toxicity or chronic kidney disease progression and no differences in renal prognosis were identified. Mortality was higher in non-RAAS blockade patients, older patients and patients with worse renal function (p<0.05). In the multivariate analysis, older age and worse renal function were risk factors for mortality. Treatment with RAAS blockade is more common in diabetic kidney disease patients with eGFR≥30ml/min/1.73m 2 . In our study, there were no differences in the evolution of renal function between the three groups. Older age and worse renal function were associated with higher mortality in patients who did not receive RAAS blockade. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Embryonic GABA(B) receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    PubMed

    Stratton, Matthew S; Staros, Michelle; Budefeld, Tomaz; Searcy, Brian T; Nash, Connor; Eitel, Chad; Carbone, David; Handa, Robert J; Majdic, Gregor; Tobet, Stuart A

    2014-01-01

    Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABA(B) receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B) receptor to a 7-day critical period (E11-E17) during embryonic development. Experiments tested the role of GABA(B) receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B) receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B) receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B) receptor antagonist. Embryonic exposure to GABA(B) receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B) receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  13. Rupture Forces among Human Blood Platelets at different Degrees of Activation

    PubMed Central

    Nguyen, Thi-Huong; Palankar, Raghavendra; Bui, Van-Chien; Medvedev, Nikolay; Greinacher, Andreas; Delcea, Mihaela

    2016-01-01

    Little is known about mechanics underlying the interaction among platelets during activation and aggregation. Although the strength of a blood thrombus has likely major biological importance, no previous study has measured directly the adhesion forces of single platelet-platelet interaction at different activation states. Here, we filled this void first, by minimizing surface mediated platelet-activation and second, by generating a strong adhesion force between a single platelet and an AFM cantilever, preventing early platelet detachment. We applied our setup to measure rupture forces between two platelets using different platelet activation states, and blockade of platelet receptors. The rupture force was found to increase proportionally to the degree of platelet activation, but reduced with blockade of specific platelet receptors. Quantification of single platelet-platelet interaction provides major perspectives for testing and improving biocompatibility of new materials; quantifying the effect of drugs on platelet function; and assessing the mechanical characteristics of acquired/inherited platelet defects. PMID:27146004

  14. Role of adiponectin in the metabolic effects of cannabinoid type 1 receptor blockade in mice with diet-induced obesity

    PubMed Central

    Godlewski, Grzegorz; Earley, Brian J.; Zhou, Liang; Jourdan, Tony; Szanda, Gergö; Cinar, Resat; Kunos, George

    2013-01-01

    The adipocyte-derived hormone adiponectin promotes fatty acid oxidation and improves insulin sensitivity and thus plays a key role in the regulation of lipid and glucose metabolism and energy homeostasis. Chronic cannabinoid type 1 (CB1) receptor blockade also increases lipid oxidation and improves insulin sensitivity in obese individuals or animals, resulting in reduced cardiometabolic risk. Chronic CB1 blockade reverses the obesity-related decline in serum adiponectin levels, which has been proposed to account for the metabolic effects of CB1 antagonists. Here, we investigated the metabolic actions of the CB1 inverse agonist rimonabant in high-fat diet (HFD)-induced obese adiponectin knockout (Adipo−/−) mice and their wild-type littermate controls (Adipo+/+). HFD-induced obesity and its hormonal/metabolic consequences were indistinguishable in the two strains. Daily treatment of obese mice with rimonabant for 7 days resulted in significant and comparable reductions in body weight, serum leptin, free fatty acid, cholesterol, and triglyceride levels in the two strains. Rimonabant treatment improved glucose homeostasis and insulin sensitivity to the same extent in Adipo+/+ and Adipo−/− mice, whereas it reversed the HFD-induced hepatic steatosis, fibrosis, and hepatocellular damage only in the former. The adiponectin-dependent, antisteatotic effect of rimonabant was mediated by reduced uptake and increased β-oxidation of fatty acids in the liver. We conclude that reversal of the HFD-induced hepatic steatosis and fibrosis by chronic CB1 blockade, but not the parallel reduction in adiposity and improved glycemic control, is mediated by adiponectin. PMID:24381003

  15. EXTRINSIC COAGULATION BLOCKADE ATTENUATES LUNG INJURY AND PROINFLAMMATORY CYTOKINE RELEASE AFTER INTRATRACHEAL LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Initiation of coagulation by tissue factor (TF) is a potentially powerful regulator of local inflammatory responses. We hypothesized that blockade of TF-factor VIIa (FVIIa) complex would decrease lung inflammation and proinflammatory cytokine release after tracheal instillation o...

  16. Cannabinoid receptor 1 inhibition improves cardiac function and remodelling after myocardial infarction and in experimental metabolic syndrome.

    PubMed

    Slavic, Svetlana; Lauer, Dilyara; Sommerfeld, Manuela; Kemnitz, Ulrich Rudolf; Grzesiak, Aleksandra; Trappiel, Manuela; Thöne-Reineke, Christa; Baulmann, Johannes; Paulis, Ludovit; Kappert, Kai; Kintscher, Ulrich; Unger, Thomas; Kaschina, Elena

    2013-07-01

    The cannabinoid receptors, CB1 and CB2, are expressed in the heart, but their role under pathological conditions remains controversial. This study examined the effect of CB1 receptor blockade on cardiovascular functions after experimental MI and in experimental metabolic syndrome. MI was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with the CB1 receptor antagonist rimonabant (10 mg/kg i.p. daily) started 7 days before or 6 h after MI and continued for 6 weeks. Haemodynamic parameters were measured via echocardiography and intracardiac Samba catheter. CB1 blockade improved systolic and diastolic heart function, decreased cardiac collagen and hydroxyproline content and down-regulated TGF-β1. Additionally, rimonabant decreased arterial stiffness, normalised QRS complex duration and reduced brain natriuretic peptide levels in serum. In primary cardiac fibroblasts, rimonabant decreased MMP-9 activity and TGF-β1 expression. Furthermore, rimonabant improved depressed systolic function of spontaneously hypertensive obese rats and reduced weight gain. Blocking of CB1 receptor with rimonabant improves cardiac functions in the early and late stages after MI, decreases arterial stiffness and reduces cardiac remodelling. Rimonabant also has cardioprotective actions in rats characterised by the metabolic syndrome. Inhibition of proteolysis and TGF-β1 expression and reduced collagen content by rimonabant may attenuate destruction of the extracellular matrix and decrease fibrosis after MI.

  17. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs

    PubMed Central

    Hewitt, Matthew M.; Adams, Gregory; Mazzone, Stuart B.; Mori, Nanako; Yu, Li

    2016-01-01

    Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and NG-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough. PMID:27000801

  18. Blockade of NMDA receptors blocks the acquisition of cocaine conditioned approach in rats.

    PubMed

    Galaj, Ewa; Seepersad, Neal; Dakmak, Zena; Ranaldi, Robert

    2018-01-05

    Conditioned stimuli (CSs) exert motivational effects on both adaptive and pathological reward-related behaviors, including drug taking and seeking. We developed a paradigm that allows us to investigate the neuropharmacology by which previously neutral stimuli acquire the capacity to function as CSs and elicit (intravenous) cocaine conditioned approach and used this paradigm to test the role of NMDA receptor stimulation in the acquisition of cocaine conditioned approach. Rats were injected systemically with the NMDA receptor antagonist, MK-801, before the start of 4 consecutive conditioning sessions, each of which consisted of 20 randomly presented light/tone (CS) presentations paired with cocaine infusion contingent upon nose pokes. Rats later were subjected to a CS-only test. To test the role of NMDA receptor stimulation in the already established conditioned approach, rats were injected with MK-801 prior to the CS-only test that occurred after 18 CS-cocaine conditioning sessions. Blockade of NMDA receptors significantly impaired the acquisition of cocaine-conditioned approach as indicated by the emission of significantly fewer nose pokes and significantly longer latencies to nose poke during CS presentations. When MK-801 treatment was applied after the acquisition of conditioned approach responding it had no effect on these measures. These results suggest that NMDA receptor stimulation plays an important role in the acquisition of reward-related conditioned responses driven by intravenous cocaine-associated CSs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Tachykinin receptor expression and function in human esophageal smooth muscle.

    PubMed

    Kovac, Jason R; Chrones, Tom; Preiksaitis, Harold G; Sims, Stephen M

    2006-08-01

    Tachykinins are present in enteric nerves of the gastrointestinal tract and cause contraction of esophageal smooth muscle; however, the mechanisms involved are not understood. Our aim was to characterize tachykinin signaling in human esophageal smooth muscle. We investigated functional effects of tachykinins on human esophageal smooth muscle using tension recordings and isolated cells, receptor expression with reverse transcription (RT)-polymerase chain reaction (PCR) and immunoblotting, intracellular Ca2+ responses using fluorescent indicator dyes, and membrane currents with patch-clamp electrophysiology. The mammalian tachykinins [substance P and neurokinin (NK) A and NKB] elicited concentration-dependent contractions of human esophageal smooth muscle. These responses were not affected by muscarinic receptor or neuronal blockade indicating a direct effect on smooth muscle cells (SMCs). Immunofluorescence and RT-PCR identified tachykinin receptors (NK1, NK2, and NK3) on SMCs. Contraction was mediated through a combination of Ca2+ release from intracellular stores and influx through L-type Ca2+ channels. NK2 receptor blockade inhibited the largest proportion of tachykinin-evoked responses. NKA evoked a nonselective cation current (I(NSC)) with properties similar to that elicited by muscarinic stimulation. The following paradigm is suggested: tachykinin receptor binding to SMCs releases Ca2+ from stores along with activation of I(NSC), which in turn results in membrane depolarization, L-type Ca2+ channel opening, rise of Ca2+ concentration, and contraction. These studies reveal new aspects of tachykinin signaling in human esophageal SMCs. Excitatory tachykinin pathways may represent targets for pharmacological intervention in disorders of esophageal dysmotility.

  20. The necessity and effectiveness of mineralocorticoid receptor antagonist in the treatment of diabetic nephropathy.

    PubMed

    Sato, Atsuhisa

    2015-06-01

    Diabetes mellitus is a major cause of chronic kidney disease (CKD), and diabetic nephropathy is the most common primary disease necessitating dialysis treatment in the world including Japan. Major guidelines for treatment of hypertension in Japan, the United States and Europe recommend the use of angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, which suppress the renin-angiotensin system (RAS), as the antihypertensive drugs of first choice in patients with coexisting diabetes. However, even with the administration of RAS inhibitors, failure to achieve adequate anti-albuminuric, renoprotective effects and a reduction in cardiovascular events has also been reported. Inadequate blockade of aldosterone may be one of the reasons why long-term administration of RAS inhibitors may not be sufficiently effective in patients with diabetic nephropathy. This review focuses on treatment in diabetic nephropathy and discusses the significance of aldosterone blockade. In pre-nephropathy without overt nephropathy, a mineralocorticoid receptor antagonist can be used to enhance the blood pressure-lowering effects of RAS inhibitors, improve insulin resistance and prevent clinical progression of nephropathy. In CKD categories A2 and A3, the addition of a mineralocorticoid receptor antagonist to an RAS inhibitor can help to maintain 'long-term' antiproteinuric and anti-albuminuric effects. However, in category G3a and higher, sufficient attention must be paid to hyperkalemia. Mineralocorticoid receptor antagonists are not currently recommended as standard treatment in diabetic nephropathy. However, many studies have shown promise of better renoprotective effects if mineralocorticoid receptor antagonists are appropriately used.

  1. A Selective Nociceptin Receptor Antagonist to Treat Depression: Evidence from Preclinical and Clinical Studies.

    PubMed

    Post, Anke; Smart, Trevor S; Krikke-Workel, Judith; Dawson, Gerard R; Harmer, Catherine J; Browning, Michael; Jackson, Kimberley; Kakar, Rishi; Mohs, Richard; Statnick, Michael; Wafford, Keith; McCarthy, Andrew; Barth, Vanessa; Witkin, Jeffrey M

    2016-06-01

    Nociceptin/Orphanin FQ (N/OFQ) is an endogenous ligand of the N/OFQ peptide (NOP) receptor, which is a G protein-coupled receptor in brain regions associated with mood disorders. We used a novel, potent, and selective orally bioavailable antagonist, LY2940094, to test the hypothesis that blockade of NOP receptors would induce antidepressant effects. In this study we demonstrate that targeting NOP receptors with LY2940094 translates to antidepressant-like effects in rodent models and, importantly, to antidepressant efficacy in patients with major depressive disorder (MDD). The proof-of-concept study (POC) was an 8-week, double-blind, placebo-controlled trial that evaluated LY2940094 as a novel oral medication for the treatment of patients with MDD. Once daily oral dosing of LY2940094 at 40 mg for 8 weeks vs placebo provided some evidence for an antidepressant effect based on the change from baseline to week 8 in the GRID-Hamilton Depression Rating Scale-17 item total score, although the predefined POC efficacy criterion (probability of LY2940094 being better than placebo⩾88%) was not met (82.9%). LY2940094 also had an early effect on the processing of emotional stimuli at Week 1 as shown by an increased recognition of positive relative to negative facial expressions in an emotional test battery. LY2940094 was safe and well tolerated. Overall, these are the first human data providing evidence that the blockade of NOP receptor signaling represents a promising strategy for the treatment of MDD.

  2. A Selective Nociceptin Receptor Antagonist to Treat Depression: Evidence from Preclinical and Clinical Studies

    PubMed Central

    Post, Anke; Smart, Trevor S; Krikke-Workel, Judith; Dawson, Gerard R; Harmer, Catherine J; Browning, Michael; Jackson, Kimberley; Kakar, Rishi; Mohs, Richard; Statnick, Michael; Wafford, Keith; McCarthy, Andrew; Barth, Vanessa; Witkin, Jeffrey M

    2016-01-01

    Nociceptin/Orphanin FQ (N/OFQ) is an endogenous ligand of the N/OFQ peptide (NOP) receptor, which is a G protein-coupled receptor in brain regions associated with mood disorders. We used a novel, potent, and selective orally bioavailable antagonist, LY2940094, to test the hypothesis that blockade of NOP receptors would induce antidepressant effects. In this study we demonstrate that targeting NOP receptors with LY2940094 translates to antidepressant-like effects in rodent models and, importantly, to antidepressant efficacy in patients with major depressive disorder (MDD). The proof-of-concept study (POC) was an 8-week, double-blind, placebo-controlled trial that evaluated LY2940094 as a novel oral medication for the treatment of patients with MDD. Once daily oral dosing of LY2940094 at 40 mg for 8 weeks vs placebo provided some evidence for an antidepressant effect based on the change from baseline to week 8 in the GRID-Hamilton Depression Rating Scale-17 item total score, although the predefined POC efficacy criterion (probability of LY2940094 being better than placebo⩾88%) was not met (82.9%). LY2940094 also had an early effect on the processing of emotional stimuli at Week 1 as shown by an increased recognition of positive relative to negative facial expressions in an emotional test battery. LY2940094 was safe and well tolerated. Overall, these are the first human data providing evidence that the blockade of NOP receptor signaling represents a promising strategy for the treatment of MDD. PMID:26585287

  3. Alcohol and Caffeine: The Perfect Storm

    PubMed Central

    O'Brien, Mary Claire

    2011-01-01

    Although it is widely believed that caffeine antagonizes the intoxicating effects of alcohol, the molecular mechanisms underlying their interaction are incompletely understood. It is known that both caffeine and alcohol alter adenosine neurotransmission, but the relationship is complex, and may be dose dependent. In this article, we review the available literature on combining caffeine and alcohol. Ethical constraints prohibit laboratory studies that would mimic the high levels of alcohol intoxication achieved by many young people in real-world settings, with or without the addition of caffeine. We propose a possible neurochemical mechanism for the increase in alcohol consumption and alcohol-related consequences that have been observed in persons who simultaneously consume caffeine. Caffeine is a nonselective adenosine receptor antagonist. During acute alcohol intake, caffeine antagonizes the “unwanted” effects of alcohol by blocking the adenosine A1 receptors that mediate alcohol's somnogenic and ataxic effects. The A1 receptor–mediated “unwanted” anxiogenic effects of caffeine may be ameliorated by alcohol-induced increase in the extracellular concentration of adenosine. Moreover, by means of interactions between adenosine A2A and dopamine D2 receptors, caffeine-mediated blockade of adenosine A2A receptors can potentiate the effects of alcohol-induced dopamine release. Chronic alcohol intake decreases adenosine tone. Caffeine may provide a “treatment” for the withdrawal effects of alcohol by blocking the effects of upregulated A1 receptors. Finally, blockade of A2A receptors by caffeine may contribute to the reinforcing effects of alcohol. PMID:24761263

  4. Adenosine A2A Receptor Blockade or Deletion Diminishes Fibrocyte Accumulation in the Skin in a Murine Model of Scleroderma, Bleomycin-induced Fibrosis

    PubMed Central

    Katebi, Majid; Fernandez, Patricia; Chan, Edwin S. L.; Cronstein, Bruce N.

    2015-01-01

    Peripheral blood fibrocytes are a newly identified circulating leukocyte subpopulation that migrates into injured tissue where it may display fibroblast-like properties and participate in wound healing and fibrosis of skin and other organs. Previous studies in our lab demonstrated that A2A receptor-deficient and A2A antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis, thus the aim of this study was to determine whether the adenosine A2A receptor regulates recruitment of fibrocytes to the dermis in this bleomycin-induced model of dermal fibrosis. Sections of skin from normal mice and bleomycin-treated wild type, A2A knockout and A2A antagonist-treated mice were stained for Procollagen α2 Type I and CD34 and the double stained cells, fibrocytes, were counted in the tissue sections. There were more fibrocytes in the dermis of bleomycin-treated mice than normal mice and the increase was abrogated by deletion or blockade of adenosine A2A receptors. Because fibrocytes play a central role in tissue fibrosis these results suggest that diminished adenosine A2A receptor-mediated recruitment of fibrocytes into tissue may play a role in the pathogenesis of fibrosing diseases of the skin. Moreover, these results provide further evidence that adenosine A2A receptors may represent a new target for the treatment of such fibrosing diseases as scleroderma or nephrogenic fibrosing dermopathy. PMID:18709547

  5. Influence of age, body temperature, GABAA receptor inhibition and caffeine on the Hering-Breuer inflation reflex in unanesthetized rat pups.

    PubMed

    Arnal, Ashley V; Gore, Julie L; Rudkin, Alison; Bartlett, Donald; Leiter, J C

    2013-03-01

    We measured the duration of apnea induced by sustained end-inspiratory lung inflation (the Hering Breuer Reflex, HBR) in unanesthetized infant rat pups aged 4 days (P4) to P20 at body temperatures of 32°C and 36°C. The expiratory prolongation elicited by the HBR lasted longer in the younger pups and lasted longer at the higher body temperature. Blockade of adenosine receptors by caffeine following injection into the cisterna magna (ICM) significantly blunted the thermal prolongation of the HBR. Blockade of gama-amino-butyric acid A (GABAA) receptors by pre-treatment with ICM bicuculline had no effect on the HBR duration at either body temperature. To test the hypothesis that developmental maturation of GABAergic inhibition of breathing was modifying the response to bicuculline, we pretreated rat pups with systemically administered bumetanide to lower the intracellular chloride concentration, and repeated the bicuculline studies. Bicuculline still did not alter the HBR at either temperature after bumetanide treatment. We administered PSB-36, a selective adenosine A1 receptor antagonist, and this drug treatment did not modify the HBR. We conclude that caffeine blunts the thermal prolongation of the HBR, probably by blocking adenosine A2a receptors. The thermally sensitive adenosinergic prolongation of the HBR in these intact animals does not seem to depend on GABAA receptors. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    PubMed Central

    Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against the epidermal growth factor receptor (EGFR) is one of the most promising molecular therapeutics for head and neck squamous cell carcinoma (HNSCC). EGFR is overexpressed in a wide range of malignancies, including HNSCC, and initiates important signal transduction pathways in HNSCC carcinogenesis. However, primary and acquired resistance are serious problems and are responsible for low single-agent response rate and tumor recurrence. Therefore, an improved understanding of the molecular mechanisms of resistance to EGFR inhibitors may provide valuable indications to identify biomarkers that can be used clinically to predict response to EGFR blockade and to establish new treatment options to overcome resistance. To date, no predictive biomarker for HNSCC is available in the clinic. Therapeutic resistance to anti-EGFR therapy may arise from mechanisms that can compensate for reduced EGFR signaling and/or mechanisms that can modulate EGFR-dependent signaling. In this review, we will summarize some of these molecular mechanisms and describe strategies to overcome that resistance. PMID:23821327

  7. Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors

    PubMed Central

    Ahmed, Muhammad S.; Rainer, Carolyn; Nielsen, Sebastian R.; Quaranta, Valeria; Weyer-Czernilofsky, Ulrike; Engle, Danielle D.; Perez-Mancera, Pedro A.; Coupland, Sarah E.; Taktak, Azzam; Bogenrieder, Thomas; Tuveson, David A.; Campbell, Fiona; Schmid, Michael C.; Mielgo, Ainhoa

    2017-01-01

    Tumor-associated macrophages (TAM) and myofibroblasts are key drivers in cancer that are associated with drug resistance in many cancers, including pancreatic ductal adenocarcinoma (PDAC). However, our understanding of the molecular mechanisms by which TAM and fibroblasts contribute to chemoresistance is unclear. In this study, we found that TAM and myofibroblasts directly support chemoresistance of pancreatic cancer cells by secreting insulin-like growth factors (IGF) 1 and 2, which activate insulin/IGF receptors on pancreatic cancer cells. Immunohistochemical analysis of biopsies from patients with pancreatic cancer revealed that 72% of the patients expressed activated insulin/IGF receptors on tumor cells, and this positively correlates with increased CD163+ TAM infiltration. In vivo, we found that TAM and myofibroblasts were the main sources of IGF production, and pharmacologic blockade of IGF sensitized pancreatic tumors to gemcitabine. These findings suggest that inhibition of IGF in combination with chemotherapy could benefit patients with PDAC, and that insulin/IGF1R activation may be used as a biomarker to identify patients for such therapeutic intervention. PMID:27742686

  8. Opiate receptor blockade on human granulosa cells inhibits VEGF release.

    PubMed

    Lunger, Fabian; Vehmas, Anni P; Fürnrohr, Barbara G; Sopper, Sieghart; Wildt, Ludwig; Seeber, Beata

    2016-03-01

    The objectives of this study were to determine whether the main opioid receptor (OPRM1) is present on human granulosa cells and if exogenous opiates and their antagonists can influence granulosa cell vascular endothelial growth factor (VEGF) production via OPRM1. Granulosa cells were isolated from women undergoing oocyte retrieval for IVF. Complementary to the primary cells, experiments were conducted using COV434, a well-characterized human granulosa cell line. Identification and localization of opiate receptor subtypes was carried out using Western blot and flow cytometry. The effect of opiate antagonist on granulosa cell VEGF secretion was assessed by enzyme-linked immunosorbent assay. For the first time, the presence of OPRM1 on human granulosa cells is reported. Blocking of opiate signalling using naloxone, a specific OPRM1 antagonist, significantly reduced granulosa cell-derived VEGF levels in both COV434 and granulosa-luteal cells (P < 0.01). The presence of opiate receptors and opiate signalling in granulosa cells suggest a possible role in VEGF production. Targeting this signalling pathway could prove promising as a new clinical option in the prevention and treatment of ovarian hyperstimulation syndrome. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Cardiopulmonary dysfunction during porcine endotoxin shock is effectively counteracted by the endothelin receptor antagonist bosentan.

    PubMed

    Wanecek, M; Oldner, A; Rudehill, A; Sollevi, A; Alving, K; Weitzberg, E

    1997-05-01

    In a porcine endotoxin shock model, the mixed nonpeptide endothelin receptor antagonist bosentan was administered 2 h after onset of endotoxemia (n = 8). Cardiopulmonary vascular changes, oxygen-related variables, and plasma levels of endothelin-1-like immunoreactivity were compared with a control group that received only endotoxin (n = 8). Bosentan abolished the progressive increase in mean pulmonary artery pressure and pulmonary vascular resistance seen in controls. Possible mechanisms include blockade of vasoconstrictive endothelin receptors, and a lesser degree of edema and inflammation indicated by less alveolar protein and a lower inflammatory cell count observed in bronchoalveolar lavage. Further, bosentan restored cardiac index to the pre-endotoxin level by an increase in stroke volume index, improved systemic oxygen delivery, and acid base balance. Because mean arterial blood pressure was unaffected, bosentan reduced systemic vascular resistance. Endotoxemia resulted in an increase in tumor necrosis factor-alpha and endothelin-1-like immunoreactivity plasma levels, the latter being further increased by bosentan. In conclusion, in porcine endotoxemia, treatment with the endothelin receptor antagonist bosentan, administered during fulminate shock, abolished pulmonary hypertension and restored cardiac index. These findings suggest that bosentan could be an effective treatment for reversing a deteriorated cardiopulmonary state during septic shock.

  10. [Adoptive Cell Therapy with Immune Checkpoint Blockade].

    PubMed

    Aruga, Atsushi

    2017-09-01

    Cancer immunotherapy are taking a leading role of cancer therapy due to the development of the immune checkpoint blockade. To date, however, only about 20% of patients have clinical responses and the cancer-specific T cells in cancer site are required to obtain beneficial effects. There has been an innovative development in the field of adoptive cell therapy, especially receptor gene-modified T cells in recent years. The effector cells mostly express PD-1, therefore the cytotoxic reactivity of the effector cells are inhibited by PD-L1. The combination of the adoptive cell therapy and the immune checkpoint blockade is expected to enhance efficacy. On the other hand, the immune-related adverse events may also be enhanced, therefore, it is needed to develop the combination therapy carefully, improving the cancer antigen-specificity or dealing with the cytokine release syndrome.

  11. Blockade of the Programmed Death-1 Pathway Restores Sarcoidosis CD4+ T-Cell Proliferative Capacity

    PubMed Central

    Braun, Nicole A.; Celada, Lindsay J.; Herazo-Maya, Jose D.; Abraham, Susamma; Shaginurova, Guzel; Sevin, Carla M.; Grutters, Jan; Culver, Daniel A.; Dworski, Ryszard; Sheller, James; Massion, Pierre P.; Polosukhin, Vasiliy V.; Johnson, Joyce E.; Kaminski, Naftali; Wilkes, David S.; Oswald-Richter, Kyra A.

    2014-01-01

    Rationale: Effective therapeutic interventions for chronic, idiopathic lung diseases remain elusive. Normalized T-cell function is an important contributor to spontaneous resolution of pulmonary sarcoidosis. Up-regulation of inhibitor receptors, such as programmed death-1 (PD-1) and its ligand, PD-L1, are important inhibitors of T-cell function. Objectives: To determine the effects of PD-1 pathway blockade on sarcoidosis CD4+ T-cell proliferative capacity. Methods: Gene expression profiles of sarcoidosis and healthy control peripheral blood mononuclear cells were analyzed at baseline and follow-up. Flow cytometry was used to measure ex vivo expression of PD-1 and PD-L1 on systemic and bronchoalveolar lavage–derived cells of subjects with sarcoidosis and control subjects, as well as the effects of PD-1 pathway blockade on cellular proliferation after T-cell receptor stimulation. Immunohistochemistry analysis for PD-1/PD-L1 expression was conducted on sarcoidosis, malignant, and healthy control lung specimens. Measurements and Main Results: Microarray analysis demonstrates longitudinal increase in PDCD1 gene expression in sarcoidosis peripheral blood mononuclear cells. Immunohistochemistry analysis revealed increased PD-L1 expression within sarcoidosis granulomas and lung malignancy, but this was absent in healthy lungs. Increased numbers of sarcoidosis PD-1+ CD4+ T cells are present systemically, compared with healthy control subjects (P < 0.0001). Lymphocytes with reduced proliferative capacity exhibited increased proliferation with PD-1 pathway blockade. Longitudinal analysis of subjects with sarcoidosis revealed reduced PD-1+ CD4+ T cells with spontaneous clinical resolution but not with disease progression. Conclusions: Analogous to the effects in other chronic lung diseases, these findings demonstrate that the PD-1 pathway is an important contributor to sarcoidosis CD4+ T-cell proliferative capacity and clinical outcome. Blockade of the PD-1 pathway may be a viable therapeutic target to optimize clinical outcomes. PMID:25073001

  12. Nephroprotective action of renin-angiotensin-aldosterone system blockade in chronic kidney disease patients: the landscape after ALTITUDE and VA NEPHRON-D trails.

    PubMed

    Rutkowski, Boleslaw; Tylicki, Leszek

    2015-03-01

    The intervention in the renin-angiotensin-aldosterone system (RAAS) is currently the most effective strategy that combines blood pressure lowering and renoprotection. Several large, randomized, controlled trials evidenced the renoprotective potential of the angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) in nephropathies of almost any etiology. Mineralocorticoid receptor antagonists and direct renin inhibitor, aliskiren, as add-on treatments to standard therapy including the optimal dose of ACEIs or ARBs reduce albuminuria or proteinuria and slow development of renal dysfunction more than placebo. No clinical evidence is available however about whether these strategies may influence on long-term kidney outcome. Three recent trials suggested that aggressive RAAS blockade, that is, combination of 2 RAAS-blocking agents, does not decrease cardiovascular and renal morbidity and may carry an increased risk of serious complications. This article reviews an evidence-based approach on the use of RAAS-inhibiting agents in chronic kidney disease and considers the implementation of dual RAAS blockade with reference to the results of ALTITUDE and VA NEPHRON-D trails aiming to aid clinicians in their treatment decisions for patients with chronic kidney disease. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  13. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma.

    PubMed

    Patwardhan, Parag P; Ivy, Kathryn S; Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K

    2016-01-26

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10-18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma.

  14. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma

    PubMed Central

    Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K.

    2016-01-01

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10–18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma. PMID:26675259

  15. Scrutinizing the Expression and Blockade of Inhibitory Molecules Expressed on T Cells from Acute Myeloid Leukemia Patients.

    PubMed

    Abdolmaleki, Mohsen; Mojtabavi, Nazanin; Zavvar, Mahdi; Vaezi, Mohammad; Noorbakhsh, Farshid; Nicknam, Mohammad Hossein

    2018-06-01

    T cell exhaustion is an immunosuppressive mechanism which occurs in chronic viral infections, solid tumors and hematologic malignancies. Exhausted T cell has increased the expression of inhibitory receptors, and functional impairment. In this study, we investigated the expression from some of those inhibitory receptors being Programmed death 1 (PD-1), T cell immunoglobulin and mucin domain containing molecules 3 (TIM-3) and CD244 on T cells from Iranian acute myeloid leukemia (AML) patients. Peripheral blood samples were collected from Iranian newly diagnosed AML patients and flow cytometric analysis was accomplished for cell surface expression of PD-1, TIM-3, and CD244 on T lymphocytes. Functionality and proliferation assay were done in the presence of anti-PD-1 and anti-CD244 blocking antibodies. Immunophenotyping of T cells showed a significant increase of PD-1 and CD244 expression on CD4+ and CD8+ T cells of AML patients. Whereas blockade of PD1 and CD244 increased the proliferation of CD4+ and CD8+ T lymphocytes of AML patients but IFN-γ production was not significantly increased. In conclusion, our data indicate that CD4+ and CD8+ T cells from AML patients appeared to be exhausted and blockade of some immune checkpoints can improve the proliferation of those cells.

  16. Chronic neonatal N-methyl-D-aspartate receptor blockade induces learning deficits and transient hypoactivity in young rats.

    PubMed

    Latysheva, Nadejda V; Rayevsky, Kirill S

    2003-08-01

    A blockade of N-methyl-D-aspartate (NMDA)-type of glutamate receptor in rodents is believed to provide a pharmacological model of schizophrenia-related psychosis. Since neurodevelopmental abnormality, at least partly, could contribute to the pathogenesis of schizophrenia, the aim of this study was to recapitulate cognitive impairments accompanying this disorder in rats by a chronic neonatal treatment with a noncompetitive NMDA antagonist MK-801. Rat pups were treated with a low dose of MK-801 (0.05 mg/kg s.c.) chronically from early postnatal period (PD 7-49) known to be critical for glutamatergic system maturation. Locomotor activity in the "open-field" test, anxiety level in the elevated plus-maze test, and learning capacity in food rewarded spatial task were examined in young animals. Chronic MK-801 treatment produced a decrease of spontaneous motor and exploratory activity in 16- to 28-day-old rats. At the same time, a hyperlocomotion in response to acute administration of MK-801 was observed as well. Spatial learning of MK-801-treated rats was found to be negatively affected. Treated rats were able to respond to stress stimuli in the adequate manner but their anxiety level was found to be lower than in controls. Behavioral disturbances appeared to be temporary, and no such abnormalities could be detected at the age of 16 weeks. Thus, even mild chronic neonatal blockade of NMDA receptors may lead to a specific pattern of cognitive abnormalities presumably resulting from impairments of sensory information processing at the cortical-basal ganglia level.

  17. Up-Regulation of Endothelin Type A Receptor in Human and Rat Radiation Proctitis: Preclinical Therapeutic Approach With Endothelin Receptor Blockade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jullien, Nicolash; Blirando, Karl; Milliat, Fabien

    2009-06-01

    Purpose: Rectum radiation damage and fibrosis are often associated with radiation therapy of pelvic tumors. The endothelin (ET) system has been implicated in several fibrotic diseases but never studied in the context of gastrointestinal radiation damage. This study assessed modifications in ET type 1 (ET-1), ET type A receptor (ET{sub A}), and ET type B receptor (ET{sub B}) localization and/or expression in irradiated human rectal tissue and in a rat model of delayed colorectal injury. We also evaluated the therapeutic potential of long-term ET receptor blockade. Methods and Materials: Routine histological studies of sections of healthy and radiation-injured human rectummore » tissue were done; the sections were also immunostained for ET{sub A} and ET{sub B} receptors. The rat model involved the delivery of 27 Gy in a single dose to the colons and rectums of the animals. The ET-1/ET{sub A}/ET{sub B} expression and ET{sub A}/ET{sub B} localization were studied at 10 weeks postexposure. The abilities of bosentan and atrasentan to protect against delayed rectal injury were also investigated. Results: The immunolocalization of ET{sub A} and ET{sub B} in healthy human rectums was similar to that in rat rectums. However, strong ET{sub A} immunostaining was seen in the presence of human radiation proctitis, and increased ET{sub A} mRNA levels were seen in the rat following colorectal irradiation. Immunostaining for ET{sub A} was also strongly positive in rats in areas of radiation-induced mucosal ulceration, atypia, and fibroproliferation. However, neither bosentan nor atrasentan prevented radiation damage to the rectum when given long term. The only effect seen for atrasentan was an increased number of sclerotic vessel sections in injured tissues. Conclusions: As the result of the overexpression of ET{sub A}, radiation exposure deregulates the endothelin system through an 'ET{sub A} profile' in the human and rodent rectum. However, therapeutic interventions involving mixed or specific ET{sub A} receptor blockade do not prevent radiation damage. Further studies are necessary to identify the precise roles of ET in the gastrointestinal response to radiation exposure.« less

  18. AMPA/Kainate, NMDA, and Dopamine D1 Receptor Function in the Nucleus Accumbens Core: A Context-Limited Role in the Encoding and Consolidation of Instrumental Memory

    ERIC Educational Resources Information Center

    Hernandez, Pepe J.; Andrzejewski, Matthew E.; Sadeghian, Kenneth; Panksepp, Jules B.; Kelley, Ann E.

    2005-01-01

    Neural integration of glutamate- and dopamine-coded signals within the nucleus accumbens (NAc) is a fundamental process governing cellular plasticity underlying reward-related learning. Intra-NAc core blockade of NMDA or D1 receptors in rats impairs instrumental learning (lever-pressing for sugar pellets), but it is not known during which phase of…

  19. Blocking Mineralocorticoid Receptors Impairs, Blocking Glucocorticoid Receptors Enhances Memory Retrieval in Humans

    PubMed Central

    Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2013-01-01

    Memory retrieval is impaired at very low as well as very high cortisol levels, but not at intermediate levels. This inverted-U-shaped relationship between cortisol levels and memory retrieval may originate from different roles of the mineralocorticoid (MR) and glucocorticoid receptor (GR) that bind cortisol with distinctly different affinity. Here, we examined the role of MRs and GRs in human memory retrieval using specific receptor antagonists. In two double-blind within-subject, cross-over designed studies, young healthy men were asked to retrieve emotional and neutral texts and pictures (learnt 3 days earlier) between 0745 and 0915 hours in the morning, either after administration of 400 mg of the MR blocker spironolactone vs placebo (200 mg at 2300 hours and 200 mg at 0400 hours, Study I) or after administration of the GR blocker mifepristone vs placebo (200 mg at 2300 hours, Study II). Blockade of MRs impaired free recall of both texts and pictures particularly for emotional material. In contrast, blockade of GRs resulted in better memory retrieval for pictures, with the effect being more pronounced for neutral than emotional materials. These findings indicate indeed opposing roles of MRs and GRs in memory retrieval, with optimal retrieval at intermediate cortisol levels likely mediated by high MR but concurrently low GR activation. PMID:23303058

  20. Blocking mineralocorticoid receptors impairs, blocking glucocorticoid receptors enhances memory retrieval in humans.

    PubMed

    Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2013-04-01

    Memory retrieval is impaired at very low as well as very high cortisol levels, but not at intermediate levels. This inverted-U-shaped relationship between cortisol levels and memory retrieval may originate from different roles of the mineralocorticoid (MR) and glucocorticoid receptor (GR) that bind cortisol with distinctly different affinity. Here, we examined the role of MRs and GRs in human memory retrieval using specific receptor antagonists. In two double-blind within-subject, cross-over designed studies, young healthy men were asked to retrieve emotional and neutral texts and pictures (learnt 3 days earlier) between 0745 and 0915 hours in the morning, either after administration of 400 mg of the MR blocker spironolactone vs placebo (200 mg at 2300 hours and 200 mg at 0400 hours, Study I) or after administration of the GR blocker mifepristone vs placebo (200 mg at 2300 hours, Study II). Blockade of MRs impaired free recall of both texts and pictures particularly for emotional material. In contrast, blockade of GRs resulted in better memory retrieval for pictures, with the effect being more pronounced for neutral than emotional materials. These findings indicate indeed opposing roles of MRs and GRs in memory retrieval, with optimal retrieval at intermediate cortisol levels likely mediated by high MR but concurrently low GR activation.

  1. Angiotensin-converting enzyme inhibition and angiotensin AT1 receptor blockade downregulate angiotensin-converting enzyme expression and attenuate renal injury in streptozotocin-induced diabetic rats.

    PubMed

    Motawi, Tarek K; El-Maraghy, Shohda A; Senousy, Mahmoud A

    2013-07-01

    Angiotensin-converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ-diabetic rats, and STZ-diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na(+) /K(+) -ATPase activity, oxidative stress, and serum transforming growth factor-β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes-induced changes in ACE expression and Na(+) /K(+) -ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc.

  2. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Lu; Xue, Jian-Xin; Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy formore » lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1/3 signaling system is involved in the development of RLF through promoting fibroblast proliferation in a CTGF-dependent manner. The LPA-LPAR1/3-CTGF pathway may be a potential target for RLF therapy.« less

  3. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT7 receptors in adult rats.

    PubMed

    Cabaj, Anna M; Majczyński, Henryk; Couto, Erika; Gardiner, Phillip F; Stecina, Katinka; Sławińska, Urszula; Jordan, Larry M

    2017-01-01

    Experiments on neonatal rodent spinal cord showed that serotonin (5-HT), acting via 5-HT 7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter- and intralimb coordination, but the importance of the 5-HT system in adult locomotion is not clear. Blockade of spinal 5-HT 7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5-HT neurons for production of locomotion. The direct control of coordinating interneurons by 5-HT 7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults. An understanding of the afferents controlled by 5-HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5-HT 7 ) receptor agonists and antagonists and 5-HT 7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5-HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5-HT 7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5-HT 7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5-HT 7 antagonist SB269970 in adult intact rats suppressed locomotion by partial paralysis of hindlimbs. This occurred without a direct effect on motoneurons as revealed by an investigation of reflex activity. The antagonist disrupted intra- and interlimb coordination during locomotion in all intact animals but not during fictive locomotion induced by stimulation of the mesencephalic locomotor region (MLR). MLR-evoked fictive locomotion was transiently blocked, then the amplitude and frequency of rhythmic activity were reduced by SB269970, consistent with the notion that the MLR activates 5-HT neurons, leading to excitation of central pattern generator neurons with 5-HT 7 receptors. Effects on coordination in adults required the presence of afferent input, suggesting a switch to 5-HT 7 receptor-mediated control of sensory pathways during development. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  4. Induction of Anti-Hebbian LTP in CA1 Stratum Oriens Interneurons: Interactions between Group I Metabotropic Glutamate Receptors and M1 Muscarinic Receptors

    PubMed Central

    Savary, Etienne; Kullmann, Dimitri M.; Miles, Richard

    2015-01-01

    An anti-Hebbian form of LTP is observed at excitatory synapses made with some hippocampal interneurons. LTP induction is facilitated when postsynaptic interneurons are hyperpolarized, presumably because Ca2+ entry through Ca2+-permeable glutamate receptors is enhanced. The contribution of modulatory transmitters to anti-Hebbian LTP induction remains to be established. Activation of group I metabotropic receptors (mGluRs) is required for anti-Hebbian LTP induction in interneurons with cell bodies in the CA1 stratum oriens. This region receives a strong cholinergic innervation from the septum, and muscarinic acetylcholine receptors (mAChRs) share some signaling pathways and cooperate with mGluRs in the control of neuronal excitability. We therefore examined possible interactions between group I mGluRs and mAChRs in anti-Hebbian LTP at synapses which excite oriens interneurons in rat brain slices. We found that blockade of either group I mGluRs or M1 mAChRs prevented the induction of anti-Hebbian LTP by pairing presynaptic activity with postsynaptic hyperpolarization. Blocking either receptor also suppressed long-term effects of activation of the other G-protein coupled receptor on interneuron membrane potential. However, no crossed blockade was detected for mGluR or mAchR effects on interneuron after-burst potentials or on the frequency of miniature EPSPs. Paired recordings between pyramidal neurons and oriens interneurons were obtained to determine whether LTP could be induced without concurrent stimulation of cholinergic axons. Exogenous activation of mAChRs led to LTP, with changes in EPSP amplitude distributions consistent with a presynaptic locus of expression. LTP, however, required noninvasive presynaptic and postsynaptic recordings. SIGNIFICANCE STATEMENT In the hippocampus, a form of NMDA receptor-independent long-term potentiation (LTP) occurs at excitatory synapses made on some inhibitory neurons. This is preferentially induced when postsynaptic interneurons are hyperpolarized, depends on Ca2+ entry through Ca2+-permeable AMPA receptors, and has been labeled anti-Hebbian LTP. Here we show that this form of LTP also depends on activation of both group I mGluR and M1 mAChRs. We demonstrate that these G-protein coupled receptors (GPCRs) interact, because the blockade of one receptor suppresses long-term effects of activation of the other GPCR on both LTP and interneuron membrane potential. This LTP was also detected in paired recordings, although only when both presynaptic and postsynaptic recordings did not perturb the intracellular medium. Changes in EPSP amplitude distributions in dual recordings were consistent with a presynaptic locus of expression. PMID:26446209

  5. Opposing effects of AMPA and 5-HT1A receptor blockade on passive avoidance and object recognition performance: correlation with AMPA receptor subunit expression in rat hippocampus.

    PubMed

    Schiapparelli, L; Simón, A M; Del Río, J; Frechilla, D

    2006-06-01

    It has been suggested that antagonists at serotonin 5-HT1A receptors may exert a procognitive effect by facilitating glutamatergic neurotransmission. Here we further explored this issue by looking for the ability of a 5-HT1A antagonist to prevent the learning deficit induced by AMPA receptor blockade in two behavioural procedures in rats, and for concomitant molecular changes presumably involved in memory formation in the hippocampus. Pretraining administration of the competitive AMPA receptor antagonist, NBQX, produced a dose-related retention impairment in a passive avoidance task 24h later, and also impaired retention in a novel object recognition test when an intertrial interval of 3h was selected. Pretreatment with the selective 5-HT1A receptor antagonist, WAY-100635, prevented the learning deficit induced by NBQX in the two behavioural procedures. In biochemical studies performed on rat hippocampus after the retention tests, we found that learning increased the membrane levels of AMPA receptor GluR1 and GluR2/3 subunits, as well as the phosphorylated forms of GluR1, effects that were abolished by NBQX administration before the training session. Pretreatment with WAY-100635 counteracted the NBQX effects and restored the initial learning-specific increase in Ca2+/calmodulin-dependent protein kinase II (CaMKII) function and the later increase in GluR2/3 and phosphorylated GluR1 surface expression. Moreover, administration of WAY-100635 before object recognition training improved recognition memory 24h later and potentiated the learning-associated increase in AMPA receptor subunits. The results support the proposed utility of 5-HT1A antagonists in the treatment of cognitive disorders.

  6. Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil.

    PubMed

    Seeman, Philip; Guan, Hong-Chang; Hirbec, Hélène

    2009-08-01

    Although it is commonly stated that phencyclidine is an antagonist at ionotropic glutamate receptors, there has been little measure of its potency on other receptors in brain tissue. Although we previously reported that phencyclidine stimulated cloned-dopamine D2Long and D2Short receptors, others reported that phencyclidine did not stimulate D2 receptors in homogenates of rat brain striatum. This study, therefore, examined whether phencyclidine and other hallucinogens and psychostimulants could stimulate the incorporation of [(35)S]GTP-gamma-S into D2 receptors in homogenates of rat brain striatum, using the same conditions as previously used to study the cloned D2 receptors. Using 10 microM dopamine to define 100% stimulation, phencyclidine elicited a maximum incorporation of 46% in rat striata, with a half-maximum concentration of 70 nM for phencyclidine, when compared with 80 nM for dopamine, 89 nM for salvinorin A (48 nM for D2Long), 105 nM for lysergic acid diethylamide (LSD), 120 nM for R-modafinil, 710 nM for dizocilpine, 1030 nM for ketamine, and >10,000 nM for S-modafinil. These compounds also inhibited the binding of the D2-selective ligand [(3)H]domperidone. The incorporation was inhibited by the presence of 200 microM guanylylimidodiphosphate and also by D2 blockade, using 10 microM S-sulpiride, but not by D1 blockade with 10 microM SCH23390. Hypertonic buffer containing 150 mM NaCl inhibited the stimulation by phencyclidine, which may explain negative results by others. It is concluded that phencyclidine and other psychostimulants and hallucinogens can stimulate dopamine D2 receptors at concentrations related to their behavioral actions.

  7. 5HT2A receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice.

    PubMed

    Amodeo, D A; Rivera, E; Cook, E H; Sweeney, J A; Ragozzino, M E

    2017-03-01

    Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT 2A receptor activity is altered in autism, while recent work indicates that systemic 5HT 2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT 2A receptors are expressed in the orbitofrontal cortex and striatum. These two regions have been shown to be altered in autism. The present study investigated whether 5HT 2A receptor blockade in the dorsomedial striatum or orbitofrontal cortex in the BTBR mouse strain, an idiopathic model of autism, affects the phenotype related to restricted and repetitive behaviors. Microinfusion of the 5HT 2A receptor antagonist, M100907 into the dorsomedial striatum alleviated a reversal learning impairment and attenuated grooming behavior. M100907 infusion into the orbitofrontal cortex increased perseveration during reversal learning and potentiated grooming. These findings suggest that increased 5HT 2A receptor activity in the dorsomedial striatum may contribute to behavioral inflexibility and stereotyped behaviors in the BTBR mouse. 5HT 2A receptor signaling in the orbitofrontal cortex may be critical for inhibiting a previously learned response during reversal learning and expression of stereotyped behavior. The present results suggest which brain areas exhibit abnormalities underlying repetitive behaviors in an idiopathic mouse model of autism, as well as which brain areas systemic treatment with M100907 may principally act on in BTBR mice to attenuate repetitive behaviors. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  8. Role of cholinergic receptors in memory retrieval depends on gender and age of memory.

    PubMed

    Rashid, Habiba; Mahboob, Aamra; Ahmed, Touqeer

    2017-07-28

    The phenomenon of utilizing information acquired in the past to make decision and performance in present depends on memory retrieval, which is affected in retrograde amnesia. Role of cholinergic receptors in memory retrieval is not much explored. In this study we evaluated the gender specific role of cholinergic receptors, i.e. muscarinic and nicotinic receptors, in memory retrieval in young Balb/c mice. Acute (only one injection, 30min before test) and sub-chronic (five days) muscarinic blockade (using scopolamine=1mg/kg) before test impaired retrieval of contextual fear memory in male (31.45±5.39% and 33.36±3.78% respectively) and female mice (22.88±5.73%; P<0.05), except sub-chronically treated female group (33.31±4.90%; P>0.05). Only sub-chronic nicotinic receptor antagonism (using methyllycaconitine MLA=87.5μg/kg and dihydro β erythroidine DHβE=1mg/kg) in female showed significantly higher freezing response than control during contextual fear memory retrieval (60.85±7.71% and 40.91±7.53% respectively; P<0.001). Acute and sub-chronic muscarinic antagonism (but not nicotinic antagonism) impaired spatial memory retrieval in male (P<0.05) but not in female mice (P>0.05). There was no effect of acute and sub-chronic cholinergic receptor antagonism on discriminating novel object from the familiar one in male and female mice, however, nicotinic receptor blockade affected the working memory of all male and female mice on test day compared to the training sessions. Our results suggested that cholinergic receptors involvement in retrieving spatial and fear memories depends on the age of the memory and gender. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Receptor-specific modulation of risk-based decision making by nucleus accumbens dopamine.

    PubMed

    Stopper, Colin M; Khayambashi, Shahin; Floresco, Stan B

    2013-04-01

    The nucleus accumbens (NAc) serves as an integral node within cortico-limbic circuitry that regulates various forms of cost-benefit decision making. The dopamine (DA) system has also been implicated in enabling organisms to overcome a variety of costs to obtain more valuable rewards. However, it remains unclear how DA activity within the NAc may regulate decision making involving reward uncertainty. This study investigated the contribution of different DA receptor subtypes in the NAc to risk-based decision making, assessed with a probabilistic discounting task. In well-trained rats, D1 receptor blockade with SCH 23,390 decreased preference for larger, uncertain rewards, which was associated with enhanced negative-feedback sensitivity (ie, an increased tendency to select a smaller/certain option after an unrewarded risky choice). Treatment with a D1 agonist (SKF 81,297) optimized decision making, increasing choice of the risky option when reward probability was high, and decreasing preference under low probability conditions. In stark contrast, neither blockade of NAc D2 receptors with eticlopride, nor stimulation of these receptors with quinpirole or bromocriptine influenced risky choice. In comparison, infusion of the D3-preferring agonist PD 128,907 decreased reward sensitivity and risky choice. Collectively, these results show that mesoaccumbens DA refines risk-reward decision biases via dissociable mechanisms recruiting D1 and D3, but not D2 receptors. D1 receptor activity mitigates the effect of reward omissions on subsequent choices to promote selection of reward options that may have greater long-term utility, whereas excessive D3 receptor activity blunts the impact that larger/uncertain rewards have in promoting riskier choices.

  10. Durable antitumor responses to CD47 blockade require adaptive immune stimulation

    PubMed Central

    Sockolosky, Jonathan T.; Dougan, Michael; Ingram, Jessica R.; Ho, Chia Chi M.; Kauke, Monique J.; Almo, Steven C.; Ploegh, Hidde L.; Garcia, K. Christopher

    2016-01-01

    Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47–SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy. PMID:27091975

  11. Water Sparing in Chronic Ethanol Exposure is Associated With Elevated Renal Estrogen Receptor Beta and Vasopressin V2 Receptor mRNA in the Female Rate

    DTIC Science & Technology

    2007-12-01

    blockade of vasopressin V2 receptors reveals significant V2-mediated water reabsorption in Brattleboro rats with diabetes insipidus . Nephrol Dial...that from 1980 to 2005 the number of persons diagnosed with diabetes rose from 5.6 million to 15.8 million (12). Additionally, the prevalence of alcohol...Pressure Facts and Statistics. 12. CDC (2007) Diabetes Data & Trends. Centers for Disease Control and Prevention 13. Keyes, K. M., Grant, B. F., and

  12. Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling.

    PubMed

    Marsano, Anna; Medeiros da Cunha, Carolina M; Ghanaati, Shahram; Gueven, Sinan; Centola, Matteo; Tsaryk, Roman; Barbeck, Mike; Stuedle, Chiara; Barbero, Andrea; Helmrich, Uta; Schaeren, Stefan; Kirkpatrick, James C; Banfi, Andrea; Martin, Ivan

    2016-12-01

    : Chondrogenic differentiation of bone marrow-derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or soluble signals but typically suffers from limited efficiency, reproducibility across primary batches, and maintenance of phenotypic stability. Considering the avascular and hypoxic milieu of articular cartilage, we hypothesized that sole inhibition of angiogenesis can provide physiological cues to direct in vivo differentiation of uncommitted MSCs to stable cartilage formation. Human MSCs were retrovirally transduced to express a decoy soluble vascular endothelial growth factor (VEGF) receptor-2 (sFlk1), which efficiently sequesters endogenous VEGF in vivo, seeded on collagen sponges and immediately implanted ectopically in nude mice. Although naïve cells formed vascularized fibrous tissue, sFlk1-MSCs abolished vascular ingrowth into engineered constructs, which efficiently and reproducibly developed into hyaline cartilage. The generated cartilage was phenotypically stable and showed no sign of hypertrophic evolution up to 12 weeks. In vitro analyses indicated that spontaneous chondrogenic differentiation by blockade of angiogenesis was related to the generation of a hypoxic environment, in turn activating the transforming growth factor-β pathway. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. This article outlines the general paradigm of controlling the fate of implanted stem/progenitor cells by engineering their ability to establish specific microenvironmental conditions rather than directly providing individual morphogenic cues. Chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs) is typically targeted by morphogen delivery, which is often associated with limited efficiency, stability, and robustness. This article proposes a strategy to engineer MSCs with the capacity to establish specific microenvironmental conditions, supporting their own targeted differentiation program. Sole blockade of angiogenesis mediated by transduction for sFlk-1, without delivery of additional morphogens, is sufficient for inducing MSC chondrogenic differentiation. The findings represent a relevant step forward in the field because the method allowed reducing interdonor variability in MSC differentiation efficiency and, importantly, onset of a stable, nonhypertrophic chondrocyte phenotype. ©AlphaMed Press.

  13. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens.

    PubMed

    Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F; Becker, Howard C; McCool, Brian A; Jones, Sara R

    2016-05-01

    Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety/compulsive-like behaviors may be driven by greater kappa opioid receptor sensitivity and a hypodopaminergic state of the nucleus accumbens. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  14. Do all β-blockers attenuate the excess hematopoietic progenitor cell mobilization from the bone marrow following trauma/hemorrhagic shock?

    PubMed

    Pasupuleti, Latha V; Cook, Kristin M; Sifri, Ziad C; Alzate, Walter D; Livingston, David H; Mohr, Alicia M

    2014-04-01

    Severe injury results in increased mobilization of hematopoietic progenitor cells (HPC) from the bone marrow (BM) to sites of injury, which may contribute to persistent BM dysfunction after trauma. Norepinephrine is a known inducer of HPC mobilization, and nonselective β-blockade with propranolol has been shown to decrease mobilization after trauma and hemorrhagic shock (HS). This study will determine the role of selective β-adrenergic receptor blockade in HPC mobilization in a combined model of lung contusion (LC) and HS. Male Sprague-Dawley rats were subjected to LC, followed by 45 minutes of HS. Animals were then randomized to receive atenolol (LCHS + β1B), butoxamine (LCHS + β2B), or SR59230A (LCHS + β3B) immediately after resuscitation and daily for 6 days. Control groups were composed of naive animals. BM cellularity, %HPCs in peripheral blood, and plasma granulocyte-colony stimulating factor levels were assessed at 3 hours and 7 days. Systemic plasma-mediated effects were evaluated in vitro by assessment of BM HPC growth. Injured lung tissue was graded histologically by a blinded reader. The use of β2B or β3B following LCHS restored BM cellularity and significantly decreased HPC mobilization. In contrast, β1B had no effect on HPC mobilization. Only β3B significantly reduced plasma G-CSF levels. When evaluating the plasma systemic effects, both β2B and β3B significantly improved BM HPC growth as compared with LCHS alone. The use of β2 and β3 blockade did not affect lung injury scores. Both β2 and β3 blockade can prevent excess HPC mobilization and BM dysfunction when given after trauma and HS, and the effects seem to be mediated systemically, without adverse effects on subsequent healing. Only treatment with β3 blockade reduced plasma G-CSF levels, suggesting different mechanisms for adrenergic-induced G-CSF release and mobilization of HPCs. This study adds to the evidence that therapeutic strategies that reduce the exaggerated sympathetic stimulation after severe injury are beneficial and reduce BM dysfunction.

  15. Blockade of αEβ7 integrin suppresses accumulation of CD8+ and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo.

    PubMed

    Zundler, Sebastian; Schillinger, Daniela; Fischer, Anika; Atreya, Raja; López-Posadas, Rocío; Watson, Alastair; Neufert, Clemens; Atreya, Imke; Neurath, Markus F

    2017-11-01

    Therapeutically targeting lymphocyte adhesion is of increasing relevance in IBD. Yet, central aspects of the action of antiadhesion compounds are incompletely understood. We investigated the role of αEβ7 and α4β7 integrins and their blockade by vedolizumab and etrolizumab for trafficking of IBD T lymphocytes in an in vivo model of homing to and retention in the inflamed gut. We explored integrin expression in patients with IBD by flow cytometry and immunohistochemistry, while regulation of integrins was studied in T cell cultures. The functional relevance of integrins was assessed by adhesion assays and a recently established humanised mouse model in dextran sodium sulfate-treated immunodeficient mice. High expression of αEβ7 was noted on CD8 + and CD4 + Th9 cells, while α4β7 was expressed on CD8 + , Th2 and Th17 cells. T cell receptor stimulation and transforming growth factor β were key inducers of αEβ7 on human T cells, while butyric acid suppressed αEβ7. In comparison to α4β7 blockade via vedolizumab, blockade of β7 via etrolizumab surrogate antibody superiorly reduced colonic numbers of CD8 + and Th9 cells in vivo after 3 hours, while no difference was noted after 0.5 hours. AEβ7 expression was higher on CD8 + T cells from patients with IBD under vedolizumab therapy. AEβ7 is of key relevance for gut trafficking of IBD CD8 + T cells and CD4 + Th9 cells in vivo and mainly retention might account for this effect. These findings indicate that blockade of αEβ7 in addition to α4β7 may be particularly effective in intestinal disorders with expansion of CD8 + and Th9 cells such as IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Predominance of AT1 Blockade Over Mas–Mediated Angiotensin-(1–7) Mechanisms in the Regulation of Blood Pressure and Renin–Angiotensin System in mRen2.Lewis Rats

    PubMed Central

    2013-01-01

    BACKGROUND We investigated whether the antihypertensive actions of the angiotensin II (Ang II) receptor (AT1-R) blocker, olmesartan medoxomil, may in part be mediated by increased Ang-(1–7) in the absence of significant changes in plasma Ang II. METHODS mRen2.Lewis congenic hypertensive rats were administered either a vehicle (n = 14) or olmesartan (0.5mg/kg/day; n = 14) by osmotic minipumps. Two weeks later, rats from both groups were further randomized to receive either the mas receptor antagonist A-779 (0.5mg/kg/day; n = 7 per group) or its vehicle (n = 7 per group) for the next 4 weeks. Blood pressure was monitored by telemetry, and circulating and tissue components of the renin–angiotensin system (RAS) were measured at the completion of the experiments. RESULTS Antihypertensive effects of olmesartan were associated with an increase in plasma renin concentration, plasma Ang I, Ang II, and Ang-(1–7), whereas serum aldosterone levels and kidney Ang II content were reduced. Preserved Ang-(1–7) content in kidneys was associated with increases of ACE2 protein but not activity and no changes on serum and kidney ACE activity. There was no change in cardiac peptide levels after olmesartan treatment. The antihypertensive effects of olmesartan were not altered by concomitant administration of the Ang-(1–7) receptor antagonist except for a mild further increase in plasma renin concentration. CONCLUSIONS Our study highlights the independent regulation of RAS among plasma, heart, and kidney tissue in response to AT1-R blockade. Ang-(1–7) through the mas receptor does not mediate long-term effects of olmesartan besides counterbalancing renin release in response to AT1-R blockade. PMID:23459599

  17. Potent blockade of hepatocyte growth factor-stimulated cell motility, matrix invasion and branching morphogenesis by antagonists of Grb2 Src homology 2 domain interactions.

    PubMed

    Atabey, N; Gao, Y; Yao, Z J; Breckenridge, D; Soon, L; Soriano, J V; Burke, T R; Bottaro, D P

    2001-04-27

    Hepatocyte growth factor (HGF) stimulates mitogenesis, motogenesis, and morphogenesis in a wide range of cellular targets during development, homeostasis and tissue regeneration. Inappropriate HGF signaling occurs in several human cancers, and the ability of HGF to initiate a program of protease production, cell dissociation, and motility has been shown to promote cellular invasion and is strongly linked to tumor metastasis. Upon HGF binding, several tyrosines within the intracellular domain of its receptor, c-Met, become phosphorylated and mediate the binding of effector proteins, such as Grb2. Grb2 binding through its SH2 domain is thought to link c-Met with downstream mediators of cell proliferation, shape change, and motility. We analyzed the effects of Grb2 SH2 domain antagonists on HGF signaling and observed potent blockade of cell motility, matrix invasion, and branching morphogenesis, with ED(50) values of 30 nm or less, but only modest inhibition of mitogenesis. These compounds are 1000-10,000-fold more potent anti-motility agents than any previously characterized Grb2 SH2 domain antagonists. Our results suggest that SH2 domain-mediated c-Met-Grb2 interaction contributes primarily to the motogenic and morphogenic responses to HGF, and that these compounds may have therapeutic application as anti-metastatic agents for tumors where the HGF signaling pathway is active.

  18. IL-6 blockade in the management of non-infectious uveitis.

    PubMed

    Lopalco, Giuseppe; Fabiani, Claudia; Sota, Jurgen; Lucherini, Orso Maria; Tosi, Gian Marco; Frediani, Bruno; Iannone, Florenzo; Galeazzi, Mauro; Franceschini, Rossella; Rigante, Donato; Cantarini, Luca

    2017-07-01

    Several pathogenetic studies have paved the way for a newer more rational therapeutic approach to non-infectious uveitis, and treatment of different forms of immune-driven uveitis has drastically evolved in recent years after the advent of biotechnological drugs. Tumor necrosis factor-α targeted therapies, the first-line recommended biologics in uveitis, have certainly led to remarkable results in patients with non-infectious uveitis. Nevertheless, the decision-making process turns out to be extremely difficult in anti-tumor necrosis factor or multidrug-resistant cases. Interleukin (IL)-6 holds a critical role in the pathogenic pathways of uveitis, due to its extended and protean range of effects. On this background, manipulation of IL-6 inflammatory cascade has unraveled encouraging outcomes. For instance, rising evidence has been achieved regarding the successful use of tocilizumab, the humanized monoclonal antibody targeted against the IL-6 receptor, in treating uveitis related to juvenile idiopathic arthritis or Behçet's disease. Similar findings have also been reported for uveitis associated with systemic disorders, such as rheumatoid arthritis or multicentric Castleman disease, but also for idiopathic uveitis, the rare birdshot chorioretinopathy, and even in cases complicated by macular edema. This work provides a digest of all current experiences and evidences concerning IL-6 blockade, as suggested by the medical literature, proving its potential role in the management of non-infectious uveitis.

  19. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5‐HT7 receptors in adult rats

    PubMed Central

    Majczyński, Henryk; Couto, Erika; Gardiner, Phillip F.; Stecina, Katinka; Sławińska, Urszula

    2016-01-01

    Key points Experiments on neonatal rodent spinal cord showed that serotonin (5‐HT), acting via 5‐HT7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter‐ and intralimb coordination, but the importance of the 5‐HT system in adult locomotion is not clear.Blockade of spinal 5‐HT7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5‐HT neurons for production of locomotion.The direct control of coordinating interneurons by 5‐HT7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults.An understanding of the afferents controlled by 5‐HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. Abstract Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5‐HT7) receptor agonists and antagonists and 5‐HT7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5‐HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5‐HT7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5‐HT7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5‐HT7 antagonist SB269970 in adult intact rats suppressed locomotion by partial paralysis of hindlimbs. This occurred without a direct effect on motoneurons as revealed by an investigation of reflex activity. The antagonist disrupted intra‐ and interlimb coordination during locomotion in all intact animals but not during fictive locomotion induced by stimulation of the mesencephalic locomotor region (MLR). MLR‐evoked fictive locomotion was transiently blocked, then the amplitude and frequency of rhythmic activity were reduced by SB269970, consistent with the notion that the MLR activates 5‐HT neurons, leading to excitation of central pattern generator neurons with 5‐HT7 receptors. Effects on coordination in adults required the presence of afferent input, suggesting a switch to 5‐HT7 receptor‐mediated control of sensory pathways during development. PMID:27393215

  20. Chronic Blockade of Brain Endothelin Receptor Type-A (ETA) Reduces Blood Pressure and Prevents Catecholaminergic Overactivity in the Right Olfactory Bulb of DOCA-Salt Hypertensive Rats.

    PubMed

    Cassinotti, Luis R; Guil, María J; Schöller, Mercedes I; Navarro, Mónica P; Bianciotti, Liliana G; Vatta, Marcelo S

    2018-02-27

    Overactivity of the sympathetic nervous system and central endothelins (ETs) are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB) also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Following brain ET receptor type A (ET A ) blockade by BQ610 (selective antagonist), transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH) were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ET A blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein) in the right OB of hypertensive animals. However, ET A blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ET A are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.

  1. Using a genetic, observational study as a strategy to estimate the potential cost-effectiveness of pharmacological CCR5 blockade in dialysis patients.

    PubMed

    Muntinghe, Friso L H; Vegter, Stefan; Verduijn, Marion; Boeschoten, Elisabeth W; Dekker, Friedo W; Navis, Gerjan; Postma, Maarten

    2011-07-01

    Randomized clinical trials are expensive and time consuming. Therefore, strategies are needed to prioritise tracks for drug development. Genetic association studies may provide such a strategy by considering the differences between genotypes as a proxy for a natural, lifelong, randomized at conception, clinical trial. Previously an association with better survival was found in dialysis patients with systemic inflammation carrying a deletion variant of the CC-chemokine receptor 5 (CCR5). We hypothesized that in an analogous manner, pharmacological CCR5 blockade could protect against inflammation-driven mortality and estimated if such a treatment would be cost-effective. A genetic screen and treat strategy was modelled using a decision-analytic Markov model, in which patients were screened for the CCR5 deletion 32 polymorphism and those with the wild type and systemic inflammation were treated with pharmacological CCR5 blockers. Kidney transplantation and mortality rates were calculated using patient level data. Extensive sensitivity analyses were performed. The cost-effectiveness of the genetic screen and treat strategy was &OV0556;18 557 per life year gained and &OV0556;21 896 per quality-adjusted life years gained. Concordance between the genetic association and pharmacological effectiveness was a main driver of cost-effectiveness. Sensitivity analyses showed that even a modest effectiveness of pharmacological CCR5 blockade would result in a treatment strategy that is good value for money. Pharmacological blockade of the CCR5 receptor in inflamed dialysis patients can be incorporated in a potentially cost-effective screen and treat programme. These findings provide formal rationale for clinical studies. This study illustrates the potential of genetic association studies for drug development, as a source of Mendelian randomized evidence from an observational setting.

  2. Muscarinic Acetylcholine Receptor Localization and Activation Effects on Ganglion Response Properties

    PubMed Central

    Renna, Jordan M.; Amthor, Franklin R.; Keyser, Kent T.

    2010-01-01

    Purpose. The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. Methods. RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. Results. RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. Conclusions. The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases. PMID:20042645

  3. Alpha1-adrenergic receptor blockade in the VTA modulates fear memories and stress responses.

    PubMed

    Solecki, Wojciech B; Szklarczyk, Klaudia; Klasa, Adam; Pradel, Kamil; Dobrzański, Grzegorz; Przewłocki, Ryszard

    2017-08-01

    Activity of the ventral tegmental area (VTA) and its terminals has been implicated in the Pavlovian associative learning of both stressful and rewarding stimuli. However, the role of the VTA noradrenergic signaling in fear responses remains unclear. We aimed to examine how alpha 1 -adrenergic receptor (α 1 -AR) signaling in the VTA affects conditioned fear. The role of α 1 -AR was assessed using the micro-infusions into the VTA of the selective antagonists (0.1-1µg/0.5µl prazosin and 1µg/0.5µl terazosin) in acquisition and expression of fear memory. In addition, we performed control experiments with α 1 -AR blockade in the mammillary bodies (MB) - a brain region with α 1 -AR expression adjacent to the VTA. Intra-VTA but not intra-MB α 1 -AR blockade prevented formation and retrieval of fear memories. Importantly, local administration of α 1 -AR antagonists did not influence footshock sensitivity, locomotion or anxiety-like behaviors. Similarly, α 1 -AR blockade in the VTA had no effects on negative affect measured as number of 22kHz ultrasonic vocalizations during fear conditioning training. We propose that noradrenergic signaling in the VTA via α 1 -AR regulates formation and retrieval of fear memories but not other behavioral responses to stressful environmental stimuli. It enhances the encoding of environmental stimuli by the VTA to form and retrieve conditioned fear memories and to predict future behavioral outcomes. Our results provide novel insight into the role of the VTA α 1 -AR signaling in the regulation of stress responsiveness and fear memory. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  4. Gender differences in pressure-natriuresis and renal autoregulation: role of the Angiotensin type 2 receptor.

    PubMed

    Hilliard, Lucinda M; Nematbakhsh, Mehdi; Kett, Michelle M; Teichman, Elleesha; Sampson, Amanda K; Widdop, Robert E; Evans, Roger G; Denton, Kate M

    2011-02-01

    Sexual dimorphism in arterial pressure regulation has been observed in humans and animal models. The mechanisms underlying this gender difference are not fully known. Previous studies in rats have shown that females excrete more salt than males at a similar arterial pressure. The renin-angiotensin system is a powerful regulator of arterial pressure and body fluid volume. This study examined the role of the angiotensin type 2 receptor (AT₂R) in pressure-natriuresis in male and female rats because AT₂R expression has been reported to be enhanced in females. Renal function was examined at renal perfusion pressures of 120, 100, and 80 mm Hg in vehicle-treated and AT₂R antagonist-treated (PD123319; 1 mg/kg/h) groups. The pressure-natriuresis relationship was gender-dependent such that it was shifted upward in female vs male rats (P < 0.001). AT₂R blockade modulated the pressure-natriuresis relationship, shifting the curve downward in male (P < 0.01) and female (P < 0.01) rats to a similar extent. In females, AT₂R blockade also reduced the lower end of the autoregulatory range of renal blood flow (P < 0.05) and glomerular filtration rate (P < 0.01). Subsequently, the renal blood flow response to graded angiotensin II infusion was also measured with and without AT₂R blockade. We found that AT₂R blockade enhanced the renal vasoconstrictor response to angiotensin II in females but not in males (P < 0.05). In conclusion, the AT₂R modulates pressure-natriuresis, allowing the same level of sodium to be excreted at a lower pressure in both genders. However, a gender-specific role for the AT₂R in renal autoregulation was evident in females, which may be a direct vascular AT₂R effect.

  5. D1 Receptors Regulate Dendritic Morphology in Normal and Stressed Prelimbic Cortex

    PubMed Central

    Lin, Grant L.; Borders, Candace B.; Lundewall, Leslie J.; Wellman, Cara L.

    2014-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3 h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. PMID:25305546

  6. D1 receptors regulate dendritic morphology in normal and stressed prelimbic cortex.

    PubMed

    Lin, Grant L; Borders, Candace B; Lundewall, Leslie J; Wellman, Cara L

    2015-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Caffeine accelerates recovery from general anesthesia via multiple pathways.

    PubMed

    Fong, Robert; Khokhar, Suhail; Chowdhury, Atif N; Xie, Kelvin G; Wong, Josiah Hiu-Yuen; Fox, Aaron P; Xie, Zheng

    2017-09-01

    Various studies have explored different ways to speed emergence from anesthesia. Previously, we have shown that three drugs that elevate intracellular cAMP (forskolin, theophylline, and caffeine) accelerate emergence from anesthesia in rats. However, our earlier studies left two main questions unanswered. First, were cAMP-elevating drugs effective at all anesthetic concentrations? Second, given that caffeine was the most effective of the drugs tested, why was caffeine more effective than forskolin since both drugs elevate cAMP? In our current study, emergence time from anesthesia was measured in adult rats exposed to 3% isoflurane for 60 min. Caffeine dramatically accelerated emergence from anesthesia, even at the high level of anesthetic employed. Caffeine has multiple actions including blockade of adenosine receptors. We show that the selective A 2a adenosine receptor antagonist preladenant or the intracellular cAMP ([cAMP] i )-elevating drug forskolin, accelerated recovery from anesthesia. When preladenant and forskolin were tested together, the effect on anesthesia recovery time was additive indicating that these drugs operate via different pathways. Furthermore, the combination of preladenant and forskolin was about as effective as caffeine suggesting that both A 2A receptor blockade and [cAMP] i elevation play a role in caffeine's ability to accelerate emergence from anesthesia. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in humans at all anesthetic concentrations and that both the elevation of [cAMP] i and adenosine receptor blockade play a role in this response. NEW & NOTEWORTHY Currently, there is no method to accelerate emergence from anesthesia. Patients "wake" when they clear the anesthetic from their systems. Previously, we have shown that caffeine can accelerate emergence from anesthesia. In this study, we show that caffeine is effective even at high levels of anesthetic. We also show that caffeine operates by both elevating intracellular cAMP levels and by blocking adenosine receptors. This complicated pharmacology makes caffeine especially effective in accelerating emergence from anesthesia. Copyright © 2017 the American Physiological Society.

  8. Beta-1 vs. beta-2 adrenergic control of coronary blood flow during isometric handgrip exercise in humans.

    PubMed

    Maman, Stephan R; Vargas, Alvaro F; Ahmad, Tariq Ali; Miller, Amanda J; Gao, Zhaohui; Leuenberger, Urs A; Proctor, David N; Muller, Matthew D

    2017-08-01

    During exercise, β-adrenergic receptors are activated throughout the body. In healthy humans, the net effect of β-adrenergic stimulation is an increase in coronary blood flow. However, the role of vascular β1 vs. β2 receptors in coronary exercise hyperemia is not clear. In this study, we simultaneously measured noninvasive indexes of myocardial oxygen supply (i.e., blood velocity in the left anterior descending coronary artery; Doppler echocardiography) and demand [i.e., rate pressure product (RPP) = heart rate × systolic blood pressure) and tested the hypothesis that β1 blockade with esmolol improves coronary exercise hyperemia compared with nonselective β-blockade with propranolol. Eight healthy young men received intravenous infusions of esmolol, propranolol, and saline on three separate days in a single-blind, randomized, crossover design. During each infusion, subjects performed isometric handgrip exercise until fatigue. Blood pressure, heart rate, and coronary blood velocity (CBV) were measured continuously, and RPP was calculated. Changes in parameters from baseline were compared with paired t -tests. Esmolol (Δ = 3296 ± 1204) and propranolol (Δ = 2997 ± 699) caused similar reductions in peak RPP compared with saline (Δ = 5384 ± 1865). In support of our hypothesis, ΔCBV with esmolol was significantly greater than with propranolol (7.3 ± 2.4 vs. 4.5 ± 1.6 cm/s; P = 0.002). This effect was also evident when normalizing ΔCBV to ΔRPP. In summary, not only does selective β1 blockade reduce myocardial oxygen demand during exercise, but it also unveils β2-receptor-mediated coronary exercise hyperemia. NEW & NOTEWORTHY In this study, we evaluated the role of vascular β1 vs. β2 receptors in coronary exercise hyperemia in a single-blind, randomized, crossover study in healthy men. In response to isometric handgrip exercise, blood flow velocity in the left anterior descending coronary artery was significantly greater with esmolol compared with propranolol. These findings increase our understanding of the individual and combined roles of coronary β1 and β2 adrenergic receptors in humans. Copyright © 2017 the American Physiological Society.

  9. Kappa Opioid Receptors Mediate Heterosynaptic Suppression of Hippocampal Inputs in the Rat Ventral Striatum

    PubMed Central

    2017-01-01

    Kappa opioid receptors (KORs) are highly enriched within the ventral striatum (VS) and are thought to modulate striatal neurotransmission. This includes presynaptic inhibition of local glutamatergic release from excitatory inputs to the VS. However, it is not known which inputs drive this modulation and what impact they have on the local circuit dynamics within the VS. Individual medium spiny neurons (MSNs) within the VS serve as a site of convergence for glutamatergic inputs arising from the PFC and limbic regions, such as the hippocampus (HP). Recent data suggest that competition can arise between these inputs with robust cortical activation leading to a reduction in ongoing HP-evoked MSN responses. Here, we investigated the contribution of KOR signaling in PFC-driven heterosynaptic suppression of HP inputs onto MSNs using whole-cell patch-clamp recordings in slices from adult rats. Optogenetically evoked HP EPSPs were greatly attenuated after a short latency (50 ms) following burst-like PFC electrical stimulation, and the magnitude of this suppression was partially reversed following blockade of GABAARs (GABA Type A receptors), but not GABABRs (GABA Type B receptors). A similar reduction in suppression was observed in the presence of the KOR antagonist, norBNI. Combined blockade of local GABAARs and KORs resulted in complete blockade of PFC-induced heterosynaptic suppression of less salient HP inputs. These findings highlight a mechanism by which strong, transient PFC activity can take precedence over other excitatory inputs to the VS. SIGNIFICANCE STATEMENT Emerging evidence suggests that kappa opioid receptor (KOR) activation can selectively modulate striatal glutamatergic inputs onto medium spiny neurons (MSNs). In this study, we found that robust cortical stimulation leads to a reduction in ongoing hippocampal-evoked MSNs responses through the combined recruitment of local inhibitory mechanisms and activation of presynaptic KORs in the ventral striatum (VS). These processes are likely to facilitate the efficient transfer of cortical information through the VS during critical decision making by dampening competing information from less salient excitatory inputs. These data provide a novel mechanism through which VS information processing could influence decision making, a function thought to occur primarily in the PFC. PMID:28642282

  10. Activation of NMDA receptors reduces metabotropic glutamate receptor-induced long-term depression in the nucleus accumbens via a CaMKII-dependent mechanism.

    PubMed

    Huang, Chiung-Chun; Hsu, Kuei-Sen

    2012-12-01

    Glutamate is the major excitatory neurotransmitter in the brain and exerts its actions through two distinct types of receptors, ionotropic and metabotropic glutamate receptors (mGluR). Although functional interplay between ionotropic N-methyl-d-aspartate receptors (NMDAR) and mGluR has been convincingly demonstrated in native and recombinant systems, the mechanism by which NMDAR activation leads to modulation of mGluR function has yet to be elucidated. Using whole-cell patch-clamp recordings in mouse nucleus accumbens (NAc) slices, we found that tetanic stimulation (TS) of excitatory afferents with a naturally occurring frequency (10 min at 13 Hz) reliably induces a mGluR1/5-dependent long-term depression (mGluR1/5-LTD) of excitatory synaptic transmission. Blockade of NMDAR during but not after TS showed enhanced mGluR1/5-LTD induction, which is associated with its antagonism of TS-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation. The ability of NMDAR antagonists to promote mGluR1/5-LTD induction was mimicked by a selective CaMKII inhibitor KN-62. However, the induction of mGluR1/5-LTD by bath-applied agonist (S)-3,5-dihydrophenylglycine was not affected by NMDAR blockade. We also observed that NMDAR or CaMKII blockade during TS significantly blunted TS-induced increased serine/threonine phosphorylation of the scaffold protein Homer1b/c and resulted in an increased interaction of mGluR5 with the Homer1b/c. These results indicate that synaptically released glutamate during TS of excitatory afferents can activate both NMDAR and mGluR1/5 in NAc neurons concomitantly and that activation of NMDAR may stimulate CaMKII-mediated phosphorylation of Homer1b/c and impair the interaction between mGluR5 and Homer1b/c, thereby attenuating mGluR1/5-LTD induction. This study provides a novel molecular mechanism by which NMDAR could regulate mGluR5 function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    PubMed

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i.e. there were no significant post-transcriptional changes). This condition can be readily established a priori by assessing the correlation between PET and mRNA expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot

    PubMed Central

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B.; Turkheimer, Federico E.

    2016-01-01

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i.e. there were no significant post-transcriptional changes). This condition can be readily established a priori by assessing the correlation between PET and mRNA expression. PMID:26850512

  13. Role of Endocannabinoids and Cannabinoid-1 Receptors in Cerebrocortical Blood Flow Regulation

    PubMed Central

    Horváth, Béla; Benkő, Rita; Lacza, Zsombor; Járai, Zoltán; Sándor, Péter; Di Marzo, Vincenzo; Pacher, Pál; Benyó, Zoltán

    2013-01-01

    Background Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1) receptor blockade and inhibition of cannabinoid reuptake, respectively) on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H). Methodology/Principal Findings In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v.) failed to influence blood pressure (BP), cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry) or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v.) induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H. Conclusion/Significance Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a CB1-dependent manner. Finally, our data indicate for the first time the involvement of the endocannabinoid system and CB1-receptors in the regulation of the cerebral circulation during H/H and also raise the possibility of their contribution to the autoregulation of CoBF. PMID:23308211

  14. The opioid growth factor (OGF) and low dose naltrexone (LDN) suppress human ovarian cancer progression in mice.

    PubMed

    Donahue, Renee N; McLaughlin, Patricia J; Zagon, Ian S

    2011-08-01

    The opioid growth factor (OGF) and its receptor, OGFr, serve as a tonically active inhibitory axis regulating cell proliferation in normal cells and a variety of cancers, including human ovarian cancer. Blockade of OGF and OGFr with the nonselective opioid receptor antagonist naltrexone (NTX) upregulates expression of OGF and OGFr. Administration of a low dosage of NTX (LDN) blocks endogenous opioids from opioid receptors for a short period of time (4-6 h) each day, providing a window of 18-20 h for the upregulated opioids and receptors to interact. The present study investigated the repercussions of upregulating the OGF-OGFr axis by treatment with OGF or LDN on human ovarian tumorigenesis in vivo. Female nude mice were transplanted intraperitoneally with SKOV-3 human ovarian cancer cells and treated on a daily basis with OGF (10 mg/kg), LDN (0.1 mg/kg), or an equivalent volume of vehicle (saline). Tumor burden, as well as DNA synthesis, apoptosis, and angiogenesis was assessed in tumor tissue following 40 days of treatment. OGF and LDN markedly reduced ovarian tumor burden (tumor nodule number and weight). The mechanism of action was targeted to an inhibition of tumor cell proliferation and angiogenesis; no changes in cell survival were noted. This study shows that a native opioid pathway can suppress human ovarian cancer in a xenograft model, and provides novel non-toxic therapies for the treatment of this lethal neoplasia. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren's syndrome

    PubMed Central

    2011-01-01

    Introduction In Sjögren's syndrome, keratoconjunctivitis sicca (dry eye) is associated with infiltration of lacrimal glands by leukocytes and consequent losses of tear-fluid production and the integrity of the ocular surface. We investigated the effect of blockade of the lymphotoxin-beta receptor (LTBR) pathway on lacrimal-gland pathology in the NOD mouse model of Sjögren's syndrome. Methods Male NOD mice were treated for up to ten weeks with an antagonist, LTBR-Ig, or control mouse antibody MOPC-21. Extra-orbital lacrimal glands were analyzed by immunohistochemistry for high endothelial venules (HEV), by Affymetrix gene-array analysis and real-time PCR for differential gene expression, and by ELISA for CXCL13 protein. Leukocytes from lacrimal glands were analyzed by flow-cytometry. Tear-fluid secretion-rates were measured and the integrity of the ocular surface was scored using slit-lamp microscopy and fluorescein isothiocyanate (FITC) staining. The chemokine CXCL13 was measured by ELISA in sera from Sjögren's syndrome patients (n = 27) and healthy controls (n = 30). Statistical analysis was by the two-tailed, unpaired T-test, or the Mann-Whitney-test for ocular integrity scores. Results LTBR blockade for eight weeks reduced B-cell accumulation (approximately 5-fold), eliminated HEV in lacrimal glands, and reduced the entry rate of lymphocytes into lacrimal glands. Affymetrix-chip analysis revealed numerous changes in mRNA expression due to LTBR blockade, including reduction of homeostatic chemokine expression. The reduction of CXCL13, CCL21, CCL19 mRNA and the HEV-associated gene GLYCAM-1 was confirmed by PCR analysis. CXCL13 protein increased with disease progression in lacrimal-gland homogenates, but after LTBR blockade for 8 weeks, CXCL13 was reduced approximately 6-fold to 8.4 pg/mg (+/- 2.7) from 51 pg/mg (+/-5.3) in lacrimal glands of 16 week old control mice. Mice given LTBR blockade exhibited an approximately two-fold greater tear-fluid secretion than control mice (P = 0.001), and had a significantly improved ocular surface integrity score (P = 0.005). The mean CXCL13 concentration in sera from Sjögren's patients (n = 27) was 170 pg/ml, compared to 92.0 pg/ml for sera from (n = 30) healthy controls (P = 0.01). Conclusions Blockade of LTBR pathways may have therapeutic potential for treatment of Sjögren's syndrome. PMID:22044682

  16. Combined blockade of vascular endothelial growth factor and programmed death 1 pathways in advanced kidney cancer.

    PubMed

    Einstein, David J; McDermott, David F

    2017-06-01

    Targeted and immune-based therapies have improved outcomes in advanced kidney cancer, yet novel strategies are needed to extend the duration of these benefits and expand them to more patients. Combined inhibition of vascular endothelial growth factor (VEGF) and the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathways with therapeutic agents already in clinical use may offer such a strategy. Here, we describe the development and clinical evaluation of VEGF inhibitors and, separately, PD-1/PD-L1 inhibitors. We present preclinical evidence of interaction between these pathways and the rationale for combined blockade. Beyond well-known effects on pathologic angiogenesis, VEGF blockade also may decrease immune tolerance and enhance PD-1/PD-L1 blockade. We conclude with the results of several early trials of combined VEGF and PD-1/PD-L1 blockade, which demonstrate encouraging antitumor activity, and we pose questions for future study.

  17. Ipsilateral feeding-specific circuits between the nucleus accumbens shell and the lateral hypothalamus: regulation by glutamate and GABA receptor subtypes.

    PubMed

    Urstadt, Kevin R; Kally, Peter; Zaidi, Sana F; Stanley, B Glenn

    2013-04-01

    The nucleus accumbens shell (AcbSh) and the lateral hypothalamus (LH) are both involved in the control of food intake. Activation of GABA(A) receptors or blockade of AMPA and kainate receptors within the AcbSh induces feeding, as does blockade of GABA(A) receptors or activation of NMDA receptors in the LH. Further, evidence suggests that feeding induced via the AcbSh can be suppressed by LH inhibition. However, it is unclear if this suppression is specific to feeding. Adult male Sprague-Dawley rats with 3 intracranial guide cannulas, one unilaterally into the AcbSh and two bilaterally into the LH, were used to explore this issue. DNQX (1.25 μg) or muscimol (100 ng) infused into the AcbSh unilaterally elicited feeding, and this elicited intake was suppressed by bilateral LH injection of d-AP5 (2 μg) or muscimol (25 ng). The effectiveness of d-AP5 or muscimol infusion into either the LH site ipsilateral or contralateral to the AcbSh injection was compared. Ipsilateral LH injection of d-AP5 or muscimol was significantly more effective than contralateral injection in suppressing food intake initiated by AcbSh injection of DNQX or muscimol. These results add to the prior evidence that inhibition of the LH through pharmacological modulation of NMDA or GABA(A) receptors specifically suppresses feeding initiated by AcbSh inhibition, and that these two regions communicate via an ipsilateral circuit to specifically regulate feeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Systemic blockade of nicotinic and purinergic receptors inhibits ventilation and increases apnoea frequency in newborn rats.

    PubMed

    Niane, Lalah M; Joseph, Vincent; Bairam, Aida

    2012-08-01

    We hypothesized that the combined blockade of peripheral cholinergic and purinergic receptors alters the baseline breathing pattern and respiratory responses to carotid body stimuli (hypoxia, hyperoxia and hypercapnia). Rat pups at 4 (P4) and 12 days of postnatal age (P12) received an intraperitoneal injection of either saline vehicle or hexamethonium + suramin (Hex, 1 mg kg(-1), nicotinic receptor antagonist; Sur, 40 mg kg(-1), P2X receptor antagonist; both of which act mainly on peripheral receptors). Compared with the control animals (saline-injected rats), the Hex + Sur-treated rats demonstrated the following features: (1) decreased baseline ventilation and increased frequency of apnoea and breath-by-breath irregularities, with a larger effect in the P4 than in the P12 rats; (2) a decreased peak minute ventilation and respiratory frequency response to hypoxia (fractional inspired oxygen 12%), with a greater effect in the P12 than in the P4 rats; (3) an attenuated decline of the respiratory frequency during hyperoxia (fractional inspired oxygen 50%) to a similar magnitude in rats of both ages; and (4) a decreased hypercapnic ventilatory response (fractional inspired carbon dioxide 5%) to a similar magnitude in rats of both ages. We conclude that the cholinergic nicotinic and purinergic P2X receptors are essential to maintain an adequate baseline pattern in normoxia. They also contribute, albeit not exclusively, to the hypoxic ventilatory response, with an age-specific effect, most probably linked to the cholinergic component, which might partly underlie the postnatal maturation of peripheral chemoreceptors.

  19. Role of Mas receptor antagonist (A779) in renal hemodynamics in condition of blocked angiotensin II receptors in rats.

    PubMed

    Mansoori, A; Oryan, S; Nematbakhsh, M

    2016-03-01

    The vasodilatory effect of angiotensin 1-7 (Ang 1-7) is exerted in the vascular bed via Mas receptor (MasR) gender dependently. However, the crosstalk between MasR and angiotensin II (Ang II) types 1 and 2 receptors (AT1R and AT2R) may change some actions of Ang 1-7 in renal circulation. In this study by blocking AT1R and AT2R, the role of MasR in kidney hemodynamics was described. In anaesthetized male and female Wistar rats, the effects of saline as vehicle and MasR blockade (A779) were tested on mean arterial pressure (MAP), renal perfusion pressure (RPP), renal blood flow (RBF), and renal vascular resistance (RVR) when both AT1R and AT2R were blocked by losartan and PD123319, respectively. In male rats, when AT1R and AT2R were blocked, there was a tendency for the increase in RBF/wet kidney tissue weight (RBF/KW) to be elevated by A779 as compared with the vehicle (P=0.08), and this was not the case in female rats. The impact of MasR on renal hemodynamics appears not to be sexual dimorphism either when Ang II receptors were blocked. It seems that co-blockade of all AT1R, AT2R, and MasR may alter RBF/ KW in male more than in female rats. These findings support a crosstalk between MasR and Ang II receptors in renal circulation.

  20. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    PubMed Central

    Dugovic, Christine; Shelton, Jonathan E.; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T.; Lovenberg, Timothy W.

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  1. In Vivo Analysis of the Role of Metabotropic Glutamate Receptors in the Afferent Regulation of Chick Cochlear Nucleus Neurons

    PubMed Central

    Carzoli, Kathryn L.; Hyson, Richard L.

    2010-01-01

    Cochlea removal results in the death of approximately 20-30% of neurons in the chick nucleus magnocellularis (NM). One early event in NM neuronal degradation is the disruption of their ribosomes. This can be visualized in the first few hours following cochlea removal using Y10B, an antibody that recognizes ribosomal RNA. Previous studies using a brain slice preparation suggest that maintenance of ribosomal integrity in NM neurons requires metabotropic glutamate receptor (mGluR) activation. Isolating the brain slice in vitro, however, may eliminate other potential sources of trophic support and only allows for evaluation of the early changes that occur in NM neurons following deafferentation. Consequently, it is not known if mGluR activation is truly required for the maintenance of NM neurons in the intact system. The current experiments evaluated the importance of mGluRs in vivo. The effects of short-term receptor blockade were assessed through Y10B labeling and the effects of long-term blockade were assessed through stereological counting of NM neurons in Nissl-stained tissue. mGluR antagonists or vehicle were administered intracerebroventricularly following unilateral cochlea removal. Vehicle-treated subjects replicated the previously reported effects of cochlea removal, showing lighter Y10B-labeling and fewer Nissl-stained NM neurons on the deafened side of the brain. Blockade of mGluRs prevented the rapid activity-dependent difference in Y10B labeling, and in some cases, had the reverse effect, yielding lighter labeling of NM neurons on the intact side of the brain. Similarly, mGluR blockade over longer survival periods resulted in a reduction in number of cells on both intact and deafferented sides of the brain, and in some cases, yielded a reverse effect of fewer neurons on the intact side versus deafened side. These data are consistent with in vitro findings and suggest that mGluR activation plays a vital role in the afferent maintenance of NM neurons. PMID:21059385

  2. In vivo analysis of the role of metabotropic glutamate receptors in the afferent regulation of chick cochlear nucleus neurons.

    PubMed

    Carzoli, Kathryn L; Hyson, Richard L

    2011-02-01

    Cochlea removal results in the death of approximately 20-30% of neurons in the chick nucleus magnocellularis (NM). One early event in NM neuronal degradation is the disruption of their ribosomes. This can be visualized in the first few hours following cochlea removal using Y10B, an antibody that recognizes ribosomal RNA. Previous studies using a brain slice preparation suggest that maintenance of ribosomal integrity in NM neurons requires metabotropic glutamate receptor (mGluR) activation. Isolating the brain slice in vitro, however, may eliminate other potential sources of trophic support and only allows for evaluation of the early changes that occur in NM neurons following deafferentation. Consequently, it is not known if mGluR activation is truly required for the maintenance of NM neurons in the intact system. The current experiments evaluated the importance of mGluRs in vivo. The effects of short-term receptor blockade were assessed through Y10B labeling and the effects of long-term blockade were assessed through stereological counting of NM neurons in Nissl-stained tissue. mGluR antagonists or vehicle were administered intracerebroventricularly following unilateral cochlea removal. Vehicle-treated subjects replicated the previously reported effects of cochlea removal, showing lighter Y10B labeling and fewer Nissl-stained NM neurons on the deafened side of the brain. Blockade of mGluRs prevented the rapid activity-dependent difference in Y10B labeling, and in some cases, had the reverse effect, yielding lighter labeling of NM neurons on the intact side of the brain. Similarly, mGluR blockade over longer survival periods resulted in a reduction in number of cells on both intact and deafferented sides of the brain, and in some cases, yielded a reverse effect of fewer neurons on the intact side versus deafened side. These data are consistent with in vitro findings and suggest that mGluR activation plays a vital role in the afferent maintenance of NM neurons. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Mannose phosphate isomerase regulates fibroblast growth factor receptor family signaling and glioma radiosensitivity.

    PubMed

    Cazet, Aurélie; Charest, Jonathan; Bennett, Daniel C; Sambrooks, Cecilia Lopez; Contessa, Joseph N

    2014-01-01

    Asparagine-linked glycosylation is an endoplasmic reticulum co- and post-translational modification that enables the transit and function of receptor tyrosine kinase (RTK) glycoproteins. To gain insight into the regulatory role of glycosylation enzymes on RTK function, we investigated shRNA and siRNA knockdown of mannose phosphate isomerase (MPI), an enzyme required for mature glycan precursor biosynthesis. Loss of MPI activity reduced phosphorylation of FGFR family receptors in U-251 and SKMG-3 malignant glioma cell lines and also resulted in significant decreases in FRS2, Akt, and MAPK signaling. However, MPI knockdown did not affect ligand-induced activation or signaling of EGFR or MET RTKs, suggesting that FGFRs are more susceptible to MPI inhibition. The reductions in FGFR signaling were not caused by loss of FGF ligands or receptors, but instead were caused by interference with receptor dimerization. Investigations into the cellular consequences of MPI knockdown showed that cellular programs driven by FGFR signaling, and integral to the clinical progression of malignant glioma, were impaired. In addition to a blockade of cellular migration, MPI knockdown also significantly reduced glioma cell clonogenic survival following ionizing radiation. Therefore our results suggest that targeted inhibition of enzymes required for cell surface receptor glycosylation can be manipulated to produce discrete and limited consequences for critical client glycoproteins expressed by tumor cells. Furthermore, this work identifies MPI as a potential enzymatic target for disrupting cell surface receptor-dependent survival signaling and as a novel approach for therapeutic radiosensitization.

  4. Redistribution of Cerebral Blood Flow during Severe Hypovolemia and Reperfusion in a Sheep Model: Critical Role of α1-Adrenergic Signaling

    PubMed Central

    Schiffner, René; Bischoff, Sabine Juliane; Lehmann, Thomas; Rakers, Florian; Rupprecht, Sven; Reiche, Juliane; Matziolis, Georg; Schubert, Harald; Schwab, Matthias; Huber, Otmar; Schmidt, Martin

    2017-01-01

    Background: Maintenance of brain circulation during shock is sufficient to prevent subcortical injury but the cerebral cortex is not spared. This suggests area-specific regulation of cerebral blood flow (CBF) during hemorrhage. Methods: Cortical and subcortical CBF were continuously measured during blood loss (≤50%) and subsequent reperfusion using laser Doppler flowmetry. Blood gases, mean arterial blood pressure (MABP), heart rate and renal blood flow were also monitored. Urapidil was used for α1A-adrenergic receptor blockade in dosages, which did not modify the MABP-response to blood loss. Western blot and quantitative reverse transcription polymerase chain reactions were used to determine adrenergic receptor expression in brain arterioles. Results: During hypovolemia subcortical CBF was maintained at 81 ± 6% of baseline, whereas cortical CBF decreased to 40 ± 4% (p < 0.001). Reperfusion led to peak CBFs of about 70% above baseline in both brain regions. α1A-Adrenergic blockade massively reduced subcortical CBF during hemorrhage and reperfusion, and prevented hyperperfusion during reperfusion in the cortex. α1A-mRNA expression was significantly higher in the cortex, whereas α1D-mRNA expression was higher in the subcortex (p < 0.001). Conclusions: α1-Adrenergic receptors are critical for perfusion redistribution: activity of the α1A-receptor subtype is a prerequisite for redistribution of CBF, whereas the α1D-receptor subtype may determine the magnitude of redistribution responses. PMID:28492488

  5. Redistribution of Cerebral Blood Flow during Severe Hypovolemia and Reperfusion in a Sheep Model: Critical Role of α1-Adrenergic Signaling.

    PubMed

    Schiffner, René; Bischoff, Sabine Juliane; Lehmann, Thomas; Rakers, Florian; Rupprecht, Sven; Reiche, Juliane; Matziolis, Georg; Schubert, Harald; Schwab, Matthias; Huber, Otmar; Schmidt, Martin

    2017-05-11

    Maintenance of brain circulation during shock is sufficient to prevent subcortical injury but the cerebral cortex is not spared. This suggests area-specific regulation of cerebral blood flow (CBF) during hemorrhage. Cortical and subcortical CBF were continuously measured during blood loss (≤50%) and subsequent reperfusion using laser Doppler flowmetry. Blood gases, mean arterial blood pressure (MABP), heart rate and renal blood flow were also monitored. Urapidil was used for α1A-adrenergic receptor blockade in dosages, which did not modify the MABP-response to blood loss. Western blot and quantitative reverse transcription polymerase chain reactions were used to determine adrenergic receptor expression in brain arterioles. During hypovolemia subcortical CBF was maintained at 81 ± 6% of baseline, whereas cortical CBF decreased to 40 ± 4% ( p < 0.001). Reperfusion led to peak CBFs of about 70% above baseline in both brain regions. α1A-Adrenergic blockade massively reduced subcortical CBF during hemorrhage and reperfusion, and prevented hyperperfusion during reperfusion in the cortex. α1A-mRNA expression was significantly higher in the cortex, whereas α1D-mRNA expression was higher in the subcortex ( p < 0.001). α1-Adrenergic receptors are critical for perfusion redistribution: activity of the α1A-receptor subtype is a prerequisite for redistribution of CBF, whereas the α1D-receptor subtype may determine the magnitude of redistribution responses.

  6. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs.

    PubMed

    Hewitt, Matthew M; Adams, Gregory; Mazzone, Stuart B; Mori, Nanako; Yu, Li; Canning, Brendan J

    2016-06-01

    Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and N(G)-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Panicolytic-like effects caused by substantia nigra pars reticulata pretreatment with low doses of endomorphin-1 and high doses of CTOP or the NOP receptors antagonist JTC-801 in male Rattus norvegicus.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Franceschi; Almada, Rafael Carvalho; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2017-10-01

    Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. Blockade of GABA A receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a μ-, δ-, and κ 1 -opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either μ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.

  8. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    PubMed

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  9. Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y1 and Y2 receptors

    PubMed Central

    Tough, IR; Forbes, S; Tolhurst, R; Ellis, M; Herzog, H; Bornstein, JC; Cox, HM

    2011-01-01

    BACKGROUND AND PURPOSE Peptide YY (PYY) and neuropeptide Y (NPY) activate Y receptors, targets under consideration as treatments for diarrhoea and other intestinal disorders. We investigated the gastrointestinal consequences of selective PYY or NPY ablation on mucosal ion transport, smooth muscle activity and transit using wild-type, single and double peptide knockout mice, comparing mucosal responses with those from human colon. EXPERIMENTAL APPROACH Mucosae were pretreated with a Y1 (BIBO3304) or Y2 (BIIE0246) receptor antagonist and changes in short-circuit current recorded. Colonic transit and colonic migrating motor complexes (CMMCs) were assessed in vitro and upper gastrointestinal and colonic transit measured in vivo. KEY RESULTS Y receptor antagonists revealed tonic Y1 and Y2 receptor-mediated antisecretory effects in human and wild-type mouse colon mucosae. In both, Y1 tone was epithelial while Y2 tone was neuronal. Y1 tone was reduced 90% in PYY−/− mucosa but unchanged in NPY−/− tissue. Y2 tone was partially reduced in NPY−/− or PYY−/− mucosae and abolished in tetrodotoxin-pretreated PYY−/− tissue. Y1 and Y2 tone were absent in NPYPYY−/− tissue. Colonic transit was inhibited by Y1 blockade and increased by Y2 antagonism indicating tonic Y1 excitation and Y2 inhibition respectively. Upper GI transit was increased in PYY−/− mice only. Y2 blockade reduced CMMC frequency in isolated mouse colon. CONCLUSIONS AND IMPLICATIONS Endogenous PYY and NPY induced significant mucosal antisecretory tone mediated by Y1 and Y2 receptors, via similar mechanisms in human and mouse colon mucosa. Both peptides contributed to tonic Y2-receptor-mediated inhibition of colonic transit in vitro but only PYY attenuated upper GI transit. PMID:21457230

  10. Role of ionotropic glutamate receptors in delay and probability discounting in the rat.

    PubMed

    Yates, Justin R; Batten, Seth R; Bardo, Michael T; Beckmann, Joshua S

    2015-04-01

    Discounting of delayed and probabilistic reinforcement is linked to increased drug use and pathological gambling. Understanding the neurobiology of discounting is important for designing treatments for these disorders. Glutamate is considered to be involved in addiction-like behaviors; however, the role of ionotropic glutamate receptors (iGluRs) in discounting remains unclear. The current study examined the effects of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor blockade on performance in delay and probability discounting tasks. Following training in either delay or probability discounting, rats (n = 12, each task) received pretreatments of the NMDA receptor antagonists MK-801 (0, 0.01, 0.03, 0.1, or 0.3 mg/kg, s.c.) or ketamine (0, 1.0, 5.0, or 10.0 mg/kg, i.p.), as well as the AMPA receptor antagonist CNQX (0, 1.0, 3.0, or 5.6 mg/kg, i.p.). Hyperbolic discounting functions were used to estimate sensitivity to delayed/probabilistic reinforcement and sensitivity to reinforcer amount. An intermediate dose of MK-801 (0.03 mg/kg) decreased sensitivity to both delayed and probabilistic reinforcement. In contrast, ketamine did not affect the rate of discounting in either task but decreased sensitivity to reinforcer amount. CNQX did not alter sensitivity to reinforcer amount or delayed/probabilistic reinforcement. These results show that blockade of NMDA receptors, but not AMPA receptors, decreases sensitivity to delayed/probabilistic reinforcement (MK-801) and sensitivity to reinforcer amount (ketamine). The differential effects of MK-801 and ketamine demonstrate that sensitivities to delayed/probabilistic reinforcement and reinforcer amount are pharmacologically dissociable.

  11. Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor.

    PubMed

    Freitas, Renato Leonardo de; Salgado-Rohner, Carlos José; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne

    2013-09-01

    It has been shown that GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei (DMH and VMH, respectively) induces elaborated defensive behavioural responses accompanied by antinociception, which has been utilized as an experimental model of panic attack. Furthermore, the prelimbic (PL) division of the medial prefrontal cortex (MPFC) has been related to emotional reactions and the processing of nociceptive information. The aim of the present study was to investigate the possible involvement of the PL cortex and the participation of local cannabinoid CB1 receptors in the elaboration of panic-like reactions and in innate fear-induced antinociception. Elaborated fear-induced responses were analysed during a 10-min period in an open-field test arena. Microinjection of the GABAA receptor antagonist bicuculline into the DMH/VMH evoked panic-like behaviour and fear-induced antinociception, which was decreased by microinjection of the non-selective synaptic contact blocker cobalt chloride in the PL cortex. Moreover, microinjection of AM251 (25, 100 or 400 pmol), an endocannabinoid CB1 receptor antagonist, into the PL cortex also attenuated the defensive behavioural responses and the antinociception that follows innate fear behaviour elaborated by DMH/VMH. These data suggest that the PL cortex plays an important role in the organization of elaborated forward escape behaviour and that this cortical area is also involved in the elaboration of innate fear-induced antinociception. Additionally, CB1 receptors in the PL cortex modulate both panic-like behaviours and fear-induced antinociception elicited by disinhibition of the DMH/VMH through microinjection of bicuculline.

  12. P2X3 and P2X2/3 Receptors Play a Crucial Role in Articular Hyperalgesia Development Through Inflammatory Mechanisms in the Knee Joint Experimental Synovitis.

    PubMed

    Teixeira, Juliana Maia; Bobinski, Franciane; Parada, Carlos Amílcar; Sluka, Kathleen A; Tambeli, Cláudia Herrera

    2017-10-01

    Osteoarthritis (OA) is a degenerative and progressive disease characterized by cartilage breakdown and by synovial membrane inflammation, which results in disability, joint swelling, and pain. The purinergic P2X3 and P2X2/3 receptors contribute to development of inflammatory hyperalgesia, participate in arthritis processes in the knee joint, and are expressed in chondrocytes and nociceptive afferent fibers innervating the knee joint. In this study, we hypothesized that P2X3 and P2X2/3 receptors activation by endogenous ATP (adenosine 5'-triphosphate) induces articular hyperalgesia in the knee joint of male and female rats through an indirect sensitization of primary afferent nociceptors dependent on the previous release of pro-inflammatory cytokines and/or on neutrophil migration. We found that the blockade of articular P2X3 and P2X2/3 receptors significantly attenuated carrageenan-induced hyperalgesia in the knee joint of male and estrus female rats in a similar manner. The carrageenan-induced knee joint inflammation increased the expression of P2X3 receptors in chondrocytes of articular cartilage. Further, the blockade of articular P2X3 and P2X2/3 receptors significantly reduced the increased concentration of TNF-α, IL-6, and CINC-1 and the neutrophil migration induced by carrageenan. These findings indicate that P2X3 and P2X2/3 receptors activation by endogenous ATP is essential to hyperalgesia development in the knee joint through an indirect sensitization of primary afferent nociceptors dependent on the previous release of pro-inflammatory cytokines and/or on neutrophil migration.

  13. Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus μ-opiate receptor dependent mechanisms.

    PubMed

    Ahmad, Tasha; Lauzon, Nicole M; de Jaeger, Xavier; Laviolette, Steven R

    2013-09-25

    Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate-related motivational processing circuits, particularly in the context of reward-related learning and memory. Considerable evidence demonstrates functional interactions between CB1 and DA signaling pathways during the processing of motivationally salient information. However, the role of mPFC CB1 receptor transmission in the modulation of behavioral opiate-reward processing is not currently known. Using an unbiased conditioned place preference paradigm with rats, we examined the role of intra-mPFC CB1 transmission during opiate reward learning. We report that activation or inhibition of CB1 transmission within the prelimbic cortical (PLC) division of the mPFC bidirectionally regulates the motivational valence of opiates; whereas CB1 activation switched morphine reward signaling into an aversive stimulus, blockade of CB1 transmission potentiated the rewarding properties of normally sub-reward threshold conditioning doses of morphine. Both of these effects were dependent upon DA transmission as systemic blockade of DAergic transmission prevented CB1-dependent modulation of morphine reward and aversion behaviors. We further report that CB1-mediated intra-PLC opiate motivational signaling is mediated through a μ-opiate receptor-dependent reward pathway, or a κ-opiate receptor-dependent aversion pathway, directly within the ventral tegmental area. Our results provide evidence for a novel CB1-mediated motivational valence switching mechanism within the PLC, controlling dissociable subcortical reward and aversion pathways.

  14. Opposing Effects of Platelet-Activating Factor and Lyso-Platelet-Activating Factor on Neutrophil and Platelet ActivationS⃞

    PubMed Central

    Welch, Emily J.; Naikawadi, Ram P.; Li, Zhenyu; Lin, Phoebe; Ishii, Satoshi; Shimizu, Takao; Tiruppathi, Chinnaswamy; Du, Xiaoping; Subbaiah, Papasani V.; Ye, Richard D.

    2009-01-01

    Platelet-activating factor (PAF) is a potent, bioactive phospholipid that acts on multiple cells and tissues through its G protein-coupled receptor (GPCR). PAF is not stored but is rapidly generated via enzymatic acetylation of the precursor 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). The bioactivity of PAF is effectively and tightly regulated by PAF acetylhydrolases, which convert PAF back to lysoPAF. Previous studies report that lysoPAF is an inactive precursor and metabolite of PAF. However, lysoPAF has not been carefully studied in its own context. Here we report that lysoPAF has an opposing effect of PAF in the activation of neutrophils and platelets. Whereas PAF potentiates neutrophil NADPH oxidase activation, lysoPAF dose-dependently inhibits this function. Inhibition by lysoPAF is not affected by the use of a PAF receptor antagonist or genetic deletion of the PAF receptor gene. The mechanism of lysoPAF-mediated inhibition of neutrophils involves an elevation in the intracellular cAMP level, and pharmacological blockade of adenylyl cyclase completely reverses the inhibitory effect of lysoPAF. In addition, lysoPAF increases intracellular cAMP levels in platelets and inhibits thrombin-induced platelet aggregation, which can be reversed by inhibition of protein kinase A. These findings identify lysoPAF as a bioactive lipid with opposing functions of PAF and suggest a novel and intrinsic regulatory mechanism for balance of the potent activity of PAF. PMID:18931035

  15. Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma.

    PubMed

    Kearl, Tyce J; Jing, Weiqing; Gershan, Jill A; Johnson, Bryon D

    2013-06-01

    Early phase clinical trials targeting the programmed death receptor-1/ligand-1 (PD-1/PD-L1) pathway to overcome tumor-mediated immunosuppression have reported promising results for a variety of cancers. This pathway appears to play an important role in the failure of immune reactivity to malignant plasma cells in multiple myeloma patients, as the tumor cells express relatively high levels of PD-L1, and T cells show increased PD-1 expression. In the current study, we demonstrate that PD-1/PD-L1 blockade with a PD-L1-specific Ab elicits rejection of a murine myeloma when combined with lymphodepleting irradiation. This particular combined approach by itself has not previously been shown to be efficacious in other tumor models. The antitumor effect of lymphodepletion/anti-PD-L1 therapy was most robust when tumor Ag-experienced T cells were present either through cell transfer or survival after nonmyeloablative irradiation. In vivo depletion of CD4 or CD8 T cells completely eliminated antitumor efficacy of the lymphodepletion/anti-PD-L1 therapy, indicating that both T cell subsets are necessary for tumor rejection. Elimination of myeloma by T cells occurs relatively quickly as tumor cells in the bone marrow were nearly nondetectable by 5 d after the first anti-PD-L1 treatment, suggesting that antimyeloma reactivity is primarily mediated by preactivated T cells, rather than newly generated myeloma-reactive T cells. Anti-PD-L1 plus lymphodepletion failed to improve survival in two solid tumor models, but demonstrated significant efficacy in two hematologic malignancy models. In summary, our results support the clinical testing of lymphodepletion and PD-1/PD-L1 blockade as a novel approach for improving the survival of patients with multiple myeloma.

  16. Blockade of AT1 type receptors for angiotensin II prevents cardiac microvascular fibrosis induced by chronic stress in Sprague-Dawley rats.

    PubMed

    Firoozmand, Lília Taddeo; Sanches, Andrea; Damaceno-Rodrigues, Nilsa Regina; Perez, Juliana Dinéia; Aragão, Danielle Sanches; Rosa, Rodolfo Mattar; Marcondes, Fernanda Klein; Casarini, Dulce Elena; Caldini, Elia Garcia; Cunha, Tatiana Sousa

    2018-04-20

    To test the effects of chronic-stress on the cardiovascular system, the model of chronic mild unpredictable stress (CMS) has been widely used. The CMS protocol consists of the random, intermittent, and unpredictable exposure of laboratory animals to a variety of stressors, during 3 consecutive weeks. In this study, we tested the hypothesis that exposure to the CMS protocol leads to left ventricle microcirculatory remodeling that can be attenuated by angiotensin II receptor blockade. Male Sprague-Dawley rats were randomly assigned into four groups: Control, Stress, Control + losartan, and Stress + losartan (N = 6, each group, losartan: 20 mg/kg/day). The rats were euthanized 15 days after CMS exposure, and blood samples and left ventricle were collected. Rats submitted to CMS presented increased glycemia, corticosterone, noradrenaline and adrenaline concentration, and losartan reduced the concentration of the circulating amines. Cardiac angiotensin II, measured by high-performance liquid chromatography (HPLC), was significantly increased in the CMS group, and losartan treatment reduced it, while angiotensin 1-7 was significantly higher in the CMS losartan-treated group as compared with CMS. Histological analysis, verified by transmission electron microscopy, showed that rats exposed to CMS presented increased perivascular collagen and losartan effectively prevented the development of this process. Hence, CMS induced a state of microvascular disease, with increased perivascular collagen deposition, that may be the trigger for further development of cardiovascular disease. In this case, CMS fibrosis is associated with increased production of catecholamines and with a disruption of renin-angiotensin system balance, which can be prevented by angiotensin II receptor blockade.

  17. Sex- and Age-dependent Effects of Orexin 1 Receptor Blockade on Open-Field Behavior and Neuronal Activity.

    PubMed

    Blume, Shannon R; Nam, Hannah; Luz, Sandra; Bangasser, Debra A; Bhatnagar, Seema

    2018-06-15

    Adolescence is a sensitive and critical period in brain development where psychiatric disorders such as anxiety, depression and post-traumatic stress disorder are more likely to emerge following a stressful life event. Females are two times more likely to suffer from psychiatric disorders than males. Patients with these disorders show alterations in orexins (also called hypocretins), important neuropeptides that regulate arousal, wakefulness and the hypothalamic-pituitary-adrenal axis activity. Little is known on the role of orexins in mediating arousal behaviors in male and female rats during adolescence or adulthood. Here, we examine the influence of orexin 1 receptor blockade by SB334867 in open-field behavior in male and female rats during early adolescence (PND 31-33) or adulthood (PND 75-77). Animals were injected with 0 (vehicle), 1, 10, or 30 mg/kg SB334867 (i.p.). Thirty minutes later, they were placed in an open field, and behavior and neuronal activity (c-Fos) were assessed. In adolescent males, SB334867 significantly increased immobility in the 10 mg/kg group compared to vehicle. However, this increase in immobility in adolescent males was not observed in adolescent females. In contrast to adolescent males, adult males in the 10 mg/kg dose group showed the opposite effect on immobility compared to vehicle. These results indicate that 10 mg/kg dose of SB334867 has opposing effects in adolescent and adult males, but few effects in adolescent and adult females. Differences in functional networks between limbic regions may underlie these effects of orexin receptor blockade that are sex- and age-dependent in rats. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Regional heterogeneity of substance P-induced endothelium-dependent contraction, relaxation, and -independent contraction in rabbit pulmonary arteries.

    PubMed

    Miike, Tomohiro; Shirahase, Hiroaki; Kanda, Mamoru; Kunishiro, Kazuyoshi; Kurahashi, Kazuyoshi

    2008-12-05

    The present study examined whether substance P (SP)-induced endothelium-dependent TXA(2)-mediated contraction (EDC), nitric oxide (NO)-mediated relaxation (EDR), and endothelium-independent contraction (EIC) are different between the rabbit proximal and distal intrapulmonary arteries. The helically cut strips of isolated proximal and distal arteries were fixed vertically between hooks in organ bath, and changes in isometric tension were measured. SP-induced EDC was greater in the distal than proximal arteries, and EDR was greater in the proximal than distal arteries. However, under the complete blockade of NK(2) receptors and NO production, SP (10(-9)-3x10(-7) M)-induced EDC did not differ between proximal and distal arteries. Under the complete blockade of NK(2) receptors and TXA(2) production, SP (3x10(-10)-3x10(-8) M)-induced EDR was greater in the proximal than distal arteries. Neither contraction induced by U-46619, a TXA(2) agonist, nor relaxation by sodium nitroprusside, an NO donor, was different between both portions of the arteries. Both ionomycin (10(-8) M)- and l-arginine (1 mM)-induced EDRs were also significantly greater in the proximal than distal arteries. Under the blockade of NK(1) receptors and NO and TXA(2) production, SP (10(-7) M)-induced EIC was greater in the distal than proximal arteries. In summary, the capacity for NO production is higher in the proximal than distal arteries, resulting in SP-induced higher EDR and lower EDC in the proximal arteries. These regional differences in responses to SP may play important roles in maintaining the homogenous distribution of blood flow in the lung.

  19. Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats

    PubMed Central

    Pettorossi, Vito Enrico; Di Mauro, Michela; Scarduzio, Mariangela; Panichi, Roberto; Tozzi, Alessandro; Calabresi, Paolo; Grassi, Silvarosa

    2013-01-01

    Abstract Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long‐term depression (LTD) and depotentiation (DP) by low‐frequency stimulation (LFS) and long‐term potentiation (LTP) by high‐frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS‐dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N‐methyl‐d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired‐pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity‐dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively. PMID:24744863

  20. Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats.

    PubMed

    Pettorossi, Vito Enrico; Di Mauro, Michela; Scarduzio, Mariangela; Panichi, Roberto; Tozzi, Alessandro; Calabresi, Paolo; Grassi, Silvarosa

    2013-12-01

    Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long-term depression (LTD) and depotentiation (DP) by low-frequency stimulation (LFS) and long-term potentiation (LTP) by high-frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS-dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N-methyl-d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired-pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity-dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively.

  1. Neuroethological validation of an experimental apparatus to evaluate oriented and non-oriented escape behaviours: Comparison between the polygonal arena with a burrow and the circular enclosure of an open-field test.

    PubMed

    Biagioni, Audrey Francisco; dos Anjos-Garcia, Tayllon; Ullah, Farhad; Fisher, Isaac René; Falconi-Sobrinho, Luiz Luciano; de Freitas, Renato Leonardo; Felippotti, Tatiana Tocchini; Coimbra, Norberto Cysne

    2016-02-01

    Inhibition of GABAergic neural inputs to dorsal columns of the periaqueductal grey matter (dPAG), posterior (PH) and dorsomedial (DMH) hypothalamic nuclei elicits distinct types of escape behavioural reactions. To differentiate between the variety and intensity of panic-related behaviours, the pattern of defensive behaviours evoked by blockade of GABAA receptors in the DMH, PH and dPAG were compared in a circular open-field test and in a recently designed polygonal arena. In the circular open-field, the defensive behaviours induced by microinjection of bicuculline into DMH and PH were characterised by defensive alertness behaviour and vertical jumps preceded by rearing exploratory behaviour. On the other hand, explosive escape responses interspersed with horizontal jumps and freezing were observed after the blockade of GABAA receptors on dPAG neurons. In the polygonal arena apparatus, the escape response produced by GABAergic inhibition of DMH and PH neurons was directed towards the burrow. In contrast, the blockade of GABAA receptors in dPAG evoked non-oriented escape behaviour characterised by vigorous running and horizontal jumps in the arena. Our findings support the hypothesis that the hypothalamic nuclei organise oriented escape behavioural responses whereas non-oriented escape is elaborated by dPAG neurons. Additionally, the polygonal arena with a burrow made it easy to discriminate and characterise these two different patterns of escape behavioural responses. In this sense, the polygonal arena with a burrow can be considered a good methodological tool to discriminate between these two different patterns of escape behavioural responses and is very useful as a new experimental animal model of panic attacks. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The Renin-Angiotensin System, Not the Kinin-Kallikrein System, Affects Post-Exercise Proteinuria.

    PubMed

    Koçer, Günnur; Basralı, Filiz; Kuru, Oktay; Şentürk, Ümit Kemal

    2018-05-17

    Temporary proteinuria post-exercise is common and is caused predominantly by renal haemodynamic alterations. One reason is up-regulation of angiotensin II (Ang II) due to the reducing effect of angiotensin-converting enzyme (ACE) inhibitors. However, another, ignored, reason could be the kininase effect of ACE inhibition. This study investigated how ACE inhibition reduces post-exercise proteinuria: by either Ang II up-regulation inhibition or bradykinin elevation due to kininase activity inhibition. Our study included 10 volunteers, who completed 3 high-intensity exercise protocols involving cycling at 1-week intervals. The first protocol was a control arm, the second evaluated the effect of ACE inhibition and the third examined the effect of angiotensin type 1 receptor blockade. Upon application, both agents reduced systolic and diastolic blood pressure; however, there were no statistically significant -differences. In addition, total protein, microalbumin and -β2-microglobulin excretion levels in urine specimens were analysed before, 30 min after and 120 min after the exercise protocols. Total protein levels in urine samples were elevated in all 3 protocols after 30 min of high-intensity exercise, compared to baseline levels. However, both ACE inhibition and angiotensin type 1 receptor blockade suppressed total protein in the 30th min. In each protocol, total protein levels returned to the baseline after 120 min. Urinary microalbumin and β2-microglobulin levels during the control protocol were significantly higher 30 min post-exercise; however, only angiotensin type 1 receptor blockade suppressed microalbumin levels. The results indicated Ang II up-regulation, not bradykinin elevation, plays a role in post-exercise proteinuria. © 2018 S. Karger AG, Basel.

  3. Repeated arterial occlusion, delta-opioid receptor (DOR) plasticity and vagal transmission within the sinoatrial node of the anesthetized dog.

    PubMed

    Deo, Shekhar H; Barlow, Matthew A; Gonzalez, Leticia; Yoshishige, Darice; Caffrey, James L

    2009-01-01

    Brief interruptions in coronary blood flow precondition the heart, engage delta-opioid receptor (DOR) mechanisms and reduce the damage that typically accompanies subsequent longer coronary occlusions. Repeated short occlusions of the sinoatrial (SA) node artery progressively raised nodal methionine-enkephalin-arginine-phenylalanine (MEAP) and improved vagal transmission during subsequent long occlusions in anesthetized dogs. The DOR type-1 (DOR-1) antagonist, BNTX reversed the vagotonic effect. Higher doses of enkephalin interrupted vagal transmission through a DOR-2 mechanism. The current study tested whether the preconditioning (PC) protocol, the later occlusion or a combination of both was required for the vagotonic effect. The study also tested whether evolving vagotonic effects included withdrawal of competing DOR-2 vagolytic influences. Vagal transmission progressively improved during successive SA nodal artery occlusions. The vagotonic effect was absent in sham animals and after DOR-1 blockade. After completing the PC protocol, exogenously applied vagolytic doses of MEAP reduced vagal transmission under both normal and occluded conditions. The magnitude of these DOR-2 vagolytic effects was small compared to controls and repeated MEAP challenges rapidly eroded vagolytic responses further. Prior DOR-1 blockade did not alter the PC mediated, progressive loss of DOR-2 vagolytic responses. In conclusion, DOR-1 vagotonic responses evolved from signals earlier in the PC protocol and erosion of competing DOR-2 vagolytic responses may have contributed to an unmasking of vagotonic responses. The data support the hypothesis that PC and DOR-2 stimulation promote DOR trafficking, and down regulation of the vagolytic DOR-2 phenotype in favor of the vagotonic DOR-1 phenotype. DOR-1 blockade may accelerate the process by sequestering newly emerging receptors.

  4. Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension.

    PubMed

    Leenen, Frans H H

    2014-08-01

    In the past 1-2 decades, it has become apparent that the brain renin-angiotensin-aldosterone system (RAAS) plays a crucial role in the regulation of blood pressure (BP) by the circulating RAAS. In the brain, angiotensinergic sympatho-excitatory pathways do not contribute to acute, second-to-second regulation but play a major role in the more chronic regulation of the setpoint for sympathetic tone and BP. Increases in plasma angiotensin II (Ang II) or aldosterone and in cerebrospinal fluid [Na(+)] can directly activate these pathways and chronically further activate/maintain enhanced activity by a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels, and endogenous ouabain. Blockade of any step in this slow pathway prevents Ang II-, aldosterone-, or salt and renal injury-induced forms of hypertension. It appears that the renal and arterial actions of circulating aldosterone and Ang II act as amplifiers but are not sufficient to cause chronic hypertension if their central actions are prevented, except perhaps at high concentrations. From a clinical perspective, oral treatment with an angiotensin type 1 (AT1)-receptor blocker at high doses can cause central AT1-receptor blockade and, in humans, lower sympathetic nerve activity. Low doses of the MR blocker spironolactone appear sufficient to cause central MR blockade and a decrease in sympathetic nerve activity. Integrating the brain actions of the circulating RAAS with its direct renal and arterial actions provides a better framework to understand the role of the circulating RAAS in the pathophysiology of hypertension and heart failure and to direct therapeutic strategies. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Dual ETA/ETB blockade with macitentan improves both vascular remodeling and angiogenesis in pulmonary arterial hypertension

    PubMed Central

    Nadeau, Valerie; Potus, Francois; Boucherat, Olivier; Paradis, Renee; Tremblay, Eve; Iglarz, Marc; Paulin, Roxane; Bonnet, Sebastien

    2017-01-01

    Dysregulated metabolism and rarefaction of the capillary network play a critical role in pulmonary arterial hypertension (PAH) etiology. They are associated with a decrease in perfusion of the lungs, skeletal muscles, and right ventricle (RV). Previous studies suggested that endothelin-1 (ET-1) modulates both metabolism and angiogenesis. We hypothesized that dual ETA/ETB receptors blockade improves PAH by improving cell metabolism and promoting angiogenesis. Five weeks after disease induction, Sugen/hypoxic rats presented severe PAH with pulmonary artery (PA) remodeling, RV hypertrophy and capillary rarefaction in the lungs, RV, and skeletal muscles (microCT angiogram, lectin perfusion, CD31 staining). Two-week treatment with dual ETA/ETB receptors antagonist macitentan (30 mg/kg/d) significantly improved pulmonary hemodynamics, PA vascular remodeling, and RV function and hypertrophy compared to vehicle-treated animals (all P = 0.05). Moreover, macitentan markedly increased lung, RV and quadriceps perfusion, and microvascular density (all P = 0.05). In vitro, these effects were associated with increases in oxidative phosphorylation (oxPhox) and markedly reduced cell proliferation of PAH-PA smooth muscle cells (PASMCs) treated with macitentan without affecting apoptosis. While macitentan did not affect oxPhox, proliferation, and apoptosis of PAH–PA endothelial cells (PAECs), it significantly improved their angiogenic capacity (tube formation assay). Exposure of control PASMC and PAEC to ET-1 fully mimicked the PAH cells phenotype, thus confirming that ET-1 is implicated in both metabolism and angiogenesis abnormalities in PAH. Dual ETA/ETB receptor blockade improved the metabolic changes involved in PAH-PASMCs’ proliferation and the angiogenic capacity of PAH-PAEC leading to an increased capillary density in lungs, RV, and skeletal muscles. PMID:29064353

  6. Prevention of alcohol-heightened aggression by CRF-R1 antagonists in mice: critical role for DRN-PFC serotonin pathway.

    PubMed

    Quadros, Isabel M; Hwa, Lara S; Shimamoto, Akiko; Carlson, Julia; DeBold, Joseph F; Miczek, Klaus A

    2014-11-01

    Alcohol can escalate aggressive behavior in a significant subgroup of rodents, humans, and nonhuman primates. The present study investigated whether blockade of corticotropin-releasing factor receptor type 1 (CRF-R1) could prevent the emergence of alcohol-heightened aggression in mice. The serotonin (5-HT) pathway from the dorsal raphe nucleus (DRN) to the medial prefrontal cortex (mPFC) by CRF-R1 was investigated as a possible target for the prevention of alcohol-heightened aggressive behavior. Male CFW mice that reliably exhibited aggressive behaviors after consuming 1 g/kg of alcohol received systemic or intra-DRN administration of CRF-R1 antagonists, CP-154,526 or MTIP, before a confrontation with a male conspecific. Blockade of DRN CRF-R1 receptors with both antagonists significantly reduced only alcohol-heightened aggression, whereas systemic administration reduced both alcohol-heightened and species-typical aggression. Next, a 5-HT1A agonist, 8-OH-DPAT, was coadministered with CP-154,526 into the DRN to temporarily disrupt 5-HT activity. This manipulation abolished the antiaggressive effects of intra-DRN CP-154,526. In the mPFC, in vivo microdialysis revealed that extracellular 5-HT levels were increased in mice that consumed alcohol and were then injected with CP-154,526, both systemically or intra-DRN. Neither alcohol nor CP-154,526 alone affected 5-HT release in the mPFC. The present results suggest the DRN as a critical site for CRF-R1 to modulate alcohol-heightened aggression via action on the serotonergic DRN-PFC pathway.

  7. Proteomic validation of protease drug targets: pharmacoproteomics of matrix metalloproteinase inhibitor drugs using isotope-coded affinity tag labelling and tandem mass spectrometry.

    PubMed

    Butler, G S; Overall, C M

    2007-01-01

    We illustrate the use of quantitative proteomics, namely isotope-coded affinity tag labelling and tandem mass spectrometry, to assess the targets and effects of the blockade of matrix metalloproteinases by an inhibitor drug in a breast cancer cell culture system. Treatment of MT1-MMP-transfected MDA-MB-231 cells with AG3340 (Prinomastat) directly affected the processing a multitude of matrix metalloproteinase substrates, and indirectly altered the expression of an array of other proteins with diverse functions. Therefore, broad spectrum blockade of MMPs has wide-ranging biological consequences. In this human breast cancer cell line, secreted substrates accumulated uncleaved in the conditioned medium and plasma membrane protein substrates were retained on the cell surface, due to reduced processing and shedding of these proteins (cell surface receptors, growth factors and bioactive molecules) to the medium in the presence of the matrix metalloproteinase inhibitor. Hence, proteomic investigation of drug-perturbed cellular proteomes can identify new protease substrates and at the same time provides valuable information for target validation, drug efficacy and potential side effects prior to commitment to clinical trials.

  8. Elevated N-terminal pro-brain natriuretic peptide levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of dietary sodium restriction and diuretics, but not angiotensin receptor blockade, in proteinuric renal patients.

    PubMed

    Slagman, Maartje C J; Waanders, Femke; Vogt, Liffert; Damman, Kevin; Hemmelder, Marc; Navis, Gerjan; Laverman, Gozewijn D

    2012-03-01

    Renin-angiotensin aldosterone system (RAAS) blockade only partly reduces blood pressure, proteinuria and renal and cardiovascular risk in chronic kidney disease (CKD) but often requires sodium targeting [i.e. low sodium diet (LS) and/or diuretics] for optimal efficacy. However, both under- and overtitration of sodium targeting can easily occur. We evaluated whether N-terminal pro-brain natriuretic peptide (NT-proBNP), a biomarker of volume expansion, predicts the benefits of sodium targeting in CKD patients. In a cross-over randomized controlled trial, 33 non-diabetic CKD patients (proteinuria 3.8 ± 0.4 g/24 h, blood pressure 143/86 ± 3/2 mmHg, creatinine clearance 89 ± 5 mL/min) were treated during 6-week periods with placebo, angiotensin receptor blockade (ARB; losartan 100 mg/day) and ARB plus diuretics (losartan 100 mg/day plus hydrochlorothiazide 25 mg/day), combined with LS (93 ± 52 mmol Na(+)/24 h) and regular sodium diet (RS; 193 ± 62 mmol Na(+)/24 h, P < 0.001 versus LS), in random order. As controls, 27 healthy volunteers were studied. NT-proBNP was elevated in patients during placebo + RS [90 (60-137) versus 35 (27-45) pg/mL in healthy controls, P = 0.001]. NT-proBNP was lowered by LS, ARB and diuretics and was normalized by ARB + diuretic + LS [39 (26-59) pg/mL, P = 0.65 versus controls]. NT-proBNP levels above the upper limit of normal (>125 pg/mL) predicted a larger reduction of blood pressure and proteinuria by LS and diuretics but not by ARB, during all steps of the titration regimen. Elevated NT-proBNP levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of sodium targeting, but not RAAS blockade, in proteinuric CKD patients. Importantly, this applies to the untreated condition, as well as to the subsequent treatment steps, consisting of RAAS blockade and even RAAS blockade combined with diuretics. NT-proBNP can be a useful tool to identify CKD patients in whom sodium targeting can improve blood pressure and proteinuria.

  9. Mechanisms of alpha 1-adrenergic vascular desensitization in conscious dogs

    NASA Technical Reports Server (NTRS)

    Kiuchi, K.; Vatner, D. E.; Uemura, N.; Bigaud, M.; Hasebe, N.; Hempel, D. M.; Graham, R. M.; Vatner, S. F.

    1992-01-01

    To investigate the mechanisms of alpha 1-adrenergic vascular desensitization, osmotic minipumps containing either saline (n = 9) or amidephrine mesylate (AMD) (n = 9), a selective alpha 1-adrenergic receptor agonist, were implanted subcutaneously in dogs with chronically implanted arterial and right atrial pressure catheters and aortic flow probes. After chronic alpha 1-adrenergic receptor stimulation, significant physiological desensitization to acute AMD challenges was observed, i.e., pressor and vasoconstrictor responses to the alpha 1-adrenergic agonist were significantly depressed (p < 0.01) compared with responses in the same dogs studied in the conscious state before pump implantation. However, physiological desensitization to acute challenges of the neurotransmitter norepinephrine (NE) (0.1 micrograms/kg per minute) in the presence of beta-adrenergic receptor blockade was not observed for either mean arterial pressure (MAP) (30 +/- 7 versus 28 +/- 5 mm Hg) or total peripheral resistance (TPR) (29.8 +/- 4.9 versus 28.9 +/- 7.3 mm Hg/l per minute). In the presence of beta-adrenergic receptor plus ganglionic blockade after AMD pump implantation, physiological desensitization to NE was unmasked since the control responses to NE (0.1 micrograms/kg per minute) before the AMD pumps were now greater (p < 0.01) than after chronic AMD administration for both MAP (66 +/- 5 versus 32 +/- 2 mm Hg) and TPR (42.6 +/- 10.3 versus 23.9 +/- 4.4 mm Hg/l per minute). In the presence of beta-adrenergic receptor, ganglionic, plus NE-uptake blockade after AMD pump implantation, desensitization was even more apparent, since NE (0.1 micrograms/kg per minute) induced even greater differences in MAP (33 +/- 5 versus 109 +/- 6 mm Hg) and TPR (28.1 +/- 1.8 versus 111.8 +/- 14.7 mm Hg/l per minute). The maximal force of contraction induced by NE in the presence or absence of endothelium was significantly decreased (p < 0.05) in vitro in mesenteric artery rings from AMD pump dogs compared with saline control dogs. Furthermore, alpha 1-adrenergic receptor density, as determined by [3H]prazosin binding in membrane preparations from vessels in the mesentery, was decreased (8.2 +/- 1.0 versus 18.4 +/- 1.4 fmol/mg protein, p < 0.001) without any change in Kd in the AMD pump dogs compared with the saline pump dogs.(ABSTRACT TRUNCATED AT 400 WORDS).

  10. Dopamine D2 Antagonist-Induced Striatal Nur77 Expression Requires Activation of mGlu5 Receptors by Cortical Afferents

    PubMed Central

    Maheux, Jérôme; St-Hilaire, Michel; Voyer, David; Tirotta, Emanuele; Borrelli, Emiliana; Rouillard, Claude; Rompré, Pierre-Paul; Lévesque, Daniel

    2012-01-01

    Dopamine D2 receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate, and adenosine receptors in the effect of a dopamine D2 antagonist in the striatum. First, we investigated D2 antagonist-induced Nur77 mRNA in D2L receptor knockout mice. Surprisingly, deletion of the D2L receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5) and adenosine A2A receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D2 receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D2 receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D2 heteroreceptors and support a prominent role of glutamate in the effect of D2 antagonists. PMID:22912617

  11. Regulation of the neurotensin NT1 receptor in the developing rat brain following chronic treatment with the antagonist SR 48692

    PubMed Central

    Lépée-Lorgeoux, Isabelle; Betancur, Catalina; Souazé, Frédérique; Rostène, William; Bérod, Anne; Pélaprat, Didier

    2000-01-01

    The aim of the present study was to investigate the role of neurotensin in the regulation of NT1 receptors during postnatal development in the rat brain. Characterization of the ontogeny of neurotensin concentration and [125I]neurotensin binding to NT1 receptors in the brain at different embryonic and postnatal stages showed that neurotensin was highly expressed at birth, reaching peak levels at postnatal day 5 (P5), and decreasing thereafter. The transient rise in neurotensin levels preceded the maximal expression of NT1 receptors, observed at P10, suggesting that neurotensin may influence the developmental profile of NT1 receptors. Using primary cultures of cerebral cortex neurons from fetal rats, we showed that exposure to the neurotensin agonist JMV 449 (1 nM) decreased (−43%) the amount of NT1 receptor mRNA measured by reverse transcription-PCR, an effect that was abolished by the non-peptide NT1 receptor antagonist SR 48692 (1 μM). However, daily injection of SR 48692 to rat pups from birth for 5, 9 or 15 days, did not modify [125I]neurotensin binding in brain membrane homogenates. Moreover, postnatal blockade of neurotensin transmission did not alter the density and distribution of NT1 receptors assessed by quantitative autoradiography nor NT1 receptor mRNA expression measured by in situ hybridization in the cerebral cortex, caudate-putamen and midbrain. These results suggest that although NT1 receptor expression can be regulated in vitro by the agonist at an early developmental stage, neurotensin is not a major factor in the establishment of the ontogenetic pattern of these receptors in the rat brain. PMID:10797539

  12. Alport syndrome from bench to bedside: the potential of current treatment beyond RAAS blockade and the horizon of future therapies.

    PubMed

    Gross, Oliver; Perin, Laura; Deltas, Constantinos

    2014-09-01

    The hereditary type IV collagen disease Alport syndrome (AS) always leads to end-stage renal failure. Yesterday, for the past 90 years, this course was described as 'inevitable'. Today, RAAS blockade has changed the 'inevitable' course to a treatable disease. Tomorrow, researchers hope to erase the 'always' from 'always leads to renal failure' in the textbooks. This review elucidates therapeutic targets that evolve from research: (i) kidney embryogenesis and pathogenesis; (ii) phenotype-genotype correlation and the role of collagen receptors and podocytes; (iii) the malfunctioning Alport-GBM; (iv) tubulointerstitial fibrosis; (v) the role of proteinuria in pathogenesis and prognosis; and (vi) secondary events such as infections, hyperparathyroidism and hypercholesterolaemia. Therefore, moderate lifestyle, therapy of bacterial infections, Paricalcitol in adult patients with hyperparathyroidism and HMG-CoA-reductase inhibitors in adult patients with dyslipoproteinemia might contribute to a slower progression of AS and less cardiovascular events. In the future, upcoming treatments including stem cells, chaperon therapy, collagen receptor blockade and anti-microRNA therapy will expand our perspective in protecting the kidneys of Alport patients from further damage. This perspective on current and future therapies is naturally limited by our personal focus in research, but aims to motivate young scientists and clinicians to find a multimodal cure for AS. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  13. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells.

    PubMed

    Torres, Angelo; Vargas, Yosselyn; Uribe, Daniel; Jaramillo, Catherine; Gleisner, Alejandra; Salazar-Onfray, Flavio; López, Mercedes N; Melo, Rómulo; Oyarzún, Carlos; San Martín, Rody; Quezada, Claudia

    2016-10-11

    MRP1 transporter correlates positively with glioma malignancy and the Multiple Drug Resistance (MDR) phenotype in Glioblastoma Multiforme (GBM). Evidence shows that the MRP1 transporter is controlled by the adenosine signalling axis. The aim of this study was to identify the role of adenosine on the MDR phenotype in Glioblastoma Stem-like Cells (GSCs), the cell population responsible for the tumorigenic and chemoresistance capabilities of this tumour. We found that GSCs have increased intrinsic capacity to generate extracellular adenosine, thus controlling MRP1 transporter expression and activity via activation of the adenosine A3 receptor (A3AR). We showed PI3K/Akt and MEK/ERK1/2 signaling pathways downstream A3AR to control MRP1 in GSCs. In vitro pharmacological blockade of A3AR had a chemosensitizing effect, enhancing the actions of antitumour drugs and decreasing cell viability and proliferation of GSCs. In addition, we produced an in vivo xenograft model by subcutaneous inoculation of human GSCs in NOD/SCID-IL2Rg null mice. Pharmacological blockade of A3AR generated a chemosensitizing effect, enhancing the effectiveness of the MRP1 transporter substrate, vincristine, reducing tumour size and the levels of CD44 and Nestin stem cell markers as well as the Ki-67 proliferation indicator. In conclusion, we demonstrated the chemosensitizing effect of A3AR blockade on GSCs.

  14. Targeting the Toll of Drug Abuse: The Translational Potential of Toll-Like Receptor 4

    PubMed Central

    Bachtell, Ryan; Hutchinson, Mark R.; Wang, Xiaohui; Rice, Kenner C.; Maier, Steven F; Watkins, Linda R.

    2017-01-01

    There is growing recognition that glial proinflammatory activation importantly contributes to the rewarding and reinforcing effects of a variety of drugs of abuse, including cocaine, methamphetamine, opioids, and alcohol. It has recently been proposed that glia are recognizing, and becoming activated by, such drugs as a CNS immunological response to these agents being xenobiotics; that is, substances foreign to the brain. Activation of glia, primarily microglia, by various drugs of abuse occurs via toll like receptor 4 (TLR4). The detection of such xenobiotics by TLR4 results in the release of glial neuroexcitatory and neurotoxic substances. These glial products of TLR4 activation enhance neuronal excitability within brain reward circuitry, thereby enhancing their rewarding and reinforcing effects. Indeed, selective pharmacological blockade of TLR4 activation, such as with the non-opioid TLR4 antagonist (+)-naltrexone, suppresses a number of indices of drug reward/reinforcement. These include: conditioned place preference, self-administration, drug-primed reinstatement, incubation of craving, and elevations of nucleus accumbens shell dopamine. Notably, TLR4 blockade fails to alter self-administration of food, indicative of a selective effect on drugs of abuse. Genetic disruption of TLR4 signaling recapitulates the effects of pharmacological TLR4 blockade, providing converging lines of evidence of a central importance of TLR4. Taken together, multiple lines of evidence converge to raise TLR4 as a promising therapeutic target for drug abuse. PMID:26022268

  15. Blockade by phenoxybenzamine of the contractor response produced by agonists in the isolated ileum of the guinea-pig.

    PubMed

    Cook, D A

    1971-09-01

    1. The effects of various concentrations of phenoxybenzamine (dibenzyline) on the contractor response of the isolated ileum of the guinea-pig were investigated. The agonists tested were histamine, 5-hydroxytryptamine (5-HT), acetycholine and potassium chloride.2. In addition, uptake of (14)C-phenoxybenzamine into the ileum was determined as a function of antagonist concentration. The uptake increases sharply at concentrations above 10(-6) g/ml, (3x10(-6)M) and was not saturable at any concentration tested.3. In the presence of low concentrations of phenoxybenzamine, the dose-response curve for histamine undergoes a parallel shift of about 0.5 log units. At higher concentrations of phenoxybenzamine the maximum response is depressed. In the case of the other agonists, the maximum response is depressed as soon as any blockade becomes apparent.4. The ease of blockade with phenoxybenzamine is 5-HT >/= histamine> acetylcholine >/= potassium chloride.5. These results do not lend support to the ;spare-receptor' hypothesis and may be better explained by the ;two-site' hypothesis of Moran & Triggle (1970).6. It may further be concluded that the successful antagonism of potassium-induced contractions in this preparation lies in the ability of phenoxybenzamine to prevent the action of released acetylcholine. In the case of the contraction induced by 5-HT, phenoxybenzamine probably interferes with the 5-HT receptor responsible for neuronal release of acetycholine.

  16. Effect of oxotremorine on resting membrane potential and cell volume in skeletal muscle fibers in rats after in vivo blockade of NO-synthase.

    PubMed

    Khairova, R A; Malomuzh, A I; Naumenko, N V; Urazaev, A Kh

    2003-02-01

    Denervation of rat phrenic muscle or block of NO-synthase in vivo increased the cross-section area of muscle fibers and decreased membrane resting potential. Oxotremorine prevented the development of denervation-induced or denervation-like (i.e. induced by NO-synthase blockade) membrane depolarization and increase of the cross-sectional area of muscle fibers. Pirenzepine abolished the effects of oxotremorine. It was concluded that non-quantal acetylcholine can be involved in the regulation of skeletal muscle fiber volume via activation of M1 muscarinic receptors followed by NO synthesis.

  17. Adrenal androgen secretion and dopaminergic activity in anorexia nervosa.

    PubMed

    Devesa, J; Pérez-Fernández, R; Bokser, L; Gaudiero, G J; Lima, L; Casanueva, F F

    1988-01-01

    The aim of the present study was to investigate if the postulated deficient adrenal androgen secretion in Anorexia Nervosa (AN), could be associated with a status of sustained dopaminergic hyperactivity. The adrenal responses to ACTH and PRL response to dopaminergic receptor blockade were studied in seven patients with Anorexia Nervosa and seven regularly menstruating women. AN patients showed lower baseline DHEA-sulphate (DHEA-S), androstenedione (Adione) and prolactin (PRL) levels than controls. The response to ACTH revealed evidences of significantly decreased 17-20 desmolase activity in AN, with apparent predominance of glucocorticoid over androgenic pathways relative to controls. Because dopaminergic receptor blockade with Domperidone (DOM) showed intense dopaminergic hyperactivity in AN, we postulate that the adrenal regression seen in the disease is the consequence of a reduced zona reticularis as a consequence of the lack of trophic support by PRL and/or intermediate lobe proopiomelanocortin (IL-POMC). This is consistent with our previous results in pre-adrenarchal dogs and rabbits.

  18. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  19. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.

    PubMed

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-05-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.

  20. Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Toward the therapeutics of cognitive impairment of schizophrenia.

    PubMed

    Uehara, Takashi; Matsuoka, Tadasu; Sumiyoshi, Tomiki

    2014-01-01

    Augmentation therapy with serotonin-1A (5-HT1A) receptor partial agonists has been suggested to improve cognitive impairment in patients with schizophrenia. Decreased activity of prefrontal cortex may provide a basis for cognitive deficits of the disease. Lactate plays a significant role in the supply of energy to the brain, and glutamatergic neurotransmission contributes to lactate production. The purposes of this study were to examine the effect of repeated administration (once a daily for 4 days) of tandospirone (0.05 or 5 mg/kg) on brain energy metabolism, as represented by extracellular lactate concentration (eLAC) in the medial prefrontal cortex (mPFC) of a rat model of schizophrenia. Four-day treatment with MK-801, an NMDA-R antagonist, prolonged eLAC elevation induced by foot-shock stress (FS). Co-administration with the high-dose tandospirone suppressed prolonged FS-induced eLAC elevation in rats receiving MK-801, whereas tandospirone by itself did not affected eLAC increment. These results suggest that stimulation of 5-HT1A receptors ameliorates abnormalities of energy metabolism in the mPFC due to blockade of NMDA receptors. These findings provide a possible mechanism, based on brain energy metabolism, by which 5-HT1A agonism improve cognitive impairment of schizophrenia and related disorders.

  1. Nebivolol and valsartan as a fixed-dose combination for the treatment of hypertension.

    PubMed

    Sander, Gary E; Giles, Thomas D

    2015-04-01

    The fixed-dose combination of nebivolol and valsartan drug has been clinically evaluated and demonstrated to represent a unique combination of nebivolol, a selective β1-adrenoceptor antagonist and a β3-adrenoceptor agonist; β3 receptor activation increases endothelial nitric oxide and produces vasodilation. Valsartan is highly selective angiotensin AT1 receptor blocker and exerts its major pharmacological effect by decreasing angiotensin II-induced vasoconstriction and production of aldosterone. The addition of nebivolol counteracts the effects of increased angiotensin II concentrations resulting from potent AT1 blockade. This review describes a recently completed trial establishing the efficacy of the nebivolol/valsartan combination. This review provides a literature search of pertinent pharmacological and clinical data that describes the mechanisms of both drugs individually and the results of a clinical trial comparing fixed-dose combinations of nebivolol with valsartan as compared with each drug as monotherapy. Fixed-dose combination drugs are intended to improve patient compliance and reduce drug costs, as well as to reduce long-term cardiovascular event rates and block counter-regulatory effects due to monotherapy. The vast majority of hypertensive patients will require at least two medications. We believe that the clinical evidence suggests that the combination of nebivolol with valsartan offers a definite clinical benefit, combining β1-adrenoceptor and angiotensin AT1 receptor blockade with β3 receptor activation and resultant increase in nitric oxide and vasodilation.

  2. Evaluation of innate and adaptive immunity contributing to the antitumor effects of PD1 blockade in an orthotopic murine model of pancreatic cancer

    PubMed Central

    D'Alincourt Salazar, Marcela; Manuel, Edwin R.; Tsai, Weimin; D'Apuzzo, Massimo; Goldstein, Leanne; Blazar, Bruce R.; Diamond, Don J.

    2016-01-01

    ABSTRACT Despite the clinical success of anti-PD1 antibody (α-PD1) therapy, the immune mechanisms contributing to the antineoplastic response remain unclear. Here, we describe novel aspects of the immune response involved in α-PD1-induced antitumor effects using an orthotopic KrasG12D/p53R172H/Pdx1-Cre (KPC) model of pancreatic ductal adenocarcinoma (PDA). We found that positive therapeutic outcome involved both the innate and adaptive arms of the immune system. Adoptive transfer of total splenocytes after short-term (3 d) but not long-term (28 d) PD1 blockade significantly extended survival of non-treated tumor-bearing recipient mice. This protective effect appeared to be mostly mediated by T cells, as adoptive transfer of purified natural killer (NK) cells and/or granulocyte receptor 1 (Gr1)+ cells or splenocytes depleted of Gr1+ cells and NK cells did not exhibit transferrable antitumor activity following short-term PD1 blockade. Nevertheless, splenic and tumor-derived CD11b+Gr1+ cells and NK cells showed significant persistence of α-PD1 bound to these cells in the treated primary recipient mice. We observed that short-term inhibition of PD1 signaling modulated the profiles of multifunctional cytokines in the tumor immune-infiltrate, including downregulation of vascular endothelial growth factor A (VEGF-A). Altogether, the data suggest that systemic blockade of PD1 results in rapid modulation of antitumor immunity that differs in the tumor microenvironment (TME) when compared to the spleen. These results demonstrate a key role for early immune-mediated events in controlling tumor progression in response to α-PD1 treatment and warrant further investigation into the mechanisms governing responses to the therapy at the innate-adaptive immune interface. PMID:27471630

  3. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma

    PubMed Central

    Wadkin, James C. R.; Patten, Daniel A.; Kamarajah, Sivesh K.; Shepherd, Emma L.; Novitskaya, Vera; Berditchevski, Fedor; Adams, David H.; Weston, Chris J.

    2017-01-01

    CD151, a member of the tetraspanin family of receptors, is a lateral organizer and modulator of activity of several families of transmembrane proteins. It has been implicated in the development and progression of several cancers, but its role in chronic inflammatory disease is less well understood. Here we show that CD151 is upregulated by distinct microenvironmental signals in a range of chronic inflammatory liver diseases and in primary liver cancer, in which it supports lymphocyte recruitment. CD151 was highly expressed in endothelial cells of the hepatic sinusoids and neovessels developing in fibrotic septa and tumor margins. Primary cultures of human hepatic sinusoidal endothelial cells (HSECs) expressed CD151 at the cell membrane and in intracellular vesicles. CD151 was upregulated by VEGF and HepG2 conditioned media but not by proinflammatory cytokines. Confocal microscopy confirmed that CD151 colocalized with the endothelial adhesion molecule/immunoglobulin superfamily member, VCAM-1. Functional flow-based adhesion assays with primary human lymphocytes and HSECs demonstrated a 40% reduction of lymphocyte adhesion with CD151 blockade. Inhibition of lymphocyte adhesion was similar between VCAM-1 blockade and a combination of CD151/VCAM-1 blockade, suggesting a collaborative role between the two receptors. These studies demonstrate that CD151 is upregulated within the liver during chronic inflammation, where it supports lymphocyte recruitment via liver endothelium. We propose that CD151 regulates the activity of VCAM-1 during lymphocyte recruitment to the human liver and could be a novel anti-inflammatory target in chronic liver disease and hepatocellular cancer prevention. NEW & NOTEWORTHY Chronic hepatitis is characterized by lymphocyte accumulation in liver tissue, which drives fibrosis and carcinogenesis. Here, we demonstrate for the first time that the tetraspanin CD151 supports lymphocyte adhesion to liver endothelium. We show that CD151 is upregulated in chronic liver disease and hepatocellular carcinoma (HCC) and is regulated on endothelium by tissue remodeling and procarcinogenic factors. These regulatory and functional studies identify CD151 as a potential therapeutic target to treat liver fibrosis and HCC. PMID:28473332

  4. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma.

    PubMed

    Wadkin, James C R; Patten, Daniel A; Kamarajah, Sivesh K; Shepherd, Emma L; Novitskaya, Vera; Berditchevski, Fedor; Adams, David H; Weston, Chris J; Shetty, Shishir

    2017-08-01

    CD151, a member of the tetraspanin family of receptors, is a lateral organizer and modulator of activity of several families of transmembrane proteins. It has been implicated in the development and progression of several cancers, but its role in chronic inflammatory disease is less well understood. Here we show that CD151 is upregulated by distinct microenvironmental signals in a range of chronic inflammatory liver diseases and in primary liver cancer, in which it supports lymphocyte recruitment. CD151 was highly expressed in endothelial cells of the hepatic sinusoids and neovessels developing in fibrotic septa and tumor margins. Primary cultures of human hepatic sinusoidal endothelial cells (HSECs) expressed CD151 at the cell membrane and in intracellular vesicles. CD151 was upregulated by VEGF and HepG2 conditioned media but not by proinflammatory cytokines. Confocal microscopy confirmed that CD151 colocalized with the endothelial adhesion molecule/immunoglobulin superfamily member, VCAM-1. Functional flow-based adhesion assays with primary human lymphocytes and HSECs demonstrated a 40% reduction of lymphocyte adhesion with CD151 blockade. Inhibition of lymphocyte adhesion was similar between VCAM-1 blockade and a combination of CD151/VCAM-1 blockade, suggesting a collaborative role between the two receptors. These studies demonstrate that CD151 is upregulated within the liver during chronic inflammation, where it supports lymphocyte recruitment via liver endothelium. We propose that CD151 regulates the activity of VCAM-1 during lymphocyte recruitment to the human liver and could be a novel anti-inflammatory target in chronic liver disease and hepatocellular cancer prevention. NEW & NOTEWORTHY Chronic hepatitis is characterized by lymphocyte accumulation in liver tissue, which drives fibrosis and carcinogenesis. Here, we demonstrate for the first time that the tetraspanin CD151 supports lymphocyte adhesion to liver endothelium. We show that CD151 is upregulated in chronic liver disease and hepatocellular carcinoma (HCC) and is regulated on endothelium by tissue remodeling and procarcinogenic factors. These regulatory and functional studies identify CD151 as a potential therapeutic target to treat liver fibrosis and HCC. Copyright © 2017 the American Physiological Society.

  5. Impulsivity and AMPA receptors: aniracetam ameliorates impulsive behavior induced by a blockade of AMPA receptors in rats.

    PubMed

    Nakamura, K; Kurasawa, M; Shirane, M

    2000-04-17

    The study aimed to ascertain the involvement of central AMPA receptors in impulsive behaviors of aged rats and to examine the effects of aniracetam. Premature response in the two-lever choice reaction task was assessed as an index of impulsivity. Intracerebroventricular injection of 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX), an AMPA receptor antagonist, dose-dependently (10.1-1009 ng/rat) increased only premature response without altering responding speed and choice accuracy 30 min after the injection. Aniracetam (30 mg/kg p.o.), a positive allosteric modulator of AMPA receptors, or AMPA (55.9 ng/rat, co-injected with NBQX) completely restored the NBQX-induced increase in impulsivity. These results indicate that AMPA receptors are tonically involved in the regulation of impulsivity.

  6. Aortic remodeling after transverse aortic constriction in mice is attenuated with AT1 receptor blockade.

    PubMed

    Kuang, Shao-Qing; Geng, Liang; Prakash, Siddharth K; Cao, Jiu-Mei; Guo, Steven; Villamizar, Carlos; Kwartler, Callie S; Peters, Andrew M; Brasier, Allan R; Milewicz, Dianna M

    2013-09-01

    Although hypertension is the most common risk factor for thoracic aortic diseases, it is not understood how increased pressures on the ascending aorta lead to aortic aneurysms. We investigated the role of angiotensin II type 1 receptor activation in ascending aortic remodeling in response to increased biomechanical forces using a transverse aortic constriction (TAC) mouse model. Two weeks after TAC, the increased biomechanical pressures led to ascending aortic dilatation and thickening of the medial and adventitial layers of the aorta. There was significant adventitial hyperplasia and inflammatory responses in TAC ascending aortas were accompanied by increased adventitial collagen, elevated inflammatory and proliferative markers, and increased cell density attributable to accumulation of myofibroblasts and macrophages. Treatment with losartan significantly blocked TAC-induced vascular inflammation and macrophage accumulation. However, losartan only partially prevented TAC-induced adventitial hyperplasia, collagen accumulation, and ascending aortic dilatation. Increased Tgfb2 expression and phosphorylated-Smad2 staining in the medial layer of TAC ascending aortas were effectively blocked with losartan. In contrast, the increased Tgfb1 expression and adventitial phospho-Smad2 staining were only partially attenuated by losartan. In addition, losartan significantly blocked extracellular signal-regulated kinase activation and reactive oxygen species production in the TAC ascending aorta. Inhibition of the angiotensin II type 1 receptor using losartan significantly attenuated the vascular remodeling associated with TAC but did not completely block the increased transforming growth factor-β1 expression, adventitial Smad2 signaling, and collagen accumulation. These results help to delineate the aortic transforming growth factor-β signaling that is dependent and independent of the angiotensin II type 1 receptor after TAC.

  7. Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response.

    PubMed

    Dong, Jianying; Demarest, Stephen J; Sereno, Arlene; Tamraz, Susan; Langley, Emma; Doern, Adam; Snipas, Tracey; Perron, Keli; Joseph, Ingrid; Glaser, Scott M; Ho, Steffan N; Reff, Mitchell E; Hariharan, Kandasamy

    2010-09-01

    The insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor tyrosine kinase that mediates cell survival signaling and supports tumor progression in multiple tumor types. We identified a spectrum of inhibitory IGF-IR antibodies with diverse binding epitopes and ligand-blocking properties. By binding distinct inhibitory epitopes, two of these antibodies, BIIB4 and BIIB5, block both IGF-I and IGF-II binding to IGF-IR using competitive and allosteric mechanisms, respectively. Here, we explored the inhibitory effects of combining BIIB4 and BIIB5. In biochemical assays, the combination of BIIB4 and BIIB5 improved both the potency and extent of IGF-I and IGF-II blockade compared with either antibody alone. In tumor cells, the combination of BIIB4 and BIIB5 accelerated IGF-IR downregulation and more efficiently inhibited IGF-IR activation as well as downstream signaling, particularly AKT phosphorylation. In several carcinoma cell lines, the antibody combination more effectively inhibited ligand-driven cell growth than either BIIB4 or BIIB5 alone. Notably, the enhanced tumor growth-inhibitory activity of the BIIB4 and BIIB5 combination was much more pronounced at high ligand concentrations, where the individual antibodies exhibited substantially reduced activity. Compared with single antibodies, the BIIB4 and BIIB5 combination also significantly further enhanced the antitumor activity of the epidermal growth factor receptor inhibitor erlotinib and the mTOR inhibitor rapamycin. Moreover, in osteosarcoma and hepatocellular carcinoma xenograft models, the BIIB4 and BIIB5 combination significantly reduced tumor growth to a greater degree than each single antibody. Taken together, our results suggest that targeting multiple distinct inhibitory epitopes on IGF-IR may be a more effective strategy of affecting the IGF-IR pathway in cancer.

  8. Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night.

    PubMed

    Blask, David E; Hill, Steven M; Dauchy, Robert T; Xiang, Shulin; Yuan, Lin; Duplessis, Tamika; Mao, Lulu; Dauchy, Erin; Sauer, Leonard A

    2011-10-01

    This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular, dietary, and metabolic signaling mechanisms involved in human breast cancer growth and the consequences of circadian disruption by exposure to light at night (LAN). The antiproliferative effects of the circadian melatonin signal are mediated through a major mechanism involving the activation of MT(1) melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT(1) -induced activation of G(αi2) signaling and reduction of 3',5'-cyclic adenosine monophosphate (cAMP) levels. Melatonin also regulates the transactivation of additional members of the steroid hormone/nuclear receptor super-family, enzymes involved in estrogen metabolism, expression/activation of telomerase, and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and the expression of matrix metalloproteinases. Melatonin also inhibits the growth of human breast cancer xenografts via another critical pathway involving MT(1) -mediated suppression of cAMP leading to blockade of linoleic acid uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Experimental evidence in rats and humans indicating that LAN-induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling provides the strongest mechanistic support, thus far, for population and ecological studies demonstrating elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN. © 2011 John Wiley & Sons A/S.

  9. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells.

    PubMed

    Costa, M Adelina; Barbosa, A; Neto, E; Sá-e-Sousa, A; Freitas, R; Neves, J M; Magalhães-Cardoso, T; Ferreirinha, F; Correia-de-Sá, P

    2011-05-01

    Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation. Copyright © 2010 Wiley-Liss, Inc.

  10. Alpha3beta4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo

    PubMed Central

    McCallum, Sarah E.; Cowe, Matthew A.; Lewis, Samuel W.; Glick, Stanley D.

    2012-01-01

    Habenulo-interpeduncular nicotinic receptors, particularly those containing α3, β4 and α5 subunits, have recently been implicated in the reinforcing effects of nicotine. Our laboratory has shown that injection of α3β4 nicotinic receptor antagonists into the medial habenula (MHb) decreases self-administration of multiple abused drugs, including nicotine (Glick et al., 2006; 2008; 2011). However, it is unclear whether blockade of MHb nicotinic receptors has a direct effect on mesolimbic dopamine. Here, we performed in vivo microdialysis in female rats. Microdialysis probes were implanted into the nucleus accumbens (NAcc) and α3β4 nicotinic receptor antagonists (18-methoxycoronaridine; 18-MC or α-conotoxin AuIB; AuIB), were injected into the ipsilateral MHb, just prior to systemic nicotine (0.4 mg/kg, s.c.). Dialysate samples were collected before and after drug administration and levels of extracellular dopamine and its metabolites were measured using HPLC. Acute nicotine administration increased levels of extracellular dopamine and its metabolites in the NAcc. Pre-treatment with intra-habenular AuIB or 18-MC prevented nicotine-induced increases in accumbal dopamine. Neither drug had an effect on nicotine-induced increases in dopamine metabolites, suggesting that α3β4 receptors do not play a role in dopamine metabolism. The effect of intra-habenular blockade of α3β4 receptors on NAcc dopamine was selective for acute nicotine: neither AuIB nor 18-MC prevented increases in NAcc dopamine stimulated by acute d-amphetamine or morphine. These results suggest the mesolimbic response to acute nicotine, but not to acute administration of other drugs of abuse, is directly modulated by α3β4 nicotinic receptors in the MHb, and emphasize a critical role for habenular nicotinic receptors in nicotine’s reinforcing effects. PMID:22561751

  11. In vivo reduction or blockade of interleukin-1β in primary osteoarthritis influences expression of mediators implicated in pathogenesis

    PubMed Central

    Santangelo, K. S.; Nuovo, G. J.; Bertone, A. L.

    2012-01-01

    Summary Objective Diminish interleukin-1β (IL-1β) signaling in a model of primary osteoarthritis by RNA interference-based transcript reduction or receptor blockade, and quantify changes incurred on transcript expression of additional mediators. Methods Knees of Hartley guinea pigs were collected at 120 and 180 days of age following injection with viral vectors (N=4/treatment group/date) at 60 days. Two groups received either adeno-associated viral serotype 5 vector containing a knockdown sequence (TV), or adenoviral vector encoding for IL-1 receptor antagonist protein (Ad-IRAP); treatments were contrasted with opposite knees administered corresponding vector controls. A third group evaluated TV relative to saline-only injected knees. Chondropathy and immunohistochemistry findings were compared to untreated guinea pigs. Transcript expression levels in cartilage were calculated using the comparative CT (2−ΔΔCT) method and analyzed by one-way ANOVA with pairwise comparisons using Tukey 95% confidence intervals. Results Vector transduction was confirmed at both harvest dates. TV and Ad-IRAP, relative to vector controls, significantly decreased IL-1β. Inflammatory mediators [tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), interferon-γ (IFN-γ)], and catabolic matrix metalloproteinase 13 (MMP13) were also decreased, while anabolic transforming growth factor-β1 (TGF-β1) was increased. IL-1β was also decreased by TV versus saline, with a decrease in MMP13 and increase TGF-β1; TNF-α, IL-8, and IFN-γ were transiently increased. Conclusions This work confirmed that a reduction in IL-1β signaling was accomplished by either method, resulting in decreased expression of three inflammatory mediators and one catabolic agent, and increased expression of an anabolic molecule. Thus, evidence is provided that IL-1β serves a role in vivo in spontaneous osteoarthritis and that these translational tools may provide beneficial disease modification. PMID:22935786

  12. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS.

    PubMed

    Fleischmann, Alexander; Hvalby, Oivind; Jensen, Vidar; Strekalova, Tatyana; Zacher, Christiane; Layer, Liliana E; Kvello, Ane; Reschke, Markus; Spanagel, Rainer; Sprengel, Rolf; Wagner, Erwin F; Gass, Peter

    2003-10-08

    The immediate early gene c-fos is part of the activator protein-1 transcription factor and has been postulated to participate in the molecular mechanisms of learning and memory. To test this hypothesis in vivo, we generated mice with a nervous system-specific c-fos knock-out using the Cre-loxP system. Adult mice lacking c-Fos in the CNS (c-fosDeltaCNS) showed normal general and emotional behavior but were specifically impaired in hippocampus-dependent spatial and associative learning tasks. These learning deficits correlated with a reduction of long-term potentiation (LTP) in hippocampal CA3-CA1 synapses. The magnitude of LTP was restored by a repeated tetanization procedure, suggesting impaired LTP induction in c-fosDeltaCNS mice. This rescue was blocked by a selective inhibitor of NR2B-type NMDA receptors. This blockade was compensated in wild-type mice by NR2A-type NMDA receptor-activated signaling pathways, thus indicating that these pathways are compromised in c-fosDeltaCNS mice. In summary, our data suggest a role for c-Fos in hippocampus-dependent learning and memory as well as in NMDA receptor-dependent LTP formation.

  13. Time-specific blockade of PDGFR with Imatinib (Glivec®) causes cataract and disruption of lens fiber cells in neonatal mice.

    PubMed

    Zhou, Yin-Pin; He, Yang-Tao; Chen, Cheng-Li; Ji, Jun; Niu, Jian-Qin; Wang, Han-Zhi; Li, Shi-Feng; Huang, Lan; Mei, Feng

    2011-03-01

    This study aimed at investigating the response of lens epithelial cells in postnatal mice to Imatinib (Glivec®, a potent inhibitor of platelet-derived growth factor receptor (PDGFR)) treatment. Mouse eyes were sampled 10 days after administration of Imatinib (0.5 mg·g(-1)·day(-1)) for 3 days, at either 7, 14, or 21 days postpartum. Structural changes of lens were revealed by routine H.E. staining. Levels of proliferation and apoptosis were revealed by BrdU incorporation and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, respectively, and immunofluorescent staining with anti-PDGFRα antibody was carried out on the sections of eyeball. PDGFRα and p-PDGFRαprotein levels were evaluated by Western blot. Our results indicated that administration of Imatinib led to blockade of PDGFR signaling. Formation of cataracts was found only in those mice where treatment started from 7 days postpartum (P7), but was not observed in those samples from P14 nor P21. Fiber cells were disorganized in cataract lens core as observed histologically, and migration of epithelial cells was also inhibited. No apoptosis was detected with the TUNEL method. Our results indicated blockade of PDGFR at the neonatal stage (P7) would lead to cataracts and lens fiber cells disorganization, suggesting that PDGFR signaling plays a time-specific and crucial role in the postnatal development of lens in the mouse, and also may provide a new approach to produce a congenital cataract animal model.

  14. Botulinum and Tetanus Neurotoxin-Induced Blockade of Synaptic Transmission in Networked Cultures of Human and Rodent Neurons

    PubMed Central

    Beske, Phillip H.; Bradford, Aaron B.; Grynovicki, Justin O.; Glotfelty, Elliot J.; Hoffman, Katie M.; Hubbard, Kyle S.; Tuznik, Kaylie M.; McNutt, Patrick M.

    2016-01-01

    Clinical manifestations of tetanus and botulism result from an intricate series of interactions between clostridial neurotoxins (CNTs) and nerve terminal proteins that ultimately cause proteolytic cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and functional blockade of neurotransmitter release. Although detection of cleaved SNARE proteins is routinely used as a molecular readout of CNT intoxication in cultured cells, impaired synaptic function is the pathophysiological basis of clinical disease. Work in our laboratory has suggested that the blockade of synaptic neurotransmission in networked neuron cultures offers a phenotypic readout of CNT intoxication that more closely replicates the functional endpoint of clinical disease. Here, we explore the value of measuring spontaneous neurotransmission frequencies as novel and functionally relevant readouts of CNT intoxication. The generalizability of this approach was confirmed in primary neuron cultures as well as human and mouse stem cell-derived neurons exposed to botulinum neurotoxin serotypes A–G and tetanus neurotoxin. The sensitivity and specificity of synaptic activity as a reporter of intoxication was evaluated in assays representing the principal clinical and research purposes of in vivo studies. Our findings confirm that synaptic activity offers a novel and functionally relevant readout for the in vitro characterizations of CNTs. They further suggest that the analysis of synaptic activity in neuronal cell cultures can serve as a surrogate for neuromuscular paralysis in the mouse lethal assay, and therefore is expected to significantly reduce the need for terminal animal use in toxin studies and facilitate identification of candidate therapeutics in cell-based screening assays. PMID:26615023

  15. Combination therapy strategies for improving PD-1 blockade efficacy: a new era in cancer immunotherapy.

    PubMed

    Chowdhury, P S; Chamoto, K; Honjo, T

    2018-02-01

    Programmed death 1 (PD-1) is an immune checkpoint molecule that negatively regulates T-cell immune function through the interaction with its ligand PD-L1. Blockage of this interaction unleashes the immune system to fight cancer. Immunotherapy using PD-1 blockade has led to a paradigm shift in the field of cancer drug discovery, owing to its durable effect against a wide variety of cancers with limited adverse effects. A brief history and development of PD-1 blockade, from the initial discovery of PD-1 to the recent clinical output of this therapy, have been summarized here. Despite its tremendous clinical success rate over other cancer treatments, PD-1 blockade has its own pitfall; a significant fraction of patients remains unresponsive to this therapy. The key to improve the PD-1 blockade therapy is the development of combination therapies. As this approach has garnered worldwide interest, here, we have summarized the recent trends in the development of PD-1 blockade-based combination therapies and the ongoing clinical trials. These include combinations with checkpoint inhibitors, radiation therapy, chemotherapy and several other existing cancer treatments. Importantly, FDA has approved PD-1 blockade agent to be used in combination with either CTLA-4 blockade or chemotherapy. Responsiveness to the PD-1 blockade therapy is affected by tumour and immune system-related factors. The role of the immune system, especially T cells, in determining the responsiveness has been poorly studied compared with those factors related to the tumour side. Energy metabolism has emerged as one of the important regulatory mechanisms for the function and differentiation of T cells. We have documented here the recent results regarding the augmentation of PD-1 blockade efficacy by augmenting mitochondrial energy metabolism of T cell. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  16. Platelet-activating factor drives eotaxin production in an allergic pleurisy in mice

    PubMed Central

    Klein, André; Pinho, Vanessa; Alessandrini, Ana Letícia; Shimizu, Takao; Ishii, Satoshi; Teixeira, Mauro M

    2002-01-01

    The activation of eosinophils via G-protein-coupled seven transmembran receptors play a necessary role in the recruitment of these cells into tissue. The present study investigates a role for PAF in driving eotaxin production and eosinophil recruitment in an allergic pleurisy model in mice. The intrapleural injection of increasing doses of PAF (10−11 to 10−9 moles per cavity) induced a dose- and PAF receptor-dependent recruitment of eosinophils 48 h after stimulation. Intrapleural injection of PAF induced the rapid (within 1 h) release of eotaxin into the pleural cavity of mice and an anti-eotaxin antibody effectively inhibited PAF-induced recruitment of eosinophils. Eosinophil recruitment in the allergic pleurisy was markedly inhibited by the PAF receptor antagonist UK-74,505 (modipafant, 1 mg kg−1). Moreover, recruitment of eosinophils in sensitized and challenged PAF receptor-deficient animals was lower than that observed in wild-type animals. Blockade of PAF receptors with UK-74,505 suppressed by 85% the release of eotaxin in the allergic pleurisy. Finally, the injection of a sub-threshold dose of PAF and eotaxin cooperated to induce eosinophil recruitment in vivo. In conclusion, the production of PAF in an allergic reaction could function in multiple ways to facilitate the recruitment of eosinophils  –  by facilitating eotaxin release and by cooperating with eotaxin to induce greater recruitment of eosinophils. PMID:11877329

  17. Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome

    PubMed Central

    Takemura, Naoki; Kawasaki, Takumi; Kunisawa, Jun; Sato, Shintaro; Lamichhane, Aayam; Kobiyama, Kouji; Aoshi, Taiki; Ito, Junichi; Mizuguchi, Kenji; Karuppuchamy, Thangaraj; Matsunaga, Kouta; Miyatake, Shoichiro; Mori, Nobuko; Tsujimura, Tohru; Satoh, Takashi; Kumagai, Yutaro; Kawai, Taro; Standley, Daron M.; Ishii, Ken J.; Kiyono, Hiroshi; Akira, Shizuo; Uematsu, Satoshi

    2014-01-01

    High-dose ionizing radiation induces severe DNA damage in the epithelial stem cells in small intestinal crypts and causes gastrointestinal syndrome (GIS). Although the tumour suppressor p53 is a primary factor inducing death of crypt cells with DNA damage, its essential role in maintaining genome stability means inhibiting p53 to prevent GIS is not a viable strategy. Here we show that the innate immune receptor Toll-like receptor 3 (TLR3) is critical for the pathogenesis of GIS. Tlr3−/− mice show substantial resistance to GIS owing to significantly reduced radiation-induced crypt cell death. Despite showing reduced crypt cell death, p53-dependent crypt cell death is not impaired in Tlr3−/− mice. p53-dependent crypt cell death causes leakage of cellular RNA, which induces extensive cell death via TLR3. An inhibitor of TLR3–RNA binding ameliorates GIS by reducing crypt cell death. Thus, we propose blocking TLR3 activation as a novel approach to treat GIS. PMID:24637670

  18. Coated Pit-mediated Endocytosis of the Type I Transforming Growth Factor-β (TGF-β) Receptor Depends on a Di-leucine Family Signal and Is Not Required for Signaling*

    PubMed Central

    Shapira, Keren E.; Gross, Avner; Ehrlich, Marcelo; Henis, Yoav I.

    2012-01-01

    The roles of transforming growth factor-β (TGF-β) receptor endocytosis in signaling have been investigated in numerous studies, mainly through the use of endocytosis inhibitory treatments, yielding conflicting results. Two potential sources for these discrepancies were the pleiotropic effects of a general blockade of specific internalization pathways and the scarce information on the regulation of the endocytosis of the signal-transducing type I TGF-β receptor (TβRI). Here, we employed extracellularly tagged myc-TβRI (wild type, truncation mutants, and a series of endocytosis-defective and endocytosis-enhanced mutants) to directly investigate the relationship between TβRI endocytosis and signaling. Our findings indicate that TβRI is targeted for constitutive clathrin-mediated endocytosis via a di-leucine (Leu180-Ile181) signal and an acidic cluster motif. Using Smad-dependent transcriptional activation assays and following Smad2/3 nuclear translocation in response to TGF-β stimulation, we show that TβRI endocytosis is dispensable for TGF-β signaling and may play a role in signal termination. Alanine replacement of Leu180-Ile181 led to partial constitutive activation of TβRI, resulting in part from its retention at the plasma membrane and in part from potential alterations of TβRI regulatory interactions in the vicinity of the mutated residues. PMID:22707720

  19. Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors

    PubMed Central

    Katayama, Ryohei; Fang, Siyang; Tsutsui, Saki; Akatsuka, Akinobu; Shan, Mingde; Choi, Hyeong-Wook; Fujita, Naoya; Yoshimatsu, Kentaro; Shiina, Isamu; Yamori, Takao; Dan, Shingo

    2018-01-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) were demonstrated to provide survival benefit in patients with non-small cell lung cancer (NSCLC) harboring activating mutations of EGFR; however, emergence of acquired resistance to EGFR-TKIs has been shown to cause poor outcome. To overcome the TKI resistance, drugs with different mode of action are required. We previously reported that M-COPA (2-methylcoprophilinamide), a Golgi disruptor, suppressed the growth of gastric cancers overexpressing receptor tyrosine kinases (RTKs) such as hepatocyte growth factor receptor (MET) via downregulating their cell surface expression. In this study, we examined the antitumor effect of M-COPA on NSCLC cells with TKI resistance. As a result, M-COPA effectively downregulated cell surface EGFR and its downstream signals, and finally exerted in vivo antitumor effect in NSCLC cells harboring secondary (T790M/del19) and tertiary (C797S/T790M/del19) mutated EGFR, which exhibit acquired resistance to first- and third generation EGFR-TKIs, respectively. M-COPA also downregulated MET expression potentially involved in the acquired resistance to EGFR-TKIs via bypassing the EGFR pathway blockade. These results provide the first evidence that targeting the Golgi apparatus might be a promising therapeutic strategy to overcome the vicious cycle of TKI resistance in EGFR-mutated NSCLC cells via downregulating cell surface RTK expression. PMID:29416720

  20. The oncolytic peptide LTX-315 overcomes resistance of cancers to immunotherapy with CTLA4 checkpoint blockade

    PubMed Central

    Yamazaki, T; Pitt, J M; Vétizou, M; Marabelle, A; Flores, C; Rekdal, Ø; Kroemer, G; Zitvogel, L

    2016-01-01

    Intratumoral immunotherapies aim at reducing local immunosuppression, as well as reinstating and enhancing systemic anticancer T-cell functions, without inducing side effects. LTX-315 is a first-in-class oncolytic peptide-based local immunotherapy that meets these criteria by inducing a type of malignant cell death that elicits anticancer immune responses. Here, we show that LTX-315 rapidly reprograms the tumor microenvironment by decreasing the local abundance of immunosuppressive Tregs and myeloid-derived suppressor cells and by increasing the frequency of polyfunctional T helper type 1/type 1 cytotoxic T cells with a concomitant increase in cytotoxic T-lymphocyte antigen-4 (CTLA4) and drop in PD-1 expression levels. Logically, in tumors that were resistant to intratumoral or systemic CTLA4 blockade, subsequent local inoculation of LTX-315 cured the animals or caused tumor regressions with abscopal effects. This synergistic interaction between CTLA4 blockade and LTX-315 was reduced upon blockade of the β-chain of the interleukin-2 receptor (CD122). This preclinical study provides a strong rationale for administering the oncolytic peptide LTX-315 to patients who are receiving treatment with the CTLA4 blocking antibody ipilimumab. PMID:27082453

  1. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  2. Time-dependent impact of glutamatergic modulators on the promnesiant effect of 5-HT6R blockade on mice recognition memory.

    PubMed

    Asselot, Rachel; Simon-O'Brien, Emmanuelle; Lebourgeois, Sophie; Nee, Gérald; Delaunay, Virgile; Duchatelle, Pascal; Bouet, Valentine; Dauphin, François

    2017-04-01

    Selective antagonists at serotonin 5-HT 6 receptors (5-HT 6 R) improve memory performance in rodents and are currently under clinical investigations. If blockade of 5-HT 6 R is known to increase glutamate release, only two studies have so far demonstrated an interaction between 5-HT 6 R and glutamate transmission, but both, using the non-competitive NMDA antagonist MK-801, insensitive to variations of glutamate concentrations. In a place recognition task, we investigated here in mice the role of glutamate transmission in the beneficial effects of 5-HT 6 R blockade (SB-271046). Through the use of increasing intervals (2, 4 and 6h) between acquisition and retrieval, we investigated the time-dependent impact of two different glutamatergic modulators. NMDAR-dependant glutamate transmission (NMDA Receptors) was either blocked by the competitive antagonist at NMDAR, CGS 19755, or potentiated by the glycine transporter type 1 (GlyT1) inhibitor, NFPS. Results showed that neither SB-271046, nor CGS 19755, nor NFPS, alter behavioural performances after short intervals, i.e. when control mice displayed significant memory performances (2h and 4h) (respectively 10, 3, and 0.625mg.kg -1 ). Conversely, with the 6h-interval, a situation in which spontaneous forgetting is observed in control mice, SB-271046 improved recognition memory performances. This beneficial effect was prevented when co-administered with either CGS 19755 or NFPS, which themselves had no effect. Interestingly, a dose-dependent effect was observed with NFPS, with promnesic effect observed at lower dose (0.156mg.kg -1 ) when administrated alone, whereas it did no modify promnesic effect of SB-271046. These results demonstrate that promnesiant effect induced by 5-HT 6 R blockade is sensitive to the competitive blockade of NMDAR and underline the need of a fine adjustment of the inhibition of GlyT1. Overall, our findings support the idea of a complex crosstalk between serotonergic and glutamatergic systems in the promnesic properties of 5-HT 6 R antagonists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Combination Direct Renin Inhibition with Angiotensin Type 1 Receptor Blockade improves Aldosterone but does not improve Kidney Injury in the Transgenic Ren2 rat

    PubMed Central

    Whaley-Connell, Adam; Habibi, Javad; Nistala, Ravi; Hayden, Melvin R; Pulakat, Lakshmi; Sinak, Catherine; Locher, Bonnie; Ferrario, Carlos M; Sowers, James R

    2012-01-01

    Enhanced renin-angiotensin-aldosterone system (RAAS) activation contributes to proteinuria and chronic kidney disease by increasing glomerular and tubulointerstitial oxidative stress, promotion of fibrosis. Renin activation is the rate limiting step in angiotensin (Ang II) and aldosterone generation, and recent work suggests direct renin inhibition improves proteinuria comparable to that seen with Ang type 1 receptor (AT1R) blockade. This is important as, even with contemporary use of AT1R blockade, the burden of kidney disease remains high. Thereby, we sought to determine if combination direct renin inhibition with AT1R blockade in vivo, via greater attenuation of kidney oxidative stress, would attenuate glomerular and proximal tubule injury to a greater extent than either intervention alone. We utilized the transgenic Ren2 rat with increased tissue RAS activity and higher serum levels of aldosterone, which manifests hypertension and proteinuria. Ren2 rats were treated with renin inhibition (aliskiren), AT1R blockade (valsartan), the combination (aliskiren+valsartan), or vehicle for 21 days. Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic pressure (SBP), circulating aldosterone, proteinuria and greater urine levels of the proximal tubule protein excretory marker beta-N-acetylglucosaminidase (β-NAG). These functional and biochemical alterations were accompanied by increases in kidney tissue NADPH oxidase subunit Rac1 and 3-nitrotyrosine (3-NT) content as well as fibronectin and collagen type III. These findings occurred in conjunction with reductions in the podocyte-specific protein podocin as well as the proximal tubule-specific megalin. Further, in transgenic animals there was increased tubulointerstitial fibrosis on light microscopy as well as ultrastructural findings of glomerular podocyte foot-process effacement and reduced tubular apical endosomal/lysosomal activity. Combination therapy led to greater reductions in SBP and serum aldosterone, but did not result in greater improvement in markers of glomerular and tubular injury (ie. β-NAG) compared to either intervention alone. Further, combination therapy did not improve markers of oxidative stress and podocyte and proximal tubule integrity in this transgenic model of RAAS-mediated kidney damage despite greater reductions in serum aldosterone and BP levels. PMID:22465166

  4. Retinal Angiogenesis Is Mediated by an Interaction between the Angiotensin Type 2 Receptor, VEGF, and Angiopoietin

    PubMed Central

    Sarlos, Stella; Rizkalla, Bishoy; Moravski, Christina J.; Cao, Zemin; Cooper, Mark E.; Wilkinson-Berka, Jennifer L.

    2003-01-01

    There is evidence that angiotensin II, vascular endothelial growth factor (VEGF), angiopoietins, and their cognate receptors participate in retinal angiogenesis. We investigated whether angiotensin type 2-receptor blockade (AT2-RB) reduces retinal angiogenesis and alters the expression of VEGF/VEGF-R2 and angiopoietin-Tie2. Retinopathy of prematurity (ROP) was induced in Sprague Dawley (SD) rats by exposure to 80% oxygen from postnatal (P) days 0 to 11, followed by 7 days in room air. ROP shams were in room air from P0–18. A group of ROP rats received the AT2-RB, PD123319, by mini-osmotic pump (5 mg/kg/day) from P11–18 (angiogenesis period). Evaluation of the retinal status of the AT2 receptor indicated that this receptor, as assessed by real-time PCR, immunohistochemistry, and in vitro autoradiography, was present in the retina, was more abundant than the AT1 receptor in the neonatal retina, and was increased in the ROP model. AT2-RB reduced retinal angiogenesis. VEGF and VEGF-R2 mRNA were increased in ROP and localized to blood vessels, ganglion cells, and the inner nuclear layer, and were decreased by PD123319. Angiopoietin2 and Tie2, but not angiopoietin1 mRNA were increased with ROP, and angiopoietin2 was reduced with PD123319. This study has identified a potential retinoprotective role for AT2-RB possibly mediated via interactions with VEGF- and angiopoietin-dependent pathways. PMID:12937129

  5. The involvement of CRF1 receptor within the basolateral amygdala and dentate gyrus in the naloxone-induced conditioned place aversion in morphine-dependent mice.

    PubMed

    Valero, E; Gómez-Milanés, I; Almela, P; Ribeiro Do Couto, B; Laorden, M L; Milanés, M V; Núñez, C

    2018-06-08

    Drug withdrawal-associated aversive memories trigger relapse to drug-seeking behavior. Corticotrophin-releasing factor (CRF) is an important mediator of the reinforcing properties of drugs of abuse. However, the involvement of CRF1 receptor (CRF1R) in aversive memory induced by opiate withdrawal has yet to be elucidated. We used the conditioned-place aversion (CPA) paradigm to evaluate the role of CRF1R on opiate withdrawal memory acquisition, along with plasticity-related processes that occur after CPA within the basolateral amygdala (BLA) and dentate gyrus (DG). Male mice were rendered dependent on morphine and injected acutely with naloxone before paired to confinement in a naloxone-associated compartment. The CPA scores as well as the number of TH-positive neurons (in the NTS-A2 noradrenergic cell group), and the expression of the transcription factors Arc and pCREB (in the BLA and DG) were measured with and without CRF1R blockade. Mice subjected to conditioned naloxone-induced morphine withdrawal robustly expressed CPA. Pre-treatment with the selective CRF1R antagonist CP-154,526 before naloxone conditioning session impaired morphine withdrawal-induced aversive memory acquisition. CP-154,526 also antagonized the enhanced number of TH-positive neurons in the NTS-A2 that was seen after CPA. Increased Arc expression and Arc-pCREB co-localization were seen in the BLA after CPA, which was not modified by CP-154,526. In the DG, CPA was accompanied by a decrease of Arc expression and no changes in Arc-pCREB co-localization, whereas pre-treatment with CP-154,526 induced an increase in both parameters. These results indicate that CRF-CRF1R pathway could be a critical factor governing opiate withdrawal memory storage and retrieval and might suggest a role for TH-NA pathway in the effects of withdrawal on memory. Our results might indicate that the blockade of CRF1R could represent a promising pharmacological treatment strategy approach for the attenuation of the relapse to drug-seeking/taking behavior triggered by opiate withdrawal-associated aversive memories. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Enduring, Handling-Evoked Enhancement of Hippocampal Memory Function and Glucocorticoid Receptor Expression Involves Activation of the Corticotropin-Releasing Factor Type 1 Receptor

    PubMed Central

    Fenoglio, Kristina A.; Brunson, Kristen L.; Avishai-Eliner, Sarit; Stone, Blake A.; Kapadia, Bhumika J.; Baram, Tallie Z.

    2011-01-01

    Early-life experience, including maternal care, influences hippocampus-dependent learning and memory throughout life. Handling of pups during postnatal d 2–9 (P2–9) stimulates maternal care and leads to improved memory function and stress-coping. The underlying molecular mechanisms may involve early (by P9) and enduring reduction of hypothalamic corticotropin-releasing factor (CRF) expression and subsequent (by P45) increase in hippocampal glucocorticoid receptor (GR) expression. However, whether hypothalamic CRF levels influence changes in hippocampal GR expression (and memory function), via reduced CRF receptor activation and consequent lower plasma glucocorticoid levels, is unclear. In this study we administered selective antagonist for the type 1 CRF receptor, NBI 30775, to nonhandled rats post hoc from P10–17 and examined hippocampus-dependent learning and memory later (on P50–70), using two independent paradigms, compared with naive and vehicle-treated nonhandled, and naive and antagonist-treated handled rats. Hippocampal GR and hypothalamic CRF mRNA levels and stress-induced plasma corticosterone levels were also examined. Transient, partial selective blockade of CRF1 in nonhandled rats improved memory functions on both the Morris watermaze and object recognition tests to levels significantly better than in naive and vehicle-treated controls and were indistinguishable from those in handled (naive, vehicle-treated, and antagonist-treated) rats. GR mRNA expression was increased in hippocampal CA1 and the dentate gyrus of CRF1-antagonist treated nonhandled rats to levels commensurate with those in handled cohorts. Thus, the extent of CRF1 activation, probably involving changes in hypothalamic CRF levels and release, contributes to the changes in hippocampal GR expression and learning and memory functions. PMID:15932935

  7. The effect of the angiotensin II receptor, type 1 receptor antagonists, losartan and telmisartan, on thioacetamide-induced liver fibrosis in rats.

    PubMed

    Czechowska, G; Celinski, K; Korolczuk, A; Wojcicka, G; Dudka, J; Bojarska, A; Madro, A; Brzozowski, T

    2016-08-01

    It has been reported previously that the density of angiotensin II receptors is increased in the rat liver in experimentally-induced fibrosis. We hypothesized that pharmacological blockade of angiotensin receptors may produce beneficial effects in models of liver fibrosis. In this study, we used the widely used thioacetamide (TAA)-induced model of liver fibrosis (300 mg/L TAA ad libitum for 12 weeks). Rats received daily injections (i.p), lasting 4 weeks of the angiotensin II type 1 receptor antagonists, losartan 30 mg/kg (TAA + L) or telmisartan 10 mg/kg (TAA + T) and were compared to rat that received TAA alone. Chronic treatment with losartan and telmisartan was associated with a significant reduction in the activity of alkaline phosphatase, and decreased concentrations of tumor necrosis factor-alpha and transforming growth factor beta-1 compared to controls. We also found a significant reduction interleukin-6 in rats receiving telmisartan (P < 0.05) but not losartan. Both treatments increased the concentration of liver glutathione along with a concomitant decrease of GSSG compared to controls. In addition, increased paraoxonase 1 activity was observed in the serum of rats receiving telmisartan group compared to the TAA alone controls. Finally, histological evaluation of liver sections revealed losartan and telmisartan treatment was associated with reduced inflammation and liver fibrosis. Taken together, these results indicate that both telmisartan and losartan have anti-inflammatory and anti-oxidative properties in the TAA model of liver fibrosis. These finding add support to a growing body of literature indicating a potentially important role for the angiotensin system in liver fibrosis and indicate angiotensin antagonists may be useful agents for fibrosis treatment.

  8. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, Paola; Brini, Anna Teresa; Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Acetylation affected hASCs osteodifferentiation through Runx2-PPAR{gamma}. Black-Right-Pointing-Pointer HDACs knocking-down favoured the commitment effect of osteogenic medium. Black-Right-Pointing-Pointer HDACs silencing early activated Runx2 and ALP. Black-Right-Pointing-Pointer PPAR{gamma} reduction and calcium/collagen deposition occurred later. Black-Right-Pointing-Pointer Runx2/PPAR{gamma} target genes were modulated in line with HDACs role in osteo-commitment. -- Abstract: The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) {gamma}. These key osteogenic and adipogenic transcription factors are oppositelymore » involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPAR{gamma} and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPAR{gamma}/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPAR{gamma} target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our results reveal a role for HDACs in orchestrating osteo-differentiation of hASCs at transcriptional level, and might provide new insights into the modulation of hASCs-based regenerative therapy.« less

  9. Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice.

    PubMed

    Lairez, O; Cognet, T; Schaak, S; Calise, D; Guilbeau-Frugier, C; Parini, A; Mialet-Perez, J

    2013-06-01

    Serotonin, in addition to its fundamental role as a neurotransmitter, plays a critical role in the cardiovascular system, where it is thought to be involved in the development of cardiac hypertrophy and failure. Indeed, we recently found that mice with deletion of monoamine oxidase A had enhanced levels of blood and cardiac 5-HT, which contributed to exacerbation of hypertrophy in a model of experimental pressure overload. 5-HT2A receptors are expressed in the heart and mediate a hypertrophic response to 5-HT in cardiac cells. However, their role in cardiac remodeling in vivo and the signaling pathways associated are not well understood. In the present study, we evaluated the effect of a selective 5-HT2A receptor antagonist, M100907, on the development of cardiac hypertrophy induced by transverse aortic constriction (TAC). Cardiac 5-HT2A receptor expression was transiently increased after TAC, and was recapitulated in cardiomyocytes, as observed with 5-HT2A in situ labeling by immunohistochemistry. Selective blockade of 5-HT2A receptors prevented the development of cardiac hypertrophy, as measured by echocardiography, cardiomyocyte area and heart weight-to-body weight ratio. Interestingly, activation of calmodulin kinase (CamKII), which is a core mechanism in cardiac hypertrophy, was reduced in cardiac samples from M100907-treated TAC mice compared to vehicle-treated mice. In addition, phosphorylation of histone deacetylase 4 (HDAC4), a downstream partner of CamKII was significantly diminished in M100907-treated TAC mice. Thus, our results show that selective blockade of 5-HT2A receptors has beneficial effect in the development of cardiac hypertrophy through inhibition of the CamKII/HDAC4 pathway.

  10. Differential regulation of gonadotropin-releasing hormone (GnRH) neuron activity and membrane properties by acutely-applied estradiol: dependence on dose and estrogen receptor subtype

    PubMed Central

    Chu, Zhiguo; Andrade, Josefa; Shupnik, Margaret A.; Moenter, Suzanne M.

    2009-01-01

    GnRH neurons are critical to controlling fertility. In vivo, estradiol can inhibit or stimulate GnRH release depending on concentration and physiological state. We examined rapid, non-genomic effects of estradiol. Whole-cell recordings were made of GnRH neurons in brain slices from ovariectomized mice with ionotropic GABA and glutamate receptors blocked. Estradiol was bath-applied and measurements completed within 15 min. Estradiol from high physiological (preovulatory) concentrations (100pM) to 100nM enhanced action potential firing, reduced afterhyperpolarizing potential (AHP) and increased slow afterdepolarization (sADP) amplitudes, and reduced IAHP and enhanced IADP. The reduction of IAHP was occluded by prior blockade of calcium-activated potassium channels. These effects were mimicked by an estrogen receptor (ER) β-specific agonist and were blocked by the classical receptor antagonist ICI182780. ERα or GPR30 agonists had no effect. The acute stimulatory effect of high physiological estradiol on firing rate was dependent on signaling via protein kinase A. In contrast, low physiological levels of estradiol (10pM) did not affect intrinsic properties. Without blockade of ionotropic GABA and glutamate receptors, however, 10pM estradiol reduced firing of GnRH neurons; this was mimicked by an ERα agonist. ERα agonists reduced the frequency of GABA transmission to GnRH neurons; GABA can excite to these cells. In contrast, ERβ agonists increased GABA transmission and postsynaptic response. These data suggest rapid intrinsic and network modulation of GnRH neurons by estradiol is dependent upon both dose and receptor subtype. In cooperation with genomic actions, non-genomic effects may play a role in feedback regulation of GnRH secretion. PMID:19403828

  11. Targeting Renal Purinergic Signalling for the Treatment of Lithium-induced Nephrogenic Diabetes Insipidus

    PubMed Central

    Kishore, B. K.; Carlson, N. G.; Ecelbarger, C. M.; Kohan, D. E.; Müller, C. E.; Nelson, R. D.; Peti-Peterdi, J.; Zhang, Y.

    2015-01-01

    Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats, and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulfate (Plavix®) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unraveled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action. PMID:25877068

  12. Lack of weight gain after angiotensin AT1 receptor blockade in diet-induced obesity is partly mediated by an angiotensin-(1–7)/ Mas-dependent pathway

    PubMed Central

    Schuchard, Johanna; Winkler, Martina; Stölting, Ines; Schuster, Franziska; Vogt, Florian M; Barkhausen, Jörg; Thorns, Christoph; Santos, Robson A; Bader, Michael; Raasch, Walter

    2015-01-01

    Background and Purpose Angiotensin AT1 receptor antagonists induce weight loss; however, the mechanism underlying this phenomenon is unknown. The Mas receptor agonist angiotensin-(1-7) is a metabolite of angiotensin I and of angiotensin II. As an agonist of Mas receptors, angiotensin-(1-7) has beneficial cardiovascular and metabolic effects. Experimental Approach We investigated the anti-obesity effects of transgenically overexpressed angiotensin-(1-7) in rats. We secondly examined whether weight loss due to telmisartan (8 mg·kg−1·d−1) in diet-induced obese Sprague Dawley (SD) rats can be blocked when the animals were co-treated with the Mas receptor antagonist A779 (24 or 72 μg·kg−1·d−1). Key Results In contrast to wild-type controls, transgenic rats overexpressing angiotensin-(1-7) had 1.) diminished body weight when they were regularly fed with chow; 2.) were protected from developing obesity although they were fed with cafeteria diet (CD); 3.) showed a reduced energy intake that was mainly related to a lower CD intake; 5.) remained responsive to leptin despite chronic CD feeding; 6.) had a higher, strain-dependent energy expenditure, and 7.) were protected from developing insulin resistance despite CD feeding. Telmisartan-induced weight loss in SD rats was partially antagonized after a high, but not a low dose of A779. Conclusions and Implications Angiotensin-(1-7) regulated food intake and body weight and contributed to the weight loss after AT1 receptor blockade. Angiotensin-(1-7)-like agonists may be drug candidates for treating obesity. PMID:25906670

  13. Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit.

    PubMed

    Lintas, Alessandra; Chi, Ning; Lauzon, Nicole M; Bishop, Stephanie F; Gholizadeh, Shervin; Sun, Ninglei; Tan, Huibing; Laviolette, Steven R

    2011-08-03

    The basolateral amygdala (BLA), ventral tegmental area (VTA), and nucleus accumbens (NAc) play central roles in the processing of opiate-related associative reward learning and memory. The BLA receives innervation from dopaminergic fibers originating in the VTA, and both dopamine (DA) D1 and D2 receptors are expressed in this region. Using a combination of in vivo single-unit extracellular recording in the NAc combined with behavioral pharmacology studies, we have identified a double dissociation in the functional roles of DA D1 versus D2 receptor transmission in the BLA, which depends on opiate exposure state; thus, in previously opiate-naive rats, blockade of intra-BLA D1, but not D2, receptor transmission blocked the acquisition of associative opiate reward memory, measured in an unbiased conditioned place preference procedure. In direct contrast, in rats made opiate dependent and conditioned in a state of withdrawal, intra-BLA D2, but not D1, receptor blockade blocked opiate reward encoding. This functional switch was dependent on cAMP signaling as comodulation of intra-BLA cAMP levels reversed or replicated the functional effects of intra-BLA D1 or D2 transmission during opiate reward processing. Single-unit in vivo extracellular recordings performed in neurons of the NAc confirmed an opiate-state-dependent role for BLA D1/D2 transmission in NAc neuronal response patterns to morphine. Our results characterize and identify a novel opiate addiction switching mechanism directly in the BLA that can control the processing of opiate reward information as a direct function of opiate exposure state via D1 or D2 receptor signaling substrates.

  14. Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone.

    PubMed

    Nagy, Katalin; Marko, Bernadett; Zsilla, Gabriella; Matyus, Peter; Pallagi, Katalin; Szabo, Geza; Juranyi, Zsolt; Barkoczy, Jozsef; Levay, Gyorgy; Harsing, Laszlo G

    2010-12-01

    The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced dopaminergic side effects characteristic for antipsychotic medication.

  15. Comparison of pharmacological activity of macitentan and bosentan in preclinical models of systemic and pulmonary hypertension.

    PubMed

    Iglarz, Marc; Bossu, Alexandre; Wanner, Daniel; Bortolamiol, Céline; Rey, Markus; Hess, Patrick; Clozel, Martine

    2014-11-24

    The endothelin (ET) system is a tissular system, as the production of ET isoforms is mostly autocrine or paracrine. Macitentan is a novel dual ETA/ETB receptor antagonist with enhanced tissue distribution and sustained receptor binding properties designed to achieve a more efficacious ET receptor blockade. To determine if these features translate into improved efficacy in vivo, a study was designed in which rats with either systemic or pulmonary hypertension and equipped with telemetry were given macitentan on top of maximally effective doses of another dual ETA/ETB receptor antagonist, bosentan, which does not display sustained receptor occupancy and shows less tissue distribution. After establishing dose-response curves of both compounds in conscious, hypertensive Dahl salt-sensitive and pulmonary hypertensive bleomycin-treated rats, macitentan was administered on top of the maximal effective dose of bosentan. In hypertensive rats, macitentan 30 mg/kg further decreased mean arterial blood pressure (MAP) by 19 mm Hg when given on top of bosentan 100 mg/kg (n=9, p<0.01 vs. vehicle). Conversely, bosentan given on top of macitentan failed to induce an additional MAP decrease. In pulmonary hypertensive rats, macitentan 30 mg/kg further decreased mean pulmonary artery pressure (MPAP) by 4 mm Hg on top of bosentan (n=8, p<0.01 vs. vehicle), whereas a maximal effective dose of bosentan given on top of macitentan did not cause any additional MPAP decrease. The add-on effect of macitentan on top of bosentan in two pathological models confirms that this novel compound can achieve a superior blockade of ET receptors and provides evidence for greater maximal efficacy. Copyright © 2014. Published by Elsevier Inc.

  16. AT1 and aldosterone receptors blockade prevents the chronic effect of nandrolone on the exercise-induced cardioprotection in perfused rat heart subjected to ischemia and reperfusion.

    PubMed

    Marques-Neto, Silvio Rodrigues; Ferraz, Emanuelle Baptista; Rodrigues, Deivid Carvalho; Njaine, Brian; Rondinelli, Edson; Campos de Carvalho, Antônio Carlos; Nascimento, Jose Hamilton Matheus

    2014-04-01

    Myocardial tolerance to ischaemia/reperfusion (I/R) injury is improved by exercise training, but this cardioprotection is impaired by the chronic use of anabolic androgenic steroids (AAS). The present study evaluated whether blockade of angiotensin II receptor (AT1-R) with losartan and aldosterone receptor (mineralocorticoid receptor, MR) with spironolactone could prevent the deleterious effect of AAS on the exercise-induced cardioprotection. Male Wistar rats were exercised and treated with either vehicle, nandrolone decanoate (10 mg/kg/week i.m.) or the same dose of nandrolone plus losartan or spironolactone (20 mg/kg/day orally) for 8 weeks. Langendorff-perfused hearts were subjected to I/R and evaluated for the postischaemic recovery of left ventricle (LV) function and infarct size. mRNA and protein expression of angiotensin II type 1 receptor (AT1-R), mineralocorticoid receptor (MR), and KATP channels were determined by reverse-transcriptase polymerase chain reaction and Western blotting. Postischaemic recovery of LV function was better and infarct size was smaller in the exercised rat hearts than in the sedentary rat hearts. Nandrolone impaired the exercise-induced cardioprotection, but this effect was prevented by losartan (AT1-R antagonist) and spironolactone (MR antagonist) treatments. Myocardial AT1-R and MR expression levels were increased, and the expression of the KATP channel subunits SUR2a and Kir6.1 was decreased and Kir6.2 increased in the nandrolone-treated rat hearts. The nandrolone-induced changes of AT1-R, MR, and KATP subunits expression was normalized by the losartan and spironolactone treatments. The chronic nandrolone treatment impairs the exercise-induced cardioprotection against ischaemia/reperfusion injury by activating the cardiac renin-angiotensin-aldosterone system and downregulating KATP channel expression.

  17. Cisplatin-Induced Conditioned Taste Aversion: Attenuation by Dexamethasone but not Zacopride or GR38032F

    DTIC Science & Technology

    1992-01-01

    SR2-1 Cisplatin-induced conditioned taste aversion: ateuto by dexamethasone but not zacopride or GR38032F Nm I- Paul C Mele, John R. McDonough, David...to 5-H1’, receptor blockade. 5-HT., receptor antagonists; Zacopridc: GR38032F; Desamethasone: Cisplatin: Taste aversion (conditioned) I. Introductlon...intake) was used as the area known as the chemoreceptor trigger zone (Borri- index of the CTA. son, 1974). Moreover. the findings that rats, ferrets

  18. Neural, Endocrine and Local Mechanisms in the Effects of Environmental Stressors on the Cardiovascular Response to Blood Loss

    DTIC Science & Technology

    2006-08-01

    of Ang II AT1 receptors with Losartan altered the response to blood loss with or without simultaneous air jet stress. Either drug decreased the rabbits...decreased ability to defend arterial pressure, Losartan or captopril also: decreased the skeletal muscle vasoconstriction characteristic of phase 1...blockade of AT1 receptors with Losartan on the response to hypotensive hemorrhage. Consistent with our earlier results, iv Losartan (5 mg/kg) was equally

  19. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantino Rosa Santos, Susana; Instituto de Biopatologia Quimica, Faculdade de Medicina de Lisboa/Unidade de Biopatologia Vascular, Instituto de Medicina Molecular, Lisbon; Instituto Gulbenkian de Ciencia

    2007-05-01

    Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this processmore » required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention.« less

  20. A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice

    PubMed Central

    Yoshitomi, Hiroyuki; Sakaguchi, Noriko; Kobayashi, Katsuya; Brown, Gordon D.; Tagami, Tomoyuki; Sakihama, Toshiko; Hirota, Keiji; Tanaka, Satoshi; Nomura, Takashi; Miki, Ichiro; Gordon, Siamon; Akira, Shizuo; Nakamura, Takashi; Sakaguchi, Shimon

    2005-01-01

    A combination of genetic and environmental factors can cause autoimmune disease in animals. SKG mice, which are genetically prone to develop autoimmune arthritis, fail to develop the disease under a microbially clean condition, despite active thymic production of arthritogenic autoimmune T cells and their persistence in the periphery. However, in the clean environment, a single intraperitoneal injection of zymosan, a crude fungal β-glucan, or purified β-glucans such as curdlan and laminarin can trigger severe chronic arthritis in SKG mice, but only transient arthritis in normal mice. Blockade of Dectin-1, a major β-glucan receptor, can prevent SKG arthritis triggered by β-glucans, which strongly activate dendritic cells in vitro in a Dectin-1–dependent but Toll-like receptor-independent manner. Furthermore, antibiotic treatment against fungi can prevent SKG arthritis in an arthritis-prone microbial environment. Multiple injections of polyinosinic-polycytidylic acid double-stranded RNA also elicit mild arthritis in SKG mice. Thus, specific microbes, including fungi and viruses, may evoke autoimmune arthritis such as rheumatoid arthritis by stimulating innate immunity in individuals who harbor potentially arthritogenic autoimmune T cells as a result of genetic anomalies or variations. PMID:15781585

  1. Deciphering CD30 ligand biology and its role in humoral immunity

    PubMed Central

    Kennedy, Mary K; Willis, Cynthia R; Armitage, Richard J

    2006-01-01

    Ligands and receptors in the tumour necrosis factor (TNF) and tumour necrosis factor receptor (TNFR) superfamilies have been the subject of extensive investigation over the past 10–15 years. For certain TNFR family members, such as Fas and CD40, some of the consequences of receptor ligation were predicted before the identification and cloning of their corresponding ligands through in vitro functional studies using agonistic receptor-specific antibodies. For other members of the TNFR family, including CD30, cross-linking the receptor with specific antibodies failed to yield many clues about the functional significance of the relevant ligand–receptor interactions. In many instances, the subsequent availability of TNF family ligands in the form of recombinant protein facilitated the determination of biological consequences of interactions with their relevant receptor in both in vitro and in vivo settings. In the case of CD30 ligand (CD30L; CD153), definition of its biological role remained frustratingly elusive. Early functional studies using CD30L+ cells or agonistic CD30-specific antibodies logically focused attention on cell types that had been shown to express CD30, namely certain lymphoid malignancies and subsets of activated T cells. However, it was not immediately clear how the reported activities from these in vitro studies relate to the biological activity of CD30L in the more complex whole animal setting. Recently, results from in vivo models involving CD30 or CD30L gene disruption, CD30L overexpression, or pharmacological blockade of CD30/CD30L interactions have begun to provide clues about the role played by CD30L in immunological processes. In this review we consider the reported biology of CD30L and focus on results from several recent studies that point to an important role for CD30/CD30L interactions in humoral immune responses. PMID:16771849

  2. Selective verbal and spatial memory impairment after 5-HT1A and 5-HT2A receptor blockade in healthy volunteers pre-treated with an SSRI.

    PubMed

    Wingen, M; Kuypers, K P C; Ramaekers, J G

    2007-07-01

    Serotonergic neurotransmission has been implicated in memory impairment. It is unclear however if memory performance is mediated through general 5-HT availability, through specific 5-HT receptors or both. The aim of the present study was to assess the contribution of 5-HT reuptake inhibition and specific blockade of 5-HT(1A) and 5-HT(2A) receptors to memory impairment. The study was conducted according to a randomized, double-blind, placebo-controlled, four-way cross-over design including 16 healthy volunteers. The treatment consisted of oral administration of escitalopram 20 mg + placebo, escitalopram 20 mg + ketanserin 50 mg, escitalopram 20 mg + pindolol 10 mg and placebo on 4 separate days with a washout period of minimum 7 days. Different memory tasks were performed including verbal memory, spatial working memory and reversal learning. Escitalopram showed an impairing effect on immediate verbal recall which nearly reached statistical significance. No effects of escitalopram were found on other types of memory. In combination with pindolol, immediate verbal recall was significantly impaired. Escitalopram in combination with ketanserin impaired spatial working memory significantly. No effects were found on reversal learning. Selective impairment of immediate verbal recall after a 5-HT(1A) partial agonist and selective impairment of spatial working memory performance after 5-HT(2A) receptor antagonist, both in combination with a selective serotonergic reuptake inhibitor (escitalopram), suggests that 5-HT(1A) and 5-HT(2A) receptors are distinctly involved in verbal and spatial memory.

  3. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    PubMed

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  4. Blood pressure-independent renoprotection in diabetic rats treated with AT1 receptor-neprilysin inhibition compared with AT1 receptor blockade alone.

    PubMed

    Roksnoer, Lodi C W; van Veghel, Richard; van Groningen, Marian C Clahsen-; de Vries, René; Garrelds, Ingrid M; Bhaggoe, Usha M; van Gool, Jeanette M G; Friesema, Edith C H; Leijten, Frank P J; Hoorn, Ewout J; Danser, A H Jan; Batenburg, Wendy W

    2016-07-01

    ARNI [dual AT1 (angiotensin II type 1) receptor-neprilysin inhibition] exerts beneficial effects on blood pressure and kidney function in heart failure, compared with ARB (AT1 receptor blockade) alone. We hypothesized that ARNI improves cardiac and kidney parameters in diabetic TGR(mREN2)27 rats, an angiotensin II-dependent hypertension model. Rats were made diabetic with streptozotocin for 5 or 12 weeks. In the final 3 weeks, rats were treated with vehicle, irbesartan (ARB) or irbesartan+thiorphan (ARNI). Blood pressure, measured by telemetry in the 5-week group, was lowered identically by ARB and ARNI. The heart weight/tibia length ratio in 12-week diabetic animals was lower after ARNI compared with after ARB. Proteinuria and albuminuria were observed from 8 weeks of diabetes onwards. ARNI reduced proteinuria more strongly than ARB, and a similar trend was seen for albuminuria. Kidneys of ARNI-treated animals showed less severe segmental glomerulosclerosis than those of ARB-treated animals. After 12 weeks, no differences between ARNI- and ARB-treated animals were found regarding diuresis, natriuresis, plasma endothelin-1, vascular reactivity (acetylcholine response) or kidney sodium transporters. Only ARNI-treated rats displayed endothelin type B receptor-mediated vasodilation. In conclusion, ARNI reduces proteinuria, glomerulosclerosis and heart weight in diabetic TGR(mREN2)27 rats more strongly than does ARB, and this occurs independently of blood pressure. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  5. Pharmacological profile of the receptors that mediate external carotid vasoconstriction by 5-HT in vagosympathectomized dogs.

    PubMed Central

    Villalón, C. M.; Ramírez-San Juan, E.; Castillo, C.; Castillo, E.; López-Muñoz, F. J.; Terrón, J. A.

    1995-01-01

    1. 5-Hydroxytryptamine (5-HT) can produce vasodilatation or vasoconstriction of the canine external carotid bed depending upon the degree of carotid sympathetic tone. Hence, external carotid vasodilatation to 5-HT in dogs with intact sympathetic tone is primarily mediated by prejunctional 5-HT1-like receptors similar to the 5-HT1D subtype, which inhibit the carotid sympathetic outflow. The present investigation is devoted to the pharmacological analysis of the receptors mediating external carotid vasoconstriction by 5-HT in vagosympathectomized dogs. 2. Intracarotid (i.c.) infusions for 1 min of 5-HT (0.3, 1, 3, 10, 30 and 100 micrograms) resulted in dose-dependent decreases in both external carotid blood flow and the corresponding conductance; both mean arterial blood pressure and heart rate remained unchanged during the infusions of 5-HT. These responses to 5-HT were resistant to blockade by antagonists at 5-HT2 (ritanserin) and 5-HT3/5-HT4 (tropisetron) receptors, but were partly blocked by the 5-HT1-like and 5-HT2 receptor antagonist, methiothepin (0.3 mg kg-1); higher doses of methiothepin (1 and 3 mg kg-1) caused little, if any, further blockade. These methiothepin (3 mg kg-1)-resistant responses to 5-HT were not significantly antagonized by MDL 72222 (0.3 mg kg-1) or tropisetron (3 mg kg-1). 3. The external carotid vasoconstrictor effects of 5-HT were mimicked by the selective 5-HT1-like receptor agonist, sumatriptan (3, 10, 30 and 100 micrograms during 1 min, i.c.), which produced dose-dependent decreases in external carotid blood flow and the corresponding conductance; these effects of sumatriptan were dose-dependently antagonized by methiothepin (0.3, 1 and 3 mg kg-1), but not by 5-HT1D-like receptor blocking doses of metergoline (0.1 mg kg-1). 4. The above vasoconstrictor effects of 5-HT remained unaltered after administration of phentolamine, propranolol, atropine, hexamethonium, brompheniramine, cimetidine and haloperidol, thus excluding the involvement of alpha- and beta-adrenoceptors, muscarinic, nicotinic, histamine and dopamine receptors. Likewise, inhibition of either 5-HT-uptake (with fluoxetine) or cyclo-oxygenase (with indomethacin), depletion of biogenic amines (with reserpine) or blockade of calcium channels (with verapamil) did not modify the effects of 5-HT. 5. Taken together, the above results support our contention that the external carotid vasoconstrictor responses to 5-HT in vagosympathectomized dogs are mainly mediated by activation of sumatriptan-sensitive 5-HT1-like receptors. It must be emphasized, notwithstanding, that other mechanisms of 5-HT, including an interaction with a novel 5-HT receptor (sub)type and/or an indirect action that may lead to the release of a known (or even unknown) neurotransmitter substance cannot be categorically excluded. PMID:8591004

  6. The role of GluN2B-containing NMDA receptors in short- and long-term fear recall.

    PubMed

    Mikics, Eva; Toth, Mate; Biro, Laszlo; Bruzsik, Biborka; Nagy, Boglarka; Haller, Jozsef

    2017-08-01

    N-methyl-d-aspartate (NMDA) receptors are crucial synaptic elements in long-term memory formation, including the associative learning of fearful events. Although NMDA blockers were consistently shown to inhibit fear memory acquisition and recall, the clinical use of general NMDA blockers is hampered by their side effects. Recent studies revealed significant heterogeneity in the distribution and neurophysiological characteristics of NMDA receptors with different GluN2 (NR2) subunit composition, which may have differential role in fear learning and recall. To investigate the specific role of NMDA receptor subpopulations with different GluN2 subunit compositions in the formation of lasting traumatic memories, we contrasted the effects of general NMDA receptor blockade with GluN2A-, GluN2B-, and GluN2C/D subunit selective antagonists (MK-801, PEAQX, Ro25-6981, PPDA, respectively). To investigate acute and lasting consequences, behavioral responses were investigated 1 and 28days after fear conditioning. We found that MK-801 (0.05 and 0.1mg/kg) decreased fear recall at both time points. GluN2B receptor subunit blockade produced highly similar effects, albeit efficacy was somewhat smaller 28days after fear conditioning. Unlike MK-801, Ro25-6981 (3 and 10mg/kg) did not affect locomotor activity in the open-field. In contrast, GluN2A and GluN2C/D blockers (6 and 20mg/kg PEAQX; 3 and 10mg/kg PPDA, respectively) had no effect on conditioned fear recall at any time point and dose. This sharp contrast between GluN2B- and other subunit-containing NMDA receptor function indicates that GluN2B receptor subunits are intimately involved in fear memory formation, and may provide a novel pharmacological target in post-traumatic stress disorder or other fear-related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area

    PubMed Central

    Ducrot, Charles; Fortier, Emmanuel; Bouchard, Claude; Rompré, Pierre-Paul

    2013-01-01

    Previous studies have shown that blockade of ventral tegmental area (VTA) glutamate N-Methyl-D-Aspartate (NMDA) receptors induces reward, stimulates forward locomotion and enhances brain stimulation reward. Glutamate induces two types of excitatory response on VTA neurons, a fast and short lasting depolarization mediated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors and a longer lasting depolarization mediated by NMDA receptors. A role for the two glutamate receptors in modulation of VTA neuronal activity is evidenced by the functional change in AMPA and NMDA synaptic responses that result from repeated exposure to reward. Since both receptors contribute to the action of glutamate on VTA neuronal activity, we studied the effects of VTA AMPA and NMDA receptor blockade on reward induced by electrical brain stimulation. Experiments were performed on rats trained to self-administer electrical pulses in the medial posterior mesencephalon. Reward thresholds were measured with the curve-shift paradigm before and for 2 h after bilateral VTA microinjections of the AMPA antagonist, NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide, 0, 80, and 800 pmol/0.5 μl/side) and of a single dose (0.825 nmol/0.5 μl/side) of the NMDA antagonist, PPPA (2R,4S)-4-(3-Phosphonopropyl)-2-piperidinecarboxylic acid). NBQX produced a dose-dependent increase in reward threshold with no significant change in maximum rate of responding. Whereas PPPA injected at the same VTA sites produced a significant time dependent decrease in reward threshold and increase in maximum rate of responding. We found a negative correlation between the magnitude of the attenuation effect of NBQX and the enhancement effect of PPPA; moreover, NBQX and PPPA were most effective when injected, respectively, into the anterior and posterior VTA. These results suggest that glutamate acts on different receptor sub-types, most likely located on different VTA neurons, to modulate reward. PMID:24106463

  9. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area.

    PubMed

    Ducrot, Charles; Fortier, Emmanuel; Bouchard, Claude; Rompré, Pierre-Paul

    2013-01-01

    Previous studies have shown that blockade of ventral tegmental area (VTA) glutamate N-Methyl-D-Aspartate (NMDA) receptors induces reward, stimulates forward locomotion and enhances brain stimulation reward. Glutamate induces two types of excitatory response on VTA neurons, a fast and short lasting depolarization mediated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors and a longer lasting depolarization mediated by NMDA receptors. A role for the two glutamate receptors in modulation of VTA neuronal activity is evidenced by the functional change in AMPA and NMDA synaptic responses that result from repeated exposure to reward. Since both receptors contribute to the action of glutamate on VTA neuronal activity, we studied the effects of VTA AMPA and NMDA receptor blockade on reward induced by electrical brain stimulation. Experiments were performed on rats trained to self-administer electrical pulses in the medial posterior mesencephalon. Reward thresholds were measured with the curve-shift paradigm before and for 2 h after bilateral VTA microinjections of the AMPA antagonist, NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide, 0, 80, and 800 pmol/0.5 μl/side) and of a single dose (0.825 nmol/0.5 μl/side) of the NMDA antagonist, PPPA (2R,4S)-4-(3-Phosphonopropyl)-2-piperidinecarboxylic acid). NBQX produced a dose-dependent increase in reward threshold with no significant change in maximum rate of responding. Whereas PPPA injected at the same VTA sites produced a significant time dependent decrease in reward threshold and increase in maximum rate of responding. We found a negative correlation between the magnitude of the attenuation effect of NBQX and the enhancement effect of PPPA; moreover, NBQX and PPPA were most effective when injected, respectively, into the anterior and posterior VTA. These results suggest that glutamate acts on different receptor sub-types, most likely located on different VTA neurons, to modulate reward.

  10. Monocyte function in infectious mononucleosis: evidence for a reversible cellular defect.

    PubMed

    Britton, S

    1976-10-01

    Migration of blood monocytes from patients with acute infectious mononucleosis and from normal controls was measured against chemotactic factors in serum. Moncytes from patients with acute infectious mononucleosis showed decreased migration as compared with that of control monocytes. However, serum from patients with infectious mononucleosis contained normal or above normal amounts of chemotaxins for monocytes. The migratory defect of monocytes from patients with infectious mononucleosis was reversible within three months after the onset of diesease. The cause of this monocyte migration defect in infectious mononucleosis is though to be an in vivo blockade of receptors on monocytes for chemotaxins, and it is speculated that this defect can partially explain the explain the ablated delayed-hypersensitivity skin reactions in this disease.

  11. Circadian rhythm disruption by a novel running wheel: Roles of exercise and arousal in blockade of the luteinizing hormone surge

    PubMed Central

    Duncan, Marilyn J.; Franklin, Kathleen M.; Peng, Xiaoli; Yun, Christopher; Legan, Sandra J.

    2014-01-01

    Exposure of proestrous Syrian hamsters to a new room, cage, and novel running wheel blocks the luteinizing hormone (LH) surge until the next day in ~75% of hamsters (Legan et al, 2010) [1]. The studies described here tested the hypotheses that 1) exercise and/or 2) orexinergic neurotransmission mediate novel wheel blockade of the LH surge and circadian phase advances. Female hamsters were exposed to a 14L:10D photoperiod and activity rhythms were monitored with infra-red detectors. In Expt. 1, to test the effect of exercise, hamsters received jugular cannulae and on the next day, proestrus (Day 1), shortly before zeitgeber time 5 (ZT 5, 7 hours before lights-off) the hamsters were transported to the laboratory. After obtaining a blood sample at ZT 5, the hamsters were transferred to a new cage with a novel wheel that was either freely rotating (unlocked), or locked until ZT 9, and exposed to constant darkness (DD). Blood samples were collected hourly for 2 days from ZT 5–11 under red light for determination of plasma LH levels by radioimmunoassay. Running rhythms were monitored continuously for the next 10–14 days. The locked wheels were as effective as unlocked wheels in blocking LH surges (no Day 1 LH surge in 6/9 versus 8/8 hamsters, P>0.05) and phase advances in the activity rhythms did not differ between the groups (P= 0.28), suggesting that intense exercise is not essential for novel wheel blockade and phase advance of the proestrous LH surge. Expt. 2 tested whether orexin neurotransmission is essential for these effects. Hamsters were treated the same as in Expt. 1 except they were injected (i.p.) at ZT 4.5 and 5 with either the orexin 1 receptor antagonist SB334867 (15 mg/kg per injection) or vehicle (25% DMSO in 2-hydroxypropyl-beta-cyclodextrin (HCD). SB-334867 inhibited novel wheel blockade of the LH surge (surges blocked in 2/6 SB334867-injected animals versus 16/18 vehicle-injected animals, P<0.02) and also inhibited wheel running and circadian phase shifts, indicating that activation of orexin 1 receptors is necessary for these effects. Expt. 3 tested the hypothesis that novel wheel exposure activates orexin neurons. Proestrous hamsters were transferred at ZT 5 to a nearby room within the animal facility and were exposed to a new cage with a locked or unlocked novel wheel or left in their home cages. At ZT 8, the hamsters were anesthetized, blood was withdrawn, they were perfused with fixative and brains were removed for immunohistochemical localization of Fos, GnRH, and orexin. Exposure to a wheel, whether locked or unlocked, suppressed circulating LH concentrations at ZT 8, decreased the proportion of Fos-activated GnRH neurons, and increased Fos-immunoreactive orexin cells. Unlocked wheels had greater effects than locked wheels on all three endpoints. Thus in a familiar environment, exercise potentiated the effect of the novel wheel on Fos expression because a locked wheel was not a sufficient stimulus to block the LH surge. In conclusion, these studies indicate that novel wheel exposure activates orexin neurons and that blockade of orexin 1 receptors prevents novel wheel blockade of the LH surge. These findings are consistent with a role for both exercise and arousal in mediating novel wheel blockade of the LH surge. PMID:24727338

  12. Presynaptic Dopamine D2 Receptors Modulate [3H]GABA Release at StriatoPallidal Terminals via Activation of PLC → IP3 → Calcineurin and Inhibition of AC → cAMP → PKA Signaling Cascades.

    PubMed

    Jijón-Lorenzo, Rafael; Caballero-Florán, Isaac Hiram; Recillas-Morales, Sergio; Cortés, Hernán; Avalos-Fuentes, José Arturo; Paz-Bermúdez, Francisco Javier; Erlij, David; Florán, Benjamín

    2018-02-21

    Striatal dopamine D2 receptors activate the PLC → IP3 → Calcineurin-signaling pathway to modulate the neural excitability of En+ Medium-sized Spiny GABAergic neurons (MSN) through the regulation of L-type Ca 2+ channels. Presynaptic dopaminergic D2 receptors modulate GABA release at striatopallidal terminals through L-type Ca 2+ channels as well, but their signaling pathway is still undetermined. Since D2 receptors are Gi/o-coupled and negatively modulate adenylyl cyclase (AC), we investigated whether presynaptic D2 receptors modulate GABA release through the same signaling cascade that controls excitability in the striatum or by the inhibition of AC and decreased PKA activity. Activation of D2 receptors stimulated formation of [ 3 H]IP 1 and decreased Forskolin-stimulated [ 3 H]cAMP accumulation in synaptosomes from rat Globus Pallidus. D2 receptor activation with Quinpirole in the presence of L 745,870 decreased, in a dose-dependent manner, K + -induced [ 3 H]GABA release in pallidal slices. The effect was prevented by the pharmacological blockade of Gi/o βγ subunit effects with Gallein, PLC with U 73122, IP3 receptor activation with 4-APB, Calcineurin with FK506. In addition, when release was stimulated with Forskolin to activate AC, D2 receptors also decreased K + -induced [ 3 H]GABA release, an effect occluded with the effect of the blockade of PKA with H89 or stimulation of release with the cAMP analog 8-Br-cAMP. These data indicate that D2 receptors modulate [ 3 H]GABA release at striatopallidal terminals by activating the PLC → IP3 → Calcineurin-signaling cascade, the same one that modulates excitability in soma. Additionally, D2 receptors inhibit release when AC is active. Both mechanisms appear to converge to regulate the activity of presynaptic L-type Ca 2+ channels. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Release inhibitory receptors activation favours the A2A-adenosine receptor-mediated facilitation of noradrenaline release in isolated rat tail artery

    PubMed Central

    Fresco, Paula; Diniz, Carmen; Queiroz, Glória; Gonçalves, Jorge

    2002-01-01

    Interactions between A2A-adenosine receptors and α2-, A1- and P2- release-inhibitory receptors, on the modulation of noradrenaline release were studied in isolated rat tail artery. Preparations were labelled with [3H]-noradrenaline, superfused with desipramine-containing medium, and stimulated electrically (100 pulses at 5 Hz or 20 pulses at 50 Hz).Blockade of α2-autoreceptors with yohimbine (1 μM) increased tritium overflow elicited by 100 pulses at 5 Hz but not by 20 pulses at 50 Hz.The selective A2A-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine (CGS 21680; 1 – 100 nM) enhanced tritium overflow elicited by 100 pulses at 5 Hz. Yohimbine prevented the effect of CGS 21680, which was restored by the A1-receptor agonist N6-cyclopentyladenosine (CPA; 100 nM) or by the P2-receptor agonist 2-methylthioadenosine triphosphate (2-MeSATP; 80 μM).CGS 21680 (100 nM) failed to increase tritium overflow elicited by 20 pulses at 50 Hz. The α2-adrenoceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline (UK 14304; 30 nM), the A1-receptor agonist CPA (100 nM) or the P2-receptor agonist 2-MeSATP (80 μM) reduced tritium overflow. In the presence of these agonists CGS 21680 elicited a facilitation of tritium overflow.Blockade of potassium channels with tetraethylammonium (TEA; 5 mM) increased tritium overflow elicited by 100 pulses at 5 Hz to values similar to those obtained in the presence of yohimbine but did not prevent the effect of CGS 21680 (100 nM) on tritium overflow.It is concluded that, in isolated rat tail artery, the facilitation of noradrenaline release mediated by A2A-adenosine receptors is favoured by activation of release inhibitory receptors. PMID:12010771

  14. Role of GABAA receptors in dorsal raphe nucleus in stress-induced reinstatement of morphine-conditioned place preference in rats.

    PubMed

    Li, Chen; Staub, Daniel R; Kirby, Lynn G

    2013-12-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Our data indicate that stress inhibits the dorsal raphe nucleus (DRN)-5-HT system via stimulation of GABA synaptic activity by the stress neurohormone corticotropin-releasing factor and, more recently, that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. We tested the hypothesis that DRN GABAA receptors contribute to stress-induced reinstatement of morphine-conditioned place preference (CPP). First, we tested if activation of GABAA receptors in the DRN would reinstate morphine CPP. Second, we tested if blockade of GABAA receptors in the DRN would attenuate swim stress-induced reinstatement of morphine CPP. CPP was induced by morphine (5 mg/kg) in a 4-day conditioning phase followed by a conditioning test. Upon acquiring conditioning criteria, subjects underwent 4 days of extinction training followed by an extinction test. Upon acquiring extinction criteria, animals underwent a reinstatement test. For the first experiment, the GABAA receptor agonist muscimol (50 ng) or vehicle was injected into the DRN prior to the reinstatement test. For the second experiment, the GABAA receptor antagonist bicuculline (75 ng) or vehicle was injected into the DRN prior to a forced swim stress, and then, animals were tested for reinstatement of CPP. Intraraphe injection of muscimol reinstated morphine CPP, while intraraphe injection of bicuculline attenuated swim stress-induced reinstatement. These data provide evidence that GABAA receptor-mediated inhibition of the serotonergic DRN contributes to stress-induced reinstatement of morphine CPP.

  15. A role for hippocampal gastrin-releasing peptide receptors in extinction of aversive memory.

    PubMed

    Luft, Tatiana; Flores, Debora G; Vianna, Monica R M; Schwartsmann, Gilberto; Roesler, Rafael; Izquierdo, Ivan

    2006-06-26

    Although the gastrin-releasing peptide receptor has been implicated in memory consolidation, previous studies have not examined whether it is involved in extinction. Here we show that gastrin-releasing peptide receptor blockade in the hippocampus disrupts extinction of aversive memory. Male rats were trained in inhibitory avoidance conditioning and then returned repeatedly to the training context without shock on a daily basis for 3 days. Infusion of a gastrin-releasing peptide receptor antagonist or the protein synthesis inhibitor anisomycin into the dorsal hippocampus immediately after the first extinction session blocked extinction. These drugs did not affect performance in subsequent sessions when the first extinction session (1 day after training) was omitted. The results indicate that hippocampal gastrin-releasing peptide receptors are involved in memory extinction.

  16. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Xu, Ligeng; Liang, Chao; Wang, Chao; Peng, Rui; Liu, Zhuang

    2016-10-01

    A therapeutic strategy that can eliminate primary tumours, inhibit metastases, and prevent tumour relapses is developed herein by combining adjuvant nanoparticle-based photothermal therapy with checkpoint-blockade immunotherapy. Indocyanine green (ICG), a photothermal agent, and imiquimod (R837), a Toll-like-receptor-7 agonist, are co-encapsulated by poly(lactic-co-glycolic) acid (PLGA). The formed PLGA-ICG-R837 nanoparticles composed purely by three clinically approved components can be used for near-infrared laser-triggered photothermal ablation of primary tumours, generating tumour-associated antigens, which in the presence of R837-containing nanoparticles as the adjuvant can show vaccine-like functions. In combination with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4 (CTLA4), the generated immunological responses will be able to attack remaining tumour cells in mice, useful in metastasis inhibition, and may potentially be applicable for various types of tumour models. Furthermore, such strategy offers a strong immunological memory effect, which can provide protection against tumour rechallenging post elimination of their initial tumours.

  17. The Monocyte Chemoattractant Protein-1/Cognate CC Chemokine Receptor 2 System Affects Cell Motility in Cultured Human Podocytes

    PubMed Central

    Burt, Davina; Salvidio, Gennaro; Tarabra, Elena; Barutta, Federica; Pinach, Silvia; Dentelli, Patrizia; Camussi, Giovanni; Perin, Paolo Cavallo; Gruden, Gabriella

    2007-01-01

    In crescentic glomerulonephritis (GN), monocyte chemoattractant protein-1 (MCP-1) is overexpressed within the glomeruli, and MCP-1 blockade has renoprotective effects. Adult podocytes are in a quiescent state, but acquisition of a migratory/proliferative phenotype has been described in crescentic GN and implicated in crescent formation. The cognate CC chemokine receptor 2 (CCR2), the MCP-1 receptor, is expressed by other cell types besides monocytes and has been implicated in both cell proliferation and migration. We investigated whether MCP-1 binding to CCR2 can induce a migratory/proliferative response in cultured podocytes. MCP-1 binding to CCR2 enhanced podocyte chemotaxis/haptotaxis in a concentration-dependent manner and had a modest effect on cell proliferation. Closure of a wounded podocyte monolayer was delayed by CCR2 blockade, and CCR2 was overexpressed at the wound edge, suggesting a role for CCR2 in driving podocyte migration. Immunohistochemical analysis of kidney biopsies from patients with crescentic GN demonstrated CCR2 expression in both podocytes and cellular crescents, confirming the clinical relevance of our in vitro findings. In conclusion, the MCP-1/CCR2 system is functionally active in podocytes and may be implicated in the migratory events triggered by podocyte injury in crescentic GN and other glomerular diseases. PMID:18055544

  18. Effect of clozapine on locomotor activity and anxiety-related behavior in the neonatal mice administered MK-801.

    PubMed

    Pınar, Neslihan; Akillioglu, Kubra; Sefil, Fatih; Alp, Harun; Sagir, Mustafa; Acet, Ahmet

    2015-08-11

    Atypical antipsychotics have been used to treat fear and anxiety disturbance that are highly common in schizophrenic patients. It is suggested that disruptions of N-methyl-d-aspartate (NMDA)-mediated transmission of glutamate may underlie the pathophysiology of schizophrenia. The present study was conducted to analyze the effectiveness of clozapine on the anxiety-related behavior and locomotor function of the adult brain, which had previously undergone NMDA receptor blockade during a developmental period. In order to block the NMDA receptor, male mice were administered 0.25 mg/kg of MK-801 on days 7 to 10 postnatal. In adulthood, they were administered intraperitoneally 0.5 mg/kg of clozapine and tested with open-field and elevated plus maze test, to assess their emotional behavior and locomotor activity. In the group receiving MK-801 in the early developmental period the elevated plus maze test revealed a reduction in the anxiety-related behavior (p<0.05), while the open-field test indicated a decrease in locomotor activity (p<0.01). Despite these reductions, clozapine could not reverse the NMDA receptor blockade. Also, as an atypical antipsychotic agent, clozapine could not reverse impairment in the locomotor activity and anxiety-related behavior, induced by administration of the MK-801 in neonatal period.

  19. Effects of angiotensin II receptor blockade on cerebral, cardiovascular, counter-regulatory, and symptomatic responses during hypoglycaemia in patients with type 1 diabetes.

    PubMed

    Færch, Louise H; Thorsteinsson, Birger; Tarnow, Lise; Holst, Jens Juul; Kjær, Troels; Kanters, Jørgen; Larroude, Charlotte; Dela, Flemming; Pedersen-Bjergaard, Ulrik

    2015-12-01

    High spontaneous activity of the renin-angiotensin system (RAS) results in more pronounced cognitive impairment and more prolonged QTc interval during hypoglycaemia in type 1 diabetes. We tested whether angiotensin II receptor blockade improves cerebral and cardiovascular function during hypoglycaemia. Nine patients with type 1 diabetes and high spontaneous RAS activity were included in a double-blind, randomised, cross-over study on the effect of angiotensin II receptor antagonist (candesartan 32 mg) or placebo for one week on cognitive function, cardiovascular parameters, hormonal counter-regulatory response, substrate mobilisation, and symptoms during hypoglycaemia induced by two hyperinsulinaemic, hypoglycaemic clamps. Compared to placebo, candesartan did neither change performance of the cognitive tests nor the EEG at a plasma glucose concentration of 2.6±0.2 mmol/l. During candesartan treatment, the QT interval in the ECG was not affected. No effect of candesartan was observed in the hormonal counter-regulatory responses, in substrate concentrations, or in symptom scores. A 36% reduced glucose infusion rate during hypoglycaemia with candesartan was observed. In conclusion candesartan has no effect on cerebral function during mild experimental hypoglycaemia in subjects with type 1 diabetes and high RAS activity. Candesartan may reduce glucose utilisation or increase endogenous glucose production during hypoglycaemia. © The Author(s) 2014.

  20. Established T-cell inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD-1–pathway blockade

    PubMed Central

    Moore, Ellen; Clavijo, Paul E.; Davis, Ruth; Cash, Harrison; Van Waes, Carter; Kim, Young; Allen, Clint

    2016-01-01

    Patients with head and neck squamous cell carcinoma harbor T-cell inflamed and non-T-cell inflamed tumors. Despite this, only 20% of patients respond to checkpoint inhibitor immunotherapy. Lack of induction of innate immunity through pattern-recognition receptors such as the stimulator of interferon (IFN) genes (STING) receptor may represent a significant barrier to the development of effective antitumor immunity. Here, we demonstrate robust control of a T-cell inflamed (MOC1), but not non-T-cell inflamed (MOC2), model of head and neck cancer by activation of the STING pathway with the synthetic cyclic dinucleotide RP,RP dithio-c-di-GMP. Rejection or durable tumor control of MOC1 tumors was dependent upon a functional STING receptor and CD8 T lymphocytes. STING activation resulted in increased tumor microenvironment type 1 and type 2 IFN and greater expression of PD-1–pathway components in vivo. Established MOC1 tumors were rejected and distant tumors abscopally controlled, after adaptive immune resistance had been reversed by the addition of PD-L1 mAb. These findings suggest that PD-1-pathway blockade may reverse adaptive immune resistance following cyclic dinucleotide treatment, enhancing both local and systemic antitumor immunity. PMID:27821498

Top