Science.gov

Sample records for factor receptor interaction

  1. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions.

    PubMed Central

    Pinkas-Kramarski, R; Soussan, L; Waterman, H; Levkowitz, G; Alroy, I; Klapper, L; Lavi, S; Seger, R; Ratzkin, B J; Sela, M; Yarden, Y

    1996-01-01

    The ErbB family includes two receptors, ErbB-1 and ErbB-3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB-2. Unlike ErbB-1 and ErbB-2, the intrinsic tyrosine kinase of ErbB-3 is catalytically impaired. By using interleukin-3-dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB-3 is devoid of any biological activity but both ErbB-1 and ErbB-2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB-3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter-receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB-3-containing complexes, especially the ErbB-2/ErbB-3 heterodimer, are more active than ErbB-1 complexes. Nevertheless, ErbB-1 signaling displays dominance over ErbB-3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen-activated protein kinases ERK and c-Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase-defective ErbB-3. Images PMID:8665853

  2. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    PubMed

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  3. Structural basis of interactions between epidermal growth factor receptor and SH2 domain proteins.

    PubMed

    Sierke, S L; Longo, G M; Koland, J G

    1993-02-26

    The structural basis of the interactions between the activated epidermal growth factor (EGF) receptor and SH2 domain proteins was investigated. The c-src SH2 domain (second domain of src homology) was expressed as a recombinant fusion protein, and an in vitro assay was developed to monitor EGF receptor/SH2 domain interactions. EGF receptor tyrosine kinase domain (TKD) forms expressed in the baculovirus/insect cell system were shown to bind to the SH2 domain when phosphorylated. These TKD/SH2 domain interactions were characterized by dissociation constants of 60-320 nM. Deletion analysis indicated that the entire SH2 domain was required for recognition of the phosphorylated TKD. The binding of a highly truncated TKD protein to the SH2 domain suggested that the sites recognized by the SH2 domain included the EGF receptor autophosphorylation site, tyr992. A phosphorylated EGF receptor peptide containing tyr992 was also shown to interact with the SH2 domain. This residue may therefore mediate interactions between the EGF receptor and tyrosine kinases in the src family.

  4. Modeling the epidermal growth factor -- epidermal growth factor receptor l2 domain interaction: implications for the ligand binding process.

    PubMed

    Jorissen, Robert N; Treutlein, Herbert R; Epa, V Chandana; Burgess, Antony W

    2002-06-01

    Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.

  5. The CXC Chemokine Receptor 4 Ligands Ubiquitin and Stromal Cell-derived Factor-1α Function through Distinct Receptor Interactions*

    PubMed Central

    Saini, Vikas; Staren, Daniel M.; Ziarek, Joshua J.; Nashaat, Zayd N.; Campbell, Edward M.; Volkman, Brian F.; Marchese, Adriano; Majetschak, Matthias

    2011-01-01

    Recently, we identified extracellular ubiquitin as an endogenous CXC chemokine receptor (CXCR) 4 agonist. However, the receptor selectivity and molecular basis of the CXCR4 agonist activity of ubiquitin are unknown, and functional consequences of CXCR4 activation with ubiquitin are poorly defined. Here, we provide evidence that ubiquitin and the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α do not share CXCR7 as a receptor. We further demonstrate that ubiquitin does not utilize the typical two-site binding mechanism of chemokine-receptor interactions, in which the receptor N terminus is important for ligand binding. CXCR4 activation with ubiquitin and SDF-1α lead to similar Gαi-responses and to a comparable magnitude of phosphorylation of ERK-1/2, p90 ribosomal S6 kinase-l and Akt, although phosphorylations occur more transiently after activation with ubiquitin. Despite the similarity of signal transduction events after activation of CXCR4 with both ligands, ubiquitin possesses weaker chemotactic activity than SDF-lα in cell migration assays and does not interfere with productive entry of HIV-1 into P4.R5 multinuclear activation of galactosidase indicator cells. Unlike SDF-1α, ubiquitin lacks interactions with an N-terminal CXCR4 peptide in NMR spectroscopy experiments. Binding and signaling studies in the presence of antibodies against the N terminus and extracellular loops 2/3 of CXCR4 confirm that the ubiquitin CXCR4 interaction is independent of the N-terminal receptor domain, whereas blockade of extracellular loops 2/3 prevents receptor binding and activation. Our findings define ubiquitin as a CXCR4 agonist, which does not interfere with productive cellular entry of HIV-1, and provide new mechanistic insights into interactions between CXCR4 and its natural ligands. PMID:21757744

  6. Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis.

    PubMed

    Lazaridis, Iakovos; Charalampopoulos, Ioannis; Alexaki, Vassilia-Ismini; Avlonitis, Nicolaos; Pediaditakis, Iosif; Efstathopoulos, Paschalis; Calogeropoulou, Theodora; Castanas, Elias; Gravanis, Achille

    2011-04-01

    The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR) membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [(3)H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR) receptors (K(D): 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR) receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR) receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.

  7. Neurosteroid Dehydroepiandrosterone Interacts with Nerve Growth Factor (NGF) Receptors, Preventing Neuronal Apoptosis

    PubMed Central

    Alexaki, Vassilia-Ismini; Avlonitis, Nicolaos; Pediaditakis, Iosif; Efstathopoulos, Paschalis; Calogeropoulou, Theodora; Castanas, Elias; Gravanis, Achille

    2011-01-01

    The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75NTR membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [3H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75NTR receptors (KD: 7.4±1.75 nM and 5.6±0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75NTR receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75NTR receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor. PMID:21541365

  8. Fluorescence techniques used to measure interactions between hydroxyapatite nanoparticles and epidermal growth factor receptors.

    PubMed

    Kathawala, Mustafa H; Khoo, Stella P K; Sudhaharan, Thankiah; Zhao, Xinxin; Say Chye Loo, Joachim; Ahmed, Sohail; Woei Ng, Kee

    2015-01-01

    The potential applications of nanomaterials in therapeutics are immense and to fully explore this potential, it is important to understand the interaction of nanoparticles with cellular components. To examine the interaction between nanoparticles and cell membrane receptors, this report describes the use of advanced fluorescence techniques to measure interactions between hydroxyapatite (HA) nanoparticles and epidermal growth factor receptors (EGFRs), as a model system. FITC-labelled HA nanoparticles and monomeric red fluorescent protein (mRFP)-conjugated EGFRs expressed in Chinese hamster ovary cells (CHO-K1) were generated and their interaction measured using acceptor photobleaching-fluorescence resonance energy transfer (AP-FRET) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET). Results confirmed that hydroxyapatite nanoparticles not only interacted with EGFR but also attenuated downstream EGFR signalling, possibly by hindering normal dimerization of EGFR. Furthermore, the extent of signal attenuation suggested correlation with specific surface area of the nanoparticles, whereby greater specific surface area resulted in greater downstream signal attenuation. This novel demonstration establishes fluorescence techniques as a viable method to study nanoparticle interactions with proteins such as cell surface receptors. The approach described herein can be extended to study interactions between any fluorescently labelled nanoparticle-biomolecule pair.

  9. Novel Bioluminescent Binding Assays for Ligand–Receptor Interaction Studies of the Fibroblast Growth Factor Family

    PubMed Central

    Song, Ge; Shao, Xiao-Xia; Wu, Qing-Ping; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand–receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand–receptor interaction studies. PMID:27414797

  10. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila.

    PubMed

    Jeon, Mili; Scott, Matthew P; Zinn, Kai

    2012-06-15

    The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  11. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    PubMed Central

    Jeon, Mili; Scott, Matthew P.; Zinn, Kai

    2012-01-01

    Summary The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways. PMID:23213447

  12. Cytosolic glucocorticoid receptor interaction with nuclear factor-kappa B proteins in rat liver cells.

    PubMed

    Widén, Christina; Gustafsson, Jan-Ake; Wikström, Ann-Charlotte

    2003-07-01

    The glucocorticoid receptor (GR) acts as an anti-inflammatory factor. To a large extent, this activity is exerted by the interference of pro-inflammatory nuclear factor kappa B (NF-kappa B) activity. In their respective inactive forms, both GR and NF-kappa B reside in the cytoplasm and translocate to the nucleus on relevant stimulation. Previously, p65, a component of the NF-kappa B complex, and GR have been shown to interact physically in vitro, and the interaction is assumed to take place in the nucleus of cells [McKay and Cidlowski (1999) Endocrine Rev. 20, 435-459]. We have studied the interaction between GR and NF-kappa B using in vivo -like conditions. Using immunoaffinity chromatography or immunoprecipitation, combined with Western blotting, we observed that, with endogenous protein levels in cytosolic extracts of rat liver and of H4-II-E-C3 hepatoma cells and in contrast with the current belief, p65, p50 and inhibitory kappa B alpha complex interact with GR, even in the absence of glucocorticoid or an inflammatory signal. The interaction between non-liganded/non-activated GR and p65/p50 has also been verified by both p65 and p50 co-immunoprecipitations. Intracellular localization studies, using Western blotting, revealed that glucocorticoids can decrease tumour necrosis factor alpha (TNFalpha)-induced nuclear entry of p65, whereas glucocorticoid-induced GR translocation was much less affected by TNFalpha. We were also able to demonstrate a nuclear interaction of GR and p65 and p50 using in vivo -like protein concentrations. Furthermore, nuclear GR interaction with heat-shock protein 90 was enhanced distinctly by TNFalpha treatment. In conclusion, our studies suggest a strong interconnectivity between the NF-kappa B and GR-signalling pathways where also, somewhat unexpectedly, a physical interaction in the cytosol constitutes an integral part of GR-NF-kappa B cross-talk.

  13. Structural basis for the interaction of a vascular endothelial growth factor mimic peptide motif and its corresponding receptors.

    PubMed

    Giordano, Ricardo J; Anobom, Cristiane D; Cardó-Vila, Marina; Kalil, Jorge; Valente, Ana P; Pasqualini, Renata; Almeida, Fabio C L; Arap, Wadih

    2005-10-01

    Vascular endothelial growth factor (VEGF) is central to the survival and development of the vascular and nervous systems. We screened phage display libraries and built a peptide-based ligand-receptor map of binding sites within the VEGF family. We then validated a cyclic peptide, CPQPRPLC, as a VEGF-mimic that binds specifically to neuropilin-1 and VEGF receptor-1. Here, we use NMR spectroscopy to understand the structural basis of the interaction between our mimic peptide and the VEGF receptors. We show that: (1) CPQPRPLC has multiple interactive conformations; (2) receptor binding is mediated by the motif Arg-Pro-Leu; and (3) the Pro residue within Arg-Pro-Leu participates in binding to neuropilin-1 but not to VEGF receptor-1, perhaps representing an evolutionary gain-of-function. Therefore, Arg-Pro-Leu is a differential ligand motif to VEGF receptors and a candidate peptidomimetic lead for VEGF pathway modulation.

  14. Direct interaction of avermectin with epidermal growth factor receptor mediates the penetration resistance in Drosophila larvae

    PubMed Central

    Chen, Li-Ping; Wang, Pan; Sun, Ying-Jian; Wu, Yi-Jun

    2016-01-01

    With the widespread use of avermectins (AVMs) for managing parasitic and agricultural pests, the resistance of worms and insects to AVMs has emerged as a serious threat to human health and agriculture worldwide. The reduced penetration of AVMs is one of the main reasons for the development of the resistance to the chemicals. However, the detailed molecular mechanisms remain elusive. Here, we use the larvae of Drosophila melanogaster as the model organism to explore the molecular mechanisms underlying the development of penetration resistance to AVMs. We clearly show that the chitin layer is thickened and the efflux transporter P-glycoprotein (P-gp) is overexpressed in the AVM-resistant larvae epidermis. We reveal that the activation of the transcription factor Relish by the over-activated epidermal growth factor receptor (EGFR)/AKT/ERK pathway induces the overexpression of the chitin synthases DmeCHS1/2 and P-gp in the resistant larvae. Interestingly, we discover for the first time, to the best of our knowledge, that AVM directly interacts with EGFR and leads to the activation of the EGFR/AKT/ERK pathway, which activates the transcription factor Relish and induces the overexpression of DmeCHS1/2 and P-gp. These findings provide new insights into the molecular mechanisms underlying the development of penetration resistance to drugs. PMID:27249340

  15. Biochemical characterization of the molecular interaction between recombinant basic fibroblast growth factor and a recombinant soluble fibroblast growth factor receptor.

    PubMed Central

    Caccia, P; Cletini, O; Isacchi, A; Bergonzoni, L; Orsini, G

    1993-01-01

    The extracellular domain of human fibroblast growth factor receptor (XC-FGF-R) was expressed in Escherichia coli. The protein was purified to homogeneity and the interaction with basic fibroblast growth factor (bFGF), its physiological ligand, was examined. Using resins on which bFGF was reversibly bound, we analysed the characteristics of the binding between XC-FGF-R and immobilized bFGF. We also investigated the stoichiometry of the binding between XC-FGF-R and recombinant human bFGF (rhbFGF) applying non-denaturing gel electrophoresis, chemical cross-linking followed by SDS/PAGE, and gel-filtration chromatography. In cross-linking and gel-filtration chromatography experiments, a 1:1 complex between rhbFGF and XC-FGF-R was observed. The complex was separated from the non-complexed proteins using non-denaturing PAGE in the presence of 0.1% Triton X-100. The band corresponding to the complex was recognized by specific antibodies directed against bFGF and its receptor, blotted on poly(vinylidene difluoride) membranes and submitted to sequence and amino acid analysis. The data obtained from these determinations confirmed the formation of a 1:1 complex between rhbFGF and XC-FGF-R. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:8379918

  16. Novel alpha1-adrenergic receptor signaling pathways: secreted factors and interactions with the extracellular matrix.

    PubMed

    Shi, Ting; Duan, Zhong-Hui; Papay, Robert; Pluskota, Elzbieta; Gaivin, Robert J; de la Motte, Carol A; Plow, Edward F; Perez, Dianne M

    2006-07-01

    alpha1-Adrenergic receptor (alpha1-ARs) subtypes (alpha1A, alpha1B, and alpha1D) regulate multiple signal pathways, such as phospholipase C, protein kinase C (PKC), and mitogen-activated protein kinases. We employed oligonucleotide microarray technology to explore the effects of both short- (1 h) and long-term (18 h) activation of the alpha1A-AR to enable RNA changes to occur downstream of earlier well characterized signaling pathways, promoting novel couplings. Polymerase chain reaction (PCR) studies confirmed that PKC was a critical regulator of alpha1A-AR-mediated gene expression, and secreted interleukin (IL)-6 also contributed to gene expression alterations. We next focused on two novel signaling pathways that might be mediated through alpha1A-AR stimulation because of the clustering of gene expression changes for cell adhesion/motility (syndecan-4 and tenascin-C) and hyaluronan (HA) signaling. We confirmed that alpha1-ARs induced adhesion in three cell types to vitronectin, an interaction that was also integrin-, FGF7-, and PKC-dependent. alpha1-AR activation also inhibited cell migration, which was integrin- and PKC-independent but still required secretion of FGF7. alpha1-AR activation also increased the expression and deposition of HA, a glycosaminoglycan, which displayed two distinct structures: pericellular coats and long cable structures, as well as increasing expression of the HA receptor, CD44. Long cable structures of HA can bind leukocytes, which this suggests that alpha1-ARs may be involved in proinflammatory responses. Our results indicate alpha1-ARs induce the secretion of factors that interact with the extracellular matrix to regulate cell adhesion, motility and proinflammatory responses through novel signaling pathways.

  17. Real-time studies of the interactions between epidermal growth factor and its receptor during endocytic trafficking.

    PubMed

    Martin-Fernandez, M L; Clarke, D T; Tobin, M J; Jones, G R

    2000-09-01

    The interactions of growth factors with cell surface receptors regulate fundamental cell processes, such as growth, differentiation and transformation. Understanding the nature of these interactions at the molecular level is of fundamental importance in cell biology. This is not only from the point of view of basic science, but also because of the repercussions such knowledge might have in understanding the mode of action of drugs in cells. Receptor mediated endocytosis has been implicated in the downregulation of the mitogenic signal. However, no data are thus far available on how growth factor/receptor interactions might control endocytic trafficking. Here we show that information on modes of binding and receptor conformational changes can be obtained using time-resolved fluorescence methods. We have found that fluorescent probes bound to epidermal growth factor (EGF) show dynamic fluorescence quenching when EGF is bound to internalising EGF receptors (EGFR). We propose that this dynamic quenching takes place because EGF-bound probes interact with tryptophan residues in the extracellular domain of the EGF-EGFR complex. Real-time accumulation of fluorescent decays has also allowed us to follow the time course of a conformational change in EGFR occurring during endocytosis, and correlate this information with endosomal trafficking and EGFR recycling.

  18. Splicing Factor Prp8 Interacts With NESAR and Regulates Androgen Receptor in Prostate Cancer Cells

    PubMed Central

    Wang, Dan; Nguyen, Minh M.; Masoodi, Khalid Z.; Singh, Prabhpreet; Jing, Yifeng; O'Malley, Katherine; Dar, Javid A.; Dhir, Rajiv

    2015-01-01

    Androgen receptor (AR) plays a pivotal role in the development of primary as well as advanced castration-resistant prostate cancer. Previous work in our lab identified a novel nuclear export signal (NES) (NESAR) in AR ligand-binding domain essential for AR nucleocytoplasmic trafficking. By characterizing the localization of green fluorescence protein (GFP)-tagged NESAR, we designed and executed a yeast mutagenesis screen and isolated 7 yeast mutants that failed to display the NESAR export function. One of those mutants was identified as the splicing factor pre-mRNA processing factor 8 (Prp8). We further showed that Prp8 could regulate NESAR function using short hairpin RNA knockdown of Prp8 coupled with a rapamycin export assay in mammalian cells and knockdown of Prp8 could induce nuclear accumulation of GFP-tagged AR in PC3 cells. Prp8 expression was decreased in castration-resistant LuCaP35 xenograft tumors as compared with androgen-sensitive xenografts. Laser capture microdissection and quantitative PCR showed Prp8 mRNA levels were decreased in human prostate cancer specimens with high Gleason scores. In prostate cancer cells, coimmunoprecipitation and deletion mutagenesis revealed a physical interaction between Prp8 and AR mainly mediated by NESAR. Luciferase assay with prostate specific antigen promoter-driven reporter demonstrated that Prp8 regulated AR transcription activity in prostate cancer cells. Interestingly, Prp8 knockdown also increased polyubiquitination of endogenous AR. This may be 1 possible mechanism by which it modulates AR activity. These results show that Prp8 is a novel AR cofactor that interacts with NESAR and regulates AR function in prostate cancer cells. PMID:26371515

  19. The interaction between the Drosophila secreted protein argos and the epidermal growth factor receptor inhibits dimerization of the receptor and binding of secreted spitz to the receptor.

    PubMed

    Jin, M H; Sawamoto, K; Ito, M; Okano, H

    2000-03-01

    Drosophila Argos (Aos), a secreted protein with an epidermal growth factor (EGF)-like domain, has been shown to inhibit the activation of the Drosophila EGF receptor (DER). However, it has not been determined whether Aos binds directly to DER or whether regulation of the DER activation occurs through some other mechanism. Using DER-expressing cells (DER/S2) and a recombinant DER extracellular domain-Fc fusion protein (DER-Fc), we have shown that Aos binds directly to the extracellular domain of DER with its carboxyl-terminal region, including the EGF-like domain. Furthermore, Aos can block the binding of secreted Spitz (sSpi), a transforming growth factor alpha-like ligand of DER, to the extracellular domain of DER. We observed that sSpi stimulates the dimerization of both the soluble DER extracellular domain (sDER) and the intact DER in the DER/S2 cells and that Aos can block the sSpi-induced dimerization of both sDER and intact DER. Moreover, we have shown that, by directly interacting with DER, Aos and SpiAos (a chimeric protein that is composed of the N-terminal region of Spi and the C-terminal region of Aos) inhibit the dimerization and phosphorylation of DER that are induced by DER's overexpression in the absence of sSpi. These results indicate that Aos exerts its inhibitory function through dual molecular mechanisms: by blocking both the receptor dimerization and the binding of activating ligand to the receptor. This is the first description of this novel inhibitory mechanism for receptor tyrosine kinases.

  20. Modeling of growth factor-receptor systems: from molecular-level protein interaction networks to whole-body compartment models

    PubMed Central

    Wu, Florence T.H.; Stefanini, Marianne O.; Mac Gabhann, Feilim; Popel, Aleksander S.

    2010-01-01

    Most physiological processes are subjected to molecular regulation by growth factors, which are secreted proteins that activate chemical signal transduction pathways through binding of specific cell-surface receptors. One particular growth factor system involved in the in vivo regulation of blood vessel growth is called the vascular endothelial growth factor (VEGF) system. Computational and numerical techniques are well-suited to handle the molecular complexity (the number of binding partners involved, including ligands, receptors, and inert binding sites) and multi-scale nature (intra-tissue vs. inter-tissue transport and local vs. systemic effects within an organism) involved in modeling growth factor system interactions and effects. This paper introduces a variety of in silico models that seek to recapitulate different aspects of VEGF system biology at various spatial and temporal scales: molecular-level kinetic models focus on VEGF ligand-receptor interactions at and near the endothelial cell surface; meso-scale single-tissue 3D models can simulate the effects of multi-cellular tissue architecture on the spatial variation in VEGF ligand production and receptor activation; compartmental modeling allows efficient prediction of average interstitial VEGF concentrations and cell-surface VEGF signaling intensities across multiple large tissue volumes, permitting the investigation of whole-body inter-tissue transport (e.g., vascular permeability and lymphatic drainage). The given examples will demonstrate the utility of computational models in aiding both basic science and clinical research on VEGF systems biology. PMID:19897104

  1. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER)

    PubMed Central

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L.; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-01-01

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics. PMID:26079946

  2. Interaction of Platelet Membrane Receptors with von Willebrand Factor, Ristocetin, and the Fc Region of Immunoglobulin G

    PubMed Central

    Moore, Anne; Ross, Gordon D.; Nachman, Ralph L.

    1978-01-01

    The agglutination of human platelets by ristocetin and von Willebrand factor was inhibited by aggregated immunoglobulin (Ig)G and by Fc fragments of IgG, but not by Fab, F(ab′)2 or pFc fragments of IgG. Because this inhibition occurred with formalin-fixed platelets as well as with normal platelets, a generalized aggregation of fluid membrane components by Fc fragments was not responsible for this inhibition of ristocetin and von Willebrand factor-induced agglutination. Reciprocal inhibition of platelet Fc receptors was produced by prior incubation of platelets with von Willebrand factor and ristocetin. Sucrose density gradient ultracentrifugation studies demonstrated that aggregated IgG did not form fluid-phase complexes with von Willebrand factor and ristocetin. Furthermore, passage of von Willebrand factor and ristocetin through a column of immobilized heat-aggregated IgG did not alter platelet agglutinating activity which indicates that aggregated IgG did not inactivate von Willebrand factor or ristocetin. Thus, it was likely that the IgG-mediated interference with platelet agglutination by ristocetin and von Willebrand factor did not occur in the fluid phase but at the platelet surface. These studies suggest that the platelet membrane Fc receptor may be either a part of, or sterically related to, the membrane glycoprotein I complex that interacts with von Willebrand factor, and that occupation of one of these surface components blocks the availability of the other. PMID:309473

  3. Immunotherapy of human tumour xenografts overexpressing the EGF receptor with rat antibodies that block growth factor-receptor interaction.

    PubMed Central

    Modjtahedi, H.; Eccles, S.; Box, G.; Styles, J.; Dean, C.

    1993-01-01

    Athymic mice bearing xenografts of human tumours that overexpress the receptor (EGFR) for EGF and TGF alpha have been used to evaluate the therapeutic potential of three new rat monoclonal antibodies (mAbs) directed against two distinct epitopes on the extracellular domain of the human EGFR. The antibodies, ICR16 (IgG2a), ICR62 (IgG2b) and ICR64 (IgG1), have been shown (Modjtahedi et al., 1993) to be potent inhibitors of the growth in vitro of a number of human squamous cell carcinomas because they block receptor-ligand interaction. When given i.p. at 200 micrograms dose, the three antibodies were found to induce complete regression of xenografts of the HN5 tumour if treatment with antibody commenced at the time of tumour implantation (total doses: ICR16, 3.0 mg; ICR62, 1.2 mg; ICR64, 2.2 mg). More importantly when treatment was delayed until the tumours were established (mean diam. 0.5 cm) both ICR16 and ICR62 induced complete or almost complete regression of the tumours. Furthermore, treatment with a total dose of only 0.44 mg of ICR62 was found to induce complete remission of xenografts of the breast carcinoma MDA-MB 468, but ICR16 was less effective at this dose of antibody and only 4/8 tumours regressed completely. ICR16 and ICR62 were poor inhibitors of the growth in vitro of the vulval carcinoma A431, but both induced a substantial delay in the growth of xenografts of this tumour and 4/8 tumours regressed completely in the mice treated with ICR62 (total dose 2.2 mg). Although ICR16 and ICR64 were more effective than ICR62 as growth inhibitors in vitro, ICR62 was found to be substantially better at inducing regression of the tumour xenografts due perhaps to additional activation of host immune effector functions by the IgG2b antibody. We conclude that these antibodies may be useful therapeutic agents that can be used alone without conjugation to other cytotoxic moieties. PMID:7679281

  4. NRC-interacting factor 1 is a novel cotransducer that interacts with and regulates the activity of the nuclear hormone receptor coactivator NRC.

    PubMed

    Mahajan, Muktar A; Murray, Audrey; Samuels, Herbert H

    2002-10-01

    We previously reported the cloning and characterization of a novel nuclear hormone receptor transcriptional coactivator, which we refer to as NRC. NRC is a 2,063-amino-acid nuclear protein which contains a potent N-terminal activation domain and several C-terminal modules which interact with CBP and ligand-bound nuclear hormone receptors as well as c-Fos and c-Jun. In this study we sought to clone and identify novel factors that interact with NRC to modulate its transcriptional activity. Here we describe the cloning and characterization of a novel protein we refer to as NIF-1 (NRC-interacting factor 1). NIF-1 was cloned from rat pituitary and human cell lines and was found to interact in vivo and in vitro with NRC. NIF-1 is a 1,342-amino-acid nuclear protein containing a number of conserved domains, including six Cys-2/His-2 zinc fingers, an N-terminal stretch of acidic amino acids, and a C-terminal leucine zipper-like motif. Zinc fingers 1 to 3 are potential DNA-binding BED finger domains recently proposed to play a role in altering local chromatin architecture. We mapped the interaction domains of NRC and NIF-1. Although NIF-1 does not directly interact with nuclear receptors, it markedly enhances ligand-dependent transcriptional activation by nuclear hormone receptors in vivo as well as activation by c-Fos and c-Jun. These results, and the finding that NIF-1 interacts with NRC in vivo, suggest that NIF-1 functions to regulate transcriptional activation through NRC. We suggest that NIF-1, and factors which associate with coactivators but not receptors, be referred to as cotransducers, which act in vivo either as part of a coactivator complex or downstream of a coactivator complex to modulate transcriptional activity. Our findings suggest that NIF-1 may be a functional component of an NRC complex and acts as a regulator or cotransducer of NRC function.

  5. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    SciTech Connect

    Randazzo, P.A.; Jarett, L. )

    1990-09-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.

  6. Molecular cloning of the mouse grb2 gene: differential interaction of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors.

    PubMed Central

    Suen, K L; Bustelo, X R; Pawson, T; Barbacid, M

    1993-01-01

    We report the isolation and molecular characterization of the mouse grb2 gene. The product of this gene, the Grb2 protein, is highly related to the Caenorhabditis elegans sem-5 gene product and the human GRB2 protein and displays the same SH3-SH2-SH3 structural motifs. In situ hybridization studies revealed that the mouse grb2 gene is widely expressed throughout embryonic development (E9.5 to P0). However, grb2 transcripts are not uniformly distributed, and in certain tissues (e.g., thymus) they appear to be regulated during development. Recent genetic and biochemical evidence has implicated the Grb2 protein in the signaling pathways that link cell surface tyrosine kinase receptors with Ras. We have investigated the association of the Grb2 protein with epidermal growth factor (EGF) and nerve growth factor (NGF) receptors in PC12 pheochromocytoma cells. EGF treatment of PC12 cells results in the rapid association of Grb2 with the activated EGF receptors, an interaction mediated by the Grb2 SH2 domain. However, Grb2 does not bind to NGF-activated Trk receptors. Mitogenic signaling of NGF in NIH 3T3 cells ectopically expressing Trk receptors also takes place without detectable association between Grb2 and Trk. These results suggest that whereas EGF and NGF can activate the Ras signaling pathway in PC12 cells, only the EGF receptor is likely to do so through a direct interaction with Grb2. Finally, binding studies with glutathione S-transferase fusion proteins indicate that Grb2 binds two distinct subsets of proteins which are individually recognized by its SH2 and SH3 domains. These observations add further support to the concept that Grb2 is a modular adaptor protein. Images PMID:7689150

  7. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    PubMed

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  8. Plasticity in Interactions of Fibroblast Growth Factor 1 (FGF1) N Terminus with FGF Receptors Underlies Promiscuity of FGF1*

    PubMed Central

    Beenken, Andrew; Eliseenkova, Anna V.; Ibrahimi, Omar A.; Olsen, Shaun K.; Mohammadi, Moosa

    2012-01-01

    Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1–3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the “universal FGFR ligand” because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the “b” and “c” splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs. PMID:22057274

  9. Adenosine A1 receptor: Functional receptor-receptor interactions in the brain

    PubMed Central

    Sichardt, Kathrin

    2007-01-01

    Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders. PMID:18404442

  10. Structural Model for the Interaction of a Designed Ankyrin Repeat Protein with the Human Epidermal Growth Factor Receptor 2

    PubMed Central

    Epa, V. Chandana; Dolezal, Olan; Doughty, Larissa; Xiao, Xiaowen; Jost, Christian; Plückthun, Andreas; Adams, Timothy E.

    2013-01-01

    Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2). HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84–1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions. PMID:23527120

  11. Structural model for the interaction of a designed Ankyrin Repeat Protein with the human epidermal growth factor receptor 2.

    PubMed

    Epa, V Chandana; Dolezal, Olan; Doughty, Larissa; Xiao, Xiaowen; Jost, Christian; Plückthun, Andreas; Adams, Timothy E

    2013-01-01

    Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2). HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84-1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions.

  12. Splicing Factor Prp8 Interacts With NES(AR) and Regulates Androgen Receptor in Prostate Cancer Cells.

    PubMed

    Wang, Dan; Nguyen, Minh M; Masoodi, Khalid Z; Singh, Prabhpreet; Jing, Yifeng; O'Malley, Katherine; Dar, Javid A; Dhir, Rajiv; Wang, Zhou

    2015-12-01

    Androgen receptor (AR) plays a pivotal role in the development of primary as well as advanced castration-resistant prostate cancer. Previous work in our lab identified a novel nuclear export signal (NES) (NES(AR)) in AR ligand-binding domain essential for AR nucleocytoplasmic trafficking. By characterizing the localization of green fluorescence protein (GFP)-tagged NES(AR), we designed and executed a yeast mutagenesis screen and isolated 7 yeast mutants that failed to display the NES(AR) export function. One of those mutants was identified as the splicing factor pre-mRNA processing factor 8 (Prp8). We further showed that Prp8 could regulate NES(AR) function using short hairpin RNA knockdown of Prp8 coupled with a rapamycin export assay in mammalian cells and knockdown of Prp8 could induce nuclear accumulation of GFP-tagged AR in PC3 cells. Prp8 expression was decreased in castration-resistant LuCaP35 xenograft tumors as compared with androgen-sensitive xenografts. Laser capture microdissection and quantitative PCR showed Prp8 mRNA levels were decreased in human prostate cancer specimens with high Gleason scores. In prostate cancer cells, coimmunoprecipitation and deletion mutagenesis revealed a physical interaction between Prp8 and AR mainly mediated by NES(AR). Luciferase assay with prostate specific antigen promoter-driven reporter demonstrated that Prp8 regulated AR transcription activity in prostate cancer cells. Interestingly, Prp8 knockdown also increased polyubiquitination of endogenous AR. This may be 1 possible mechanism by which it modulates AR activity. These results show that Prp8 is a novel AR cofactor that interacts with NES(AR) and regulates AR function in prostate cancer cells.

  13. Components of the CCR4-NOT complex function as nuclear hormone receptor coactivators via association with the NRC-interacting Factor NIF-1.

    PubMed

    Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H

    2008-03-14

    CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.

  14. Interaction of nuclear factors with the upstream region of the alpha-subunit gene of chicken muscle acetylcholine receptor: variations with muscle differentiation and denervation.

    PubMed Central

    Piette, J; Klarsfeld, A; Changeux, J P

    1989-01-01

    The region lying between nucleotides (nt) -110 and -45 of chicken acetylcholine receptor alpha-subunit gene 5' upstream sequence confers developmental control of expression in primary cultures of chicken myotubes. This region interacts with several nuclear factors present in muscle cells as shown by DNase I footprinting and gel-retardation experiments. An Sp1-like factor and a guanine stretch-binding protein were found to bind to overlapping sites immediately upstream of the TATA box. Several factors interacting in the same region with a domain similar to the SV40 enhancer core appeared during in vitro differentiation of myoblasts into myotubes. The concentration of some of these factors increased also after denervation of leg muscle in newborn chickens. The specific interaction of nuclear factors with this domain may thus play a critical role in the regulation of alpha-subunit gene expression by muscle differentiation and electrical activity. Images PMID:2721497

  15. Studies on Platelet-Derived Growth Factor Beta-Receptor and Hepatocyte Growth Factor Receptor c-met in Paracrine Interactions in Human Breast Cancer

    DTIC Science & Technology

    1996-09-01

    are those of the author and are not necessarily endorsed by the US c’Where Copyrighted material is quoted, pex =ission has been o maind to use such...followed by abso- adjacent capillary endothelium of carcinoma in situ express lute ethanol and 95% ethanol , and then air dried. PDGF P3 receptor mRNA (Fig... ethanol for 5 minutes and 95% ethanol for • 15 minutes, and then air dried. Probes were diluted in prehybridization mix at 15 ng/[Ll, and 200 pA of

  16. In Vivo Estradiol, Tamoxifen and Raloxifene Modulation of Association/Dissociation Kinetics for Estrogen Receptor, Interacting Co-Factors and DNA Binding Sites

    DTIC Science & Technology

    2002-06-01

    is preferred clinically (3, 5 , 7 , 13). It is our goal to understand the molecular and cellular basis of the tissue-specific actions of these...IFinal (14 May 01 - 23 May 02) 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS In Vivo Estradiol, Tamoxifen and Raloxifene Modulation of DAMDl7-01-1-0498...Association/Dissociation Kinetics for Estrogen Receptor, Interacting Co-Factors and DNA Binding Sites 6. AUTHOR(S) Fred J. Schaufele, Ph.D. 7

  17. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    PubMed

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K

    2010-02-19

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.

  18. Familial risk for mood disorder and the personality risk factor, neuroticism, interact in their association with frontolimbic serotonin 2A receptor binding.

    PubMed

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David; Baaré, William; Holst, Klaus Kähler; Mortensen, Erik Lykke; Arfan, Haroon; Madsen, Jacob; Jernigan, Terry L; Kessing, Lars Vedel; Knudsen, Gitte Moos

    2010-04-01

    Life stress is a robust risk factor for later development of mood disorders, particularly for individuals at familial risk. Likewise, scoring high on the personality trait neuroticism is associated with an increased risk for mood disorders. Neuroticism partly reflects stress vulnerability and is positively correlated to frontolimbic serotonin 2A (5-HT(2A)) receptor binding. Here, we investigate whether neuroticism interacts with familial risk in relation to frontolimbic 5-HT(2A) receptor binding. Twenty-one healthy twins with a co-twin history of mood disorder and 16 healthy twins without a co-twin history of mood disorder were included. They answered self-report personality questionnaires and underwent [(18)F]altanserin positron emission tomography. We found a significant interaction between neuroticism and familial risk in predicting the frontolimbic 5-HT(2A) receptor binding (p=0.026) in an analysis adjusting for age and body mass index. Within the high-risk group only, neuroticism and frontolimbic 5-HT(2A) receptor binding was positively associated (p=0.0037). In conclusion, our data indicate that familial risk and neuroticism interact in their relation to frontolimbic 5-HT(2A) receptor binding. These findings point at a plausible neurobiological link between genetic and personality risk factors and vulnerability to developing mood disorders. It contributes to our understanding of why some people at high risk develop mood disorders while others do not. We speculate that an increased stress reactivity in individuals at high familial risk for mood disorders might enhance the effect of neuroticism in shaping the impact of potential environmental stress and thereby influence serotonergic neurotransmission.

  19. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    PubMed

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  20. Molecular cloning, expression and functional characterization of tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) in grass carp, Ctenopharyngodon idella.

    PubMed

    Lu, R-H; Chang, Z-G; Sun, J; Yang, F; Nie, G-X; Ji, H

    2016-10-01

    TRIP (Tumor Necrosis Factor (TNF) Receptor-Associated Factor (TRAF)-Interacting Protein), a member of the TNF superfamily, plays a crucial role in the modulation of inflammation in vertebrates. However, no information about TRIP is available in teleosts. In this study, the full-length cDNA of TRIP, containing a 5'UTR of 112 bp, an ORF of 1359 bp, and a 3'UTR of 29 bp before the poly (A) tail, was cloned from grass carp, Ctenopharyngodon idella. The TRIP gene encoded a protein of 452 amino acids with an estimated molecular mass of 51.06 KD and a predicted theoretical isoelectric point (pI) of 9.11. Quantitative real-time PCR analysis revealed that TRIP mRNA was expressed in all the tissues examined in grass carp, with the highest expression in the kidney, followed by the intestine and thymus. However, lower levels of expression were also detected in fat, spleen, liver, gonad and heart. Subcellular localization and two-hybrid analysis revealed that TRIP was located in the nucleus and that it interacted with TRAF1 and TRAF2 in HEK293T cells. Furthermore, similar to TNF-α, IL-10 and TRIP mRNA expression was upregulated in the spleen of fish fed high-fat or high-carbohydrate diets, suggesting that TRIP might be associated with the response to excessive energy intake. The mRNA relative expression of TRIP was significantly reduced (P < 0.05) after hepatocyte of C. idella was treated with 2 μg/mL lipopolysaccharide (LPS) for 4 h, while the expression levels of inflammatory cytokines TNF-α and IL-10 were significantly increased (P < 0.05). Taken together, these results indicate that TRIP might play important roles in immune defense and has the potential to be used as a anti-inflammation target in grass carp.

  1. Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer

    PubMed Central

    Chung, Il Yong; Park, Yu Rang; Min, Yul Ha; Lee, Yura; Yoon, Tae In; Sohn, Guiyun; Lee, Sae Byul; Kim, Jisun; Kim, Hee Jeong; Ko, Beom Seok; Son, Byung Ho; Ahn, Sei Hyun

    2017-01-01

    The aim of this study was to determine the relationship between the body mass index (BMI) at a breast cancer diagnosis and various factors including the hormone-receptor, menopause, and lymph-node status, and identify if there is a specific patient subgroup for which the BMI has an effect on the breast cancer prognosis. We retrospectively analyzed the data of 8,742 patients with non-metastatic invasive breast cancer from the research database of Asan Medical Center. The overall survival (OS) and breast-cancer-specific survival (BCSS) outcomes were compared among BMI groups using the Kaplan-Meier method and Cox proportional-hazards regression models with an interaction term. There was a significant interaction between BMI and hormone-receptor status for the OS (P = 0.029), and BCSS (P = 0.013) in lymph-node-positive breast cancers. Obesity in hormone-receptor-positive breast cancer showed a poorer OS (adjusted hazard ratio [HR] = 1.51, 95% confidence interval [CI] = 0.92 to 2.48) and significantly poorer BCSS (HR = 1.80, 95% CI = 1.08 to 2.99). In contrast, a high BMI in hormone-receptor-negative breast cancer revealed a better OS (HR = 0.44, 95% CI = 0.16 to 1.19) and BCSS (HR = 0.53, 95% CI = 0.19 to 1.44). Being underweight (BMI < 18.50 kg/m2) with hormone-receptor-negative breast cancer was associated with a significantly worse OS (HR = 1.98, 95% CI = 1.00–3.95) and BCSS (HR = 2.24, 95% CI = 1.12–4.47). There was no significant interaction found between the BMI and hormone-receptor status in the lymph-node-negative setting, and BMI did not interact with the menopause status in any subgroup. In conclusion, BMI interacts with the hormone-receptor status in a lymph-node-positive setting, thereby playing a role in the prognosis of breast cancer. PMID:28248981

  2. Interaction between echovirus 7 and its receptor, decay-accelerating factor (CD55): evidence for a secondary cellular factor in A-particle formation.

    PubMed Central

    Powell, R M; Ward, T; Evans, D J; Almond, J W

    1997-01-01

    Soluble forms of decay-accelerating factor (DAF) (CD55), the receptor for echovirus 7, were synthesized in the yeast Pichia pastoris. Purified recombinant protein containing SCR domains 2, 3, and 4, but lacking the serine/threonine rich region, was shown to block infection of susceptible cells by echovirus 7. In contrast to the situation with poliovirus and its receptor, the neutralization of echovirus 7 by soluble DAF was completely reversible and did not lead to the formation of 135S A-particles. Binding of virus to susceptible cells, by contrast, did lead to the formation of A particles, mainly from virus that had been internalized. The data suggest that a secondary factor(s) may contribute to A-particle formation and uncoating of echovirus 7. PMID:9371589

  3. Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) negatively regulates the TRAF2 ubiquitin-dependent pathway by suppressing the TRAF2-sphingosine 1-phosphate (S1P) interaction.

    PubMed

    Park, Eui-Soon; Choi, Seunga; Shin, Bongjin; Yu, Jungeun; Yu, Jiyeon; Hwang, Jung-Me; Yun, Hyeongseok; Chung, Young-Ho; Choi, Jong-Soon; Choi, Yongwon; Rho, Jaerang

    2015-04-10

    The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys(63)-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.

  4. Ligand-induced interaction between. alpha. - and. beta. -type platelet-derived growth factor (PDGF) receptors: Role of receptor heterodimers in kinase activation

    SciTech Connect

    Kanakaraj, P.; Raj, S.; Bishayee, S. ); Khan, S.A. )

    1991-02-19

    Two types of PDGF receptors have been cloned and sequenced. Both receptors are transmembrane glycoproteins with a ligand-stimulatable tyrosine kinase site. The authors have shown earlier that ligand-induced activation of the {beta}-type PDGF receptor is due to the conversion of the monomeric form of the receptor to the dimeric form. In the present studies, they have established the ligand-binding specificity of two receptor types and extended it further to investigate the ligand-induced association state of the {alpha}-receptor and the role of {alpha}-receptor in the activation of {beta}-receptor. These studies were conducted with cells that express one or the other type of PDGF receptor as well as with cells that express both types of receptors. Moreover, ligand-binding characteristics of the receptor were confirmed by immunoprecipitation of the receptor-{sup 125}I-PDGF covalent complex with type-specific anti-PDGF receptor antibodies. These studies revealed that all three isoforms of PDGF bind to {alpha}-receptor, and such binding leads to dimerization as well as activation of the receptor. In contrast, {beta}-receptor can be activated only by PDGF BB and not by PDGF AB or PDGF AA. However, by using antipeptide antibodies that are specific for {alpha}- or {beta}-type PDGF receptor, they demonstrated that in the presence of {alpha}-receptor, {beta}-receptor kinase can be activated by PDGF AB. They present here direct evidence that strongly suggests that such PDGF AB induced activation of {beta}-receptor is due to the formation of a noncovalently linked {alpha}-{beta} receptor heterodimer.

  5. A distinct basic fibroblast growth factor (FGF-2)/FGF receptor interaction distinguishes urokinase-type plasminogen activator induction from mitogenicity in endothelial cells.

    PubMed Central

    Rusnati, M; Dell'Era, P; Urbinati, C; Tanghetti, E; Massardi, M L; Nagamine, Y; Monti, E; Presta, M

    1996-01-01

    Basic fibroblast growth factor (FGF-2) induces cell proliferation and urokinase-type plasminogen activator (uPA) production in fetal bovine aortic endothelial GM 7373 cells. In the present paper we investigated the role of the interaction of FGF-2 with tyrosine-kinase (TK) FGF receptors (FGFRs) in mediating uPA up-regulation in these cells. The results show that FGF-2 antagonists suramin, protamine, heparin, the synthetic peptide FGF-2(112-155), and a soluble form of FGFR-1 do not inhibit FGF-2-mediated uPA up-regulation at concentrations that affect growth factor binding to cell surface receptors and mitogenic activity. In contrast, tyrosine phosphorylation inhibitors and overexpression of a dominant negative TK- mutant of FGFR-1 abolish the uPA-inducing activity of FGF-2, indicating that FGFR and its TK activity are essential in mediating uPA induction. Accordingly, FGF-2 induces uPA up-regulation in Chinese hamster ovary cells transfected with wild-type FGFR-1, -2, -3, or -4 but not with TK- FGFR-1 mutant. Small unilamellar phosphatidyl choline:cholesterol vesicles loaded with FGF-2 increased uPA production in GM 7373 cells in the absence of a mitogenic response. Liposome-encapsulated FGF-2 showed a limited but significant capacity, relative to free FGF-2, to interact with FGFR both at 4 degrees C and 37 degrees C and to be internalized within the cell. uPA up-regulation by liposome-encapsulated FGF-2 was quenched by neutralizing anti-FGF-2 antibodies, indicating that the activity of liposome-delivered FGF-2 is mediated by an extracellular action of the growth factor. Taken together, the data indicate that a distinct interaction of FGF-2 with FGFR, quantitatively and/or qualitatively different from the one that leads to mitogenicity, is responsible for the uPA-inducing activity of the growth factor. Images PMID:8868466

  6. Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons

    PubMed Central

    Giuffrida, Maria L.; Tomasello, Marianna F.; Pandini, Giuseppe; Caraci, Filippo; Battaglia, Giuseppe; Busceti, Carla; Di Pietro, Paola; Pappalardo, Giuseppe; Attanasio, Francesco; Chiechio, Santina; Bagnoli, Silvia; Nacmias, Benedetta; Sorbi, Sandro; Vigneri, Riccardo; Rizzarelli, Enrico; Nicoletti, Ferdinando; Copani, Agata

    2015-01-01

    ß-amyloid (Aß1−42) is produced by proteolytic cleavage of the transmembrane type-1 protein, amyloid precursor protein. Under pathological conditions, Aß1−42self-aggregates into oligomers, which cause synaptic dysfunction and neuronal loss, and are considered the culprit of Alzheimer's disease (AD). However, Aß1−42 is mainly monomeric at physiological concentrations, and the precise role of monomeric Aß1−42 in neuronal function is largely unknown. We report that the monomer of Aß1−42 activates type-1 insulin-like growth factor receptors and enhances glucose uptake in neurons and peripheral cells by promoting the translocation of the Glut3 glucose transporter from the cytosol to the plasma membrane. In neurons, activity-dependent glucose uptake was blunted after blocking endogenous Aß production, and re-established in the presence of cerebrospinal fluid Aß. APP-null neurons failed to enhance depolarization-stimulated glucose uptake unless exogenous monomeric Aß1−42 was added. These data suggest that Aß1−42 monomers were critical for maintaining neuronal glucose homeostasis. Accordingly, exogenous Aß1−42 monomers were able to rescue the low levels of glucose consumption observed in brain slices from AD mutant mice. PMID:26300732

  7. Steroid receptor coactivator-interacting protein (SIP) inhibits caspase-independent apoptosis by preventing apoptosis-inducing factor (AIF) from being released from mitochondria.

    PubMed

    Wang, Dandan; Liang, Jing; Zhang, Yu; Gui, Bin; Wang, Feng; Yi, Xia; Sun, Luyang; Yao, Zhi; Shang, Yongfeng

    2012-04-13

    Apoptosis-inducing factor (AIF) is a caspase-independent death effector. Normally residing in the mitochondrial intermembrane space, AIF is released and translocated to the nucleus in response to proapoptotic stimuli. Nuclear AIF binds to DNA and induces chromatin condensation and DNA fragmentation, characteristics of apoptosis. Until now, it remained to be clarified how the mitochondrial-nuclear translocation of AIF is regulated. Here we report that steroid receptor coactivator-interacting protein (SIP) interacts directly with AIF in mitochondria and specifically inhibits caspase-independent and AIF-dependent apoptosis. Challenging cells with apoptotic stimuli leads to rapid degradation of SIP, and subsequently AIF is liberated from mitochondria and translocated to the nucleus to induce apoptosis. Together, our data demonstrate that SIP is a novel regulator in caspase-independent and AIF-mediated apoptosis.

  8. Nuclear Receptor-Like Structure and Interaction of Congenital Heart Disease-Associated Factors GATA4 and NKX2-5

    PubMed Central

    Tölli, Marja; Wohlfahrt, Gerd; Darwich, Rami; Komati, Hiba; Nemer, Mona; Ruskoaho, Heikki

    2015-01-01

    Aims Transcription factor GATA4 is a dosage sensitive regulator of heart development and alterations in its level or activity lead to congenital heart disease (CHD). GATA4 has also been implicated in cardiac regeneration and repair. GATA4 action involves combinatorial interaction with other cofactors such as NKX2-5, another critical cardiac regulator whose mutations also cause CHD. Despite its critical importance to the heart and its evolutionary conservation across species, the structural basis of the GATA4-NKX2-5 interaction remains incompletely understood. Methods and Results A homology model was constructed and used to identify surface amino acids important for the interaction of GATA4 and NKX2-5. These residues were subjected to site-directed mutagenesis, and the mutant proteins were characterized for their ability to bind DNA and to physically and functionally interact with NKX2-5. The studies identify 5 highly conserved amino acids in the second zinc finger (N272, R283, Q274, K299) and its C-terminal extension (R319) that are critical for physical and functional interaction with the third alpha helix of NKX2-5 homeodomain. Integration of the experimental data with computational modeling suggests that the structural arrangement of the zinc finger-homeodomain resembles the architecture of the conserved DNA binding domain of nuclear receptors. Conclusions The results provide novel insight into the structural basis for protein-protein interactions between two important classes of transcription factors. The model proposed will help to elucidate the molecular basis for disease causing mutations in GATA4 and NKX2-5 and may be relevant to other members of the GATA and NK classes of transcription factors. PMID:26642209

  9. Hepatocyte Growth Factor Modulates MET Receptor Tyrosine Kinase and β-Catenin Functional Interactions to Enhance Synapse Formation

    PubMed Central

    Xie, Zhihui; Eagleson, Kathie L.

    2016-01-01

    MET, a pleiotropic receptor tyrosine kinase implicated in autism risk, influences multiple neurodevelopmental processes. There is a knowledge gap, however, in the molecular mechanism through which MET mediates developmental events related to disorder risk. In the neocortex, MET is expressed transiently during periods of peak dendritic outgrowth and synaptogenesis, with expression enriched at developing synapses, consistent with demonstrated roles in dendritic morphogenesis, modulation of spine volume, and excitatory synapse development. In a recent coimmunoprecipitation/mass spectrometry screen, β-catenin was identified as part of the MET interactome in developing neocortical synaptosomes. Here, we investigated the influence of the MET/β-catenin complex in mouse neocortical synaptogenesis. Western blot analysis confirms that MET and β-catenin coimmunoprecipitate, but N-cadherin is not associated with the MET complex. Following stimulation with hepatocyte growth factor (HGF), β-catenin is phosphorylated at tyrosine142 (Y142) and dissociates from MET, accompanied by an increase in β-catenin/N-cadherin and MET/synapsin 1 protein complexes. In neocortical neurons in vitro, proximity ligation assays confirmed the close proximity of these proteins. Moreover, in neurons transfected with synaptophysin-GFP, HGF stimulation increases the density of synaptophysin/bassoon (a presynaptic marker) and synaptophysin/PSD-95 (a postsynaptic marker) clusters. Mutation of β-catenin at Y142 disrupts the dissociation of the MET/β-catenin complex and prevents the increase in clusters in response to HGF. The data demonstrate a new mechanism for the modulation of synapse formation, whereby MET activation induces an alignment of presynaptic and postsynaptic elements that are necessary for assembly and formation of functional synapses by subsets of neocortical neurons that express MET/β-catenin complex. PMID:27595133

  10. Study of Coxsackie B viruses interactions with Coxsackie Adenovirus receptor and Decay-Accelerating Factor using Human CaCo-2 cell line

    PubMed Central

    2014-01-01

    Background Decay Accelerating Factor (DAF) and Coxsackievirus-Adenovirus Receptor (CAR) have been identified as cellular receptors for Coxsackie B viruses (CV-B). The aim of this study is to elucidate the different binding properties of CV-B serotypes and to find out if there are any amino acid changes that could be associated to the different phenotypes. Twenty clinical CV-B isolates were tested on CaCo-2 cell line using anti-DAF (BRIC216) and anti-CAR (RmcB) antibodies. CV-B3 Nancy prototype strain and a recombinant strain (Rec, CV-B3/B4) were tested in parallel. The P1 genomic region of 12 CV-B isolates from different serotypes was sequenced and the Trans-Epithelial Electrical Resistance (TEER) along with the virus growth cycle was measured. Results Infectivity assays revealed clear differences between CV-B isolates with regard to their interactions with DAF and CAR. All tested CV-B isolates showed an absolute requirement for CAR but varied in their binding to DAF. We also reported that for some isolates of CV-B, DAF attachment was not adapted. Genetic analysis of the P1 region detected multiple differences in the deduced amino acid sequences. Conclusion Within a given serotype, variations exist in the capacity of virus isolates to bind to specific receptors, and variants with different additional ligands may arise during infection in humans as well as in tissue culture. PMID:24885774

  11. Transforming Growth Factor-B Receptors in Human Breast Cancer.

    DTIC Science & Technology

    1998-05-01

    receptor. Nature 370:341-347,1994 60. Wang T, Donahoe P, Zervos AS: Specific interaction of type I receptors of the TGFß family with the immunophilin...Res 56: 44^48,1996 82. Kadin ME. Cavaille-Coll MW, Gertz R. Massague J, Chei- fetz S. George D: Loss of receptors for transforming growth factor ß

  12. Interactions Between Corticotropin-Releasing Factor and the Serotonin 1A Receptor System on Acoustic Startle Amplitude and Prepulse Inhibition of the Startle Response in Two Rat Strains

    PubMed Central

    Conti, Lisa H.

    2011-01-01

    Both the neuropeptide, corticotropin-releasing factor (CRF) and the serotonin 1A (5-HT1A) receptor systems have been implicated in anxiety disorders and there is evidence that the two systems interact with each other to affect behavior. Both systems have individually been shown to affect prepulse inhibition (PPI) of the acoustic startle response. PPI is a form of sensorimotor gating that is reduced in patients with anxiety disorders including post-traumatic stress and panic disorder. Here, we examined whether the two systems interact or counteract each other to affect acoustic startle amplitude, PPI and habituation of the startle response. In experiment 1, Brown Norway (BN) and Wistar-Kyoto (WKY) rats were administered ether an intraperitoneal (IP) injection of saline or the 5-HT1A receptor agonist, 8-OH-DPAT 10 min prior to receiving an intracerebroventricular (ICV) infusion of either saline or CRF (0.3 µg). In a second experiment, rats were administered either an IP injection of saline or the 5-HT1A receptor antagonist, WAY 100,635 10 min prior to receiving an ICV infusion of saline or CRF. Thirty min after the ICV infusion, the startle response and PPI were assessed. As we have previously shown, the dose of CRF used in these experiments reduced PPI in BN rats and had no effect on PPI in WKY rats. Administration of 8-OH-DPAT alone had no effect on PPI in either rat strain when the data from the two strains were examined separately. Administration of 8-OHDPAT added to the effect of CRF in BN rats, and the combination of 8-OH-DPAT and CRF significantly reduced PPI in WKY rats. CRF alone had no effect on baseline startle amplitude in either rat strain, but CRF enhanced the 8-OH-DPAT-induced increase in startle in both strains. Administration of WAY 100,635 did not affect the CRF-induced change in PPI and there were no interactions between CRF and WAY 100,635 on baseline startle. The results suggest that activation of the 5-HT1A receptor can potentiate the effect of

  13. An unusual cytokine:Ig-domain interaction revealed in the crystal structure of leukemia inhibitory factor (LIF) in complex with the LIF receptor

    PubMed Central

    Huyton, Trevor; Zhang, Jian-Guo; Luo, Cindy S.; Lou, Mei-Zhen; Hilton, Douglas J.; Nicola, Nicos A.; Garrett, Thomas P. J.

    2007-01-01

    Leukemia inhibitory factor (LIF) receptor is a cell surface receptor that mediates the actions of LIF and other IL-6 type cytokines through the formation of high-affinity signaling complexes with gp130. Here we present the crystal structure of a complex of mouse LIF receptor with human LIF at 4.0 Å resolution. The structure is, to date, the largest cytokine receptor fragment determined by x-ray crystallography. The binding of LIF to its receptor via the central Ig-like domain is unlike other cytokine receptor complexes that bind ligand predominantly through their cytokine-binding modules. This structure, in combination with previous crystallographic studies, also provides a structural template to understand the formation and orientation of the high-affinity signaling complex between LIF, LIF receptor, and gp130. PMID:17652170

  14. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1.

    PubMed Central

    vom Baur, E; Zechel, C; Heery, D; Heine, M J; Garnier, J M; Vivat, V; Le Douarin, B; Gronemeyer, H; Chambon, P; Losson, R

    1996-01-01

    Using a yeast two-hybrid system we report the isolation of a novel mouse protein, mSUG1, that interacts with retinoic acid receptor alpha (RAR alpha) both in yeast cells and in vitro in a ligand- and AF-2 activating domain (AF-2 AD)-dependent manner and show that it is a structural and functional homologue of the essential yeast protein SUG1. mSUG1 also efficiently interacts with other nuclear receptors, including oestrogen (ER), thyroid hormone (TR), Vitamin D3 (VDR) and retinoid X (RXR) receptors. By comparing the interaction properties of these receptors with mSUG1 and TIF1, we demonstrate that: (i) RXR alpha efficiently interacts with TIF1, but not with mSUG1, whereas TR alpha interacts much more efficiently with mSUG1 than with TIF1, and RAR alpha, VDR and ER efficiently interact with mSUG1 and TIF1; (ii) the amphipathic alpha-helix core of the AF-2 AD is differentially involved in interactions of RAR alpha with mSUG1 and TIF1; (iii) the AF-2 AD cores of RAR alpha and ER are similarly involved in their interaction with TIF1, but not with mSUG1. Thus, the interaction interfaces between the different receptors and either mSUG1 or TIF1 may vary depending on the nature of the receptor and the putative mediator of its AF-2 function. We discuss the possibility that mSUG1 and TIF1 may mediate the transcriptional activity of the AF-2 of nuclear receptors through different mechanisms. Images PMID:8598193

  15. Inhibition of the focal adhesion kinase and vascular endothelial growth factor receptor-3 interaction leads to decreased survival in human neuroblastoma cell lines.

    PubMed

    Beierle, Elizabeth A; Ma, Xiaojie; Stewart, Jerry E; Megison, Michael; Cance, William G; Kurenova, Elena V

    2014-03-01

    Neuroblastoma continues to be a devastating childhood solid tumor and is responsible for over 15% of all childhood cancer-related deaths. Focal adhesion kinase (FAK) and vascular endothelial growth factor receptor-3 (VEGFR-3) are protein tyrosine kinases that are overexpressed in a number of human cancers, including neuroblastoma. These two kinases can directly interact and provide survival signals to cancer cells. In this study, we utilized siRNA to VEGFR-3 to demonstrate the biologic importance of this kinase in neuroblastoma cell survival. We also used confocal microscopy and immunoprecipitation to show that FAK and VEGFR-3 bind in neuroblastoma. Finally, employing a 12-amino-acid peptide (AV3) specific to VEGFR-3, we showed that the colocalization between FAK and VEGFR-3 could be disrupted, and that disruption resulted in decreased neuroblastoma cell survival. These studies provide insight to the FAK-VEGFR-3 interaction in neuroblastoma and demonstrate its importance in this tumor type. Focusing upon the FAK-VEGFR-3 interaction may provide a novel therapeutic target for the development of new strategies for treatment of neuroblastoma.

  16. Negative Regulation of Grb10 Interacting GYF Protein 2 on Insulin-Like Growth Factor-1 Receptor Signaling Pathway Caused Diabetic Mice Cognitive Impairment

    PubMed Central

    Xie, Jing; Wei, Qianping; Deng, Huacong; Li, Gang; Ma, Lingli; Zeng, Hui

    2014-01-01

    Heterozygous Gigyf2+/− mice exhibits histopathological evidence of neurodegeneration such as motor dysfunction. Several lines of evidence have demonstrated the important role of insulin-like growth factor-1 receptor (IGF1R) signaling pathway in the neuropathogenic process of cognitive impairment, while decreased Grb10-Interacting GYF Protein 2 (GIGYF2) expression can alter IGF1R trafficking and its downstream signaling pathways. Growth factor receptor-bound protein 10 (Grb10), a suppressor of IGF1R pathway, has been shown to play a critical role in regulating diabetes-associated cognitive impairment. It remains unknown whether endogenous GIGYF2 expression contributes to the development of diabetes-associated cognitive impairment. Using streptozotocin (STZ)-induced diabetic mice model, we first demonstrated that a significantly increased level of GIGYF2 expression was correlated with a significant decrease in the expression of phosphorylated IGF1R as well as the phosphorylation of AKT and ERK1/2, two signaling pathways downstream of IGF1R, in the hippocampus of diabetic mice. On the contrary, in situ knockdown of GIGYF2 expression in hippocampus resulted in increased expression of phosphorylated IGF1R expression and correspondingly reversed the down-regulation of ERK1/2 phsophorylation but had no obvious effect on Grb10 expression. Functionally, knockdown of GIGYF2 expression markedly ameliorated diabetes-associated cognitive dysfunction as well as the ultrastructural pathology and abnormal neurobehavioral changes. These results suggest that increased expression of GIGYF2 might contribute to the development of diabetes-associated cognitive disorder via negatively regulating IGF1R signaling pathway. Therefore, down-regulation of GIGYF2 expression may provide a potential novel approach to treat diabetes-associated cognitive impairment caused by aberrant IGF1R signaling pathway. PMID:25268761

  17. M10, a caspase cleavage product of the hepatocyte growth factor receptor, interacts with Smad2 and demonstrates antifibrotic properties in vitro and in vivo.

    PubMed

    Atanelishvili, Ilia; Shirai, Yuichiro; Akter, Tanjina; Buckner, Taylor; Noguchi, Atsushi; Silver, Richard M; Bogatkevich, Galina S

    2016-04-01

    Hepatocyte growth factor receptor, also known as cellular mesenchymal-epithelial transition factor (c-MET, MET), is an important antifibrotic molecule that protects various tissues, including lung, from injury and fibrosis. The intracellular cytoplasmic tail of MET contains a caspase-3 recognition motif "DEVD-T" that on cleavage by caspase-3 generates a 10-amino acid peptide, TRPASFWETS, designated as "M10". M10 contains at its N-terminus the uncharged amino acid proline (P) directly after a cationic amino acid arginine (R) which favors the transport of the peptide through membranes. M10, when added to cell culture medium, remains in the cytoplasm and nuclei of cells for up to 24 hours. M10 effectively decreases collagen in both scleroderma and TGFβ-stimulated normal lung and skin fibroblasts. M10 interacts with the Mad Homology 2 domain of Smad2 and inhibits TGFβ-induced Smad2 phosphorylation, suggesting that the antifibrotic effects of M10 are mediated in part by counteracting Smad-dependent fibrogenic pathways. In the bleomycin murine model of pulmonary fibrosis, M10 noticeably reduced lung inflammation and fibrosis. Ashcroft fibrosis scores and lung collagen content were significantly lower in bleomycin-treated mice receiving M10 as compared with bleomycin-treated mice receiving scrambled peptide. We conclude that M10 peptide interacts with Smad2 and demonstrates strong antifibrotic effects in vitro and in vivo in an animal model of lung fibrosis and should be considered as a potential therapeutic agent for systemic sclerosis and other fibrosing diseases.

  18. M10, a Caspase Cleavage Product of the Hepatocyte Growth Factor Receptor, Interacts with Smad2 and Demonstrates Anti-Fibrotic Properties in Vitro and in Vivo

    PubMed Central

    Atanelishvili, Ilia; Shirai, Yuichiro; Akter, Tanjina; Buckner, Taylor; Noguchi, Atsushi; Silver, Richard M.; Bogatkevich, Galina S.

    2016-01-01

    Hepatocyte growth factor receptor, also known as cellular mesenchymal-epithelial transition factor (c-MET, MET), is an important antifibrotic molecule that protects various tissues, including lung, from injury and fibrosis. The intracellular cytoplasmic tail of MET contains a caspase-3 recognition motif “DEVD-T” that upon cleavage by caspase-3 generates a 10 amino acid peptide, TRPASFWETS, designated as “M10”. M10 contains at its N-terminus the uncharged amino acid proline (P) directly after a cationic amino acid arginine (R) which favors the transport of the peptide through membranes. M10, when added to cell culture medium, remains in the cytoplasm and nuclei of cells for up to 24 hours. M10 effectively decreases collagen in both scleroderma and TGFβ-stimulated normal lung and skin fibroblasts. M10 interacts with the MH2 domain of Smad2 and inhibits TGFβ-induced Smad2 phosphorylation, suggesting that the antifibrotic effects of M10 are mediated in part by counteracting Smad-dependent fibrogenic pathways. In the bleomycin murine model of pulmonary fibrosis, M10 noticeably reduced lung inflammation and fibrosis. Ashcroft fibrosis scores and lung collagen content were significantly lower in bleomycin-treated mice receiving M10 as compared with bleomycin-treated mice receiving scrambled peptide. We conclude that M10 peptide interacts with Smad2 and demonstrates strong antifibrotic effects in vitro and in vivo in an animal model of lung fibrosis and should be considered as a potential therapeutic agent for systemic sclerosis and other fibrosing diseases. PMID:26772959

  19. Combinatorial and Computational Approaches to Identify Interactions of Macrophage Colony-stimulating Factor (M-CSF) and Its Receptor c-FMS*

    PubMed Central

    Rosenfeld, Lior; Shirian, Jason; Zur, Yuval; Levaot, Noam; Shifman, Julia M.; Papo, Niv

    2015-01-01

    The molecular interactions between macrophage colony-stimulating factor (M-CSF) and the tyrosine kinase receptor c-FMS play a key role in the immune response, bone metabolism, and the development of some cancers. Because no x-ray structure is available for the human M-CSF·c-FMS complex, the binding epitope for this complex is largely unknown. Our goal was to identify the residues that are essential for binding of the human M-CSF to c-FMS. For this purpose, we used a yeast surface display (YSD) approach. We expressed a combinatorial library of monomeric M-CSF (M-CSFM) single mutants and screened this library to isolate variants with reduced affinity for c-FMS using FACS. Sequencing yielded a number of single M-CSFM variants with mutations both in the direct binding interface and distant from the binding site. In addition, we used computational modeling to map the identified mutations onto the M-CSFM structure and to classify the mutations into three groups as follows: those that significantly decrease protein stability; those that destroy favorable intermolecular interactions; and those that decrease affinity through allosteric effects. To validate the YSD and computational data, M-CSFM and three variants were produced as soluble proteins; their affinity and structure were analyzed; and very good correlations with both YSD data and computational predictions were obtained. By identifying the M-CSFM residues critical for M-CSF·c-FMS interactions, we have laid down the basis for a deeper understanding of the M-CSF·c-FMS signaling mechanism and for the development of target-specific therapeutic agents with the ability to sterically occlude the M-CSF·c-FMS binding interface. PMID:26359491

  20. Development of Nano-Liposomal Formulations of Epidermal Growth Factor Receptor Inhibitors and their Pharmacological Interactions on Drug-Sensitive and Drug-Resistant Cancer Cell Lines

    NASA Astrophysics Data System (ADS)

    Trummer, Brian J.

    A rapidly expanding understanding of molecular derangements in cancer cell function has led to the development of selective, targeted chemotherapeutic agents. Growth factor signal transduction networks are frequently activated in an aberrant fashion, particularly through the activity of receptor tyrosine kinases (RTK). This has spurred an intensive effort to develop receptor tyrosine kinase inhibitors (RTKI) that are targeted to specific receptors, or receptor subfamilies. Chapter 1 reviews the pharmacology, preclinical, and clinical aspects of RTKIs that target the epidermal growth factor receptor (EGFR). EGFR inhibitors demonstrate significant success at inhibiting phosphorylation-based signaling pathways that promote cancer cell proliferation. Additionally RTKIs have physicochemical and structural characteristics that enable them to function as inhibitors of multi-drug resistance transport proteins. Thus EGFR inhibitors and other RTKIs have both on-target and off-target activities that could be beneficial in cancer therapy. However, these agents exert a number of side effects, some of which arise from their hydrophobic nature and large in vivo volume of distribution. Side effects of the EGFR inhibitor gefitinib include skin rash, severe myelotoxicity when combined with certain chemotherapeutic agents, and impairment of the blood brain barrier to xenobiotics. Weighing the preclinical and clinical observations with the EGFR inhibitors, we developed the primary overall hypothesis of this research: that drug-carrier formulations of RTKIs such as the EGFR inhibitors could be developed based on nanoparticulate liposomal carriers. Theoretically, this carrier strategy would ameliorate toxicity and improve the biodistribution and tumor selectivity of these agents. We hypothesized specifically that liposomal formulations could shift the biodistribution of EGFR inhibitors such as gefitinib away from skin, bone marrow, and the blood brain barrier, and toward solid tumors

  1. An evolutionary conserved interaction between the Gcm transcription factor and the SF1 nuclear receptor in the female reproductive system.

    PubMed

    Cattenoz, Pierre B; Delaporte, Claude; Bazzi, Wael; Giangrande, Angela

    2016-11-25

    NR5A1 is essential for the development and for the function of steroid producing glands of the reproductive system. Moreover, its misregulation is associated with endometriosis, which is the first cause of infertility in women. Hr39, the Drosophila ortholog of NR5A1, is expressed and required in the secretory cells of the spermatheca, the female exocrine gland that ensures fertility by secreting substances that attract and capacitate the spermatozoids. We here identify a direct regulator of Hr39 in the spermatheca: the Gcm transcription factor. Furthermore, lack of Gcm prevents the production of the secretory cells and leads to female sterility in Drosophila. Hr39 regulation by Gcm seems conserved in mammals and involves the modification of the DNA methylation profile of mNr5a1. This study identifies a new molecular pathway in female reproductive system development and suggests a role for hGCM in the progression of reproductive tract diseases in humans.

  2. An evolutionary conserved interaction between the Gcm transcription factor and the SF1 nuclear receptor in the female reproductive system

    PubMed Central

    Cattenoz, Pierre B.; Delaporte, Claude; Bazzi, Wael; Giangrande, Angela

    2016-01-01

    NR5A1 is essential for the development and for the function of steroid producing glands of the reproductive system. Moreover, its misregulation is associated with endometriosis, which is the first cause of infertility in women. Hr39, the Drosophila ortholog of NR5A1, is expressed and required in the secretory cells of the spermatheca, the female exocrine gland that ensures fertility by secreting substances that attract and capacitate the spermatozoids. We here identify a direct regulator of Hr39 in the spermatheca: the Gcm transcription factor. Furthermore, lack of Gcm prevents the production of the secretory cells and leads to female sterility in Drosophila. Hr39 regulation by Gcm seems conserved in mammals and involves the modification of the DNA methylation profile of mNr5a1. This study identifies a new molecular pathway in female reproductive system development and suggests a role for hGCM in the progression of reproductive tract diseases in humans. PMID:27886257

  3. Muscarinic receptor family interacting proteins: role in receptor function.

    PubMed

    Borroto-Escuela, Dasiel O; Correia, Patrícia A; Romero-Fernandez, Wilber; Narvaez, Manuel; Fuxe, Kjell; Ciruela, Francisco; Garriga, Pere

    2011-02-15

    G protein-coupled receptors constitute one of the most important families of membrane receptors through which cells respond to extracellular stimuli. Receptors of this superfamily likely function as signal transduction complexes. The identification and analysis of their components provide new insights into a better understanding of these receptors' function and regulation. We used tandem-affinity purification and mass spectrometry as a systematic approach to characterize multiprotein complexes in the acetylcholine muscarinic receptor subfamily. To overcome the limitations associated with membrane protein receptor solubilization with detergents, we developed a strategy in which receptors are co-expressed with a cytoplasmic minigene construct, encoding the third intracellular loop and the C-terminal tail tagged to the tandem-affinity-cassette of each receptor subtype. Numerous protein complexes were identified, including many new interactions in various signalling pathways. Systematic identification data set together with protein interactions reported in the literature revealed a high degree of connectivity. These allow the proposal, for the first time, of an outline of the muscarinic interactome as a network of protein complexes and a context for a more reasoned and informed approach to drug discovery and muscarinic receptor subtype specificities.

  4. Opioid receptor trafficking and interaction in nociceptors

    PubMed Central

    Zhang, X; Bao, L; Li, S

    2015-01-01

    Opiate analgesics such as morphine are often used for pain therapy. However, antinociceptive tolerance and dependence may develop with long-term use of these drugs. It was found that μ-opioid receptors can interact with δ-opioid receptors, and morphine antinociceptive tolerance can be reduced by blocking δ-opioid receptors. Recent studies have shown that μ- and δ-opioid receptors are co-expressed in a considerable number of small neurons in the dorsal root ganglion. The interaction of μ-opioid receptors with δ-opioid receptors in the nociceptive afferents is facilitated by the stimulus-induced cell-surface expression of δ-opioid receptors, and contributes to morphine tolerance. Further analysis of the molecular, cellular and neural circuit mechanisms that regulate the trafficking and interaction of opioid receptors and related signalling molecules in the pain pathway would help to elucidate the mechanism of opiate analgesia and improve pain therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24611685

  5. Cell-type specific interaction of Neu differentiation factor (NDF/heregulin) with Neu/HER-2 suggests complex ligand-receptor relationships.

    PubMed Central

    Peles, E; Ben-Levy, R; Tzahar, E; Liu, N; Wen, D; Yarden, Y

    1993-01-01

    The Neu/HER-2 receptor tyrosine kinase is overexpressed in some types of human adenocarcinomas, including tumors of the breast and the ovary. A 44 kDa glycoprotein that elevates tyrosine phosphorylation of Neu has been isolated and named Neu differentiation factor (NDF), or heregulin. Here we show that NDF affects tyrosine phosphorylation of Neu in human tumor cells of breast, colon and neuronal origin, but not in ovarian cells that overexpress the receptor. By using monoclonal antibodies (mAbs) to Neu, we found that the ovarian receptor is immunologically and biochemically similar to the mammary p185neu. Nevertheless, unlike breast-derived Neu, the ovarian protein did not display covalent cross-linking to radiolabeled NDF, and was devoid of ligand-induced association with phosphatidylinositol 3'-kinase. Direct binding analysis showed that NDF binds with high affinity (Kd approximately 10(-9) M) to mammary cells, but its weak association with ovarian cells is probably mediated by heparin-like molecules. Similar to the endogenous receptor, the ectopically overexpressed Neu of mammary cells, but not of ovarian and fibroblastic cells, exhibited elevated levels of NDF-induced phosphorylation and covalent cross-linking of the radiolabeled factor. Taken together, our results imply that NDF binding to cells requires both Neu and an additional cellular component, whose identity is still unknown, but its tissue distribution is more restricted than the expression of the neu gene. Images PMID:8096177

  6. Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways

    PubMed Central

    Tu, Yizeng; Li, Fugang; Wu, Chuanyue

    1998-01-01

    Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575

  7. Endomorphins interact with tachykinin receptors.

    PubMed

    Kosson, Piotr; Bonney, Iwona; Carr, Daniel B; Lipkowski, Andrzej W

    2005-09-01

    Soon after the discovery of endomorphins several studies indicated differences between pharmacological effects of endomorphins and other MOR selective ligands, as well as differences between the effects of endomorphin I and endomorphin II. We now propose that these differences are the result of an additional non-opioid property of endomorphins, namely, their weak antagonist properties with respect to tachykinin NK1 and NK1 receptors.

  8. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  9. Cell surface interaction of annexin A2 and galectin-3 modulates epidermal growth factor receptor signaling in Her-2 negative breast cancer cells.

    PubMed

    Shetty, Praveenkumar; Bargale, Anil; Patil, Basavraj R; Mohan, Rajashekar; Dinesh, U S; Vishwanatha, Jamboor K; Gai, Pramod B; Patil, Vidya S; Amsavardani, T S

    2016-01-01

    Overexpression and activation of tyrosine kinase receptors like EGFR and Src regulate the progression and metastasis of Her-2 negative breast cancer. Recently we have reported the role of cell membrane interaction of phospholipid-binding protein annexin A2 (AnxA2) and EGFR in regulating cellular signaling in the activation of angiogenesis, matrix degradation, invasion, and cancer metastasis. Beta-galactoside-specific animal lectin galectin-3 is an apoptosis inhibitor, and cell surface-associated extracellular galectin-3 also has a role in cell migration, cancer progression, and metastasis. Similar expression pattern and membrane co-localization of these two proteins made us to hypothesize in the current study that galectin-3 and AnxA2 interaction is critical for Her-2 negative breast cancer progression. By various experimental analyses, we confirm that glycosylated AnxA2 at the membrane surface interacts with galectin-3. N-linked glycosylation inhibitor tunicamycin treatment convincingly blocked AnxA2 membrane translocation and its association with galectin-3. To analyze whether this interaction has any functional relevance, we tried to dissociate this interaction with purified plant lectin from chickpea (Cicer arietinum agglutinin). This highly specific 30 kDa plant lectin could dissociate AnxA2 from endogenous lectin galectin-3 interaction at the cell surface. This dissociation could down-regulate Bcl-2 family proteins, cell proliferation, and migration simultaneously triggering cell apoptosis. Targeting this interaction of membrane surface glycoprotein and its animal lectin in Her-2 negative breast cancer may be of therapeutic value.

  10. Androgen receptor serine 81 mediates Pin1 interaction and activity

    PubMed Central

    La Montagna, Raffaele; Caligiuri, Isabella; Maranta, Pasquale; Lucchetti, Chiara; Esposito, Luca; Paggi, Marco G.; Toffoli, Giuseppe; Rizzolio, Flavio; Giordano, Antonio

    2012-01-01

    Hormone-dependent tumors are characterized by deregulated activity of specific steroid receptors, allowing aberrant expression of many genes involved in cancer initiation, progression and metastasis. In prostate cancer, the androgen receptor (AR) protein has pivotal functions, and over the years it has been the target of different drugs. AR is a nuclear receptor whose activity is regulated by a phosphorylation mechanism controlled by hormone and growth factors. Following phosphorylation, AR interacts with many cofactors that closely control its function. Among such cofactors, Pin1 is a peptidyl-prolyl isomerase that is involved in the control of protein phosphorylation and has a prognostic value in prostate cancer. In the present study, we demonstrate that ARSer81 is involved in the interaction with Pin1, and that this interaction is important for the transcriptional activity of AR. Since Pin1 expression positively correlates with tumor grade, our results suggest that Pin1 can participate in this process by modulating AR function. PMID:22894932

  11. Functional interaction of hepatic nuclear factor-4 and peroxisome proliferator-activated receptor-gamma coactivator 1alpha in CYP7A1 regulation is inhibited by a key lipogenic activator, sterol regulatory element-binding protein-1c.

    PubMed

    Ponugoti, Bhaskar; Fang, Sungsoon; Kemper, Jongsook Kim

    2007-11-01

    Insulin inhibits transcription of cholesterol 7alpha-hydroxylase (Cyp7a1), a key gene in bile acid synthesis, and the hepatic nuclear factor-4 (HNF-4) site in the promoter was identified as a negative insulin response sequence. Using a fasting/feeding protocol in mice and insulin treatment in HepG2 cells, we explored the inhibition mechanisms. Expression of sterol regulatory element-binding protein-1c (SREBP-1c), an insulin-induced lipogenic factor, inversely correlated with Cyp7a1 expression in mouse liver. Interaction of HNF-4 with its coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), was observed in livers of fasted mice and was reduced after feeding. Conversely, HNF-4 interaction with SREBP-1c was increased after feeding. In vitro studies suggested that SREBP-1c competed with PGC-1alpha for direct interaction with the AF2 domain of HNF-4. Reporter assays showed that SREBP-1c, but not of a SREBP-1c mutant lacking the HNF-4 interacting domain, inhibited HNF-4/PGC-1alpha transactivation of Cyp7a1. SREBP-1c also inhibited PGC-1alpha-coactivation of estrogen receptor, constitutive androstane receptor, pregnane X receptor, and farnesoid X receptor, implying inhibition of HNF-4 by SREBP-1c could extend to other nuclear receptors. In chromatin immunoprecipitation studies, HNF-4 binding to the promoter was not altered, but PGC-1alpha was dissociated, SREBP-1c and histone deacetylase-2 (HDAC2) were recruited, and acetylation of histone H3 was decreased upon feeding. Adenovirus-mediated expression of a SREBP-1c dominant-negative mutant, which blocks the interaction of SREBP-1c and HNF-4, partially but significantly reversed the inhibition of Cyp7a1 after feeding. Our data show that SREBP-1c functions as a non-DNA-binding inhibitor and mediates, in part, suppression of Cyp7a1 by blocking functional interaction of HNF-4 and PGC-1alpha. This mechanism may be relevant to known repression of many other HNF-4 target genes upon

  12. High-Content Positional Biosensor Screening Assay for Compounds to Prevent or Disrupt Androgen Receptor and Transcriptional Intermediary Factor 2 Protein–Protein Interactions

    PubMed Central

    Hua, Yun; Shun, Tong Ying; Strock, Christopher J.

    2014-01-01

    Abstract The androgen receptor–transcriptional intermediary factor 2 (AR-TIF2) positional protein–protein interaction (PPI) biosensor assay described herein combines physiologically relevant cell-based assays with the specificity of binding assays by incorporating structural information of AR and TIF2 functional domains along with intracellular targeting sequences and fluorescent reporters. Expression of the AR-red fluorescent protein (RFP) “prey” and TIF2-green fluorescent protein (GFP) “bait” components of the biosensor was directed by recombinant adenovirus constructs that expressed the ligand binding and activation function 2 surface domains of AR fused to RFP with nuclear localization and nuclear export sequences, and three α-helical LXXLL motifs from TIF2 fused to GFP and an HIV Rev nucleolar targeting sequence. In unstimulated cells, AR-RFP was localized predominantly to the cytoplasm and TIF2-GFP was localized to nucleoli. Dihydrotestosterone (DHT) treatment induced AR-RFP translocation into the nucleus where the PPIs between AR and TIF2 resulted in the colocalization of both biosensors within the nucleolus. We adapted the translocation enhanced image analysis module to quantify the colocalization of the AR-RFP and TIF2-GFP biosensors in images acquired on the ImageXpress platform. DHT induced a concentration-dependent AR-TIF2 colocalization and produced a characteristic condensed punctate AR-RFP PPI nucleolar distribution pattern. The heat-shock protein 90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) and antiandrogens flutamide and bicalutamide inhibited DHT-induced AR-TIF2 PPI formation with 50% inhibition concentrations (IC50s) of 88.5±12.5 nM, 7.6±2.4 μM, and 1.6±0.4 μM, respectively. Images of the AR-RFP distribution phenotype allowed us to distinguish between 17-AAG and flutamide, which prevented AR translocation, and bicalutamide, which blocked AR-TIF2 PPIs. We screened the Library of Pharmacologically Active

  13. Assessment of estrogen receptor--histone interactions.

    PubMed Central

    Kallos, J; Fasy, T M; Hollander, V P

    1981-01-01

    Several different in vitro binding assays show that the estrogen receptor from rabbit uterus interacts selectively with purified histones from calf thymus. The estrogen receptor binds strongly to histones H2B and H2A, moderately to histones H3 and H4, and poorly to histone H1. In the presence of histones H2B or H2A, the position at which the estrogen receptor focuses in an isoelectric gradient is shifted to a more basic zone. Kinetic experiments show that, if histone H2B is bound to a DNA, the estrogen receptor dissociates more slowly from that DNA. The portion of the estrogen receptor molecule required for binding to histone H2B is relatively stable to tryptic digestion; in contrast, the portion of the receptor molecule responsible for DNA binding is promptly lost during limited tryptic digestion. These in vitro findings suggest that the mechanism by which the estrogen receptor selectively alters gene expression may involve specific contacts with histone molecules. PMID:6942408

  14. Interaction of the glucocorticoid receptor and the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII): implications for the actions of glucocorticoids on glucose, lipoprotein, and xenobiotic metabolism.

    PubMed

    De Martino, Massimo U; Alesci, Salvatore; Chrousos, George P; Kino, Tomoshige

    2004-06-01

    Glucocorticoids exert their extremely diverse effects on numerous biologic activities of humans via only one protein module, the glucocorticoid receptor (GR). The GR binds to the glucocorticoid response elements located in the promoter region of target genes and regulates their transcriptional activity. In addition, GR associates with other transcription factors through direct protein-protein interactions and mutually represses or stimulates each other's transcriptional activities. The latter activity of GR may be more important than the former one, granted that mice harboring a mutant GR, which is active in terms of protein-protein interactions but inactive in terms of transactivation via DNA, survive and procreate, in contrast to mice with a deletion of the entire GR gene that die immediately after birth. We recently found that GR physically interacts with the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), which plays a critical role in the metabolism of glucose, cholesterol, and xenobiotics, as well as in the development of the central nervous system in fetus. GR stimulates COUP-TFII-induced transactivation by attracting cofactors via its activation function-1, while COUP-TFII represses the GR-governed transcriptional activity by tethering corepressors, such as the silencing mediator for retinoid and thyroid hormone receptors (SMRT) and the nuclear receptor corepressors (NCoRs) via its C-terminal domain. Their mutual interaction may play an important role in gluconeogenesis, lipoprotein metabolism, and enzymatic clearance of clinically important compounds and bioactive chemicals, by regulating their rate-limiting enzymes and molecules, including the phosphoenolpyruvate carboxykinase (PEPCK), the cytochrome P450 CYP3A and CYP7A, and several apolipoproteins. It appears that glucocorticoids exert their intermediary effects partly via physical interaction with COUP-TFII.

  15. Cytoplasmic Domain Interactions of Syndecan-1 and Syndecan-4 with α6β4 Integrin Mediate Human Epidermal Growth Factor Receptor (HER1 and HER2)-dependent Motility and Survival*♦

    PubMed Central

    Wang, Haiyao; Jin, Haining; Beauvais, DeannaLee M.; Rapraeger, Alan C.

    2014-01-01

    Epithelial cells are highly dependent during wound healing and tumorigenesis on the α6β4 integrin and its association with receptor tyrosine kinases. Previous work showed that phosphorylation of the β4 subunit upon matrix engagement depends on the matrix receptor syndecan (Sdc)-1 engaging the cytoplasmic domain of the β4 integrin and coupling of the integrin to human epidermal growth factor receptor-2 (HER2). In this study, HER2-dependent migration activated by matrix engagement is compared with migration stimulated by EGF. We find that whereas HER2-dependent migration depends on Sdc1, EGF-dependent migration depends on a complex consisting of human epidermal growth factor receptor-1 (HER1, commonly known as EGFR), α6β4, and Sdc4. The two syndecans recognize distinct sites at the extreme C terminus of the β4 integrin cytoplasmic domain. The binding motif in Sdc1 is QEEXYX, composed in part by its syndecan-specific variable (V) region and in part by the second conserved (C2) region that it shares with other syndecans. A cell-penetrating peptide containing this sequence competes for HER2-dependent epithelial migration and carcinoma survival, although it is without effect on the EGFR-stimulated mechanism. β4 mutants bearing mutations specific for Sdc1 and Sdc4 recognition act as dominant negative mutants to block cell spreading or cell migration that depends on HER2 or EGFR, respectively. The interaction of the α6β4 integrin with the syndecans appears critical for it to be utilized as a signaling platform; migration depends on α3β1 integrin binding to laminin 332 (LN332; also known as laminin 5), whereas antibodies that block α6β4 binding are without effect. These findings indicate that specific syndecan family members are likely to have key roles in α6β4 integrin activation by receptor tyrosine kinases. PMID:25202019

  16. Interactions between drugs and occupied receptors.

    PubMed

    Tallarida, Ronald J

    2007-01-01

    This review has 2 parts. Part I deals with isobolographic procedures that are traditionally applied to the joint action of agonists that individually produce overtly similar effects. Special attention is directed to newer computational procedures that apply to agonists with dissimilar concentration-effect curves. These newer procedures are consistent with the isobolographic methods introduced and used by Loewe, however, the present communications provides the needed graphical and mathematical detail. A major aim is distinguishing super and sub-addictive interactions from those that are simply additive. The detection and measurement of an interaction is an important step in exploring drug mechanism and is also important clinically. Part II discusses a new use of isoboles that is applicable to a single drug or chemical whose effect is mediated by 2 or more receptor subtypes. This application produces a metric that characterizes the interaction between the receptor subtypes. The expansion of traditional isobolographic theory to this multi-receptor situation follows from the newer approaches for 2-drug combination analysis in Part I. This topic leads naturally to a re-examination of competitive antagonism and the classic Schild plot. In particular, it is shown here that the Schild plot in the multi-receptor case is not necessarily linear with unit slope. Both parts of this review emphasize the quantitative aspects rather than the many drugs that have been analyzed with isobolographic methods. The mathematical exposition is rather elementary and is further aided by several graphs. An appendix is included for the reader interested in the mathematical details.

  17. Structural and Functional Characterization of a Secreted Hookworm Macrophage Migration Inhibitory Factor (MIF) that Interacts with the Human MIF Receptor CD74

    SciTech Connect

    Cho,Y.; Jones, B.; Vermeire, J.; Leng, L.; DiFedele, L.; Harrison, L.; Xiong, H.; Kwong, Y.; Chen, Y.; et al

    2007-01-01

    Hookworms, parasitic nematodes that infect nearly one billion people worldwide, are a major cause of anemia and malnutrition. We hypothesize that hookworms actively manipulate the host immune response through the production of specific molecules designed to facilitate infection by larval stages and adult worm survival within the intestine. A full-length cDNA encoding a secreted orthologue of the human cytokine, Macrophage Migration Inhibitory Factor (MIF) has been cloned from the hookworm Ancylostoma ceylanicum. Elucidation of the three-dimensional crystal structure of recombinant AceMIF (rAceMIF) revealed an overall structural homology with significant differences in the tautomerase sites of the human and hookworm proteins. The relative bioactivities of human and hookworm MIF proteins were compared using in vitro assays of tautomerase activity, macrophage migration, and binding to MIF receptor CD74. The activity of rAceMIF was not inhibited by the ligand ISO-1, which was previously determined to be an inhibitor of the catalytic site of human MIF. These data define unique immunological, structural, and functional characteristics of AceMIF, thereby establishing the potential for selectively inhibiting the hookworm cytokine as a means of reducing parasite survival and disease pathogenesis.

  18. The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors.

    PubMed Central

    Raines, E W; Lane, T F; Iruela-Arispe, M L; Ross, R; Sage, E H

    1992-01-01

    Interactions among growth factors, cells, and extracellular matrix are critical to the regulation of directed cell migration and proliferation associated with development, wound healing, and pathologic processes. Here we report the association of PDGF-AB and -BB, but not PDGF-AA, with the extracellular glycoprotein SPARC. Complexes of SPARC and 125I-labeled PDGF-BB or -AB were specifically immunoprecipitated by anti-SPARC immunoglobulins. 125I-PDGF-BB and -AB also bound specifically to SPARC that was immobilized on microtiter wells or bound to nitrocellulose after transfer from SDS/polyacrylamide gels. The binding of PDGF-BB to SPARC was pH-dependent; significant binding was detectable only above pH 6.6. The interaction of SPARC with specific dimeric forms of PDGF affected the activity of this mitogen. SPARC inhibited the binding of PDGF-BB and PDGF-AB, but not PDGF-AA, to human dermal fibroblasts in a dose-dependent manner. The expression of SPARC and PDGF was minimal in most normal adult tissues but was increased after injury. Enhanced expression of both PDGF-B chain and SPARC was seen in advanced lesions of atherosclerosis. We suggest that the coordinate expression of SPARC and PDGF-B-containing dimers following vascular injury may regulate the activity of specific dimeric forms of PDGF in vivo. Images PMID:1311092

  19. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.

    PubMed

    Wiedemann, Agnès; Mijouin, Lily; Ayoub, Mohammed Akli; Barilleau, Emilie; Canepa, Sylvie; Teixeira-Gomes, Ana Paula; Le Vern, Yves; Rosselin, Manon; Reiter, Eric; Velge, Philippe

    2016-12-01

    The Salmonella Rck outer membrane protein binds to the cell surface, which leads to bacterial internalization via a Zipper mechanism. This invasion process requires induction of cellular signals, including phosphorylation of tyrosine proteins, and activation of c-Src and PI3K, which arises as a result of an interaction with a host cell surface receptor. In this study, epidermal growth factor receptor (EGFR) was identified as the cell signaling receptor required for Rck-mediated adhesion and internalization. First, Rck-mediated adhesion and internalization were shown to be altered when EGFR expression and activity were modulated. Then, immunoprecipitations were performed to demonstrate the Rck-EGFR interaction. Furthermore, surface plasmon resonance biosensor and homogeneous time-resolved fluorescence technologies were used to demonstrate the direct interaction of Rck with the extracellular domain of human EGFR. Finally, our study strongly suggests a noncompetitive binding of Rck and EGF to EGFR. Overall, these results demonstrate that Rck is able to bind to EGFR and thereby establish a tight adherence to provide a signaling cascade, which leads to internalization of Rck-expressing bacteria.-Wiedemann, A., Mijouin, L., Ayoub, M. A., Barilleau, E., Canepa, S., Teixeira-Gomes, A. P., Le Vern, Y., Rosselin, M., Reiter, E., Velge, P. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.

  20. Lung-derived factors mediate breast cancer cell migration through CD44 receptor-ligand interactions in a novel ex vivo system for analysis of organ-specific soluble proteins.

    PubMed

    Chu, Jenny E; Xia, Ying; Chin-Yee, Benjamin; Goodale, David; Croker, Alysha K; Allan, Alison L

    2014-02-01

    Breast cancer preferentially metastasizes to lung, lymph node, liver, bone, and brain. However, it is unclear whether properties of cancer cells, properties of organ microenvironments, or a combination of both is responsible for this observed organ tropism. We hypothesized that breast cancer cells exhibit distinctive migration/growth patterns in organ microenvironments that mirror common clinical sites of breast cancer metastasis and that receptor-ligand interactions between breast cancer cells and soluble organ-derived factors mediate this behavior. Using an ex vivo model system composed of organ-conditioned media (CM), human breast cancer cells (MDA-MB-231,MDA-MB-468, SUM149, and SUM159) displayed cell line-specific and organ-specific patterns of migration/proliferation that corresponded to their in vivo metastatic behavior. Notably, exposure to lung-CM increased migration of all cell lines and increased proliferation in two of four lines (P < .05). Several cluster of differentiation (CD) 44 ligands including osteopontin (OPN) and L-selectin (SELL) were identified in lung-CM by protein arrays. Immunodepletion of SELL decreased migration of MDA-MB-231 cells, whereas depletion of OPN decreased both migration and proliferation. Pretreatment of cells with a CD44-blocking antibody abrogated migration effects (P < .05). "Stemlike" breast cancer cells with high aldehyde dehydrogenase and CD44 (ALDH(hi)CD44(+)) responded in a distinct chemotactic manner toward organ-CM, preferentially migrating toward lung-CM through CD44 receptor-ligand interactions (P < .05). In contrast, organ-specific changes in migration were not observed for ALDH(low)CD44(-) cells. Our data suggest that interactions between CD44(+) breast cancer cells and soluble factors present in the lung microenvironment may play an important role in determining organotropic metastatic behavior.

  1. The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors

    SciTech Connect

    Raines, E.W.; Lane, T.F.; Iruela-Arispe, M.L.; Ross, R.; Sage, E.H. )

    1992-02-15

    Interactions among growth factors, cells, and extracellular matrix are critical to the regulation of directed cell migration and proliferation associated with development wound healing, and pathologic processes. Here the authors report the association of PDGF-AB and -BB, but not PDGF-AA, with the extracellular glycoprotein SPARC. Complexes of SPARC and {sup 125}I-labeled PDGF-BB or -AB were specifically immunoprecipitated by anti-SPARC immunoglobulins. {sup 125}I-PDGF-BB and -AB also bound specifically to SPARC that was immobilized on microtiter wells or bound to nitrocellulose after transfer from SDS/polyacrylamide gels. The binding of PDGF-BB to SPARC was pH-dependent; significant binding was detectable only above pH 6.6. Enhanced expression of both PDGF-B chain and SPARC was seen in advanced lesions of atherosclerosis. They suggest that the coordinate expression of SPARC and PDGF-B-containing dimers following vascular injury may regulate the activity of specific dimeric forms of PDGF in vivo.

  2. CONTAMINANT INTERACTIONS WITH STEROID RECEPTORS: EVIDENCE FOR RECEPTOR BINDING.

    EPA Science Inventory

    Steroid receptors are important determinants of endocrine disrupter consequences. As the most frequently proposed mechanism of endocrine-disrupting contaminant (EDC) action, steroid receptors are not only targets of natural steroids but are also commonly sites of nonsteroidal com...

  3. The internal region leucine-rich repeat 6 of decorin interacts with low density lipoprotein receptor-related protein-1, modulates transforming growth factor (TGF)-β-dependent signaling, and inhibits TGF-β-dependent fibrotic response in skeletal muscles.

    PubMed

    Cabello-Verrugio, Claudio; Santander, Cristian; Cofré, Catalina; Acuña, Maria José; Melo, Francisco; Brandan, Enrique

    2012-02-24

    Decorin is a small proteoglycan, composed of 12 leucine-rich repeats (LRRs) that modulates the activity of transforming growth factor type β (TGF-β) and other growth factors, and thereby influences proliferation and differentiation in a wide array of physiological and pathological processes, such as fibrosis, in several tissues and organs. Previously we described two novel modulators of the TGF-β-dependent signaling pathway: LDL receptor-related protein (LRP-1) and decorin. Here we have determined the regions in decorin that are responsible for interaction with LRP-1 and are involved in TGF-β-dependent binding and signaling. Specifically, we used decorin deletion mutants, as well as peptides derived from internal LRR regions, to determine the LRRs responsible for these decorin functions. Our results indicate that LRR6 and LRR5 participate in the interaction with LRP-1 and TGF-β as well as in its dependent signaling. Furthermore, the internal region (LRR6i), composed of 11 amino acids, is responsible for decorin binding to LRP-1 and subsequent TGF-β-dependent signaling. Furthermore, using an in vivo approach, we also demonstrate that the LRR6 region of decorin can inhibit TGF-β mediated action in response to skeletal muscle injury.

  4. The Internal Region Leucine-rich Repeat 6 of Decorin Interacts with Low Density Lipoprotein Receptor-related Protein-1, Modulates Transforming Growth Factor (TGF)-β-dependent Signaling, and Inhibits TGF-β-dependent Fibrotic Response in Skeletal Muscles*

    PubMed Central

    Cabello-Verrugio, Claudio; Santander, Cristian; Cofré, Catalina; Acuña, Maria José; Melo, Francisco; Brandan, Enrique

    2012-01-01

    Decorin is a small proteoglycan, composed of 12 leucine-rich repeats (LRRs) that modulates the activity of transforming growth factor type β (TGF-β) and other growth factors, and thereby influences proliferation and differentiation in a wide array of physiological and pathological processes, such as fibrosis, in several tissues and organs. Previously we described two novel modulators of the TGF-β-dependent signaling pathway: LDL receptor-related protein (LRP-1) and decorin. Here we have determined the regions in decorin that are responsible for interaction with LRP-1 and are involved in TGF-β-dependent binding and signaling. Specifically, we used decorin deletion mutants, as well as peptides derived from internal LRR regions, to determine the LRRs responsible for these decorin functions. Our results indicate that LRR6 and LRR5 participate in the interaction with LRP-1 and TGF-β as well as in its dependent signaling. Furthermore, the internal region (LRR6i), composed of 11 amino acids, is responsible for decorin binding to LRP-1 and subsequent TGF-β-dependent signaling. Furthermore, using an in vivo approach, we also demonstrate that the LRR6 region of decorin can inhibit TGF-β mediated action in response to skeletal muscle injury. PMID:22203668

  5. Methods for studying the platelet-derived growth factor receptor

    SciTech Connect

    Bowen-Pope, D.F.; Ross, R.

    1985-01-01

    Platelet-derived growth factor (PDGF) is a basic 30,000-dalton protein circulating in normal blood sequestered within the platelet alpha granule. Radioiodinated PDGF shows saturable (e.g., 60,000-120,000 receptors per diploid human fibroblast) high affinity binding to culture PDGF-responsive cells. The apparent dissociation constant reported for this binding interaction has varied widely. This paper focuses on factors which affect (/sup 125/I)PGDF binding and on the development of a radioreceptor assay for PDGF.

  6. Metabotropic Glutamate Receptors and Interacting Proteins in Epileptogenesis

    PubMed Central

    Qian, Feng; Tang, Feng-Ru

    2016-01-01

    Neurotransmitter and receptor systems are involved in different neurological and neuropsychological disorders such as Parkinson's disease, depression, Alzheimer’s disease and epilepsy. Recent advances in studies of signal transduction pathways or interacting proteins of neurotransmitter receptor systems suggest that different receptor systems may share the common signal transduction pathways or interacting proteins which may be better therapeutic targets for development of drugs to effectively control brain diseases. In this paper, we reviewed metabotropic glutamate receptors (mGluRs) and their related signal transduction pathways or interacting proteins in status epilepticus and temporal lobe epilepsy, and proposed some novel therapeutical drug targets for controlling epilepsy and epileptogenesis. PMID:27030135

  7. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems

    PubMed Central

    Bruchas, Michael R.; Calo', Girolamo; Cox, Brian M.; Zaveri, Nurulain T.

    2016-01-01

    The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor. PMID:26956246

  8. The C-terminal domain of the long form of cellular FLICE-inhibitory protein (c-FLIPL) inhibits the interaction of the caspase 8 prodomain with the receptor-interacting protein 1 (RIP1) death domain and regulates caspase 8-dependent nuclear factor κB (NF-κB) activation.

    PubMed

    Matsuda, Iyo; Matsuo, Kentaro; Matsushita, Yuka; Haruna, Yasushi; Niwa, Masamitsu; Kataoka, Takao

    2014-02-14

    Caspase 8 plays an essential role in the regulation of apoptotic and non-apoptotic signaling pathways. The long form of cellular FLICE-inhibitory protein (c-FLIPL) has been shown previously to regulate caspase 8-dependent nuclear factor κB (NF-κB) activation by receptor-interacting protein 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). In this study, the molecular mechanism by which c-FLIPL regulates caspase 8-dependent NF-κB activation was further explored in the human embryonic kidney cell line HEK 293 and variant cells barely expressing caspase 8. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone greatly diminished caspase 8-dependent NF-κB activation induced by Fas ligand (FasL) when c-FLIPL, but not its N-terminal fragment c-FLIP(p43), was expressed. The prodomain of caspase 8 was found to interact with the RIP1 death domain and to be sufficient to mediate NF-κB activation induced by FasL or c-FLIP(p43). The interaction of the RIP1 death domain with caspase 8 was inhibited by c-FLIPL but not c-FLIP(p43). Thus, these results reveal that the C-terminal domain of c-FLIPL specifically inhibits the interaction of the caspase 8 prodomain with the RIP1 death domain and, thereby, regulates caspase 8-dependent NF-κB activation.

  9. The C-terminal Domain of the Long Form of Cellular FLICE-inhibitory Protein (c-FLIPL) Inhibits the Interaction of the Caspase 8 Prodomain with the Receptor-interacting Protein 1 (RIP1) Death Domain and Regulates Caspase 8-dependent Nuclear Factor κB (NF-κB) Activation*

    PubMed Central

    Matsuda, Iyo; Matsuo, Kentaro; Matsushita, Yuka; Haruna, Yasushi; Niwa, Masamitsu; Kataoka, Takao

    2014-01-01

    Caspase 8 plays an essential role in the regulation of apoptotic and non-apoptotic signaling pathways. The long form of cellular FLICE-inhibitory protein (c-FLIPL) has been shown previously to regulate caspase 8-dependent nuclear factor κB (NF-κB) activation by receptor-interacting protein 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). In this study, the molecular mechanism by which c-FLIPL regulates caspase 8-dependent NF-κB activation was further explored in the human embryonic kidney cell line HEK 293 and variant cells barely expressing caspase 8. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone greatly diminished caspase 8-dependent NF-κB activation induced by Fas ligand (FasL) when c-FLIPL, but not its N-terminal fragment c-FLIP(p43), was expressed. The prodomain of caspase 8 was found to interact with the RIP1 death domain and to be sufficient to mediate NF-κB activation induced by FasL or c-FLIP(p43). The interaction of the RIP1 death domain with caspase 8 was inhibited by c-FLIPL but not c-FLIP(p43). Thus, these results reveal that the C-terminal domain of c-FLIPL specifically inhibits the interaction of the caspase 8 prodomain with the RIP1 death domain and, thereby, regulates caspase 8-dependent NF-κB activation. PMID:24398693

  10. Mechanism of the estrogen receptor interaction with 4-hydroxytamoxifen

    SciTech Connect

    Sasson, S.; Notides, A.C.

    1988-04-01

    The binding mechanism of the estrogen receptor with 4-(/sup 3/H)hydroxytamoxifen was investigated. The equilibrium binding analysis with 4-(/sup 3/H)hydroxytamoxifen indicated a positive cooperative interaction: the Scatchard plot was convex and the Hill coefficient was 1.4-1.5. This binding appears similar to the positively cooperative interaction of the estrogen receptor with (/sup 3/H)estradiol. However, a competitive binding assay with a saturating concentration of (/sup 3/H) estradiol and variable concentrations of 4-hydroxytamoxifen produced nonparallel displacement curves indicating that the binding mechanism of the receptor with these two ligands is different. The competitive binding assay with (/sup 3/H)estradiol and 4-hydroxytamoxifen at constant molar ratios demonstrated that the receptor's affinity for estradiol was reduced and the receptor preferentially bound 4-hydroxytamoxifen. These data suggest that 4-hydroxytamoxifen interacts with the receptor differently than estradiol; it antagonizes the binding of estradiol when these two ligands are simultaneously present.

  11. Group I Metabotropic Glutamate Receptor Interacting Proteins: Fine-Tuning Receptor Functions in Health and Disease

    PubMed Central

    Kalinowska, Magdalena; Francesconi, Anna

    2016-01-01

    Group I metabotropic glutamate receptors mediate slow excitatory neurotransmission in the central nervous system and are critical to activity-dependent synaptic plasticity, a cellular substrate of learning and memory. Dysregulated receptor signaling is implicated in neuropsychiatric conditions ranging from neurodevelopmental to neurodegenerative disorders. Importantly, group I metabotropic glutamate receptor signaling functions can be modulated by interacting proteins that mediate receptor trafficking, expression and coupling efficiency to signaling effectors. These interactions afford cell- or pathway-specific modulation to fine-tune receptor function, thus representing a potential target for pharmacological interventions in pathological conditions. PMID:27296642

  12. Targeting extracellular domains D4 and D7 of vascular endothelial growth factor receptor 2 reveals allosteric receptor regulatory sites.

    PubMed

    Hyde, Caroline A C; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H Kaspar; Ballmer-Hofer, Kurt

    2012-10-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory "designed ankyrin repeat proteins" (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies.

  13. Targeting Extracellular Domains D4 and D7 of Vascular Endothelial Growth Factor Receptor 2 Reveals Allosteric Receptor Regulatory Sites

    PubMed Central

    Hyde, Caroline A. C.; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H. Kaspar

    2012-01-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory “designed ankyrin repeat proteins” (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies. PMID:22801374

  14. Interaction of Biofunctionalized Nanoparticles with Receptors on Cell Surfaces: MC Simulations

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena; Wang, Shihu

    2015-03-01

    One of the areas of active development of modern nanomedicine is drug/gene delivery and imaging application of nanoparticles functionalized by ligands, aptamers or antibodies capable of specific interactions with cell surface receptors. Being a complex multifunctional system different structural aspects of nanoparticles affect their interactions with cell surfaces and the surface properties of cells can be different (e.g. density, distribution and mobility of receptors). Computer simulations allow a systematic investigation of the influence of multiple factors and provide a unified platform for the comparison. Using Monte Carlo simulations we investigate the influence of the nanoparticle properties (nanoparticle size, polymer tether length, polydispersity, density, ligand energy, valence and density) on nanoparticle-cell surface interactions and make predictions regarding favorable nanoparticle design for achieving multiple ligand-receptor binding. We will also discuss the implications of nanoparticle design on the selectivity of attachment to cells with high receptor density while ``ignoring'' cells with a low density of receptors.

  15. Functional Roles of the Interaction of APP and Lipoprotein Receptors

    PubMed Central

    Pohlkamp, Theresa; Wasser, Catherine R.; Herz, Joachim

    2017-01-01

    The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD. PMID:28298885

  16. Differences between disease-associated endoplasmic reticulum aminopeptidase 1 (ERAP1) isoforms in cellular expression, interactions with tumour necrosis factor receptor 1 (TNF-R1) and regulation by cytokines.

    PubMed

    Yousaf, N; Low, W Y; Onipinla, A; Mein, C; Caulfield, M; Munroe, P B; Chernajovsky, Y

    2015-05-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) processes peptides for major histocompatibility complex (MHC) class I presentation and promotes cytokine receptor ectodomain shedding. These known functions of ERAP1 may explain its genetic association with several autoimmune inflammatory diseases. In this study, we identified four novel alternatively spliced variants of ERAP1 mRNA, designated as ΔExon-11, ΔExon-13, ΔExon-14 and ΔExon-15. We also observed a rapid and differential modulation of ERAP1 mRNA levels and spliced variants in different cell types pretreated with lipopolysaccharide (LPS). We have studied three full-length allelic forms of ERAP1 (R127-K528, P127-K528, P127-R528) and one spliced variant (ΔExon-11) and assessed their interactions with tumour necrosis factor receptor 1 (TNF-R1) in transfected cells. We observed variation in cellular expression of different ERAP1 isoforms, with R127-K528 being expressed at a much lower level. Furthermore, the cellular expression of full-length P127-K528 and ΔExon-11 spliced variant was enhanced significantly when co-transfected with TNF-R1. Isoforms P127-K528, P127-R528 and ΔExon-11 spliced variant associated with TNF-R1, and this interaction occurred in a region within the first 10 exons of ERAP1. Supernatant-derived vesicles from transfected cells contained the full-length and ectodomain form of soluble TNF-R1, as well as carrying the full-length ERAP1 isoforms. We observed marginal differences between TNF-R1 ectodomain levels when co-expressed with individual ERAP1 isoforms, and treatment of transfected cells with tumour necrosis factor (TNF), interleukin (IL)-1β and IL-10 exerted variable effects on TNF-R1 ectodomain cleavage. Our data suggest that ERAP1 isoforms may exhibit differential biological properties and inflammatory mediators could play critical roles in modulating ERAP1 expression, leading to altered functional activities of this enzyme.

  17. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists.

    PubMed Central

    Di Marco, A; Gloaguen, I; Graziani, R; Paonessa, G; Saggio, I; Hudson, K R; Laufer, R

    1996-01-01

    Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by alanine mutagenesis. Substitution of either F152 or K155 with alanine was found to specifically inhibit cytokine interaction with LIFR without affecting binding to CNTFR alpha or gp130. The resulting variants behaved as partial agonists with varying degrees of residual bioactivity in different cell-based assays. Simultaneous alanine substitution of both F152 and K155 totally abolished biological activity. Combining these mutations with amino acid substitutions in the D-helix, which enhance binding affinity for the CNTFR alpha, gave rise to a potent competitive CNTF receptor antagonist. This protein constitutes a new tool for studies of CNTF function in normal physiology and disease. Images Fig. 1 Fig. 6 PMID:8799186

  18. Metabolic regulator betaKlotho interacts with fibroblast growth factor receptor 4 (FGFR4) to induce apoptosis and inhibit tumor cell proliferation.

    PubMed

    Luo, Yongde; Yang, Chaofeng; Lu, Weiqin; Xie, Rui; Jin, Chengliu; Huang, Peng; Wang, Fen; McKeehan, Wallace L

    2010-09-24

    In organs involved in metabolic homeostasis, transmembrane α and βklothos direct FGFR signaling to control of metabolic pathways. Coordinate expression of βklotho and FGFR4 is a property of mature hepatocytes. Genetic deletion of FGFR4 or βklotho in mice disrupts hepatic cholesterol/bile acid and lipid metabolism. The deletion of FGFR4 has no effect on the proliferative response of hepatocytes after liver injury. However, its absence results in accelerated progression of dimethynitrosamine-initiated hepatocellular carcinomas, indicating that FGFR4 suppresses hepatoma proliferation. The mechanism underlying the FGFR4-mediated hepatoma suppression has not been addressed. Here we show that βklotho expression is more consistently down-regulated in human and mouse hepatomas than FGFR4. Co-expression and activation by either endocrine FGF19 or cellular FGF1 of the FGFR4 kinase in a complex with βklotho restricts cell population growth through induction of apoptotic cell death in both hepatic and nonhepatic cells. The βklotho-FGFR4 partnership caused a depression of activated AKT and mammalian target of rapamycin while activating ERK1/2 that may underlie the pro-apoptotic effect. Our results show that βklotho not only interacts with heparan sulfate-FGFR4 to form a complex with high affinity for endocrine FGF19 but also impacts the quality of downstream signaling and biological end points activated by either FGF19 or canonical FGF1. Thus the same βklotho-heparan sulfate-FGFR4 partnership that mediates endocrine control of hepatic metabolism plays a role in cellular homeostasis and hepatoma suppression through negative control of cell population growth mediated by pro-apoptotic signaling.

  19. Drug interactions at GABA(A) receptors.

    PubMed

    Korpi, Esa R; Gründer, Gerhard; Lüddens, Hartmut

    2002-06-01

    Neurotransmitter receptor systems have been the focus of intensive pharmacological research for more than 20 years for basic and applied scientific reasons, but only recently has there been a better understanding of their key features. One of these systems includes the type A receptor for the gamma-aminobutyric acid (GABA), which forms an integral anion channel from a pentameric subunit assembly and mediates most of the fast inhibitory neurotransmission in the adult vertebrate central nervous system. Up to now, depending on the definition, 16-19 mammalian subunits have been cloned and localized on different genes. Their assembly into proteins in a poorly defined stoichiometry forms the basis of functional and pharmacological GABA(A) receptor diversity, i.e. the receptor subtypes. The latter has been well documented in autoradiographic studies using ligands that label some of the receptors' various binding sites, corroborated by recombinant expression studies using the same tools. Significantly less heterogeneity has been found at the physiological level in native receptors, where the subunit combinations have been difficult to dissect. This review focuses on the characteristics, use and usefulness of various ligands and their binding sites to probe GABA(A) receptor properties and to gain insight into the biological function from fish to man and into evolutionary conserved GABA(A) receptor heterogeneity. We also summarize the properties of the novel mouse models created for the study of various brain functions and review the state-of-the-art imaging of brain GABA(A) receptors in various human neuropsychiatric conditions. The data indicate that the present ligands are only partly satisfactory tools and further ligands with subtype-selective properties are needed for imaging purposes and for confirming the behavioral and functional results of the studies presently carried out in gene-targeted mice with other species, including man.

  20. Receptor-interacting protein kinase 2 promotes triple-negative breast cancer cell migration and invasion via activation of nuclear factor-kappaB and c-Jun N-terminal kinase pathways

    PubMed Central

    2014-01-01

    Introduction Metastasis is the main cause of breast cancer morbidity and mortality. Processes that allow for tumor cell migration and invasion are important therapeutic targets. Here we demonstrate that receptor-interacting protein kinase 2 (RIP2), a kinase known to be involved in inflammatory processes, also has novel roles in cancer cell migration and invasion. Methods A total of six breast cancer expression databases, including The Cancer Genome Atlas, were assessed for RIP2 expression among various clinical subtypes and its role as a prognostic biomarker. mRNA fluorescence in situ hybridization (FISH) for RIP2 was performed on 17 stage III breast cancers to determine if there was a correlation between RIP2 expression and lymph node involvement. RNA-interference was used to knock-down RIP2 expression in MDA-MB-231, Htb126, SUM149PT, MCF7, T47D, and HCC1428 cells. Cell migration and invasion were measured in vitro by scratch/wound healing and transwell migration assays. A xenograft mouse model was used to assess tumor growth and chemosensitivity to docetaxel in vivo in MDA-MB-231 cells with and without RIP2 small hairpin RNA knockdown. Western blot and immunofluorescence imaging were used to evaluate protein expressions. Results Interrogation of expression databases showed that RIP2 expression is significantly over-expressed in triple-negative breast cancers (TNBC: estrogen-receptor (ER) negative, progesterone-receptor (PR) negative, Her2/neu- (Her2) negative), compared to other clinical subtypes. High RIP2 expression correlates with worse progression-free survival using a combined breast cancer expression array dataset consisting of 946 patients. Multivariate analysis shows RIP2 as an independent prognostic biomarker. Knock-down of RIP2 significantly decreases migration in both scratch/wound healing and transwell migration assays in MDA-MB-231, Htb126, SUM149PT, MCF7, and T47D cells and is correlated with decreased Nuclear Factor-kappaB and c-Jun N

  1. Cell-collagen interactions: the use of peptide Toolkits to investigate collagen-receptor interactions.

    PubMed

    Farndale, Richard W; Lisman, Ton; Bihan, Dominique; Hamaia, Samir; Smerling, Christiane S; Pugh, Nicholas; Konitsiotis, Antonios; Leitinger, Birgit; de Groot, Philip G; Jarvis, Gavin E; Raynal, Nicolas

    2008-04-01

    Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. We have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptides, each peptide comprising 27 residues of collagen primary sequence and overlapping with its neighbours by nine amino acids, we have mapped the binding of receptors and other proteins on to collagens II or III. Integrin alpha2beta1 binds to several GXX'GER motifs within the collagens, the affinities of which differ sufficiently to control cell adhesion and migration independently of the cellular regulation of the integrin. The platelet receptor, Gp (glycoprotein) VI binds well to GPO (where O is hydroxyproline)-containing model peptides, but to very few Toolkit peptides, suggesting that sequence in addition to GPO triplets is important in defining GpVI binding. The Toolkits have been applied to the plasma protein vWF (von Willebrand factor), which binds to only a single sequence, identified by truncation and amino acid substitution within Toolkit peptides, as GXRGQOGVMGFO in collagens II and III. Intriguingly, the receptor tyrosine kinase, DDR2 (discoidin domain receptor 2) recognizes three sites in collagen II, including its vWF-binding site, although the amino acids that support the interaction differ slightly within this motif. Furthermore, the secreted protein BM-40 (basement membrane protein 40) also binds well to this same region. Thus the availability of extracellular collagen-binding proteins may be important in regulating and facilitating direct collagen-receptor interaction.

  2. Tools and techniques to study ligand-receptor interactions and receptor activation by TNF superfamily members.

    PubMed

    Schneider, Pascal; Willen, Laure; Smulski, Cristian R

    2014-01-01

    Ligands and receptors of the TNF superfamily are therapeutically relevant targets in a wide range of human diseases. This chapter describes assays based on ELISA, immunoprecipitation, FACS, and reporter cell lines to monitor interactions of tagged receptors and ligands in both soluble and membrane-bound forms using unified detection techniques. A reporter cell assay that is sensitive to ligand oligomerization can identify ligands with high probability of being active on endogenous receptors. Several assays are also suitable to measure the activity of agonist or antagonist antibodies, or to detect interactions with proteoglycans. Finally, self-interaction of membrane-bound receptors can be evidenced using a FRET-based assay. This panel of methods provides a large degree of flexibility to address questions related to the specificity, activation, or inhibition of TNF-TNF receptor interactions in independent assay systems, but does not substitute for further tests in physiologically relevant conditions.

  3. FLASH interacts with p160 coactivator subtypes and differentially suppresses transcriptional activity of steroid hormone receptors.

    PubMed

    Kino, Tomoshige; Ichijo, Takamasa; Chrousos, George P

    2004-12-01

    We previously reported that tumor necrosis factor alpha receptor- and Fas-associated FLASH interacts with one of the p160 nuclear receptor coactivators, glucocorticoid receptor-interacting protein (GRIP) 1, at its nuclear receptor-binding (NRB) domain, and that inhibits the transcriptional activity of the glucocorticoid receptor (GR) by interfering with association of GR and GRIP1. Here, we further examined the specificity of FLASH suppressive effect and the physical/functional interactions between this protein and two other p160 family subtypes. The suppressive effect of FLASH on GR transactivation was observed in several cell lines and on the chromatin-integrated mouse mammary tumor virus (MMTV) promoter. FLASH strongly interacted with the NRB domain of the thyroid hormone receptor activator molecule (TRAM) 1, a member of the steroid hormone receptor coactivator (SRC) 3/nuclear receptor coactivator (N-CoA) 3 subtypes, as well as with SRC2/N-CoA2 p160 coactivator GRIP1, while its interaction with SRC1a, one of the SRC1/N-CoA1 proteins, was faint in yeast two-hybrid assays. Accordingly, FLASH strongly suppressed TRAM1- and GRIP1-induced enhancement of GR-stimulated transactivation of the MMTV promoter in HCT116 cells, while it did not affect SRC1a-induced potentiation of transcription. Furthermore, FLASH suppressed androgen- and progesterone receptor-induced transcriptional activity, but did not influence estrogen receptor-induced transactivation, possibly due to their preferential use of p160 coactivators in HCT116 and HeLa cells. Thus, FLASH differentially suppresses steroid hormone receptor-induced transcriptional activity by interfering with their association with SRC2/N-CoA2 and SRC3/N-CoA3 but not with SRC1/N-CoA1.

  4. mGlu5 Receptor Functional Interactions and Addiction

    PubMed Central

    Brown, Robyn M.; Mustafa, Sanam; Ayoub, Mohammed Akli; Dodd, Peter R.; Pfleger, Kevin D. G.; Lawrence, Andrew J.

    2012-01-01

    The idea of “receptor mosaics” is that proteins may form complex and dynamic networks with respect to time and composition. These have the potential to markedly expand the diversity and specificity of G protein-coupled receptors (GPCR) signaling, particularly in neural cells, where a few key receptors have been implicated in many neurological and psychiatric disorders, including addiction. Metabotropic glutamate type 5 receptors (mGlu5) can form complexes with other GPCRs, including adenosine A2A and dopamine D2 receptors. mGlu5-containing complexes have been reported in the striatum, a brain region critical for mediating the rewarding and incentive motivational properties of drugs of abuse. mGlu5-containing complexes and/or downstream interactions between divergent receptors may play roles in addiction–relevant behaviors. Interactions between mGlu5 receptors and other GPCRs can regulate the rewarding and conditioned effects of drugs as well as drug-seeking behaviors. mGlu5 complexes may influence striatal function, including GABAergic output of striatopallidal neurons and glutamatergic input from corticostriatal afferents. Given their discrete localization, mGlu5-[non-mGlu5] receptor interactions and/or mGlu5-containing complexes may minimize off-target effects and thus provide a novel avenue for drug discovery. The therapeutic targeting of receptor–receptor functional interactions and/or receptor mosaics in a tissue specific or temporal manner (for example, a sub-population of receptors in a “pathological state”) might reduce detrimental side effects that may otherwise impair vital brain functions. PMID:22586398

  5. Association of the Genetic Polymorphisms in Transcription Factor 7-Like 2 and Peroxisome Proliferator-Activated Receptors-γ2 with Type 2 Diabetes Mellitus and Its Interaction with Obesity Status in Emirati Population

    PubMed Central

    Al-Safar, Habiba; Hassoun, Ahmed; Almazrouei, Shaikha; Kamal, Wala; Afandi, Bachar; Rais, Naushad

    2015-01-01

    Background. Transcription factor 7-like 2 gene (TCF7L2) and peroxisome proliferator-activated receptors-γ2 (PPAR-γ2) have a profound effect on the incidence of type 2 diabetes mellitus (T2DM) and had previously been found to be associated with T2DM risk in various ppopulations. However, studies in the Arab population are inconsistent. We conducted a case control study to confirm the association of variants rs10885409 of TCF7L2 and Pro12Ala (rs1801282) of PPAR-γ2 with risk of T2DM and related complications in Emirati population of Arab origin. We also investigated the interaction of these associations with obesity status. Methods. DNA was extracted from the saliva samples of 272 T2DM patients and 216 nondiabetic Emiratis. Genotyping for rs10885409 (TCF7L2) and rs1801282 (PPAR-γ2 P12A) variants was accomplished with a TaqMan assay. The subgroups were constituted according to obesity status. Results. In the nonobese group, the rs10885409 C allele in the recessive model was significantly associated with the incidence of T2DM (OR 1.975 [95% CI 1.127–3.461], P = 0.017), but this association was not observed in the obese group or when BMI was not considered. PPAR-γ2 risk allele Pro12 frequency (0.96) was similar in the groups tested and more than 90% population was homozygous for this allele. Conclusions. Our case-control study is the first of its kind in Emiratis which establishes TCF7L2 rs10885409 C allele as a T2DM risk factor in Emiratis and this association is modulated by obesity status. We also confirmed that Pro12Ala mutation in PPAR-γ2 is not associated with T2DM risk in this population. PMID:26273662

  6. Interaction of ethanol with opiate receptors

    SciTech Connect

    Yukhananov, R.Y.; Bujov, Y.V.; Maiskii, A.I.

    1986-04-01

    The authors study the action of ethanol on membrane-bound opiate receptors. Ethanol at 37/sup 0/C was shown to produce dose-dependent inhibition of binding of /sup 3/H-naloxone with opiate receptors. ID/sub 50/ under these conditions was 462 mM. Temperature-dependent inhibition of ligand-receptor binding suggests that ethanol does not compete for the stereospecific binding site of /sup 3/H-naloxone. Analysis of the inhibitory action of ethanol on /sup 3/H-naloxone binding in animals at different stages of experimental alcoholism revealed no differences between the control and experimental animals after 3.5 and 10 months of voluntary alcoholization.

  7. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1.

    PubMed

    Meza-Carmen, Victor; Pacheco-Rodriguez, Gustavo; Kang, Gi Soo; Kato, Jiro; Donati, Chiara; Zhang, Chun-Yi; Vichi, Alessandro; Payne, D Michael; El-Chemaly, Souheil; Stylianou, Mario; Moss, Joel; Vaughan, Martha

    2011-06-28

    ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis, we used mouse embryo fibroblasts (MEFs) from ARD1-/- mice stably transfected with plasmids for inducible expression of wild-type ARD1 protein (KO-WT), or ARD1 protein with inactivating mutations in E3 ligase domain (KO-E3), or containing persistently active GTP-bound (KO-GTP), or inactive GDP-bound (KO-GDP) GTPase domains. Inhibition of proteasomal proteases in mifepristone-induced KO-WT, KO-GDP, or KO-GTP MEFs resulted in accumulation of these ARD1 proteins, whereas KO-E3 accumulated without inhibitors. All data were consistent with the conclusion that ARD1 regulates its own steady-state levels in cells by autoubiquitination. Based on reported growth factor receptor-cytohesin interactions, EGF receptor (EGFR) was investigated in induced MEFs. Amounts of cell-surface and total EGFR were higher in KO-GDP and lower in KO-GTP than in KO-WT MEFs, with levels in both mutants greater (p = 0.001) after proteasomal inhibition. Significant differences among MEF lines in content of TGF-β receptor III were similar to those in EGFR, albeit not as large. Differences in amounts of insulin receptor mirrored those in EGFR, but did not reach statistical significance. Overall, the capacity of ARD1 GTPase to cycle between active and inactive forms and its autoubiquitination both appear to be necessary for the appropriate turnover of EGFR and perhaps additional growth factor receptors.

  8. Definition of the molecular basis for estrogen receptor-related receptor-alpha-cofactor interactions.

    PubMed

    Gaillard, Stéphanie; Dwyer, Mary A; McDonnell, Donald P

    2007-01-01

    Estrogen receptor-related receptor-alpha (ERRalpha) is an orphan nuclear receptor that does not appear to require a classical small molecule ligand to facilitate its interaction with coactivators and/or hormone response elements within target genes. Instead, the apo-receptor is capable of interacting in a constitutive manner with coactivators that stimulate transcription by acting as protein ligands. We have screened combinatorial phage libraries for peptides that selectively interact with ERRalpha to probe the architecture of the ERRalpha-coactivator pocket. In this manner, we have uncovered a fundamental difference in the mechanism by which this receptor interacts with peroxisome proliferator-activated receptor-gamma coactivator-1alpha, as compared with members of the steroid receptor coactivator subfamily of coactivators. Our findings suggest that it may be possible to develop ERRalpha ligands that exhibit different pharmacological activities as a consequence of their ability to differentially regulate coactivator recruitment. In addition, these findings have implications beyond ERRalpha because they suggest that subtle alterations in the structure of the activation function-2 pocket within any nuclear receptor may enable differential recruitment of coactivators, an observation of notable pharmaceutical importance.

  9. Catecholamime Interactions with the Cardiac Ryanodine Receptor

    NASA Astrophysics Data System (ADS)

    Klipp, Robert Carl

    The cardiac ryanodine receptor (RyR2) is a Ca2+ ion channel found in the sarcoplasmic reticulum (SR), an intracellular membranous Ca2+ storage system. It is well known that a destabilization of RyR2 can lead to a Ca2+ flux out of the SR, which results in an overload of intracellular Ca2+; this can also lead to arrhythmias and heart failure. The catecholamines play a large role in the regulation of RyR2; stimulation of the beta-adrenergic receptor on the cell membrane can lead to a hyperphosphorylation of RyR2, making it more leaky to Ca2+. We have previously shown that strong electron donors will inhibit RyR2. It is hypothesized that the catecholamines, sharing a similar structure with other proven inhibitors of RyR2, will also inhibit RyR2. Here we confirm this hypothesis and show for the first time that the catecholamines, isoproterenol and epinephrine, act as strong electron donors and inhibit RyR2 activity at the single channel level. This data suggests that the catecholamines can influence RyR2 activity at two levels. This offers promising insight into the potential development of a new class of drugs to treat heart failure and arrhythmia; ones that can both prevent the hyperphosphorylation of RyR2 by blocking the beta-adrenergic receptor, but can also directly inhibit the release of Ca2+ from RyR2.

  10. Recombinant pigment epithelium-derived factor PEDF binds vascular endothelial growth factor receptors 1 and 2.

    PubMed

    Johnston, Erin K; Francis, Mary K; Knepper, Janice E

    2015-08-01

    Angiogenesis, or the formation of new blood vessels, is stimulated by angiogenic factors such as vascular endothelial growth factor (VEGF). Pigment epithelium-derived factor (PEDF) is a potent inhibitor of angiogenesis. To explore the mechanism by which PEDF acts, recombinant PEDF was expressed with a 6x-His tag (for purification) and a green fluorescent protein (GFP) tag. The PEDF fusion protein was confirmed to be active in inhibition of endothelial cell proliferation and migration. Direct binding of PEDF to both vascular endothelial growth factor receptor-1 (VEGFR-1) and VEGFR-2 was demonstrated in an in vitro assay similar to an enzyme-linked immunosorbent assay (ELISA). PEDF was shown by immune-confocal microscopy to be localized within treated endothelial cells. When VEGF-stimulated endothelial cells were incubated with PEDF the VEGF receptors showed intracellular localization. These data suggest that the interaction between PEDF and VEGFR-1 or VEGFR-2 may be a possible mechanism for inhibiting angiogenesis. PEDF may be binding to the VEGF receptors to promote their internalization and/or degradation to limit VEGF responses in treated cells.

  11. Structural Analysis of Chemokine Receptor-Ligand Interactions.

    PubMed

    Arimont, Marta; Sun, Shan-Liang; Leurs, Rob; Smit, Martine; de Esch, Iwan J P; de Graaf, Chris

    2017-03-10

    This review focuses on the construction and application of structural chemokine receptor models for the elucidation of molecular determinants of chemokine receptor modulation and the structure-based discovery and design of chemokine receptor ligands. A comparative analysis of ligand binding pockets in chemokine receptors is presented, including a detailed description of the CXCR4, CCR2, CCR5, CCR9, and US28 X-ray structures, and their implication for modeling molecular interactions of chemokine receptors with small-molecule ligands, peptide ligands, and large antibodies and chemokines. These studies demonstrate how the integration of new structural information on chemokine receptors with extensive structure-activity relationship and site-directed mutagenesis data facilitates the prediction of the structure of chemokine receptor-ligand complexes that have not been crystallized. Finally, a review of structure-based ligand discovery and design studies based on chemokine receptor crystal structures and homology models illustrates the possibilities and challenges to find novel ligands for chemokine receptors.

  12. Dopamine and dopamine receptor D1 associated with decreased social interaction.

    PubMed

    Liu, Qiang; Shi, Jieyun; Lin, Rongfei; Wen, Tieqiao

    2017-02-13

    Deficits in social interaction are hallmarks of neurological and psychiatric disorders. However, its underlying mechanism is still unclear. Here, we show that the loss of dendritic cell factor 1 (Dcf1) in the nervous system of mice induces social interaction deficiency, autism-like behaviour, and influences social interaction via the dopamine system. Dopamine receptor D1 agonist rescues this social cognition phenotype, and improves short-term plasticity. Together, this study presents a new genetic mechanism that affects social interaction and may provide a new way to improve positive social interaction and treat autism spectrum disorders.

  13. [Modulation of glucocorticoid receptor interaction with non-steroidal drugs].

    PubMed

    Golikov, P P; Nikolaeva, N Iu

    1993-01-01

    The Scatchard analysis of the specific binding of triamcinolone 3H-acetonide (TA-3HA) to Type II glucocorticoid receptors of cytosol from the liver of female Wistar rats weighing 180-200 g has shown that emoxipin at concentrations of 1 and 2 mM and analgin at concentrations of 5 and 10 mM reduce the density of glucocorticoid receptors and the association constant of a hormone-receptor complex. Analgin, 5 mM, increases the dissociation velocity constant of TA-3HA 5 times the effect of unlabeled triamcinolone acetonide. Emoxipin, 1 mM, produces the same effect on the receptor dissociation velocity constant of TA-3HA as the unlabeled triamcinolone acetonide. The Berke analysis has established that emoxipin and analgin reduce glucocorticoid receptor interactions by uncompetitive inhibition.

  14. Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors.

    PubMed

    Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea

    2012-01-01

    Cognitive enhancers (nootropics) are drugs to treat cognition deficits in patients suffering from Alzheimer's disease, schizophrenia, stroke, attention deficit hyperactivity disorder, or aging. Cognition refers to a capacity for information processing, applying knowledge, and changing preferences. It involves memory, attention, executive functions, perception, language, and psychomotor functions. The term nootropics was coined in 1972 when memory enhancing properties of piracetam were observed in clinical trials. In the meantime, hundreds of drugs have been evaluated in clinical trials or in preclinical experiments. To classify the compounds, a concept is proposed assigning drugs to 18 categories according to their mechanism(s) of action, in particular drugs interacting with receptors, enzymes, ion channels, nerve growth factors, re-uptake transporters, antioxidants, metal chelators, and disease-modifying drugs meaning small molecules, vaccines, and monoclonal antibodies interacting with amyloid-β and tau. For drugs, whose mechanism of action is not known, they are either classified according to structure, e.g., peptides, or their origin, e.g., natural products. The review covers the evolution of research in this field over the last 25 years.

  15. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    SciTech Connect

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  16. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system.

    PubMed

    Walsh, Matthew C; Lee, JangEun; Choi, Yongwon

    2015-07-01

    Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an adapter protein that mediates a wide array of protein-protein interactions via its TRAF domain and a RING finger domain that possesses non-conventional E3 ubiquitin ligase activity. First identified nearly two decades ago as a mediator of interleukin-1 receptor (IL-1R)-mediated activation of NFκB, TRAF6 has since been identified as an actor downstream of multiple receptor families with immunoregulatory functions, including members of the TNFR superfamily, the Toll-like receptor (TLR) family, tumor growth factorreceptors (TGFβR), and T-cell receptor (TCR). In addition to NFκB, TRAF6 may also direct activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and interferon regulatory factor pathways. In the context of the immune system, TRAF6-mediated signals have proven critical for the development, homeostasis, and/or activation of B cells, T cells, and myeloid cells, including macrophages, dendritic cells, and osteoclasts, as well as for organogenesis of thymic and secondary lymphoid tissues. In multiple cellular contexts, TRAF6 function is essential not only for proper activation of the immune system but also for maintaining immune tolerance, and more recent work has begun to identify mechanisms of contextual specificity for TRAF6, involving both regulatory protein interactions, and messenger RNA regulation by microRNAs.

  17. Adenovirus-receptor interaction with human lymphocytes.

    PubMed

    Mentel, R; Döpping, G; Wegner, U; Seidel, W; Liebermann, H; Döhner, L

    1997-03-01

    Lymphocytes play a key role in cell-mediated immunity and are host cells for several viral and bacterial pathogens. Their importance in adenovirus (Ad) infections is not yet fully understood. The initial event, the attachment of Ad to lymphocytes and their subsets, was examined using flow cytometry. The study included analysis of stimulated T cells in binding assays with FITC-labeled Ad fiber. The results confirm that native peripheral lymphocytes express very small amounts of Ad receptors. Stimulation with PHA and interleukin 2 induced the expression. The presence of Ad DNA as a sign of internalization in stimulated cells was demonstrated using the polymerase chain reaction. The findings suggest that lymphocytes after stimulation can turn into target cells for Ad. This is particularly important if there are indications for persistence of Ad, and in the case of immunocompromised patients severe, life-threatening diseases can develop.

  18. Mechanism of kinase activation in the receptor for colony-stimulating factor 1.

    PubMed Central

    Lee, A W; Nienhuis, A W

    1990-01-01

    Receptor tyrosine kinases remain dormant until activated by ligand binding to the extracellular domain. Two mechanisms have been proposed for kinase activation: (i) ligand binding to the external domain of a receptor monomer may induce a conformational change that is transmitted across the cell membrane (intramolecular model) or (ii) the ligand may facilitate oligomerization, thereby allowing interactions between the juxtaposed kinase domains (intermolecular model). The receptor for colony-stimulating factor 1 was used to test these models. Large insertions at the junction between the external and transmembrane domains of the receptor, introduced by site-directed mutagenesis of the cDNA, were positioned to isolate the external domain and prevent transmembrane conformational propagation while allowing for receptor oligomerization. Such mutant receptors were expressed on the cell surface, bound ligand with high affinity, exhibited ligand-stimulated autophosphorylation, and signaled mitogenesis and cellular proliferation in the presence of ligand. A second experimental strategy directly tested the intermolecular model of ligand activation. A hybrid receptor composed of the external domain of human glycophorin A and the transmembrane and cytoplasmic domains of the colony-stimulating factor 1 receptor exhibited anti-glycophorin antibody-induced kinase activity that supported mitogenesis. Our data strongly support a mechanism of receptor activation based on ligand-induced receptor oligomerization. Images PMID:2169623

  19. Interaction between the trout mineralocorticoid and glucocorticoid receptors in vitro.

    PubMed

    Kiilerich, Pia; Triqueneaux, Gérard; Christensen, Nynne Meyn; Trayer, Vincent; Terrien, Xavier; Lombès, Marc; Prunet, Patrick

    2015-08-01

    The salmonid corticosteroid receptors (CRs), glucocorticoid receptors 1 and 2 (GR1 and GR2) and the mineralocorticoid receptor (MR) share a high degree of homology with regard to structure, ligand- and DNA response element-binding, and cellular co-localization. Typically, these nuclear hormone receptors homodimerize to confer transcriptional activation of target genes, but a few studies using mammalian receptors suggest some degree of heterodimerization. We observed that the trout MR confers a several fold lower transcriptional activity compared to the trout GRs. This made us question the functional relevance of the MR when this receptor is located in the same cells as the GRs and activated by cortisol. A series of co-transfection experiments using different glucocorticoid response elements (GREs) containing promoter-reporter constructs were carried out to investigate any possible interaction between the piscine CRs. Co-transfection of the GRs with the MR significantly reduced the total transcriptional activity even at low MR levels, suggesting interaction between these receptors. Co-transfection of GR1 or GR2 with the MR did not affect the subcellular localization of the GRs, and the MR-mediated inhibition seemed to be independent of specific activation or inhibition of the MR. Site-directed mutagenesis of the DNA-binding domain and dimerization interface of the MR showed that the inhibition was dependent on DNA binding but not necessarily on dimerization ability. Thus, we suggest that the interaction between MR and the GRs may regulate the cortisol response in cell types where the receptors co-localize and propose a dominant-negative role for the MR in cortisol-mediated transcriptional activity.

  20. Predicting drug-target interactions using probabilistic matrix factorization.

    PubMed

    Cobanoglu, Murat Can; Liu, Chang; Hu, Feizhuo; Oltvai, Zoltán N; Bahar, Ivet

    2013-12-23

    Quantitative analysis of known drug-target interactions emerged in recent years as a useful approach for drug repurposing and assessing side effects. In the present study, we present a method that uses probabilistic matrix factorization (PMF) for this purpose, which is particularly useful for analyzing large interaction networks. DrugBank drugs clustered based on PMF latent variables show phenotypic similarity even in the absence of 3D shape similarity. Benchmarking computations show that the method outperforms those recently introduced provided that the input data set of known interactions is sufficiently large--which is the case for enzymes and ion channels, but not for G-protein coupled receptors (GPCRs) and nuclear receptors. Runs performed on DrugBank after hiding 70% of known interactions show that, on average, 88 of the top 100 predictions hit the hidden interactions. De novo predictions permit us to identify new potential interactions. Drug-target pairs implicated in neurobiological disorders are overrepresented among de novo predictions.

  1. Thermodynamic analysis of antagonist and agonist interactions with dopamine receptors.

    PubMed

    Duarte, E P; Oliveira, C R; Carvalho, A P

    1988-03-01

    The binding of [3H]spiperone to dopamine D-2 receptors and its inhibition by antagonists and agonists were examined in microsomes derived from the sheep caudate nucleus, at temperatures between 37 and 1 degree C, and the thermodynamic parameters of the binding were evaluated. The affinity of the receptor for the antagonists, spiperone and (+)-butaclamol, decreased as the incubation temperature decreased; the affinity for haloperidol did not further decrease at temperatures below 15 degrees C. The binding of the antagonists was associated with very large increases in entropy, as expected for hydrophobic interactions. The enthalpy and entropy changes associated with haloperidol binding were dependent on temperature, in contrast to those associated with spiperone and (+)-butaclamol. The magnitude of the entropy increase associated with the specific binding of the antagonists did not correlate with the degree of lipophilicity of these drugs. The data suggest that, in addition to hydrophobic forces, other forces are also involved in the antagonist-dopamine receptor interactions, and that a conformational change of the receptor could occur when the antagonist binds. Agonist binding data are consistent with a two-state model of the receptor, a high-affinity state (RH) and a low-affinity state (RL). The affinity of dopamine binding to the RH decreased with decreasing temperatures below 20 degrees C, whereas the affinity for the RL increased at low temperatures. In contrast, the affinity of apomorphine for both states of receptor decreased as the temperature decreased from 30 to 8 degrees C. A clear distinction between the energetics of high-affinity and low-affinity agonist binding was observed. The formation of the high-affinity complex was associated with larger increases in enthalpy and entropy than the interaction with the low-affinity state was. The results suggest that the interaction of the receptor with the G-proteins, induced or stabilized by the binding of

  2. Mammary tumorigenesis induced by fibroblast growth factor receptor 1 requires activation of the epidermal growth factor receptor.

    PubMed

    Bade, Lindsey K; Goldberg, Jodi E; Dehut, Hazel A; Hall, Majken K; Schwertfeger, Kathryn L

    2011-09-15

    Fibroblast growth factor receptor 1 (FGFR1) is an oncoprotein with known involvement in mammary tumorigenesis. To understand how FGFR1 signaling promotes mammary tumorigenesis, an inducible FGFR1 (iFGFR1) system was created previously. Previous studies have demonstrated that upon iFGFR1 activation in vivo, the epidermal growth factor (EGF) ligands amphiregulin (AREG) and epiregulin (EREG) are upregulated. Both AREG and EREG interact with the EGF receptor (EGFR). Here, we investigated whether the FGFR1-induced increase in AREG and EREG expression might coordinately increase EGFR signaling to promote mammary tumorigenesis. Treatment of mouse mammary epithelial cells with either AREG or EREG conferred a greater migratory potential, increased cellular proliferation and increased extracellular regulated kinase 1/2 (ERK1/2) activation. These effects could be blocked with the EGFR-specific inhibitor erlotinib, suggesting that they are EGFR-dependent. In transgenic mice with iFGFR1 under the control of the mouse mammary tumor virus (MMTV) promoter, iFGFR1 activation also led to increased mammary epithelial cell proliferation that was inhibited with erlotinib. Taken together, these data suggest that AREG and EREG mediate tumorigenic phenotypes by activating EGFR signaling, and that the oncogenic potential of FGFR1 requires EGFR activation to promote mammary tumorigenesis.

  3. Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor.

    PubMed

    Miranda, Tina B; Morris, Stephanie A; Hager, Gordon L

    2013-11-05

    The glucocorticoid receptor regulates transcriptional output through complex interactions with the genome. These events require continuous remodeling of chromatin, interactions of the glucocorticoid receptor with chaperones and other accessory factors, and recycling of the receptor by the proteasome. Therefore, the cohort of factors expressed in a particular cell type can determine the physiological outcome upon treatment with glucocorticoid hormones. In addition, circadian and ultradian cycling of hormones can also affect GR response. Here we will discuss revision of the classical static model of GR binding to response elements to incorporate recent findings from single cell and genome-wide analyses of GR regulation. We will highlight how these studies have changed our views on the dynamics of GR recruitment and its modulation of gene expression.

  4. The interaction of Clostridium perfringens enterotoxin with receptor claudins.

    PubMed

    Shrestha, Archana; Uzal, Francisco A; McClane, Bruce A

    2016-10-01

    Clostridium perfringens enterotoxin (CPE) has significant medical importance due to its involvement in several common human gastrointestinal diseases. This 35 kDa single polypeptide toxin consists of two domains: a C-terminal domain involved in receptor binding and an N-terminal domain involved in oligomerization, membrane insertion and pore formation. The action of CPE starts with its binding to receptors, which include certain members of the claudin tight junction protein family; bound CPE then forms a series of complexes, one of which is a pore that causes the calcium influx responsible for host cell death. Recent studies have revealed that CPE binding to claudin receptors involves interactions between the C-terminal CPE domain and both the 1st and 2nd extracellular loops (ECL-1 and ECL-2) of claudin receptors. Of particular importance for this binding is the docking of ECL-2 into a pocket present in the C-terminal domain of the toxin. This increased understanding of CPE interactions with claudin receptors is now fostering the development of receptor decoy therapeutics for CPE-mediated gastrointestinal disease, reagents for cancer therapy/diagnoses and enhancers of drug delivery.

  5. Insulin receptor: Interaction with nonreceptor glycoprotein from liver cell membranes

    PubMed Central

    Maturo, Joseph M.; Hollenberg, Morley D.

    1978-01-01

    In crude receptor preparations (either particulate or soluble) of rat liver membranes, the insulin receptor exhibits complicated binding kinetics (two binding plateaus, half-saturated at approximately 60 pM and 700 pM insulin) and an apparent chromatographic heterogeneity, suggested by the presence of two detectable, soluble insulin-binding components with apparent Stokes radii of 72 Å and 38 Å. In contrast, the insulin receptor isolated by affinity chromatography exhibits a simple binding isotherm (half-maximal saturation of binding at 700 pM insulin) without evidence for negative cooperativity and behaves as a single component (apparent Stokes radius of 38 Å) upon chromatography on Sepharose 6B. The apparent discrepancies between the properties of the unpurified insulin receptor and the affinity-purified receptor can be attributed to the presence in crude preparations of a nonreceptor constituent(s) having properties consistent with those of a membrane glycoprotein. A glycoprotein fraction from such crude soluble membrane preparations, freed from insulin receptor and subsequently partially purified using concanavalin-A-agarose, when combined with affinity-purified insulin receptor, causes both a reappearance of the complicated binding kinetics and an increase in the receptor's apparent Stokes radius from 38 Å to 72 Å. Similar results are observed for a glycoprotein fraction obtained from rat adipocyte membranes but are not observed for an identical fraction isolated from human erythrocyte membranes. We conclude that the insulin receptor in rat liver membranes can interact with another nonreceptor membrane glycoprotein that may represent either a nonrecognition moiety of the receptor oligomer or an effector molecule to the biological action of insulin. PMID:277909

  6. The cellular response to neuregulins is governed by complex interactions of the erbB receptor family.

    PubMed Central

    Riese, D J; van Raaij, T M; Plowman, G D; Andrews, G C; Stern, D F

    1995-01-01

    Deregulated signaling by the four members of the epidermal growth factor receptor tyrosine kinase family (erbB family) is implicated in the genesis or progression of human cancers. However, efforts to analyze signaling by these receptors have been hampered by the diversity of ligands and extensive interreceptor cross talk. We have expressed the four human erbB family receptors, singly and in pairwise combinations, in a pro-B-lymphocyte cell line (Ba/F3) and investigated the range of interactions activated by the epidermal growth factor homology domain of the agonist neuregulin beta. The results provide the first comprehensive analysis of the response of this receptor family to a single peptide agonist. This peptide induced complex patterns of receptor tyrosine phosphorylation and regulation of Ba/F3 cell survival and proliferation. These data demonstrate the existence of several previously undocumented receptor interactions driven by neuregulin. PMID:7565730

  7. Structure of the IGF-binding domain of the insulin-like growth factor-binding protein-5 (IGFBP-5): implications for IGF and IGF-I receptor interactions.

    PubMed Central

    Kalus, W; Zweckstetter, M; Renner, C; Sanchez, Y; Georgescu, J; Grol, M; Demuth, D; Schumacher, R; Dony, C; Lang, K; Holak, T A

    1998-01-01

    Binding proteins for insulin-like growth factors (IGFs) IGF-I and IGF-II, known as IGFBPs, control the distribution, function and activity of IGFs in various cell tissues and body fluids. Insulin-like growth factor-binding protein-5 (IGFBP-5) is known to modulate the stimulatory effects of IGFs and is the major IGF-binding protein in bone tissue. We have expressed two N-terminal fragments of IGFBP-5 in Escherichia coli; the first encodes the N-terminal domain of the protein (residues 1-104) and the second, mini-IGFBP-5, comprises residues Ala40 to Ile92. We show that the entire IGFBP-5 protein contains only one high-affinity binding site for IGFs, located in mini-IGFBP-5. The solution structure of mini-IGFBP-5, determined by nuclear magnetic resonance spectroscopy, discloses a rigid, globular structure that consists of a centrally located three-stranded anti-parallel beta-sheet. Its scaffold is stabilized further by two inside packed disulfide bridges. The binding to IGFs, which is in the nanomolar range, involves conserved Leu and Val residues localized in a hydrophobic patch on the surface of the IGFBP-5 protein. Remarkably, the IGF-I receptor binding assays of IGFBP-5 showed that IGFBP-5 inhibits the binding of IGFs to the IGF-I receptor, resulting in reduction of receptor stimulation and autophosphorylation. Compared with the full-length IGFBP-5, the smaller N-terminal fragments were less efficient inhibitors of the IGF-I receptor binding of IGFs. PMID:9822601

  8. Binding interactions with the complementary subunit of nicotinic receptors.

    PubMed

    Blum, Angela P; Van Arnam, Ethan B; German, Laurel A; Lester, Henry A; Dougherty, Dennis A

    2013-03-08

    The agonist-binding site of nicotinic acetylcholine receptors (nAChRs) spans an interface between two subunits of the pentameric receptor. The principal component of this binding site is contributed by an α subunit, and it binds the cationic moiety of the nicotinic pharmacophore. The other part of the pharmacophore, a hydrogen bond acceptor, has recently been shown to bind to the complementary non-α subunit via the backbone NH of a conserved Leu. This interaction was predicted by studies of ACh-binding proteins and confirmed by functional studies of the neuronal (CNS) nAChR, α4β2. The ACh-binding protein structures further suggested that the hydrogen bond to the backbone NH is mediated by a water molecule and that a second hydrogen bonding interaction occurs between the water molecule and the backbone CO of a conserved Asn, also on the non-α subunit. Here, we provide new insights into the nature of the interactions between the hydrogen bond acceptor of nicotinic agonists and the complementary subunit backbone. We studied both the nAChR of the neuromuscular junction (muscle-type) and a neuronal subtype, (α4)2(β4)3. In the muscle-type receptor, both ACh and nicotine showed a strong interaction with the Leu NH, but the potent nicotine analog epibatidine did not. This interaction was much attenuated in the α4β4 receptor. Surprisingly, we found no evidence for a functionally significant interaction with the backbone carbonyl of the relevant Asn in either receptor with an array of agonists.

  9. Aging-related dysregulation of dopamine and angiotensin receptor interaction.

    PubMed

    Villar-Cheda, Begoña; Dominguez-Meijide, Antonio; Valenzuela, Rita; Granado, Noelia; Moratalla, Rosario; Labandeira-Garcia, Jose L

    2014-07-01

    It is not known whether the aging-related decrease in dopaminergic function leads to the aging-related higher vulnerability of dopaminergic neurons and risk for Parkinson's disease. The renin-angiotensin system (RAS) plays a major role in the inflammatory response, neuronal oxidative stress, and dopaminergic vulnerability via type 1 (AT1) receptors. In the present study, we observed a counterregulatory interaction between dopamine and angiotensin receptors. We observed overexpression of AT1 receptors in the striatum and substantia nigra of young adult dopamine D1 and D2 receptor-deficient mice and young dopamine-depleted rats, together with compensatory overexpression of AT2 receptors or compensatory downregulation of angiotensinogen and/or angiotensin. In aged rats, we observed downregulation of dopamine and dopamine receptors and overexpression of AT1 receptors in aged rats, without compensatory changes observed in young animals. L-Dopa therapy inhibited RAS overactivity in young dopamine-depleted rats, but was ineffective in aged rats. The results suggest that dopamine may play an important role in modulating oxidative stress and inflammation in the substantia nigra and striatum via the RAS, which is impaired by aging.

  10. Structural basis of ligand interaction with atypical chemokine receptor 3

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.

  11. Structural basis of ligand interaction with atypical chemokine receptor 3

    PubMed Central

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor. PMID:28098154

  12. Interaction of G protein coupled receptors and cholesterol.

    PubMed

    Gimpl, Gerald

    2016-09-01

    G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs.

  13. Substituted methcathinones differ in transporter and receptor interactions

    PubMed Central

    Eshleman, Amy J; Wolfrum, Katherine M; Hatfield, Meagan G; Johnson, Robert A; Murphy, Kevin V; Janowsky, Aaron

    2013-01-01

    The use of synthetic methcathinones, components of “bath salts,” is a world-wide health concern. These compounds, structurally similar to methamphetamine (METH) and 3,4-methylendioxymethamphetamine (MDMA), cause tachycardia, hallucinations and psychosis. We hypothesized that these potentially neurotoxic and abused compounds display differences in their transporter and receptor interactions as compared to amphetamine counterparts. 3,4-Methylenedioxypyrovalerone and naphyrone had high affinity for radioligand binding sites on recombinant human dopamine (hDAT), serotonin (hSERT) and norepinephrine (hNET) transporters, potently inhibited [3H]neurotransmitter uptake, and, like cocaine, did not induce transporter-mediated release. Butylone was a lower affinity uptake inhibitor. In contrast, 4-fluoromethcathinone, mephedrone and methylone had higher inhibitory potency at uptake compared to binding and generally induced release of preloaded [3H]neurotransmitter from hDAT, hSERT and hNET (highest potency at hNET), and thus are transporter substrates, similar to METH and MDMA. At hNET, 4-fluoromethcathinone was a more efficacious releaser than METH. These substituted methcathinones had low uptake inhibitory potency and low efficacy at inducing release via human vesicular monoamine transporters (hVMAT2). These compounds were low potency 1) h5-HT1A receptor partial agonists, 2) h5-HT2A receptor antagonists, 3) weak h5-HT2C receptor antagonists. This is the first report on aspects of substituted methcathinone efficacies at serotonin (5-HT) receptors and in superfusion release assays. Additionally, the drugs had no affinity for dopamine receptors, and high- mid-micromolar affinity for hSigma1 receptors. Thus, direct interactions with hVMAT2 and serotonin, dopamine, and hSigma1 receptors may not explain psychoactive effects. The primary mechanisms of action may be as inhibitors or substrates of DAT, SERT and NET. PMID:23583454

  14. The Two Faces of Receptor Interacting Protein Kinase-1

    PubMed Central

    Weinlich, Ricardo; Green, Douglas R.

    2014-01-01

    Receptor Interacting Protein Kinase-1 (RIPK1), a key player in inflammation and cell death, assumes opposite functions depending on the cellular context and its posttranslational modifications. Genetic evidence supported by biochemical and cellular biology approaches shed light on the circumstances in which RIPK1 promotes or inhibits these processes. PMID:25459879

  15. Sperm Epidermal Growth Factor Receptor (EGFR) Mediates α7 Acetylcholine Receptor (AChR) Activation to Promote Fertilization

    PubMed Central

    Jaldety, Yael; Glick, Yair; Orr-Urtreger, Avi; Ickowicz, Debby; Gerber, Doron; Breitbart, Haim

    2012-01-01

    To attain fertilization the spermatozoon binds to the egg zona pellucida (ZP) via sperm receptor(s) and undergoes an acrosome reaction (AR). Several sperm receptors have been described in the literature; however, the identity of this receptor is not yet certain. In this study, we suggest that the α7 nicotinic acetylcholine receptor (α7nAChR) might be a sperm receptor activated by ZP to induce epidermal growth factor receptor (EGFR)-mediated AR. We found that isolated ZP or α7 agonists induced the AR in sperm from WT but not α7-null spermatozoa, and the induced AR was inhibited by α7 or EGFR antagonists. Moreover, α7-null sperm showed very little binding to the egg, and microfluidic affinity in vitro assay clearly showed that α7nAChR, as well as EGFR, interacted with ZP3. Induction of EGFR activation and the AR by an α7 agonist was inhibited by a Src family kinase (SFK) inhibitor. In conclusion we suggest that activation of α7 by ZP leads to SFK-dependent EGFR activation, Ca2+ influx, and the acrosome reaction. PMID:22577141

  16. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration.

    PubMed

    Klein, Daryl E; Nappi, Valerie M; Reeves, Gregory T; Shvartsman, Stanislav Y; Lemmon, Mark A

    2004-08-26

    The epidermal growth factor receptor (EGFR) has critical functions in development and in many human cancers. During development, the spatial extent of EGFR signalling is regulated by feedback loops comprising both well-understood activators and less well-characterized inhibitors. In Drosophila melanogaster the secreted protein Argos functions as the only known extracellular inhibitor of EGFR, with clearly identified roles in multiple stages of development. Argos is only expressed when the Drosophila EGFR (DER) is activated at high levels, and downregulates further DER signalling. Although there is ample genetic evidence that Argos inhibits DER activation, the biochemical mechanism has not been established. Here we show that Argos inhibits DER signalling without interacting directly with the receptor, but instead by sequestering the DER-activating ligand Spitz. Argos binds tightly to the EGF motif of Spitz and forms a 1:1 (Spitz:Argos) complex that does not bind DER in vitro or at the cell surface. Our results provide an insight into the mechanism of Argos function, and suggest new strategies for EGFR inhibitor design.

  17. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  18. CD95 death receptor and epidermal growth factor receptor (EGFR) in liver cell apoptosis and regeneration.

    PubMed

    Reinehr, Roland; Häussinger, Dieter

    2012-02-01

    Recent evidence suggests that signaling pathways towards cell proliferation and cell death are much more interconnected than previously thought. Whereas not only death receptors such as CD95 (Fas, APO-1) can couple to both, cell death and proliferation, also growth factor receptors such as the epidermal growth factor receptor (EGFR) are involved in these opposing kinds of cell fate. EGFR is briefly discussed as a growth factor receptor involved in liver cell proliferation during liver regeneration. Then the role of EGFR in activating CD95 death receptor in liver parenchymal cells (PC) and hepatic stellate cells (HSC), which represent a liver stem/progenitor cell compartment, is described summarizing different ways of CD95- and EGFR-dependent signaling in the liver. Here, depending on the hepatic cell type (PC vs. HSC) and the respective signaling context (sustained vs. transient JNK activation) CD95-/EGFR-mediated signaling ends up in either liver cell apoptosis or cell proliferation.

  19. [The Cytoskelrtal Protein Zvxin Interacts with the Hedgehog Receptor Patched].

    PubMed

    Martynova, N U; Ermolina, L V; Eroshkin, F M; Zarayskiy, A G

    2015-01-01

    Earlier, we demonstrated Zyxin influence upon Hedgehog (Hh)-signaling pathway during early patterning of the central neural system (CNS) anlage of the Xenopus laevis embryo. Now we show that Zyxin can physically interact with the transmembrane receptor of Hh, Patched2 (Ptc2). Binding of Hh by this receptor activates signaling pathway, which regulates many events, including numerous types of cell differentiation during the embryonic development. In particular, patterning of the CNS anlage. The ability of Zyxin to interact with Ptc2 have been confirmed by immunoprecipitation experiments, in which we tested mutual binding affinity of Zyxin and Ptc2, as well as mutual affinity of their deletion mutants. As a result, we have established that in Xenopus levis, Zyxin binding to Ptc2 is due to the interaction of Zyxin 2nd LIM-domain (530-590 aa) with the under-membrane region of the cytoplasmic C-terminus of Ptc2 (1159-1412 aa). We have also demonstrated that similar interaction is valid for the homologous regions of the human Zyxin and human Hh receptor, Ptc1. The data obtained allow to hypothesize existence of evolutionary conserved mechanism that modulates Hh-signaling and based on the interaction of Zyxin with Ptc.

  20. Interaction of rat liver glucocorticoid receptor with sodium tungstate.

    PubMed

    Murakami, N; Healy, S P; Moudgil, V K

    1982-06-15

    Effects of sodium tungstate on various properties of rat liver glucocorticoid receptor were examined at pH7 and pH 8. At pH 7, [3H]triamcinolone acetonide binding in rat liver cytosol preparations was completely blocked in the presence of 10--20 mM-sodium tungstate at 4 degrees C, whereas at 37 degrees C a 30 min incubation of cytosol receptor preparation with 1 mM-sodium tungstate reduced the loss of unoccupied receptor by 50%. At pH 8.0, tungstate presence during the 37 degrees C incubation maintained the steroid-binding capacity of unoccupied glucocorticoid receptor at control (4 degrees C) levels. In addition, heat-activation of cytosolic glucocorticoid-receptor complex was blocked by 1 mM- and 10 mM-sodium tungstate at pH 7 and pH 8 respectively. The DNA-cellulose binding by activated receptor was also inhibited completely and irreversibly by 5 mM-tungstate at pH 7, whereas at pH 8 no significant effect was observed with up to 20 mM-tungstate. The entire DNA-cellulose-bound glucocorticoid-receptor complex from control samples could be extracted by incubation with 1 mM- and 20 mM-tungstate at pH 7 and pH 8 respectively, and appeared to sediment as a 4.3--4.6 S molecule, both in 0.01 M- and 0.3 M-KCl-containing sucrose gradients. Tungstate effects are, therefore, pH-dependent and appear to involve an interaction with both the non-activated and the activated forms of the glucocorticoid receptor.

  1. Interacting residues in an activated state of a G protein-coupled receptor.

    PubMed

    Lee, Yong-Hun; Naider, Fred; Becker, Jeffrey M

    2006-01-27

    Ste2p, the G protein-coupled receptor (GPCR) for the tridecapeptide pheromone alpha-factor of Saccharomyces cerevisiae, was used as a model GPCR to investigate the role of specific residues in the resting and activated states of the receptor. Using a series of biological and biochemical analyses of wild-type and site-directed mutant receptors, we identified Asn(205) as a potential interacting partner with the Tyr(266) residue. An N205H/Y266H double mutant showed pH-dependent functional activity, whereas the N205H receptor was non-functional and the Y266H receptor was partially active indicating that the histidine 205 and 266 residues interact in an activated state of the receptor. The introduction of N205K or Y266D mutations into the P258L/S259L constitutively active receptor suppressed the constitutive activity; in contrast, the N205K/Y266D/P258L/S259L quadruple mutant was fully constitutively active, again indicating an interaction between residues at the 205 and 206 positions in the receptor-active state. To further test this interaction, we introduced the N205C/Y266C, F204C/Y266C, and N205C/A265C double mutations into wild-type and P258L/S259L constitutively active receptors. After trypsin digestion, we found that a disulfide-cross-linked product, with the molecular weight expected for a receptor fragment with a cross-link between N205C and Y266C, formed only in the N205C/Y266C constitutively activated receptor. This study represents the first experimental demonstration of an interaction between specific residues in an active state, but not the resting state, of Ste2p. The information gained from this study should contribute to an understanding of the conformational differences between resting and active states in GPCRs.

  2. Interactions between fibroblast growth factors and Notch regulate neuronal differentiation.

    PubMed

    Faux, C H; Turnley, A M; Epa, R; Cappai, R; Bartlett, P F

    2001-08-01

    The differentiation of precursor cells into neurons has been shown to be influenced by both the Notch signaling pathway and growth factor stimulation. In this study, the regulation of neuronal differentiation by these mechanisms was examined in the embryonic day 10 neuroepithelial precursor (NEP) population. By downregulating Notch1 expression and by the addition of a Delta1 fusion protein (Delta Fc), it was shown that signaling via the Notch pathway inhibited neuron differentiation in the NEP cells, in vitro. The expression of two of the Notch receptor homologs, Notch1 and Notch3, and the ligand Delta1 in these NEP cells was found to be influenced by a number of different growth factors, indicating a potential interaction between growth factors and Notch signaling. Interestingly, none of the growth factors examined promoted neuron differentiation; however, the fibroblast growth factors (FGFs) 1 and 2 potently inhibited differentiation. FGF1 and FGF2 upregulated the expression of Notch and decreased expression of Delta1 in the NEP cells. In addition, the inhibitory response of the cells to the FGFs could be overcome by downregulating Notch1 expression and by disrupting Notch cleavage and signaling by the ablation of the Presenilin1 gene. These results indicate that FGF1 and FGF2 act via the Notch pathway, either directly or indirectly, to inhibit differentiation. Thus, signaling through the Notch receptor may be a common regulator of neuronal differentiation within the developing forebrain.

  3. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  4. Imaging receptors and their interactions: Implications for psychiatry

    SciTech Connect

    Brodie, J.D.; Wolkin, A.; Barouche, F.; Rotrosen, J.; Angrist, B. . Dept. of Psychiatry); Fowler, J.S.; Wolf, A.P.; Dewey, S.L.; Volkow, N.D.; MacGregor, R.; Schlyer, D.J.; Bendriem, B. )

    1989-01-01

    In the past ten years various receptor ligands for dopaminergic systems have been labeled and their regional distribution and time course imaged using positron emission tomography (PET). Labeled compounds have been developed to probe the opiate, benzodiazepine and serotonin receptors among others. The interest in evaluating dopamine receptors in the human brain has clearly been related to the known anti-psychotic effect of dopamine antagonists. In the present report, we shall summarize some of our recent findings on the dopamine (DA) system which bear on the psychiatric issues of the objective determination and monitoring of adequate neuroleptic dose; whether neuroleptic non-response is due to a failure of drug delivery; and preliminary data on the cholinergic system and its putative interaction with the DA system. 6 refs., 2 figs.

  5. Solution structures and molecular interactions of selective melanocortin receptor antagonists.

    PubMed

    Lee, Chul-Jin; Yun, Ji-Hye; Lim, Sung-Kil; Lee, Weontae

    2010-12-01

    The solution structures and inter-molecular interaction of the cyclic melanocortin antagonists SHU9119, JKC363, HS014, and HS024 with receptor molecules have been determined by NMR spectroscopy and molecular modeling. While SHU9119 is known as a nonselective antagonist, JKC363, HS014, and HS024 are selective for the melanocortin subtype-4 receptor (MC4R) involved in modulation of food intake. Data from NMR and molecular dynamics suggest that the conformation of the Trp9 sidechain in the three MC4R-selective antagonists is quite different from that of SHU9119. This result strongly supports the concept that the spatial orientation of the hydrophobic aromatic residue is more important for determining selectivity than the presence of a basic, "arginine-like" moiety responsible for biological activity. We propose that the conformation of hydrophobic residues of MCR antagonists is critical for receptor-specific selectivity.

  6. Functional interaction of nuclear receptor coactivator 4 with aryl hydrocarbon receptor

    SciTech Connect

    Kollara, Alexandra; Brown, Theodore J. . E-mail: brown@mshri.on.ca

    2006-07-28

    Aryl hydrocarbon receptor (AhR) transcriptional activity is enhanced by interaction with p160 coactivators. We demonstrate here that NcoA4, a nuclear receptor coactivator, interacts with and amplifies AhR action. NcoA4-AhR and NcoA4-ARNT interactions were demonstrated by immunoprecipitation in T47D breast cancer and COS cells and was independent of ligand. Overexpression of NcoA4 enhanced AhR transcriptional activity 3.2-fold in the presence of dioxin, whereas overexpression of a splice variant, NcoA4{beta}, as well as a variant lacking the C-terminal region enhanced AhR transcriptional activity by only 1.6-fold. Enhanced AhR signaling by NcoA4 was independent of the LXXLL and FXXLF motifs or of the activation domain. NcoA4 protein localized to cytoplasm in the absence of dioxin and in both the cytoplasm and nucleus following dioxin treatment. NcoA4-facilitation of AhR activity was abolished by overexpression of androgen receptor, suggesting a potential competition of AhR and androgen receptor for NcoA4. These findings thus demonstrate a functional interaction between NcoA4 and AhR that may alter AhR activity to affect disease development and progression.

  7. Research on drug-receptor interactions and prediction of drug activity via oriented immobilized receptor capillary electrophoresis.

    PubMed

    Liu, Chunye; Zhang, Xuejiao; Jing, Hui; Miao, Yanqing; Zhao, Lingzhi; Han, Yan; Cui, Cuixia

    2015-10-01

    Oriented covalent immobilized β2 -adrenergic receptor (β2 -AR) CE (OIRCE) was developed to determine the interactions between a set of natural extracts of Radix Paeoniae Rubra (NERPR) and β2 -AR, and to predict the activity of NERPR. The inner capillary surface is chemically bonded with stable β2 -AR coating via microwave-assisted technical synthesis. The modified capillaries were characterized via infrared spectroscopy and fluorescence microscopy. Furthermore, the bonding amounts of β2 -AR were first obtained via fluorescence spectroscopy method. In determining the amount of bonded β2 -AR, the regression equation A  =  576 707C + 35.449 and the correlation coefficient 0.9995 were obtained. This result revealed an excellent linear relationship in the range of 2 × 10(-4)  mg/mL to 1 × 10(-3)  mg/mL. The normalized capacity factor (KRCE ) was obtained using OIRCE in evaluating drug-receptor interactions. Related theories and equations were used to calculate KRCE values from apparent migration times of a solute and EOF. The order of KRCE and the binding constant (Kb ) values between drugs and β2 -AR was well consistent. The results confirmed that the OIRCE and KRCE values can be effectually used to investigate drug-receptor interactions, and OIRCE has the potential to predict drug activity and to select leading compounds from natural chemicals.

  8. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  9. Envelope-receptor interactions in Nipah virus pathobiology.

    PubMed

    Lee, Benhur

    2007-04-01

    Nipah (NiV) and Hendra (HeV) viruses are members of the newly defined Henipavirus genus of the Paramyxoviridae. Nipah virus (NiV) is an emergent paramyxovirus that causes fatal encephalitis in up to 70% of infected patients, and there is increasing evidence of human-to-human transmission. NiV is designated a priority pathogen in the NIAID Biodefense Research Agenda, and could be a devastating agent of agrobioterrorism if used against the pig farming industry. Endothelial syncytium is a pathognomonic feature of NiV infections, and is mediated by the fusion (F) and attachment (G) envelope glycoproteins. This review summarizes what is known about the pathophysiology of NiV infections, and documents the identification of the NiV receptor. EphrinB2, the NiV and HeV receptor, is expressed on endothelial cells and neurons, consistent with the known cellular tropism for NiV. We discuss how the identification of the henipahvirus receptor sheds light on the pathobiology of NiV infection, and how it will spur the rational development of effective therapeutics. In addition, ephrinB3, a related protein, can serve as an alternative receptor, and we suggest that differential usage of ephrinB2 versus B3 may explain the variant pathogenic profiles observed between NiV and HeV. Thus, identifying the NiV receptors opens the door for a more comprehensive analysis of the envelope-receptor interactions in NiV pathobiology. Finally, we also describe how galectin-1 (an innate immune defense lectin) can interact with specific N-glycans on the Nipah envelope fusion protein, underscoring the potential role that innate immune defense mechanisms may play against emerging pathogens.

  10. Advances in the molecular understanding of gonadotropins-receptors interactions.

    PubMed

    el Tayar, N

    1996-12-20

    The extracellular domain (ECD) of gonadotropin receptors belong to the leucine-rich repeat (LRR) protein superfamily and their transmembrane domain (TMD) is characteristic of the seven alpha-helices G-protein-coupled receptors (GPCR). The availability of the X-ray structures of porcine ribonuclease inhibitor (RI), a LRR protein, and bacteriorhodopsin (bR) allows the construction of 3D models of the ECD and the TMD of gonadotropin receptors, respectively. The predicted models are to a large extent consistent with currently available biochemical and mutational data. The models provide a reliable basis for understanding how the hormone binds and activates its receptor. The ECD, in particular the LRR region, serves as a baseball glove which efficiently catches the large hormone and optimally orient the appropriate parts of it for interaction with the seven-transmembrane-helix domain of the receptor. This in turn is expected to lead to a conformational change to be sensed by the appropriate G-protein complex leading to the stimulation of cAMP synthesis and steroids production.

  11. CNTF variants with increased biological potency and receptor selectivity define a functional site of receptor interaction.

    PubMed Central

    Saggio, I; Gloaguen, I; Poiana, G; Laufer, R

    1995-01-01

    Human CNTF is a neurocytokine that elicits potent neurotrophic effects by activating a receptor complex composed of the ligand-specific alpha-receptor subunit (CNTFR alpha) and two signal transducing proteins, which together constitute a receptor for leukemia inhibitory factor (LIFR). At high concentrations, CNTF can also activate the LIFR and possibly other cross-reactive cytokine receptors in the absence of CNTFR alpha. To gain a better understanding of its structure-function relationships and to develop analogs with increased receptor specificity, the cytokine was submitted to affinity maturation using phage display technology. Variants with greatly increased CNTFR alpha affinity were selected from a phage-displayed library of CNTF variants carrying random amino acid substitutions in the putative D helix. Selected variants contained substitutions of the wild-type Gln167 residue, either alone or in combination with neighboring mutations. These results provide evidence for an important functional role of the mutagenized region in CNTFR alpha binding. Affinity enhancing mutations conferred to CNTF increased potency to trigger biological effects mediated by CNTFR alpha and enhanced neurotrophic activity on chicken ciliary neurons. In contrast, the same mutations did not potentiate the CNTFR alpha-independent receptor actions of CNTF. These CNTF analogs thus represent receptor-specific superagonists, which should help to elucidate the mechanisms underlying the pleiotropic actions of the neurocytokine. PMID:7621819

  12. The epidermal growth factor receptor family: Biology driving targeted therapeutics

    PubMed Central

    Wieduwilt, M. J.; Moasser, M. M.

    2011-01-01

    The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in regulating cell proliferation, survival, differentiation and migration. The ErbB receptors carry out both redundant and restricted functions in mammalian development and in the maintenance of tissues in the adult mammal. Loss of regulation of the ErbB receptors underlies many human diseases, most notably cancer. Our understanding of the function and complex regulation of these receptors has fueled the development of targeted therapeutic agents for human malignancies in the last 15 years. Here we review the biology of ErbB receptors, including their structure, signaling, regulation, and roles in development and disease, then briefly touch on their increasing roles as targets for cancer therapy. PMID:18259690

  13. Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling.

    PubMed

    Egea, Sophie C; Dickerson, Ian M

    2012-04-01

    Calcitonin gene-related peptide (CGRP) is a neuropeptide with multiple neuroendocrine roles, including vasodilation, migraine, and pain. The receptor for CGRP is a G protein-coupled receptor (GPCR) that requires three proteins for function. CGRP binds to a heterodimer composed of the GPCR calcitonin-like receptor (CLR) and receptor activity-modifying protein (RAMP1), a single transmembrane protein required for pharmacological specificity and trafficking of the CLR/RAMP1 complex to the cell surface. In addition, the CLR/RAMP1 complex requires a third protein named CGRP-receptor component protein (RCP) for signaling. Previous studies have demonstrated that depletion of RCP from cells inhibits CLR signaling, and in vivo studies have demonstrated that expression of RCP correlates with CLR signaling and CGRP efficacy. It is not known whether RCP interacts directly with CLR to exert its effect. The current studies identified a direct interaction between RCP and an intracellular domain of CLR using yeast two-hybrid analysis and coimmunoprecipitation. When this interacting domain of CLR was expressed as a soluble fusion protein, it coimmunoprecipitated with RCP and inhibited signaling from endogenous CLR. Expression of this dominant-negative domain of CLR did not significantly inhibit trafficking of CLR to the cell surface, and thus RCP may not have a chaperone function for CLR. Instead, RCP may regulate CLR signaling in the cell membrane, and direct interaction between RCP and CLR is required for CLR activation. To date, RCP has been found to interact only with CLR and represents a novel neuroendocrine regulatory step in GPCR signaling.

  14. Receptome: Interactions between three pain-related receptors or the "Triumvirate" of cannabinoid, opioid and TRPV1 receptors.

    PubMed

    Zádor, Ferenc; Wollemann, Maria

    2015-12-01

    A growing amount of data demonstrates the interactions between cannabinoid, opioid and the transient receptor potential (TRP) vanilloid type 1 (TRPV1) receptors. These interactions can be bidirectional, inhibitory or excitatory, acute or chronic in their nature, and arise both at the molecular level (structurally and functionally) and in physiological processes, such as pain modulation or perception. The interactions of these three pain-related receptors may also reserve important and new therapeutic applications for the treatment of chronic pain or inflammation. In this review, we summarize the main findings on the interactions between the cannabinoid, opioid and the TRPV1 receptor regarding to pain modulation.

  15. Pion form factor from a contact interaction

    SciTech Connect

    Gutierrez-Guerrero, L. X.; Bashir, A.; Cloeet, I. C.; Roberts, C. D.

    2010-06-15

    In a Poincare-covariant vector-boson-exchange theory, the pion possesses components of pseudovector origin, which materially influence its observable properties. For a range of such quantities, we explore the consequences of a momentum-independent interaction, regularized in a symmetry-preserving manner. The contact interaction, while capable of describing pion static properties, produces a form factor whose evolution for Q{sup 2}>0.17 GeV{sup 2} disagrees markedly with experiment and whose asymptotic power-law behavior conflicts strongly with perturbative QCD.

  16. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell surface receptor aggregates

    SciTech Connect

    Monine, Michael; Posner, Richard; Savage, Paul; Faeder, James; Hlavacek, William S

    2008-01-01

    Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.

  17. Inhibitors for the Vitamin D Receptor-Coregulator Interaction.

    PubMed

    Teske, Kelly A; Yu, Olivia; Arnold, Leggy A

    2016-01-01

    The vitamin D receptor (VDR) belongs to the superfamily of nuclear receptors and is activated by the endogenous ligand 1,25-dihydroxyvitamin D3. The genomic effects mediated by VDR consist of the activation and repression of gene transcription, which includes the formation of multiprotein complexes with coregulator proteins. Coregulators bind many nuclear receptors and can be categorized according to their role as coactivators (gene activation) or corepressors (gene repression). Herein, different approaches to develop compounds that modulate the interaction between VDR and coregulators are summarized. This includes coregulator peptides that were identified by creating phage display libraries. Subsequent modification of these peptides including the introduction of a tether or nonhydrolyzable bonds resulted in the first direct VDR-coregulator inhibitors. Later, small molecules that inhibit VDR-coregulator inhibitors were identified using rational drug design and high-throughput screening. Early on, allosteric inhibition of VDR-coregulator interactions was achieved with VDR antagonists that change the conformation of VDR and modulate the interactions with coregulators. A detailed discussion of their dual agonist/antagonist effects is given as well as a summary of their biological effects in cell-based assays and in vivo studies.

  18. Computational studies of ligand-receptor interactions in bitter taste receptors.

    PubMed

    Miguet, Laurence; Zhang, Ziding; Grigorov, Martin G

    2006-01-01

    Phenylthiocarbamide tastes intensely bitter to some individuals, but others find it completely tasteless. Recently, it was suggested that phenylthiocarbamide elicits bitter taste by interacting with a human G protein-coupled receptor (hTAS2R38) encoded by the PTC gene. The phenylthiocarbamide nontaster trait was linked to three single nucleotide polymorphisms occurring in the PTC gene. Using the crystal structure of bovine rhodopsin as template, we generated the 3D structure of hTAS2R38 bitter taste receptor. We were able to map on the receptor structure the amino acids affected by the genetic polymorphisms and to propose molecular functions for two of them that explained the emergence of the nontaster trait. We used molecular docking simulations to find that phenylthiocarbamide exhibited a higher affinity for the target receptor than the structurally similar molecule 6-n-propylthiouracil, in line with recent experimental studies. A 3D model was constructed for the hTAS2R16 bitter taste receptor as well, by applying the same protocol. We found that the recently published experimental ligand binding affinity data for this receptor correlated well with the binding scores obtained from our molecular docking calculations.

  19. MICAL-like1 mediates epidermal growth factor receptor endocytosis

    PubMed Central

    Abou-Zeid, Nancy; Pandjaitan, Rudy; Sengmanivong, Lucie; David, Violaine; Le Pavec, Gwenaelle; Salamero, Jean; Zahraoui, Ahmed

    2011-01-01

    Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein–Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways. PMID:21795389

  20. Identification of TIFA as an adapter protein that links tumor necrosis factor receptor-associated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor-associated kinase-1 (IRAK-1) in IL-1 receptor signaling.

    PubMed

    Takatsuna, Hiroshi; Kato, Hiroki; Gohda, Jin; Akiyama, Taishin; Moriya, Ayaka; Okamoto, Yoshinari; Yamagata, Yuriko; Otsuka, Masami; Umezawa, Kazuo; Semba, Kentaro; Inoue, Jun-Ichiro

    2003-04-04

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) transduces signals from members of the Toll/interleukin-1 (IL-1) receptor family by interacting with IL-1 receptor-associated kinase-1 (IRAK-1) after IRAK-1 is released from the receptor-MyD88 complex upon IL-1 stimulation. However, the molecular mechanisms underlying regulation of the IRAK-1/TRAF6 interaction are largely unknown. We have identified TIFA, a TRAF-interacting protein with a forkhead-associated (FHA) domain. The FHA domain is a motif known to bind directly to phosphothreonine and phosphoserine. In transient transfection assays, TIFA activates NFkappaBeta and c-Jun amino-terminal kinase. However, TIFA carrying a mutation that abolishes TRAF6 binding or mutations in the FHA domain that are known to abolish FHA domain binding to phosphopeptide fails to activate NFkappaBeta and c-Jun amino-terminal kinase. TIFA, when overexpressed, binds both TRAF6 and IRAK-1 and significantly enhances the IRAK-1/TRAF6 interaction. Furthermore, analysis of endogenous proteins indicates that TIFA associates with TRAF6 constitutively, whereas it associates with IRAK-1 in an IL-1 stimulation-dependent manner in vivo. Thus, TIFA is likely to mediate IRAK-1/TRAF6 interaction upon IL-1 stimulation.

  1. Astrocyte Mitogen Inhibitor Related to Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Nieto-Sampedro, Manuel

    1988-06-01

    Epidermal growth factor (EGF) is a well-characterized polypeptide hormone with diverse biological activities, including stimulation of astrocyte division. A soluble astrocyte mitogen inhibitor, immunologically related to the EGF receptor, is present in rat brain. Injury to the brain causes a time-dependent reduction in the levels of this inhibitor and the concomitant appearance of EGF receptor on the astrocyte surface. Intracerebral injection of antibody capable of binding the inhibitor caused the appearance of numerous reactive astrocytes. EGF receptor-related inhibitors may play a key role in the control of glial cell division in both normal and injured brain.

  2. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2009-09-25

    The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.

  3. Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions

    PubMed Central

    Hildebrand, Joanne M.; Yi, Zuoan; Buchta, Claire M.; Poovassery, Jayakumar; Stunz, Laura L.; Bishop, Gail A.

    2011-01-01

    Summary A large and diverse group of receptors utilizes the family of cytoplasmic signaling proteins known as tumor necrosis factor receptor (TNFR)-associated factors (TRAFs). In recent years, there has been a resurgence of interest and exploration of the roles played by TRAF3 and TRAF5 in cellular regulation, particularly in cells of the immune system, the cell types of focus in this review. This work has revealed that TRAF3 and TRAF5 can play diverse roles for different receptors even in the same cell type, as well as distinct roles in different cell types. Evidence indicates that TRAF3 and TRAF5 play important roles beyond the TNFR-superfamily (SF) and viral mimics of its members, mediating certain innate immune receptor and cytokine receptor signals, and most recently, signals delivered by the T-cell receptor (TCR) signaling complex. Additionally, much research has demonstrated the importance of TRAF3-mediated cellular regulation via its cytoplasmic interactions with additional signaling proteins. In particular, we discuss below evidence for the participation by TRAF3 in a number of the regulatory post-translational modifications involving ubiquitin that are important in various signaling pathways. PMID:22017431

  4. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering.

    PubMed

    Ratman, Dariusz; Vanden Berghe, Wim; Dejager, Lien; Libert, Claude; Tavernier, Jan; Beck, Ilse M; De Bosscher, Karolien

    2013-11-05

    The activity of the glucocorticoid receptor (GR), a nuclear receptor transcription factor belonging to subclass 3C of the steroid/thyroid hormone receptor superfamily, is typically triggered by glucocorticoid hormones. Apart from driving gene transcription via binding onto glucocorticoid response elements in regulatory regions of particular target genes, GR can also inhibit gene expression via transrepression, a mechanism largely based on protein:protein interactions. Hereby GR can influence the activity of other transcription factors, without contacting DNA itself. GR is known to inhibit the activity of a growing list of immune-regulating transcription factors. Hence, GCs still rule the clinic for treatments of inflammatory disorders, notwithstanding concomitant deleterious side effects. Although patience is a virtue when it comes to deciphering the many mechanisms GR uses to influence various signaling pathways, the current review is testimony of the fact that groundbreaking mechanistic work has been accumulating over the past years and steadily continues to grow.

  5. Novel Small Molecule Antagonists of the Interaction of the Androgen Receptor and Transcriptional Co-regulators

    DTIC Science & Technology

    2009-01-01

    proteins or cross-talk pathways that are necessary for ligand- induced conformation change. A clear implication of our work, and that of others (23...dihydrotestosterone (DHT), and assembly of coregulatory proteins (CoR). The blockage of the interaction between DHT- liganded AR and CoR by small molecules has...subclass of nuclear receptor family (NRs) that are intracellular transcriptional factors.2, 3 In the cytoplasm, inactive AR dissociates from heat

  6. Modulation of the NMDA Receptor Through Secreted Soluble Factors.

    PubMed

    Cerpa, Waldo; Ramos-Fernández, Eva; Inestrosa, Nibaldo C

    2016-01-01

    Synaptic activity is a critical determinant in the formation and development of excitatory synapses in the central nervous system (CNS). The excitatory current is produced and regulated by several ionotropic receptors, including those that respond to glutamate. These channels are in turn regulated through several secreted factors that function as synaptic organizers. Specifically, Wnt, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF), and transforming growth factor (TGF) particularly regulate the N-methyl-D-aspartate receptor (NMDAR) glutamatergic channel. These factors likely regulate early embryonic development and directly control key proteins in the function of important glutamatergic channels. Here, we review the secreted molecules that participate in synaptic organization and discuss the cell signaling behind of this fine regulation. Additionally, we discuss how these factors are dysregulated in some neuropathologies associated with glutamatergic synaptic transmission in the CNS.

  7. Interaction of lipids with the neurotensin receptor 1.

    PubMed

    Bolivar, Juan H; Muñoz-García, Juan C; Castro-Dopico, Tomas; Dijkman, Patricia M; Stansfeld, Phillip J; Watts, Anthony

    2016-06-01

    Information about lipid-protein interactions for G protein-coupled receptors (GPCRs) is scarce. Here, we use electron spin resonance (ESR) and spin-labelled lipids to study lipid interactions with the rat neurotensin receptor 1 (NTS1). A fusion protein containing rat NTS1 fully able to bind its ligand neurotensin was reconstituted into phosphatidylcholine (PC) bilayers at specific lipid:protein molar ratios. The fraction of motionally restricted lipids in the range of 40:1 to 80:1 lipids per receptor suggested an oligomeric state of the protein, and the result was unaffected by increasing the hydrophobic thickness of the lipid bilayer from C-18 to C-20 or C-22 chain length PC membranes. Comparison of the ESR spectra of different spin-labelled lipids allowed direct measurement of lipid binding constants relative to PC (Kr), with spin-labelled phosphatidylethanolamine (PESL), phosphatidylserine (PSSL), stearic acid (SASL), and a spin labelled cholesterol analogue (CSL) Kr values of 1.05±0.05, 1.92±0.08, 5.20±0.51 and 0.91±0.19, respectively. The results contrast with those from rhodopsin, the only other GPCR studied this way, which has no selectivity for the lipids analysed here. Molecular dynamics simulations of NTS1 in bilayers are in agreement with the ESR data, and point to sites in the receptor where PS could interact with higher affinity. Lipid selectivity could be necessary for regulation of ligand binding, oligomerisation and/or G protein activation processes. Our results provide insight into the potential modulatory mechanisms that lipids can exert on GPCRs.

  8. Factors That Effect Signal Transduction by the Estrogen Receptor.

    DTIC Science & Technology

    1997-10-01

    Vivat , H. Gronemeyer, R. Losson, and P. Chambon. 1996. Ligand-dependent interaction of nuclear receptors with potential transcriptional... Academy of Sciences 0027-8424/97/9410132-6S2.00/0 PNAS is available online at http://www.pnas.org. inhibitors or CDIs), kinase function (5-8). Because

  9. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors

    PubMed Central

    2013-01-01

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators. PMID:24010861

  10. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors.

    PubMed

    Lee, Cynthia Wei-Sheng; Ho, Ing-Kang

    2013-09-08

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators.

  11. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  12. Platelet-activating factor: receptors and signal transduction.

    PubMed

    Chao, W; Olson, M S

    1993-06-15

    During the past two decades, studies describing the chemistry and biology of PAF have been extensive. This potent phosphoacylglycerol exhibits a wide variety of physiological and pathophysiological effects in various cells and tissues. PAF acts, through specific receptors and a variety of signal transduction systems, to elicit diverse biochemical responses. Several important future directions can be enumerated for the characterization of PAF receptors and their attendant signalling mechanisms. The recent cloning and sequence analysis of the gene for the PAF receptor will allow a number of important experimental approaches for characterizing the structure and analysing the function of the various domains of the receptor. Using molecular genetic and immunological technologies, questions relating to whether there is receptor heterogeneity, the precise mechanism(s) for the regulation of the PAF receptor, and the molecular details of the signalling mechanisms in which the PAF receptor is involved can be explored. Another area of major significance is the examination of the relationship between the signalling response(s) evoked by PAF binding to its receptor and signalling mechanisms activated by a myriad of other mediators, cytokines and growth factors. A very exciting recent development in which PAF receptors undoubtedly play a role is in the regulation of the function of various cellular adhesion molecules. Finally, there remain many incompletely characterized physiological and pathophysiological situations in which PAF and its receptor play a crucial signalling role. Our laboratory has been active in the elucidation of several tissue responses in which PAF exhibits major autocoid signalling responses, e.g. hepatic injury and inflammation, acute and chronic pancreatitis, and cerebral stimulation and/or trauma. As new experimental strategies are developed for characterizing the fine structure of the molecular mechanisms involved in tissue injury and inflammation, the

  13. Cell and molecular biology of epidermal growth factor receptor.

    PubMed

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  14. Insights into cytokine-receptor interactions from cytokine engineering.

    PubMed

    Spangler, Jamie B; Moraga, Ignacio; Mendoza, Juan L; Garcia, K Christopher

    2015-01-01

    Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.

  15. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-{kappa}B activity

    SciTech Connect

    Kabuta, Tomohiro; Hakuno, Fumihiko; Cho, Yoshitake; Yamanaka, Daisuke; Chida, Kazuhiro; Asano, Tomoichiro; Wada, Keiji; Takahashi, Shin-Ichiro

    2010-04-09

    The insulin receptor substrate (IRS) proteins are major substrates of both insulin receptor and insulin-like growth factor (IGF)-I receptor tyrosine kinases. Previously, we reported that IRS-3 is localized to both cytosol and nucleus, and possesses transcriptional activity. In the present study, we identified Bcl-3 as a novel binding protein to IRS-3. Bcl-3 is a nuclear protein, which forms a complex with the homodimer of p50 NF-{kappa}B, leading to enhancement of transcription through p50 NF-{kappa}B. We found that Bcl-3 interacts with the pleckstrin homology domain and the phosphotyrosine binding domain of IRS-3, and that IRS-3 interacts with the ankyrin repeat domain of Bcl-3. In addition, IRS-3 augmented the binding activity of p50 to the NF-{kappa}B DNA binding site, as well as the tumor necrosis factor (TNF)-{alpha}-induced transcriptional activity of NF-{kappa}B. Lastly, IRS-3 enhanced NF-{kappa}B-dependent anti-apoptotic gene induction and consequently inhibited TNF-{alpha}-induced cell death. This series of results proposes a novel function for IRS-3 as a transcriptional regulator in TNF-{alpha} signaling, distinct from its function as a substrate of insulin/IGF receptor kinases.

  16. Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition.

    PubMed Central

    Pepper, Anita S-R; Killian, Darrell J; Hubbard, E Jane Albert

    2003-01-01

    glp-1 encodes a member of the highly conserved LIN-12/Notch family of receptors that mediates the mitosis/meiosis decision in the C. elegans germline. We have characterized three mutations that represent a new genetic and phenotypic class of glp-1 mutants, glp-1(Pro). The glp-1(Pro) mutants display gain-of-function germline pattern defects, most notably a proximal proliferation (Pro) phenotype. Each of three glp-1(Pro) alleles encodes a single amino acid change in the extracellular part of the receptor: two in the LIN-12/Notch repeats (LNRs) and one between the LNRs and the transmembrane domain. Unlike other previously described gain-of-function mutations that affect this region of LIN-12/Notch family receptors, the genetic behavior of glp-1(Pro) alleles is not consistent with simple hypermorphic activity. Instead, the mutant phenotype is suppressed by wild-type doses of glp-1. Moreover, a trans-heterozygous combination of two highly penetrant glp-1(Pro) mutations is mutually suppressing. These results lend support to a model for a higher-order receptor complex and/or competition among receptor proteins for limiting factors that are required for proper regulation of receptor activity. Double-mutant analysis with suppressors and enhancers of lin-12 and glp-1 further suggests that the functional defect in glp-1(Pro) mutants occurs prior to or at the level of ligand interaction. PMID:12586701

  17. Visualization of epidermal growth factor (EGF) receptor aggregation in plasma membranes by fluorescence resonance energy transfer. Correlation of receptor activation with aggregation.

    PubMed

    Carraway, K L; Koland, J G; Cerione, R A

    1989-05-25

    Fluorescence resonance energy transfer between epidermal growth factor (EGF) molecules, labeled with fluorescent reporter groups, was used as a monitor for EGF receptor-receptor interactions in plasma membranes isolated from human epidermoid A431 cells. Epidermal growth factor molecules labeled at the amino terminus with fluorescein isothiocyanate served as donor molecules in these energy transfer measurements, while EGF molecules labeled with eosin isothiocyanate at the amino terminus served as the energy acceptors. Both of these derivatives were shown to be active in binding to membrane receptors and in the activation of the endogenous receptor/tyrosine kinase activity. We found that membranes in the absence of added metal ion activators showed relatively little energy transfer (approximately 10% donor quenching) between the labeled growth factors. However, divalent metal ion activators of the EGF receptor/tyrosine kinase caused a significant increase in the extent of energy transfer between the labeled EGF molecules. Specifically, in the presence of 20 mM MgCl2, the extent of quenching of the donor fluorescence increased to 25% (from 10% in the absence of metal), while in the presence of 4 mM MnCl2, the extent of energy transfer was increased still further to 40-50%. The addition of an excess of EDTA resulted in the reversal of the observed energy transfer to basal levels. The increased energy transfer in the presence of these divalent cations correlated well with the ability of these metals to stimulate the EGF receptor/tyrosine kinase activity. However, the extent of receptor-receptor interactions measured by energy transfer was independent of receptor autophosphorylation. Overall, these results suggest that conditions under which the EGF receptor is primed to be active as a tyrosine kinase, within a lipid milieu, result in an increased aggregation of the receptor.

  18. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas.

    PubMed Central

    Hatva, E.; Böhling, T.; Jääskeläinen, J.; Persico, M. G.; Haltia, M.; Alitalo, K.

    1996-01-01

    Capillary hemangioblastomas and hemangiopericytomas are highly vascular central nervous system tumors of controversial origin. Of interest in their pathogenesis are mechanisms regulating endothelial cell growth. The endothelial cell mitogen vascular endothelial growth factor (VEGF) stimulates angiogenesis, and together with its two receptor tyrosine kinases VEGFR-1(FLT1) and VEGFR-2(KDR), is up-regulated during the malignant progression of gliomas. We have analyzed the expression of VEGF and its receptors, the related placental growth factor (PlGF) and the endothelial receptors FLT4 and Tie by in situ hybridization in capillary hemangioblastomas and hemangiopericytomas. VEGF mRNA was up-regulated in all of the hemangiopericytomas studied and highly expressed in the stromal cells of hemangioblastomas. In addition, some hemangioblastoma tumor cells expressed high levels of PlGF. Significantly elevated levels of Tie mRNA, Tie protein, VEGFR-1, and VEGFR-2 but not FLT4 mRNAs were observed in the endothelia of both tumor types. In hemangioblastomas, however, the receptors were also highly expressed by a subpopulation of stromal cells. Consistent results were obtained for a human hemangioblastoma cell line in culture. Up-regulation of the endothelial growth factors and receptors may result in autocrine or paracrine stimulation of endothelial cells and their precursors involved in the genesis of these two vascular tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8774132

  19. Evaluation of Nod-Like Receptor (NLR) Effector Domain Interactions

    PubMed Central

    Kufer, Thomas A.; Schwarzenbacher, Robert

    2009-01-01

    Members of the Nod-like receptor (NLR) family recognize intracellular pathogens and recruit a variety of effector molecules, including pro-caspases and kinases, which in turn are implicated in cytokine processing and NF-κB activation. In order to elucidate the intricate network of NLR signaling, which is still fragmentary in molecular terms, we applied comprehensive yeast two-hybrid analysis for unbiased evaluation of physical interactions between NLRs and their adaptors (ASC, CARD8) as well as kinase RIPK2 and inflammatory caspases (C1, C2, C4, C5) under identical conditions. Our results confirmed the interaction of NOD1 and NOD2 with RIPK2, and between NLRP3 and ASC, but most importantly, our studies revealed hitherto unrecognized interactions of NOD2 with members of the NLRP subfamily. We found that NOD2 specifically and directly interacts with NLRP1, NLRP3 and NLRP12. Furthermore, we observed homodimerization of the RIPK2 CARD domains and identified residues in NOD2 critical for interaction with RIPK2. In conclusion, our work provides further evidence for the complex network of protein-protein interactions underlying NLR function. PMID:19337385

  20. Growth factor control of epidermal growth factor receptor kinase activity via an intramolecular mechanism.

    PubMed

    Koland, J G; Cerione, R A

    1988-02-15

    The mechanism by which the protein kinase activity of the epidermal growth factor (EGF) receptor is activated by binding of growth factor was investigated. Detergent-solubilized receptor in monomeric form was isolated by sucrose density gradient centrifugation and both its kinase and autophosphorylation activities monitored. In a low ionic strength medium and with MnCl2 as an activator, the activity of the monomeric receptor was EGF-independent. However, with 0.25 M ammonium sulfate present, the MnCl2-stimulated kinase activity was strikingly EGF-dependent. In contrast, the kinase activity expressed in the presence of MgCl2 showed growth factor control in the absence of added salt. Under the conditions of these experiments there was apparently little tendency for growth factor to induce aggregation of the receptor, indicating that the allosteric activation of the receptor kinase by EGF occurred via an intramolecular mechanism. Whereas detergent-solubilized receptor was the subject of these studies, the kinase activity of cell surface receptors might also be controlled by an intramolecular mechanism. These results indicate that an individual receptor molecule has the potential to function as a transmembrane signal transducer.

  1. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    PubMed

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  2. Cardiovirulent coxsackieviruses and the decay-accelerating factor (CD55) receptor.

    PubMed

    Martino, T A; Petric, M; Brown, M; Aitken, K; Gauntt, C J; Richardson, C D; Chow, L H; Liu, P P

    1998-05-10

    Group B coxsackieviruses are etiologically linked with many human diseases including acute myocarditis and associated chronic dilated cardiomyopathy. Well-established CVB3 cardiovirulent strains (CVB3c(s)) with known phenotypic difference have been used to study the pathogenesis of virus-induced heart disease. The receptor-binding characteristics of cardiovirulent CVB3 are not known, but may represent one mechanism accounting for differences in disease virulence. In this study, interactions between CVB3c(s) and the decay-accelerating factor (DAF or CD55) cell surface receptor were examined. Anti-DAF monoclonal antibodies (MAbs) blocked virus binding and infection of susceptible HeLa cells. Virus binding was significantly reduced by treatment of these cells with phosphatidylinositol phospholipase C enzyme, which rendered them DAF-deficient CVB3c(s) exhibited a differential propensity for the DAF receptor, as several cardiovirulent strains interacted more strongly than others. However, virus binding and infection was always most effectively blocked by MAbs directed against the SCR 2 and 3 domains of DAF, suggesting that binding occurs at a similar site(s) on the molecule for all strains. Virus binding and internalization were associated with DAF down-regulation at the cell surface, as monitored by flow cytometry analysis. Cardiovirulent CVB3 did not interact with molecules functionally and/or structurally related to DAF, including CD35, CD46, Factor H, or C4-binding protein. Adenovirus type 2 (Ad2) does not use the DAF receptor. However, competitive binding assays between Ad2 and CVB1-6, CVB3c(s), anti-DAF MAbs, or DAF-reduced cells indicated that DAF is associated with Ad2 receptors on the HeLa cell membrane. In summary, this study indicates that DAF is an attachment receptor for cardiovirulent CVB3 and that DAF interaction may be important in the pathogenesis of CVB-mediated heart disease.

  3. The Under-Appreciated Promiscuity of the Epidermal Growth Factor Receptor Family

    PubMed Central

    Kennedy, Sean P.; Hastings, Jordan F.; Han, Jeremy Z. R.; Croucher, David R.

    2016-01-01

    Each member of the epidermal growth factor receptor (EGFR) family plays a key role in normal development, homeostasis, and a variety of pathophysiological conditions, most notably in cancer. According to the prevailing dogma, these four receptor tyrosine kinases (RTKs; EGFR, ERBB2, ERBB3, and ERBB4) function exclusively through the formation of homodimers and heterodimers within the EGFR family. These combinatorial receptor interactions are known to generate increased interactome diversity and therefore influence signaling output, subcellular localization and function of the heterodimer. This molecular plasticity is also thought to play a role in the development of resistance toward targeted cancer therapies aimed at these known oncogenes. Interestingly, many studies now challenge this dogma and suggest that the potential for EGFR family receptors to interact with more distantly related RTKs is much greater than currently appreciated. Here we discuss how the promiscuity of these oncogenic receptors may lead to the formation of many unexpected receptor pairings and the significant implications for the efficiency of many targeted cancer therapies. PMID:27597943

  4. Blueprints of signaling interactions between pattern recognition receptors: implications for the design of vaccine adjuvants.

    PubMed

    Timmermans, Kim; Plantinga, Theo S; Kox, Matthijs; Vaneker, Michiel; Scheffer, Gert Jan; Adema, Gosse J; Joosten, Leo A B; Netea, Mihai G

    2013-03-01

    Innate immunity activation largely depends on recognition of microorganism structures by Pattern Recognition Receptors (PRRs). PRR downstream signaling results in production of pro- and anti-inflammatory cytokines and other mediators. Moreover, PRR engagement in antigen-presenting cells initiates the activation of adaptive immunity. Recent reports suggest that for the activation of innate immune responses and initiation of adaptive immunity, synergistic effects between two or more PRRs are necessary. No systematic analysis of the interaction between the major PRR pathways were performed to date. In this study, a systematical analysis of the interactions between PRR signaling pathways was performed. PBMCs derived from 10 healthy volunteers were stimulated with either a single PRR ligand or a combination of two PRR ligands. Known ligands for the major PRR families were used: Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), and RigI-helicases. After 24 h of incubation, production of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and IL-10 was measured in supernatants by enzyme-linked immunosorbent assay (ELISA). The consistency of the PRR interactions (both inhibitory and synergistic) between the various individuals was assessed. A number of PRR-dependent signaling interactions were found to be consistent, both between individuals and with regard to multiple cytokines. The combinations of TLR2 and NOD2, TLR5 and NOD2, TLR5 and TLR3, and TLR5 and TLR9 acted as synergistic combinations. Surprisingly, inhibitory interactions between TLR4 and TLR2, TLR4 and Dectin-1, and TLR2 and TLR9 as well as TLR3 and TLR2 were observed. These consistent signaling interactions between PRR combinations may represent promising targets for immunomodulation and vaccine adjuvant development.

  5. Interactions of transcription factors with chromatin.

    PubMed

    van Bakel, Harm

    2011-01-01

    Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.

  6. The insulin-like growth factor 1 receptor in cancer: old focus, new future.

    PubMed

    Hartog, Hermien; Wesseling, Jelle; Boezen, H Marike; van der Graaf, Winette T A

    2007-09-01

    The importance of insulin-like growth factor 1 receptor (IGF-1R) signalling in malignant behaviour of tumour cells is well established. Currently, development of drugs targeting the IGF-1R as anticancer treatment is emerging. Several IGF-1R targeting strategies are being investigated in phases I and II clinical trials. Interactions of IGF-1R with insulin receptor, however, might complicate efficiency and tolerability of such drugs. This review describes mechanisms, recent developments and potential limitations of IGF-1R antibodies and tyrosine kinase inhibitors.

  7. Tumor necrosis factor receptor-associated factor 3 is a positive regulator of pathological cardiac hypertrophy.

    PubMed

    Jiang, Xi; Deng, Ke-Qiong; Luo, Yuxuan; Jiang, Ding-Sheng; Gao, Lu; Zhang, Xiao-Fei; Zhang, Peng; Zhao, Guang-Nian; Zhu, Xueyong; Li, Hongliang

    2015-08-01

    Cardiac hypertrophy, a common early symptom of heart failure, is regulated by numerous signaling pathways. Here, we identified tumor necrosis factor receptor-associated factor 3 (TRAF3), an adaptor protein in tumor necrosis factor-related signaling cascades, as a key regulator of cardiac hypertrophy in response to pressure overload. TRAF3 expression was upregulated in hypertrophied mice hearts and failing human hearts. Four weeks after aortic banding, cardiac-specific conditional TRAF3-knockout mice exhibited significantly reduced cardiac hypertrophy, fibrosis, and dysfunction. Conversely, transgenic mice overexpressing TRAF3 in the heart developed exaggerated cardiac hypertrophy in response to pressure overload. TRAF3 also promoted an angiotensin II- or phenylephrine-induced hypertrophic response in isolated cardiomyocytes. Mechanistically, TRAF3 directly bound to TANK-binding kinase 1 (TBK1), causing increased TBK1 phosphorylation in response to hypertrophic stimuli. This interaction between TRAF3 and TBK1 further activated AKT signaling, which ultimately promoted the development of cardiac hypertrophy. Our findings not only reveal a key role of TRAF3 in regulating the hypertrophic response but also uncover TRAF3-TBK1-AKT as a novel signaling pathway in the development of cardiac hypertrophy and heart failure. This pathway may represent a potential therapeutic target for this pathological process.

  8. The ontogeny of epidermal growth factor receptors during mouse development

    SciTech Connect

    Adamson, E.D.; Meek, J.

    1984-05-01

    In an attempt to understand the role(s) of epidermal growth factor (EGF) in vivo during murine development, we have examined the /sup 125/I-EGF binding characteristics of EGF-receptors in membrane preparations of tissues from the 12th day of gestation to parturition. Using autoradiography, the earliest time that we could detect EGF-receptors was on trophoblast cells cultured for 3 days as blastocyst outgrowths. Trophoblast eventually forms a large portion of the placenta, where EGF-receptors have long been recognized. We measured the number and affinity of EGF-receptors on tissues dissected from conceptuses from the 12th day of gestation in order to identify a stage when tissues may be most sensitive to EGF. Whereas the number of EGF receptors increases during gestation for all tissues examined, the affinity of the receptors declines for carcass and placenta and remains relatively unchanged for brain and liver. This suggests that EGF may function differently throughout development. Our hypothesis is that EGF (or its embryonic equivalent) initially stimulates proliferation in embryonic cells and then stimulates differentiation as the tissues mature. In the adult, its main role could be to stimulate tissue repair after damage.

  9. Biochemical and biological properties of the nerve growth factor receptor

    SciTech Connect

    Taniuchi, M.

    1988-01-01

    We have utilized a monoclonal antibody (192-IgG) to study the rat nerve growth factor receptor. After intraocular injection, {sup 125}I-192-IgG was retrogradely transported in sympathetic neuronal axons to the superior cervical ganglion. When the sciatic nerve was ligated to induce the accumulation of axonally transported materials, 192-IgG immunostaining was observed on both sides of the ligature, indicating that NGF receptors are transported in both orthograde and retrograde directions. By using {sup 125}I-NGF crosslinking and 192-IgG immunoprecipitation, we detected receptor molecules throughout the rat brain, thereby supporting the hypothesis that NGF is active in the central nervous system. We also discovered that sciatic nerve transection leads to a dramatic increase in the amount of NGF receptor found in the distal portion of the nerve. Immunostaining revealed that all Schwann cells in the distal axotomized nerve were expressing NGF receptors. We examined phosphorylation of NGF receptor in cultured sympathetic neurons and PC12 cells. We also examined pharmacological effects of 192-IgG. Systemic injection of 192-IgG into neonatal rats caused a permanent partial sympathectomy in a dose-dependent manner; a maximum of 50% of the cells were killed.

  10. In vivo study of drug interaction with brain benzodiazepine receptor

    SciTech Connect

    Inoue, O.; Shinotoh, H.; Ito, T.; Suzuki, K.; Hashimoto, K.; Yamasaki, T.

    1985-05-01

    The possibility of direct estimation of in vivo Bz receptor occupancy in brain was evaluated using C-11, or H-3-flumazepil (Ro15-1788). In animal experiments, 1 ..mu..Ci of H-3-Ro15-1788 was injected at 0.5 or 20 hr after i.v. injection of various dosage of clonazepam. Then radioactivity in cerebral cortex, cerebellum and blood at 5 min. after injection of the tracer was compared. Competitive inhibition of in vivo binding was clearly observed when clonazepam was pretreated at 0.5 hr before injection of the tracer. On the other hand, brain radioactivity was increased when clonazepam was administered at 20 hr before injection of the tracer. This increase in binding of H-3-Ro15-1788 might be caused by rebound of Bz receptor function by treatment with Bz agonist, and this rebound may have an important role in physiological function. Clinical investigation concerning drug interaction with brain Bz receptor was performed in normal volunteer and patients with neurological disorders. The distribution of C-11-Ro15-1788 in the brain of patients chronically treated with clonazepam were significantly heterogeneous. However, cerebral blood flow estimated with N-13 NH3 of these patients were normal.

  11. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  12. A Murine Fibroblast Growth Factor (FGF) Receptor Expressed in CHO Cells is Activated by Basic FGF and Kaposi FGF

    NASA Astrophysics Data System (ADS)

    Mansukhani, Alka; Moscatelli, David; Talarico, Daniela; Levytska, Vera; Basilico, Claudio

    1990-06-01

    We have cloned a murine cDNA encoding a tyrosine kinase receptor with about 90% similarity to the chicken fibroblast growth factor (FGF) receptor and the human fms-like gene (FLG) tyrosine kinase. This mouse receptor lacks 88 amino acids in the extracellular portion, leaving only two immunoglobulin-like domains compared to three in the chicken FGF receptor. The cDNA was cloned into an expression vector and transfected into receptor-negative CHO cells. We show that cells expressing the receptor can bind both basic FGF and Kaposi FGF. Although the receptor binds basic FGF with a 15- to 20-fold higher affinity, Kaposi FGF is able to induce down-regulation of the receptor to the same extent as basic FGF. The receptor is phosphorylated upon stimulation with both FGFs, DNA synthesis is stimulated, and a proliferative response is produced in cells expressing the receptor, whereas cells expressing the cDNA in the antisense orientation show none of these responses to basic FGF or Kaposi FGF. Thus this receptor can functionally interact with two growth factors of the FGF family.

  13. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A.

    PubMed

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein-protein interactions with GR.

  14. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    PubMed

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders.

  15. Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.

    PubMed

    Mortaz, Esmaeil; Adcock, Ian M; Tabarsi, Payam; Masjedi, Mohammad Reza; Mansouri, Davood; Velayati, Ali Akbar; Casanova, Jean-Laurent; Barnes, Peter J

    2015-01-01

    Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities.

  16. Therapeutic Targeting of Fibroblast Growth Factor Receptors in Gastric Cancer

    PubMed Central

    Fujimori, Yoshitaka; Otsuki, Sho; Sato, Yuya; Nakagawa, Masatoshi

    2015-01-01

    Chemotherapy has become the global standard treatment for patients with metastatic or unresectable gastric cancer (GC), although outcomes remain unfavorable. Many molecular-targeted therapies inhibiting signaling pathways of various tyrosine kinase receptors have been developed, and monoclonal antibodies targeting human epidermal growth factor receptor 2 (HER2) have become standard therapy for HER2-positive GC. An inhibitor of vascular endothelial growth factor receptor 2 or MET has also produced promising results in patients with GC. Fibroblast growth factor receptors (FGFR) play key roles in tumor growth via activated signaling pathways in GC. Genomic amplification of FGFR2 leads to the aberrant activation found in GC tumors and is related to survival in patients with GC. This review discusses the clinical relevance of FGFR in GC and examines FGFR as a potential therapeutic target in patients with GC. Preclinical studies in animal models suggest that multitargeted tyrosine kinase inhibitors (TKIs), including FGFR inhibitor, suppress tumor cell proliferation and delay tumor progression. Several TKIs are now being evaluated in clinical trials as treatment for metastatic or unresectable GC harboring FGFR2 amplification. PMID:26000013

  17. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors.

    PubMed Central

    Hatva, E.; Kaipainen, A.; Mentula, P.; Jääskeläinen, J.; Paetau, A.; Haltia, M.; Alitalo, K.

    1995-01-01

    Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7856749

  18. Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice.

    PubMed

    Ishii, S; Shimizu, T

    2000-01-01

    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active phospholipid mediator. Although PAF was initially recognized for its potential to induce platelet aggregation and secretion, intense investigations have elucidated potent biological actions of PAF in a broad range of cell types and tissues, many of which also produce the molecule. PAF acts by binding to a unique G-protein-coupled seven transmembrane receptor. PAF receptor is linked to intracellular signal transduction pathways, including turnover of phosphatidylinositol, elevation in intracellular calcium concentration, and activation of kinases, resulting in versatile bioactions. On the basis of numerous pharmacological reports, PAF is thought to have many pathophysiological and physiological functions. Recently advanced molecular technics enable us not only to clone PAF receptor cDNAs and genes, but also generate PAF receptor mutant animals, i.e., PAF receptor-overexpressing mouse and PAF receptor-deficient mouse. These mutant mice gave us a novel and specific approach for identifying the pathophysiological and physiological functions of PAF. This review also describes the phenotypes of these mutant mice and discusses them by referring to previously reported pharmacological and genetical data.

  19. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8.

    PubMed

    Auciello, Giulio; Cunningham, Debbie L; Tatar, Tulin; Heath, John K; Rappoport, Joshua Z

    2013-01-15

    Fibroblast growth factor receptors (FGFRs) mediate a wide spectrum of cellular responses that are crucial for development and wound healing. However, aberrant FGFR activity leads to cancer. Activated growth factor receptors undergo stimulated endocytosis, but can continue to signal along the endocytic pathway. Endocytic trafficking controls the duration and intensity of signalling, and growth factor receptor signalling can lead to modifications of trafficking pathways. We have developed live-cell imaging methods for studying FGFR dynamics to investigate mechanisms that coordinate the interplay between receptor trafficking and signal transduction. Activated FGFR enters the cell following recruitment to pre-formed clathrin-coated pits (CCPs). However, FGFR activation stimulates clathrin-mediated endocytosis; FGF treatment increases the number of CCPs, including those undergoing endocytosis, and this effect is mediated by Src and its phosphorylation target Eps8. Eps8 interacts with the clathrin-mediated endocytosis machinery and depletion of Eps8 inhibits FGFR trafficking and immediate Erk signalling. Once internalized, FGFR passes through peripheral early endosomes en route to recycling and degredative compartments, through an Src- and Eps8-dependent mechanism. Thus Eps8 functions as a key coordinator in the interplay between FGFR signalling and trafficking. This work provides the first detailed mechanistic analysis of growth factor receptor clustering at the cell surface through signal transduction and endocytic trafficking. As we have characterised the Src target Eps8 as a key regulator of FGFR signalling and trafficking, and identified the early endocytic system as the site of Eps8-mediated effects, this work provides novel mechanistic insight into the reciprocal regulation of growth factor receptor signalling and trafficking.

  20. Dynamic Na+-H+ exchanger regulatory factor-1 association and dissociation regulate parathyroid hormone receptor trafficking at membrane microdomains.

    PubMed

    Ardura, Juan A; Wang, Bin; Watkins, Simon C; Vilardaga, Jean-Pierre; Friedman, Peter A

    2011-10-07

    Na/H exchanger regulatory factor-1 (NHERF1) is a cytoplasmic PDZ (postsynaptic density 95/disc large/zona occludens) protein that assembles macromolecular complexes and determines the localization, trafficking, and signaling of select G protein-coupled receptors and other membrane-delimited proteins. The parathyroid hormone receptor (PTHR), which regulates mineral ion homeostasis and bone turnover, is a G protein-coupled receptor harboring a PDZ-binding motif that enables association with NHERF1 and tethering to the actin cytoskeleton. NHERF1 interactions with the PTHR modify its trafficking and signaling. Here, we characterized by live cell imaging the mechanism whereby NHERF1 coordinates the interactions of multiple proteins, as well as the fate of NHERF1 itself upon receptor activation. Upon PTHR stimulation, NHERF1 rapidly dissociates from the receptor and induces receptor aggregation in long lasting clusters that are enriched with the actin-binding protein ezrin and with clathrin. After NHERF1 dissociates from the PTHR, ezrin then directly interacts with the PTHR to stabilize the PTHR at the cell membrane. Recruitment of β-arrestins to the PTHR is delayed until NHERF1 dissociates from the receptor, which is then trafficked to clathrin for internalization. The ability of NHERF to interact dynamically with the PTHR and cognate adapter proteins regulates receptor trafficking and signaling in a spatially and temporally coordinated manner.

  1. Interaction of the von Willebrand factor with platelets and thrombosis.

    PubMed

    Perutelli, P; Mori, P G

    1997-11-01

    The human von Willebrand factor (vWf) is a multimeric glycoprotein present in plasma, platelets, endothelial cells and subendothelium and synthesized in endothelial cells and megakaryocytes. vWf plays a pivotal role in the mechanisms of blood clotting and platelet thrombus formation; quantitative and qualitative abnormalities of vWf cause the most common congenital bleeding disorder in man, the von Willebrand disease. vWf stabilizes factor VIII and interacts with subendothelial components and with platelet membrane receptors. The multimeric structure of vWf provides an array of binding sites which allows multivalent interactions with its ligands, thus supporting the formation of stable platelet aggregates at the site of vascular injury, particularly under flow conditions characterized by high shear stress. In the last years, remarkable progress has been made toward understanding the structure of vWf protein and gene, and the elucidation of many structure-function relationships, which may result in improved therapeutic intervention for vWD patients, and in the development of effective strategies for antithrombotic therapy.

  2. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2007-03-01

    Fibroblast growth factor receptors (Fgfrs) are expressed in the ureteric bud and metanephric mesenchyme of the developing kidney. Furthermore, in vitro and in vivo studies have shown that exogenous fibroblast growth factors (Fgfs) increase growth and maturation of the metanephric mesenchyme and ureteric bud. Deletion of fgf7, fgf10, and fgfr2IIIb (the receptor isoform that binds Fgf7 and Fgf10) in mice lead to smaller kidneys with fewer collecting ducts and nephrons. Overexpression of a dominant negative receptor isoform in transgenic mice has revealed more striking defects including renal aplasia or severe dysplasia. Moreover, deletion of many fgf ligands and receptors in mice results in early embryonic lethality, making it difficult to determine their roles in kidney development. Recently, conditional targeting approaches revealed that deletion of fgf8 from the metanephric mesenchyme interrupts nephron formation. Furthermore, deletion of fgfr2 from the ureteric bud resulted in both ureteric bud branching and stromal mesenchymal patterning defects. Deletion of both fgfr1 and fgfr2 in the metanephric mesenchyme resulted in renal aplasia, characterized by defects in metanephric mesenchyme formation and initial ureteric bud elongation and branching. Thus, Fgfr signaling is critical for growth and patterning of all renal lineages at early and later stages of kidney development.

  3. Immunohistochemical expression of Type IV Collagen and Autocrine Motility Factor Receptor in Odontogenic Tumours

    PubMed Central

    Sethi, Sneha

    2014-01-01

    Background: Autocrine motility factor receptor (AMFR) is a tumour motility stimulating protein secreted by tumour cells. The protein encoded by this gene is a glycosylated transmembrane protein and a receptor for autocrine motility factor. It has been known to play a role in progression of neoplastic lesions. Basement membranes are specialized extracellular matrices that serve as structural barriers as well as substrates for cellular interactions. The network of type IV collagen is thought to define the scaffold integrating other components such as laminins and perlecan into highly organized supramolecular architecture. The aim of this study was to determine and evaluate the immunohistochemical expression of Type IV Collagen and Autocrine motility factor receptor in odontogenic lesions. Materials and Methods: Immunohistochemical expression of Type IV Collagen and Autocrine motility factor receptor was evaluated in 31 odontogenic lesions, including unicystic ameloblastoma, multicystic ameloblastoma, keratocystic odontogenic tumour and ameloblastic carcinoma. Normal follicular tissue formed the control. Results: Maximum expression for Type IV Collagen was seen in multicystic ameloblastoma and minimum expression in keratocystic odontogenic tumour. The maximum expression of AMFR was seen in ameloblastic carcinoma and minimum expression in multicystic ameloblastoma. Conclusion: The results of this study suggested an association of loss of expression of type IV Collagen with progression of lesion. AMFR expression was found to be associated with the aggressive potential of tumours. PMID:25478440

  4. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.

    PubMed

    Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-05-21

    Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain.

  5. New paradigm in ethylene signaling: EIN2, the central regulator of the signaling pathway, interacts directly with the upstream receptors.

    PubMed

    Bisson, Melanie M A; Groth, Georg

    2011-01-01

    The membrane protein ETHYLENE INSENSITIVE2 (EIN2), which is supposed to act between the soluble serine/threonine kinase CTR1 and the EIN3/EIL family of transcription factors, is a central and most critical element of the ethylene signaling pathway in Arabidopsis. In a recent study, we have identified that EIN2 interacts tightly with all members of the Arabidopsis ethylene receptor family - proteins that mark the starting point of the signaling pathway. Our studies show consistently that the kinase domain of the receptors is essential for the formation of the EIN2-receptor complex. Furthermore, mutational analysis demonstrates that phosphorylation is a key mechanism in controlling the interaction of EIN2 and the ethylene receptors. Interaction studies in the presence of the ethylene agonist cyanide revealed a causal link between hormone binding and complex formation. In the presence of the plant hormone agonist the auto-kinase activity of the receptors is inhibited and the non-phosphorylated kinase domain of the receptors binds tightly to the carboxyl-terminal domain of EIN2. In the absence of cyanide inhibition of the auto-kinase activity is relieved and complex formation with the phosphorylated kinase domain of the receptors is reduced. Our data suggest a novel model on the integration of EIN2 in the ethylene signaling pathway.

  6. Alkylating derivative of oxotremorine interacts irreversibly with the muscarinic receptor

    SciTech Connect

    Ehlert, F.J.; Jenden, D.J.; Ringdahl, B.

    1984-03-05

    A 2-chloroethylamine derivative of oxotremorine was studied in pharmacological experiments and muscarinic receptor binding assays. The compound, N-(4-(2-chloroethylmethylamino)-2-butynyl)-2-pyrrolidone (BM 123), forms an aziridinium ion in aqueous solution at neutral pH that stimulates contractions of guinea pig ileum with a potency similar to that of oxotremorine. Following the initial stimulation, there is a long lasting period of lack of sensitivity of the guinea pig ileum to muscarinic agonists. BM 123 also produces muscarinic effects in vivo. When homogenates of the rat cerebral cortex were incubated with BM 123 and assayed subsequently in muscarinic receptor binding assays, a loss of binding capacity for the muscarinic antagonist, (/sup 3/H)N-methylscopolamine ((/sup 3/H)NMS), was noted without a change in affinity. Similar observations were made in (/sup 3/H)1-3-quinuclidinyl benzilate ((/sup 3/H)-QNB) binding assays on the forebrains of mice that had been injected with BM 123 24 hr earlier. The loss in receptor capacity for both (/sup 3/H)NMS and (/sup 3/H)-QNB was prevented by atropine treatment. Kinetic studies of the interaction of BM 123 with homogenates of the rat cerebral cortex in vitro showed that the half-time for the loss of (/sup 3/H)-QNB binding sites increased from 10 to 45 min as the concentration of BM 123 decreased from 10 to 1 ..mu..M. In contrast to the aziridinium ion, the parent 2-chloroethylamine compound and the alcoholic hydrolysis product were largely devoid of pharmacological and binding activity.

  7. Molecular modeling study of the differential ligand-receptor interaction at the μ, δ and κ opioid receptors

    NASA Astrophysics Data System (ADS)

    Filizola, Marta; Carteni-Farina, Maria; Perez, Juan J.

    1999-07-01

    3D models of the opioid receptors μ, δ and κ were constructed using BUNDLE, an in-house program to build de novo models of G-protein coupled receptors at the atomic level. Once the three opioid receptors were constructed and before any energy refinement, models were assessed for their compatibility with the results available from point-site mutations carried out on these receptors. In a subsequent step, three selective antagonists to each of three receptors (naltrindole, naltrexone and nor-binaltorphamine) were docked onto each of the three receptors and subsequently energy minimized. The nine resulting complexes were checked for their ability to explain known results of structure-activity studies. Once the models were validated, analysis of the distances between different residues of the receptors and the ligands were computed. This analysis permitted us to identify key residues tentatively involved in direct interaction with the ligand.

  8. Insights into Cytokine–Receptor Interactions from Cytokine Engineering

    PubMed Central

    Spangler, Jamie B.; Moraga, Ignacio; Mendoza, Juan L.; Garcia, K. Christopher

    2015-01-01

    Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine–receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4. PMID:25493332

  9. Calsequestrin interacts directly with the cardiac ryanodine receptor luminal domain

    PubMed Central

    Handhle, Ahmed; Ormonde, Chloe E.; Thomas, N. Lowri; Bralesford, Catherine; Williams, Alan J.; Lai, F. Anthony

    2016-01-01

    ABSTRACT Cardiac muscle contraction requires sarcoplasmic reticulum (SR) Ca2+ release mediated by the quaternary complex comprising the ryanodine receptor 2 (RyR2), calsequestrin 2 (CSQ2), junctin (encoded by ASPH) and triadin. Here, we demonstrate that a direct interaction exists between RyR2 and CSQ2. Topologically, CSQ2 binding occurs at the first luminal loop of RyR2. Co-expression of RyR2 and CSQ2 in a human cell line devoid of the other quaternary complex proteins results in altered Ca2+-release dynamics compared to cells expressing RyR2 only. These findings provide a new perspective for understanding the SR luminal Ca2+ sensor and its involvement in cardiac physiology and disease. PMID:27609834

  10. Interaction between Pheromone and Its Receptor of the Fission Yeast Schizosaccharomyces pombe Examined by a Force Spectroscopy Study

    PubMed Central

    Sasuga, Shintaro; Abe, Ryohei; Nikaido, Osamu; Kiyosaki, Shoichi; Sekiguchi, Hiroshi; Ikai, Atsushi; Osada, Toshiya

    2012-01-01

    Interaction between P-factor, a peptide pheromone composed of 23 amino acid residues, and its pheromone receptor, Mam2, on the cell surface of the fission yeast Schizosaccharomyces pombe was examined by an atomic force microscope (AFM). An AFM tip was modified with P-factor derivatives to perform force curve measurements. The specific interaction force between P-factor and Mam2 was calculated to be around 120 pN at a probe speed of 1.74 μm/s. When the AFM tip was modified with truncated P-factor derivative lacking C-terminal Leu, the specific interaction between the tip and the cell surface was not observed. These results were also confirmed with an assay system using a green fluorescent protein (GFP) reporter gene to monitor the activation level of signal transduction following the interaction of Mam2 with P-factor. PMID:22500108

  11. Interaction between pheromone and its receptor of the fission yeast Schizosaccharomyces pombe examined by a force spectroscopy study.

    PubMed

    Sasuga, Shintaro; Abe, Ryohei; Nikaido, Osamu; Kiyosaki, Shoichi; Sekiguchi, Hiroshi; Ikai, Atsushi; Osada, Toshiya

    2012-01-01

    Interaction between P-factor, a peptide pheromone composed of 23 amino acid residues, and its pheromone receptor, Mam2, on the cell surface of the fission yeast Schizosaccharomyces pombe was examined by an atomic force microscope (AFM). An AFM tip was modified with P-factor derivatives to perform force curve measurements. The specific interaction force between P-factor and Mam2 was calculated to be around 120 pN at a probe speed of 1.74 μm/s. When the AFM tip was modified with truncated P-factor derivative lacking C-terminal Leu, the specific interaction between the tip and the cell surface was not observed. These results were also confirmed with an assay system using a green fluorescent protein (GFP) reporter gene to monitor the activation level of signal transduction following the interaction of Mam2 with P-factor.

  12. Fibroblast growth factor receptor levels decrease during chick embryogenesis

    PubMed Central

    1990-01-01

    Two putative receptors for fibroblast growth factor (FGF) of approximately 150 and 200 kD were identified in membrane preparations from chick embryos. Specific binding (femtomoles/milligram) of 125I- aFGF to whole chick embryonic membranes was relatively constant from day 2 to 7, then decreased fivefold between days 7 and 13. Day-19 chick embryos retained 125I-aFGF binding at low levels to brain, eye, and liver tissues but not to skeletal muscle or cardiac tissues. The 200-kD FGF receptor began to decline between day 4.5 and 7 and was barely detectable by day 9, whereas the 150-kD FGF receptor began to decline by day 7 but was still detectable in day-9 embryonic membranes. It is not known whether the two FGF-binding proteins represent altered forms of one polypeptide, but it is clear that their levels undergo differential changes during development. Because endogenous chick FGF may remain bound to FGF receptor in membrane preparations, membranes were treated with acidic (pH 4.0) buffers to release bound FGF; such treatment did not affect 125I-aFGF binding and moderately increased the number of binding sites in day-7 and -19 embryos. Consequently, the observed loss of high affinity 125I-aFGF binding sites and FGF-binding polypeptides most likely represents a loss of FGF receptor protein. These experiments provide in vivo evidence to support the hypothesis that regulation of FGF receptor levels may function as a mechanism for controlling FGF-dependent processes during embryonic development. PMID:2153684

  13. Expression of androgen receptor in breast cancer & its correlation with other steroid receptors & growth factors

    PubMed Central

    Mishra, Ashwani K.; Agrawal, Usha; Negi, Shivani; Bansal, Anju; Mohil, R.; Chintamani, Chintamani; Bhatnagar, Amar; Bhatnagar, Dinesh; Saxena, Sunita

    2012-01-01

    Background & objectives: Breast cancer is the second most common malignancy in Indian women. Among the members of the steroid receptor superfamily the role of estrogen and progesterone receptors (ER and PR) is well established in breast cancer in predicting the prognosis and management of therapy, however, little is known about the clinical significance of androgen receptor (AR) in breast carcinogenesis. The present study was aimed to evaluate the expression of AR in breast cancer and to elucidate its clinical significance by correlating it with clinicopathological parameters, other steroid receptors (ER and PR) and growth factors receptors (EGFR and CD105). Methods: Expression of AR, ER, PR, epidermal growth factor receptor (EGFR) and endoglin (CD105) was studied in 100 cases of breast cancer by immunohistochemistry (IHC). Risk ratio (RR) along with 95% confidence interval (CI) was estimated to assess the strength of association between the markers and clinicopathological characteristics. Categorical principal component analysis (CATPCA) was applied to obtain new sets of linearly combined expression, for their further evaluation with clinicopathological characteristics (n=100). Results: In 31 cases presenting with locally advanced breast cancer (LABC), the expression of AR, ER, PR, EGFR and CD105 was associated with response to neoadjuvant chemotherapy (NACT). The results indicated the association of AR+ (P=0.001) and AR+/EGFR- (P=0.001) with the therapeutic response to NACT in LABC patients. The AR expression exhibited maximum sensitivity, specificity and likelihood ratio of positive and negative test. The present results showed the benefit of adding AR, EGFR and CD105 to the existing panel of markers to be able to predict response to therapy. Interpretation & conclusions: More studies on the expression profiles of AR+, AR+/CD105+ and AR+/EGFR- in larger set of breast cancer patients may possibly help in confirming their predictive role for therapeutic response

  14. Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles.

    PubMed

    Read, Jolene; Ingram, Alistair; Al Saleh, Hassan A; Platko, Khrystyna; Gabriel, Kathleen; Kapoor, Anil; Pinthus, Jehonathan; Majeed, Fadwa; Qureshi, Talha; Al-Nedawi, Khalid

    2017-01-01

    Epidermal growth factor receptor (EGFR) plays a central role in the progression of several human malignancies. Although EGFR is a membrane receptor, it undergoes nuclear translocation, where it has a distinct signalling pathway. Herein, we report a novel mechanism by which cancer cells can directly transport EGFR to the nucleus of other cells via extracellular vesicles (EVs). The transported receptor is active and stimulates the nuclear EGFR pathways. Interestingly, the translocation of EGFR via EVs occurs independently of the nuclear localisation sequence that is required for nuclear translocation of endogenous EGFR. Also, we found that the mutant receptor EGFRvIII could be transported to the nucleus of other cells via EVs. To assess the role of EVs in the regulation of an actual nuclear receptor, we studied the regulation of androgen receptor (AR). We found that full-length AR and mutant variant ARv7 are secreted in EVs derived from prostate cancer cell lines and could be transported to the nucleus of AR-null cells. The EV-derived AR was able to bind the androgen-responsive promoter region of prostate specific antigen, and recruit RNA Pol II, an indication of active transcription. The nuclear-translocated AR via EVs enhanced the proliferation of acceptor cells in the absence of androgen. Finally, we provide evidence that nuclear localisation of AR could occur in vivo via orthotopically-injected EVs in male SCID mice prostate glands. To our knowledge, this is the first study showing the nuclear translocation of nuclear receptors via EVs, which significantly extends the role of EVs as paracrine transcriptional regulators.

  15. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor.

    PubMed Central

    Tzahar, E; Waterman, H; Chen, X; Levkowitz, G; Karunagaran, D; Lavi, S; Ratzkin, B J; Yarden, Y

    1996-01-01

    The ErbB family includes four homologous transmembrane tyrosine kinases. Whereas ErbB-1 binds to the epidermal growth factor (EGF), both ErbB-3 and ErbB-4 bind to the Neu differentiation factors (NDFs, or neuregulins), and ErbB-2, the most oncogenic family member, is an orphan receptor whose function is still unknown. Because previous lines of evidence indicated the existence of interreceptor interactions, we used ectopic expression of individual ErbB proteins and their combinations to analyze the details of receptor cross talks. We show that 8 of 10 possible homo-and heterodimeric complexes of ErbB proteins can be hierarchically induced by ligand binding. Although ErbB-2 binds neither ligand, even in a heterodimeric receptor complex, it is the preferred heterodimer partner of the three other members, and it favors interaction with ErbB-3. Selective receptor overexpression in human tumor cells appears to bias the hierarchical relationships. The ordered network is reflected in receptor transphosphorylation, ErbB-2-mediated enhancement of ligand affinities, and remarkable potentiation of mitogenesis by a coexpressed ErbB-2. The observed superior ability of ErbB-2 to form heterodimers, in conjunction with its uniquely high basal tyrosine kinase activity, may explain why ErbB-2 overexpression is associated with poor prognosis. PMID:8816440

  16. The interleukin 1 (IL-1) receptor accessory protein Toll/IL-1 receptor domain: analysis of putative interaction sites in vitro mutagenesis and molecular modeling.

    PubMed

    Radons, Jurgen; Dove, Stefan; Neumann, Detlef; Altmann, Reinhold; Botzki, Alexander; Martin, Michael U; Falk, Werner

    2003-12-05

    The Toll/interleukin 1 (IL-1) receptor family plays an important role in both innate and adaptive immunity. These receptors are characterized by a C-terminal homology motif called the Toll/IL-1 receptor (TIR) domain. A principal function of the TIR domain is mediating homotypic protein-protein interactions in the signal transduction pathway. To suggest interaction sites of TIR domains in the IL-1 receptor complex, we modeled the putative three-dimensional structure of the TIR domain within the co-receptor chain, IL-1 receptor accessory protein. The model was based on homology with the crystal structures of human TLR1 and TLR2. The final structure of the IL-1 receptor accessory protein TIR domain suggests the conserved regions box 1 and 2, including Pro-446, as well as box 3 within the C-terminal alpha-helix as possible protein-protein interaction sites due to their exposure and their electrostatic potential. Pro-446, corresponding to the Pro/His mutation in dominant negative TLR4, is located in the third loop at the outmost edge of the TIR domain and does not play any structural role. Inhibition of IL-1 responsiveness seen after substitution of Pro-446 by charged amino acids is due to the loss of an interaction site for other TIR domains. Amino acids 527-534 as part of the loop close to the conserved box 3 are critical for recruitment of myeloid differentiation factor 88 and to a lesser extent for IL-1 responsiveness. Modeling suggests that native folding of the TIR domain may be approached by the responsive deletion mutants delta528-534 and delta527-533, whereas the C-terminal beta-strand and/or alpha-helix is displaced in the nonresponsive mutant delta527-534.

  17. Insulin-Like Growth Factor 1 Receptor Is a Prognostic Factor in Classical Hodgkin Lymphoma

    PubMed Central

    Liang, Zheng; Diepstra, Arjan; Xu, Chuanhui; van Imhoff, Gustaaf; Plattel, Wouter; Van Den Berg, Anke; Visser, Lydia

    2014-01-01

    The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines. PMID:24489919

  18. Insulin-like growth factor 1 receptor is a prognostic factor in classical Hodgkin lymphoma.

    PubMed

    Liang, Zheng; Diepstra, Arjan; Xu, Chuanhui; van Imhoff, Gustaaf; Plattel, Wouter; Van Den Berg, Anke; Visser, Lydia

    2014-01-01

    The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines.

  19. Memo interacts with c-Src to control Estrogen Receptor alpha sub-cellular localization.

    PubMed

    Frei, Anna; MacDonald, Gwen; Lund, Ingrid; Gustafsson, Jan-Åke; Hynes, Nancy E; Nalvarte, Ivan

    2016-08-30

    Understanding the complex interaction between growth factor and steroid hormone signaling pathways in breast cancer is key to identifying suitable therapeutic strategies to avoid progression and therapy resistance. The interaction between these two pathways is of paramount importance for the development of endocrine resistance. Nevertheless, the molecular mechanisms behind their crosstalk are still largely obscure. We previously reported that Memo is a small redox-active protein that controls heregulin-mediated migration of breast cancer cells. Here we report that Memo sits at the intersection between heregulin and estrogen signaling, and that Memo controls Estrogen Receptor alpha (ERα) sub-cellular localization, phosphorylation, and function downstream of heregulin and estrogen in breast cancer cells. Memo facilitates ERα and c-Src interaction, ERα Y537 phosphorylation, and has the ability to control ERα extra-nuclear localization. Thus, we identify Memo as an important key mediator between the heregulin and estrogen signaling pathways, which affects both breast cancer cell migration and proliferation.

  20. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions

    PubMed Central

    Prakash, Chandra; Zuniga, Baltazar; Song, Chung Seog; Jiang, Shoulei; Cropper, Jodie; Park, Sulgi; Chatterjee, Bandana

    2016-01-01

    Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug’s impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and

  1. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions.

    PubMed

    Prakash, Chandra; Zuniga, Baltazar; Song, Chung Seog; Jiang, Shoulei; Cropper, Jodie; Park, Sulgi; Chatterjee, Bandana

    Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and

  2. Vascular Endothelial Growth Factor Receptor -2 in Breast Cancer

    PubMed Central

    Guo, Shanchun; Colbert, Laronna S.; Fuller, Miles; Zhang, Yuanyuan; Gonzalez-Perez, Ruben R.

    2010-01-01

    Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR were structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival. PMID:20462514

  3. Conformational thermostabilisation of corticotropin releasing factor receptor 1

    PubMed Central

    Kean, James; Bortolato, Andrea; Hollenstein, Kaspar; Marshall, Fiona H.; Jazayeri, Ali

    2015-01-01

    Recent technical advances have greatly facilitated G-protein coupled receptors crystallography as evidenced by the number of successful x-ray structures that have been reported recently. These technical advances include novel detergents, specialised crystallography techniques as well as protein engineering solutions such as fusions and conformational thermostabilisation. Using conformational thermostabilisation, it is possible to generate variants of GPCRs that exhibit significantly increased stability in detergent micelles whilst preferentially occupying a single conformation. In this paper we describe for the first time the application of this technique to a member of a class B GPCR, the corticotropin releasing factor receptor 1 (CRF1R). Mutational screening in the presence of the inverse agonist, CP-376395, resulted in the identification of a construct with twelve point mutations that exhibited significantly increased thermal stability in a range of detergents. We further describe the subsequent construct engineering steps that eventually yielded a crystallisation-ready construct which recently led to the solution of the first x-ray structure of a class B receptor. Finally, we have used molecular dynamic simulation to provide structural insight into CRF1R instability as well as the stabilising effects of the mutants, which may be extended to other class B receptors considering the high degree of structural conservation. PMID:26159865

  4. Endocannabinoid receptor deficiency affects maternal care and alters the dam's hippocampal oxytocin receptor and brain-derived neurotrophic factor expression.

    PubMed

    Schechter, M; Weller, A; Pittel, Z; Gross, M; Zimmer, A; Pinhasov, A

    2013-10-01

    Maternal care is the newborn's first experience of social interaction, and this influences infant survival, development and social competences throughout life. We recently found that postpartum blocking of the endocannabinoid receptor-1 (CB1R) altered maternal behaviour. In the present study, maternal care was assessed by the time taken to retrieve pups, pups' ultrasonic vocalisations (USVs) and pup body weight, comparing CB1R deleted (CB1R KO) versus wild-type (WT) mice. After culling on postpartum day 8, hippocampal expression of oxytocin receptor (OXTR), brain-derived neurotrophic factor (BDNF) and stress-mediating factors were evaluated in CB1R KO and WT dams. Comparisons were also performed with nulliparous (NP) CB1R KO and WT mice. Compared to WT, CB1R KO dams were slower to retrieve their pups. Although the body weight of the KO pups did not differ from the weight of WT pups, they emitted fewer USVs. This impairment of the dam-pup relationship correlated with a significant reduction of OXTR mRNA and protein levels among CB1R KO dams compared to WT dams. Furthermore, WT dams exhibited elevated OXTR mRNA expression, as well as increased levels of mineralocorticoid and glucocorticoid receptors, compared to WT NP mice. By contrast, CB1R KO dams showed no such elevation of OXTR expression, alongside lower BDNF and mineralocorticoid receptors, as well as elevated corticotrophin-releasing hormone mRNA levels, when compared to CB1R KO NP. Thus, it appears that the disruption of endocannabinoid signalling by CB1R deletion alters expression of the OXTR, apparently leading to deleterious effects upon maternal behaviour.

  5. Binding and regulation of cellular functions by monoclonal antibodies against human tumor necrosis factor receptors

    PubMed Central

    1990-01-01

    The present study was undertaken to further characterize the interaction of monoclonal antibodies (mAbs) against tumor necrosis factor (TNF) receptors with different targets, and to assess their ability to influence TNF effects on U937 and human endothelial cell (HEC) functions. Actions of recombinant TNF-alpha on U937 and HEC were effectively inhibited by Htr-5 and Utr-1, and to a greater extent by a combination of both mAbs. These observations indicate that TNF interaction with antigenically different components of membrane receptors (p55 and p75) represents a crucial step in transduction of signals for TNF toxicity against U937 and TNF activation of HEC functions. PMID:2172437

  6. The interaction between histamine H1 receptor and μ- opioid receptor in scratching behavior in ICR mice.

    PubMed

    Nakasone, Tasuku; Sugimoto, Yumi; Kamei, Chiaki

    2016-04-15

    In this study, we examined the interaction between histamine H1 receptor and μ-opioid receptor in scratching behavior in ICR mice. Both histamine and morphine caused scratching and simultaneous injection of histamine and morphine had an additive effect. Chlorpheniramine and naloxone inhibited histamine-induced scratching behavior. These two drugs also inhibited morphine-induced scratching behavior. Simultaneous injection of chlorpheniramine and naloxone caused a significant inhibition of histamine-induced scratching compared with separate injections. The same findings were also noted for morphine-induced scratching. These results strongly indicate a close relationship between histamine H1 receptor and μ-opioid receptor in scratching behavior in ICR mice.

  7. Upregulation of epidermal growth factor receptor 4 in oral leukoplakia

    PubMed Central

    Kobayashi, Hiroshi; Kumagai, Kenichi; Gotoh, Akito; Eguchi, Takanori; Yamada, Hiroyuki; Hamada, Yoshiki; Suzuki, Satsuki; Suzuki, Ryuji

    2013-01-01

    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP). The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP. PMID:23492901

  8. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-09-01

    Fibroblast growth factor receptors (Fgfrs) are expressed throughout the developing kidney. Several early studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB). Transgenic mice that over-express a dominant negative receptor isoform develop renal aplasia/severe dysplasia, confirming the importance of Fgfrs in renal development. Furthermore, global deletion of Fgf7, Fgf10, and Fgfr2IIIb (isoform that binds Fgf7 and Fgf10) in mice leads to small kidneys with fewer collecting ducts and nephrons. Deletion of Fgfrl1, a receptor lacking intracellular signaling domains, causes severe renal dysgenesis. Conditional targeting of Fgf8 from the MM interrupts nephron formation. Deletion of Fgfr2 from the UB results in severe ureteric branching and stromal mesenchymal defects, although loss of Frs2α (major signaling adapter for Fgfrs) in the UB causes only mild renal hypoplasia. Deletion of both Fgfr1 and Fgfr2 in the MM results in renal aplasia with defects in MM formation and initial UB elongation and branching. Loss of Fgfr2 in the MM leads to many renal and urinary tract anomalies as well as vesicoureteral reflux. Thus, Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  9. Biogenesis of lysosome-related organelles complex-1 subunit 1 (BLOS1) interacts with sorting nexin 2 and the endosomal sorting complex required for transport-I (ESCRT-I) component TSG101 to mediate the sorting of epidermal growth factor receptor into endosomal compartments.

    PubMed

    Zhang, Aili; He, Xin; Zhang, Ling; Yang, Lin; Woodman, Philip; Li, Wei

    2014-10-17

    Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a component of the molecular machinery required for the biogenesis of specialized organelles and lysosomal targeting of cargoes via the endosomal to lysosomal trafficking pathway. BLOS1, one subunit of BLOC-1, is implicated in lysosomal trafficking of membrane proteins. We found that the degradation and trafficking of epidermal growth factor receptor (EGFR) were delayed in BLOS1 knockdown cells, which were rescued through BLOS1 overexpression. A key feature to the delayed EGFR degradation is the accumulation of endolysosomes in BLOS1 knockdown cells or BLOS1 knock-out mouse embryonic fibroblasts. BLOS1 interacted with SNX2 (a retromer subunit) and TSG101 (an endosomal sorting complex required for transport subunit-I) to mediate EGFR lysosomal trafficking. These results suggest that coordination of the endolysosomal trafficking proteins is important for proper targeting of EGFR to lysosomes.

  10. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions

    PubMed Central

    Choi, Sun-Hye; Jung, Seok-Won; Lee, Byung-Hwan; Kim, Hyeon-Joong; Hwang, Sung-Hee; Kim, Ho-Kyoung; Nah, Seung-Yeol

    2015-01-01

    Ginseng, the root of Panax ginseng, is used as a traditional medicine. Despite the long history of the use of ginseng, there is no specific scientific or clinical rationale for ginseng pharmacology besides its application as a general tonic. The ambiguous description of ginseng pharmacology might be due to the absence of a predominant active ingredient that represents ginseng pharmacology. Recent studies show that ginseng abundantly contains lysophosphatidic acids (LPAs), which are phospholipid-derived growth factor with diverse biological functions including those claimed to be exhibited by ginseng. LPAs in ginseng form a complex with ginseng proteins, which can bind and deliver LPA to its cognate receptors with a high affinity. As a first messenger, gintonin produces second messenger Ca2+ via G protein-coupled LPA receptors. Ca2+ is an intracellular mediator of gintonin and initiates a cascade of amplifications for further intercellular communications by activation of Ca2+-dependent kinases, receptors, gliotransmitter, and neurotransmitter release. Ginsenosides, which have been regarded as primary ingredients of ginseng, cannot elicit intracellular [Ca2+]i transients, since they lack specific cell surface receptor. However, ginsenosides exhibit non-specific ion channel and receptor regulations. This is the key characteristic that distinguishes gintonin from ginsenosides. Although the current discourse on ginseng pharmacology is focused on ginsenosides, gintonin can definitely provide a mode of action for ginseng pharmacology that ginsenosides cannot. This review article introduces a novel concept of ginseng ligand-LPA receptor interaction and proposes to establish a paradigm that shifts the focus from ginsenosides to gintonin as a major ingredient representing ginseng pharmacology. PMID:26578955

  11. Interaction between FGFR-2, STAT5, and progesterone receptors in breast cancer.

    PubMed

    Cerliani, Juan P; Guillardoy, Tomás; Giulianelli, Sebastián; Vaque, José P; Gutkind, J Silvio; Vanzulli, Silvia I; Martins, Rubén; Zeitlin, Eduardo; Lamb, Caroline A; Lanari, Claudia

    2011-05-15

    Fibroblast growth factor (FGF) receptor 2 (FGFR-2) polymorphisms have been associated with an increase in estrogen receptor and progesterone receptor (PR)-positive breast cancer risk; however, a clear mechanistic association between FGFR-2 and steroid hormone receptors remains elusive. In previous works, we have shown a cross talk between FGF2 and progestins in mouse mammary carcinomas. To investigate the mechanisms underlying these interactions and to validate our findings in a human setting, we have used T47D human breast cancer cells and human cancer tissue samples. We showed that medroxyprogesterone acetate (MPA) and FGF2 induced cell proliferation and activation of ERK, AKT, and STAT5 in T47D and in murine C4-HI cells. Nuclear interaction between PR, FGFR-2, and STAT5 after MPA and FGF2 treatment was also showed by confocal microscopy and immunoprecipitation. This effect was associated with increased transcription of PRE and/or GAS reporter genes, and of PR/STAT5-regulated genes and proteins. Two antiprogestins and the FGFR inhibitor PD173074, specifically blocked the effects induced by FGF2 or MPA respectively. The presence of PR/FGFR-2/STAT5 complexes bound to the PRE probe was corroborated by using NoShift transcription and chromatin immunoprecipitation of the MYC promoter. Additionally, we showed that T47D cells stably transfected with constitutively active FGFR-2 gave rise to invasive carcinomas when transplanted into NOD/SCID mice. Nuclear colocalization between PR and FGFR-2/STAT5 was also observed in human breast cancer tissues. This study represents the first demonstration of a nuclear interaction between FGFR-2 and STAT5, as PR coactivators at the DNA progesterone responsive elements, suggesting that FGFRs are valid therapeutic targets for human breast cancer treatment.

  12. Characterization of the interaction of the human mineralocorticosteroid receptor with hormone response elements.

    PubMed Central

    Lombès, M; Binart, N; Oblin, M E; Joulin, V; Baulieu, E E

    1993-01-01

    Although the mineralocorticosteroid receptor (MR) belongs to the superfamily of hormone-dependent transcription factors, the molecular mechanism by which it regulates gene expression is poorly understood. Binding of the MR to target gene promoters has never been characterized, and specific mineralocorticosteroid response elements (MREs) remain to be identified. The human MR (hMR) was overexpressed in Sf21 insect cells using the baculovirus system. The high degree of similarity between the glucocorticosteroid receptor (GR) and the MR prompted us to examine the DNA-binding properties of the recombinant MR with glucocorticosteroid-regulated genes. Gel shift mobility assays demonstrated that the recombinant receptor interacted with oligonucleotides containing perfect and imperfect palindromic sequences of GRE. A monoclonal anti-hMR antibody (FD4) induced a supershift of protein-DNA complexes and identified the MR in Western blot analysis. In vitro DNAse I protection assays with the hormone-regulated murine mammary tumour virus promoter showed that recombinant hMR generated four footprints whose limits encompassed the GRE motifs. By means of these two complementary approaches, no difference between the interaction of free, agonist- or antagonist-bound MR and DNA was detected. We provide evidence that hMR functions as a sequence-specific DNA-binding protein. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8389140

  13. Physiological functions of TNF family receptor/ligand interactions in hematopoiesis and transplantation.

    PubMed

    Mizrahi, Keren; Askenasy, Nadir

    2014-07-10

    Secretion of ligands of the tumor necrosis factor (TNF) superfamily is a conserved response of parenchymal tissues to injury and inflammation that commonly perpetuates elimination of dysfunctional cellular components by apoptosis. The same signals of tissue injury that induce apoptosis in somatic cells activate stem cells and initiate the process of tissue regeneration as a coupling mechanism of injury and recovery. Hematopoietic stem and progenitor cells upregulate the TNF family receptors under stress conditions and are transduced with trophic signals. The progeny gradually acquires sensitivity to receptor-mediated apoptosis along the differentiation process, which becomes the major mechanism of negative regulation of mature proliferating hematopoietic lineages and immune homeostasis. Receptor/ligand interactions of the TNF family are physiological mechanisms transducing the need for repair, which may be harnessed in pathological conditions and transplantation. Because these interactions are physiological mechanisms of injury, neutralization of these pathways has to be carefully considered in disorders that do not involve intrinsic aberrations of excessive susceptibility to apoptosis.

  14. Modulation of M(2) muscarinic receptor-receptor interaction by immunoglobulin G antibodies from Chagas' disease patients.

    PubMed

    Beltrame, S P; Auger, S R; Bilder, C R; Waldner, C I; Goin, J C

    2011-05-01

    Circulating immunoglobulin (Ig)G antibodies against M(2) muscarinic acetylcholine receptors (M(2) mAChR) have been implicated in Chagas' disease (ChD) pathophysiology. These antibodies bind to and activate their target receptor, displaying agonist-like activity through an unclear mechanism. This study tested the ability of serum anti-M(2) mAChR antibodies from chronic ChD patients to modulate M(2) muscarinic receptor-receptor interaction by bioluminescence resonance energy transfer (BRET). Human embryonic kidney (HEK) 293 cells co-expressing fusion proteins M(2) mAChR-Renilla luciferase (RLuc) and M(2) mAChR-yellow fluorescent protein (YFP) were exposed to the serum IgG fraction from ChD patients, and BRET between RLuc and YFP was assessed by luminometry. Unlike serum IgG from healthy subjects and conventional muscarinic ligands, ChD IgG promoted a time- and concentration-dependent increase in the BRET signal. This effect neither required cellular integrity nor occurred as a consequence of receptor activation. Enhancement of M(2) receptor-receptor interaction by ChD IgG was receptor subtype-specific and mediated by the recognition of the second extracellular loop of the M(2) mAChR. The monovalent Fab fragment derived from ChD IgG was unable to reproduce the effect of the native immunoglobulin. However, addition of ChD Fab in the presence of anti-human Fab IgG restored BRET-enhancing activity. These data suggest that the modulatory effect of ChD IgG on M(2) receptor-receptor interaction results from receptor cross-linking by bivalent antibodies.

  15. Signal Transduction by Vascular Endothelial Growth Factor Receptors

    PubMed Central

    Koch, Sina; Claesson-Welsh, Lena

    2012-01-01

    Vascular endothelial growth factors (VEGFs) are master regulators of vascular development and of blood and lymphatic vessel function during health and disease in the adult. It is therefore important to understand the mechanism of action of this family of five mammalian ligands, which act through three receptor tyrosine kinases (RTKs). In addition, coreceptors like neuropilins (NRPs) and integrins associate with the ligand/receptor signaling complex and modulate the output. Therapeutics to block several of the VEGF signaling components have been developed with the aim to halt blood vessel formation, angiogenesis, in diseases that involve tissue growth and inflammation, such as cancer. In this review, we outline the current information on VEGF signal transduction in relation to blood and lymphatic vessel biology. PMID:22762016

  16. TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation.

    PubMed

    Pype, S; Declercq, W; Ibrahimi, A; Michiels, C; Van Rietschoten, J G; Dewulf, N; de Boer, M; Vandenabeele, P; Huylebroeck, D; Remacle, J E

    2000-06-16

    CD40 belongs to the tumor necrosis factor (TNF) receptor family. CD40 signaling involves the recruitment of TNF receptor-associated factors (TRAFs) to its cytoplasmic domain. We have identified a novel intracellular CD40-binding protein termed TRAF and TNF receptor-associated protein (TTRAP) that also interacts with TNF-R75 and CD30. The region of the CD40 cytoplasmic domain that is required for TTRAP association overlaps with the TRAF6 recognition motif. Association of TTRAP with CD40 increases profoundly in response to treatment of cells with CD40L. Interestingly, TTRAP also associates with TRAFs, with the highest affinity for TRAF6. In transfected cells, TTRAP inhibits in a dose-dependent manner the transcriptional activation of a nuclear factor-kappaB (NF-kappaB)-dependent reporter mediated by CD40, TNF-R75 or Phorbol 12-myristate 13-acetate (PMA) and to a lesser extent by TRAF2, TRAF6, TNF-alpha, or interleukin-1beta (IL-1beta). TTRAP does not affect stimulation of NF-kappaB induced by overexpression of the NF-kappaB-inducing kinase (NIK), the IkappaB kinase alpha (IKKalpha), or the NF-kappaB subunit P65/RelA, suggesting it acts upstream of the latter proteins. Our results indicate that we have isolated a novel regulatory factor that is involved in signal transduction by distinct members of the TNF receptor family.

  17. Probability description of ligand-receptor interactions. Evaluation of reliability of events with small and supersmall doses. I. Kinetics of ligand-receptor interactions.

    PubMed

    Gurevich, K G; Varfolomeev, S D

    1999-09-01

    We have developed mathematical methods for describing ligand-receptor interactions (LRI) using Markov chains. Under some conditions, the mean value of ligand-receptor complexes obtained using Markov chains coincides with that obtained from the law of mass action. Using the calculated ratio of standard deviation to mean number of ligand-receptor complexes, we show that with small concentrations of ligand-receptor complexes LRI must be described using probability methods. Using data from the literature, we show that LRI description using the mass-action law under these conditions can cause significant errors in interpretation of experimental data.

  18. Interaction of lectins with membrane receptors on erythrocyte surfaces.

    PubMed

    Sung, L A; Kabat, E A; Chien, S

    1985-08-01

    The interactions of human genotype AO erythrocytes (red blood cells) (RBCs) with N-acetylgalactosamine-reactive lectins isolated from Helix pomatia (HPA) and from Dolichos biflorus (DBA) were studied. Binding curves obtained with the use of tritium-labeled lectins showed that the maximal numbers of lectin molecules capable of binding to human genotype AO RBCs were 3.8 X 10(5) and 2.7 X 10(5) molecules/RBC for HPA and DBA, respectively. The binding of one type of lectin may influence the binding of another type. HPA was found to inhibit the binding of DBA, but not vice versa. The binding of HPA was weakly inhibited by a beta-D-galactose-reactive lectin isolated from Ricinus communis (designated RCA1). Limulus polyphemus lectin (LPA), with specificity for N-acetylneuraminic acid, did not influence the binding of HPA but enhanced the binding of DBA. About 80% of LPA receptors (N-acetylneuraminic acid) were removed from RBC surfaces by neuraminidase treatment. Neuraminidase treatment of RBCs resulted in increases of binding of both HPA and DBA, but through different mechanisms. An equal number (7.6 X 10(5) of new HPA sites were generated on genotypes AO and OO RBCs by neuraminidase treatment, and these new sites accounted for the enhancement (AO cells) and appearance (OO cells) of hemagglutinability by HPA. Neuraminidase treatment did not generate new DBA sites, but increased the DBA affinity for the existing receptors; as a result, genotype AO cells increased their hemagglutinability by DBA, while OO cells remained unagglutinable. The use of RBCs of different genotypes in binding assays with 3H-labeled lectins of known specificities provides an experimental system for studying cell-cell recognition and association.

  19. 5-HT2A SEROTONIN RECEPTOR BIOLOGY: Interacting proteins, kinases and paradoxical regulation

    PubMed Central

    Roth, Bryan L

    2011-01-01

    5-hydroxytryptamine2A (5-HT2A) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity. PMID:21288474

  20. Structural Basis for Activation of the Receptor Tyrosine Kinase KIT by Stem Cell Factor

    SciTech Connect

    Yuzawa,S.; Opatowsky, Y.; Zhang, Z.; Mandiyan, V.; Lax, I.; Schlessinger, J.

    2007-01-01

    Stem Cell Factor (SCF) initiates its multiple cellular responses by binding to the ectodomain of KIT, resulting in tyrosine kinase activation. We describe the crystal structure of the entire ectodomain of KIT before and after SCF stimulation. The structures show that KIT dimerization is driven by SCF binding whose sole role is to bring two KIT molecules together. Receptor dimerization is followed by conformational changes that enable lateral interactions between membrane proximal Ig-like domains D4 and D5 of two KIT molecules. Experiments with cultured cells show that KIT activation is compromised by point mutations in amino acids critical for D4-D4 interaction. Moreover, a variety of oncogenic mutations are mapped to the D5-D5 interface. Since key hallmarks of KIT structures, ligand-induced receptor dimerization, and the critical residues in the D4-D4 interface, are conserved in other receptors, the mechanism of KIT stimulation unveiled in this report may apply for other receptor activation.

  1. Positive and Negative Cross-Talk between Lysophosphatidic Acid Receptor 1, Free Fatty Acid Receptor 4, and Epidermal Growth Factor Receptor in Human Prostate Cancer Cells.

    PubMed

    Hopkins, Mandi M; Liu, Ze; Meier, Kathryn E

    2016-10-01

    Lysophosphatidic acid (LPA) is a lipid mediator that mediates cellular effects via G protein-coupled receptors (GPCRs). Epidermal growth factor (EGF) is a peptide that acts via a receptor tyrosine kinase. LPA and EGF both induce proliferation of prostate cancer cells and can transactivate each other's receptors. The LPA receptor LPA1 is particularly important for LPA response in human prostate cancer cells. Previous work in our laboratory has demonstrated that free fatty acid 4 (FFA4), a GPCR activated by ω-3 fatty acids, inhibits responses to both LPA and EGF in these cells. One potential mechanism for the inhibition involves negative interactions between FFA4 and LPA1, thereby suppressing responses to EGF that require LPA1 In the current study, we examined the role of LPA1 in mediating EGF and FFA4 agonist responses in two human prostate cancer cell lines, DU145 and PC-3. The results show that an LPA1-selective antagonist inhibits proliferation and migration to both LPA and EGF. Knockdown of LPA1 expression, using silencing RNA, blocks responses to LPA and significantly inhibits responses to EGF. The partial response to EGF that is observed after LPA1 knockdown is not inhibited by FFA4 agonists. Finally, the role of arrestin-3, a GPCR-binding protein that mediates many actions of activated GPCRs, was tested. Knockdown of arrestin-3 completely inhibits responses to both LPA and EGF in prostate cancer cells. Taken together, these results suggest that LPA1 plays a critical role in EGF responses and that FFA4 agonists inhibit proliferation by suppressing positive cross-talk between LPA1 and the EGF receptor.

  2. Yeast-based reporter assays for the functional characterization of cochaperone interactions with steroid hormone receptors.

    PubMed

    Balsiger, Heather A; Cox, Marc B

    2009-01-01

    Steroid hormone receptor-mediated reporter assays in the budding yeast Saccharomyces cerevisiae have been an invaluable tool for the identification and functional characterization of steroid hormone receptor-associated chaperones and cochaperones. This chapter describes a hormone-inducible androgen receptor-mediated beta-galactosidase reporter assay in yeast. In addition, the immunophilin FKBP52 is used as a specific example of a receptor-associated cochaperone that acts as a positive regulator of receptor function. With the right combination of receptor and cochaperone expression plasmids, reporter plasmid, and ligand, the assay protocol described here could be used to functionally characterize a wide variety of nuclear receptor-cochaperone interactions. In addition to the functional characterization of receptor regulatory proteins, a modified version of this assay is currently being used to screen compound libraries for selective FKBP52 inhibitors that represent attractive therapeutic candidates for the treatment of steroid hormone receptor-associated diseases.

  3. Calcium-Sensing Receptor: Trafficking, Endocytosis, Recycling, and Importance of Interacting Proteins.

    PubMed

    Ray, Kausik

    2015-01-01

    The cloning of the extracellular calcium-sensing receptor (CaSR) provided a new paradigm in G-protein-coupled receptor (GPCR) signaling in which principal physiological ligand is a cation, namely, extracellular calcium (Ca(o)(2+)). A wealth of information has accumulated in the past two decades about the CaSR's structure and function, its contribution to pathology in disorders of calcium in humans, and CaSR-based therapeutics. The CaSR unlike many other GPCRs must function in the presence of its ligand, thus understanding the mechanisms such as anterograde trafficking and endocytic pathways of this receptor are complex and fallen behind other classical GPCRs. Factors controlling CaSR signaling include various proteins affecting the expression of the CaSR as well as modulation of its trafficking to and from the cell surface. The dimeric cell-surface CaSR links to various heterotrimeric G-proteins (G(q/11), G(i/o), G(12/13), and G(s)) to regulate intracellular second messengers, lipid kinases, various protein kinases, and transcription factors that are part of the machinery enabling the receptor to modulate the functions of the wide variety of cells in which it is expressed. This chapter describes key features of CaSR structure and function and discusses novel mechanisms by which the level of cell-surface receptor expression can be regulated including forward trafficking during biosynthesis, desensitization, internalization and recycling from the cell surface, and degradation. These processes are impacted by its interactions with several proteins in addition to signaling molecules per se (i.e., G-proteins, protein kinases, inositol phosphates, etc.) and include small molecular weight G-proteins (Sar1, Rabs, ARF, P24A, RAMPs, filamin A, 14-3-3 proteins, calmodulin, and caveolin-1). Moreover, CaSR signaling seems compartmentalized in cell-type-specific manner, and caveolin and filamin A likely act as scaffolds that bind signaling components and other key cellular

  4. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    PubMed

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  5. An interaction of oxytocin receptors with metabotropic glutamate receptors in hypothalamic astrocytes.

    PubMed

    Kuo, J; Hariri, O R; Micevych, P

    2009-12-01

    Hypothalamic astrocytes play a critical role in the regulation and support of many different neuroendocrine events, and are affected by oestradiol. Both nuclear and membrane oestrogen receptors (ERs) are expressed in astrocytes. Upon oestradiol activation, membrane-associated ER signals through the type 1a metabotropic glutamate receptor (mGluR1a) to induce an increase of free cytoplasmic calcium concentration ([Ca(2+)](i)). Because the expression of oxytocin receptors (OTRs) is modulated by oestradiol, we tested whether oestradiol also influences oxytocin signalling. Oxytocin at 1, 10, and 100 nm induced a [Ca(2+)](i) flux measured as a change in relative fluorescence [DeltaF Ca(2+) = 330 +/- 17 relative fluorescent units (RFU), DeltaF Ca(2+) = 331 +/- 22 RFU, and DeltaF Ca(2+) = 347 +/- 13 RFU, respectively] in primary cultures of female post-pubertal hypothalamic astrocytes. Interestingly, OTRs interacted with mGluRs. The mGluR1a antagonist, LY 367385 (20 nm), blocked the oxytocin (1 nm)-induced [Ca(2+)](i) flux (DeltaF Ca(2+) = 344 +/- 19 versus 127 +/- 11 RFU, P < 0.001). Conversely, the mGluR1a receptor agonist, (RS)-3,5-dihydroxyphenyl-glycine (100 nm), increased the oxytocin (1 nm)-induced [Ca(2+)](i) response (DeltaF Ca(2+) = 670 +/- 31 RFU) compared to either compound alone (P < 0.001). Because both oxytocin and oestradiol rapidly signal through the mGluR1a, we treated hypothalamic astrocytes sequentially with oxytocin and oestradiol to determine whether stimulation with one hormone affected the subsequent [Ca(2+)](i) response to the second hormone. Oestradiol treatment did not change the subsequent [Ca(2+)](i) flux to oxytocin (P > 0.05) and previous oxytocin exposure did not affect the [Ca(2+)](i) response to oestradiol (P > 0.05). Furthermore, simultaneous oestradiol and oxytocin stimulation failed to yield a synergistic [Ca(2+)](i) response. These results suggest that the OTR signals through the mGluR1a to release Ca(2+) from intracellular stores and

  6. Extraversion. Interaction between D2 dopamine receptor polymorphisms and parental alcoholism.

    PubMed

    Ozkaragoz, T; Noble, E P

    2000-11-01

    Both molecular genetic factors (the D2 dopamine receptor (DRD2) and the D4 dopamine receptor (DRD4) polymorphisms) and environmental influences of living in an alcoholic or nonalcoholic home on the personality traits of Extraversion and Neuroticism were assessed in drug-naive, young adolescent boys. There were no significant main effects of genetic or environmental factors on either Neuroticism or Extraversion as measured by the Junior Eysenck Personality Inventory (JEPI). However, a significant interaction between DRD2 (but not DRD4) alleles and environmental variables was observed on Extraversion. Specifically, children with the minor alleles of the DRD2 gene showed a significantly greater Extraversion score when living in an alcoholic than in a nonalcoholic home. In contrast, children with the major alleles of the DRD2 gene showed a trend in the opposite direction. Although the results are preliminary and pending replication, they nevertheless provide the first report of a specific gene-environment interaction involving a human personality trait.

  7. Epidermal growth factor and its receptors in human pancreatic carcinoma

    SciTech Connect

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N. )

    1990-05-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells.

  8. Influence of domain interactions on conformational mobility of the progesterone receptor detected by hydrogen/deuterium exchange mass spectrometry

    PubMed Central

    Goswami, Devrishi; Callaway, Celetta; Pascal, Bruce D.; Kumar, Raj; Edwards, Dean P.; Griffin, Patrick R.

    2015-01-01

    Structural and functional details of the N-terminal activation function 1 (AF1) of most nuclear receptors are poorly understood due to the highly dynamic intrinsically disordered nature of this domain. A hydrogen/deuterium exchange (HDX) mass spectrometry based investigation of TATA box binding protein (TBP) interaction with various domains of progesterone receptor (PR) demonstrate that agonist bound PR interaction with TBP via AF1 impacts the mobility of the C-terminal AF2. Results from HDX and other biophysical studies involving agonist and antagonist bound full length PR and isolated PR domains reveals the molecular mechanism underlying synergistic transcriptional activation mediated by AF1 and AF2, dominance of PR-B isoform over PR-A, and the necessity of AF2 for full AF1-mediated transcriptional activity. These results provide a comprehensive picture elaborating the underlying mechanism of PR-TBP interactions as a model for studying NR-transcription factor functional interactions. PMID:24909783

  9. Generation of monoclonal antibody targeting fibroblast growth factor receptor 3.

    PubMed

    Gorbenko, Olena; Ovcharenko, Galyna; Klymenko, Tetyana; Zhyvoloup, Olexandr; Gaman, Nadia; Volkova, Darija; Gout, Ivan; Filonenko, Valeriy

    2009-08-01

    Fibroblast growth factor receptor 3 (FGFR3) is a member of the FGFR family of receptor tyrosine kinases, whose function has been implicated in diverse biological processes, including cell proliferation, differentiation, survival, and tumorigenesis. Deregulation of FGFR3 signaling has been implicated with human pathologies, including cancer. Activating mutations in FGFR3 gene are frequently detected in bladder cancer, multiple myeloma, and noninvasive papillary urothelial cell carcinomas, while the overexpression of the receptor is observed in thyroid lymphoma and bladder cancer. The main aim of this study was to generate hybridoma clones producing antibody that could specifically recognize FGFR3/S249C mutant, but not the wild-type FGFR. To achieve this, we used for immunization bacterially expressed fragment of FGFR3 corresponding to loops II-III of the extracellular domain (GST-His/FGFR3/S249C-LII-III), which possesses oncogenic mutation at Ser249 detected in at least 50% of bladder cancers. Primary ELISA screening allowed us to isolate several hybridoma clones that showed specificity towards FGFR3/S249C, but not FGFR3wt protein. Unfortunately, these clones were not stable during single-cell cloning and expansion and lost the ability to recognize specifically FGFR3/S249C. However, this study allowed us to generate several monoclonal antibodies specific towards both FGFR3wt and FGFR3/S249C recombinant proteins. Produced hybridomas secreted MAbs that were specific in Western blotting towards bacterially expressed FGFR3wt and FGFR3/S249C, as well as the full-length receptors ectopically expressed in Sf21 and HEK293 cells. Moreover, transiently expressed wild-type and oncogenic forms of FGFR were efficiently immunoprecipitated with selected antibodies from the lysates of infected Sf21 and transiently transfected HEK293. In summary, generated antibodies should be useful as tools for examining the expression pattern and biological functions of FGFR3 in normal and

  10. Prothymosin Alpha Selectively Enhances Estrogen Receptor Transcriptional Activity by Interacting with a Repressor of Estrogen Receptor Activity

    PubMed Central

    Martini, Paolo G. V.; Delage-Mourroux, Regis; Kraichely, Dennis M.; Katzenellenbogen, Benita S.

    2000-01-01

    We find that prothymosin alpha (PTα) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTα interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTα, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTα increases the magnitude of ERα transcriptional activity three- to fourfold. It shows lesser enhancement of ERβ transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTα or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTα (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTα or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTα, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTα to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain its ability to selectively enhance

  11. Coregulation of Epidermal Growth Factor Receptor/Human Epidermal Growth Factor Receptor 2 (HER2) Levels and Locations: Quantitative Analysis of HER2 Overexpression Effects

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee; Wiley, H. S.; Lauffenburger, Douglas A.

    2003-03-01

    Elevated expression of human epidermal growth factor receptor 2 (HER2) is know to alter cell signalilng and behavioral responses implicated in tumor progression. However, multiple diverse mechanisms may be involved in these overall effects, including signaling by HER2 itself, modulation of signalilng by epidermal growth factor receptor (EGFR) and modification of trafficking dynamics for both EGFR and HER2. Continued....

  12. Heterodimeric interaction between retinoid X receptor alpha and orphan nuclear receptor OR1 reveals dimerization-induced activation as a novel mechanism of nuclear receptor activation.

    PubMed Central

    Wiebel, F F; Gustafsson, J A

    1997-01-01

    OR1 is a member of the steroid/thyroid hormone nuclear receptor superfamily which has been described to mediate transcriptional responses to retinoids and oxysterols. On a DR4 response element, an OR1 heterodimer with the nuclear receptor retinoid X receptor alpha (RXR alpha) has been described to convey transcriptional activation in both the absence and presence of the RXR ligand 9-cis retinoic acid, the mechanisms of which have remained unclear. Here, we dissect the effects of RXR alpha and OR1 ligand-binding domain interaction on transcriptional regulation and the role of the respective carboxy-terminal activation domains (AF-2s) in the absence and presence of the RXR ligand, employing chimeras of the nuclear receptors containing the heterologous GAL4 DNA-binding domain as well as natural receptors. The results show that the interaction of the RXR and OR1 ligand-binding domains unleashes a transcription activation potential that is mainly dependent on the AF-2 of OR1, indicating that interaction with RXR activates OR1. This defines dimerization-induced activation as a novel function of heterodimeric interaction and mechanism of receptor activation not previously described for nuclear receptors. Moreover, we present evidence that activation of OR1 occurs by a conformational change induced upon heterodimerization with RXR. PMID:9199332

  13. Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein.

    PubMed

    Lezcano, N; Mrzljak, L; Eubanks, S; Levenson, R; Goldman-Rakic, P; Bergson, C

    2000-03-03

    The synergistic response of cells to the stimulation of multiple receptors has been ascribed to receptor cross talk; however, the specific molecules that mediate the resultant signal amplification have not been defined. Here a 24-kilodalton single transmembrane protein, designated calcyon, we functionally characterize that interacts with the D1 dopamine receptor. Calcyon localizes to dendritic spines of D1 receptor-expressing pyramidal cells in prefrontal cortex. These studies delineate a mechanism of Gq- and Gs-coupled heterotrimeric GTP-binding protein-coupled receptor cross talk by which D1 receptors can shift effector coupling to stimulate robust intracellular calcium (Ca2+i) release as a result of interaction with calcyon. The role of calcyon in potentiating Ca2+-dependent signaling should provide insight into the D1 receptor-modulated cognitive functions of prefrontal cortex.

  14. Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases.

    PubMed

    Bocharov, Eduard V; Sharonov, Georgy V; Bocharova, Olga V; Pavlov, Konstantin V

    2017-01-25

    Among membrane receptors, the single-span receptor protein kinases occupy a broad but specific functional niche determined by distinctive features of the underlying transmembrane signaling mechanisms that are briefly overviewed on the basis of some of the most representative examples, followed by a more detailed discussion of several hierarchical levels of organization and interactions involved. All these levels, including single-molecule interactions (e.g., dimerization, liganding, chemical modifications), local processes (e.g. lipid membrane perturbations, cytoskeletal interactions), and larger scale phenomena (e.g., effects of membrane surface shape or electrochemical potential gradients) appear to be closely integrated to achieve the observed diversity of the receptor functioning. Different species of receptor protein kinases meet their specific functional demands through different structural features defining their responses to stimulation, but certain common patterns exist. Signaling by receptor protein kinases is typically associated with the receptor dimerization and clustering, ligand-induced rearrangements of receptor domains through allosteric conformational transitions with involvement of lipids, release of the sequestered lipids, restriction of receptor diffusion, cytoskeleton and membrane shape remodeling. Understanding of complexity and continuity of the signaling processes can help identifying currently neglected opportunities for influencing the receptor signaling with potential therapeutic implications. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.

  15. EGF receptor-ligand interaction generates extracellular hydrogen peroxide that inhibits EGFR-associated protein tyrosine phosphatases.

    PubMed

    DeYulia, Garrett J; Cárcamo, Juan M

    2005-08-19

    Hydrogen peroxide (H(2)O(2)) has been shown to be an important modulator of intracellular phosphatase activity involved in cell signaling pathways, including signaling by members of the receptor tyrosine kinase family of receptors such as the epidermal growth factor receptor (EGFR). Intracellular H(2)O(2) can be generated by mitochondria-dependent pathways, whereas we recently showed that H(2)O(2) could be generated extracellularly by receptor-ligand interaction. Here, we show that H(2)O(2) produced by EGF-EGFR interaction can modulate the activity of intracellular protein tyrosine phosphatases (PTPs). Using purified proteins, we found that EGFR-ligand interaction generates H(2)O(2) that is capable of inhibiting the activity of PTP1B in vitro. Furthermore, the addition of catalase rescued phosphatase inhibition consequent to EGF-EGFR interaction. Using cells that overexpress EGFR, we found that the addition of extracellular catalase prevented EGF-induced inhibition of EGFR-associated phosphatase activity. Our findings suggest that extracellular H(2)O(2) generated by EGFR-ligand interaction permeates the plasma membrane and inhibits EGFR-associated tyrosine phosphatase activity, thereby modulating downstream signal transduction pathways.

  16. Muscarinic acetylcholine receptor-interacting proteins (mAChRIPs): targeting the receptorsome.

    PubMed

    Borroto-Escuela, D O; Agnati, Luigi F; Fuxe, Kjell; Ciruela, F

    2012-01-01

    Muscarinic acetylcholine receptors comprise a large family of G protein-coupled receptors that are involved in the regulation of many important functions of the central and peripheral nervous system. To achieve such a large range of physiological effects, these receptors interact with a large array of accessory proteins including scaffold molecules, ion channels and enzymes that operate as molecular transducers of muscarinic function in addition to the canonical heterotrimeric G proteins. Interestingly, as demonstrated for others G protein-coupled receptors, this type of receptor is also able to oligomerise, a fact that has been shown to play a critical role in their subcellular distribution, trafficking, and fine tuning of cholinergic signalling. On the other hand, the specificity of these receptor interactions may be largely determined by the occurrence of precise protein-interacting motifs, posttranslational modifications, and the differential tissue distribution and stoichiometry of the receptor-interacting proteins. Thus, the exhaustive cataloguing and documentation of muscarinic acetylcholine receptor-interacting proteins and the grasp of their specific function will explain key physiological differences in muscarinic-mediated cholinergic transmission. Overall, a better comprehension of the muscarinic receptor interactome will have a significant impact on the cholinergic pharmacology and thus provide previously unrealised opportunities to achieve greater specificity in muscarinic-related drug discovery and diagnostics.

  17. Polychlorinated Biphenyls Disrupt Hepatic Epidermal Growth Factor Receptor Signaling.

    PubMed

    Hardesty, Josiah E; Wahlang, Banrida; Falkner, K Cameron; Clair, Heather B; Clark, Barbara J; Ceresa, Brian P; Prough, Russell A; Cave, Matthew C

    2016-07-26

    1. Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that disrupt hepatic xenobiotic and intermediary metabolism, leading to metabolic syndrome and nonalcoholic steatohepatitis (NASH). 2. Since phenobarbital indirectly activates Constitutive Androstane Receptor (CAR) by antagonizing growth factor binding to the epidermal growth factor receptor (EGFR), we hypothesised that PCBs may also diminish EGFR signaling. 3. The effects of the PCB mixture Aroclor 1260 on the protein phosphorylation cascade triggered by EGFR activation were determined in murine (in vitro and in vivo) and human models (in vitro). EGFR tyrosine residue phosphorylation was decreased by PCBs in all models tested. 4. The IC50 values for Aroclor 1260 concentrations that decreased Y1173 phosphorylation of EGFR were similar in murine AML-12 and human HepG2 cells (∼2-4 μg/mL). Both dioxin and non-dioxin-like PCB congeners decreased EGFR phosphorylation in cell culture. 5. PCB treatment reduced phosphorylation of downstream EGFR effectors including Akt and mTOR, as well as other phosphoprotein targets including STAT3 and c-RAF in vivo. 6. PCBs diminish EGFR signaling in human and murine hepatocyte models and may dysregulate critical phosphoprotein regulators of energy metabolism and nutrition, providing a new mechanism of action in environmental diseases.

  18. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-08-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  19. Gastrin and D1 dopamine receptor interact to induce natriuresis and diuresis.

    PubMed

    Chen, Yue; Asico, Laureano D; Zheng, Shuo; Villar, Van Anthony M; He, Duofen; Zhou, Lin; Zeng, Chunyu; Jose, Pedro A

    2013-11-01

    Oral NaCl produces a greater natriuresis and diuresis than the intravenous infusion of the same amount of NaCl. Gastrin is the major gastrointestinal hormone taken up by renal proximal tubule (RPT) cells. We hypothesized that renal gastrin and dopamine receptors interact to synergistically increase sodium excretion, an impaired interaction of which may be involved in the pathogenesis of hypertension. In Wistar-Kyoto rats, infusion of gastrin induced natriuresis and diuresis, which was abrogated in the presence of a gastrin (cholecystokinin B receptor [CCKBR]; CI-988) or a D1-like receptor antagonist (SCH23390). Similarly, the natriuretic and diuretic effects of fenoldopam, a D1-like receptor agonist, were blocked by SCH23390, as well as by CI-988. However, the natriuretic effects of gastrin and fenoldopam were not observed in spontaneously hypertensive rats. The gastrin/D1-like receptor interaction was also confirmed in RPT cells. In RPT cells from Wistar-Kyoto but not spontaneously hypertensive rats, stimulation of either D1-like receptor or gastrin receptor inhibited Na(+)-K(+)-ATPase activity, an effect that was blocked in the presence of SCH23390 or CI-988. In RPT cells from Wistar-Kyoto and spontaneously hypertensive rats, CCKBR and D1 receptor coimmunoprecipitated, which was increased after stimulation of either D1 receptor or CCKBR in RPT cells from Wistar-Kyoto rats; stimulation of one receptor increased the RPT cell membrane expression of the other receptor, effects that were not observed in spontaneously hypertensive rats. These data suggest that there is a synergism between CCKBR and D1-like receptors to increase sodium excretion. An aberrant interaction between the renal CCK BR and D1-like receptors (eg, D1 receptor) may play a role in the pathogenesis of hypertension.

  20. Diversity and Bias through Receptor-Receptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization.

    PubMed

    Fuxe, Kjell; Tarakanov, Alexander; Romero Fernandez, Wilber; Ferraro, Luca; Tanganelli, Sergio; Filip, Malgorzata; Agnati, Luigi F; Garriga, Pere; Diaz-Cabiale, Zaida; Borroto-Escuela, Dasiel O

    2014-01-01

    Allosteric receptor-receptor interactions in GPCR heteromers appeared to introduce an intermolecular allosteric mechanism contributing to the diversity and bias in the protomers. Examples of dopamine D2R heteromerization are given to show how such allosteric mechanisms significantly change the receptor protomer repertoire leading to diversity and biased recognition and signaling. In 1980s and 1990s, it was shown that neurotensin (NT) through selective antagonistic NTR-D2 like receptor interactions increased the diversity of DA signaling by reducing D2R-mediated dopamine signaling over D1R-mediated dopamine signaling. Furthermore, D2R protomer appeared to bias the specificity of the NTR orthosteric binding site toward neuromedin N vs. NT in the heteroreceptor complex. Complex CCK2R-D1R-D2R interactions in possible heteroreceptor complexes were also demonstrated further increasing receptor diversity. In D2R-5-HT2AR heteroreceptor complexes, the hallucinogenic 5-HT2AR agonists LSD and DOI were recently found to exert a biased agonist action on the orthosteric site of the 5-HT2AR protomer leading to the development of an active conformational state different from the one produced by 5-HT. Furthermore, as recently demonstrated allosteric A2A-D2R receptor-receptor interaction brought about not only a reduced affinity of the D2R agonist binding site but also a biased modulation of the D2R protomer signaling in A2A-D2R heteroreceptor complexes. A conformational state of the D2R was induced, which moved away from Gi/o signaling and instead favored β-arrestin2-mediated signaling. These examples on allosteric receptor-receptor interactions obtained over several decades serve to illustrate the significant increase in diversity and biased recognition and signaling that develop through such mechanisms.

  1. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain.

    PubMed Central

    Toran-Allerand, C D; Miranda, R C; Bentham, W D; Sohrabji, F; Brown, T J; Hochberg, R B; MacLusky, N J

    1992-01-01

    The rodent and primate basal forebrain is a target of a family of endogenous peptide signaling molecules, the neurotrophins--nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3--and of the gonadal steroid hormone estrogen, both of which have been implicated in cholinergic function. To investigate whether or not these ligands may act on the same neurons in the developing and adult rodent basal forebrain, we combined autoradiography with 125I-labeled estrogen and either nonisotopic in situ hybridization histochemistry or immunohistochemistry. We now report colocalization of intranuclear estrogen binding sites with the mRNA and immunoreactive protein for the low-affinity nerve growth factor receptor, which binds all three neurotrophins, and for the cholinergic marker enzyme choline acetyltransferase (acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6). Colocalization of estrogen and low-affinity nerve growth factor receptors implies that their ligands may act on the same neuron, perhaps synergistically, to regulate the expression of specific genes or gene networks that may influence neuronal survival, differentiation, regeneration, and plasticity. That cholinergic neurons in brain regions subserving cognitive functions may be regulated not only by the neurotrophins but also by estrogen may have considerable relevance for the development and maintenance of neural substrates of cognition. If estrogen-neurotrophin interactions are important for survival of target neurons, then clinical conditions associated with estrogen deficiency could contribute to the atrophy or death of these neurons. These findings have implications for the subsequent decline in those differentiated neural functions associated with aging and Alzheimer disease. Images PMID:1316615

  2. Mutation of proline-1003 to glycine in the epidermal growth factor (EGF) receptor enhances responsiveness to EGF.

    PubMed Central

    Schuh, S M; Newberry, E P; Dalton, M A; Pike, L J

    1994-01-01

    We have shown previously that the epidermal growth factor (EGF) receptor is phosphorylated at Ser-1002 and that this phosphorylation is associated with desensitization of the EGF receptor. Ser-1002 is followed immediately by Pro-1003, a residue that may promote the adoption of a specific conformation at this site or severe as a recognition element for the interaction of the EGF receptor with other proteins. To examine these possibilities, we have mutated Pro-1003 of the EGF receptor to a Gly residue and have analyzed the effect of this mutation on EGF-stimulated signaling. Cells expressing the P1003G EGF receptors exhibited higher EGF-stimulated autophosphorylation and synthetic peptide phosphorylation compared to cells expressing wild-type EGF receptors. In addition, the ability of EGF to stimulate PI 3-kinase activity and mitogen-activated protein kinase activity was enhanced in cells expressing the P1003G EGF receptor. Cells expressing P1003G receptors also demonstrated an increased ability to form colonies in soft agar in response to EGF. These results indicate that mutation of Pro-1003 leads to a potentiation of the biological effects of EGF. The findings are consistent with the hypothesis that Pro-1003 plays a role in a form of regulation that normally suppresses EGF receptor function. Images PMID:7812043

  3. The cytokines cardiotrophin-like cytokine/cytokine-like factor-1 (CLC/CLF) and ciliary neurotrophic factor (CNTF) differ in their receptor specificities.

    PubMed

    Tormo, Aurélie Jeanne; Letellier, Marie-Claude; Lissilaa, Rami; Batraville, Laurie-Anne; Sharma, Mukut; Ferlin, Walter; Elson, Greg; Crabé, Sandrine; Gauchat, Jean-François

    2012-12-01

    Ciliary neurotrophic factor (CNTF) and cardiotrophin-like cytokine (CLC) are two cytokines with neurotrophic and immunomodulatory activities. CNTF is a cytoplasmic factor believed to be released upon cellular damage, while CLC requires interaction with a soluble cytokine receptor, cytokine-like factor 1 (CLF), to be efficiently secreted. Both cytokines activate a receptor complex comprising the cytokine binding CNTF receptor α (CNTFRα) and two signaling chains namely, leukemia inhibitory factor receptor β (LIFRβ) and gp130. Human CNTF can recruit and activate an alternative receptor in which CNTFRα is substituted by IL-6Rα. As both CNTF and CLC have immune-regulatory activities in mice, we compared their ability to recruit mouse receptors comprising both gp130 and LIFRβ signaling chains and either IL-6Rα or IL-11Rα which, unlike CNTFRα, are expressed by immune cells. Our results indicate that 1) mouse CNTF, like its human homologue, can activate cells expressing gp130/LIFRβ with either CNTFRα or IL-6Rα and, 2) CLC/CLF is more restricted in its specificity in that it activates only the tripartite CNTFR. Several gp130 signaling cytokines influence T helper cell differentiation. We therefore investigated the effect of CNTF on CD4 T cell cytokine production. We observed that CNTF increased the number of IFN-γ producing CD4 T cells. As IFN-γ is considered a mediator of the therapeutic effect of IFN-β in multiple sclerosis, induction of IFN-γ by CNTF may contribute to the beneficial immunomodulatory effect of CNTF in mouse multiple sclerosis models. Together, our results indicate that CNTF activates the same tripartite receptors in mouse and human cells and further validate rodent models for pre-clinical investigation of CNTF and CNTF derivatives. Furthermore, CNTF and CLC/CLF differ in their receptor specificities. The receptor α chain involved in the immunomodulatory effects of CLC/CLF remains to be identified.

  4. Structure and function of the type 1 insulin-like growth factor receptor.

    PubMed

    Adams, T E; Epa, V C; Garrett, T P; Ward, C W

    2000-07-01

    The type 1 insulin-like growth factor receptor (IGF-1R), a transmembrane tyrosine kinase, is widely expressed across many cell types in foetal and postnatal tissues. Activation of the receptor following binding of the secreted growth factor ligands IGF-1 and IGF-2 elicits a repertoire of cellular responses including proliferation, and the protection of cells from programmed cell death or apoptosis. As a result, signalling through the IGF-1R is the principal pathway responsible for somatic growth in foetal mammals, whereas somatic growth in postnatal animals is achieved through the synergistic interaction of growth hormone and the IGFs. Forced overexpression of the IGF-1R results in the malignant transformation of cultured cells: conversely, downregulation of IGF-1R levels can reverse the transformed phenotype of tumour cells, and may render them sensitive to apoptosis in vivo. Elevated levels of IGF-IR are observed in a variety of human tumour types, whereas epidemiological studies implicate the IGF-1 axis as a predisposing factor in the pathogenesis of human breast and prostate cancer. The IGF-1R has thus emerged as a therapeutic target for the development of antitumour agents. Recent progress towards the elucidation of the three-dimensional structure of the extracellular domain of the IGF-1R represents an opportunity for the rational assembly of small molecule antagonists of receptor function for clinical use.

  5. Cellular interactions uncouple beta-adrenergic receptors from adenylate cyclase.

    PubMed

    Ciment, G; de Vellis, J

    1978-11-17

    C6 glioma cells and B104 neuroblastoma cells both possess adenylate cyclase activity, but only C6 cells have beta-adrenergic receptors. However, when cocultured with B104 cells, C6 cells show a marked decrease in their ability to accumulate adenosine 3', 5'-monophosphate upon stimulation with beta receptor agonists. Since both beta receptors and cholera toxin-stimulated adenylate cyclase activities are present in C6/B104 cocultures, we conclude that the beta receptor/adenylate cyclase transduction mechanism in cocultured C6 cells is uncoupled.

  6. Phospholipase C-epsilon augments epidermal growth factor-dependent cell growth by inhibiting epidermal growth factor receptor down-regulation.

    PubMed

    Yun, Sanguk; Hong, Won-Pyo; Choi, Jang Hyun; Yi, Kye Sook; Chae, Suhn-Kee; Ryu, Sung Ho; Suh, Pann-Ghill

    2008-01-04

    The down-regulation of the epidermal growth factor (EGF) receptor is critical for the termination of EGF-dependent signaling, and the dysregulation of this process can lead to oncogenesis. In the present study, we suggest a novel mechanism for the regulation of EGF receptor down-regulation by phospholipase C-epsilon. The overexpression of PLC-epsilon led to an increase in receptor recycling and decreased the down-regulation of the EGF receptor in COS-7 cells. Adaptor protein complex 2 (AP2) was identified as a novel binding protein that associates with the PLC-epsilon RA2 domain independently of Ras. The interaction of PLC-epsilon with AP2 was responsible for the suppression of EGF receptor down-regulation, since a perturbation in this interaction abolished this effect. Enhanced EGF receptor stability by PLC-epsilon led to the potentiation of EGF-dependent growth in COS-7 cells. Finally, the knockdown of PLC-epsilon in mouse embryo fibroblast cells elicited a severe defect in EGF-dependent growth. Our results indicated that PLC-epsilon could promote EGF-dependent cell growth by suppressing receptor down-regulation.

  7. Tamoxifen Dependent Interaction Between the Estrogen Receptor and a Novel P21 Activated Kinase

    DTIC Science & Technology

    2002-06-01

    AD Award Number: DAMDl7-01-1-0149 TITLE: Tamoxifen Dependent Interaction Between the Estrogen Receptor and a Novel P21 Activated Kinase PRINCIPAL...Tamoxifen Dependent Interaction Between the DAMD17-00-1-0114 Estrogen Receptor and a Novel P21 Activated Kinase 6. AUTHOR(S) Steven P. Balk, M.D., Ph.D. 7...Z, Karas RH, nisms of androgen receptor activation and function. J Mendelsohn ME, Shaul PW 1999 Estrogen receptor a Steroid Biochem Mol Biol 69:307

  8. Results With Accelerated Partial Breast Irradiation in Terms of Estrogen Receptor, Progesterone Receptor, and Human Growth Factor Receptor 2 Status

    SciTech Connect

    Wilder, Richard B.; Curcio, Lisa D.; Khanijou, Rajesh K.; Eisner, Martin E.; Kakkis, Jane L.; Chittenden, Lucy; Agustin, Jeffrey; Lizarde, Jessica; Mesa, Albert V.; Macedo, Jorge C.; Ravera, John; Tokita, Kenneth M.

    2010-11-01

    Purpose: To report our results with accelerated partial breast irradiation (APBI) in terms of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2/neu) status. Methods and Materials: Between February 2003 and June 2009, 209 women with early-stage breast carcinomas were treated with APBI using multicatheter, MammoSite, or Contura brachytherapy to 34 Gy in 10 fractions twice daily over 5-7 days. Three patient groups were defined by receptor status: Group 1: ER or PR (+) and HER-2/neu (-) (n = 180), Group 2: ER and PR (-) and HER-2/neu (+) (n = 10), and Group 3: ER, PR, and HER-2/neu (-) (triple negative breast cancer, n = 19). Median follow-up was 22 months. Results: Group 3 patients had significantly higher Scarff-Bloom-Richardson scores (p < 0.001). The 3-year ipsilateral breast tumor control rates for Groups 1, 2, and 3 were 99%, 100%, and 100%, respectively (p = 0.15). Group 3 patients tended to experience relapse in distant sites earlier than did non-Group 3 patients. The 3-year relapse-free survival rates for Groups 1, 2, and 3 were 100%, 100%, and 81%, respectively (p = 0.046). The 3-year cause-specific and overall survival rates for Groups 1, 2, and 3 were 100%, 100%, and 89%, respectively (p = 0.002). Conclusions: Triple negative breast cancer patients typically have high-grade tumors with significantly worse relapse-free, cause-specific, and overall survival. Longer follow-up will help to determine whether these patients also have a higher risk of ipsilateral breast tumor relapse.

  9. Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy.

    PubMed

    Peckys, Diana B; Baudoin, Jean-Pierre; Eder, Magdalena; Werner, Ulf; de Jonge, Niels

    2013-01-01

    Imaging single epidermal growth factor receptors (EGFR) in intact cells is presently limited by the available microscopy methods. Environmental scanning electron microscopy (ESEM) of whole cells in hydrated state in combination with specific labeling with gold nanoparticles was used to localize activated EGFRs in the plasma membranes of COS7 and A549 cells. The use of a scanning transmission electron microscopy (STEM) detector yielded a spatial resolution of 3 nm, sufficient to identify the locations of individual EGFR dimer subunits. The sizes and distribution of dimers and higher order clusters of EGFRs were determined. The distance between labels bound to dimers amounted to 19 nm, consistent with a molecular model. A fraction of the EGFRs was found in higher order clusters with sizes ranging from 32-56 nm. ESEM can be used for quantitative whole cell screening studies of membrane receptors, and for the study of nanoparticle-cell interactions in general.

  10. Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models

    PubMed Central

    Toscani, Andrés Martín; Sampayo, Rocío G.; Barabas, Federico Martín; Fuentes, Federico; Simian, Marina

    2017-01-01

    ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ErbB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ErbB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ErbB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ErbB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ErbB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ErbB2: a major population located in large clusters and a minor population outside these structures. Upon ErbB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ErbB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ErbB2 and beta1 integrin activity in breast cancer cells. PMID:28306722

  11. Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models.

    PubMed

    Toscani, Andrés Martín; Sampayo, Rocío G; Barabas, Federico Martín; Fuentes, Federico; Simian, Marina; Coluccio Leskow, Federico

    2017-01-01

    ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ErbB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ErbB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ErbB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ErbB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ErbB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ErbB2: a major population located in large clusters and a minor population outside these structures. Upon ErbB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ErbB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ErbB2 and beta1 integrin activity in breast cancer cells.

  12. Nicotine enhancement and reinforcer devaluation: Interaction with opioid receptors.

    PubMed

    Kirshenbaum, Ari P; Suhaka, Jesse A; Phillips, Jessie L; Voltolini de Souza Pinto, Maiary

    In rats, nicotine enhances responding maintained by non-pharmacological reinforcers, and discontinuation of nicotine devalues those same reinforcers. The goal of this study was to assess the interaction of nicotine and opioid receptors and to evaluate the degree to which nicotine enhancement and nicotine-induced devaluation are related to opioid activation. Nicotine (0.4mg/kg), or nicotine plus naloxone (0.3 or 3.0mg/kg), was delivered to rats prior to progressive ratio (PR) schedule sessions in which sucrose was used as a reinforcer. PR-schedule responding was assessed during ten daily sessions of drug delivery, and for three post-dosing days/sessions. Control groups for this investigation included a saline-only condition, and naloxone-only (0.3 or 3.0mg/kg) conditions. When administered in conjunction with nicotine, both naloxone doses attenuated nicotine enhancement of the sucrose reinforcer, and the combination of the larger dose of naloxone (3.0mg/kg) with nicotine produced significant impairments in sucrose reinforced responding. When administered alone, neither dose of naloxone (0.3 & 3.0mg/kg) significantly altered responding in comparison to saline. Furthermore, when dosing was discontinued after ten once-daily doses, all nicotine groups (nicotine-only and nicotine+naloxone combination) demonstrated significant decreases in sucrose reinforcement compared to the saline group. Although opioid antagonism attenuated reinforcement enhancement by nicotine, it did not prevent reinforcer devaluation upon discontinuation of nicotine dosing, and the higher dose of naloxone (3.0mg/kg) produced decrements upon discontinuation on its own in the absence of nicotine.

  13. Effective Factors in Interactions within Japanese EFL Classrooms

    ERIC Educational Resources Information Center

    Maftoon, Parviz; Ziafar, Meisam

    2013-01-01

    Classroom interactional patterns depend on some contextual, cultural and local factors in addition to the methodologies employed in the classroom. In order to delineate such factors, the focus of classroom interaction research needs to shift from the observables to the unobservables like teachers' and learners' psychological states and cultural…

  14. Surface Plasmon Resonance Study of Cooperative Interactions of Estrogen Receptor α and Specificity Protein 1 with Composite DNA Elements.

    PubMed

    Su, Xiaodi; Song, Hong Yan

    2016-01-01

    Estrogen receptor α (ERα) and Specificity protein 1 (Sp1) are transcription factors (TF) that are involved in regulating progesterone receptor (PR) gene expression through cooperative interactions with DNA. The natural composite DNA +571 ERE/Sp1 site in promoter A of the progesterone receptor contains a half-site of estrogen response elements (½ERE) upstream of two Sp1 binding sites (the proximal Sp1 (Sp1/P) and distal Sp1 (Sp1/D)) with a 4 bp spacer. Here, we have developed a protocol for studying the cooperative interaction of Sp1 and ERα with the composite DNA of +571 ERE/Sp1 site using Biacore T200, a high sensitivity surface plasmon resonance spectroscopy. With this protocol, we have concluded that Sp1 binding enhances the overall ERα binding to the composite DNA. We have also determined the optimal spacer distance between the ½ERE and Sp1/D for the best cooperative protein binding. This study is pivotal in guiding the bioinformatics simulation to yield an exact model of the spacer dependency of the transcription factor/cofactor-DNA interactions, which is important for understanding the nuclear receptor regulating activity through other coactivators.

  15. Epidermal growth factor receptor degradation: an alternative view of oncogenic pathways.

    PubMed

    Kirisits, Andreas; Pils, Dietmar; Krainer, Michael

    2007-01-01

    Positive regulation of epidermal growth factor receptor signalling is related to many human malignancies. Besides overexpression and gain of function mutations, the escape from negative regulation through an increase in epidermal growth factor receptor stability has evolved as yet another key factor contributing to enhanced receptor activity. Intensive research over the past years has provided considerable evidence concerning the molecular mechanisms which provide epidermal growth factor receptor degradation. c-Cbl mediated ubiquitination, endocytosis via clathrin-coated pits, endosomal sorting and lysosomal degradation have become well-investigated cornerstones. Recent findings on the interdependency of the endosomal sorting complexes required for transport in multivesicular body sorting, stress the topicality of receptor tyrosine kinase downregulation. Here, we review the degradation pathway of the epidermal growth factor receptor, following the receptor from ligand binding to the lysosome and illustrating different modes of oncogenic deregulation.

  16. Neuroendocrine factors regulate retinoic acid receptors in normal and hypoplastic lung development

    PubMed Central

    Pereira-Terra, Patrícia; Moura, Rute S; Nogueira-Silva, Cristina; Correia-Pinto, Jorge

    2015-01-01

    Congenital diaphragmatic hernia (CDH) is characterised by a spectrum of lung hypoplasia and consequent pulmonary hypertension, leading to high morbidity and mortality rates. Moreover, CDH has been associated with an increase in the levels of pulmonary neuroendocrine factors, such as bombesin and ghrelin, and a decrease in the action of retinoic acid (RA). The present study aimed to elucidate the interaction between neuroendocrine factors and RA. In vitro analyses were performed on Sprague–Dawley rat embryos. Normal lung explants were treated with bombesin, ghrelin, a bombesin antagonist, a ghrelin antagonist, dimethylsulfoxide (DMSO), RA dissolved in DMSO, bombesin plus RA and ghrelin plus RA. Hypoplastic lung explants (nitrofen model) were cultured with bombesin, ghrelin, bombesin antagonist or ghrelin antagonist. The lung explants were analysed morphometrically, and retinoic acid receptor (RAR) α, β and γ expression levels were assessed via Western blotting. Immunohistochemistry analysis of RAR was performed in normal and hypoplastic lungs 17.5 days post-conception (dpc). Compared with the controls, hypoplastic lungs exhibited significantly higher RARα/γ expression levels. Furthermore considering hypoplastic lungs, bombesin and ghrelin antagonists decreased RARα/γ expression. Normal lung explants (13.5 dpc) treated with RA, bombesin plus RA, ghrelin plus RA, bombesin or ghrelin exhibited increased lung growth. Moreover, bombesin and ghrelin increased RARα/γ expression levels, whereas the bombesin and ghrelin antagonists decreased RARα/γ expression. This study demonstrates for the first time that neuroendocrine factors function as lung growth regulators, sensitising the lung to the action of RA through up-regulation of RARα and RARγ. Key points Retinoic acid (RA) and ghrelin levels are altered in human hypoplastic lungs when compared to healthy lungs. Although considerable data have been obtained about RA, ghrelin and bombesin in the congenital

  17. Hydrodynamic effects and receptor interactions of platelets and their aggregates in linear shear flow.

    PubMed Central

    Tandon, P; Diamond, S L

    1997-01-01

    We have modeled platelet aggregation in a linear shear flow by accounting for two body collision hydrodynamics, platelet activation and receptor biology. Considering platelets and their aggregates as unequal-sized spheres with DLVO interactions (psi(platelet) = -15 mV, Hamaker constant = 10(-19) J), detailed hydrodynamics provided the flow field around the colliding platelets. Trajectory calculations were performed to obtain the far upstream cross-sectional area and the particle flux through this area provided the collision frequency. Only a fraction of platelets brought together by a shearing fluid flow were held together if successfully bound by fibrinogen cross-bridging GPIIb/IIIa receptors on the platelet surfaces. This fraction was calculated by modeling receptor-mediated aggregation using the formalism of Bell (Bell, G. I. 1979. A theoretical model for adhesion between cells mediated by multivalent ligands. Cell Biophys. 1:133-147) where the forward rate of bond formation dictated aggregation during collision and was estimated from the diffusional limited rate of lateral association of receptors multiplied by an effectiveness factor, eta, to give an apparent rate. For a value of eta = 0.0178, we calculated the overall efficiency (including both receptor binding and hydrodynamics effects) for equal-sized platelets with 50,000 receptors/platelet to be 0.206 for G = 41.9 s(-1), 0.05 for G = 335 s(-1), and 0.0086 for G = 1920 s(-1), values which are in agreement with efficiencies determined from initial platelet singlet consumption rates in flow through a tube. From our analysis, we predict that bond formation proceeds at a rate of approximately 0.1925 bonds/microm2 per ms, which is approximately 50-fold slower than the diffusion limited rate of association. This value of eta is also consistent with a colloidal stability of unactivated platelets at low shear rates. Fibrinogen was calculated to mediate aggregation quite efficiently at low shear rates but not at

  18. Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins.

    PubMed

    Amatruda, T T; Dragas-Graonic, S; Holmes, R; Perez, H D

    1995-11-24

    The binding of small peptide ligands to high affinity chemoattractant receptors on the surface of neutrophils and monocytes leads to activation of heterotrimeric G-proteins, stimulation of phosphatidylinositol-phospholipase C (PI-PLC), and subsequently to the inflammatory response. It was recently shown (Amatruda, T. T., Gerard, N. P., Gerard, C., and Simon, M. I. (1993) J. Biol. Chem. 268, 10139-10144) that the receptor for the chemoattractant peptide C5a specifically interacts with G alpha 16, a G-protein alpha subunit of the Gq class, to trigger ligand-dependent stimulation of PI-PLC in transfected cells. In order to further characterize this chemoattractant peptide signal transduction pathway, we transfected cDNAs encoding the formylmethionylleucylphenylalanine receptor (fMLPR) into COS cells and measured the production of inositol phosphates. Ligand-dependent activation of PI-PLC was seen in COS cells transfected with the fMLPR and G alpha 16 and stimulated with fMLP but not in cells transfected with receptor alone or with receptor plus G alpha q. Chimeric receptors in which the N-terminal extracellular domain, the second intracellular domain, or the intracellular C-terminal tail of the fMLP receptor was replaced with C5a receptor domains (Perez, H. D., Holmes, R., Vilander, L. R., Adams, R. R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295) were capable of ligand-dependent activation of PI-PLC when co-transfected with G alpha 16. A chimeric receptor exchanging the first intracellular domain of the fMLPR was constitutively activated, stimulating PI-PLC in the absence of ligand. Constitutive activation of PI-PLC, to a level 233% of that seen in cells transfected with wild-type fMLP receptors, was dependent on G alpha 16. Site-directed mutagenesis of the first intracellular domain of the fMLPR (amino acids 54-62) reveals this to be a domain necessary for ligand-dependent activation of G alpha 16. These results suggest that

  19. Nicotine binding to brain receptors requires a strong cation-pi interaction.

    PubMed

    Xiu, Xinan; Puskar, Nyssa L; Shanata, Jai A P; Lester, Henry A; Dougherty, Dennis A

    2009-03-26

    Nicotine addiction begins with high-affinity binding of nicotine to acetylcholine (ACh) receptors in the brain. The end result is over 4,000,000 smoking-related deaths annually worldwide and the largest source of preventable mortality in developed countries. Stress reduction, pleasure, improved cognition and other central nervous system effects are strongly associated with smoking. However, if nicotine activated ACh receptors found in muscle as potently as it does brain ACh receptors, smoking would cause intolerable and perhaps fatal muscle contractions. Despite extensive pharmacological, functional and structural studies of ACh receptors, the basis for the differential action of nicotine on brain compared with muscle ACh receptors has not been determined. Here we show that at the alpha4beta2 brain receptors thought to underlie nicotine addiction, the high affinity for nicotine is the result of a strong cation-pi interaction to a specific aromatic amino acid of the receptor, TrpB. In contrast, the low affinity for nicotine at the muscle-type ACh receptor is largely due to the fact that this key interaction is absent, even though the immediate binding site residues, including the key amino acid TrpB, are identical in the brain and muscle receptors. At the same time a hydrogen bond from nicotine to the backbone carbonyl of TrpB is enhanced in the neuronal receptor relative to the muscle type. A point mutation near TrpB that differentiates alpha4beta2 and muscle-type receptors seems to influence the shape of the binding site, allowing nicotine to interact more strongly with TrpB in the neuronal receptor. ACh receptors are established therapeutic targets for Alzheimer's disease, schizophrenia, Parkinson's disease, smoking cessation, pain, attention-deficit hyperactivity disorder, epilepsy, autism and depression. Along with solving a chemical mystery in nicotine addiction, our results provide guidance for efforts to develop drugs that target specific types of nicotinic

  20. The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology.

    PubMed

    Eccles, Suzanne A

    2011-01-01

    The EGFR/Erb-B receptor tyrosine kinases each play distinct and complementary roles in normal breast development. The four receptors form both homodimers and heterodimers in response to binding by ligands which show selectivity for one or more of the receptors (except Erb-B2). Together with the additional flexibility generated by the formation of different dimer pairs, these signalling networks play key roles in directing a variety of both autocrine and paracrine cellular responses. Complex two-way interactions between mammary epithelial cells and the surrounding stroma direct proliferation, duct formation, branching and terminal differentiation during puberty, pregnancy and lactation, with each receptor and ligand fulfilling distinct roles. Caricatures of the normal role of EGFR/Erb-B signalling resulting in aberrant cellular responses are seen in breast cancers, where over-expression and/or (less commonly) mutation of one or more of the receptors results in enhanced cell proliferation, motility, release of proteases and angiogenic factors. Given their importance in tumour progression, compared with most normal adult tissues and their links with resistance to chemotherapy and anti-endocrine therapy, Erb-B receptors (most notably Erb-B2) have been exploited as therapeutic targets. Monoclonal antibodies (e.g. trastuzumab, pertuzumab) and small molecule tyrosine kinase inhibitors (e.g. lapatinib, afatinib) have shown significant clinical responses in some breast cancer subtypes. Additional approaches include targeted toxins or drugs, peptide vaccines, immunRNase and chaperone inhibitors to deplete Erb-B2 protein levels. Greater understanding of the full spectrum of Erb-B-mediated signalling pathways and their misregulation in breast cancer will provide additional strategies to control malignant progression.

  1. Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1

    SciTech Connect

    Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly; Xu, H. Eric

    2009-01-15

    The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observed for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.

  2. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  3. Platelet Derived Growth Factor-B and Human Epidermal Growth Factor Receptor-2 Polymorphisms in Gall Bladder Cancer.

    PubMed

    Mishra, Kumudesh; Behari, Anu; Kapoor, Vinay Kumar; Khan, M Salman; Prakash, Swayam; Agrawal, Suraksha

    2015-01-01

    Gall bladder cancer (GBC) is a gastro-intestinal cancer with high prevalence among north Indian women. Platelet derived growth factor-B (PDGFB) and human epidermal growth factor receptor-2 (HER2) may play roles in the etiology of GBC through the inflammation-hyperplasia-dysplasia-carcinoma pathway. To study the association of PDGFB and HER2 polymorphisms with risk of GBC, 200 cases and 300 controls were considered. PDGFB +286A>G and +1135A>C polymorphisms were investigated with an amplification refractory mutation system and the HER2 Ile655Val polymorphism by restriction fragment length polymorphism. Significant risk associations for PDGFB +286 GG (OR=5.25) and PDGFB +1135 CC (OR=3.19) genotypes were observed for GBC. Gender wise stratification revealed susceptibility for recessive models of PDGFB +1135A>C (OR=3.00) and HER2 Ile655Val (OR=2.52) polymorphisms among female GBC cases. GBC cases with gall stones were predisposed to homozygous +286 GG and +1135 CC genotypes. Significant risk associations were found for ACIle (OR=1.48), GAVal (OR=1.70), GAIle (OR=2.00) haplotypes with GBC cases and GCIle haplotype with female GBC cases (OR=10.37, P=<0.0001). Pair-wise linkage disequilibrium revealed negative associations among variant alleles. On multi-dimensional reduction analysis, a three factor model revealed significant gene-gene interaction for PDGFB +286A>G, PDGFB +1135A>C and HER2 Ile165Val SNPs with GBC. Protein-protein interaction showed significant association of PDGFB and HER2 with the epidermal growth factor receptor signaling pathway.

  4. Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the dentate gyrus are related with antidepressant-like effects.

    PubMed

    Narváez, Manuel; Borroto-Escuela, Dasiel O; Millón, Carmelo; Gago, Belén; Flores-Burgess, Antonio; Santín, Luis; Fuxe, Kjell; Narváez, José Angel; Díaz-Cabiale, Zaida

    2016-11-01

    Galanin (GAL) and the NPYY1 agonist play a role in mood regulation and both neuropeptides interact in several central functions. The present study examined the interaction between Galanin receptor 2 (GALR2) and Neuropeptide Y Y1 receptor (NPYY1R) in the dentate gyrus (DG) of the Hippocampus in relation to depression-like behavior. Using receptor autoradiography, in situ hybridization and in situ proximity ligation assay an interaction between GALR and NPYY1R was demonstrated in the DG probably involving the formation of GALR2-NPYY1R heteroreceptor complexes. These complexes were specifically observed in the polymorphic and subgranular subregions of the DG, where both receptors were found to colocalize. Moreover, this GALR2/NPYY1R interaction was linked to an enhancement of the antidepressive-like behavior mediated by NPYY1R in the forced swimming test. Specific cells populations within DG subregions may be involved in this behavioral effect since the coactivation of GALR2 and NPYY1R enhances the NPYY1R-mediated reduction in the number of c-Fos immunoreactive nuclei in the polymorphic region. These results indicate that GALR2/NPYY1R interactions can provide a novel integrative mechanism in DG in depression-related behavior and may give the basis for the development of drugs targeting GALR2/NPYY1R heteroreceptor complexes in the DG of the hippocampus for the treatment of depression.

  5. Interactions between recording technique and AMPA receptor modulators.

    PubMed

    Lin, Bin; Colgin, Laura Lee; Brücher, Fernando Andres; Arai, Amy Christine; Lynch, Gary

    2002-11-15

    Whole cell recording (EPSCs) and extracellular recording (field EPSPs) were compared in hippocampal field CA1 with regard to the effects of experimental treatments that increase AMPA receptor gated currents. Cyclothiazide, which maintains AMPA receptors in the sensitized state, caused a rapid and pronounced increase in EPSCs but only minor changes in field EPSPs. This difference was evident in recordings carried out at 22 and 32 degrees C and with different solutions in the clamp pipette. The larger effect of cyclothiazide on EPSCs was unaffected by blockade of GABA and NMDA receptors. Two-dimensional current source density analyses derived from 64 recording sites were used to provide extracellular estimates of AMPA receptor mediated synaptic currents. With this method, cyclothiazide again had much smaller effects than were obtained with whole cell clamp. Differences between whole cell and extracellular recordings were present, although not as pronounced, for the ampakines, a class of drugs that slow both deactivation and desensitization of AMPA receptors. Additionally, increases in synaptic responses produced by frequency facilitation, a manipulation that enhances the number of bound receptors, were not qualitatively different between recording techniques. These results support the conclusion that the whole cell clamp technique may alter AMPA receptors in such a way as to increase the relative importance of desensitization.

  6. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes

    PubMed Central

    Kharmate, Geetanjali; Hosseini-Beheshti, Elham; Caradec, Josselin; Chin, Mei Yieng; Tomlinson Guns, Emma S.

    2016-01-01

    Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight™ analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa. PMID:27152724

  7. Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis

    PubMed Central

    Crook, Matt; Upadhyay, Awani; Ido, Liyana J.; Hanna-Rose, Wendy

    2016-01-01

    Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR) has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions. PMID:27605519

  8. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies

    PubMed Central

    Kufareva, Irina; Salanga, Catherina L.; Handel, Tracy M.

    2015-01-01

    The control of cell migration by chemokines involves interactions with two types of receptors: seven transmembrane chemokine-type G protein-coupled receptors and cell surface or extracellular matrix associated glycosaminoglycans. Coordinated interaction of chemokines with both types of receptors is required for directional migration of cells in numerous physiological and pathological processes. Accumulated structural information, culminating most recently in the structure of a chemokine receptor in complex with a chemokine, has led to a view where chemokine oligomers bind to glycosaminoglycans through epitopes formed when chemokine subunits come together, while chemokine monomers bind to receptors in a pseudo two-step mechanism of receptor activation. Exploitation of this structural knowledge has and will continue to provide important information for therapeutic strategies, as described in this review. PMID:25708536

  9. The use of androgen receptor amino/carboxyl-terminal interaction assays to investigate androgen receptor gene mutations in subjects with varying degrees of androgen insensitivity.

    PubMed

    Ghali, Shereen A; Gottlieb, Bruce; Lumbroso, Rose; Beitel, Lenore K; Elhaji, Youssef; Wu, Jian; Pinsky, Leonard; Trifiro, Mark A

    2003-05-01

    Five mutations in the ligand-binding domain (LBD) of the human androgen receptor (hAR) found in patients with varying degrees of androgen insensitivity syndrome (AIS) were investigated for their effects on receptor dynamics. These were Arg(871)Gly (mild), Ser(814)Asn (partial), Glu(772)Ala (partial), Val(866)Met (complete), and Arg(774)Cys (complete). Previous analysis showed that the mutant receptors exhibited near-normal kinetics, except Arg(774)Cys, which had severely reduced androgen binding, and Val(866)Met, which showed increased equilibrium dissociation constant (K(d)) and elevated dissociation rate (k) values. Ser(814)Asn exhibited ligand-selective k values, i.e. increased for dihydrotestosterone and mibolerone, but normal for methyltrenolene. Using mammalian two-hybrid assays, hAR amino/carboxyl (N/C)-terminal interactions of the mutant receptors were analyzed in the presence and absence of the hAR coactivator transcription intermediary factor 2 (TIF2). The mutations conferred decreased hAR N/C-terminal interaction, i.e. mild (approximately 1.5-fold), partial (2-fold), and complete (10-fold), that mirrored the degree of AIS. All mutant LBDs showed a 2- to 3-fold increase in N/C-terminal interactions when TIF2 was cotransfected, although of a magnitude still less than that of wild-type LBD with TIF2. The ligand-selective properties of the Ser(814)Asn mutant were also clearly reflected by the N/C-terminal interactions. Thus, measurement of N/C-terminal interactions may assist in the molecular analysis of mutant hARs associated with AIS.

  10. Nuclear receptors, nuclear-receptor factors, and nuclear-receptor-like orphans form a large paralog cluster in Homo sapiens.

    PubMed

    Garcia-Vallvé, S; Palau, J

    1998-06-01

    We studied a human protein paralog cluster formed by 38 nonredundant sequences taken from the Swiss-Prot database and its supplement, TrEMBL. These sequences include nuclear receptors, nuclear-receptor factors and nuclear-receptor-like orphans. Working separately with both the central cysteine-rich DNA-binding domain and the carboxy-terminal ligand-binding domain, we performed multialignment analyses that included drawings of paralog trees. Our results show that the cluster is highly multibranched, with considerable differences in the amino acid sequence in the ligand-binding domain (LBD), and 17 proximal subbranches which are identifiable and fully coincident when independent trees from both domains are compared. We identified the six recently proposed subfamilies as groups of neighboring clusters in the LBD paralog tree. We found similarities of 80%-100% for the N-terminal transactivation domain among mammalian ortholog receptors, as well as some paralog resemblances within diverse subbranches. Our studies suggest that during the evolutionary process, the three domains were assembled in a modular fashion with a nonshuffled modular fusion of the LBD. We used the EMBL server PredictProtein to make secondary-structure predictions for all 38 LBD subsequences. Amino acid residues in the multialigned homologous domains--taking the beginning of helix H3 of the human retinoic acid receptor-gamma as the initial point of reference--were substituted with H or E, which identify residues predicted to be helical or extended, respectively. The result was a secondary structure multialignment with the surprising feature that the prediction follows a canonical pattern of alignable alpha-helices with some short extended elements in between, despite the fact that a number of subsequences resemble each other by less than 25% in terms of the similarity index. We also identified the presence of a binary patterning in all of the predicted helices that were conserved throughout the 38

  11. Charm form factors in hadronic interactions

    SciTech Connect

    Bracco, M. E.; Navarra, F. S.; Nielsen, M.; Chiapparini, M.

    2010-12-28

    We calculate the form factors and the coupling constants in vertices with charm mesons, such as {rho}D*D*, in the framework of QCD sum rules. We first discuss the applications of these form factors in heavy ion collisions and in B decays. We then present an introduction to the method of QCD sum rules and describe how to work with the three-point function. We give special attention to the procedure employed to extrapolate results obtained in the deep euclidean region to the poles of the particles, located in the time-like region. Finally we present a table of ready-to-use parametrizations of all the form factors, which are relevant for the processes mentioned in the introduction. We also give the coupling constants.

  12. Predicting the CRIP1a-cannabinoid 1 receptor interactions with integrated molecular modeling approaches

    PubMed Central

    Ahmed, Mostafa H.; Kellogg, Glen E.; Selley, Dana E.; Safo, Martin; Zhang, Yan

    2015-01-01

    Cannabinoid receptors are a family of G-protein coupled receptors that are involved in a wide variety of physiological processes and diseases. One of the key regulators that are unique to cannabinoid receptors is the cannabinoid receptor interacting proteins (CRIPs). Among them CRIP1a was found to decrease the constitutive activity of the cannabinoid type-1 receptor (CB1R). The aim of this study is to gain an understanding of the interaction between CRIP1a and CB1R through using different computational techniques. The generated model demonstrated several key putative interactions between CRIP1a and CB1R, including those involving Lys130 of CRIP1a. PMID:24461351

  13. The virus–receptor interaction in the replication of feline immunodeficiency virus (FIV)☆

    PubMed Central

    Willett, Brian J; Hosie, Margaret J

    2013-01-01

    The feline and human immunodeficiency viruses (FIV and HIV) target helper T cells selectively, and in doing so they induce a profound immune dysfunction. The primary determinant of HIV cell tropism is the expression pattern of the primary viral receptor CD4 and co-receptor(s), such as CXCR4 and CCR5. FIV employs a distinct strategy to target helper T cells; a high affinity interaction with CD134 (OX40) is followed by binding of the virus to its sole co-receptor, CXCR4. Recent studies have demonstrated that the way in which FIV interacts with its primary receptor, CD134, alters as infection progresses, changing the cell tropism of the virus. This review examines the contribution of the virus–receptor interaction to replication in vivo as well as the significance of these findings to the development of vaccines and therapeutics. PMID:23992667

  14. Decavanadate, a P2X receptor antagonist, and its use to study ligand interactions with P2X7 receptors.

    PubMed

    Michel, Anton D; Xing, Mengle; Thompson, Kyla M; Jones, Clare A; Humphrey, Patrick P A

    2006-03-18

    In this study we have studied decavanadate effects at P2X receptors. Decavanadate competitively blocked 2'- and 3'-O-(4benzoylbenzoyl) ATP (BzATP) stimulated ethidium accumulation in HEK293 cells expressing human recombinant P2X7 receptors (pK(B) 7.5). The effects of decavanadate were rapid (minutes) in both onset and offset and contrasted with the much slower kinetics of pyridoxal 5-phosphate (P5P), Coomassie brilliant blue (CBB) and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN62). Decavanadate competitively blocked the slowly reversible, or irreversible, blockade of the P2X7 receptor produced by P5P and oxidised ATP suggesting competition for a common binding site. However, the interaction between decavanadate and KN62 was non-competitive. Decavanadate also blocked P2X2 and P2X4 receptors but with slightly lower potency. These data demonstrate that decavanadate is the first reversible and competitive antagonist of the P2X7 receptor and is a useful tool for studying the mechanism of interaction of ligands with the P2X7 receptor.

  15. OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor.

    PubMed Central

    Teboul, M; Enmark, E; Li, Q; Wikström, A C; Pelto-Huikko, M; Gustafsson, J A

    1995-01-01

    We have cloned a member of the nuclear receptor superfamily. The cDNA was isolated from a rat liver library and encodes a protein of 446 aa with a predicted mass of 50 kDa. This clone (OR-1) shows no striking homology to any known member of the steroid/thyroid hormone receptor superfamily. The most related receptor is the ecdysone receptor and the highest homologies represent < 10% in the amino-terminal domain, between 15-37% in the carboxyl-terminal domain and 50-62% in the DNA binding domain. The expression of OR-1 appears to be widespread in both fetal and adult rat tissues. Potential DNA response elements composed of a direct repeat of the hexameric motif AGGTCA spaced by 0-6 nt were tested in gel shift experiments. OR-1 was shown to interact with the 9-cis-retinoic acid receptor (retinoid X receptor, RXR) and the OR-1/RXR complex to bind to a direct repeat spaced by 4 nt (DR4). In transfection experiments, OR-1 appears to activate RXR-mediated function through the DR4. Therefore OR-1 might modulate 9-cis-retinoic acid signaling by interacting with RXR. Images Fig. 3 Fig. 4 PMID:7892230

  16. Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors.

    PubMed Central

    Dionne, C A; Crumley, G; Bellot, F; Kaplow, J M; Searfoss, G; Ruta, M; Burgess, W H; Jaye, M; Schlessinger, J

    1990-01-01

    The fibroblast growth factor (FGF) family consists of at least seven closely related polypeptide mitogens which exert their activities by binding and activation of specific cell surface receptors. Unanswered questions have been whether there are multiple FGF receptors and what factors determine binding specificity and biological response. We report the complete cDNA cloning of two human genes previously designated flg and bek. These genes encode two similar but distinct cell surface receptors comprised of an extracellular domain with three immunoglobulin-like regions, a single transmembrane domain, and a cytoplasmic portion containing a tyrosine kinase domain with a typical kinase insert. The expression of these two cDNAs in transfected NIH 3T3 cells led to the biosynthesis of proteins of 150 kd and 135 kd for flg and bek, respectively. Direct binding experiments with radiolabeled acidic FGF (aFGF) or basic FGF (bFGF), inhibition of binding with native growth factors, and Scatchard analysis of the binding data indicated that bek and flg bind either aFGF or bFGF with dissociation constants of (2-15) x 10(-11) M. The high affinity binding of two distinct growth factors to each of two different receptors represents a unique double redundancy without precedence among polypeptide growth factor-receptor interactions. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1697263

  17. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor–Resistant Disease

    PubMed Central

    Ohashi, Kadoaki; Maruvka, Yosef E.; Michor, Franziska; Pao, William

    2013-01-01

    Purpose EGFR-mutant lung cancer was first described as a new clinical entity in 2004. Here, we present an update on new controversies and conclusions regarding the disease. Methods This article reviews the clinical implications of EGFR mutations in lung cancer with a focus on epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results The discovery of EGFR mutations has altered the ways in which we consider and treat non–small-cell lung cancer (NSCLC). Patients whose metastatic tumors harbor EGFR mutations are expected to live longer than 2 years, more than double the previous survival rates for lung cancer. Conclusion The information presented in this review can guide practitioners and help them inform their patients about EGFR mutations and their impact on the treatment of NSCLC. Efforts should now concentrate on making EGFR-mutant lung cancer a chronic rather than fatal disease. PMID:23401451

  18. Targeting fibroblast growth factor receptor signaling in hepatocellular carcinoma.

    PubMed

    Cheng, Ann-Lii; Shen, Ying-Chun; Zhu, Andrew X

    2011-01-01

    Hepatocellular carcinoma (HCC) is the primary type of liver cancer, and both the age-adjusted incidence and mortality of HCC have steadily increased in recent years. Advanced HCC is associated with a very poor survival rate. Despite accumulating data regarding the risk factors for HCC, the mechanisms that contribute to HCC tumorigenesis remain poorly understood. Signaling through the fibroblast growth factor (FGF) family is involved in fibrosis and its progression to cirrhosis of the liver, which is a risk factor for the development of HCC. Furthermore, several alterations in FGF/FGF receptor (FGFR) signaling correlate with the outcomes of HCC patients, suggesting that signaling through this family of proteins contributes to the development or progression of HCC tumors. Currently, there are no established systemic treatments for patients with advanced HCC in whom sorafenib treatment has failed or who were unable to tolerate it. Recently, several multikinase inhibitors that target FGFRs have demonstrated some early evidence of antitumor activity in phase I/II trials. Therefore, this review discusses the molecular implications of FGFR-mediated signaling in HCC and summarizes the clinical evidence for novel FGFR-targeted therapies for HCC currently being studied in clinical trials.

  19. Receptor- and Heparin-Binding Domains of Basic Fibroblast Growth Factor

    NASA Astrophysics Data System (ADS)

    Baird, Andrew; Schubert, David; Ling, Nicholas; Guillemin, Roger

    1988-04-01

    Two functional domains in the primary structure of basic fibroblast growth factor (FGF) have been identified on the basis of their ability to interact with the FGF receptor, bind radiolabeled heparin, and modulate the cellular response to FGF. Peptides derived from these two functional domains can act as partial agonists and antagonists in biological assays of FGF activity. Peptides related to the sequences of FGF-(24-68)-NH2 and FGF-(106-115)-NH2 inhibit thymidine incorporation into 3T3 fibroblasts when they are stimulated by FGF but have no effect when the cells are treated with either platelet-derived growth factor or epidermal growth factor. They also possess partial agonist activity and can stimulate DNA synthesis when tested in the absence of exogenous FGF. The active peptides have no effect on the binding of epidermal growth factor to its receptor on A431 cells and they can modulate the effects of FGF, but not fibronectin, on endothelial cell adhesion. The results suggest the possibility of designing specific analogs of FGF that are capable of inhibiting the biological effects of FGF.

  20. Evolutionary Pressure of a Receptor Competitor Selects Different Subgroup A Avian Leukosis Virus Escape Variants with Altered Receptor Interactions

    PubMed Central

    Melder, Deborah C.; Pankratz, V. Shane; Federspiel, Mark J.

    2003-01-01

    A complex interaction between the retroviral envelope glycoproteins and a specific cell surface protein initiates viral entry into cells. The avian leukosis-sarcoma virus (ALV) group of retroviruses provides a useful experimental system for studying the retroviral entry process and the evolution of receptor usage. In this study, we demonstrate that evolutionary pressure on subgroup A ALV [ALV(A)] entry exerted by the presence of a competitive inhibitor, a soluble form of the ALV(A) Tva receptor linked to a mouse immunoglobulin G tag (quail sTva-mIgG), can select different populations of escape variants. This escape population contained three abundant ALV(A) variant viruses, all with mutations in the surface glycoprotein hypervariable regions: a previously identified variant containing the Y142N mutation in the hr1 region; a new variant with two mutations, W141G in hr1 and K261E in vr3; and another new variant with two mutations, W145R in hr1 and K261E. The W141G K261E and W145R K261E viruses escape primarily by lowering their binding affinities for the quail Tva receptor competitive inhibitor while retaining wild-type levels of binding affinity for the chicken Tva receptor. A secondary phenotype of the new variants was an alteration in receptor interference patterns from that of wild-type ALV(A), indicating that the mutant glycoproteins are possibly interacting with other cellular proteins. One result of these altered interactions was that the variants caused a transient period of cytotoxicity. We could also directly demonstrate that the W141G K261E variant glycoproteins bound significant levels of a soluble form of the TvbS3 ALV receptor in a binding assay. Alterations in the normally extreme specificity of the ALV(A) glycoproteins for Tva may represent an evolutionary first step toward expanding viral receptor usage in response to inefficient viral entry. PMID:12970435

  1. A dominant negative mutation suppresses the function of normal epidermal growth factor receptors by heterodimerization.

    PubMed Central

    Kashles, O; Yarden, Y; Fischer, R; Ullrich, A; Schlessinger, J

    1991-01-01

    Recent studies provide evidence that defective receptors can function as a dominant negative mutation suppressing the action of wild-type receptors. This causes various diminished responses in cell culture and developmental disorders in murine embryogenesis. Here, we describe a model system and a potential mechanism underlying the dominant suppressing response caused by defective epidermal growth factor (EGF) receptors. We used cultured 3T3 cells coexpressing human wild-type receptors and an inactive deletion mutant lacking most of the cytoplasmic domain. When expressed alone, EGF was able to stimulate the dimerization of either wild-type or mutant receptors in living cells as revealed by chemical covalent cross-linking experiments. In response to EGF, heterodimers and homodimers of wild-type and mutant receptors were observed in cells coexpressing both receptor species. However, only homodimers of wild-type EGF receptors underwent EGF-induced tyrosine autophosphorylation in living cells. These results indicate that the integrity of both receptor moieties within receptor dimers is essential for kinase activation and autophosphorylation. Moreover, the presence of mutant receptors in cells expressing wild-type receptors diminished the number of high-affinity binding sites for EGF, reduced the rate of receptor endocytosis and degradation, and diminished biological signalling via EGF receptors. We propose that heterodimerization with defective EGF receptors functions as a dominant negative mutation suppressing the activation and response of normal receptors by formation of unproductive heterodimers. Images PMID:1705006

  2. Exact solutions to a spatially extended model of kinase-receptor interaction.

    PubMed

    Szopa, Piotr; Lipniacki, Tomasz; Kazmierczak, Bogdan

    2011-10-01

    B and Mast cells are activated by the aggregation of the immune receptors. Motivated by this phenomena we consider a simple spatially extended model of mutual interaction of kinases and membrane receptors. It is assumed that kinase activates membrane receptors and in turn the kinase molecules bound to the active receptors are activated by transphosphorylation. Such a type of interaction implies positive feedback and may lead to bistability. In this study we apply the Steklov eigenproblem theory to analyze the linearized model and find exact solutions in the case of non-uniformly distributed membrane receptors. This approach allows us to determine the critical value of receptor dephosphorylation rate at which cell activation (by arbitrary small perturbation of the inactive state) is possible. We found that cell sensitivity grows with decreasing kinase diffusion and increasing anisotropy of the receptor distribution. Moreover, these two effects are cooperating. We showed that the cell activity can be abruptly triggered by the formation of the receptor aggregate. Since the considered activation mechanism is not based on receptor crosslinking by polyvalent antigens, the proposed model can also explain B cell activation due to receptor aggregation following binding of monovalent antigens presented on the antigen presenting cell.

  3. Exact solutions to a spatially extended model of kinase-receptor interaction

    NASA Astrophysics Data System (ADS)

    Szopa, Piotr; Lipniacki, Tomasz; Kazmierczak, Bogdan

    2011-10-01

    B and Mast cells are activated by the aggregation of the immune receptors. Motivated by this phenomena we consider a simple spatially extended model of mutual interaction of kinases and membrane receptors. It is assumed that kinase activates membrane receptors and in turn the kinase molecules bound to the active receptors are activated by transphosphorylation. Such a type of interaction implies positive feedback and may lead to bistability. In this study we apply the Steklov eigenproblem theory to analyze the linearized model and find exact solutions in the case of non-uniformly distributed membrane receptors. This approach allows us to determine the critical value of receptor dephosphorylation rate at which cell activation (by arbitrary small perturbation of the inactive state) is possible. We found that cell sensitivity grows with decreasing kinase diffusion and increasing anisotropy of the receptor distribution. Moreover, these two effects are cooperating. We showed that the cell activity can be abruptly triggered by the formation of the receptor aggregate. Since the considered activation mechanism is not based on receptor crosslinking by polyvalent antigens, the proposed model can also explain B cell activation due to receptor aggregation following binding of monovalent antigens presented on the antigen presenting cell.

  4. Interaction of Factors Related to Lactation Duration

    PubMed Central

    Boettcher, Joan P; Chezem, Jo Carol; Roepke, Judith; Whitaker, Tracy Adams

    1999-01-01

    Perceived social support and interpersonal dependency were studied as potential factors associated with lactation duration based upon previous breastfeeding experience. Inexperienced breastfeeding mothers perceived more social support than experienced breastfeeding mothers did. Perceived social support was not significantly correlated with lactation duration. An ancillary finding was that women providing a combination of breast milk and human milk substitutes had significantly lower social self-confidence than did mothers providing breast milk exclusively. PMID:22945984

  5. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons.

    PubMed

    Akkuratov, Evgeny E; Lopacheva, Olga M; Kruusmägi, Markus; Lopachev, Alexandr V; Shah, Zahoor A; Boldyrev, Alexander A; Liu, Lijun

    2015-12-01

    NMDA receptors play a crucial role in regulating synaptic plasticity and memory. Activation of NMDA receptors changes intracellular concentrations of Na(+) and K(+), which are subsequently restored by Na/K-ATPase. We used immunochemical and biochemical methods to elucidate the potential mechanisms of interaction between these two proteins. We observed that NMDA receptor and Na/K-ATPase interact with each other and this interaction was shown for both isoforms of α subunit (α1 and α3) of Na/K-ATPase expressed in neurons. Using Western blotting, we showed that long-term exposure of the primary culture of cerebellar neurons to nanomolar concentrations of ouabain (a cardiotonic steroid, a specific ligand of Na/K-ATPase) leads to a decrease in the levels of NMDA receptors which is likely mediated by the α3 subunit of Na/K-ATPase. We also observed a decrease in enzymatic activity of the α1 subunit of Na/K-ATPase caused by NMDA receptor activation. This effect is mediated by an increase in intracellular Ca(2+). Thus, Na/K-ATPase and NMDA receptor can interact functionally by forming a macromolecular complex which can be important for restoring ionic balance after neuronal excitation. Furthermore, this interaction suggests that NMDA receptor function can be regulated by endogenous cardiotonic steroids which recently have been found in cerebrospinal fluid or by pharmacological drugs affecting Na/K-ATPase function.

  6. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.

    PubMed

    Rickli, Anna; Moning, Olivier D; Hoener, Marius C; Liechti, Matthias E

    2016-08-01

    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties.

  7. Characterization of the Staphylococcal enterotoxin A: Vβ receptor interaction using human receptor fragments engineered for high affinity.

    PubMed

    Sharma, P; Postel, S; Sundberg, E J; Kranz, D M

    2013-12-01

    Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection.

  8. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors.

    PubMed

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane-solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane-solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor.

  9. A novel GABAA receptor pharmacology: drugs interacting with the α+β− interface

    PubMed Central

    Sieghart, Werner; Ramerstorfer, Joachim; Sarto-Jackson, Isabella; Varagic, Zdravko; Ernst, Margot

    2012-01-01

    GABAA receptors are ligand-gated chloride channels composed of five subunits that can belong to different subunit classes. The existence of 19 different subunits gives rise to a multiplicity of GABAA receptor subtypes with distinct subunit composition; regional, cellular and subcellular distribution; and pharmacology. Most of these receptors are composed of two α, two β and one γ2 subunits. GABAA receptors are the site of action of a variety of pharmacologically and clinically important drugs, such as benzodiazepines, barbiturates, neuroactive steroids, anaesthetics and convulsants. Whereas GABA acts at the two extracellular β+α− interfaces of GABAA receptors, the allosteric modulatory benzodiazepines interact with the extracellular α+γ2− interface. In contrast, barbiturates, neuroactive steroids and anaesthetics seem to interact with solvent accessible pockets in the transmembrane domain. Several benzodiazepine site ligands have been identified that selectively interact with GABAA receptor subtypes containing α2βγ2, α3βγ2 or α5βγ2 subunits. This indicates that the different α subunit types present in these receptors convey sufficient structural differences to the benzodiazepine binding site to allow specific interaction with certain benzodiazepine site ligands. Recently, a novel drug binding site was identified at the α+β− interface. This binding site is homologous to the benzodiazepine binding site at the α+γ2− interface and is thus also strongly influenced by the type of α subunit present in the receptor. Drugs interacting with this binding site cannot directly activate but only allosterically modulate GABAA receptors. The possible importance of such drugs addressing a spectrum of receptor subtypes completely different from that of benzodiazepines is discussed. PMID:22074382

  10. Salvinorin A: allosteric interactions at the mu-opioid receptor.

    PubMed

    Rothman, Richard B; Murphy, Daniel L; Xu, Heng; Godin, Jonathan A; Dersch, Christina M; Partilla, John S; Tidgewell, Kevin; Schmidt, Matthew; Prisinzano, Thomas E

    2007-02-01

    Salvinorin A [(2S,4aR,6aR,7R,9S,10aS,10bR)-9-(acetyloxy)-2-(3-furanyl)-dodecahydro-6a,10b-dimethyl-4,10-dioxo-2h-naphtho[2,1-c]pyran-7-carboxylic acid methyl ester] is a hallucinogenic kappa-opioid receptor agonist that lacks the usual basic nitrogen atom present in other known opioid ligands. Our first published studies indicated that Salvinorin A weakly inhibited mu-receptor binding, and subsequent experiments revealed that Salvinorin A partially inhibited mu-receptor binding. Therefore, we hypothesized that Salvinorin A allosterically modulates mu-receptor binding. To test this hypothesis, we used Chinese hamster ovary cells expressing the cloned human opioid receptor. Salvinorin A partially inhibited [(3)H]Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) (0.5, 2.0, and 8.0 nM) binding with E(MAX) values of 78.6, 72.1, and 45.7%, respectively, and EC(50) values of 955, 1124, and 4527 nM, respectively. Salvinorin A also partially inhibited [(3)H]diprenorphine (0.02, 0.1, and 0.5 nM) binding with E(MAX) values of 86.2, 64, and 33.6%, respectively, and EC(50) values of 1231, 866, and 3078 nM, respectively. Saturation binding studies with [(3)H]DAMGO showed that Salvinorin A (10 and 30 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Saturation binding studies with [(3)H]diprenorphine showed that Salvinorin A (10 and 40 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Similar findings were observed in rat brain with [(3)H]DAMGO. Kinetic experiments demonstrated that Salvinorin A altered the dissociation kinetics of both [(3)H]DAMGO and [(3)H]diprenorphine binding to mu receptors. Furthermore, Salvinorin A acted as an uncompetitive inhibitor of DAMGO-stimulated guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding. Viewed collectively, these data support the hypothesis that Salvinorin A allosterically modulates the mu-opioid receptor.

  11. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes.

    PubMed

    Stork, Tobias; Sheehan, Amy; Tasdemir-Yilmaz, Ozge E; Freeman, Marc R

    2014-07-16

    Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.

  12. Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Yang, Tao; Wang, Long; Li, Chiyu; Liu, Ying; Zhu, Sirui; Qi, Yinyao; Liu, Xuanming; Lin, Qinglu; Luan, Sheng; Yu, Feng

    2015-09-11

    Cell expansion is coordinated by several cues, but available energy is the major factor determining growth. Receptor protein kinase FERONIA (FER) is a master regulator of cell expansion, but the details of its control mechanisms are not clear. Here we show that FER interacts with cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPC1 and GAPC2), that catalyzes a key reaction in glycolysis, which contributes to energy production. When there is an FER deficiency, there are corresponding decreases in the enzyme activity of GAPDH and increased amounts of starch. More importantly, gapc1/2 mutants mimic fer4 mutants. These data indicate that FER regulated starch content is an evolutionarily conserved function in plants that connects the cell expansion and energy metabolism pathways.

  13. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma. PMID:27698817

  14. Direct identification of residues of the epidermal growth factor receptor in close proximity to the amino terminus of bound epidermal growth factor.

    PubMed Central

    Woltjer, R L; Lukas, T J; Staros, J V

    1992-01-01

    We have recently developed a kinetically controlled, step-wise affinity cross-linking technique for specific, high-yield, covalent linkage of murine epidermal growth factor (mEGF) via its N terminus to the EGF receptor. EGF receptor from A431 cells was cross-linked to radiolabeled mEGF (125I-mEGF) by this technique and the 125I-mEGF-receptor complex was purified and denatured. Tryptic digestion of this preparation gave rise to a unique radiolabeled peptide that did not comigrate with trypsin-treated 125I-mEGF in SDS/Tricine gels but that could be immunoprecipitated with antibodies to mEGF. The immunoprecipitated peptide was isolated by electrophoresis in SDS/Tricine gels, eluted, and sequenced. The sequence was found to correspond to that of a tryptic peptide of the EGF receptor beginning with Gly-85, which is in domain I, a region N terminal to the first cysteine-rich region of the receptor. Selective loss of signal in the 17th sequencing cycle suggests that the point of attachment of N-terminally modified 125I-mEGF to the receptor is Tyr-101. The data presented here provide identification by direct protein microsequencing of a site of interaction of EGF and the EGF receptor. Images PMID:1380167

  15. Conversion of epidermal growth factor receptor 2 and hormone receptor expression in breast cancer metastases to the brain

    PubMed Central

    2012-01-01

    Introduction We investigated the status of estrogen receptor alpha (ERα), progesterone receptor (PR), and epidermal growth factor receptor 2 (HER2) in primary tumor and in the corresponding brain metastases in a consecutive series of breast cancer patients. Additionally, we studied factors potentially influencing conversion and evaluated its association with survival. Methods The study group included 120 breast cancer patients. ERα, PR, and HER2 status in primary tumors and in matched brain metastases was determined centrally by immunohistochemistry and/or fluorescence in situ hybridization. Results Using the Allred score of ≥ 3 as a threshold, conversion of ERα and PR in brain metastases occurred in 29% of cases for both receptors, mostly from positive to negative. Conversion of HER2 occurred in 14% of patients and was more balanced either way. Time to brain relapse and the use of chemotherapy or trastuzumab did not influence conversion, whereas endocrine therapy induced conversion of ERα (P = 0.021) and PR (P = 0.001), mainly towards their loss. Receptor conversion had no significant impact on survival. Conclusions Receptor conversion, particularly loss of hormone receptors, is a common event in brain metastases from breast cancer, and endocrine therapy may increase its incidence. Receptor conversion does not significantly affect survival. PMID:22898337

  16. Development of the epidermal growth factor receptor inhibitor OSI-774.

    PubMed

    Grünwald, Viktor; Hidalgo, Manuel

    2003-06-01

    The epidermal growth factor receptor (EGFR) is a transmembrane receptor involved in the regulation of a complex array of essential biological processes such as cell proliferation and survival. Dysregulation of the EGFR signaling network has been frequently reported in multiple human cancers and has been associated with the processes of tumor development, growth, proliferation, metastasis, and angiogenesis. Inhibition of the EGFR was associated with antitumor effects in preclinical models. On the basis of these data, therapeutics targeting the EGFR were explored in clinical trials. OSI-774 is a small-molecule selective inhibitor of the EGFR tyrosine kinase. In preclinical studies, OSI-774 inhibited the phosphorylation of the EGFR in a dose-dependent and concentration-dependent manner resulting in cell cycle arrest and induction of apoptosis. In in vivo studies, this agent caused tumor growth inhibition and showed synergistic effects when combined with conventional chemotherapy. Subsequent single-agent phase I studies and phase I studies in combination with chemotherapy showed that the agent has a good safety profile and induced tumor growth inhibition in a substantial number of patients with a variety of different solid tumors. Preliminary reports from phase II studies confirmed the excellent tolerability of OSI-774 and showed encouraging preliminary activity. Phase III studies have either been completed or are ongoing in several tumor types such as lung cancer and pancreatic cancer. In summary, OSI-774 is a novel inhibitor of the EGFR tyrosine kinase that has shown promising activity in initial studies and is currently undergoing full development as an anticancer drug.

  17. Developmental regulation of human truncated nerve growth factor receptor

    SciTech Connect

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. )

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  18. [Parodontitis pathogenetic factors, their interaction and effects].

    PubMed

    Kipiani, Nana V; Iverieli, M; Mosemgvdlishvili, N; Kipiani, Nino V; Jafaridze, S

    2014-03-01

    Induced by microbial intervention oxidative stress causes electronic transport disorder in gingival cells mitochondrias as well as decrease of energogenesis and increase of lipoperoxidation. In oral cavity local immunity is decreased in parodontitis, that is related with immunoglobulin A deficiency and lysozyme activity decrease. Against this background, microbial factors damaging effect on periodont is intensified. In parodontitis the free nitric oxide (NO) content decrease in gingival tissues and its appearance in saliva is related with transformation of NO into toxic peroxinitrite, that on its turn enhances oxidation, parodontal injury, cell degra dation and necrosis. Nitrooxide defficiency in gingival mucosal cells is characterized by decreased protein P-53 expression and terminal differentiation disorder of the cells. Mitochodria related energogenesis disorder in gums causes inhibition of their cell regeneration, which together with apoptotic changes is characterized with parodontal tissue destruction and depletion.

  19. Functional probes of drug-receptor interactions implicated by structural studies: Cys-loop receptors provide a fertile testing ground.

    PubMed

    Van Arnam, Ethan B; Dougherty, Dennis A

    2014-08-14

    Structures of integral membrane receptors provide valuable models for drug-receptor interactions across many important classes of drug targets and have become much more widely available in recent years. However, it remains to be determined to what extent these images are relevant to human receptors in their biological context and how subtle issues such as subtype selectivity can be informed by them. The high precision structural modifications enabled by unnatural amino acid mutagenesis on mammalian receptors expressed in vertebrate cells allow detailed tests of predictions from structural studies. Using the Cys-loop superfamily of ligand-gated ion channels, we show that functional studies lead to detailed binding models that, at times, are significantly at odds with the structural studies on related invertebrate proteins. Importantly, broad variations in binding interactions are seen for very closely related receptor subtypes and for varying drugs at a given binding site. These studies highlight the essential interplay between structural studies and functional studies that can guide efforts to develop new pharmaceuticals.

  20. Cognitive enhancers (Nootropics). Part 1: drugs interacting with receptors. Update 2014.

    PubMed

    Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea

    2014-01-01

    Scientists working in the fields of Alzheimer's disease and, in particular, cognitive enhancers are very productive. The review "Cognitive enhancers (nootropics): drugs interacting with receptors" was accepted for publication in July 2012. Since then, new targets for the potential treatment of Alzheimer's disease were identified. This update describes drugs interacting with 42 receptors versus 32 receptors in the first paper. Some compounds progressed in their development, while many others were discontinued. The present review covers the evolution of research in this field through March 2014.

  1. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops.

    PubMed

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-06-01

    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (-53.8 and -74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs.

  2. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops

    PubMed Central

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-01-01

    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (−53.8 and −74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs. PMID:25833688

  3. Kinetic Contributions to Gating by Interactions Unique to N-methyl-d-aspartate (NMDA) Receptors*

    PubMed Central

    Borschel, William F.; Cummings, Kirstie A.; Tindell, LeeAnn K.; Popescu, Gabriela K.

    2015-01-01

    Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses. PMID:26370091

  4. Endothelial nitric oxide synthase interactions with G-protein-coupled receptors.

    PubMed Central

    Marrero, M B; Venema, V J; Ju, H; He, H; Liang, H; Caldwell, R B; Venema, R C

    1999-01-01

    The endothelial nitric oxide synthase (eNOS) is activated in response to stimulation of endothelial cells by a number of vasoactive substances including, bradykinin (BK), angiotensin II (Ang II), endothelin-1 (ET-1) and ATP. In the present study we have used in vitro activity assays of purified eNOS and in vitro binding assays with glutathione S-transferase fusion proteins to show that the capacity to bind and inhibit eNOS is a common feature of membrane-proximal regions of intracellular domain 4 of the BK B2, the Ang II AT1 and the ET-1 ETB receptors, but not of the ATP P2Y2 receptor. Phosphorylation of serine or tyrosine residues in the eNOS-interacting region of the B2 receptor results in a loss of eNOS inhibition due to a decrease in the binding affinity of the receptor domain for the eNOS enzyme. Furthermore, the B2 receptor is transiently phosphorylated on tyrosine residues in cultured endothelial cells in response to BK stimulation. Phosphorylation occurs during the time in which eNOS transiently dissociates from the receptor accompanied by a transient increase in nitric oxide production. Taken together, these data support the hypotheses that eNOS is regulated in endothelial cells by reversible and inhibitory interactions with G-protein-coupled receptors and that these interactions can be modulated by receptor phosphorylation. PMID:10510297

  5. Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase.

    PubMed Central

    Estrada, C; Gómez, C; Martín-Nieto, J; De Frutos, T; Jiménez, A; Villalobo, A

    1997-01-01

    Although it has been demonstrated that NO inhibits the proliferation of different cell types, the mechanisms of its anti-mitotic action are not well understood. In this work we have studied the possible interaction of NO with the epidermal growth factor receptor (EGFR), using transfected fibroblasts which overexpress the human EGFR. The NO donors S-nitroso-N-acetylpenicillamine (SNAP), 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA-NO) and N-¿4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl¿propane -1, 3-diamine (DETA-NO) inhibited DNA synthesis of fibroblasts growing in the presence of fetal calf serum, epidermal growth factor (EGF) or EGF plus insulin, as assessed by [methyl-3H]thymidine incorporation. Neither 8-bromo-cGMP nor the cGMP-phosphodiesterase inhibitor zaprinast mimicked this effect, suggesting that NO is unlikely to inhibit cell proliferation via a cGMP-dependent pathway. SNAP, DEA-NO and DETA-NO also inhibited the transphosphorylation of the EGFR and its tyrosine kinase activity toward the exogenous substrate poly-l-(Glu-Tyr), as measured in permeabilized cells using [gamma-32P]ATP as phosphate donor. In contrast, 3-[morpholinosydnonimine hydrochloride] (SIN-1), a peroxynitrite-forming compound, did not significantly inhibit either DNA synthesis or the EGFR tyrosine kinase activity. The inhibitory action of DEA-NO on the EGFR tyrosine kinase was prevented by haemoglobin, an NO scavenger, but not by superoxide dismutase, and was reversed by dithiothreitol. The binding of EGF to its receptor was unaffected by DEA-NO. The inhibitory action of DEA-NO on the EGF-dependent transphosphorylation of the receptor was also demonstrated in intact cells by immunoblot analysis using an anti-phosphotyrosine antibody. Taken together, these results suggest that NO, but not peroxynitrite, inhibits in a reversible manner the EGFR tyrosine kinase activity by S-nitrosylation of the receptor. PMID:9291107

  6. Interaction with Dopamine D2 Receptor Enhances Expression of Transient Receptor Potential Channel 1 at the Cell Surface

    PubMed Central

    Hannan, Meredith A.; Kabbani, Nadine; Paspalas, Constantinos D.; Levenson, Robert

    2008-01-01

    Receptor signaling is mediated by direct protein interaction with various types of cytoskeletal, adapter, effector, and additional receptor molecules. In brain tissue and in cultured neurons, activation of dopamine D2 receptors (D2Rs) has been found to impact cellular calcium signaling. Using a yeast two-hybrid approach, we have uncovered a direct physical interaction between the D2R and the transient receptor potential channel (TRPC) subtypes 1, 4 and 5. The TRPC/D2R interaction was further validated by GST-pulldown assays and coimmunoprecipitation from mammalian brain. Ultrastructural analysis of TRPC1 and D2R expression indicates colocalization of the two proteins within the cell body and dendrites of cortical neurons. In cultured cells, expression of D2Rs was found to increase expression of TRPC1 at the cell surface by 50%. These findings shed new light on the constituents of the D2R signalplex, and support the involvement of D2Rs in cellular calcium signaling pathways via a novel link to TRPC channels. PMID:18261457

  7. A Natural Mutation in Helix 5 of the Ligand Binding Domain of Glucocorticoid Receptor Enhances Receptor-Ligand Interaction

    PubMed Central

    Reyer, Henry; Ponsuksili, Siriluck; Kanitz, Ellen; Pöhland, Ralf; Wimmers, Klaus; Murani, Eduard

    2016-01-01

    The glucocorticoid receptor (GR) is a central player in the neuroendocrine stress response; it mediates feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis and physiological actions of glucocorticoids in the periphery. Despite intensive investigations of GR in the context of receptor-ligand interaction, only recently the first naturally occurring gain-of-function substitution, Ala610Val, of the ligand binding domain was identified in mammals. We showed that this mutation underlies a major quantitative trait locus for HPA axis activity in pigs, reducing cortisol production by about 40–50 percent. To unravel the molecular mechanisms behind this gain of function, receptor-ligand interactions were evaluated in silico, in vitro and in vivo. In accordance with previously observed phenotypic effects, the mutant Val610 GR showed significantly increased activation in response to glucocorticoid and non-glucocorticoid steroids, and, as revealed by GR-binding studies in vitro and in pituitary glands, enhanced ligand binding. Concordantly, the protein structure prediction depicted reduced binding distances between the receptor and ligand, and altered interactions in the ligand binding pocket. Consequently, the Ala610Val substitution opens up new structural information for the design of potent GR ligands and to examine effects of the enhanced GR responsiveness to glucocorticoids on the entire organism. PMID:27736993

  8. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer.

    PubMed

    Gregory, Christopher W; Fei, Xiaoyin; Ponguta, Liliana A; He, Bin; Bill, Heather M; French, Frank S; Wilson, Elizabeth M

    2004-02-20

    Growth of normal and neoplastic prostate is mediated by the androgen receptor (AR), a ligand-dependent transcription factor activated by high affinity androgen binding. The AR is highly expressed in recurrent prostate cancer cells that proliferate despite reduced circulating androgen. In this report, we show that epidermal growth factor (EGF) increases androgen-dependent AR transactivation in the recurrent prostate cancer cell line CWR-R1 through a mechanism that involves a post-transcriptional increase in the p160 coactivator transcriptional intermediary factor 2/glucocorticoid receptor interacting protein 1 (TIF2/GRIP1). Site-specific mutagenesis and selective MAPK inhibitors linked the EGF-induced increase in AR transactivation to phosphorylation of TIF2/GRIP1. EGF signaling increased the coimmunoprecipitation of TIF2 and AR. AR transactivation and its stimulation by EGF were reduced by small interfering RNA inhibition of TIF2/GRIP1 expression. The data indicate that EGF signaling through MAPK increases TIF2/GRIP1 coactivation of AR transactivation in recurrent prostate cancer.

  9. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    PubMed

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  10. Interacting factors in the control of the crustacean molt cycle

    SciTech Connect

    Skinner, D.M.

    1985-01-01

    In order to account for the known phenomena of the crustacean molt cycle, at least six factors must be postulated: a molting hormone (20-OH-ecdysone), a molt-inhibiting hormone (MIH), an anecdysial limb autotomy factor, a proecdysial limb-autotomy factor, a limb growth-inhibiting factor and an exuviation factor. Only the molting hormone and its derivatives have been chemically well defined. The various factors interact in complex ways to maintain not only a coordinated proecdysial period in preparation for exuviation but also a proecdysial period with the flexibility to respond to such interim hazards as the loss of partially regenerated limbs. 79 references, 2 figures, 1 table.

  11. Interacting factors in the control of the crustacean molt cycle

    SciTech Connect

    Skinner, D.M.

    1983-01-01

    In order to account for the known phenomena of the crustacean molt cycle, at least six factors must be postulated: a molting hormone (20-OH-ecdysone), a molt inhibiting hormone (MIH), an anecdysial limb autotomy factor, a proecdysial limb autotomy factor, a limb growth inhibiting factor and an exuviation factor. Only the molting hormone and its derivatives have been chemically well defined. The various factors interact in complex ways to maintain not only a coordinated proecdysial period in preparation for exuviation but also a proecdysial period with the flexibility to respond to such interim hazards as the loss of partially regenerated limbs. 78 references, 2 figures, 1 table.

  12. Crucial Roles for Interactions between MLL3/4 and INI1 in Nuclear Receptor Transactivation

    PubMed Central

    Lee, Seunghee; Kim, Dae-Hwan; Goo, Young Hwa; Lee, Young Chul; Lee, Soo-Kyung; Lee, Jae W.

    2009-01-01

    Nuclear receptor (NR) transactivation involves multiple coactivators, and the molecular basis for how these are functionally integrated needs to be determined to fully understand the NR action. Activating signal cointegrator-2 (ASC-2), a transcriptional coactivator of many NRs and transcription factors, forms a steady-state complex, ASCOM (for ASC-2 complex), which contains histone H3-lysine-4 (H3K4) methyltransferase MLL3 or its paralog MLL4. Here, we show that ASCOM requires a functional cross talk with the ATPase-dependent chromatin remodeling complex Swi/Snf for efficient NR transactivation. Our results reveal that ASCOM and Swi/Snf are tightly colocalized in the nucleus and that ASCOM and Swi/Snf promote each other’s binding to NR target genes. We further show that the C-terminal SET domain of MLL3 and MLL4 directly interacts with INI1, an integral subunit of Swi/Snf. Our mutational analysis demonstrates that this interaction underlies the mutual facilitation of ASCOM and Swi/Snf recruitment to NR target genes. Importantly, this study uncovers a specific protein-protein interaction as a novel venue to couple two distinct enzymatic coactivator complexes during NR transactivation. PMID:19221051

  13. Molecular Characteristics of Membrane Glutamate Receptor-Ionophore Interaction.

    DTIC Science & Technology

    1986-08-29

    Neurochemical - Research , 1984, 9, 29-44. Chang, H.H., Michaelis, E.K. & Roy, S. Functional characteristics of . -Z L-glutamate, N-methyl-D-aspartate and kainate...receptors in isolated brain synaptic membranes. Neurochemical Research , 1984, 9, 901-913. Michaelis, E. K., Galton, N. and Early, S. L. Spider venous

  14. The discovery of novel vascular endothelial growth factor receptor tyrosine kinases inhibitors: pharmacophore modeling, virtual screening and docking studies.

    PubMed

    Yu, Hui; Wang, Zhanli; Zhang, Liangren; Zhang, Jufeng; Huang, Qian

    2007-03-01

    We have applied pharmacophore generation, database searching and docking methodologies to discover new structures for the design of vascular endothelial growth factor receptors, the tyrosine kinase insert domain-containing receptor kinase inhibitors. The chemical function based pharmacophore models were built for kinase insert domain-containing receptor kinase inhibitors from a set of 10 known inhibitors using the algorithm HipHop, which is implemented in the CATALYST software. The highest scoring HipHop model consists of four features: one hydrophobic, one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic function. Using the algorithm CatShape within CATALYST, the bound conformation of 4-amino-furo [2, 3-d] pyrimidine binding to kinase insert domain-containing receptor kinase was used to generate a shape query. A merged shape and hypothesis query that is in an appropriate alignment was then built. The combined shape and hypothesis model was used as a query to search Maybridge database for other potential lead compounds. A total of 39 compounds were retrieved as hits. The hits obtained were docked into kinase insert domain-containing receptor kinase active site. One novel potential lead was proposed based on CATALYST fit value, LigandFit docking scores, and examination of how the hit retain key interactions known to be required for kinase binding. This compound inhibited vascular endothelial growth factor stimulated kinase insert domain-containing receptor phosphorylation in human umbilical vein endothelial cells.

  15. Tumor necrosis factor interaction with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tsai, De-Hao; Elzey, Sherrie; Delrio, Frank W.; Keene, Athena M.; Tyner, Katherine M.; Clogston, Jeffrey D.; Maccuspie, Robert I.; Guha, Suvajyoti; Zachariah, Michael R.; Hackley, Vincent A.

    2012-05-01

    We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 +/- 0.02) nm-2 with a binding constant of 3 × 106 (mol L-1)-1. Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity.We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis

  16. A transcription factor active on the epidermal growth factor receptor gene.

    PubMed Central

    Kageyama, R; Merlino, G T; Pastan, I

    1988-01-01

    We have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. We found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO4/polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I "footprinting" and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR. Images PMID:3393529

  17. The F-BAR Protein PACSIN2 Regulates Epidermal Growth Factor Receptor Internalization

    PubMed Central

    de Kreuk, Bart-Jan; Anthony, Eloise C.; Geerts, Dirk; Hordijk, Peter L.

    2012-01-01

    Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling. PMID:23129763

  18. Epidermal Growth Factor Receptor Overexpression as a Target for Auger Electron Radiotherapy of Breast Cancer

    DTIC Science & Technology

    1999-08-01

    proportion of estrogen receptor-negative and hormone-resistant breast cancers. Our objective is to construct a human epidermal growth factor (hEGF...61 5 INTRODUCTION Overexpression of the epidermal growth factor receptor (EGFR) occurs in a high proportion of estrogen receptor-negative and...Lac Iq promotor induced by isopropyl-b- D -thiogalactopyranoside (IPTG). The DNA sequence of the final hEGF-CH1 construct was confirmed (FUi. 2). BamHJ

  19. Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine.

    PubMed

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I; Ferré, Sergi; McCormick, Peter J

    2015-04-29

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking.

  20. Moving Beyond the Androgen Receptor (AR): Targeting AR-Interacting Proteins to Treat Prostate Cancer

    PubMed Central

    Foley, Christopher; Mitsiades, Nicholas

    2016-01-01

    Medical or surgical castration serve as the backbone of systemic therapy for advanced and metastatic prostate cancer, taking advantage of the importance of androgen signaling in this disease. Unfortunately, resistance to castration emerges almost universally. Despite the development and approval of new and more potent androgen synthesis inhibitors and androgen receptor (AR) antagonists, prostate cancers continue to develop resistance to these therapeutics, while often maintaining their dependence on the AR signaling axis. This highlights the need for innovative therapeutic approaches that aim to continue disrupting AR downstream signaling, but are orthogonal to directly targeting the AR itself. In this review, we discuss the preclinical research that has been done, as well as clinical trials for prostate cancer, on inhibiting several important families of AR interacting proteins, including chaperones (such as HSP90 and FKBP52), pioneer factors (including FOXA1 and GATA-2), and AR transcriptional coregulators such as the p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2, SRC-3, as well as lysine deacetylases (KDACs) and lysine acetyltransferases (KATs). Researching the effect of, and developing new therapeutic agents that target, the AR signaling axis is critical to advancing our understanding of prostate cancer biology, and to continuing to improve treatments for prostate cancer and for overcoming castration-resistance. PMID:26728473

  1. Moving Beyond the Androgen Receptor (AR): Targeting AR-Interacting Proteins to Treat Prostate Cancer.

    PubMed

    Foley, Christopher; Mitsiades, Nicholas

    2016-04-01

    Medical or surgical castration serves as the backbone of systemic therapy for advanced and metastatic prostate cancer, taking advantage of the importance of androgen signaling in this disease. Unfortunately, resistance to castration emerges almost universally. Despite the development and approval of new and more potent androgen synthesis inhibitors and androgen receptor (AR) antagonists, prostate cancers continue to develop resistance to these therapeutics, while often maintaining their dependence on the AR signaling axis. This highlights the need for innovative therapeutic approaches that aim to continue disrupting AR downstream signaling but are orthogonal to directly targeting the AR itself. In this review, we discuss the preclinical research that has been done, as well as clinical trials for prostate cancer, on inhibiting several important families of AR-interacting proteins, including chaperones (such as heat shock protein 90 (HSP90) and FKBP52), pioneer factors (including forkhead box protein A1 (FOXA1) and GATA-2), and AR transcriptional coregulators such as the p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2, SRC-3, as well as lysine deacetylases (KDACs) and lysine acetyltransferases (KATs). Researching the effect of-and developing new therapeutic agents that target-the AR signaling axis is critical to advancing our understanding of prostate cancer biology, to continue to improve treatments for prostate cancer and for overcoming castration resistance.

  2. Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening

    PubMed Central

    Harini, K.; Sowdhamini, Ramanathan

    2015-01-01

    Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors. PMID:26221959

  3. The alleged dopamine D1 receptor agonist SKF 83959 is a dopamine D1 receptor antagonist in primate cells and interacts with other receptors.

    PubMed

    Andringa, G; Drukarch, B; Leysen, J E; Cools, A R; Stoof, J C

    1999-01-01

    So far, no clear correlation has been found between the effects of dopamine D1 receptor agonists on motor behavior in primate models of Parkinson's disease and their ability to stimulate adenylate cyclase in rats, the benzazepine SKF 83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-]H- 3-benzazepine) being the most striking example. Since this discrepancy might be attributed to: (A) the different species used to study these effects or (B) the interaction of SKF 83959 with other catecholamine receptors, the aims of this study were: (1) to study the ability of SKF 83959 to stimulate adenylate cyclase in cultured human and monkey glial cells equipped with dopamine D1 receptors and (2) to evaluate the affinity for and the functional interaction of SKF 83959 with other catecholamine receptors. Binding studies revealed that SKF 83959 displayed the highest affinity for the dopamine D1 receptor (pKi=6.72) and the alpha2-adrenoceptor (pKi=6.41) and moderate affinity for the dopamine D2 receptor and the noradrenaline transporter. In monkey and human cells, SKF 83959 did not stimulate cyclic adenosine monophosphate (cAMP) formation to a significant extent, but antagonized very potently the dopamine-induced stimulation of cAMP formation in both cell types. The compound stimulated basal dopamine outflow and inhibited depolarization-induced acetylcholine release only at concentrations > 10 microM. Finally, SKF 83959 concentration dependently increased electrically evoked noradrenaline release, indicating that it had alpha2-adrenoceptor blocking activity and interfered with the noradrenaline transporter. In conclusion, SKF 83959 is a potent dopamine D1 receptor and alpha2-adrenoceptor antagonist. Thus, the anti-parkinsonian effects of SKF 83959 in primates are not mediated by striatal dopamine D1 receptors coupled to adenylate cyclase in a stimulatory way.

  4. The transcriptional factor Osterix directly interacts with RNA helicase A.

    PubMed

    Amorim, Bruna Rabelo; Okamura, Hirohiko; Yoshida, Kaya; Qiu, Lihong; Morimoto, Hiroyuki; Haneji, Tatsuji

    2007-04-06

    Osterix is an osteoblast-specific transcriptional factor, required for bone formation and osteoblast differentiation. Here, we identified new Osterix interacting factors by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among the candidates, RNA helicase A was identified to interact with Osterix. To determine the interaction of Osterix with RNA helicase A, immunoprecipitation assay was performed. Western analysis confirmed the association between Osterix and RNA helicase A. Immunocytochemical analysis also showed that Osterix and RNA helicase A were co-localized in HEK 293 cells. Our data suggest that RNA helicase A might be a component of Osterix regulation.

  5. Rabies virus interaction with various cell lines is independent of the acetylcholine receptor.

    PubMed

    Reagan, K J; Wunner, W H

    1985-01-01

    Rabies virus infects most cells in vitro. The presence of the nicotinic acetylcholine receptor on the plasma membrane of various cell lines is not an obligate factor for rabies virus susceptibility of those cells.

  6. Decoding of lipoprotein – receptor interactions; Properties of ligand binding modules governing interactions with ApoE

    PubMed Central

    Guttman, Miklos; Prieto, J. Helena; Croy, Johnny E.; Komives, Elizabeth A.

    2010-01-01

    Clusters of complement-type ligand binding repeats in the LDL receptor family are thought to mediate the interactions between these receptors and their various ligands. Apolipoprotein E, a key ligand for cholesterol homeostasis, has been shown to interact with LDLR, LRP and VLDLR, through these clusters. LDLR and VLDLR each contain a single ligand-binding repeat cluster, whereas LRP contains three large clusters of ligand binding repeats, each with ligand binding functions. We show that within sLRP3, the three-repeat subcluster CR16-18 recapitulated ligand binding to the isolated receptor binding portion of ApoE (residues 130-149). Binding experiments with LA3-5 of LDLR and CR16-18 showed that a conserved W25/D30 pair appears critical for high affinity binding to ApoE(130-149). The triple repeat LA3-5 showed the expected interaction with ApoE(1-191)•DMPC, but surprisingly CR16-18 did not interact with this form of ApoE. To understand these differences in ApoE binding affinity, we introduced mutations of conserved residues from LA5 into CR18, and produced a CR16-18 variant capable of binding ApoE(1-191)•DMPC. This change cannot fully be accounted for by the interaction with the proposed ApoE receptor binding region, therefore we speculate that LA5 is recognizing a distinct epitope on ApoE that may only exists in the lipid bound form. The combination of avidity effects with this distinct recognition process likely governs the ApoE-LDL receptor interaction. PMID:20030366

  7. Different Epidermal Growth Factor Receptor (EGFR) Agonists Produce Unique Signatures for the Recruitment of Downstream Signaling Proteins* ♦

    PubMed Central

    Ronan, Tom; Macdonald-Obermann, Jennifer L.; Huelsmann, Lorel; Bessman, Nicholas J.; Naegle, Kristen M.; Pike, Linda J.

    2016-01-01

    The EGF receptor can bind seven different agonist ligands. Although each agonist appears to stimulate the same suite of downstream signaling proteins, different agonists are capable of inducing distinct responses in the same cell. To determine the basis for these differences, we used luciferase fragment complementation imaging to monitor the recruitment of Cbl, CrkL, Gab1, Grb2, PI3K, p52 Shc, p66 Shc, and Shp2 to the EGF receptor when stimulated by the seven EGF receptor ligands. Recruitment of all eight proteins was rapid, dose-dependent, and inhibited by erlotinib and lapatinib, although to differing extents. Comparison of the time course of recruitment of the eight proteins in response to a fixed concentration of each growth factor revealed differences among the growth factors that could contribute to their differing biological effects. Principal component analysis of the resulting data set confirmed that the recruitment of these proteins differed between agonists and also between different doses of the same agonist. Ensemble clustering of the overall response to the different growth factors suggests that these EGF receptor ligands fall into two major groups as follows: (i) EGF, amphiregulin, and EPR; and (ii) betacellulin, TGFα, and epigen. Heparin-binding EGF is distantly related to both clusters. Our data identify differences in network utilization by different EGF receptor agonists and highlight the need to characterize network interactions under conditions other than high dose EGF. PMID:26786109

  8. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  9. Fluorescence anisotropy microplate assay to investigate the interaction of full-length steroid receptor coactivator-1a with steroid receptors

    PubMed Central

    Zhang, Chen; Nordeen, Steven K.; Shapiro, David J.

    2013-01-01

    Estrogens, acting via estrogen receptor (ER) play key roles in growth, differentiation and gene regulation in the reproductive, central nervous and skeletal systems. ER-mediated gene transcription contributes to the development and spread of breast, uterine, and liver cancer. Steroid receptor coactivator-1a (SRC1a) belongs to the P160 family of coactivators, which is the best known of the many coactivators implicated in ER-mediated transactivation. Binding of full-length P160 coactivators to steroid receptors has been difficult to investigate in vitro. This chapter details how to investigate the interaction of SRC1a with ER using the fluorescence anisotropy/polarization microplate assay (FAMA). PMID:23436375

  10. Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis

    PubMed Central

    Hofer, Erhard; Schweighofer, Bernhard

    2010-01-01

    Summary New vessel formation during development and in the adult is triggered by concerted signals of largely endothelial-specific receptors for ligands of the VEGF, angiopoietin and ephrin families. The signals and genes induced by these receptors operate in the context of additional signals transduced by non-endothelial specific growth factor receptors, inflammatory cytokine receptors as well as adhesion molecules. We summarize here available data on characteristic signaling of the VEGF receptor-2 and the current state of knowledge regarding the additional different receptor tyrosine kinases of the VEGF, Tie and Ephrin receptor families. Furthermore, the potential cross-talk with signals induced by other growth factors and inflammatory cytokines as well as the modulation by VE-cadherin is discussed. PMID:17334501

  11. Counteracting interactions between lipopolysaccharide molecules with differential activation of toll-like receptors.

    PubMed

    Hajishengallis, George; Martin, Michael; Schifferle, Robert E; Genco, Robert J

    2002-12-01

    We investigated counteracting interactions between the lipopolysaccharides (LPS) from Escherichia coli (Ec-LPS) and Porphyromonas gingivalis (Pg-LPS), which induce cellular activation through Toll-like receptor 4 (TLR4) and TLR2, respectively. We found that Ec-LPS induced tolerance in THP-1 cells to subsequent tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1beta) induction by Pg-LPS, though the reverse was not true, and looked for explanatory differential effects on the signal transduction pathway. Cells exposed to Pg-LPS, but not to Ec-LPS, displayed persisting expression of IL-1 receptor-associated kinase without apparent degradation, presumably allowing prolonged relay of downstream signals. Accordingly, cells pretreated with Pg-LPS, but not with Ec-LPS, were effectively activated in response to subsequent exposure to either LPS molecule, as evidenced by assessing nuclear factor (NF)-kappaB activity. In fact, Pg-LPS primed THP-1 cells for enhanced NF-kappaB activation and TNF-alpha release upon restimulation with the same LPS. This was a dose-dependent effect and correlated with upregulation of surface TLR2 expression. Furthermore, we observed inhibition of NF-kappaB-dependent transcription in a reporter cell line pretreated with Ec-LPS and restimulated with Pg-LPS (compared to cells pretreated with medium only and restimulated with Pg-LPS), but not when the reverse treatment was made. Although Pg-LPS could not make cells tolerant to subsequent activation by Ec-LPS, Pg-LPS inhibited Ec-LPS-induced TNF-alpha and IL-6 release when the two molecules were added simultaneously into THP-1 cell cultures. Pg-LPS also suppressed P. gingivalis FimA protein-induced NF-kappaB-dependent transcription in the 3E10/huTLR4 reporter cell line, which does not express TLR2. This rules out competition for common signaling intermediates, suggesting that Pg-LPS may block component(s) of the TLR4 receptor complex. Interactions between TLR2 and TLR4 agonists may be

  12. NHERF2 specifically interacts with LPA2 receptor and defines the specificity and efficiency of receptor-mediated phospholipase C-beta3 activation.

    PubMed

    Oh, Yong-Seok; Jo, Nam Won; Choi, Jung Woong; Kim, Hyeon Soo; Seo, Sang-Won; Kang, Kyung-Ok; Hwang, Jong-Ik; Heo, Kyun; Kim, Sun-Hee; Kim, Yun-Hee; Kim, In-Hoo; Kim, Jae Ho; Banno, Yoshiko; Ryu, Sung Ho; Suh, Pann-Ghill

    2004-06-01

    Lysophosphatidic acid (LPA) activates a family of cognate G protein-coupled receptors and is involved in various pathophysiological processes. However, it is not clearly understood how these LPA receptors are specifically coupled to their downstream signaling molecules. This study found that LPA(2), but not the other LPA receptor isoforms, specifically interacts with Na(+)/H(+) exchanger regulatory factor2 (NHERF2). In addition, the interaction between them requires the C-terminal PDZ domain-binding motif of LPA(2) and the second PDZ domain of NHERF2. Moreover, the stable expression of NHERF2 potentiated LPA-induced phospholipase C-beta (PLC-beta) activation, which was markedly attenuated by either a mutation in the PDZ-binding motif of LPA(2) or by the gene silencing of NHERF2. Using its second PDZ domain, NHERF2 was found to indirectly link LPA(2) to PLC-beta3 to form a complex, and the other PLC-beta isozymes were not included in the protein complex. Consistently, LPA(2)-mediated PLC-beta activation was specifically inhibited by the gene silencing of PLC-beta3. In addition, NHERF2 increases LPA-induced ERK activation, which is followed by cyclooxygenase-2 induction via a PLC-dependent pathway. Overall, the results suggest that a ternary complex composed of LPA(2), NHERF2, and PLC-beta3 may play a key role in the LPA(2)-mediated PLC-beta signaling pathway.

  13. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  14. EFFECT OF GROWTH FACTOR-FIBRONECTIN MATRIX INTERACTION ON RAT TYPE II CELL ADHESION AND DNA SYTHESIS

    EPA Science Inventory

    ABSTRACT

    Type II cells attach, migrate and proliferate on a provisional fibronectin-rich matrix during alveolar wall repair after lung injury. The combination of cell-substratum interactions via integrin receptors and exposure to local growth factors are likely to initiat...

  15. Influence of macrocyclization on allosteric, juxtamembrane-derived, stapled peptide inhibitors of the epidermal growth factor receptor (EGFR).

    PubMed

    Sinclair, Julie K-L; Schepartz, Alanna

    2014-09-19

    The hydrocarbon-stapled peptide E1(S) allosterically inhibits the kinase activity of the epidermal growth factor receptor (EGFR) by blocking a distant but essential protein-protein interaction: a coiled coil formed from the juxtamembrane segment (JM) of each member of the dimeric partnership.1 Macrocyclization is not required for activity: the analogous unstapled (but alkene-bearing) peptide is equipotent in cell viability, immunoblot, and bipartite display experiments to detect coiled coil formation on the cell surface.

  16. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development

    PubMed Central

    1993-01-01

    Scatter factor/hepatocyte growth factor (SF/HGF) has potent motogenic, mitogenic, and morphogenetic activities on epithelial cells in vitro. The cell surface receptor for this factor was recently identified: it is the product of the c-met protooncogene, a receptor-type tyrosine kinase. We report here the novel and distinct expression patterns of SF/HGF and its receptor during mouse development, which was determined by a combination of in situ hybridization and RNase protection experiments. Predominantly, we detect transcripts of c-met in epithelial cells of various developing organs, whereas the ligand is expressed in distinct mesenchymal cells in close vicinity. In addition, transient SF/HGF and c-met expression is found at certain sites of muscle formation; transient expression of the c-met gene is also detected in developing motoneurons. SF/HGF and the c-met receptor might thus play multiple developmental roles, most notably, mediate a signal given by mesenchyme and received by epithelial. Mesenchymal signals are known to govern differentiation and morphogenesis of many epithelia, but the molecular nature of the signals has remained poorly understood. Therefore, the known biological activities of SF/HGF in vitro and the embryonal expression pattern reported here indicate that this mesenchymal factor can transmit morphogenetic signals in epithelial development and suggest a molecular mechanism for mesenchymal epithelial interactions. PMID:8408200

  17. Multiresolution imaging of in-vivo ligand-receptor interactions

    NASA Astrophysics Data System (ADS)

    Thevenaz, Philippe; Millet, Philippe

    2001-05-01

    The aim of this study is to obtain voxel-by-voxel images of binding parameters between [11C]-flumazenil and benzodiazepine receptors using positron emission tomography (PET). We estimate five local parameters (k1, k2, B'max, kon/VR, koff) by fitting a three- compartment ligand-receptor model for each voxel of a PET time series. It proves difficult to fit the ligand-receptor model to the data. We trade noise and spatial resolution to get better results. Our strategy is based on the use of a multiresolution pyramid. It is much easier to solve the problem at coarse resolution because there are fewer data to process. To increase resolution, we expand the parameter maps to the next finer level and use them as initial solution to further optimization, which then proceeds at a fast pace and is more likely to escape false local minima. For this approach to work optimally, the residue between data at a given pyramid level and data at the next level must be as small as possible. We satisfy this constraint by working with spline-based least- squares pyramids. To achieve speed, the optimizer must be efficient, particularly when it is nearing the solution. To that effect, we have developed a Marquardt-Levenberg algorithm that exhibits superlinear convergence properties.

  18. HR+HER2- breast cancers with growth factor receptor-mediated EMT have a poor prognosis and lapatinib downregulates EMT in MCF-7 cells.

    PubMed

    Desai, Krisha; Aiyappa, Radhika; Prabhu, Jyothi S; Nair, Madhumathy G; Lawrence, Patrick Varun; Korlimarla, Aruna; Ce, Anupama; Alexander, Annie; Kaluve, Rohini S; Manjunath, Suraj; Correa, Marjorrie; Srinath, B S; Patil, Shekhar; Kalamdani, Anjali; Prasad, Msn; Sridhar, T S

    2017-03-01

    Despite an overall good prognosis, a significant proportion of patients with hormone receptor positive human epidermal growth factor receptor 2 negative breast cancers develop distant metastases. The metastatic potential of epithelial cells is known to be regulated by tumor-stromal interaction and mediated by epithelial-to-mesenchymal transition. Hormone receptor positive human epidermal growth factor receptor 2 negative tumors were used to estimate markers of epithelial-to-mesenchymal transition, and the luminal breast cancer cell line MCF-7 was used to examine the interactions between integrins and growth factor receptors in causation of epithelial-to-mesenchymal transition. A total of 140 primary tumors were sub-divided into groups enriched for the markers of epithelial-to-mesenchymal transition (snail family transcriptional repressor 2 and integrin β6) versus those with low levels. Within the epithelial-to-mesenchymal transition+ tumors, there was a positive correlation between the transcripts of integrin β6 and growth factor receptors-human epidermal growth factor receptor 2 and epidermal growth factor receptor. In tumors enriched for epithelial-to-mesenchymal transition markers, patients with tumors with the highest quartile of growth factor receptor transcripts had a shorter disease-free survival compared to patients with low growth factor receptor expression by Kaplan-Meier analysis (log rank, p = 0.03). Epithelial-to-mesenchymal transition was induced in MCF-7 cells by treatment with transforming growth factor beta 1 and confirmed by upregulation of SNAI1 and SNAI2 transcripts, increase of vimentin and integrin β6 protein, and repression of E-cadherin. Treatment of these cells with the dual-specificity tyrosine-kinase inhibitor lapatinib led to downregulation of epithelial-to-mesenchymal transition as indicated by lower levels of SNAI1 and SNAI2 transcripts, integrin αvβ6, and matrix metalloproteinase 9 protein. The results suggest that

  19. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing

    PubMed Central

    Yeo, Jaeryong; Lee, Juyeong

    2016-01-01

    Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers’ online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans’ interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users. PMID:26849568

  20. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing.

    PubMed

    Ko, Minsam; Yeo, Jaeryong; Lee, Juyeong; Lee, Uichin; Jang, Young Jae

    2016-01-01

    Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers' online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans' interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users.

  1. Dynamic tracing for epidermal growth factor receptor mutations in urinary circulating DNA in gastric cancer patients.

    PubMed

    Shi, Xiu-Qin; Xue, Wen-Hua; Zhao, Song-Feng; Zhang, Xiao-Jian; Sun, Wukong

    2017-02-01

    The mutations of epidermal growth factor receptor are detected in gastric cancer, indicating its suitability as a target for receptor tyrosine kinase inhibitors, as well as a marker for clinical outcome of chemotherapeutic treatments. However, extraction of quality tumor tissue for molecular processes remains challenging. Here, we aimed to examine the clinical relevance of urinary cell-free DNA as an alternative tumor material source used specifically for monitoring epidermal growth factor receptor mutations. Therefore, 120 gastric cancer patients with epidermal growth factor receptor mutations and 100 healthy controls were recruited for the study. The gastric patients also received epidermal growth factor receptor inhibitor treatment for a serial monitoring study. Paired primary tumor specimens were obtained with blood and urine samples, which were taken at a 1-month interval for a duration of 12 months. We found that urinary cell-free DNA yielded a close agreement of 92% on epidermal growth factor receptor mutation status when compared to primary tissue at baseline, and of 99% epidermal growth factor receptor mutation status when compared to plasma samples at different time points. Thus, our data suggest that urinary cell-free DNA may be a reliable source for screening and monitoring epidermal growth factor receptor mutations in the primary gastric cancer.

  2. Teaching resources. Growth factor and receptor tyrosine kinases.

    PubMed

    Aaronson, Stuart

    2005-02-22

    This Teaching Resource provides lecture notes and slides for a graduate-level class on ligand regulation of signaling by receptor tyrosine kinases and receptors involved in the Wnt canonical pathway. It is part of a series of lectures that constitute the Cell Signaling Systems course. A description of the lecture, along with a set of slides used to present this information, is provided.

  3. Inferring the Interactions of Risk Factors from EHRs

    PubMed Central

    Goodwin, Travis; Harabagiu, Sanda M.

    2016-01-01

    The wealth of clinical information provided by the advent of electronic health records offers an exciting opportunity to improve the quality of patient care. Of particular importance are the risk factors, which indicate possible diagnoses, and the medications which treat them. By analysing which risk factors and medications were mentioned at different times in patients’ EHRs, we are able to construct a patient’s clinical chronology. This chronology enables us to not only predict how new patient’s risk factors may progress, but also to discover patterns of interactions between risk factors and medications. We present a novel probabilistic model of patients’ clinical chronologies and demonstrate how this model can be used to (1) predict the way a new patient’s risk factors may evolve over time, (2) identify patients with irregular chronologies, and (3) discovering the interactions between pairs of risk factors, and between risk factors and medications over time. Moreover, the model proposed in this paper does not rely on (nor specify) any prior knowledge about any interactions between the risk factors and medications it represents. Thus, our model can be easily applied to any arbitrary set of risk factors and medications derived from a new dataset. PMID:27595044

  4. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis.

    PubMed

    Jordá, Lucía; Sopeña-Torres, Sara; Escudero, Viviana; Nuñez-Corcuera, Beatriz; Delgado-Cerezo, Magdalena; Torii, Keiko U; Molina, Antonio

    2016-01-01

    ERECTA (ER) receptor-like kinase (RLK) regulates Arabidopsis thaliana organ growth, and inflorescence and stomatal development by interacting with the ERECTA-family genes (ERf) paralogs, ER-like 1 (ERL1) and ERL2, and the receptor-like protein (RLP) TOO MANY MOUTHS (TMM). ER also controls immune responses and resistance to pathogens such as the bacterium Pseudomonas syringae pv. tomato DC3000 (Pto) and the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM). We found that er null-mutant plants overexpressing an ER dominant-negative version lacking the cytoplasmic kinase domain (ERΔK) showed an enhanced susceptibility to PcBMM, suggesting that ERΔK associates and forms inactive complexes with additional RLKs/RLPs required for PcBMM resistance. Genetic analyses demonstrated that ER acts in a combinatorial specific manner with ERL1, ERL2, and TMM to control PcBMM resistance. Moreover, BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated kinase 1) RLK, which together with ERf/TMM regulates stomatal patterning and resistance to Pto, was also found to have an unequal contribution with ER in regulating immune responses and resistance to PcBMM. Co-immunoprecipitation experiments in Nicotiana benthamiana further demonstrated BAK1-ER protein interaction. The secreted epidermal pattern factor peptides (EPF1 and EPF2), which are perceived by ERf members to specify stomatal patterning, do not seem to regulate ER-mediated immunity to PcBMM, since their inducible overexpression in A. thaliana did not impact on PcBMM resistance. Our results indicate that the multiproteic receptorsome formed by ERf, TMM and BAK1 modulates A. thaliana resistance to PcBMM, and suggest that the cues underlying ERf/TMM/BAK1-mediated immune responses are distinct from those regulating stomatal pattering.

  5. Hydrophobic Mismatch Drives the Interaction of E5 with the Transmembrane Segment of PDGF Receptor

    PubMed Central

    Windisch, Dirk; Ziegler, Colin; Grage, Stephan L.; Bürck, Jochen; Zeitler, Marcel; Gor’kov, Peter L.; Ulrich, Anne S.

    2015-01-01

    The oncogenic E5 protein from bovine papillomavirus is a short (44 amino acids long) integral membrane protein that forms homodimers. It activates platelet-derived growth factor receptor (PDGFR) β in a ligand-independent manner by transmembrane helix-helix interactions. The nature of this recognition event remains elusive, as numerous mutations are tolerated in the E5 transmembrane segment, with the exception of one hydrogen-bonding residue. Here, we examined the conformation, stability, and alignment of the E5 protein in fluid lipid membranes of substantially varying bilayer thickness, in both the absence and presence of the PDGFR transmembrane segment. Quantitative synchrotron radiation circular dichroism analysis revealed a very long transmembrane helix for E5 of ∼26 amino acids. Oriented circular dichroism and solid-state 15N-NMR showed that the alignment and stability of this unusually long segment depend critically on the membrane thickness. When reconstituted alone in exceptionally thick DNPC lipid bilayers, the E5 helix was found to be inserted almost upright. In moderately thick bilayers (DErPC and DEiPC), it started to tilt and became slightly deformed, and finally it became aggregated in conventional DOPC, POPC, and DMPC membranes due to hydrophobic mismatch. On the other hand, when E5 was co-reconstituted with the transmembrane segment of PDGFR, it was able to tolerate even the most pronounced mismatch and was stabilized by binding to the receptor, which has the same hydrophobic length. As E5 is known to activate PDGFR within the thin membranes of the Golgi compartment, we suggest that the intrinsic hydrophobic mismatch of these two interaction partners drives them together. They seem to recognize each other by forming a closely packed bundle of mutually aligned transmembrane helices, which is further stabilized by a specific pair of hydrogen-bonding residues. PMID:26287626

  6. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis

    PubMed Central

    Jordá, Lucía; Sopeña-Torres, Sara; Escudero, Viviana; Nuñez-Corcuera, Beatriz; Delgado-Cerezo, Magdalena; Torii, Keiko U.; Molina, Antonio

    2016-01-01

    ERECTA (ER) receptor-like kinase (RLK) regulates Arabidopsis thaliana organ growth, and inflorescence and stomatal development by interacting with the ERECTA-family genes (ERf) paralogs, ER-like 1 (ERL1) and ERL2, and the receptor-like protein (RLP) TOO MANY MOUTHS (TMM). ER also controls immune responses and resistance to pathogens such as the bacterium Pseudomonas syringae pv. tomato DC3000 (Pto) and the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM). We found that er null-mutant plants overexpressing an ER dominant-negative version lacking the cytoplasmic kinase domain (ERΔK) showed an enhanced susceptibility to PcBMM, suggesting that ERΔK associates and forms inactive complexes with additional RLKs/RLPs required for PcBMM resistance. Genetic analyses demonstrated that ER acts in a combinatorial specific manner with ERL1, ERL2, and TMM to control PcBMM resistance. Moreover, BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated kinase 1) RLK, which together with ERf/TMM regulates stomatal patterning and resistance to Pto, was also found to have an unequal contribution with ER in regulating immune responses and resistance to PcBMM. Co-immunoprecipitation experiments in Nicotiana benthamiana further demonstrated BAK1-ER protein interaction. The secreted epidermal pattern factor peptides (EPF1 and EPF2), which are perceived by ERf members to specify stomatal patterning, do not seem to regulate ER-mediated immunity to PcBMM, since their inducible overexpression in A. thaliana did not impact on PcBMM resistance. Our results indicate that the multiproteic receptorsome formed by ERf, TMM and BAK1 modulates A. thaliana resistance to PcBMM, and suggest that the cues underlying ERf/TMM/BAK1-mediated immune responses are distinct from those regulating stomatal pattering. PMID:27446127

  7. Molecular basis for the Kallmann syndrome-linked fibroblast growth factor receptor mutation

    SciTech Connect

    Thurman, Ryan D.; Kathir, Karuppanan Muthusamy; Rajalingam, Dakshinamurthy; Kumar, Thallapuranam K. Suresh

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer The structural basis of the Kallmann syndrome is elucidated. Black-Right-Pointing-Pointer Kallmann syndrome mutation (A168S) induces a subtle conformational change(s). Black-Right-Pointing-Pointer Structural interactions mediated by beta-sheet G are most perturbed. Black-Right-Pointing-Pointer Ligand (FGF)-receptor interaction(s) is completely abolished by Kallmann mutation. Black-Right-Pointing-Pointer Kallmann mutation directly affects the FGF signaling process. -- Abstract: Kallmann syndrome (KS) is a developmental disease that expresses in patients as hypogonadotropic hypogonadism and anosmia. KS is commonly associated with mutations in the extracellular D2 domain of the fibroblast growth factor receptor (FGFR). In this study, for the first time, the molecular basis for the FGFR associated KS mutation (A168S) is elucidated using a variety of biophysical experiments, including multidimensional NMR spectroscopy. Secondary and tertiary structural analysis using far UV circular dichroism, fluorescence and limited trypsin digestion assays suggest that the KS mutation induces subtle tertiary structure change in the D2 domain of FGFR. Results of isothermal titration calorimetry experiments show the KS mutation causes a 10-fold decrease in heparin binding affinity and also a complete loss in ligand (FGF-1) binding. {sup 1}H-{sup 15}N chemical perturbation data suggest that complete loss in the ligand (FGF) binding affinity is triggered by a subtle conformational change that disrupts crucial structural interactions in both the heparin and the FGF binding sites in the D2 domain of FGFR. The novel findings reported in this study are expected to provide valuable clues toward a complete understanding of the other genetic diseases linked to mutations in the FGFR.

  8. The Urokinase/Urokinase Receptor System in Mast Cells: Effects of its Functional Interaction with fMLF Receptors

    PubMed Central

    Rossi, Francesca Wanda; Prevete, Nella; Rivellese, Felice; Napolitano, Filomena; Montuori, Nunzia; Postiglione, Loredana; Selleri, Carmine; de Paulis, Amato

    2016-01-01

    Mast cell and basophils express the high affinity receptor for IgE (FcɛRI) and are primary effector cells of allergic disorders. The urokinase (uPA)-mediated plasminogen activation system is involved in physiological and pathological events based on cell migration and tissue remodelling, such as inflammation, wound healing, angiogenesis and metastasis. uPA is a serine protease that binds uPAR, a high affinity glycosyl-phosphatidyl-inositol (GPI)-anchored receptor. uPAR focuses uPA activity at the cell surface and activates intracellular signaling through lateral interactions with integrins, receptor tyrosine kinases and the G-protein-coupled family of fMLF chemotaxis receptors (FPRs). We investigated the expression of the uPA-uPAR system and its functional interaction with FPRs in human mast cells (MCs). Differently from basophils, MCs produced uPA that was able to induce their chemotaxis. Indeed, MCs also expressed uPAR, both in the intact and in a cleaved form (DII-DIII-uPAR) that can expose, at the N-terminus, the SRSRY sequence, able to interact with FPRs and to mediate cell chemotaxis. MCs also expressed mRNAs for FPRs that were functionally active; indeed, uPA and a soluble peptide (uPAR84–95), containing the SRSRY chemotactic sequence of uPAR and able to interact with FPRs, were able to induce MCs chemotaxis. Thus, uPA is a potent chemoattractant for MCs acting through the exposure of the chemotactic epitope of uPAR, that is an endogenous ligand for FPRs. The same mechanism could be involved in VEGF-A secretion by human MCs, also induced by uPA and uPAR84–95 stimulation. PMID:27896225

  9. Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade

    SciTech Connect

    Li Jing; Huang Shyhmin; Armstrong, Eric A.; Fowler, John F.; Harari, Paul M. . E-mail: harari@humonc.wisc.edu

    2005-08-01

    The formation of new blood vessels (angiogenesis) represents a critical factor in the malignant growth of solid tumors and metastases. Vascular endothelial cell growth factor (VEGF) and its receptor VEGFR2 represent central molecular targets for antiangiogenic intervention, because of their integral involvement in endothelial cell proliferation and migration. In the current study, we investigated in vitro and in vivo effects of receptor blockade on various aspects of the angiogenic process using monoclonal antibodies against VEGFR2 (cp1C11, which is human specific, and DC101, which is mouse specific). Molecular blockade of VEGFR2 inhibited several critical steps involved in angiogenesis. VEGFR2 blockade in endothelial cells attenuated cellular proliferation, reduced cellular migration, and disrupted cellular differentiation and resultant formation of capillary-like networks. Further, VEGFR2 blockade significantly reduced the growth response of human squamous cell carcinoma xenografts in athymic mice. The growth-inhibitory effect of VEGFR2 blockade in tumor xenografts seems to reflect antiangiogenic influence as demonstrated by vascular growth inhibition in an in vivo angiogenesis assay incorporating tumor-bearing Matrigel plugs. Further, administration of VEGFR2-blocking antibodies in endothelial cell cultures, and in mouse xenograft models, increased their response to ionizing radiation, indicating an interactive cytotoxic effect of VEGFR2 blockade with radiation. These data suggest that molecular inhibition of VEGFR2 alone, and in combination with radiation, can enhance tumor response through molecular targeting of tumor vasculature.

  10. Toll-like receptors and microbial exposure: gene-gene and gene-environment interaction in the development of atopy.

    PubMed

    Reijmerink, N E; Kerkhof, M; Bottema, R W B; Gerritsen, J; Stelma, F F; Thijs, C; van Schayck, C P; Smit, H A; Brunekreef, B; Postma, D S; Koppelman, G H

    2011-10-01

    Environmental and genetic factors contribute to atopy development. High microbial exposure may confer a protective effect on atopy. Toll-like receptors (TLRs) bind microbial products and are important in activating the immune system. To assess whether interactions between microbial exposures and genes encoding TLRs (and related genes) result in atopy, genes, environmental factors and gene-environment interactions of 66 single-nucleotide polymorphisms (SNPs) of 12 genes (TLR 1-6, 9 and 10, CD14, MD2, lipopolysaccharide-binding protein (LBP) and Dectin-1), and six proxy parameters of microbial exposure (sibship size, pets (three different parameters), day-care and intrauterine and childhood tobacco smoke exposure) were analysed for association with atopic phenotypes in 3,062 Dutch children (the Allergenic study). The presence of two or more older siblings increased the risk of developing high total immunoglobulin (Ig)E levels at different ages. This risk increased further in children aged 1-2 yrs carrying the minor allele of TLR6 SNP rs1039559. Furthermore, novel two- and three-factor gene-gene and gene-environment interactions were found (e.g. between sibship size, day-care and LBP SNP rs2232596). Larger sibship size is associated with increased total IgE levels. Furthermore, complex two- and three-factor interactions exist between genes and the environment. The TLRs and related genes interact with proxy parameters of high microbial exposure in atopy development.

  11. Histamine H3 receptors, the complex interaction with dopamine and its implications for addiction

    PubMed Central

    Ellenbroek, B A

    2013-01-01

    Histamine H3 receptors are best known as presynaptic receptors inhibiting the release of histamine, as well as other neurotransmitters including acetylcholine and dopamine. However, in the dorsal and ventral striatum, the vast majority of H3 receptors are actually located postsynaptically on medium sized spiny output neurons. These cells also contain large numbers of dopamine (D1 and D2) receptors and it has been shown that H3 receptors form heterodimers with both D1 and D2 receptors. Thus, the anatomical localization of H3 receptors suggests a complex interaction that could both enhance and inhibit dopaminergic neurotransmission. Dopamine, especially within the striatal complex, plays a crucial role in the development of addiction, both in the initial reinforcing effects of drugs of abuse, as well as in maintenance, relapse and reinstatement of drug taking behaviour. It is, therefore, conceivable that H3 receptors can moderate the development and maintenance of drug addiction. In the present review, we appraise the current literature on the involvement of H3 receptors in drug addiction and try to explain these data within a theoretical framework, as well as provide suggestions for further research. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1 PMID:23647606

  12. Brain-derived neurotrophic factor controls cannabinoid CB1 receptor function in the striatum.

    PubMed

    De Chiara, Valentina; Angelucci, Francesco; Rossi, Silvia; Musella, Alessandra; Cavasinni, Francesca; Cantarella, Cristina; Mataluni, Giorgia; Sacchetti, Lucia; Napolitano, Francesco; Castelli, Maura; Caltagirone, Carlo; Bernardi, Giorgio; Maccarrone, Mauro; Usiello, Alessandro; Centonze, Diego

    2010-06-16

    The role of brain-derived neurotrophic factor (BDNF) in emotional processes suggests an interaction with the endocannabinoid system. Here, we addressed the functional interplay between BDNF and cannabinoid CB(1) receptors (CB(1)Rs) in the striatum, a brain area in which both BDNF and CB(1)s play a role in the emotional consequences of stress and of rewarding experiences. BDNF potently inhibited CB(1)R function in the striatum, through a mechanism mediated by altered cholesterol metabolism and membrane lipid raft function. The effect of BDNF was restricted to CB(1)Rs controlling GABA-mediated IPSCs (CB(1)R(GABA)), whereas CB(1)Rs modulating glutamate transmission and GABA(B) receptors were not affected. The action of BDNF on CB(1)R(GABA) function was tyrosine kinase dependent and was complete even after receptor sensitization with cocaine or environmental manipulations activating the dopamine (DA)-dependent reward system. In mice lacking one copy of the BDNF gene (BDNF(+/-)), CB(1)R(GABA) responses were potentiated and were preserved from the action of haloperidol, a DA D(2) receptor (D(2)R) antagonist able to fully abolish CB(1)R(GABA) function in rewarded animals. Haloperidol also enhanced BDNF levels in the striatum, suggesting that this neurotrophin may act as a downstream effector of D(2)Rs in the modulation of cannabinoid signaling. Accordingly, 5 d cocaine exposure both reduced striatal BDNF levels and increased CB(1)R(GABA) activity, through a mechanism dependent on D(2)Rs. The present study identifies a novel mechanism of CB(1)R regulation mediated by BDNF and cholesterol metabolism and provides some evidence that DA D(2)R-dependent modulation of striatal CB(1)R activity is mediated by this neurotrophin.

  13. Zhangfei, a novel regulator of the human nerve growth factor receptor, trkA.

    PubMed

    Valderrama, Ximena; Rapin, Noreen; Misra, Vikram

    2008-10-01

    The replication of herpes simplex virus (HSV) in epithelial cells, and during reactivation from latency in sensory neurons, depends on a ubiquitous cellular protein called host cell factor (HCF). The HSV transactivator, VP16, which initiates the viral replicative cycle, binds HCF as do some other cellular proteins. Of these, the neuronal transcription factor Zhangfei suppresses the ability of VP16 to initiate the replicative cycle. It also suppresses Luman, another cellular transcription factor that binds HCF. Interactions of nerve growth factor (NGF) and its receptor tropomyosin-related kinase (trkA) appear to be critical for maintaining HSV latency. Because the neuronal transcription factor Brn3a, which regulates trkA expression, has a motif for binding HCF, we investigated if Zhangfei had an effect on its activity. We found that Brn3a required HCF for activating the trkA promoter and Zhangfei suppressed its activity in non-neuronal cells. However, in neuron-like NGF-differentiated PC12 cells, both Brn3a and Zhangfei activated the trkA promoter and induced the expression of endogenous trkA. In addition, capsaicin, a stressor, which activates HSV in in vitro models of latency, decreased levels of Zhangfei and trkA transcripts in NGF-differentiated PC12 cells.

  14. Umami-bitter interactions: the suppression of bitterness by umami peptides via human bitter taste receptor.

    PubMed

    Kim, Min Jung; Son, Hee Jin; Kim, Yiseul; Misaka, Takumi; Rhyu, Mee-Ra

    2015-01-09

    Taste-taste interactions often showed in human psychophysical studies. Considering that each tastant in foodstuffs individually stimulates its responsible gustatory systems to elicit relevant taste modalities, taste-taste interaction should be performed in taste receptor cell-based assay. While umami substances have been proposed to suppress the bitterness of various chemicals in human sensory evaluation, the bitter-umami interaction has not been explored in bitter taste receptors, TAS2Rs. We investigated umami-bitter taste interactions by presenting umami peptides with bitter substance (salicin) on Ca(2+)-flux signaling assay using hTAS2R16-expressing cells. Five representative umami peptides (Glu-Asp, Glu-Glu, Glu-Ser, Asp-Glu-Ser, and Glu-Gly-Ser) derived from soybean markedly attenuated the salicin-induced intracellular calcium influx in a time-dependent manner, respectively, while Gly-Gly, a tasteless peptide did not. The efficacies of Glu-Glu suppressing salicin-induced activation of hTAS2R16 were higher than that of probenecid, a specific antagonist of hTAS2R16. According to Ca(2+)-flux signaling assay using the mixtures of salicin and umami peptides, all five umami peptides suppressed salicin-induced intracellular calcium influx in a noncompetitive manner. These results may provide evidence that umami peptides suppress bitter taste via bitter taste receptor(s). This is the first report which defines the interaction between bitter and umami taste in taste receptor level.

  15. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer

    PubMed Central

    Sobani, Zain A; Sawant, Ashwin; Jafri, Mikram; Correa, Amit Keith; Sahin, Ibrahim Halil

    2016-01-01

    Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade. PMID:27777877

  16. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  17. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3

    SciTech Connect

    Keegan, K.; Hayman, M.J. ); Johnson, D.E.; Williams, L.T. )

    1991-02-15

    The fibroblast growth factors are a family of polypeptide growth factors involved in a variety of activities including mitogenesis, angiogenesis, and wound healing. Fibroblast growth factor receptors (FGFRs) have previously been identified in chicken, mouse, and human and have been shown to contain an extracellular domain with either two or three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain. The authors have isolated a human cDNA for another tyrosine kinase receptor that is highly homologous to the previously described FGFR. Expression of this receptor cDNA in COS cells directs the expression of a 125-kDa glycoprotein. They demonstrate that this cDNA encodes a biologically active receptor by showing that human acidic and basic fibroblast growth factors activate this receptor as measured by {sup 45}Ca{sup 2+} efflux assays. These data establish the existence of an additional member of the FGFR family that they have named FGFR-3.

  18. Interactive association of dopamine receptor (DRD4) genotype and ADHD on alcohol expectancies in children.

    PubMed

    Lee, Steve S; Humphreys, Kathryn L

    2014-04-01

    Positive and negative alcohol expectancies (AEs) are beliefs about the consequences of alcohol use (e.g., happy, sad, lazy) and they predict patterns of adolescent and adult alcohol engagement in clinical and nonclinical samples. However, significantly less is known about predictors of AE in children, despite significant variability in AE early in and across development. To identify temporally ordered risk factors that precede AE, we evaluated the independent and interactive association of the functional 7-repeat polymorphism of the dopamine D4 receptor (DRD4) genotype and attention-deficit/hyperactivity disorder (ADHD) with respect to individual differences in positive-social, negative-arousal, sedated/impaired, and wild/crazy AE in school-age children (N = 149) prospectively followed from 6-9 to 8-13 years of age. Controlling for age, sex, and wave, DRD4 7+ carriers reported more wild/crazy AE, but DRD4 was unrelated to the remaining AE domains. ADHD symptoms independently predicted higher negative-arousal, sedated/impaired, and wild/crazy AE, but not positive-social. We also observed a significant interaction in which ADHD symptoms positively predicted wild/crazy AE only in youth with the 7-repeat DRD4 genotype; the same interaction marginally predicted sedated/impaired AE. No interactive effects were observed for the remaining AE domains. These preliminary results suggest that, among DRD4 youth, early ADHD symptoms predict that children will expect alcohol to have wild/crazy effects. We consider these results within a developmental framework to better understand pathways to and from youth alcohol problems.

  19. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions.

    PubMed

    Lumba, Shelley; Cutler, Sean; McCourt, Peter

    2010-01-01

    Plant hormones are a group of chemically diverse small molecules that direct processes ranging from growth and development to biotic and abiotic stress responses. Surprisingly, genome analyses suggest that classic animal nuclear hormone receptor homologs do not exist in plants. It now appears that plants have co-opted several protein families to perceive hormones within the nucleus. In one solution to the problem, the hormones auxin and jasmonate (JA) act as “molecular glue” that promotes protein-protein interactions between receptor F-boxes and downstream corepressor targets. In another solution, gibberellins (GAs) bind and elicit a conformational change in a novel soluble receptor family related to hormone-sensitive lipases. Abscisic acid (ABA), like GA, also acts through an allosteric mechanism involving a START-domain protein. The molecular identification of plant nuclear hormone receptors will allow comparisons with animal nuclear receptors and testing of fundamental questions about hormone function in plant development and evolution.

  20. NRC-interacting factor directs neurite outgrowth in an activity-dependent manner.

    PubMed

    Zhao, X-S; Fu, W-Y; Hung, K-W; Chien, W W Y; Li, Z; Fu, A K; Ip, N Y

    2015-03-19

    Nuclear hormone receptor coregulator-interacting factor 1 (NIF-1) is a zinc finger nuclear protein that was initially identified to enhance nuclear hormone receptor transcription via its interaction with nuclear hormone receptor coregulator (NRC). NIF-1 may regulate gene transcription either by modulating general transcriptional machinery or remodeling chromatin structure through interactions with specific protein partners. We previously reported that the cytoplasmic/nuclear localization of NIF-1 is regulated by the neuronal Cdk5 activator p35, suggesting potential neuronal functions for NIF-1. The present study reveals that NIF-1 plays critical roles in regulating neuronal morphogenesis at early stages. NIF-1 was prominently expressed in the nuclei of developing rat cortical neurons. Knockdown of NIF-1 expression attenuated both neurite outgrowth in cultured cortical neurons and retinoic acid (RA)-treated Neuro-2a neuroblastoma cells. Furthermore, activity-induced Ca(2+) influx, which is critical for neuronal morphogenesis, stimulated the nuclear localization of NIF-1 in cortical neurons. Suppression of NIF-1 expression reduced the up-regulation of neuronal activity-dependent gene transcription. These findings collectively suggest that NIF-1 directs neuronal morphogenesis during early developmental stages through modulating activity-dependent gene transcription.

  1. Characterization of a comparative model of the extracellular domain of the epidermal growth factor receptor.

    PubMed

    Jorissen, R N; Epa, V C; Treutlein, H R; Garrett, T P; Ward, C W; Burgess, A W

    2000-02-01

    The Epidermal Growth Factor (EGF) receptor is a tyrosine kinase that mediates the biological effects of ligands such as EGF and transforming growth factor alpha. An understanding of the molecular basis of its action has been hindered by a lack of structural and mutational data on the receptor. We have constructed comparative models of the four extracellular domains of the EGF receptor that are based on the structure of the first three domains of the insulin-like growth factor-1 (IGF-1) receptor. The first and third domains of the EGF receptor, L1 and L2, are right-handed beta helices. The second and fourth domains of the EGF receptor, S1 and S2, consist of the modules held together by disulfide bonds, which, except for the first module of the S1 domain, form rod-like structures. The arrangement of the L1 and S1 domains of the model are similar to that of the first two domains of the IGF-1 receptor, whereas that of the L2 and S2 domains appear to be significantly different. Using the EGF receptor model and limited information from the literature, we have proposed a number of regions that may be involved in the functioning of the receptor. In particular, the faces containing the large beta sheets in the L1 and L2 domains have been suggested to be involved with ligand binding of EGF to its receptor.

  2. Characterization of a comparative model of the extracellular domain of the epidermal growth factor receptor.

    PubMed Central

    Jorissen, R. N.; Epa, V. C.; Treutlein, H. R.; Garrett, T. P.; Ward, C. W.; Burgess, A. W.

    2000-01-01

    The Epidermal Growth Factor (EGF) receptor is a tyrosine kinase that mediates the biological effects of ligands such as EGF and transforming growth factor alpha. An understanding of the molecular basis of its action has been hindered by a lack of structural and mutational data on the receptor. We have constructed comparative models of the four extracellular domains of the EGF receptor that are based on the structure of the first three domains of the insulin-like growth factor-1 (IGF-1) receptor. The first and third domains of the EGF receptor, L1 and L2, are right-handed beta helices. The second and fourth domains of the EGF receptor, S1 and S2, consist of the modules held together by disulfide bonds, which, except for the first module of the S1 domain, form rod-like structures. The arrangement of the L1 and S1 domains of the model are similar to that of the first two domains of the IGF-1 receptor, whereas that of the L2 and S2 domains appear to be significantly different. Using the EGF receptor model and limited information from the literature, we have proposed a number of regions that may be involved in the functioning of the receptor. In particular, the faces containing the large beta sheets in the L1 and L2 domains have been suggested to be involved with ligand binding of EGF to its receptor. PMID:10716183

  3. Localization of ligand-binding domains of human corticotropin-releasing factor receptor: a chimeric receptor approach.

    PubMed

    Liaw, C W; Grigoriadis, D E; Lovenberg, T W; De Souza, E B; Maki, R A

    1997-06-01

    Two CRF receptors, CRFR1 and CRFR2, have recently been cloned and characterized. CRFR1 shares 70% sequence identity with CRFR2, yet has much higher affinity for rat/human CRF (r/hCRF) than CRFR2. As a first step toward understanding the interactions between rat/human CRF and its receptor, the regions that are involved in receptor-ligand binding and/or receptor activation were determined by using chimeric receptor constructs of the two human CRFR subtypes, CRFR1 and CRFR2, followed by generating point mutations of the receptor. The EC50 values in stimulation of intracellular cAMP of the chimeric and mutant receptors for the peptide ligand were determined using a cAMP-dependent reporter system. Three regions of the receptor were found to be important for optimal binding of r/hCRF and/or receptor activation. The first region was mapped to the junction of the third extracellular domain and the fifth transmembrane domain; substitution of three amino acids of CRFR1 in this region (Val266, Tyr267, and Thr268) by the corresponding CRFR2 amino acids (Asp266, Leu267, and Val268) increased the EC50 value by approximately 10-fold. The other two regions were localized to the second extracellular domain of the CRFR1 involving amino acids 175-178 and His189 residue. Substitutions in these two regions each increased the EC50 value for r/hCRF by approximately 7- to 8-fold only in the presence of the amino acid 266-268 mutation involving the first region, suggesting that their roles in peptide ligand binding might be secondary.

  4. A third distinct tumor necrosis factor receptor of orthopoxviruses

    PubMed Central

    Loparev, Vladimir N.; Parsons, Joseph M.; Knight, Janice C.; Panus, Joanne Fanelli; Ray, Caroline A.; Buller, R. Mark L.; Pickup, David J.; Esposito, Joseph J.

    1998-01-01

    Cowpox virus Brighton red strain (CPV) contains a gene, crmD, which encodes a 320-aa tumor necrosis factor receptor (TNFR) of 44% and 22% identity, respectively, to the CPV TNFR-like proteins, cytokine response modifiers (crm) CrmB and CrmC. The crmD gene was interrupted in three other cowpox strains examined and absent in various other orthopoxviruses; however, four strains of ectromelia virus (ECT) examined contained an intact crmD (97% identity to CPV crmD) and lacked cognates of crmB and crmC. The protein, CrmD, contains a transport signal; a 151-aa cysteine-rich region with 21 cysteines that align with human TNFRII ligand-binding region cysteines; and C-terminal region sequences that are highly diverged from cellular TNFR C-terminal region sequences involved in signal transduction. Bacterial maltose-binding proteins containing the CPV or ECT CrmD cysteine-rich region bound TNF and lymphotoxin-α (LTα) and blocked their in vitro cytolytic activity. Secreted viral CrmD bound TNF and LTα and was detectable after the early stage of replication, using nonreducing conditions, as 60- to 70-kDa predominant and 90- to 250-kDa minor disulfide-linked complexes that were able to be reduced to a 46-kDa form and deglycosylated to a 38-kDa protein. Cells infected with CPV produced extremely low amounts of CrmD compared with ECT. Possessing up to three TNFRs, including CrmD, which is secreted as disulfide-linked complexes in varied amounts by CPV and ECT, likely enhances the dynamics of the immune modulating mechanisms of orthopoxviruses. PMID:9520445

  5. Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors.

    PubMed

    Gurevich, V V; Dion, S B; Onorato, J J; Ptasienski, J; Kim, C M; Sterne-Marr, R; Hosey, M M; Benovic, J L

    1995-01-13

    Arrestins play an important role in quenching signal transduction initiated by G protein-coupled receptors. To explore the specificity of arrestin-receptor interaction, we have characterized the ability of various wild-type arrestins to bind to rhodopsin, the beta 2-adrenergic receptor (beta 2AR), and the m2 muscarinic cholinergic receptor (m2 mAChR). Visual arrestin was found to be the most selective arrestin since it discriminated best between the three different receptors tested (highest binding to rhodopsin) as well as between the phosphorylation and activation state of the receptor (> 10-fold higher binding to the phosphorylated light-activated form of rhodopsin compared to any other form of rhodopsin). While beta-arrestin and arrestin 3 were also found to preferentially bind to the phosphorylated activated form of a given receptor, they only modestly discriminated among the three receptors tested. To explore the structural characteristics important in arrestin function, we constructed a series of truncated and chimeric arrestins. Analysis of the binding characteristics of the various mutant arrestins suggests a common molecular mechanism involved in determining receptor binding selectivity. Structural elements that contribute to arrestin binding include: 1) a C-terminal acidic region that serves a regulatory role in controlling arrestin binding selectivity toward the phosphorylated and activated form of a receptor, without directly participating in receptor interaction; 2) a basic N-terminal domain that directly participates in receptor interaction and appears to serve a regulatory role via intramolecular interaction with the C-terminal acidic region; and 3) two centrally localized domains that are directly involved in determining receptor binding specificity and selectivity. A comparative structure-function model of all arrestins and a kinetic model of beta-arrestin and arrestin 3 interaction with receptors are proposed.

  6. On the g-protein-coupled receptor heteromers and their allosteric receptor-receptor interactions in the central nervous system: focus on their role in pain modulation.

    PubMed

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Rivera, Alicia; Van Craenenbroeck, Kathleen; Tarakanov, Alexander O; Agnati, Luigi F; Fuxe, Kjell

    2013-01-01

    The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR) exerts an antagonistic allosteric influence on the mu opioid receptor (MOR) function in a MOR-DOR heteromer. This heteromer contributes to morphine-induced tolerance and dependence, since it becomes abundant and develops a reduced G-protein-coupling with reduced signaling mainly operating via β -arrestin2 upon chronic morphine treatment. A DOR antagonist causes a return of the Gi/o binding and coupling to the heteromer and the biological actions of morphine. The gender- and ovarian steroid-dependent recruitment of spinal cord MOR/kappa opioid receptor (KOR) heterodimers enhances antinociceptive functions and if impaired could contribute to chronic pain states in women. MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, mediating morphine induced itch. Other mechanism for the antinociceptive actions of acupuncture along meridians may be that it enhances the cross-desensitization of the TRPA1 (chemical nociceptor)-TRPV1 (capsaicin receptor) heteromeric channel complexes within the nociceptor terminals located along these meridians. Selective ionotropic cannabinoids may also produce cross-desensitization of the TRPA1-TRPV1 heteromeric nociceptor channels by being negative allosteric modulators of these channels leading to antinociception and antihyperalgesia.

  7. On the G-Protein-Coupled Receptor Heteromers and Their Allosteric Receptor-Receptor Interactions in the Central Nervous System: Focus on Their Role in Pain Modulation

    PubMed Central

    Borroto-Escuela, Dasiel O.; Romero-Fernandez, Wilber; Rivera, Alicia; Van Craenenbroeck, Kathleen; Tarakanov, Alexander O.; Agnati, Luigi F.; Fuxe, Kjell

    2013-01-01

    The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR) exerts an antagonistic allosteric influence on the mu opioid receptor (MOR) function in a MOR-DOR heteromer. This heteromer contributes to morphine-induced tolerance and dependence, since it becomes abundant and develops a reduced G-protein-coupling with reduced signaling mainly operating via β-arrestin2 upon chronic morphine treatment. A DOR antagonist causes a return of the Gi/o binding and coupling to the heteromer and the biological actions of morphine. The gender- and ovarian steroid-dependent recruitment of spinal cord MOR/kappa opioid receptor (KOR) heterodimers enhances antinociceptive functions and if impaired could contribute to chronic pain states in women. MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, mediating morphine induced itch. Other mechanism for the antinociceptive actions of acupuncture along meridians may be that it enhances the cross-desensitization of the TRPA1 (chemical nociceptor)-TRPV1 (capsaicin receptor) heteromeric channel complexes within the nociceptor terminals located along these meridians. Selective ionotropic cannabinoids may also produce cross-desensitization of the TRPA1-TRPV1 heteromeric nociceptor channels by being negative allosteric modulators of these channels leading to antinociception and antihyperalgesia. PMID:23956775

  8. Interaction model of steviol glycosides from Stevia rebaudiana (Bertoni) with sweet taste receptors: A computational approach.

    PubMed

    Mayank; Jaitak, Vikas

    2015-08-01

    Docking studies were performed on natural sweeteners from Stevia rebaudiana by constructing homology models of T1R2 and T1R3 subunits of human sweet taste receptors. Ramachandran plot, PROCHECK results and ERRAT overall quality factor were used to validate the quality of models. Furthermore, docking results of steviol glycosides (SG's) were correlated significantly with data available in the literature which enabled to predict the exact sweetness rank order of SG's. The binding pattern indicated that Asn 44, Ans 52, Ala 345, Pro 343, Ile 352, Gly 346, Gly 47, Ala 354, Ser 336, Thr 326 and Ser 329 are the main interacting amino acid residues in case of T1R2 and Arg 56, Glu 105, Asp 215, Asp 216, Glu 148, Asp 258, Lys 255, Ser 104, Glu 217, Leu 51, Arg 52 for T1R3, respectively. Amino acids interact with SG's mainly by forming hydrogen bonds with the hydroxyl group of glucose moieties. Significant variation in docked poses of all the SG's were found. In this study, we have proposed the mechanism of the sweetness of the SG's in the form of multiple point stimulation model by considering the diverse binding patterns of various SG's, as well as their structural features. It will give further insight in understanding the differences in the quality of taste and will be used to improve the taste of SG's using semi-synthetic approaches.

  9. Noncontiguous domains of the alpha-factor receptor of yeasts confer ligand specificity.

    PubMed

    Sen, M; Marsh, L

    1994-01-14

    The Saccharomyces cerevisiae alpha-factor receptor has a 3400-fold higher affinity for the S. cerevisiae alpha-factor peptide (c-alpha-f) than for the Saccharomyces kluyveri alpha-factor peptide (k-alpha-f) as determined by competition for [3H] c-alpha-f binding. The S. kluyveri alpha-factor receptor has an approximately 2-fold higher affinity for k-alpha-f than for c-alpha-f. The S. kluyveri receptor gene (k-STE2) is incompletely regulated by S. cerevisiae mating type and poorly expressed on the surface of an S. cerevisiae mating type a strain. A chimeric receptor (c/k1) with amino acid residues 1-45 derived from S. cerevisiae and amino acid residues 46-427 from S. kluyveri exhibits the binding specificity of the S. kluyveri receptor. However, chimeric receptors containing residues 1-168 (c/k2) or 1-250 (c/k3) from S. cerevisiae and the remainder from the S. kluyveri receptor exhibit specificities similar to one another, but intermediate between the parent S. cerevisiae and S. kluyveri receptors. The relative ability of c-alpha-f and k-alpha-f to induce growth arrest in strains expressing chimeric receptors parallels relative affinity. Thus, two noncontiguous domains that include putative extracellular loops 1 and 3 and associated transmembrane segments, but exclude the extracellular NH2 terminus and loop 2, appear to contribute to alpha-factor receptor ligand specificity. COOH-terminal regions of the S. kluyveri receptor appear to confer a desensitization defect when expressed in S. cerevisiae. The S. cerevisiae receptor truncated at residue 296 retains ligand specificity for growth arrest.

  10. Anandamide inhibits nuclear factor-kappaB activation through a cannabinoid receptor-independent pathway.

    PubMed

    Sancho, Rocío; Calzado, Marco A; Di Marzo, Vincenzo; Appendino, Giovanni; Muñoz, Eduardo

    2003-02-01

    Anandamide (arachidonoylethanolamine, AEA), an endogenous agonist for both the cannabinoid CB(1) receptor and the vanilloid VR1 receptor, elicits neurobehavioral, anti-inflammatory, immunomodulatory, and proapoptotic effects. Because of the central role of nuclear factor-kappaB (NF-kappaB) in the inflammatory process and the immune response, we postulated that AEA might owe some of its effects to the suppression of NF-kappaB. This study shows that AEA inhibits tumor necrosis factor-alpha (TNFalpha)-induced NF-kappaB activation by direct inhibition of the IkappaB kinase (IKK)beta and, to a lesser extent, the IKKalpha subunits of kappaB inhibitor (IkappaB) kinase complex, and that IKKs inhibition by AEA correlates with inhibition of IkappaBalpha degradation, NF-kappaB binding to DNA, and NF-kappaB-dependent transcription in TNFalpha-stimulated cells. AEA also prevents NF-kappaB-dependent reporter gene expression induced by mitogen-activated protein kinase kinase kinase and NF-kappaB-inducing kinase. The NF-kappaB inhibitory activity of AEA was independent of CB(1) and CB(2) activation in TNFalpha-stimulated 5.1 and A549 cell lines, which do not express vanilloid receptor 1, and was not mediated by hydrolytic products formed through the activity of the enzyme fatty acid amide hydrolase. Chemical modification markedly affected AEA inhibitory activity on NF-kappaB, suggesting rather narrow structure-activity relationships and the specific interaction with a molecular target. Substitution of the alkyl moiety with less saturated fatty acids generally reduced or abolished activity. However, replacement of the ethanolamine "head" with a vanillyl group led to potent inhibition of TNFalpha-induced NF-kappaB-dependent transcription. These findings provide new mechanistic insights into the anti-inflammatory and proapoptotic activities of AEA, and should foster the synthesis of improved analogs amenable to pharmaceutical development as anti-inflammatory agents.

  11. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells.

    PubMed

    Ishima, Tamaki; Fujita, Yuko; Hashimoto, Kenji

    2014-03-15

    The sigma-1 receptor chaperone located in the endoplasmic reticulum (ER) may be implicated in the mechanistic action of some antidepressants. The present study was undertaken to examine whether new antidepressant drugs interact with the sigma-1 receptor chaperone. First, we examined the effects of selective serotonin reuptake inhibitors (SSRIs) (fluvoxamine, paroxetine, sertraline, citalopram and escitalopram), serotonin and noradrenaline reuptake inhibitors (SNRIs) (duloxetine, venlafaxine, milnacipran), and mirtazapine, a noradrenaline and specific serotonergic antidepressant (NaSSA), on [(3)H](+)-pentazocine binding to rat brain membranes. Then, we examined the effects of these drugs on nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. The order of potency for drugs at the sigma-1 receptor chaperone was as follows: fluvoxamine>sertraline>fluoxetine>escitalopram>citalopram>paroxetine>duoxetine. Venlafaxine, milnacipran, and mirtazapine showed very weak affinity for this chaperone. Furthermore, fluvoxamine, fluoxetine, escitalopram, and mirtazapine significantly potentiated NGF-induced neurite outgrowth in cell assays, and the effects of all these drugs, excluding mirtazapine, were antagonized by NE-100, a selective antagonist of the sigma-1 receptor chaperone. Moreover, the effects of fluvoxamine and fluoxetine on neurite outgrowth were also antagonized by sertraline, indicating that sertraline may be an antagonist at the sigma-1 receptor chaperone. The effect of mirtazapine on neurite outgrowth was antagonized by the selective 5-hydroxytryptamine1A receptor antagonist WAY-100635. These findings suggest that activation at the sigma-1 receptor chaperone may be involved in the action of some SSRIs, such as fluvoxamine, fluoxetine and escitalopram. In contrast, mirtazapine independently potentiated neurite outgrowth in PC12 cells, indicating that this beneficial effect may mediate its pharmacological effect.

  12. MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis.

    PubMed

    Alampour-Rajabi, Setareh; El Bounkari, Omar; Rot, Antal; Müller-Newen, Gerhard; Bachelerie, Françoise; Gawaz, Meinrad; Weber, Christian; Schober, Andreas; Bernhagen, Jürgen

    2015-11-01

    Macrophage migration-inhibitory factor (MIF) is a pleiotropic cytokine with chemokine-like functions and is a mediator in numerous inflammatory conditions. Depending on the context, MIF signals through 1 or more of its receptors cluster of differentiation (CD)74, CXC-motif chemokine receptor (CXCR)2, and CXCR4. In addition, heteromeric receptor complexes have been identified. We characterized the atypical chemokine receptor CXCR7 as a novel receptor for MIF. MIF promoted human CXCR7 internalization up to 40%, peaking at 50-400 nM and 30 min, but CXCR7 internalization by MIF was not dependent on CXCR4. Yet, by coimmunoprecipitation, fluorescence microscopy, and a proximity ligation assay, CXCR7 was found to engage in MIF receptor complexes with CXCR4 and CD74, both after ectopic overexpression and in endogenous conditions in a human B-cell line. Receptor competition binding and coimmunoprecipitation studies combined with sulfo-SBED-biotin-transfer provided evidence for a direct interaction between MIF and CXCR7. Finally, we demonstrated MIF/CXCR7-mediated functional responses. Blockade of CXCR7 suppressed MIF-mediated ERK- and zeta-chain-associated protein kinase (ZAP)-70 activation (from 2.1- to 1.2-fold and from 2.5- to 1.6-fold, respectively) and fully abrogated primary murine B-cell chemotaxis triggered by MIF, but not by CXCL12. B cells from Cxcr7(-/-) mice exhibited an ablated transmigration response to MIF, indicating that CXCR7 is essential for MIF-promoted B-cell migration. Our findings provide biochemical and functional evidence that MIF is an alternative ligand of CXCR7 and suggest a functional role of the MIF-CXCR7 axis in B-lymphocyte migration.

  13. Bipartite inhibition of Drosophila epidermal growth factor receptor by the extracellular and transmembrane domains of Kekkon1.

    PubMed Central

    Alvarado, Diego; Rice, Amy H; Duffy, Joseph B

    2004-01-01

    In Drosophila, signaling by the epidermal growth factor receptor (EGFR) is required for a diverse array of developmental decisions. Essential to these decisions is the precise regulation of the receptor's activity by both stimulatory and inhibitory molecules. To better understand the regulation of EGFR activity we investigated inhibition of EGFR by the transmembrane protein Kekkon1 (Kek1). Kek1 encodes a molecule containing leucine-rich repeats (LRR) and an immunoglobulin (Ig) domain and is the founding member of the Drosophila Kekkon family. Here we demonstrate with a series of Kek1-Kek2 chimeras that while the LRRs suffice for EGFR binding, inhibition in vivo requires the Kek1 juxta/transmembrane region. We demonstrate directly, and using a series of Kek1-EGFR chimeras, that Kek1 is not a phosphorylation substrate for the receptor in vivo. In addition, we show that EGFR inhibition is unique to Kek1 among Kek family members and that this function is not ligand or tissue specific. Finally, we have identified a unique class of EGFR alleles that specifically disrupt Kek1 binding and inhibition, but preserve receptor activation. Interestingly, these alleles map to domain V of the Drosophila EGFR, a region absent from the vertebrate receptors. Together, our results support a model in which the LRRs of Kek1 in conjunction with its juxta/transmembrane region direct association and inhibition of the Drosophila EGFR through interactions with receptor domain V. PMID:15166146

  14. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation

    PubMed Central

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  15. The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins.

    PubMed Central

    Hönlinger, A; Kübrich, M; Moczko, M; Gärtner, F; Mallet, L; Bussereau, F; Eckerskorn, C; Lottspeich, F; Dietmeier, K; Jacquet, M

    1995-01-01

    A multisubunit complex in the mitochondrial outer membrane is responsible for targeting and membrane translocation of nuclear-encoded preproteins. This receptor complex contains two import receptors, a general insertion pore and the protein Mom22. It was unknown if Mom22 directly interacts with preproteins, and two views existed about the possible functions of Mom22: a central role in transfer of preproteins from both receptors to the general insertion pore or a more limited function dependent on the presence of the receptor Mom19. For this report, we identified and cloned Saccharomyces cerevisiae MOM22 and investigated whether it plays a direct role in targeting of preproteins. A preprotein accumulated at the mitochondrial outer membrane was cross-linked to Mom22. The cross-linking depended on the import stage of the preprotein. Overexpression of Mom22 suppressed the respiratory defect of yeast cells lacking Mom19 and increased preprotein import into mom19 delta mitochondria, demonstrating that Mom22 can function independently of Mom19. Overexpression of Mom22 even suppressed the lethal phenotype of a double deletion of the two import receptors known so far (mom19 delta mom72 delta). Deletion of the MOM22 gene was lethal for yeast cells, identifying Mom22 as one of the few mitochondrial membrane proteins essential for fermentative growth. These results suggest that Mom22 plays an essential role in the mitochondrial receptor complex. It directly interacts with preproteins in transit and can perform receptor-like activities. PMID:7760834

  16. Concomitant Action of Structural Elements and Receptor Phosphorylation Determines Arrestin-3 Interaction with the Free Fatty Acid Receptor FFA4*

    PubMed Central

    Butcher, Adrian J.; Hudson, Brian D.; Shimpukade, Bharat; Alvarez-Curto, Elisa; Prihandoko, Rudi; Ulven, Trond; Milligan, Graeme; Tobin, Andrew B.

    2014-01-01

    In addition to being nutrients, free fatty acids act as signaling molecules by activating a family of G protein-coupled receptors. Among these is FFA4, previously called GPR120, which responds to medium and long chain fatty acids, including health-promoting ω-3 fatty acids, which have been implicated in the regulation of metabolic and inflammatory responses. Here we show, using mass spectrometry, mutagenesis, and phosphospecific antibodies, that agonist-regulated phosphorylation of the human FFA4 receptor occurred primarily at five residues (Thr347, Thr349, Ser350, Ser357, and Ser360) in the C-terminal tail. Mutation of these residues reduced both the efficacy and potency of ligand-mediated arrestin-3 recruitment as well as affecting recruitment kinetics. Combined mutagenesis of all five of these residues was insufficient to fully abrogate interaction with arrestin-3, but further mutagenesis of negatively charged residues revealed additional structural components for the interaction with arrestin-3 within the C-terminal tail of the receptor. These elements consist of the acidic residues Glu341, Asp348, and Asp355 located close to the phosphorylation sites. Receptor phosphorylation thus operates in concert with structural elements within the C-terminal tail of FFA4 to allow for the recruitment of arrestin-3. Importantly, these mechanisms of arrestin-3 recruitment operate independently from Gq/11 coupling, thereby offering the possibility that ligands showing stimulus bias could be developed that exploit these differential coupling mechanisms. Furthermore, this provides a strategy for the design of biased receptors to probe physiologically relevant signaling. PMID:24817122

  17. The sigma receptor ligand (+/-)-BMY 14802 prevents methamphetamine-induced dopaminergic neurotoxicity via interactions at dopamine receptors.

    PubMed

    Terleckyj, I; Sonsalla, P K

    1994-04-01

    The possibility that compounds which interact with the putative sigma receptor might influence the dopaminergic neuropathology produced by the administration of methamphetamine (METH) to mice was investigated. (+/-)-BMY 14802 [alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazine-butanol hydrochloride] attenuated METH-induced dopaminergic neuropathology whereas several other sigma-acting compounds such as R-(+)-3-(3-hydroxyphenyl)-N-propylpiperidine hydrochloride, 1,3-di-o-tolyl-guanidine, rimcazole, clorgyline or (-)-butaclamol did not alter neurotoxicity produced by this central nervous system stimulant. (-)-BMY 14802, which has a lower affinity for the sigma site than (+)-BMY 14802, was more potent than (+)-BMY 14802 in antagonizing METH-induced neuropathology. In addition, the ketone metabolite (BMY 14786; alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazine-butanone hydrochloride), which is a major metabolite formed from (-)-BMY 14802, also attenuated the METH-induced effects. (+/-)-BMY 14802 pretreatment of mice prevented the reduction in D1 and D2 dopamine receptor number produced by the systemic administration of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline and demonstrates that (+/-)-BMY 14802 and/or its metabolites interact with the dopamine receptor subtypes. Taken together, these findings suggest that the protective effect of (+/-)-BMY 14802 against METH-induced neuropathology is mediated, at least in part, through dopamine receptor antagonism. Furthermore, the failure of other sigma-acting compounds to alter METH-induced neurotoxicity indicates that the putative sigma receptor is unlikely to be an important mediator in this type of neuropathology.

  18. Interaction of structural analogs of dopamine, chlorpromazine and sulpiride with striatal dopamine receptors

    SciTech Connect

    Wallace, R.A.

    1987-01-01

    The objectives of these studies were to determine if the nitrogen atom of dopaminergic agonists and antagonists drugs is required for interaction with the D-1 and D-2 dopamine receptors and whether the positively charged or uncharged molecular species interacts with these receptors. To address these issues, permanently charged analogs of dopamine, chlorpromazine and sulpiride were synthesized in which a dimethylsulfonium, dimethylselenonium or quaternary ammonium group replaced the amine group. Permanently uncharged analogs which contained a methylsulfide, methylselenide and sulfoxide group instead of an amine group were also synthesized. The interactions of these compounds with striatal dopamine receptors were studied. We found that the permanently charged dopamine analogs bound to the D-2 receptor of striatal membranes like conventional dopaminergic agonists and displayed agonist activity at the D-2 receptor regulating potassium-evoked (/sup 3/H) acetylcholine release. In contrast, the permanently uncharged analogs bound only to the high affinity state of the D-2 receptor and had neither agonist or antagonist activity.

  19. Interaction of Trypanosoma cruzi adenylate cyclase with liver regulatory factors.

    PubMed Central

    Eisenschlos, C; Flawiá, M M; Torruella, M; Torres, H N

    1986-01-01

    Trypanosoma cruzi adenylate cyclase catalytic subunits may interact with regulatory factors from rat liver membranes, reconstituting heterologous systems which are catalytically active in assay mixtures containing MgATP. The systems show stimulatory responses to glucagon and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) or fluoride. Reconstitution was obtained by three different methods: fusion of rat liver membranes (pretreated with N-ethylmaleimide) to T. cruzi membranes; interaction of detergent extracts of rat liver membranes with T. cruzi membranes; or interaction of purified preparations of T. cruzi adenylate cyclase and of liver membrane factors in phospholipid vesicles. The liver factors responsible for the guanine nucleotide effect were characterized as the NS protein. Data also indicate that reconstitution requires the presence of a membrane substrate. PMID:2947568

  20. Investigation of Interactions at the Extracellular Loops of the Relaxin Family Peptide Receptor 1 (RXFP1)*

    PubMed Central

    Diepenhorst, Natalie A.; Petrie, Emma J.; Chen, Catherine Z.; Wang, Amy; Hossain, Mohammed Akhter; Bathgate, Ross A. D.; Gooley, Paul R.

    2014-01-01

    Relaxin, an emerging pharmaceutical treatment for acute heart failure, activates the relaxin family peptide receptor (RXFP1), which is a class A G-protein-coupled receptor. In addition to the classic transmembrane (TM) domain, RXFP1 possesses a large extracellular domain consisting of 10 leucine-rich repeats and an N-terminal low density lipoprotein class A (LDLa) module. Relaxin-mediated activation of RXFP1 requires multiple coordinated interactions between the ligand and various receptor domains including a high affinity interaction involving the leucine-rich repeats and a predicted lower affinity interaction involving the extracellular loops (ELs). The LDLa is essential for signal activation; therefore the ELs/TM may additionally present an interaction site to facilitate this LDLa-mediated signaling. To overcome the many challenges of investigating relaxin and the LDLa module interactions with the ELs, we engineered the EL1 and EL2 loops onto a soluble protein scaffold, mapping specific ligand and loop interactions using nuclear magnetic resonance spectroscopy. Key EL residues were subsequently mutated in RXFP1, and changes in function and relaxin binding were assessed alongside the RXFP1 agonist ML290 to monitor the functional integrity of the TM domain of these mutant receptors. The outcomes of this work make an important contribution to understanding the mechanism of RXFP1 activation and will aid future development of small molecule RXFP1 agonists/antagonists. PMID:25352603

  1. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  2. The Dopamine Receptor D4 7-Repeat Allele and Prenatal Smoking in ADHD-Affected Children and Their Unaffected Siblings: No Gene-Environment Interaction

    ERIC Educational Resources Information Center

    Altink, Marieke E.; Arias-Vasquez, Alejandro; Franke, Barbara; Slaats-Willemse, Dorine I. E.; Buschgens, Cathelijne J. M.; Rommelse, Nanda N. J.; Fliers, Ellen A.; Anney, Richard; Brookes, Keeley-Joanne; Chen, Wai; Gill, Michael; Mulligan, Aisling; Sonuga-Barke, Edmund; Thompson, Margaret; Sergeant, Joseph A.; Faraone, Stephen V.; Asherson, Philip; Buitelaar, Jan K.

    2008-01-01

    Background: The dopamine receptor D4 ("DRD4") 7-repeat allele and maternal smoking during pregnancy are both considered as risk factors in the aetiology of attention deficit hyperactivity disorder (ADHD), but few studies have been conducted on their interactive effects in causing ADHD. The purpose of this study is to examine the gene by…

  3. G Protein-Coupled Receptors in cancer: biochemical interactions and drug design.

    PubMed

    Audigier, Yves; Picault, François-Xavier; Chaves-Almagro, Carline; Masri, Bernard

    2013-01-01

    G Protein-Coupled Receptors (GPCRs) share the same topology made of seven-transmembrane segments and represent the largest family of membrane receptors. Initially associated with signal transduction in differentiated cells, GPCRs and heterotrimeric G proteins were shown to behave as proto-oncogenes whose overexpression or activating mutations confer transforming properties. The first part of this review focuses on the link between biochemical interactions of a GPCR with other receptors, such as dimerization or multiprotein complexes, and their oncogenic properties. Alteration of these interactions or deregulation of transduction cascades can promote uncontrolled cell proliferation or cell transformation that leads to tumorigenicity and malignancy. The second part concerns the design of drugs specifically targeting these complex interactions and their promise in cancer therapy.

  4. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    PubMed

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network.

  5. Platelet-activating Factor Receptor Initiates Contact of Acinetobacter baumannii Expressing Phosphorylcholine with Host Cells

    PubMed Central

    Smani, Younes; Docobo-Pérez, Fernando; López-Rojas, Rafael; Domínguez-Herrera, Juan; Ibáñez-Martínez, José; Pachón, Jerónimo

    2012-01-01

    Adhesion is an initial and important step in Acinetobacter baumannii causing infections. However, the exact molecular mechanism of such a step between A. baumannii and the host cells remains unclear. Here, we demonstrated that the phosphorylcholine (ChoP)-containing outer membrane protein of A. baumannii binds to A549 cells through platelet-activating factor receptor (PAFR), resulting in activation of G protein and intracellular calcium. Upon A. baumannii expressing ChoP binding to PAFR, clathrin and β-arrestins, proteins involved in the direction of the vacuolar movement, are activated during invasion of A. baumannii. PAFR antagonism restricts the dissemination of A. baumannii in the pneumonia model. These results define a role for PAFR in A. baumannii interaction with host cells and suggest a mechanism for the entry of A. baumannii into the cytoplasm of host cells. PMID:22689572

  6. QSAR and 3D QSAR of inhibitors of the epidermal growth factor receptor

    NASA Astrophysics Data System (ADS)

    Pinto-Bazurco, Mariano; Tsakovska, Ivanka; Pajeva, Ilza

    This article reports quantitative structure-activity relationships (QSAR) and 3D QSAR models of 134 structurally diverse inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. Free-Wilson analysis was used to derive the QSAR model. It identified the substituents in aniline, the polycyclic system, and the substituents at the 6- and 7-positions of the polycyclic system as the most important structural features. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used in the 3D QSAR modeling. The steric and electrostatic interactions proved the most important for the inhibitory effect. Both QSAR and 3D QSAR models led to consistent results. On the basis of the statistically significant models, new structures were proposed and their inhibitory activities were predicted.

  7. Heregulin-Induced Growth Factor Receptor Signaling and Breast Carcinogenesis

    DTIC Science & Technology

    1995-07-17

    and/or signaling of erbB family receptors plays a significant role in tumors of mammary or neuroectodermal origin [Reviewed in Hynes and Stern, 1994...MDA- MB-231 human mammary tumor cell line [Holmes, et al., 1992], suggesting that NRGs establish or maintain the growth-transformed phenotype. NRG also...et al., 1992] the in vitro proliferation of human mammary tumor cells, which frequently overexpress erbB 5 family receptors [Reviewed in Hynes and

  8. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR)*

    PubMed Central

    Hemmasi, Sarah; Czulkies, Bernd A.; Schorch, Björn; Veit, Antonia; Aktories, Klaus; Papatheodorou, Panagiotis

    2015-01-01

    CDT (Clostridium difficile transferase) is a binary, actin ADP-ribosylating toxin frequently associated with hypervirulent strains of the human enteric pathogen C. difficile, the most serious cause of antibiotic-associated diarrhea and pseudomembranous colitis. CDT leads to the collapse of the actin cytoskeleton and, eventually, to cell death. Low doses of CDT result in the formation of microtubule-based protrusions on the cell surface that increase the adherence and colonization of C. difficile. The lipolysis-stimulated lipoprotein receptor (LSR) is the host cell receptor for CDT, and our aim was to gain a deeper insight into the interplay between both proteins. We show that CDT interacts with the extracellular, Ig-like domain of LSR with an affinity in the nanomolar range. We identified LSR splice variants in the colon carcinoma cell line HCT116 and disrupted the LSR gene in these cells by applying the CRISPR-Cas9 technology. LSR truncations ectopically expressed in LSR knock-out cells indicated that intracellular parts of LSR are not essential for plasma membrane targeting of the receptor and cellular uptake of CDT. By generating a series of N- and C-terminal truncations of the binding component of CDT (CDTb), we found that amino acids 757–866 of CDTb are sufficient for binding to LSR. With a transposon-based, random mutagenesis approach, we identified potential LSR-interacting epitopes in CDTb. This study increases our understanding about the interaction between CDT and its receptor LSR, which is key to the development of anti-toxin strategies for preventing cell entry of the toxin. PMID:25882847

  9. Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex

    SciTech Connect

    Shim, Ann Hye-Ryong; Liu, Heli; Focia, Pamela J.; Chen, Xiaoyan; Lin, P. Charles; He, Xiaolin

    2010-07-13

    Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are prototypic growth factors and receptor tyrosine kinases which have critical functions in development. We show that PDGFs share a conserved region in their prodomain sequences which can remain noncovalently associated with the mature cystine-knot growth factor domain after processing. The structure of the PDGF-A/propeptide complex reveals this conserved, hydrophobic association mode. We also present the structure of the complex between PDGF-B and the first three Ig domains of PDGFR{beta}, showing that two PDGF-B protomers clamp PDGFR{beta} at their dimerization seam. The PDGF-B:PDGFR{beta} interface is predominantly hydrophobic, and PDGFRs and the PDGF propeptides occupy overlapping positions on mature PDGFs, rationalizing the need of propeptides by PDGFs to cover functionally important hydrophobic surfaces during secretion. A large-scale structural organization and rearrangement is observed for PDGF-B upon receptor binding, in which the PDGF-B L1 loop, disordered in the structure of the free form, adopts a highly specific conformation to form hydrophobic interactions with the third Ig domain of PDGFR{beta}. Calorimetric data also shows that the membrane-proximal homotypic PDGFR{alpha} interaction, albeit required for activation, contributes negatively to ligand binding. The structural and biochemical data together offer insights into PDGF-PDGFR signaling, as well as strategies for PDGF-antagonism.

  10. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    PubMed Central

    Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.

    2015-01-01

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702

  11. Interaction of human tumor viruses with host cell surface receptors and cell entry.

    PubMed

    Schäfer, Georgia; Blumenthal, Melissa J; Katz, Arieh A

    2015-05-22

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection.

  12. Epidermal growth factor receptor and KRAS mutations in Brazilian lung cancer patients

    PubMed Central

    Bacchi, Carlos E.; Ciol, Heloísa; Queiroga, Eduardo M.; Benine, Lucimara C.; Silva, Luciana H.; Ojopi, Elida B.

    2012-01-01

    OBJECTIVE: Epidermal growth factor receptor is involved in the pathogenesis of non-small cell lung cancer and has recently emerged as an important target for molecular therapeutics. The KRAS oncogene also plays an important role in the development of lung cancer. The aim of this study was to evaluate the frequency of epidermal growth factor receptor and KRAS mutations in a population of Brazilian patients with non-small cell lung cancer. METHODS: A total of 207 specimens from Brazilian patients with non-small cell lung cancer were analyzed for activating epidermal growth factor receptor and KRAS somatic mutations, and their associations with clinicopathological characteristics (including age, gender, ethnicity, smoking habits, and histological subtype) were examined. RESULTS: We identified 63 cases (30.4%) with epidermal growth factor receptor mutations and 30 cases (14.6%) with KRAS mutations. The most frequent epidermal growth factor receptor mutation we detected was a deletion in exon 19 (60.3%, 38 patients), followed by an L858R amino acid substitution in exon 21 (27%, 17 patients). The most common types of KRAS mutations were found in codon 12. There were no significant differences in epidermal growth factor receptor or KRAS mutations by gender or primary versus metastatic lung cancer. There was a higher prevalence of KRAS mutations in the non-Asian patients. Epidermal growth factor receptor mutations were more prevalent in adenocarcinomas than in non-adenocarcinoma histological types. Being a non-smoker was significantly associated with the prevalence of epidermal growth factor receptor mutations, but the prevalence of KRAS mutations was significantly associated with smoking. CONCLUSIONS: This study is the first to examine the prevalence of epidermal growth factor receptor and KRAS mutations in a Brazilian population sample with non-small cell lung cancer. PMID:22666783

  13. Factor selection and structural identification in the interaction ANOVA model.

    PubMed

    Post, Justin B; Bondell, Howard D

    2013-03-01

    When faced with categorical predictors and a continuous response, the objective of an analysis often consists of two tasks: finding which factors are important and determining which levels of the factors differ significantly from one another. Often times, these tasks are done separately using Analysis of Variance (ANOVA) followed by a post hoc hypothesis testing procedure such as Tukey's Honestly Significant Difference test. When interactions between factors are included in the model the collapsing of levels of a factor becomes a more difficult problem. When testing for differences between two levels of a factor, claiming no difference would refer not only to equality of main effects, but also to equality of each interaction involving those levels. This structure between the main effects and interactions in a model is similar to the idea of heredity used in regression models. This article introduces a new method for accomplishing both of the common analysis tasks simultaneously in an interaction model while also adhering to the heredity-type constraint on the model. An appropriate penalization is constructed that encourages levels of factors to collapse and entire factors to be set to zero. It is shown that the procedure has the oracle property implying that asymptotically it performs as well as if the exact structure were known beforehand. We also discuss the application to estimating interactions in the unreplicated case. Simulation studies show the procedure outperforms post hoc hypothesis testing procedures as well as similar methods that do not include a structural constraint. The method is also illustrated using a real data example.

  14. Regulation of epidermal growth factor receptor ubiquitination and trafficking by the USP8·STAM complex.

    PubMed

    Berlin, Ilana; Schwartz, Heather; Nash, Piers D

    2010-11-05

    Reversible ubiquitination of activated receptor complexes signals their sorting between recycling and degradation and thereby dictates receptor fate. The deubiquitinating enzyme ubiquitin-specific protease 8 (USP8/UBPy) has been previously implicated in the regulation of the epidermal growth factor receptor (EGFR); however, the molecular mechanisms governing its recruitment and activity in this context remain unclear. Herein, we investigate the role of USP8 in countering ligand-induced ubiquitination and down-regulation of EGFR and characterize a subset of protein-protein interaction determinants critical for this function. USP8 depletion accelerates receptor turnover, whereas loss of hepatocyte growth factor-regulated substrate (Hrs) rescues this phenotype, indicating that USP8 protects EGFR from degradation via an Hrs-dependent pathway. Catalytic inactivation of USP8 incurs EGFR hyperubiquitination and promotes receptor localization to endosomes marked by high ubiquitin content. These phenotypes require the central region of USP8, containing three extended Arg-X-X-Lys (RXXK) motifs that specify direct low affinity interactions with the SH3 domain(s) of ESCRT-0 proteins, STAM1/2. The USP8·STAM complex critically impinges on receptor ubiquitination status and modulates ubiquitin dynamics on EGFR-positive endosomes. Consequently, USP8-mediated deubiquitination slows progression of EGFR past the early-to-recycling endosome circuit in a manner dependent upon the RXXK motifs. Collectively, these findings demonstrate a role for the USP8·STAM complex as a protective mechanism regulating early endosomal sorting of EGFR between pathways destined for lysosomal degradation and recycling.

  15. The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein.

    PubMed

    Kozyraki, R; Fyfe, J; Kristiansen, M; Gerdes, C; Jacobsen, C; Cui, S; Christensen, E I; Aminoff, M; de la Chapelle, A; Krahe, R; Verroust, P J; Moestrup, S K

    1999-06-01

    Cubilin is the intestinal receptor for the endocytosis of intrinsic factor-vitamin B12. However, several lines of evidence, including a high expression in kidney and yolk sac, indicate it may have additional functions. We isolated apolipoprotein A-I (apoA-I), the main protein of high-density lipoprotein (HDL), using cubilin affinity chromatography. Surface plasmon resonance analysis demonstrated a high-affinity binding of apoA-I and HDL to cubilin, and cubilin-expressing yolk sac cells showed efficient 125I-HDL endocytosis that could be inhibited by IgG antibodies against apoA-I and cubilin. The physiological relevance of the cubilin-apoA-I interaction was further emphasized by urinary apoA-I loss in some known cases of functional cubilin deficiency. Therefore, cubilin is a receptor in epithelial apoA-I/HDL metabolism.

  16. Modeling of twitch fade based on slow interaction of nondepolarizing muscle relaxants with the presynaptic receptors.

    PubMed

    Bhatt, Shashi B; Amann, Anton; Nigrovic, Vladimir

    2006-08-01

    Nondepolarizing muscle relaxants (MRs) diminish the indirectly evoked single twitch due to their binding to the postsynaptic receptors. Additionally, the MRs produce progressive diminution of successive twitches upon repetitive stimulation (fade). Our study addresses the generation of fade as observed under clinical situation. The study was conducted in two phases. In the clinical part, we have evaluated the time course of twitch depression and fade following the administration of several doses of three MRs (rocuronium, pancuronium, and cisatracurium). In the second part, we have modified our model of neuromuscular transmission to simulate the time course of twitch depression and fade. The MR was assumed to bind to a single site on the presynaptic receptor to produce fade. The rates of interaction with the presynaptic receptors were characterized in terms of the arbitrarily assigned equilibrium dissociation constant and the half-life for dissociation of the presynaptic complex. A method was developed to relate the release of acetylcholine to the occupancy of the presynaptic receptors. The strength of the first and the fourth twitch was calculated from the peak concentration of the activated postsynaptic receptors, i.e., of those receptors with both sites occupied by acetylcholine. Our results indicate that, while the affinity of the MR for the presynaptic receptor plays little role in the time course of fade, the rate of dissociation of the complex between the presynaptic receptors and the muscle relaxant may be critical in determining the time course of fade. Tentative estimates of this parameter are offered.

  17. Nucleocytoplasmic distribution of opioid growth factor and its receptor in tongue epithelium.

    PubMed

    Zagon, Ian S; Ruth, Torre B; McLaughlin, Patricia J

    2005-01-01

    The subcellular distributions of the opioid growth factor (OGF), [Met(5)]-enkephalin, and opioid growth factor receptor (OGFr) in the epithelium of the rat tongue were determined in order to reveal structure-function relationships. Laser scanning confocal microscopic analysis showed that both OGF and OGFr were colocalized in the paranuclear cytoplasm and in the nuclei of keratinocytes in the stratum basale. Using immunoelectron microscopy and postembedding techniques, double labeling experiments disclosed that complexes of OGF-OGFr were colocalized on the outer nuclear envelope, in the paranuclear cytoplasm, perpendicular to the nuclear envelope in a putative nuclear pore complex, and in the nucleus adjacent to heterochromatin. Anti-OGF IgG alone was detected in the cytoplasm, and anti-OGFr IgG alone was associated with the outer nuclear envelope. Study of chronic treatment with the opioid antagonist, naltrexone (NTX), which blocks opioid-receptor binding, revealed the presence of OGFr immunoreactivity alone in the cytoplasm and the nucleus; some OGF-OGFr complexes were also observed. Colocalization of OGFr and karyopherin (importin) beta was recorded in the cytoplasm and nucleus. These results in tongue epithelium are the first to suggest that OGFr resides on the outer nuclear envelope, where OGF interacts with OGFr; that the OGF-OGFr complex translocates between cytoplasm and nucleus at the nuclear pore; and that the nuclear localization signal of OGFr interacts with karyopherin beta for nuclear transport. These novel data also indicate that signal transduction for cell proliferation appears to involve an OGF-OGFr complex that interfaces with chromatin in the nucleus. Moreover, the unique finding that OGFr was found in the cytoplasm and nucleus in NTX-treated specimens may suggest that NTX-OGFr complexes have the same pathway as OGF-OGFr.

  18. Pluripotency Factors and Polycomb Group Proteins Repress Aryl Hydrocarbon Receptor Expression in Murine Embryonic Stem Cells

    PubMed Central

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development. PMID:24316986

  19. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2008-01-01

    The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.

  20. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2008-01-01

    The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points, the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.

  1. Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors.

    PubMed

    Fliegmann, Judith; Bono, Jean-Jacques

    2015-10-01

    Lipo-chitooligosaccharides produced by nitrogen-fixing rhizobia are signaling molecules involved in the establishment of an important agronomical and ecological symbiosis with plants. These compounds, known as Nod factors, are biologically active on plant roots at very low concentrations indicating that they are perceived by specific receptors. This article summarizes the main strategies developed for the syntheses of bioactive Nod factors and their derivatives in order to better understand their mode of perception. Different Nod factor receptors and LCO-binding proteins identified by genetic or biochemical approaches are also presented, indicating perception mechanisms that seem to be more complicated than expected, probably involving multi-component receptor complexes.

  2. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy.

    PubMed

    MacLennan, A J; Devlin, B K; Neitzel, K L; McLaurin, D L; Anderson, K J; Lee, N

    1999-01-01

    Spinal motor neurons are one of the few classes of neurons capable of regenerating axons following axotomy. Injury-induced expression of neurotrophic factors and corresponding receptors may play an important role in this rare ability. A wide variety of indirect data suggests that ciliary neurotrophic factor receptor alpha may critically contribute to the regeneration of injured spinal motor neurons. We used immunohistochemistry, in situ hybridization and retrograde tracing techniques to study the regulation of ciliary neurotrophic factor receptor alpha in axotomized sciatic motor neurons. Ciliary neurotrophic factor receptor alpha immunoreactivity, detected with two independent antisera, is increased in a subpopulation of caudal sciatic motor neuron soma one, two and six weeks after sciatic nerve transection and reattachment, while no changes are detected at one day and 15 weeks post-lesion. Ciliary neurotrophic factor receptor alpha messenger RNA levels are augmented in the same classes of neurons following an identical lesion, suggesting that increased synthesis contributes, at least in part, to the additional ciliary neurotrophic factor receptor alpha protein. Separating the proximal and distal nerve stumps with a plastic barrier does not noticeably affect the injury-induced change in ciliary neurotrophic factor receptor alpha regulation, thereby indicating that this injury response is not dependent on signals distal to the lesion traveling retrogradely through the nerve or signals generated by axonal growth through the distal nerve. The prolonged increases in ciliary neurotrophic factor receptor alpha protein and messenger RNA found in regenerating sciatic motor neurons contrast with the responses of non-regenerating central neurons, which are reported to display, at most, a short-lived increase in ciliary neurotrophic factor receptor alpha messenger RNA expression following injury. The present data are the first to demonstrate, in vivo, neuronal regulation of

  3. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    SciTech Connect

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.

  4. Dissecting striatal adenosine-cannabinoid receptor interactions. New clues from rats over-expressing adenosine A2A receptors.

    PubMed

    Ferré, Sergi; Sebastião, Ana Maria

    2016-03-01

    This Editorial highlights a study by Chiodi et al. () showing that the effects mediated by cannabinoid CB1 receptor (CB1R) activation in the striatum are significantly reduced in rats with neuronal over-expression of adenosine A2A receptors (A2AR). Two hypotheses are derived from that study. Hypothesis A: two subpopulations of pre-synaptic CB1R in corticostriatal glutamatergic terminals exist, one forming and another not forming heteromers with A2AR. Hypothesis B: CB1R are predominantly forming heteromers with A2AR. In the case of hypothesis A, the A2AR might be required for CB1R-A2AR heteromeric signaling, whereas non-heteromeric CB1R activity is inhibited by A2ARs. In the case of hypothesis B, up-regulation of A2ARs may perturb heteromeric stoichiometry, thus reducing CB1R functioning. In any case, pre-synaptic striatal A2AR-CB1R heteromers emerge as important targets of the effects of cannabinoids demonstrated at the neuronal and behavioral level. Read the highlighted article 'Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors' on page 907.

  5. Glycosidases Interact Selectively With Mannose-6-Phosphate Receptors of Bull Spermatozoa.

    PubMed

    Aguilera, Andrea C; Boschin, Verónica; Carvelli, Lorena; Cavicchia, Juan C; Sosa, Miguel A

    2016-11-01

    Glycosidases may play a role in sperm maturation during epididymal transit. In this work, we describe the interaction of these enzymes with bull spermatozoa. We found that β-galactosidase associated to spermatozoa can be released under low ionic strength conditions, whereas the interaction of N-acetyl-β-D-glucosaminidase and β-glucuronidase with spermatozoa appeared to be stronger. On the other hand, α-mannosidase and α-fucosidase cannot be removed from the gametes. In addition, part of N-acetyl-β-D-glucosaminidase, β-galactosidase, and β-glucuronidase can also be released by mannose-6-phosphate. Taking into account these data, we explored the presence of cation-independent- and cation-dependent-mannose-6-phosphate receptors in the spermatozoa and found that cation-independent mannose-6-phosphate receptor is highly expressed in bull spermatozoa and cation-dependent-mannose-6-phosphate receptor is expressed at a lesser extent. In addition, by immunofluorescence, we observed that cation-independent-mannose-6-phosphate receptor is mostly located at the acrosomal zone, whereas cation-dependent-mannose-6-phosphate receptor presents a different distribution pattern on spermatozoa during the epididymal transit. N-acetyl-β-D-glucosaminidase and β-glucuronidase isolated from epididymal fluid interacted mostly with cation-independent-mannose-6-phosphate receptor, while β-galactosidase was recognized by both receptors. We concluded that glycosidases might play different roles in bull spermatozoa and that mannos-6-phosphate receptors may act as recruiters of some enzymes. J. Cell. Biochem. 117: 2464-2472, 2016. © 2016 Wiley Periodicals, Inc.

  6. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries.

    PubMed

    Billings, Paul C; Pacifici, Maurizio

    2015-01-01

    Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.

  7. Evidence that the modulator of the glucocorticoid-receptor complex is the endogenous molybdate factor.

    PubMed Central

    Bodine, P V; Litwack, G

    1988-01-01

    We have recently purified the modulator of the glucocorticoid-receptor complex from rat liver. Purified modulator inhibits glucocorticoid-receptor complex activation and stabilizes the steroid-binding ability of the unoccupied glucocorticoid receptor. Since these activities are shared by exogenous sodium molybdate, modulator appears to be the endogenous factor that sodium molybdate mimics. In this report, we present additional evidence for the mechanism of action of purified modulator. (i) Molybdate and modulator inhibit receptor activation as measured by DNA-cellulose binding, DEAE-cellulose chromatography, and Sepharose 4B gel filtration. (ii) The ability of molybdate and modulator to inhibit receptor activation and stabilize the unoccupied receptor appears to be additive. (iii) Scatchard analysis of heat-destabilized unoccupied receptors indicates that the number of steroid-binding sites is reduced during destabilization, whereas the steroid dissociation constant remains unchanged. Molybdate and modulator stabilize the receptor by maintaining the number of steroid-binding sites. (iv) Molybdate and modulator do not inhibit alkaline phosphatase-induced destabilization of the unoccupied receptor. However, alkaline phosphatase-induced destabilization is reversed by the addition of dithiothreitol in the presence, but not in the absence, of molybdate or modulator. These results suggest that the mechanism of action for modulator is identical to that of sodium molybdate, and we propose that modulator is the endogenous molybdate factor for the glucocorticoid receptor. PMID:3422744

  8. Direct Interaction of GABAB Receptors with M2 Muscarinic Receptors Enhances Muscarinic Signaling

    PubMed Central

    Boyer, Stephanie B.; Clancy, Sinead M.; Terunuma, Miho; Revilla-Sanchez, Raquel; Thomas, Steven M.; Moss, Stephen J.; Slesinger, Paul A.

    2009-01-01

    Down-regulation of G protein coupled receptors (GPCR) provides an important mechanism for reducing neurotransmitter signaling during sustained stimulation. Chronic stimulation of M2 muscarinic receptors (M2R) causes internalization of M2R and G protein-activated inwardly rectifying potassium (GIRK) channels in neuronal PC12 cells, resulting in loss of function. Here, we show that co-expression of GABAB R2 receptors (GBR2) rescues both surface expression and function of M2R, including M2R-induced activation of GIRKs and inhibition of cAMP production. GBR2 showed significant association with M2R at the plasma membrane but not other GPCRs (M1R, μOR), as detected by FRET measured with TIRF microscopy. Unique regions of the proximal C-terminal domains of GBR2 and M2R mediate specific binding between M2R and GBR2. In the brain, GBR2, but not GBR1, biochemically coprecipitates with M2R and overlaps with M2R expression in cortical neurons. This novel heteromeric association between M2R and GBR2 provides a possible mechanism for altering muscarinic signaling in the brain and represents a previously unrecognized role for GBR2. PMID:20016095

  9. Effects of the binding of a dextran derivative on fibroblast growth factor 2: secondary structure and receptor-binding studies.

    PubMed

    Bittoun, P; Bagheri-Yarmand, R; Chaubet, F; Crépin, M; Jozefonvicz, J; Fermandjian, S

    1999-06-15

    CMDB (carboxymethyldextran-benzylamide) are dextrans statistically substituted with carboxymethyl and benzylamide groups which can mimick some of the biological properties of heparin. It has previously been shown that CMDB inhibit autocrine growth of breast tumor cells (Bagheri-Yarmand et al., Biochem. Biophys. Res. Commun. 239: 424-428, 1997) and selectively displace fibroblast growth factor 2 (FGF-2) from its receptor. Here, we used circular dichroism and fluorescence anisotropy measurements to show that the conformation of FGF-2 was significantly altered upon its binding to CMDB and to short CMDB fragments prepared within this study. CMDB and fragments formed a stable 1:1 complex with FGF-2, with affinities being estimated as 20+/-10 nM from fluorescence anisotropy analysis. No such a complex was formed with insulin-like growth factor (IGF-1) or epidermal growth factor (EGF). CMDB competed with the FGF-2 receptor for binding to FGF-2 but did not disturb the binding of IGF-1 and EGF to their receptors. Thus, our results highlight the selectivity of CMDB and their fragments towards FGF-2. Heparin, however, competes with CMDB and their fragments for binding to FGF-2. The carboxymethyl and benzylamide groups of these molecules likely interact directly with a heparin-binding region of FGF-2. The resulting change in conformation disturbs the binding of FGF-2 to its receptor and consecutively its mitogenic activity.

  10. Crystallographic Identification and Functional Characterization of Phospholipids as Ligands for the Orphan Nuclear Receptor Steroidogenic Factor-1

    SciTech Connect

    Li, Yong; Choi, Mihwa; Cavey, Greg; Daugherty, Jennifer; Suino, Kelly; Kovach, Amanda; Bingham, Nathan C.; Kliewer, Steven A.; Xu, H.Eric

    2010-11-10

    The orphan nuclear receptor steroidogenic factor 1 (SF-1) regulates the differentiation and function of endocrine glands. Although SF-1 is constitutively active in cell-based assays, it is not known whether this transcriptional activity is modulated by ligands. Here, we describe the 1.5 {angstrom} crystal structure of the SF-1 ligand binding domain in complex with an LXXLL motif from a coregulator protein. The structure reveals the presence of a phospholipid ligand in a surprisingly large pocket ({approx}1600 {angstrom}{sup 3}), with the receptor adopting the canonical active conformation. The bound phospholipid is readily exchanged and modulates SF-1 interactions with coactivators. Mutations designed to reduce the size of the SF-1 pocket or to disrupt hydrogen bonds with the phospholipid abolish SF-1/coactivator interactions and significantly reduce SF-1 transcriptional activity. These findings provide evidence that SF-1 is regulated by endogenous ligands and suggest an unexpected relationship between phospholipids and endocrine development and function.

  11. Specific inhibition of transcriptional activity of the constitutive androstane receptor (CAR) by the splicing factor SF3a3.

    PubMed

    Yun, Hye Jin; Kwon, Jungsun; Seol, Wongi

    2008-10-01

    The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily and plays an important role in the degradation of xenobiotics in the liver. Using yeast two-hybrid screening, we identified SF3a3, a 60-kDa subunit of the splicing factor 3a complex, as a specific CAR-interacting protein. We further confirmed their interaction by both co-immunoprecipitation and GST pull-down assay. Functional studies showed that overexpression of SF3a3 inhibited the reporter activity driven by a promoter containing CAR binding sequences by up to 50%, whereas reduced expression of SF3a3 activated the same reporter activity by approximately three-fold. The inhibitory function of SF3a3 is independent of the presence of TCPOBOP, a CAR ligand. These data suggest that SF3a3 functions as a co-repressor of CAR transcriptional activity, in addition to its canonical function.

  12. [Determining the parameters for receptor-ligand interaction by serial dilution method for the case when the ligand and receptor are in a pre-existing mixture].

    PubMed

    Bobrovnik, S A

    2005-01-01

    New methods of determining the binding parameters for ligand-receptor interaction are considered. The considered approaches are based on the earlier suggested method of serial dilution and application of so-called coordinates of dilution. It was shown that the suggested methods allow to evaluate affinity constant and ligand concentration even for the case, when the receptor and corresponding ligand of unknown concentration are in a mixture and their separation from each other is impossible. In this connection the suggested methods are especially useful for studying the ligand-receptor interaction if the receptor is very liable and its purification from the ligand would cause drastic changes of its binding properties.

  13. A two-step binding model of PCSK9 interaction with the low density lipoprotein receptor.

    PubMed

    Yamamoto, Taichi; Lu, Christine; Ryan, Robert O

    2011-02-18

    PCSK9 (proprotein convertase subtilisin-like/kexin type 9) is an emerging target for pharmaceutical intervention. This multidomain protein interacts with the LDL receptor (LDLR), promoting receptor degradation. Insofar as PCSK9 inhibition induces a decrease in plasma cholesterol levels, understanding the nature of the binding interaction between PCSK9 and the LDLR is of critical importance. In this study, the ability of PCSK9 to compete with apoE3 N-terminal domain-containing reconstituted HDL for receptor binding was examined. Whereas full-length PCSK9 was an effective competitor, the N-terminal domain (composed of the prodomain and catalytic domain) was not. Surprisingly, the C-terminal domain (CT domain) of PCSK9 was able to compete. Using a direct binding interaction assay, we show that the PCSK9 CT domain bound to the LDLR in a calcium-dependent manner and that co-incubation with the prodomain and catalytic domain had no effect on this binding. To further characterize this interaction, two LDLR fragments, the classical ligand-binding domain (LBD) and the EGF precursor homology domain, were expressed in stably transfected HEK 293 cells and isolated. Binding assays showed that the PCSK9 CT domain bound to the LBD at pH 5.4. Thus, CT domain interaction with the LBD of the LDLR at endosomal pH constitutes a second step in the PCSK9-mediated LDLR binding that leads to receptor degradation.

  14. Signaling factor interactions with polysaccharide aggregates of bacterial biofilms.

    PubMed

    DeSalvo, Stephen C; Liu, Yating; Choudhary, Geetika Sanjay; Ren, Dacheng; Nangia, Shikha; Sureshkumar, Radhakrishna

    2015-02-17

    Biofilms are surface-attached colonies of bacteria embedded in an extracellular polymeric substance (EPS). Inside the eukaryotic hosts, bacterial biofilms interact with the host cells through signaling factors (SFs). These signaling processes play important roles in the interaction between bacteria and host cells and the outcome of infections and symbiosis. However, how host immune factors diffuse through biofilms is not well understood. Here, we describe synergistic molecular dynamics and experimental approaches for studying the translocation of signaling factors through polysaccharide chain aggregates present in the extracellular matrix of bacterial biofilms. The effect of polysaccharide chain degradation on the energetics of SF-EPS interactions was examined by simulating an EPS consisting of various polysaccharide chain lengths. It is shown that the SF stabilization energy, defined as the average potential of mean force difference between the environments outside and within the matrix, increases linearly with decreasing chain length. This effect has been explained based on the changes in the polysaccharide configurations around the SF. Specifically, shorter chains are packed tightly around the SF, promoting favorable SF-EPS interactions, while longer chains are packed loosely resulting in screening of interactions with neighboring chains. We further investigated the translocation of SFs through the host cell membrane using molecular dynamics simulations. Further, simulations predict the existence of energy barriers greater than 1000 kJ mol(-1) associated with the translocation of the signaling factors necrosis factor-alpha (TNF-α) and granulocyte macrophage colony stimulating factor (GM-CSF) across the lipid bilayer. The agreement of computational and experimental findings motivates future computational studies using a more detailed description of the EPS aimed at understanding the role of the extracellular matrix on biofilm drug resistance.

  15. Shedding of tumor necrosis factor receptors by activated human neutrophils

    PubMed Central

    1990-01-01

    The capacity of human neutrophils (PMN) to bind tumor necrosis factor (TNF) was rapidly lost when the cells were incubated in suspension with agents that can stimulate their migratory and secretory responses. Both physiological (poly)peptides (FMLP, C5a, CSF-GM) and pharmacologic agonists (PMN, calcium ionophore A23187) induced the loss of TNF receptors (TNF-R) from the cell surface. Half-maximal loss in TNF-R ensued after only approximately 2 min with 10(-7) M FMLP at 37 degrees C, and required only 10(-9) M FMLP during a 30-min exposure. However, there were no such changes even with prolonged exposure of PMN to FMLP at 4 degrees or 16 degrees C. Scatchard analysis revealed loss of TNF- binding sites without change in their affinity (Kd approximately 0.4 nM) as measured at incompletely modulating concentrations of FMLP, C5a, PMA, or A23187. The binding of anti-TNF-R mAbs to PMN decreased in parallel, providing independent evidence for the loss of TNF-R from the cell surface. At the same time, soluble TNF-R appeared in the medium of stimulated PMN. This inference was based on the PMN- and FMLP-dependent generation of a nonsedimentable activity that could inhibit the binding of TNF to fresh human PMN or to mouse macrophages, and the ability of mAbs specific for human TNF-R to abolish inhibition by PMN-conditioned medium of binding of TNF to mouse macrophages. Soluble TNF-R activity was associated with a protein of Mr approximately 28,000 by ligand blot analysis of cell-free supernatants of FMLP-treated PMN. Thus, some portion of the FMLP-induced loss of TNF-R from human PMN is due to shedding of TNF-R. Shedding was unaffected by inhibitors of serine and thiol proteases and could not be induced with phosphatidylinositol- specific phospholipase C. Loss of TNF-R from PMN first stimulated by other agents may decrease their responsiveness to TNF. TNF-R shed by PMN may be one source of the TNF-binding proteins found in body fluids, and may blunt the actions of the

  16. Early interactions with mother and peers independently build adult social skills and shape BDNF and oxytocin receptor brain levels.

    PubMed

    Branchi, Igor; Curley, James P; D'Andrea, Ivana; Cirulli, Francesca; Champagne, Frances A; Alleva, Enrico

    2013-04-01

    The early social environment has a profound impact on developmental trajectories. Although an impoverished early environment can undermine the acquisition of appropriate social skills, the specific role played by the different components of an individual's early environment in building social competencies has not been fully elucidated. Here we setup an asynchronous communal nesting paradigm in mice to disentangle the influence of maternal care and early peer interactions on adult social behavior and neural systems reportedly involved in the regulation of social interactions. The asynchronous communal nesting consists of three mothers giving birth three days apart, generating three groups of pups - the Old, the Middle and the Young - all raised in a single nest from birth to weaning. We scored the amount of maternal and peer interactions received by these mice and by a fourth group reared under standard conditions. At adulthood, the four experimental groups have been investigated for social behavior in a social interaction test, i.e. facing an unfamiliar conspecific during five 20-min daily encounters, and for oxytocin receptor and brain derived neurotrophic factor (BDNF) levels. Results show that only individuals exposed to high levels of both maternal and peer interactions demonstrated elaborate adult agonistic competencies, i.e. the ability to promptly display a social status, and high BDNF levels in the hippocampus, frontal cortex and hypothalamus. By contrast, only individuals exposed to high levels of peer interactions showed enhanced adult affiliative behavior and enhanced oxytocin receptor levels in selected nuclei of the amygdala. Overall these findings indicate that early interaction