Structural Basis for Activation of the Receptor Tyrosine Kinase KIT by Stem Cell Factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuzawa,S.; Opatowsky, Y.; Zhang, Z.
2007-01-01
Stem Cell Factor (SCF) initiates its multiple cellular responses by binding to the ectodomain of KIT, resulting in tyrosine kinase activation. We describe the crystal structure of the entire ectodomain of KIT before and after SCF stimulation. The structures show that KIT dimerization is driven by SCF binding whose sole role is to bring two KIT molecules together. Receptor dimerization is followed by conformational changes that enable lateral interactions between membrane proximal Ig-like domains D4 and D5 of two KIT molecules. Experiments with cultured cells show that KIT activation is compromised by point mutations in amino acids critical for D4-D4more » interaction. Moreover, a variety of oncogenic mutations are mapped to the D5-D5 interface. Since key hallmarks of KIT structures, ligand-induced receptor dimerization, and the critical residues in the D4-D4 interface, are conserved in other receptors, the mechanism of KIT stimulation unveiled in this report may apply for other receptor activation.« less
Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.
Roskoski, Robert
2005-11-11
Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of interaction with several enzymes and adaptor proteins.
Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase.
Reith, A D; Ellis, C; Lyman, S D; Anderson, D M; Williams, D E; Bernstein, A; Pawson, T
1991-09-01
Germline mutations at the Dominant White Spotting (W) and Steel (Sl) loci have provided conclusive genetic evidence that c-kit mediated signal transduction pathways are essential for normal mouse development. We have analysed the interactions of normal and mutant W/c-kit gene products with cytoplasmic signalling proteins, using transient c-kit expression assays in COS cells. In addition to the previously identified c-kit gene product (Kit+), a second normal Kit isoform (KitA+) containing an in-frame insertion, Gly-Asn-Asn-Lys, within the extracellular domain, was detected in murine mast cell cultures and mid-gestation placenta. Both Kit+ and KitA+ isoforms showed increased autophosphorylation and enhanced association with phosphatidylinositol (PI) 3' kinase and PLC gamma 1, when stimulated with recombinant soluble Steel factor. No association or increase in phosphorylation of GAP and two GAP-associated proteins, p62 and p190, was observed. The two isoforms had distinct activities in the absence of exogenous soluble Steel factor; Kit+, but not KitA+, showed constitutive tyrosine phosphorylation that was accompanied by a low constitutive level of association with PI-3' kinase and PLC gamma 1. Introduction of the point substitutions associated with W37 (Glu582----Lys) or W41 (Val831----Met) mutant alleles into c-kit expression constructs abolished (W37) or reduced (W41) the Steel factor-induced association of the Kit receptor with signalling proteins in a manner proportional to the overall severity of the corresponding W mutant phenotype. These data suggest a diversity of normal Kit signalling pathways and indicate that W mutant phenotypes result from primary defects in the Kit receptor that affect its interaction with cytoplasmic signalling proteins.
Kozlowski, Maya; Larose, Louise; Lee, Fai; Le, Duc Mingh; Rottapel, Robert; Siminovitch, Katherine A.
1998-01-01
The SH2 domain-containing SHP-1 tyrosine phosphatase has been shown to negatively regulate a broad spectrum of growth factor- and cytokine-driven mitogenic signaling pathways. Included among these is the cascade of intracellular events evoked by stem cell factor binding to c-Kit, a tyrosine kinase receptor which associates with and is dephosphorylated by SHP-1. Using a series of glutathione S-transferase (GST) fusion proteins containing either tyrosine-phosphorylated segments of the c-Kit cytosolic region or the SH2 domains of SHP-1, we have shown that SHP-1 interacts with c-Kit by binding selectively to the phosphorylated c-Kit juxtamembrane region and that the association of c-Kit with the larger of the two SHP-1 isoforms may be mediated through either the N-terminal or C-terminal SHP-1 SH2 domain. The results of binding assays with mutagenized GST-Kit juxtamembrane fusion proteins and competitive inhibition assays with phosphopeptides encompassing each c-Kit juxtamembrane region identified the tyrosine residue at position 569 as the major site for binding of SHP-1 to c-Kit and suggested that tyrosine 567 contributes to, but is not required for, this interaction. By analysis of Ba/F3 cells retrovirally transduced to express c-Kit receptors, phenylalanine substitution of c-Kit tyrosine residue 569 was shown to be associated with disruption of c-Kit–SHP-1 binding and induction of hyperproliferative responses to stem cell factor. Although phenylalanine substitution of c-Kit tyrosine residue 567 in the Ba/F3–c-Kit cells did not alter SHP-1 binding to c-Kit, the capacity of a second c-Kit-binding tyrosine phosphatase, SHP-2, to associate with c-Kit was markedly reduced, and the cells again showed hyperproliferative responses to stem cell factor. These data therefore identify SHP-1 binding to tyrosine 569 on c-Kit as an interaction pivotal to SHP-1 inhibitory effects on c-Kit signaling, but they indicate as well that cytosolic protein tyrosine phosphatases other than SHP-1 may also negatively regulate the coupling of c-Kit engagement to proliferation. PMID:9528781
The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer.
Cardoso, Henrique J; Figueira, Marília I; Socorro, Sílvia
2017-12-01
The stem cell factor (SCF) is a cytokine that specifically binds the tyrosine kinase receptor c-KIT. The SCF/c-KIT interaction leads to receptor dimerization, activation of kinase activity and initiation of several signal transduction pathways that control cell proliferation, apoptosis, differentiation and migration in several tissues. The activity of SCF/c-KIT system is linked with the phosphatidylinositol 3-kinase (PI3-K), the Src, the Janus kinase/signal transducers and activators of transcription (JAK/STAT), the phospholipase-C (PLC-γ) and the mitogen-activated protein kinase (MAPK) pathways. Moreover, it has been reported that cancer cases display an overactivation of c-KIT due to the presence of gain-of-function mutations or receptor overexpression, which renders c-KIT a tempting target for cancer treatment. In the case of male cancers the most documented activated pathways are the PI3-K and Src, both enhancing abnormal cell proliferation. It is also known that the Src activity in prostate cancer cases depends on the presence of tr-KIT, the cytoplasmic truncated variant of c-KIT that is specifically expressed in tumour tissues and, thus, a very interesting target for drug development. The present review provides an overview of the signalling pathways activated by SCF/c-KIT and discusses the potential application of c-KIT inhibitors for treatment of testicular and prostatic cancers.
Da Silva Figueiredo Celestino Gomes, Priscila; Chauvot De Beauchêne, Isaure; Panel, Nicolas; Lopez, Sophie; De Sepulveda, Paulo; Geraldo Pascutti, Pedro; Solary, Eric; Tchertanov, Luba
2016-01-01
The receptors tyrosine kinases (RTKs) for the colony stimulating factor-1, CSF-1R, and for the stem cell factor, SCFR or KIT, are important mediators of signal transduction. The abnormal function of these receptors, promoted by gain-of-function mutations, leads to their constitutive activation, associated with cancer or other proliferative diseases. A secondary effect of the mutations is the alteration of receptors' sensitivity to tyrosine kinase inhibitors, compromising effectiveness of these molecules in clinical treatment. In particular, the mutation V560G in KIT increases its sensitivity to Imatinib, while the D816V in KIT, and D802V in CSF-1R, triggers resistance to the drug. We analyzed the Imatinib binding affinity to the native and mutated KIT (mutations V560G, S628N and D816V) and CSF-1R (mutation D802V) by using molecular dynamics simulations and energy calculations of Imatinib•target complexes. Further, we evaluated the sensitivity of the studied KIT receptors to Imatinib by measuring the inhibition of KIT phosphorylation. Our study showed that (i) the binding free energy of Imatinib to the targets is highly correlated with their experimentally measured sensitivity; (ii) the electrostatic interactions are a decisive factor affecting the binding energy; (iii) the most deleterious impact to the Imatinib sensitivity is promoted by D802V (CSF-1R) and D816V (KIT) mutations; (iv) the role of the juxtamembrane region, JMR, in the imatinib binding is accessory. These findings contribute to a better description of the mutation-induced effects alternating the targets sensitivity to Imatinib.
Nociceptive tuning by stem cell factor/c-Kit signaling.
Milenkovic, Nevena; Frahm, Christina; Gassmann, Max; Griffel, Carola; Erdmann, Bettina; Birchmeier, Carmen; Lewin, Gary R; Garratt, Alistair N
2007-12-06
The molecular mechanisms regulating the sensitivity of sensory circuits to environmental stimuli are poorly understood. We demonstrate here a central role for stem cell factor (SCF) and its receptor, c-Kit, in tuning the responsiveness of sensory neurons to natural stimuli. Mice lacking SCF/c-Kit signaling displayed profound thermal hypoalgesia, attributable to a marked elevation in the thermal threshold and reduction in spiking rate of heat-sensitive nociceptors. Acute activation of c-Kit by its ligand, SCF, resulted in a reduced thermal threshold and potentiation of heat-activated currents in isolated small-diameter neurons and thermal hyperalgesia in mice. SCF-induced thermal hyperalgesia required the TRP family cation channel TRPV1. Lack of c-Kit signaling during development resulted in hypersensitivity of discrete mechanoreceptive neuronal subtypes. Thus, c-Kit can now be grouped with a small family of receptor tyrosine kinases, including c-Ret and TrkA, that control the transduction properties of sensory neurons.
Decoupling the Functional Pleiotropy of Stem Cell Factor by Tuning c-Kit Signaling
Ho, Chia Chi M.; Chhabra, Akanksha; Starkl, Philipp; Schnorr, Peter-John; Wilmes, Stephan; Moraga, Ignacio; Kwon, Hye-Sook; Gaudenzio, Nicolas; Sibilano, Riccardo; Wehrman, Tom S.; Gakovic, Milica; Sockolosky, Jonathan T.; Tiffany, Matthew R.; Ring, Aaron M.; Piehler, Jacob; Weissman, Irving L.; Galli, Stephen J.; Shizuru, Judith A.; Garcia, K. Christopher
2017-01-01
SUMMARY Most secreted growth factors and cytokines are functionally pleiotropic because their receptors are expressed on diverse cell types. While important for normal mammalian physiology, pleiotropy limits the efficacy of cytokines and growth factors as therapeutics. Stem cell factor (SCF) is a growth factor that acts through the c-Kit receptor tyrosine kinase to elicit hematopoietic progenitor expansion, but can be toxic when administered in vivo because it concurrently activates mast cells. We engineered a mechanism-based SCF partial agonist that impaired c-Kit dimerization, truncating downstream signaling amplitude. This SCF variant elicited biased activation of hematopoietic progenitors over mast cells in vitro and in vivo. Mouse models of SCF-mediated anaphylaxis, radioprotection, and hematopoietic expansion revealed that this SCF partial agonist retained therapeutic efficacy while exhibiting virtually no anaphylactic off-target effects. The approach of biasing cell activation by tuning signaling thresholds and outputs has applications to many dimeric receptor-ligand systems. PMID:28283060
Da Silva Figueiredo Celestino Gomes, Priscila; Panel, Nicolas; Laine, Elodie; Pascutti, Pedro Geraldo; Solary, Eric; Tchertanov, Luba
2014-01-01
The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind. PMID:24828813
Da Silva Figueiredo Celestino Gomes, Priscila; Chauvot De Beauchêne, Isaure; Panel, Nicolas; Lopez, Sophie; De Sepulveda, Paulo; Geraldo Pascutti, Pedro; Solary, Eric; Tchertanov, Luba
2016-01-01
The receptors tyrosine kinases (RTKs) for the colony stimulating factor-1, CSF-1R, and for the stem cell factor, SCFR or KIT, are important mediators of signal transduction. The abnormal function of these receptors, promoted by gain-of-function mutations, leads to their constitutive activation, associated with cancer or other proliferative diseases. A secondary effect of the mutations is the alteration of receptors’ sensitivity to tyrosine kinase inhibitors, compromising effectiveness of these molecules in clinical treatment. In particular, the mutation V560G in KIT increases its sensitivity to Imatinib, while the D816V in KIT, and D802V in CSF-1R, triggers resistance to the drug. We analyzed the Imatinib binding affinity to the native and mutated KIT (mutations V560G, S628N and D816V) and CSF-1R (mutation D802V) by using molecular dynamics simulations and energy calculations of Imatinib•target complexes. Further, we evaluated the sensitivity of the studied KIT receptors to Imatinib by measuring the inhibition of KIT phosphorylation. Our study showed that (i) the binding free energy of Imatinib to the targets is highly correlated with their experimentally measured sensitivity; (ii) the electrostatic interactions are a decisive factor affecting the binding energy; (iii) the most deleterious impact to the Imatinib sensitivity is promoted by D802V (CSF-1R) and D816V (KIT) mutations; (iv) the role of the juxtamembrane region, JMR, in the imatinib binding is accessory. These findings contribute to a better description of the mutation-induced effects alternating the targets sensitivity to Imatinib. PMID:27467080
McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A
1992-01-01
The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092
Petti, Filippo; Thelemann, April; Kahler, Jen; McCormack, Siobhan; Castaldo, Linda; Hunt, Tony; Nuwaysir, Lydia; Zeiske, Lynn; Haack, Herbert; Sullivan, Laura; Garton, Andrew; Haley, John D
2005-08-01
OSI-930, a potent thiophene inhibitor of the Kit, KDR, and platelet-derived growth factor receptor tyrosine kinases, was used to selectively inhibit tyrosine phosphorylation downstream of juxtamembrane mutant Kit in the mast cell leukemia line HMC-1. Inhibition of Kit kinase activity resulted in a rapid dephosphorylation of Kit and inhibition of the downstream signaling pathways. Attenuation of Ras-Raf-Erk (phospho-Erk, phospho-p38), phosphatidyl inositol-3' kinase (phospho-p85, phospho-Akt, phospho-S6), and signal transducers and activators of transcription signaling pathways (phospho-STAT3/5/6) were measured by affinity liquid chromatography tandem mass spectrometry, by immunoblot, and by tissue microarrays of fixed cell pellets. To more globally define additional components of Kit signaling temporally altered by kinase inhibition, a novel multiplex quantitative isobaric peptide labeling approach was used. This approach allowed clustering of proteins by temporal expression patterns. Kit kinase, which dephosphorylates rapidly upon kinase inhibition, was shown to regulate both Shp-1 and BDP-1 tyrosine phosphatases and the phosphatase-interacting protein PSTPIP2. Interactions with SH2 domain adapters [growth factor receptor binding protein 2 (Grb2), Cbl, Slp-76] and SH3 domain adapters (HS1, cortactin, CD2BP3) were attenuated by inhibition of Kit kinase activity. Functional crosstalk between Kit and the non-receptor tyrosine kinases Fes/Fps, Fer, Btk, and Syk was observed. Inhibition of Kit modulated phosphorylation-dependent interactions with pathways controlling focal adhesion (paxillin, leupaxin, p130CAS, FAK1, the Src family kinase Lyn, Wasp, Fhl-3, G25K, Ack-1, Nap1, SH3P12/ponsin) and septin-actin complexes (NEDD5, cdc11, actin). The combined use of isobaric protein quantitation and expression clustering, immunoblot, and tissue microarray strategies allowed temporal measurement signaling pathways modulated by mutant Kit inhibition in a model of mast cell leukemia.
Brown, R J; Newman, S J; Durtschi, D C; Leblanc, A K
2012-03-01
Canine anal sac apocrine gland adenocarcinoma (ASAGAC) is an uncommon but highly invasive and metastatic malignancy. Toceranib phosphate (Palladia) is a receptor tyrosine kinase (RTK) inhibitor that targets several members of the split kinase RTK family. These membrane receptors are important for cell cycling, apoptosis and angiogenesis, all of which can contribute to carcinogenesis. The objective of this study was to evaluate archived, paraffin-embedded canine ASAGAC and normal canine anal sacs for immunohistochemical detection of Kit and platelet-derived growth factor receptor beta (PDGFR-β). Two of 77 neoplasms (2.6%) expressed Kit. Fifteen of the neoplasms (19.5%) were positive for PDGFR-β expression. None of the normal canine anal sac epithelium expressed Kit or PDGFR-β. Because of these results, further investigation should be considered to determine the role of RTKs in the clinical course and treatment of canine ASAGAC. © 2011 Blackwell Publishing Ltd.
Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT
Dubreuil, Patrice; Letard, Sébastien; Ciufolini, Marco; Gros, Laurent; Humbert, Martine; Castéran, Nathalie; Borge, Laurence; Hajem, Bérengère; Lermet, Anne; Sippl, Wolfgang; Voisset, Edwige; Arock, Michel; Auclair, Christian; Leventhal, Phillip S.; Mansfield, Colin D.; Moussy, Alain; Hermine, Olivier
2009-01-01
Background The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. Methodology/Principal Findings In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200±40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150±80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. Conclusions Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicity. PMID:19789626
Saleh, Rosine; Wedeh, Ghaith; Herrmann, Harald; Bibi, Siham; Cerny-Reiterer, Sabine; Sadovnik, Irina; Blatt, Katharina; Hadzijusufovic, Emir; Jeanningros, Sylvie; Blanc, Catherine; Legarff-Tavernier, Magali; Chapiro, Elise; Nguyen-Khac, Florence; Subra, Frédéric; Bonnemye, Patrick; Dubreuil, Patrice; Desplat, Vanessa; Merle-Béral, Hélène; Willmann, Michael; Rülicke, Thomas; Valent, Peter; Arock, Michel
2014-07-03
In systemic mastocytosis (SM), clinical problems arise from factor-independent proliferation of mast cells (MCs) and the increased release of mediators by MCs, but no human cell line model for studying MC activation in the context of SM is available. We have created a stable stem cell factor (SCF) -dependent human MC line, ROSA(KIT WT), expressing a fully functional immunoglobulin E (IgE) receptor. Transfection with KIT D816V converted ROSA(KIT WT) cells into an SCF-independent clone, ROSA(KIT D816V), which produced a mastocytosis-like disease in NSG mice. Although several signaling pathways were activated, ROSA(KIT D816V) did not exhibit an increased, but did exhibit a decreased responsiveness to IgE-dependent stimuli. Moreover, NSG mice bearing ROSA(KIT D816V)-derived tumors did not show mediator-related symptoms, and KIT D816V-positive MCs obtained from patients with SM did not show increased IgE-dependent histamine release or CD63 upregulation. Our data show that KIT D816V is a disease-propagating oncoprotein, but it does not activate MCs to release proinflammatory mediators, which may explain why mediator-related symptoms in SM occur preferentially in the context of a coexisting allergy. ROSA(KIT D816V) may provide a valuable tool for studying the pathogenesis of mastocytosis and should facilitate the development of novel drugs for treating SM patients. © 2014 by The American Society of Hematology.
Kampa-Schittenhelm, Kerstin Maria; Frey, Julia; Haeusser, Lara A; Illing, Barbara; Pavlovsky, Ashly A; Blumenstock, Gunnar; Schittenhelm, Marcus Matthias
2017-10-10
Activating D816 mutations of the class III receptor tyrosine kinase KIT are associated with the majority of patients with systemic mastocytosis (SM), but also core binding factor (CBF) AML, making KIT mutations attractive therapeutic targets for the treatment of these cancers. Crenolanib is a potent and selective inhibitor of wild-type as well as mutant isoforms of the class III receptor tyrosine kinases FLT3 and PDGFRα/β. Notably, crenolanib inhibits constitutively active mutant-FLT3 isoforms resulting from amino acid substitutions of aspartic acid at codon 835, which is homologous to codon 816 in the KIT gene - suggesting sensitivity against mutant-KIT D816 isoforms as well. Here we demonstrate that crenolanib targets KIT D816 in SM and CBF AML models: crenolanib inhibits cellular proliferation and initiates apoptosis of mastocytosis cell lines expressing these mutations. Target-specificity was confirmed using an isogenic cell model. In addition, we demonstrate that KIT D816 mutations are targetable with clinically achievable doses of crenolanib. Further, a rationale to combine cladribine (2-CDA), the therapeutic standard in SM, with crenolanib is provided. In conclusion, we demonstrate that crenolanib is an inhibitor of mutant-KIT D816 isoforms at clinically achievable concentrations, and thus may be a potential treatment for SM and CBF AML as a monotherapy or in combination approaches.
Elevated expression of the proto-oncogene c-kit in patients with mastocytosis.
Nagata, H; Worobec, A S; Semere, T; Metcalfe, D D
1998-02-01
The stem cell factor (SCF)c-kit receptor interaction plays a critical role in the development and survival of mast cells. Several studies have also associated c-kit receptor mutations with the human diseases, mastocytosis and piebaldism. Overexpression of c-kit has been reported to be associated with myeloproliferative disorders and myelodysplastic syndromes. Using peripheral blood mononuclear cells (PBMCs) from 11 patients with indolent mastocytosis (category I), mastocytosis with an associated hematologic disorder (category II), or aggressive mastocytosis (category III); a patient with CMML unassociated with mastocytosis, and PBMCs from 13 normal subjects, we examined the level of expression of c-kit mRNA along with other c-kit isoforms to determine if overexpression of the c-kit receptor was associated with mastocytosis. Using quantitative competitive PCR, c-kit mRNA levels on average were found to be statistically elevated in the five patients with mastocytosis with an associated hematologic disorder and in the patient with aggressive mastocytosis as compared with controls, but not elevated in patients with indolent mastocytosis. The relative mRNA expression for the two c-kit isoforms was not significantly different in the mastocytosis patients compared with controls. This demonstration of the overexpression of c-kit mRNA in mastocytosis, and particularly those patients with clinical evidence of myelodysplastic syndrome, adds evidence to support the conclusion that mastocytosis, at least in some patients, is a feature of myelodysplasia; and suggests that determination of c-kit mRNA expression in PBMCs may provide an additional approach to assessing prognosis.
Liu, Chao; Ouyang, Wei; Xia, Jingyan; Sun, Xiaoru; Zhao, Liying; Xu, Feng
2018-06-05
Mast cells (MCs) play a key role in immune process response to invading pathogens. This study assessed the involvement of MCs in controlling Staphylococcus aureus infection in a cutaneous infection model of MC-deficient (KitW-sh/W-sh) mice. KitW-sh/W-sh mice developed significantly larger skin lesions after the cutaneous S. aureus challenge, when compared to wild-type (WT) mice, while MC dysfunction reduced the inflammation response to S. aureus. The levels of tumor necrosis factor (TNF)-α in skin tissues were significantly decreased in KitW-sh/W-sh mice upon infection. Moreover, the exogenous administration of MCs or recombinant TNF-α effectively restored the immune response against S. aureus in KitW-sh/W-sh mice via the recruitment of neutrophils to the infected site. These results indicate that the effects of MC deficiency are largely attributed to the decrease in production of TNF-α in cutaneous S. aureus infection. In addition, S. aureus-induced MC activation was dependent on the c-kit receptor-activated phosphoinositide 3-kinase (PI3K)/AKT/P65-nuclear factor (NF-κB) pathway, which was confirmed by treatment with Masitinib (a c-kit receptor inhibitor), Wortmannin (a PI3K inhibitor), and pyrrolidine dithiocarbamate (a NF-κB inhibitor), respectively. The present study identifies the critical role of MCs in the host defense against S. aureus infection.
The stem cell growth factor receptor KIT is not expressed on interstitial cells in bladder.
Gevaert, Thomas; Ridder, Dirk De; Vanstreels, Els; Daelemans, Dirk; Everaerts, Wouter; Aa, Frank Van Der; Pintelon, Isabel; Timmermans, Jean-Pierre; Roskams, Tania; Steiner, Clara; Neuhaus, Jochen
2017-06-01
The mast/stem cell growth factor receptor KIT has long been assumed to be a specific marker for interstitial cells of Cajal (ICC) in the bladder, with possible druggable perspectives. However, several authors have challenged the presence of KIT + ICC in recent years. The aim of this study was therefore to attempt to clarify the conflicting reports on KIT expression in the bladder of human beings, rat, mouse and guinea pig and to elucidate the possible role of antibody-related issues and interspecies differences in this matter. Fresh samples were obtained from human, rat, mouse and guinea pig cystectomies and processed for single/double immunohistochemistry/immunofluorescence. Specific antibodies against KIT, mast cell tryptase (MCT), anoctamin-1 (ANO1) and vimentin were used to characterize the cell types expressing KIT. Gut (jejunum) tissue was used as an external antibody control. Our results revealed KIT expression on mast cells but not on ICC in human, rat, mouse and guinea pig bladder. Parallel immunohistochemistry showed KIT expression on ICC in human, rat, mouse and guinea pig gut, which confirmed the selectivity of the KIT antibody clones. In conclusion, we have shown that KIT + cells in human, rat, mouse and guinea pig bladder are mast cells and not ICC. The present report is important as it opposes the idea that KIT + ICC are present in bladder. In this perspective, functional concepts of KIT + ICC being involved in sensory and/or motor aspects of bladder physiology should be revised. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Agarwal, Shruti; Kazi, Julhash U.; Rönnstrand, Lars
2013-01-01
The receptor tyrosine kinase c-Kit, also known as the stem cell factor receptor, plays a key role in several developmental processes. Activating mutations in c-Kit lead to alteration of these cellular processes and have been implicated in many human cancers such as gastrointestinal stromal tumors, acute myeloid leukemia, testicular seminomas and mastocytosis. Regulation of the catalytic activity of several kinases is known to be governed by phosphorylation of tyrosine residues in the activation loop of the kinase domain. However, in the case of c-Kit phosphorylation of Tyr-823 has been demonstrated to be a late event that is not required for kinase activation. However, because phosphorylation of Tyr-823 is a ligand-activated event, we sought to investigate the functional consequences of Tyr-823 phosphorylation. By using a tyrosine-to-phenylalanine mutant of tyrosine 823, we investigated the impact of Tyr-823 on c-Kit signaling. We demonstrate here that Tyr-823 is crucial for cell survival and proliferation and that mutation of Tyr-823 to phenylalanine leads to decreased sustained phosphorylation and ubiquitination of c-Kit as compared with the wild-type receptor. Furthermore, the mutated receptor was, upon ligand-stimulation, quickly internalized and degraded. Phosphorylation of the E3 ubiquitin ligase Cbl was transient, followed by a substantial reduction in phosphorylation of downstream signaling molecules such as Akt, Erk, p38, Shc, and Gab2. Thus, we propose that activation loop tyrosine 823 is crucial for activation of both the MAPK and PI3K pathways and that its disruption leads to a destabilization of the c-Kit receptor and decreased survival of cells. PMID:23803604
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lei; Wu, Zhong; Yin, Gang
2014-12-12
Highlights: • SCF receptor c-Kit is functionally expressed in primary and transformed osteoblasts. • SCF protects primary and transformed osteoblasts from H{sub 2}O{sub 2}. • SCF activation of c-Kit in osteoblasts, required for its cyto-protective effects. • c-Kit mediates SCF-induced Akt activation in cultured osteoblasts. • Akt activation is required for SCF-regulated cyto-protective effects in osteoblasts. - Abstract: Osteoblasts regulate bone formation and remodeling, and are main target cells of oxidative stress in the progression of osteonecrosis. The stem cell factor (SCF)-c-Kit pathway plays important roles in the proliferation, differentiation and survival in a range of cell types, but littlemore » is known about its functions in osteoblasts. In this study, we found that c-Kit is functionally expressed in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Its ligand SCF exerted significant cyto-protective effects against hydrogen peroxide (H{sub 2}O{sub 2}). SCF activated its receptor c-Kit in osteoblasts, which was required for its cyto-protective effects against H{sub 2}O{sub 2}. Pharmacological inhibition (by Imatinib and Dasatinib) or shRNA-mediated knockdown of c-Kit thus inhibited SCF-mediated osteoblast protection. Further investigations showed that protection by SCF against H{sub 2}O{sub 2} was mediated via activation of c-Kit-dependent Akt pathway. Inhibition of Akt activation, through pharmacological or genetic means, suppressed SCF-mediated anti-H{sub 2}O{sub 2} activity in osteoblasts. In summary, we have identified a new SCF-c-Kit-Akt physiologic pathway that protects osteoblasts from H{sub 2}O{sub 2}-induced damages, and might minimize the risk of osteonecrosis caused by oxidative stress.« less
Combined KIT and FGFR2b Signaling Regulates Epithelial Progenitor Expansion during Organogenesis
Lombaert, Isabelle M.A.; Abrams, Shaun R.; Li, Li; Eswarakumar, Veraragavan P.; Sethi, Aditya J.; Witt, Robert L.; Hoffman, Matthew P.
2013-01-01
Summary Organ formation and regeneration require epithelial progenitor expansion to engineer, maintain, and repair the branched tissue architecture. Identifying the mechanisms that control progenitor expansion will inform therapeutic organ (re)generation. Here, we discover that combined KIT and fibroblast growth factor receptor 2b (FGFR2b) signaling specifically increases distal progenitor expansion during salivary gland organogenesis. FGFR2b signaling upregulates the epithelial KIT pathway so that combined KIT/FGFR2b signaling, via separate AKT and mitogen-activated protein kinase (MAPK) pathways, amplifies FGFR2b-dependent transcription. Combined KIT/FGFR2b signaling selectively expands the number of KIT+K14+SOX10+ distal progenitors, and a genetic loss of KIT signaling depletes the distal progenitors but also unexpectedly depletes the K5+ proximal progenitors. This occurs because the distal progenitors produce neurotrophic factors that support gland innervation, which maintains the proximal progenitors. Furthermore, a rare population of KIT+FGFR2b+ cells is present in adult glands, in which KIT signaling also regulates epithelial-neuronal communication during homeostasis. Our findings provide a framework to direct regeneration of branched epithelial organs. PMID:24371813
Urie, Bridget K; Russell, Duncan S; Kisseberth, William C; London, Cheryl A
2012-05-25
Toceranib phosphate (Palladia) has a reported objective response rate of 25% in both canine apocrine gland anal sac adenocarcinoma (AGASACA) and thyroid carcinoma (TC), with stable disease occurring in an additional 50-60% of dogs. The basis for the observed responses to toceranib is not known. The purpose of this study was to evaluate AGASACA and TC samples for the expression and activation of VEGFR2, PDGFRα, PDGFRβ, KIT and RET to assess whether dysregulation of these receptor tyrosine kinases (RTKs) may contribute to the biologic activity of toceranib. mRNA for VEGFR2, PDGFRα/β, KIT and RET was detected in all AGASACA samples. mRNA for VEGFR2, PDGFRα/β, and KIT was detected in all TC samples, while mRNA for RET was amplified in 10/15 samples. No phosphorylation of VEGFR2, PDGFRα/β, or KIT was observed on the arrays. However, phosphorylation of RET was detected in 54% of the primary AGASACA and 20% of TC. VEGFR2 was expressed in 19/24 primary and 6/10 metastatic AGASACA and 6/15 TC samples. KIT was present in 8/24 primary and 3/10 metastatic AGASACA and 9/15 TC samples. PDGFRα expression was noted in all tumor samples. In contrast PDGFRβ expression was found in only a few tumor samples but was evident in the stroma of all tumor specimens. Known targets of toceranib are expressed in both AGASAC and TC. Given the observed expression of VEGFR and PDGFRα/β and phosphorylation of RET, these RTKs merit investigation as to their roles in the biology of AGSACA and TC and their contribution to toceranib's activity.
2012-01-01
Background Toceranib phosphate (Palladia) has a reported objective response rate of 25% in both canine apocrine gland anal sac adenocarcinoma (AGASACA) and thyroid carcinoma (TC), with stable disease occurring in an additional 50-60% of dogs. The basis for the observed responses to toceranib is not known. The purpose of this study was to evaluate AGASACA and TC samples for the expression and activation of VEGFR2, PDGFRα, PDGFRβ, KIT and RET to assess whether dysregulation of these receptor tyrosine kinases (RTKs) may contribute to the biologic activity of toceranib. Results mRNA for VEGFR2, PDGFRα/β, KIT and RET was detected in all AGASACA samples. mRNA for VEGFR2, PDGFRα/β, and KIT was detected in all TC samples, while mRNA for RET was amplified in 10/15 samples. No phosphorylation of VEGFR2, PDGFRα/β, or KIT was observed on the arrays. However, phosphorylation of RET was detected in 54% of the primary AGASACA and 20% of TC. VEGFR2 was expressed in 19/24 primary and 6/10 metastatic AGASACA and 6/15 TC samples. KIT was present in 8/24 primary and 3/10 metastatic AGASACA and 9/15 TC samples. PDGFRα expression was noted in all tumor samples. In contrast PDGFRβ expression was found in only a few tumor samples but was evident in the stroma of all tumor specimens. Conclusions Known targets of toceranib are expressed in both AGASAC and TC. Given the observed expression of VEGFR and PDGFRα/β and phosphorylation of RET, these RTKs merit investigation as to their roles in the biology of AGSACA and TC and their contribution to toceranib’s activity. PMID:22630170
Yang, Min; Pan, Zengkai; Huang, Kezhi; Büsche, Guntram; Feuerhake, Friedrich; Chaturvedi, Anuhar; Nie, Danian; Heuser, Michael; Thol, Felicitas; von Neuhoff, Nils; Ganser, Arnold; Li, Zhixiong
2017-09-26
The neurotrophins (NTs) play a key role in neuronal survival and maintenance. The TRK (tropomyosin-related kinase) tyrosine kinase receptors (TRKA, TRKB, TRKC) are high affinity receptors for NTs. There is increasing data demonstrating an important role of the TRK family in cancer initiation and progression. NTs have been known for many years to promote chemotaxis, maturation, and survival of mast cells. However, the role of NT signaling in the pathogenesis of mastocytosis is not well understood. In this study, we demonstrate that activation of TRKA by its ligand nerve growth factor (NGF) is potent to trigger a disease in mice with striking similarities to human systemic mastocytosis (SM). Moreover, activation of TRKA by NGF strongly rescues KIT inhibition-induced cell death of mast cell lines and primary mast cells from patients with SM, and this rescue effect can be efficiently blocked by entrectinib (a new pan TRK specific inhibitor). HMC-1 mast cell leukemia cells that are resistant to KIT inhibition induced by TRKA activation show reactivation of MAPK/ERK (extracellular signal-regulated kinase) and strong upregulation of early growth response 3 (EGR3), suggesting an important role of MAPK-EGR3 axis in the development of resistance to KIT inhibition. Targeting both TRK and KIT significantly prolongs survival of mice xenotransplanted with HMC-1 cells compared with targeting KIT alone. Thus, these data strongly suggest that TRKA signaling can improve neoplastic mast cell fitness. This might explain at least in part why treatment with KIT inhibitors alone so far has been disappointing in most published clinical trials for mastocytosis. Our data suggest that targeting both KIT and TRKs might improve efficacy of molecular therapy in SM with KIT mutations.
Klomtong, P; Chaweewan, K; Phasuk, Y; Duangjinda, M
2015-10-19
Mutations in melanocortin 1 receptor (MC1R) gene and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) gene have been shown to affect coat color patterns in pigs. Additional functional marker genes, such as insulin like growth factor-2 (IGF2) and orphan nuclear receptor, germ cell nuclear factor (NR6A1), have been described for variations in factors such as fat deposition, litter size, and vertebra number in pigs. In this study, we investigated 129 pigs representing 4 breeds: Thai indigenous, classified into black (similar to Raad or Ka done pig) and black and white (similar to the Hailum and Kwai pig) coat color types; wild boar; Duroc; and Chinese Meishan. Mutations of MC1R, KIT, IGF2, and NR6A1 were detected using polymerase chain reaction-restriction fragment length polymorphism. The genotypes variation in MC1R and KIT genes could be used to differentiate four groups of coat color: solid black, black and white, red, and wild type. For IGF2, the GG genotype was present in wild boar only; for NR6A1 the TT genotype was found only in Duroc pigs. We identified novel 14-bp deletions in KIT that were associated with black and white coat color in Thai indigenous pigs. Insights into variations in genes presented in this study will be useful in future developmental breeding programs for the Thai native pig.
Purohit, Rituraj
2014-01-01
KIT receptor is the prime target in gastrointestinal stromal tumor (GISTs) therapy. Second generation inhibitor, Sunitinib, binds to an inactivated conformation of KIT receptor and stabilizes it in order to prevent tumor formation. Here, we investigated the dynamic behavior of wild type and mutant D816H KIT receptor, and emphasized the extended A-loop (EAL) region (805-850) by conducting molecular dynamics simulation (∼100 ns). We analyzed different properties such as root mean square cutoff or deviation, root mean square fluctuation, radius of gyration, solvent-accessible surface area, hydrogen bonding network analysis, and essential dynamics. Apart from this, clustering and cross-correlation matrix approach was used to explore the conformational space of the wild type and mutant EAL region of KIT receptor. Molecular dynamics analysis indicated that mutation (D816H) was able to alter intramolecular hydrogen bonding pattern and affected the structural flexibility of EAL region. Moreover, flexible secondary elements, specially, coil and turns were dominated in EAL region of mutant KIT receptor during simulation. This phenomenon increased the movement of EAL region which in turn helped in shifting the equilibrium towards the active kinase conformation. Our atomic investigation of mutant KIT receptor which emphasized on EAL region provided a better insight into the understanding of Sunitinib resistance mechanism of KIT receptor and would help to discover new therapeutics for KIT-based resistant tumor cells in GIST therapy.
Pandey, Praveen; Mishra, Anupam; Tripathi, Ashoak Mani; Verma, Veerendra; Trivedi, Ritu; Singh, Hitendra Prakash; Kumar, Sunil; Patel, Brijesh; Singh, Vinay; Pandey, Shivani; Pandey, Amita; Mishra, Subhash Chandra
2017-03-01
An attempt is made to analyze the molecular behavior of juvenile nasopharyngeal angiofibroma (JNA). Case Series METHODS: Quantification of mRNAs expression was undertaken through real-time polymerase chain reaction in JNA (9-24) samples for VEGF-A, basic fibroblast growth factor (b-FGF), platelet-derived growth factor PDGF-A, KIT proto-oncogene receptor tyrosine kinase (c-Kit), Avian myelomatosis viral oncogene homolog (c-Myc), Harvey rat sarcoma viral oncogene homolog (H-Ras), tumor suppressor gene TP53, and androgen receptor and interleukin 6 (IL-6). The β-catenin expression was evaluated by western blot in 16 samples. Nasal polyp was taken as control. A significantly increased (P < 0.01) expression of c-myc, VEGFA, bFGF, PDGFA, c-kit, and TP53 was seen, along with enhanced expression of β-catenin. A massive enhancement of H-Ras expression was seen for the first time. Androgen receptor expression was no different, whereas IL-6 despite showing upregulation trend was not significant. The enhanced expressions of various markers suggest their potential role in JNA. Although the biological significance of c-kit, c-myc, and one of the novel markers H-Ras has yet to be defined, their significant expression may have a therapeutic importance. NA. Laryngoscope, 127:E100-E106, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma
Zhan, Yao; Guo, Jun; Yang, William; Goncalves, Christophe; Rzymski, Tomasz; Dreas, Agnieszka; Żyłkiewicz, Eliza; Mikulski, Maciej; Brzózka, Krzysztof; Golas, Aniela; Kong, Yan; Ma, Meng; Huang, Fan; Huor, Bonnie; Guo, Qianyu; da Silva, Sabrina Daniela; Torres, Jose; Cai, Yutian; Topisirovic, Ivan; Su, Jie; Bijian, Krikor; Alaoui-Jamali, Moulay A.; Huang, Sidong; Journe, Fabrice; Ghanem, Ghanem E.; Miller, Wilson H.
2017-01-01
Melanoma can be stratified into unique subtypes based on distinct pathologies. The acral/mucosal melanoma subtype is characterized by aberrant and constitutive activation of the proto-oncogene receptor tyrosine kinase C-KIT, which drives tumorigenesis. Treatment of these melanoma patients with C-KIT inhibitors has proven challenging, prompting us to investigate the downstream effectors of the C-KIT receptor. We determined that C-KIT stimulates MAP kinase–interacting serine/threonine kinases 1 and 2 (MNK1/2), which phosphorylate eukaryotic translation initiation factor 4E (eIF4E) and render it oncogenic. Depletion of MNK1/2 in melanoma cells with oncogenic C-KIT inhibited cell migration and mRNA translation of the transcriptional repressor SNAI1 and the cell cycle gene CCNE1. This suggested that blocking MNK1/2 activity may inhibit tumor progression, at least in part, by blocking translation initiation of mRNAs encoding cell migration proteins. Moreover, we developed an MNK1/2 inhibitor (SEL201), and found that SEL201-treated KIT-mutant melanoma cells had lower oncogenicity and reduced metastatic ability. Clinically, tumors from melanoma patients harboring KIT mutations displayed a marked increase in MNK1 and phospho-eIF4E. Thus, our studies indicate that blocking MNK1/2 exerts potent antimelanoma effects and support blocking MNK1/2 as a potential strategy to treat patients positive for KIT mutations. PMID:29035277
MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma.
Zhan, Yao; Guo, Jun; Yang, William; Goncalves, Christophe; Rzymski, Tomasz; Dreas, Agnieszka; Żyłkiewicz, Eliza; Mikulski, Maciej; Brzózka, Krzysztof; Golas, Aniela; Kong, Yan; Ma, Meng; Huang, Fan; Huor, Bonnie; Guo, Qianyu; da Silva, Sabrina Daniela; Torres, Jose; Cai, Yutian; Topisirovic, Ivan; Su, Jie; Bijian, Krikor; Alaoui-Jamali, Moulay A; Huang, Sidong; Journe, Fabrice; Ghanem, Ghanem E; Miller, Wilson H; Del Rincón, Sonia V
2017-11-01
Melanoma can be stratified into unique subtypes based on distinct pathologies. The acral/mucosal melanoma subtype is characterized by aberrant and constitutive activation of the proto-oncogene receptor tyrosine kinase C-KIT, which drives tumorigenesis. Treatment of these melanoma patients with C-KIT inhibitors has proven challenging, prompting us to investigate the downstream effectors of the C-KIT receptor. We determined that C-KIT stimulates MAP kinase-interacting serine/threonine kinases 1 and 2 (MNK1/2), which phosphorylate eukaryotic translation initiation factor 4E (eIF4E) and render it oncogenic. Depletion of MNK1/2 in melanoma cells with oncogenic C-KIT inhibited cell migration and mRNA translation of the transcriptional repressor SNAI1 and the cell cycle gene CCNE1. This suggested that blocking MNK1/2 activity may inhibit tumor progression, at least in part, by blocking translation initiation of mRNAs encoding cell migration proteins. Moreover, we developed an MNK1/2 inhibitor (SEL201), and found that SEL201-treated KIT-mutant melanoma cells had lower oncogenicity and reduced metastatic ability. Clinically, tumors from melanoma patients harboring KIT mutations displayed a marked increase in MNK1 and phospho-eIF4E. Thus, our studies indicate that blocking MNK1/2 exerts potent antimelanoma effects and support blocking MNK1/2 as a potential strategy to treat patients positive for KIT mutations.
Megakaryocytes compensate for Kit insufficiency in murine arthritis.
Cunin, Pierre; Penke, Loka R; Thon, Jonathan N; Monach, Paul A; Jones, Tatiana; Chang, Margaret H; Chen, Mary M; Melki, Imene; Lacroix, Steve; Iwakura, Yoichiro; Ware, Jerry; Gurish, Michael F; Italiano, Joseph E; Boilard, Eric; Nigrovic, Peter A
2017-05-01
The growth factor receptor Kit is involved in hematopoietic and nonhematopoietic development. Mice bearing Kit defects lack mast cells; however, strains bearing different Kit alleles exhibit diverse phenotypes. Herein, we investigated factors underlying differential sensitivity to IgG-mediated arthritis in 2 mast cell-deficient murine lines: KitWsh/Wsh, which develops robust arthritis, and KitW/Wv, which does not. Reciprocal bone marrow transplantation between KitW/Wv and KitWsh/Wsh mice revealed that arthritis resistance reflects a hematopoietic defect in addition to mast cell deficiency. In KitW/Wv mice, restoration of susceptibility to IgG-mediated arthritis was neutrophil independent but required IL-1 and the platelet/megakaryocyte markers NF-E2 and glycoprotein VI. In KitW/Wv mice, platelets were present in numbers similar to those in WT animals and functionally intact, and transfer of WT platelets did not restore arthritis susceptibility. These data implicated a platelet-independent role for the megakaryocyte, a Kit-dependent lineage that is selectively deficient in KitW/Wv mice. Megakaryocytes secreted IL-1 directly and as a component of circulating microparticles, which activated synovial fibroblasts in an IL-1-dependent manner. Transfer of WT but not IL-1-deficient megakaryocytes restored arthritis susceptibility to KitW/Wv mice. These findings identify functional redundancy among Kit-dependent hematopoietic lineages and establish an unanticipated capacity of megakaryocytes to mediate IL-1-driven systemic inflammatory disease.
Laldinsangi, C; Senthilkumaran, B
2018-04-03
C-kit receptor is a member of a family of growth factor receptors that have tyrosine kinase activity, and are involved in the transduction of growth regulatory signals across plasma membrane by activation of its ligand, kitl/scf. The present study analysed mRNA and protein expression profiles of c-kit in the gonads of catfish, Clarias gariepinus, using real time PCR, in situ hybridization and immunohistochemistry. Tissue distribution analysis revealed higher expression mainly in the catfish gonads. Ontogeny studies showed minimal expression during early developmental stages and highest during 50-75 days post hatch, and the dimorphic expression in gonads decreased gradually till adulthood, which might suggest an important role for this gene around later stages of sex differentiation and gonadal development. Expression of C-kit was analysed at various phases of gonadal cycle in both male and female, which showed minimal expression during the resting phase, and higher expression in male compared to females during the pre-spawning phase. In vitro and in vivo induction using human chorionic gonadotropin elevated the expression of c-kit indicating the regulatory influence of hypothalamo-hypophyseal axis. In vivo transient gene silencing using c-kit-esiRNA in adult catfish during gonadal recrudescence showed a decrease in c-kit expression, which affected the expression level of germ cell meiotic marker sycp3, as well as several factors and steroidogenic enzyme genes involved in germ cell development. Decrease in the levels of serum 11-KT and T were also observed after esiRNA silencing. The findings of this study suggest that c-kit has an important role in the process of germ cell proliferation, development and maturation during gonadal development and recrudescence in catfish. Copyright © 2018. Published by Elsevier Inc.
FES kinase participates in KIT-ligand induced chemotaxis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisset, Edwige, E-mail: Edwige.Voisset@inserm.fr; Institut Paoli-Calmettes, Marseille; Universite de la Mediterranee, Aix-Marseille II
2010-02-26
FES is a cytoplasmic tyrosine kinase activated by several membrane receptors, originally identified as a viral oncogene product. We have recently identified FES as a crucial effector of oncogenic KIT mutant receptor. However, FES implication in wild-type KIT receptor function was not addressed. We report here that FES interacts with KIT and is phosphorylated following activation by its ligand SCF. Unlike in the context of oncogenic KIT mutant, FES is not involved in wild-type KIT proliferation signal, or in cell adhesion. Instead, FES is required for SCF-induced chemotaxis. In conclusion, FES kinase is a mediator of wild-type KIT signalling implicatedmore » in cell migration.« less
Roskoski, Robert
2018-04-25
The Kit proto-oncogene was found as a consequence of the discovery of the feline v-kit sarcoma oncogene. Stem cell factor (SCF) is the Kit ligand and it mediates Kit dimerization and activation. The Kit receptor contains an extracellular segment that is made up of five immunoglobulin-like domains (D1/2/3/4/5), a transmembrane segment, a juxtamembrane segment, a protein-tyrosine kinase domain that contains an insert of 77 amino acid residues, and a carboxyterminal tail. Activating somatic mutations in Kit have been documented in various neoplasms including gastrointestinal stromal tumors (GIST), mast cell overexpression (systemic mastocytosis), core-binding factor acute myeloid leukemias (AML), melanomas, and seminomas. In the case of gastrointestinal stromal tumors, most activating mutations occur in the juxtamembrane segment and these mutants are initially sensitive to imatinib. As with many targeted anticancer drugs, resistance to Kit antagonists occurs in about two years and is the result of secondary KIT mutations. An activation segment exon 17 D816V mutation is one of the more common resistance mutations in Kit and this mutant is resistant to imatinib and sorafenib. Type I protein kinase inhibitors interact with the active enzyme form with DFG-D of the proximal activation segment directed inward toward the active site (DFG-D in ). In contrast, type II inhibitors bind to their target with the DFG-D pointing away from the active site (DFG-D out ). Based upon the X-ray crystallographic structures, imatinib, sunitinib, and ponatinib are Type II Kit inhibitors. We used the Schrödinger induced fit docking protocol to model the interaction of midostaurin with Kit and the result indicates that it binds to the DFG-D in conformation of the receptor and is thus classified as type I inhibitor. This medication inhibits the notoriously resistant Kit D816V mutant and is approved for the treatment of systemic mastocytosis and is effective against tumors bearing the D816V activation/resistance mutation. Copyright © 2018 Elsevier Ltd. All rights reserved.
2008-01-01
Mast cells have been recognized for well over 100 years. With time, human mast cells have been documented to originate from CD34+ cells, and have been implicated in host responses in both innate and acquired immunity. In clinical immunology, they are recognized for their central role in IgE-mediated degranulation and allergic inflammation by virtue of their expression of the high-affinity receptor for IgE and release of potent proinflammatory mediators. In hematology, the clinical disease of mastocytosis is characterized by a pathologic increase of mast cells in tissues, often associated with mutations in KIT, the receptor for stem cell factor. More recently, and with increased understanding of how human mast cells are activated through receptors including the high-affinity receptor for IgE and KIT, specific tyrosine kinase inhibitors have been identified with the potential to interrupt signaling pathways and thus limit the proliferation of mast cells as well as their activation through immunoglobulin receptors. PMID:18684881
Yao, Kai; Ge, Wei
2013-01-01
Consisting of Kit ligand and receptor Kit, the Kit system is involved in regulating many ovarian functions such as follicle activation, granulosa cell proliferation, and oocyte growth and maturation. In mammals, Kit ligand is derived from the granulosa cells and Kit receptor is expressed in the oocyte and theca cells. In the zebrafish, the Kit system contains two ligands (Kitlga and Kitlgb) and two receptors (Kita and Kitb). Interestingly, Kitlga and Kitb are localized in the somatic follicle cells, but Kitlgb and Kita are expressed in the oocyte. Using recombinant zebrafish Kitlga and Kitlgb, we demonstrated that Kitlga preferentially activated Kita whereas Kitlgb specifically activated Kitb by Western analysis for receptor phosphorylation. In support of this, Kitlgb triggered a stronger and longer MAPK phosphorylation in follicle cells than Kitlga, whereas Kitlga but not Kitlgb activated MAPK in the denuded oocytes, in agreement with the distribution of Kita and Kitb in the follicle and their specificity for Kitlga and Kitlgb. Further analysis of the interaction between Kit ligands and receptors by homology modeling showed that Kitlga-Kita and Kitlgb-Kitb both have more stable electrostatic interaction than Kitlgb-Kita or Kitlga-Kitb. A functional study of Kit involvement in final oocyte maturation showed that Kitlga and Kitlgb both suppressed the spontaneous maturation significantly; in contrast, Kitlgb but not Kitlga significantly promoted 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) -induced oocyte maturation. Our results provided strong evidence for a Kit-mediated bi-directional communication system in the zebrafish ovarian follicle, which could be part of the complex interplay between the oocyte and the follicle cells in the development of follicles. PMID:23409152
Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury
Di Siena, S; Gimmelli, R; Nori, S L; Barbagallo, F; Campolo, F; Dolci, S; Rossi, P; Venneri, M A; Giannetta, E; Gianfrilli, D; Feigenbaum, L; Lenzi, A; Naro, F; Cianflone, E; Mancuso, T; Torella, D; Isidori, A M; Pellegrini, M
2016-01-01
The role of endogenous c-Kit receptor activation on cardiac cell homeostasis and repair remains largely unexplored. Transgenic mice carrying an activating point mutation (TgD814Y) in the kinase domain of the c-Kit gene were generated. c-KitTgD814Y receptor was expressed in the heart during embryonic development and postnatal life, in a similar timing and expression pattern to that of the endogenous gene, but not in the hematopoietic compartment allowing the study of a cardiac-specific phenotype. c-KitTgD814Y mutation produced a constitutive active c-Kit receptor in cardiac tissue and cells from transgenic mice as demonstrated by the increased phosphorylation of ERK1/2 and AKT, which are the main downstream molecular effectors of c-Kit receptor signaling. In adult transgenic hearts, cardiac morphology, size and total c-Kit+ cardiac cell number was not different compared with wt mice. However, when c-KitTgD814Y mice were subjected to transmural necrotic heart damage by cryoinjury (CI), all transgenic survived, compared with half of wt mice. In the sub-acute phase after CI, transgenic and wt mice showed similar heart damage. However, 9 days after CI, transgenic mice exhibited an increased number of c-Kit+CD31+ endothelial progenitor cells surrounding the necrotic area. At later follow-up, a consistent reduction of fibrotic area, increased capillary density and increased cardiomyocyte replenishment rate (as established by BrdU incorporation) were observed in transgenic compared with wt mice. Consistently, CD45−c-Kit+ cardiac stem cells isolated from transgenic c-KitTgD814Y mice showed an enhanced endothelial and cardiomyocyte differentiation potential compared with cells isolated from the wt. Constitutive activation of c-Kit receptor in mice is associated with an increased cardiac myogenic and vasculogenic reparative potential after injury, with a significant improvement of survival. PMID:27468693
Kadivar, Ali; Kamalidehghan, Behnam; Akbari Javar, Hamid; Karimi, Benyamin; Sedghi, Reihaneh; Noordin, Mohamed Ibrahim
2017-01-01
Recent cancer molecular therapies are targeting main functional molecules to control applicable process of cancer cells. Attractive targets are established by receptor tyrosine kinases, such as platelet-derived growth factor receptors (PDGFRs) and c-Kit as mostly irregular signaling, which is due to either over expression or mutation that is associated with tumorigenesis and cell proliferation. Imatinib mesylate is a selective inhibitor of receptor tyrosine kinase, including PDGFR-β and c-Kit. In this research, we studied how imatinib mesylate would exert effect on MCF7 and T-47D breast cancer and MCF 10A epithelial cell lines, the gene and protein expression of PDGFR-β, c-Kit and their relevant ligands platelet-derived growth factor (PDGF)-BB and stem cell factor (SCF). The MTS assay was conducted in therapeutic relevant concentration of 2–10 µM for 96, 120 and 144 h treatment. In addition, apoptosis induction and cytostatic activity of imatinib mesylate were investigated with the terminal deoxynucleotidyl transferase dUTP nick end labeling TUNEL and cell cycle assays, respectively, in a time-dependent manner. Comparative real-time PCR and Western blot analysis were conducted to evaluate the expression and regulation of imatinib target genes and proteins. Our finding revealed that imatinib mesylate antiproliferation effect, apoptosis induction and cytostatic activity were significantly higher in breast cancer cell lines compared to MCF 10A. This effect might be due to the expression of PDGFR-β, PDGF-BB, c-Kit and SCF, which was expressed by all examined cell lines, except the T-47D cell line which was not expressed c-Kit. However, examined gene and proteins expressed more in cancer cell lines. Therefore, imatinib mesylate was more effective on them. It is concluded that imatinib has at least two potential targets in both examined breast cancer cell lines and can be a promising drug for targeted therapy to treat breast cancer. PMID:28260860
Rupar, Kaja; Moharram, Sausan A; Kazi, Julhash U; Rönnstrand, Lars
2018-04-23
KIT is a receptor tyrosine kinase (RTK) involved in several cellular processes such as regulation of proliferation, survival and differentiation of early hematopoietic cells, germ cells and melanocytes. Activation of KIT results in phosphorylation of tyrosine residues in the receptor, and recruitment of proteins that mediate downstream signaling and also modulate receptor signaling. Here we show that the SRC-like adaptor protein 2 (SLAP2) binds to wild-type KIT in a ligand-dependent manner and is furthermore found constitutively associated with the oncogenic mutant KIT-D816V. Peptide fishing analysis mapped pY568 and pY570 as potential SLAP2 association sites in KIT, which overlaps with the SRC binding sites in KIT. Expression of SLAP2 in cells expressing the transforming mutant KIT-D816V led to reduced cell viability and reduced colony formation. SLAP2 also partially blocked phosphorylation of several signal transduction molecules downstream of KIT such as AKT, ERK, p38 and STAT3. Finally, SLAP2 expression enhanced ubiquitination of KIT and its subsequent degradation. Taken together, our data demonstrate that SLAP2 negatively modulates KIT-D816V-mediated transformation by enhancing degradation of the receptor.
Mavroeidis, Leonidas; Metaxa-Mariatou, Vassiliki; Papoudou-Bai, Alexandra; Lampraki, Angeliki Maria; Kostadima, Lida; Tsinokou, Ilias; Zarkavelis, George; Papadaki, Alexandra; Petrakis, Dimitrios; Gκoura, Stefania; Kampletsas, Eleftherios; Nasioulas, George; Batistatou, Anna; Pentheroudakis, George
2018-01-01
Gastrointestinal stromal tumours (GIST) are mesenchymal neoplasms that usually carry an activating mutation in KIT or platelet-derived growth factor receptor alpha ( PDGFRA ) genes with predictive and prognostic significance. We investigated the extended mutational status of GIST in a patient population of north-western Greece in order to look at geopraphic/genotypic distinctive traits. Clinicopathological and molecular data of 38 patients diagnosed from 1996 to 2016 with GIST in the region of Epirus in Greece were retrospectively assessed. Formalin-fixed paraffin-embedded tumours were successfully analysed for mutations in 54 genes with oncogenic potential. Next generation sequencing was conducted by using the Ion AmpliSeqCancer Hotspot Panel V.2 for DNA analysis (Thermofisher Scientific). Among 38 tumours, 24 (63.16%) and seven (18.42%) of the tumours harboured mutations in the KIT and PDGFRA genes, respectively, while seven (18.42%) tumours were negative for either KIT or PDGFRA mutation. No mutations were detected in five (13.16%) cases. Concomitant mutations of BRAF and fibroblast growth factor receptor 3 ( FGFR3 ) genes were observed in two patients with KIT gene mutation. Two patients with KIT / PDGFRA wild-type GIST had mutations in either KRAS or phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA ) genes. There was no significant survival difference regarding the exonic site of mutation in either KIT or PDGFRA gene. The presence of a mutation in pathway effectors downstream of KIT or PDGFRA , such as BRAF , KRAS or PIK3CA , was associated with poor prognosis. Adverse prognosticators were also high mitotic index and the advanced disease status at diagnosis. We report comparable incidence of KIT and PDGFRA mutation in patients with GIST from north-western Greece as compared with cohorts from other regions. Interestingly, we identified rare mutations on RAS , BRAF and PIK3CA genes in patients with poor prognosis.
Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.
Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.
1994-01-01
The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330
Figueira, Marília I; Cardoso, Henrique J; Correia, Sara; Maia, Cláudio J; Socorro, Sílvia
2017-10-01
The tyrosine kinase receptor c-KIT and its ligand, the stem cell factor (SCF) are expressed in several tissues of male and female reproductive tract, playing an important role in the regulation of basic biological processes. The activation of c-KIT by SCF controls, cell survival and death, cell differentiation and migration. Also, the SCF/c-KIT system has been implicated in carcinogenesis of reproductive tissues due to its altered expression pattern or overactivation in consequence of gain-of-functions mutations. Over the years, it has also been shown that hormones, the primary regulators of reproductive function and causative agents in the case of hormone-dependent cancers, are also able to control the SCF/c-KIT tissue levels. Therefore, it is liable to suppose that disturbed SCF/c-KIT expression driven by (de)regulated hormone actions can be a relevant step towards carcinogenesis. The present review describes the SCF and c-KIT expression in cancers of reproductive tissues, discussing the implications of the hormonal regulation of the SCF/c-KIT system in cancer development. Understanding the relationship between hormonal imbalance and the SCF/c-KIT expression and activity would be relevant in the context of novel therapeutic approaches in reproductive cancers. Copyright © 2017 Elsevier B.V. All rights reserved.
2011-01-01
Background Several proteins that promote angiogenesis are overexpressed in hepatocellular carcinoma (HCC) and have been implicated in disease pathogenesis. Sunitinib has antiangiogenic activity and is an oral multitargeted inhibitor of vascular endothelial growth factor receptors (VEGFRs)-1, -2, and -3, platelet-derived growth factor receptors (PDGFRs)-α and -β, stem-cell factor receptor (KIT), and other tyrosine kinases. In a phase II study of sunitinib in advanced HCC, we evaluated the plasma pharmacodynamics of five proteins related to the mechanism of action of sunitinib and explored potential correlations with clinical outcome. Methods Patients with advanced HCC received a starting dose of sunitinib 50 mg/day administered orally for 4 weeks on treatment, followed by 2 weeks off treatment. Plasma samples from 37 patients were obtained at baseline and during treatment and were analyzed for vascular endothelial growth factor (VEGF)-A, VEGF-C, soluble VEGFR-2 (sVEGFR-2), soluble VEGFR-3 (sVEGFR-3), and soluble KIT (sKIT). Results At the end of the first sunitinib treatment cycle, plasma VEGF-A levels were significantly increased relative to baseline, while levels of plasma VEGF-C, sVEGFR-2, sVEGFR-3, and sKIT were significantly decreased. Changes from baseline in VEGF-A, sVEGFR-2, and sVEGFR-3, but not VEGF-C or sKIT, were partially or completely reversed during the first 2-week off-treatment period. High levels of VEGF-C at baseline were significantly associated with Response Evaluation Criteria in Solid Tumors (RECIST)-defined disease control, prolonged time to tumor progression (TTP), and prolonged overall survival (OS). Baseline VEGF-C levels were an independent predictor of TTP by multivariate analysis. Changes from baseline in VEGF-A and sKIT at cycle 1 day 14 or cycle 2 day 28, and change in VEGF-C at the end of the first off-treatment period, were significantly associated with both TTP and OS, while change in sVEGFR-2 at cycle 1 day 28 was an independent predictor of OS. Conclusions Baseline plasma VEGF-C levels predicted disease control (based on RECIST) and were positively associated with both TTP and OS in this exploratory analysis, suggesting that this VEGF family member may have utility in predicting clinical outcome in patients with HCC who receive sunitinib. Trial registration ClinicalTrials.gov: NCT00247676 PMID:21787417
Nagata, H; Worobec, A S; Metcalfe, D D
1996-01-01
c-Kit is the receptor for stem cell factor (SCF) and is found on hematopoietic stem cells, mast cells, melanocytes, and germ cells. Aggregation of c-Kit by SCF regulates cell proliferation, differentiation, and survival. In the process of examining c-Kit, a polymorphism in the transmembrane domain of the protooncogene c-Kit was identified. This polymorphism consisted of an A-to-C transversion at nucleotide (nt) 1642, and was deduced to substitute leucine for methionine at codon 541. The frequency of the allele with 'C' at nt 1642 was 0.09 in 64 unrelated subjects. Analysis of a two-generation family with the polymorphism suggested that this polymorphism did not result in disease. This is the first report of a polymorphism in the transmembrane domain of c-Kit, and may be of value in understanding and following the function of c-Kit in normal subjects and in those with other abnormalities of c-Kit.
GM-CSF Inhibits c-Kit and SCF Expression by Bone Marrow-Derived Dendritic Cells
Barroeta Seijas, Amairelys Belen; Simonetti, Sonia; Vitale, Sara; Runci, Daniele; Quinci, Angela Caterina; Soriani, Alessandra; Criscuoli, Mattia; Filippi, Irene; Naldini, Antonella; Sacchetti, Federico Maria; Tarantino, Umberto; Oliva, Francesco; Piccirilli, Eleonora; Santoni, Angela; Di Rosa, Francesca
2017-01-01
Stem cell factor (SCF), the ligand of c-kit, is a key cytokine for hematopoiesis. Hematopoietic precursors express c-kit, whereas differentiated cells of hematopoietic lineage are negative for this receptor, with the exception of NK cells, mast cells, and a few others. While it has long been recognized that dendritic cells (DCs) can express c-kit, several questions remain concerning the SCF/c-kit axis in DCs. This is particularly relevant for DCs found in those organs wherein SCF is highly expressed, including the bone marrow (BM). We characterized c-kit expression by conventional DCs (cDCs) from BM and demonstrated a higher proportion of c-kit+ cells among type 1 cDC subsets (cDC1s) than type 2 cDC subsets (cDC2s) in both humans and mice, whereas similar levels of c-kit expression were observed in cDC1s and cDC2s from mouse spleen. To further study c-kit regulation, DCs were generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) from mouse BM, a widely used protocol. CD11c+ cells were purified from pooled non-adherent and slightly adherent cells collected after 7 days of culture, thus obtaining highly purified BM-derived DCs (BMdDCs). BMdDCs contained a small fraction of c-kit+ cells, and by replating them for 2 days with GM-CSF, we obtained a homogeneous population of c-kit+ CD40hi MHCIIhi cells. Not only did BMdDCs express c-kit but they also produced SCF, and both were striking upregulated if GM-CSF was omitted after replating. Furthermore, a small but significant reduction in BMdDC survival was observed upon SCF silencing. Incubation of BMdDCs with SCF did not modulate antigen presentation ability of these cells, nor it did regulate their membrane expression of the chemokine receptor CXCR4. We conclude that the SCF/c-kit-mediated prosurvival circuit may have been overlooked because of the prominent use of GM-CSF in DC cultures in vitro, including those human DC cultures destined for the clinics. We speculate that DCs more prominently rely on SCF in vivo in some microenvironments, with potential implications for graft-versus-host disease and antitumor immunity. PMID:28261209
Gebreyohannes, Yemarshet K; Schöffski, Patrick; Van Looy, Thomas; Wellens, Jasmien; Vreys, Lise; Cornillie, Jasmien; Vanleeuw, Ulla; Aftab, Dana T; Debiec-Rychter, Maria; Sciot, Raf; Wozniak, Agnieszka
2016-12-01
In the majority of gastrointestinal stromal tumors (GIST), oncogenic signaling is driven by KIT mutations. Advanced GIST is treated with tyrosine kinase inhibitors (TKI) such as imatinib. Acquired resistance to TKI is mainly caused by secondary KIT mutations, but can also be attributed to a switch of KIT dependency to another receptor tyrosine kinase (RTK). We tested the efficacy of cabozantinib, a novel TKI targeting KIT, MET, AXL, and vascular endothelial growth factor receptors (VEGFR), in patient-derived xenograft (PDX) models of GIST, carrying different KIT mutations. NMRI nu/nu mice (n = 52) were bilaterally transplanted with human GIST: UZLX-GIST4 (KIT exon 11 mutation, imatinib sensitive), UZLX-GIST2 (KIT exon 9, imatinib dose-dependent resistance), or UZLX-GIST9 (KIT exon 11 and 17 mutations, imatinib resistant). Mice were grouped as control (untreated), imatinib (50 mg/kg/bid), and cabozantinib (30 mg/kg/qd) and treated orally for 15 days. Cabozantinib resulted in significant tumor regression in UZLX-GIST4 and -GIST2 and delayed tumor growth in -GIST9. In all three models, cabozantinib inhibited the proliferative activity, which was completely absent in UZLX-GIST4 and significantly reduced in -GIST2 and -GIST9. Increased apoptotic activity was observed only in UZLX-GIST4. Cabozantinib inhibited the KIT signaling pathway in UZLX-GIST4 and -GIST2. In addition, compared with both control and imatinib, cabozantinib significantly reduced microvessel density in all models. In conclusion, cabozantinib showed antitumor activity in GIST PDX models through inhibition of tumor growth, proliferation, and angiogenesis, in both imatinib-sensitive and imatinib-resistant models. Mol Cancer Ther; 15(12); 2845-52. ©2016 AACR. ©2016 American Association for Cancer Research.
Foster, R; Byrnes, E; Meldrum, C; Griffith, R; Ross, G; Upjohn, E; Braue, A; Scott, R; Varigos, G; Ferrao, P; Ashman, L K
2008-11-01
The receptor tyrosine kinase c-KIT plays a key role in normal mast cell development. Point mutations in c-KIT have been associated with sporadic or familial mastocytosis. Two unrelated pairs of apparently identical twins affected by cutaneous mastocytosis attending the Mastocytosis Clinic at the Royal Children's Hospital, Melbourne, provided an opportunity to assess the possible contribution of c-KIT germline mutations or polymorphisms in this disease. Tissue biopsy, blood and/or buccal swab specimens were collected from 10 children with mastocytosis. To detect germline mutations/polymorphisms in c-KIT, we studied all coding exons by denaturing high pressure liquid chromatography. Exons showing mismatches were examined by direct sequencing. The influence of the substitution identified was further examined by expressing the variant form of c-KIT in factor-dependent FDC-P1 cells. In both pairs of twins, a heterozygous ATG to CTG transition in codon 541 was observed, resulting in the substitution of a methionine residue in the transmembrane domain by leucine (M541L). In each case, one parent was also heterozygous for this allele. Expression of M541L KIT in FDC-P1 cells enabled them to grow in human KIT ligand (stem cell factor, SCF) but did not confer factor independence. Compared with cells expressing wild-type KIT at a similar level, M541L KIT-expressing cells displayed enhanced growth at low levels of SCF, and heightened sensitivity to the KIT inhibitor, imatinib mesylate. The data suggest that the single nucleotide polymorphism resulting in the substitution M541L may predispose to paediatric mastocytosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erben, Philipp; Horisberger, Karoline; Muessle, Benjamin
2008-12-01
Purpose: Deviant expression of platelet-derived growth factor receptor-{beta} (PDGFR{beta}) and c-kit was shown in patients with colorectal cancer. In the present study, mRNA expression of PDGFR{beta} and c-kit in 33 patients with locally advanced rectal cancer undergoing preoperative chemoradiotherapy with cetuximab/capecitabine/irinotecan in correlation with the tumor regression rate was investigated. Methods and Materials: Pretherapeutic biopsy cores and tumor material from the resected specimens were collected in parallel with normal rectal mucosa. The expression levels of PDGFR{beta} and c-kit were measured by quantitative polymerase chain reaction. Tumors were classified as good responders (tumor regression grade [TRG], 2-3) or poor responders (TRG,more » 0-1). Results: The TRG evaluation of the resected specimen was TRG 0-1 in 11 and TRG 2-3 in 22. The median normalized ratios in the pretreatment mucosa vs. tumor biopsy cores was as follows: PDGFR{beta} ratio of 15.2 vs. 49.5 (p <0.0001) and c-kit ratio of 0.94 vs. 0.67 (p = 0.014). The same tendency was observed for the median PDGFR{beta} ratios after chemoradiotherapy completion: 34.2 vs. 170.0 (p <0.0001). The PDGFR{beta} and c-kit mRNA expression values in the pretreatment tumor biopsy cores were lower than the values in the resected specimens: PDGFR{beta} ratio 49.5 vs. 170.0 (p = 0.0002) and c-kit ratio 0.67 vs. 1.1 (p = 0.0003). Nevertheless, no correlation was seen between the pretherapeutic PDGFR{beta} and c-kit mRNA expression and the pathologic regression rate. Conclusion: Cetuximab-based chemoradiotherapy increased PDGFR{beta} levels even further compared with the pretreatment samples and deserves further investigation.« less
Akin, C; Schwartz, L B; Kitoh, T; Obayashi, H; Worobec, A S; Scott, L M; Metcalfe, D D
2000-08-15
Systemic mastocytosis is a disease of mast cell proliferation that may be associated with hematologic disorders. There are no features on examination that allow the diagnosis of systemic disease, and mast cell-derived mediators, which may be elevated in urine or blood, may also be elevated in individuals with severe allergic disorders. Thus, the diagnosis usually depends on results of bone marrow biopsy. To facilitate evaluation, surrogate markers of the extent and severity of the disease are needed. Because of the association of mastocytosis with hematologic disease, plasma levels were measured for soluble KIT (sKIT) and soluble interleukin-2 receptor alpha chain (sCD25), which are known to be cleaved in part from the mast cell surface and are elevated in some hematologic malignancies. Results revealed that levels of both soluble receptors are increased in systemic mastocytosis. Median plasma sKIT concentrations as expressed by AU/mL (1 AU = 1.4 ng/mL) were as follows: controls, 176 (n = 60); urticaria pigmentosa without systemic involvement, 194 (n = 8); systemic indolent mastocytosis, 511 (n = 30); systemic mastocytosis with an associated hematologic disorder, 1320 (n = 7); aggressive mastocytosis, 3390 (n = 3). Plasma sCD25 levels were elevated in systemic mastocytosis; the highest levels were associated with extensive bone marrow involvement. Levels of sKIT correlated with total tryptase levels, sCD25 levels, and bone marrow pathology. These results demonstrate that sKIT and sCD25 are useful surrogate markers of disease severity in patients with mastocytosis and should aid in diagnosis, in the selection of those needing a bone marrow biopsy, and in the documentation of disease progression. (Blood. 2000;96:1267-1273)
Mastocytosis in mice expressing human Kit receptor with the activating Asp816Val mutation
Zappulla, Jacques P.; Dubreuil, Patrice; Desbois, Sabine; Létard, Sébastien; Hamouda, Nadine Ben; Daëron, Marc; Delsol, Georges; Arock, Michel; Liblau, Roland S.
2005-01-01
Mastocytosis is a rare neoplastic disease characterized by a pathologic accumulation of tissue mast cells (MCs). Mastocytosis is often associated with a somatic point mutation in the Kit protooncogene leading to an Asp/Val substitution at position 816 in the kinase domain of this receptor. The contribution of this mutation to mastocytosis development remains unclear. In addition, the clinical heterogeneity presented by mastocytosis patients carrying the same mutation is unexplained. We report that a disease with striking similarities to human mastocytosis develops spontaneously in transgenic mice expressing the human Asp816Val mutant Kit protooncogene specifically in MCs. This disease is characterized by clinical signs ranging from a localized and indolent MC hyperplasia to an invasive MC tumor. In addition, bone marrow–derived MCs from transgenic animals can be maintained in culture for >24 mo and acquire growth factor independency for proliferation. These results demonstrate a causal link in vivo between the Asp816Val Kit mutation and MC neoplasia and suggest a basis for the clinical heterogeneity of human mastocytosis. PMID:16352739
Patry, Christian; Stamm, Daniela; Betzen, Christian; Tönshoff, Burkhard; Yard, Benito A; Beck, Grietje Ch; Rafat, Neysan
2018-01-01
Endothelial progenitor cell (EPC) numbers are increased in septic patients and correlate with survival. In this study, we investigated, whether surface expression of chemokine receptors and other receptors important for EPC homing is upregulated by EPC from septic patients and if this is associated with clinical outcome. Peripheral blood mononuclear cells from septic patients ( n = 30), ICU control patients ( n = 11) and healthy volunteers ( n = 15) were isolated by Ficoll density gradient centrifugation. FACS-analysis was used to measure the expression of the CXC motif chemokine receptors (CXCR)-2 and - 4, the receptor for advanced glycation endproducts (RAGE) and the stem cell factor receptor c-Kit. Disease severity was assessed via the Simplified Acute Physiology Score (SAPS) II. The serum concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF)-1α and angiopoietin (Ang)-2 were determined with Enzyme linked Immunosorbent Assays. EPC from septic patients expressed significantly more CXCR-4, c-Kit and RAGE compared to controls and were associated with survival-probability. Significantly higher serum concentrations of VEGF, SDF-1α and Ang-2 were found in septic patients. SDF-1α showed a significant association with survival. Our data suggest that SDF-1α and CXCR-4 signaling could play a crucial role in EPC homing in the course of sepsis.
Pros, Eva; Lantuejoul, Sylvie; Sanchez-Verde, Lydia; Castillo, Sandra D; Bonastre, Ester; Suarez-Gauthier, Ana; Conde, Esther; Cigudosa, Juan C; Lopez-Rios, Fernando; Torres-Lanzas, Juan; Castellví, Josep; Ramon y Cajal, Santiago; Brambilla, Elisabeth; Sanchez-Cespedes, Montse
2013-08-15
Growth factor receptors (GFRs) are amenable to therapeutic intervention in cancer and it is important to select patients appropriately. One of the mechanisms for activation of GFRs is gene amplification (GA) but discrepancies arising from the difficulties associated with data interpretation and the lack of agreed parameters confound the comparison of results from different laboratories. Here, we attempt to establish appropriate conditions for standardization of the determination of GA in a panel of GFRs. A NSCLC tissue microarray panel containing 302 samples was screened for alterations at ALK, FGFR1, FGFR2, FGFR3, ERBB2, IGF1R, KIT, MET and PDGFRA by FISH, immunostaining and/or real-time quantitative RT-PCR. Strong amplification was found for FGFR1, ERBB2, KIT/PDFGRA and MET, with frequencies ranging from 1 to 6%. Thresholds for overexpression and GA were established. Strong immunostaining was found in most tumors with ERBB2, MET and KIT amplification, although some tumors underwent strong immunostaining in the absence of GA. KIT and PDFGRA were always coamplified, but only one tumor showed PDGFRA overexpression, indicating that KIT is the main target. Amplification of FGFR1 predominated in squamous cell carcinomas, although the association with overexpression was inconclusive. Interestingly, alterations at ALK, MET, EGFR, ERBB2 and KRAS correlated with augmented levels of phospho-S6 protein, suggesting activation of the mTOR pathway, which may prove useful to pre-select tumors for testing. Overall, here, we provide with parameters for the determination of GA at ERBB2, MET, KIT and PDGFRA which could be implemented in the clinic to stratify lung cancer patients for specific treatments. Copyright © 2013 UICC.
Singh, Satyendra; Klarmann, Kimberly D.; Coppola, Vincenzo; Keller, Jonathan R.; Tessarollo, Lino
2016-01-01
c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies. PMID:27835883
Puverel, Sandrine; Kiris, Erkan; Singh, Satyendra; Klarmann, Kimberly D; Coppola, Vincenzo; Keller, Jonathan R; Tessarollo, Lino
2016-12-20
c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.
Expression of c-Kit isoforms in multiple myeloma: differences in signaling and drug sensitivity.
Montero, Juan Carlos; López-Pérez, Ricardo; San Miguel, Jesús F; Pandiella, Atanasio
2008-06-01
c-Kit is expressed in the plasma cells from 30% of patients with multiple myeloma. Two different isoforms of c-Kit, characterized by the presence or absence of the tetrapeptide sequence GNNK in the extracellular domain, have been described. However, their expression and function in myeloma cells are unknown. We explored the function and expression of these c-Kit isoforms in myeloma cells. Expression of c-Kit isoforms was investigated by reverse transcriptase polymerase chain reaction in fresh plasma cells from patients and cell lines. The function of these c-Kit isoforms was analyzed upon expression in myeloma cells. Signaling was investigated by western blotting using antibodies specific for activated forms of several signaling proteins. The impact of c-Kit on the action of drugs commonly used in the treatment of multiple myeloma was investigated by MTT proliferation assays. Fresh plasma cells from patients as well as myeloma cell lines expressed the two isoforms of c-Kit. Retroviral infection of myeloma cells with vectors that code for c-Kit-GNNK+ or c-Kit-GNNK- forms demonstrated differences in the kinetics of phosphorylation between these isoforms. Stem cell factor-induced activation of the GNNK- form was faster and more pronounced than that of the GNNK+ form, whose activation, however, lasted for longer. The c-Kit receptors weakly activated the Erk1/2 and Erk5 pathways. Both receptors, however, efficiently coupled to the PI3K/Akt pathway, and stimulated p70S6K activation. The latter was sensitive to the mTOR inhibitor, rapamycin. Studies of drug sensitivity indicated that cells expressing the GNNK- form were more resistant to the anti-myeloma action of bortezomib and melphalan. Our data indicate that c-Kit expression in multiple myeloma cells is functional, and coupled to survival pathways that may modulate cell death in response to therapeutic compounds used in the treatment of this disease.
Furitsu, T; Tsujimura, T; Tono, T; Ikeda, H; Kitayama, H; Koshimizu, U; Sugahara, H; Butterfield, J H; Ashman, L K; Kanayama, Y
1993-01-01
The c-kit proto-oncogene encodes a receptor tyrosine kinase. Binding of c-kit ligand, stem cell factor (SCF) to c-kit receptor (c-kitR) is known to activate c-kitR tyrosine kinase, thereby leading to autophosphorylation of c-kitR on tyrosine and to association of c-kitR with substrates such as phosphatidylinositol 3-kinase (PI3K). In a human mast cell leukemia cell line HMC-1, c-kitR was found to be constitutively phosphorylated on tyrosine, activated, and associated with PI3K without the addition of SCF. The expression of SCF mRNA transcript in HMC-1 cells was not detectable by means of PCR after reverse transcription (RT-PCR) analysis, suggesting that the constitutive activation of c-kitR was ligand independent. Sequencing of whole coding region of c-kit cDNA revealed that c-kit genes of HMC-1 cells were composed of a normal, wild-type allele and a mutant allele with two point mutations resulting in intracellular amino acid substitutions of Gly-560 for Val and Val-816 for Asp. Amino acid sequences in the regions of the two mutations are completely conserved in all of mouse, rat, and human c-kit. In order to determine the causal role of these mutations in the constitutive activation, murine c-kit mutants encoding Gly-559 and/or Val-814, corresponding to human Gly-560 and/or Val-816, were constructed by site-directed mutagenesis and expressed in a human embryonic kidney cell line, 293T cells. In the transfected cells, both c-kitR (Gly-559, Val-814) and c-kitR (Val-814) were abundantly phosphorylated on tyrosine and activated in immune complex kinase reaction in the absence of SCF, whereas tyrosine phosphorylation and activation of c-kitR (Gly-559) or wild-type c-kitR was modest or little, respectively. These results suggest that conversion of Asp-816 to Val in human c-kitR may be an activating mutation and responsible for the constitutive activation of c-kitR in HMC-1 cells. Images PMID:7691885
Chauvot de Beauchêne, Isaure; Allain, Ariane; Panel, Nicolas; Laine, Elodie; Trouvé, Alain; Dubreuil, Patrice; Tchertanov, Luba
2014-01-01
Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. PMID:25079768
Severe periorbital edema secondary to STI571 (Gleevec).
Esmaeli, Bita; Prieto, Victor G; Butler, Charles E; Kim, Stella K; Ahmadi, M Amir; Kantarjian, Hagop M; Talpaz, Moshe
2002-08-15
STI571 (imatinib mesylate; Gleevec) is a selective inhibitor of the bcr-abl, c-kit, and platelet-derived growth factor receptor tyrosine kinases. Mild periorbital edema has been noted as a common side effect in Phase I and II trials of this drug for the treatment of patients with chronic myelogenous leukemia and gastrointestinal stromal tumors. The authors report the case of male patient age 63 years who developed severe periorbital edema after treatment with STI571 for chronic myelogenous leukemia. His edema was severe enough to cause visual obstruction due to lower eyelid festoons that ultimately required surgical debulking. Histopathologic analysis of specimens of the excised upper and lower eyelid tissue revealed dermal dendrocytes that expressed the platelet-derived growth factor receptor and c-kit tyrosine kinases, suggesting a possible role for dermal dendrocytes in the development of this toxic effect. Copyright 2002 American Cancer Society.DOI 10.1002/cncr.10729
Conditional Deletion of Kit in Melanocytes: White Spotting Phenotype Is Cell Autonomous.
Aoki, Hitomi; Tomita, Hiroyuki; Hara, Akira; Kunisada, Takahiro
2015-07-01
It is well established that cell-intrinsic signaling through the receptor tyrosine kinase KIT is critical for the development of neural crest-derived melanocytes. Nevertheless, it is not entirely clear whether Kit acts exclusively in a melanocyte-autonomous manner or in addition indirectly through other cell types. To address this question in vivo, we generated a targeted allele of Kit that allowed for CRE recombinase-mediated deletion of the transmembrane domain of KIT. Mice carrying one copy of the targeted allele and expressing CRE under the melanoblast/melanocyte-specific tyrosinase promoter exhibited a white spotting phenotype that was even more extensive compared with that found in mice heterozygous for a Kit-null allele. This phenotype is unlikely the result of sequestration of KIT ligand by neighboring cells or by potentially secreted forms of KIT because the spotting phenotype could not be rescued by overexpression of KITL. Likewise, overexpression of endothelin-3 or hepatocyte growth factor was unable to rescue melanocytes in these mice. Although the severity of the observed phenotype remains to be explained, the findings indicate that melanocyte-selective impairment of Kit is sufficient to interfere with normal melanocyte development.
Genetics Home Reference: piebaldism
... and deletions of the KIT (steel factor receptor) gene in human piebaldism. Am J Hum Genet. 1995 Jan;56( ... Sánchez-García I. Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am J Med Genet A. 2003 Oct ...
2010-01-01
induced Ca2þ signaling as well as phospholipase D (PLD)-mediated phosphatidic acid formation (Islam and Akhtar, 2000; Kang et al., 2000, 2001; Mazie et...Epithelial cell motility is triggered by activation of the EGF receptor through phosphatidic acid signaling. J. Cell Sci. 119, 1645e1654. McIntosh, B.T...buffer. Cell lysates were centrifuged and supernatants were collected for measuring proteins with a bichinchoninic acid assay (BCA) protein assay kit
Shi, Xiarong; Sousa, Leiliane P.; Mandel-Bausch, Elizabeth M.; Tome, Francisco; Reshetnyak, Andrey V.; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit
2016-01-01
Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095
Mastocytosis: a mutated KIT receptor induced myeloproliferative disorder
Chatterjee, Anindya; Ghosh, Joydeep; Kapur, Reuben
2015-01-01
Although more than 90% systemic mastocytosis (SM) patients express gain of function mutations in the KIT receptor, recent next generation sequencing has revealed the presence of several additional genetic and epigenetic mutations in a subset of these patients, which confer poor prognosis and inferior overall survival. A clear understanding of how genetic and epigenetic mutations cooperate in regulating the tremendous heterogeneity observed in these patients will be essential for designing effective treatment strategies for this complex disease. In this review, we describe the clinical heterogeneity observed in patients with mastocytosis, the nature of relatively novel mutations identified in these patients, therapeutic strategies to target molecules downstream from activating KIT receptor and finally we speculate on potential novel strategies to interfere with the function of not only the oncogenic KIT receptor but also epigenetic mutations seen in these patients. PMID:26158763
Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells
Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh
2016-01-01
c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065
Protein kinase C-δ-mediated recycling of active KIT in colon cancer.
Park, Misun; Kim, Won Kyu; Song, Meiying; Park, Minhee; Kim, Hyunki; Nam, Hye Jin; Baek, Sung Hee; Kim, Hoguen
2013-09-15
Abnormal signaling through receptor tyrosine kinase (RTK) moieties is important in tumorigenesis and drug targeting of colorectal cancers. Wild-type KIT (WT-KIT), a RTK that is activated upon binding with stem cell factor (SCF), is highly expressed in some colon cancers; however, little is known about the functional role of SCF-dependent KIT activation in colon cancer pathogenesis. We aimed to elucidate the conditions and roles of WT-KIT activation in colon cancer tumorigenesis. Colorectal cancers with KIT expression were characterized by immunoblotting and immunohistochemistry. The biologic alterations after KIT-SCF binding were analyzed with or without protein kinase C (PKC) activation. We found that WT-KIT was expressed in a subset of colon cancer cell lines and was activated by SCF, leading to activation of downstream AKT and extracellular signal-regulated kinase (ERK) signaling pathways. We also showed that KIT expression gradually decreased, after prolonged SCF stimulation, due to lysosomal degradation. Degradation of WT-KIT after SCF binding was significantly rescued when PKC was activated. We also showed the involvement of activated PKC-δ in the recycling of WT-KIT. We further showed that a subset of colorectal cancers exhibit expressions of both WT-KIT and activated PKC-δ and that expression of KIT is correlated with poor patient survival (P = 0.004). Continuous downstream signal activation after KIT-SCF binding is accomplished through PKC-δ-mediated recycling of KIT. This sustained KIT activation may contribute to tumor progression in a subset of colon cancers with KIT expression and might provide the rationale for a therapeutic approach targeting KIT. ©2013 AACR.
Pim1 kinase regulates c-Kit gene translation.
An, Ningfei; Cen, Bo; Cai, Houjian; Song, Jin H; Kraft, Andrew; Kang, Yubin
2016-01-01
Receptor tyrosine kinase, c-Kit (CD117) plays a pivotal role in the maintenance and expansion of hematopoietic stem/progenitor cells (HSPCs). Additionally, over-expression and/or mutational activation of c-Kit have been implicated in numerous malignant diseases including acute myeloid leukemia. However, the translational regulation of c-Kit expression remains largely unknown. We demonstrated that loss of Pim1 led to specific down-regulation of c-Kit expression in HSPCs of Pim1 -/- mice and Pim1 -/- 2 -/- 3 -/- triple knockout (TKO) mice, and resulted in attenuated ERK and STAT3 signaling in response to stimulation with stem cell factor. Transduction of c-Kit restored the defects in colony forming capacity seen in HSPCs from Pim1 -/- and TKO mice. Pharmacologic inhibition and genetic modification studies using human megakaryoblastic leukemia cells confirmed the regulation of c-Kit expression by Pim1 kinase: i.e., Pim1-specific shRNA knockdown down-regulated the expression of c-Kit whereas overexpression of Pim1 up-regulated the expression of c-Kit. Mechanistically, inhibition or knockout of Pim1 kinase did not affect the transcription of c-Kit gene. Pim1 kinase enhanced c-Kit 35 S methionine labeling and increased the incorporation of c-Kit mRNAs into the polysomes and monosomes, demonstrating that Pim1 kinase regulates c-Kit expression at the translational level. Our study provides the first evidence that Pim1 regulates c-Kit gene translation and has important implications in hematopoietic stem cell transplantation and cancer treatment.
Characterization of a mast cell line that lacks the extracellular domain of membrane c-kit.
Mekori, Y A; Oh, C K; Dastych, J; Goff, J P; Adachi, S; Bianchine, P J; Worobec, A; Semere, T; Pierce, J H; Metcalfe, D D
1997-04-01
Expression of the c-kit proto-oncogene receptor on mast cells is essential for their normal proliferation and maturation as well as for several biological responses such as chemotaxis and attachment. In the present study we report that the interleukin-3 (IL-3)-dependent mast cell line CFTL-15 lacks the extracellular domain of the c-kit receptor. This observation was made after noting that the c-kit ligand stem cell factor (SCF) could not prevent IL-3 deprivation-induced mast cell apoptosis and that CFTL-15 cells did not proliferate in response to SCF. Flow cytometric analysis employing monoclonal anti-c-kit antibodies, and immunogold labelling with analysis by electron microscopy, subsequently showed a diminished expression of c-kit on CFTL-15 cells. There was no identifiable message for the extracellular domain of c-kit in these cells, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR). These previously unrecognized properties of the CFTL-15 mast cell line allowed the examination of other biological consequences of the lack of c-kit on mast cells. Analysing the ability of these cells to adhere to surface-bound fibronectin, it was found that addition of SCF did not increase their adhesion to this substrate, in opposition to what is reported with other mast cells. Similarly, CFTL-15 mast cells did not adhere to fibroblasts, which is known to require c-kit expression. Also, there was no protein tyrosine phosphorylation in these cells in response to SCF. CFTL-15 cells underwent apoptosis on removal of IL-3 coincident with a decrease in endogenous Bcl-2 mRNA. Overexpression of Bcl-2 cDNA prolonged survival of Bcl-2-transfected CFTL-15 cells upon withdrawal of IL-3. Thus, the CFTL-15 cell line that lacks surface c-kit is not able to proliferate in response to SCF, undergoes apoptosis in the presence of SCF, and does not adhere to fibroblasts. These results confirm earlier studies on the functional consequences of c-kit and provide a novel experimental model for further investigation.
Characterization of a mast cell line that lacks the extracellular domain of membrane c-kit.
Mekori, Y A; Oh, C K; Dastych, J; Goff, J P; Adachi, S; Bianchine, P J; Worobec, A; Semere, T; Pierce, J H; Metcalfe, D D
1997-01-01
Expression of the c-kit proto-oncogene receptor on mast cells is essential for their normal proliferation and maturation as well as for several biological responses such as chemotaxis and attachment. In the present study we report that the interleukin-3 (IL-3)-dependent mast cell line CFTL-15 lacks the extracellular domain of the c-kit receptor. This observation was made after noting that the c-kit ligand stem cell factor (SCF) could not prevent IL-3 deprivation-induced mast cell apoptosis and that CFTL-15 cells did not proliferate in response to SCF. Flow cytometric analysis employing monoclonal anti-c-kit antibodies, and immunogold labelling with analysis by electron microscopy, subsequently showed a diminished expression of c-kit on CFTL-15 cells. There was no identifiable message for the extracellular domain of c-kit in these cells, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR). These previously unrecognized properties of the CFTL-15 mast cell line allowed the examination of other biological consequences of the lack of c-kit on mast cells. Analysing the ability of these cells to adhere to surface-bound fibronectin, it was found that addition of SCF did not increase their adhesion to this substrate, in opposition to what is reported with other mast cells. Similarly, CFTL-15 mast cells did not adhere to fibroblasts, which is known to require c-kit expression. Also, there was no protein tyrosine phosphorylation in these cells in response to SCF. CFTL-15 cells underwent apoptosis on removal of IL-3 coincident with a decrease in endogenous Bcl-2 mRNA. Overexpression of Bcl-2 cDNA prolonged survival of Bcl-2-transfected CFTL-15 cells upon withdrawal of IL-3. Thus, the CFTL-15 cell line that lacks surface c-kit is not able to proliferate in response to SCF, undergoes apoptosis in the presence of SCF, and does not adhere to fibroblasts. These results confirm earlier studies on the functional consequences of c-kit and provide a novel experimental model for further investigation. Images Figure 4 Figure 6 Figure 7 Figure 8 PMID:9176104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amagai, Yosuke; Tanaka, Akane; Ohmori, Keitaro
Much is known regarding participations of mast cells with innate and acquired immunity by secreting various cytokines and chemical mediators. However, details of mast cell biology still remain unclear. In this study, we successfully established a novel growth factor-independent mast cell line (MPT-1) derived from canine mast cell tumor. MPT-1 cells manifested factor-independent proliferation as floating cells containing a large amount of histamine, as well as chymase-like dog mast cell protease 3, in cytosolic granules. Particularly, MPT-1 cells expressed high-affinity IgE receptors (Fc{epsilon}RI) and wild-type c-kit receptors. Degranulation of MPT-1 cells was induced not only by stimulation with calcium ionophoremore » but also by cross-linkage of the surface IgE. Given that MPT-1 is the first mast cell line with Fc{epsilon}RI which has no c-kit mutations, MPT-1 cells may provide great contribution for investigation of IgE-mediated activation mechanisms of mast cells, leading to development of effective treatment for allergic disorders.« less
No GIST-type c-kit gain of function mutations in neuroblastic tumours
Korja, M; Finne, J; Salmi, T T; Haapasalo, H; Tanner, M; Isola, J
2005-01-01
Aims: Neuroblastic tumours (NTs) have been shown to respond to imatinib treatment in vivo and in vitro, possibly via inactivating the c-kit receptor. The purpose of this study was to identify gastrointestinal stromal tumour (GIST)-type c-kit gene associated mutations in exons 9, 11, 13, and 17 in NTs to recognise a subset of tumours that would probably respond to imatinib treatment. Methods: Expression of the c-kit protein was detected immunohistochemically in a total of 37 archival paraffin wax embedded NTs using polyclonal rabbit antihuman c-kit antibody. After immunohistochemistry, c-kit gene associated chromosomal mutations in all cases of NT were detected with denaturing high performance liquid chromatography (HPLC). Results: Denaturing HLPC analysis did not reveal GIST-type mutations in four immunohistochemically detected c-kit positive or in 33 c-kit negative NTs. Conclusions: c-kit receptor expression and GIST-type c-kit gene mutations are rare events in NTs. Oncogenic activation of c-kit in NTs presumably differs from that of GISTs, which may influence their responsiveness to imatinib treatment. Whether c-kit has an essential role in the pathogenesis of NTs remains to be investigated. PMID:15976348
Bogdanovska-Todorovska, Magdalena; Petrushevska, Gordana; Janevska, Vesna; Spasevska, Liljana; Kostadinova-Kunovska, Slavica
2018-05-20
Accurate assessment of human epidermal growth factor receptor 2 (HER-2) is crucial in selecting patients for targeted therapy. Commonly used methods for HER-2 testing are immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Here we presented the implementation, optimization and standardization of two FISH protocols using breast cancer samples and assessed the impact of pre-analytical and analytical factors on HER-2 testing. Formalin fixed paraffin embedded (FFPE) tissue samples from 70 breast cancer patients were tested for HER-2 using PathVysion™ HER-2 DNA Probe Kit and two different paraffin pretreatment kits, Vysis/Abbott Paraffin Pretreatment Reagent Kit (40 samples) and DAKO Histology FISH Accessory Kit (30 samples). The concordance between FISH and IHC results was determined. Pre-analytical and analytical factors (i.e., fixation, baking, digestion, and post-hybridization washing) affected the efficiency and quality of hybridization. The overall hybridization success in our study was 98.6% (69/70); the failure rate was 1.4%. The DAKO pretreatment kit was more time-efficient and resulted in more uniform signals that were easier to interpret, compared to the Vysis/Abbott kit. The overall concordance between IHC and FISH was 84.06%, kappa coefficient 0.5976 (p < 0.0001). The greatest discordance (82%) between IHC and FISH was observed in IHC 2+ group. A standardized FISH protocol for HER-2 assessment, with high hybridization efficiency, is necessary due to variability in tissue processing and individual tissue characteristics. Differences in the pre-analytical and analytical steps can affect the hybridization quality and efficiency. The use of DAKO pretreatment kit is time-saving and cost-effective.
The histopathological characteristics of male melasma: comparison with female melasma and lentigo.
Jang, Yong Hyun; Sim, Ji Hyun; Kang, Hee Young; Kim, You Chan; Lee, Eun-So
2012-04-01
Knowledge of the histopathology of melasma is a prerequisite for understanding its pathogenesis. However, the histopathological characteristics of male melasma are not well characterized. We sought to investigate the histopathological characteristics of melasma in men compared with those of women with melasma and solar lentigo. Biopsy specimens were obtained from both the lesional skin and the adjacent nonlesional skin in 8 men with melasma, 10 women with melasma, and 5 men and women each with solar lentigo. The samples were stained using Fontana-Masson and Verhoeff-van Gieson. Immunohistochemistry for melanocytes, the estrogen receptor, progesterone receptor, factor VIIIa-related antigen, stem cell factor, and c-kit was performed. Increased vascularity was found in the lesion of male melasma. The lesion to nonlesion ratio of the vessel area was increased in male melasma compared with lentigo groups. In the lesion of male melasma, there was a significant increase of stem cell factor and c-kit expression. In addition, the lesion to nonlesion ratio of stem cell factor was increased in male melasma compared with female melasma and lentigo groups. The lesion to nonlesion ratio of c-kit was also increased in male melasma compared with lentigo groups. This study did not include clinical data regarding social habits and was not confirmed by other molecular techniques. The results suggest that chronic ultraviolet radiation associated with signaling of paracrine cytokines plays an important role in the mechanism associated with hyperpigmentation in male melasma. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Disruption of c-Kit Signaling in Kit(W-sh/W-sh) Growing Mice Increases Bone Turnover.
Lotinun, Sutada; Krishnamra, Nateetip
2016-08-16
c-Kit tyrosine kinase receptor has been identified as a regulator of bone homeostasis. The c-Kit loss-of-function mutations in WBB6F1/J-Kit(W/W-v) mice result in low bone mass. However, these mice are sterile and it is unclear whether the observed skeletal phenotype is secondary to a sex hormone deficiency. In contrast, C57BL/6J-Kit(W-sh)/(W-sh) (W(sh)/W(sh)) mice, which carry an inversion mutation affecting the transcriptional regulatory elements of the c-Kit gene, are fertile. Here, we showed that W(sh)/W(sh) mice exhibited osteopenia with elevated bone resorption and bone formation at 6- and 9-week-old. The c-Kit W(sh) mutation increased osteoclast differentiation, the number of committed osteoprogenitors, alkaline phosphatase activity and mineralization. c-Kit was expressed in both osteoclasts and osteoblasts, and c-Kit expression was decreased in W(sh)/W(sh)osteoclasts, but not osteoblasts, suggesting an indirect effect of c-Kit on bone formation. Furthermore, the osteoclast-derived coupling factor Wnt10b mRNA was increased in W(sh)/W(sh) osteoclasts. Conditioned medium from W(sh)/W(sh) osteoclasts had elevated Wnt10b protein levels and induced increased alkaline phosphatase activity and mineralization in osteoblast cultures. Antagonizing Wnt10b signaling with DKK1 or Wnt10b antibody inhibited these effects. Our data suggest that c-Kit negatively regulates bone turnover, and disrupted c-Kit signaling couples increased bone resorption with bone formation through osteoclast-derived Wnt 10 b.
Roberts, Kathryn G.; Smith, Amanda M.; McDougall, Fiona; Carpenter, Helen; Horan, Martin; Neviani, Paolo; Powell, Jason A.; Thomas, Daniel; Guthridge, Mark A.; Perrotti, Danilo; Sim, Alistair T.R.; Ashman, Leonie K.; Verrills, Nicole M.
2010-01-01
Oncogenic mutations of the receptor tyrosine kinase c-KIT play an important role in the pathogenesis of gastrointestinal stromal tumors (GIST), systemic mastocytosis, and some acute myeloid leukemias (AML). Whilst juxtamembrane mutations commonly detected in GIST are sensitive to tyrosine kinase inhibitors, the kinase domain mutations frequently encountered in systemic mastocytosis and AML confer resistance and are largely unresponsive to targeted inhibition by the existing agent imatinib. In this study we show that myeloid cells expressing activated c-KIT mutants that are imatinib-sensitive (V560G) or –resistant (D816V) can inhibit the tumor suppressor activity of protein phosphatase 2A (PP2A). This effect was associated with reduced expression of PP2A structural (A) and regulatory subunits (B55α; B56α; B56γ and B56δ). Overexpression of PP2A-Aα in D816V c-KIT cells induced apoptosis and inhibited proliferation. In addition, pharmacological activation of PP2A by FTY720 reduced proliferation, inhibited clonogenic potential and induced apoptosis of mutant c-KIT+ cells, whilst having no effect on WT c-KIT cells or empty vector controls. FTY720 treatment caused dephosphorylation of the D816V c-KIT receptor and its downstream signaling targets pAkt, pSTAT5 and pERK1/2. Additionally, in vivo administration of FTY720 delayed the growth of V560G and D816V c-KIT tumors, inhibited splenic and bone marrow infiltration, and prolonged survival. Our findings show that PP2A inhibition is essential for c-KIT-mediated tumorigenesis, and that reactivating PP2A may offer an attractive strategy to treat drug-resistant c-KIT+ cancers. PMID:20551067
Cruse, Glenn; Beaven, Michael A.; Music, Stephen C.; Bradding, Peter; Gilfillan, Alasdair M.; Metcalfe, Dean D.
2015-01-01
MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. PMID:25717186
Imatinib mesylate: in the treatment of gastrointestinal stromal tumours.
Croom, Katherine F; Perry, Caroline M
2003-01-01
Imatinib mesylate (imatinib) is an orally administered competitive inhibitor of the tyrosine kinases associated with the KIT protein (stem cell factor receptor), ABL protein and platelet-derived growth factor receptors. The KIT tyrosine kinase is abnormally expressed in gastrointestinal stromal tumour (GIST), a rare neoplasm for which there has been no effective systemic therapy. In a randomised, nonblind, multicentre study that evaluated imatinib 400 or 600mg once daily in 147 patients with advanced GIST, confirmed partial responses were achieved in 54% of patients overall (median duration of follow-up was 288 days). Stable disease was experienced by 28% of patients and the estimated 1-year survival rate was 88%. Similar response rates were reported in a smaller, dose-escalation study, in which objective tumour response was a secondary endpoint. Although nearly all patients with GIST treated with imatinib experienced adverse events, most events were mild or moderate in nature. Severe or serious adverse events occurred in 21% of patients in the larger study, and included gastrointestinal or tumour haemorrhage. The control of cellular processes, such as cell growth, division and death, involves signal transduction, which commonly involves the transfer of phosphate from adenosine triphosphate (ATP) to tyrosine residues on substrate proteins, by tyrosine kinase enzymes. Activation of oncogenes coding for kinase proteins can lead to the production of kinases that are continually active in the absence of a normal stimulus,leading to increased cell proliferation and/or decreased apoptosis. A major focus of cancer research in recent years has been to identify oncogenic molecules and the signal transduction pathways in which they are involved, in order to develop specifically targeted drugs. One such drug is imatinib mesylate (imatinib, Glivic/Gleevec), an orally administered 2-phenylaminopyrimidine derivative that is a competitive inhibitor of the tyrosine kinases associated with platelet-derived growth factor (PDGF) receptors, the Abelson (ABL) protein and the KIT protein (also known as stem cell factor [SCF] receptor). Imatinib was initially evaluated for the treatment of chronic myeloid leukaemia (CML) [reviewed previously in Drugs]. More recently, imatinib has been approved for the treatment of patients with advanced gastrointestinal stromal tumour (GIST), in which KIT, a tyrosine kinase receptor, is abnormally expressed. GISTs are soft tissue gastrointestinal sarcomas probably arising from mesenchymal cells. They are rare neoplasms, with between 5000 and 10 000 new cases being diagnosed each year in the US. GISTs occur throughout the gastrointestinal tract but the stomach and small intestine are the most common sites. Symptoms depend on the site and size of the tumour, and may include abdominal pain, gastrointestinal bleeding or signs of obstruction; small tumours may be asymptomatic. The diagnosis of GIST is made by immunohistochemical staining for CD117, a cell surface antigen on the extracellular domain of KIT, in conjunction with pathological examination of tissue with light microscopy. All GISTs may have some degree of malignant potential. They are unresponsive to standard chemotherapy and to radiotherapy, and the mainstay of treatment in the past has been surgery. However, recurrence rates are high, and there has been no effective systemic treatment for unresectable GIST or metastatic disease. For patients in whom complete resection is not possible, or in patients with metastatic or recurrent disease, the median duration of survival is 9-12 months, and 10-19 months, respectively. Gain-of-function mutations of the KIT proto-oncogene occur in up to 90% of GISTs, allowing constitutive activation of tyrosine kinase (i.e. auto-phosphorylation of tyrosine residues independent of ligand-receptor binding), leading to aberrant cell division and tumour growth. Imatinib selectively inhibits the tyrosine kinase activity associated with KIT, which forms the rationale for evaluating its effects in GIST. Subsequent to initial evidence of the clinical efficacy of imatinib in a single patient with progressive, metastatic, CD117-positive GIST, formal studies of imatinib in this new indication were initiated. This article summarises the pharmacology, efficacy and tolerability profile of imatinib in the treatment of patients with advanced GIST.
Kit receptor tyrosine kinase dysregulations in feline splenic mast cell tumours.
Sabattini, S; Barzon, G; Giantin, M; Lopparelli, R M; Dacasto, M; Prata, D; Bettini, G
2017-09-01
This study investigated Kit receptor dysregulations (cytoplasmic immunohistochemical expression and/or c-KIT mutations) in cats affected with splenic mast cell tumours. Twenty-two cats were included. Median survival time was 780 days (range: 1-1219). An exclusive splenic involvement was significantly (P = 0.042) associated with longer survival (807 versus 120 days). Eighteen tumours (85.7%) showed Kit cytoplasmic expression (Kit pattern 2, 3). Mutation analysis was successful in 20 cases. Fourteen missense mutations were detected in 13 out of 20 tumours (65%). Eleven (78.6%) were located in exon 8, and three (21.6%) in exon 9. No mutations were detected in exons 11 and 17. Seven mutations corresponded to the same internal tandem duplication in exon 8 (c.1245_1256dup). Although the association between Kit cytoplasmic expression and mutations was significant, immunohistochemistry cannot be considered a surrogate marker for mutation analysis. No correlation was observed between c-Kit mutations and tumour differentiation, mitotic activity or survival. © 2016 John Wiley & Sons Ltd.
Kissova, Miroslava; Maga, Giovanni; Crespan, Emmanuele
2016-10-01
The tyrosine kinase Kit, a receptor for Stem Cell Factor, is involved, among others, in processes associated to cell survival, proliferation and migration. Upon physiological conditions, the activity of Kit is tightly regulated. However, primary mutations that lead to its constitutive activation are the causal oncogenic driver of gastrointestinal stromal tumours (GISTs). GISTs are known to be refractory to conventional therapies but the introduction of Imatinib, a selective inhibitor of tyrosine kinases Abl and Kit, significantly ameliorated the treatment options of GISTs patients. However, the acquisition of secondary mutations renders Kit resistant towards all available drugs. Mutation involving gatekeeper residues (such as V654a and T670I) influence both the structure and the catalytic activity of the enzyme. Therefore, detailed knowledge of the enzymatic properties of the mutant forms, in comparison with the wild type enzyme, is an important pre-requisite for the rational development of specific inhibitors. In this paper we report a thorough kinetic analysis of the reaction catalyzed by the Kit kinase and its gatekeeper mutated form T670I. Our results revealed the different mechanisms of action of these two enzymes and may open a new avenue for the future design of specific Kit inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Loss of c-KIT expression in thyroid cancer cells.
Franceschi, Sara; Lessi, Francesca; Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria
2017-01-01
Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression.
Loss of c-KIT expression in thyroid cancer cells
Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria
2017-01-01
Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression. PMID:28301608
Dual Targeting of Insulin Receptor and KIT in Imatinib-Resistant Gastrointestinal Stromal Tumors.
Chen, Weicai; Kuang, Ye; Qiu, Hai-Bo; Cao, Zhifa; Tu, Yuqing; Sheng, Qing; Eilers, Grant; He, Quan; Li, Hai-Long; Zhu, Meijun; Wang, Yuexiang; Zhang, Rongqing; Wu, Yeqing; Meng, Fanguo; Fletcher, Jonathan A; Ou, Wen-Bin
2017-09-15
Oncogenic KIT or PDGFRA receptor tyrosine kinase (RTK) mutations are compelling therapeutic targets in gastrointestinal stromal tumors (GIST), and treatment with the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with metastatic GIST. Most GISTs eventually acquire imatinib resistance due to secondary mutations in the KIT kinase domain, but it is unclear whether these genomic resistance mechanisms require other cellular adaptations to create a clinically meaningful imatinib-resistant state. Using phospho-RTK and immunoblot assays, we demonstrate activation of KIT and insulin receptor (IR) in imatinib-resistant GIST cell lines (GIST430 and GIST48) and biopsies with acquisition of KIT secondary mutations, but not in imatinib-sensitive GIST cells (GIST882 and GIST-T1). Treatment with linsitinib, a specific IR inhibitor, inhibited IR and downstream intermediates AKT, MAPK, and S6 in GIST430 and GIST48, but not in GIST882, exerting minimal effect on KIT phosphorylation in these cell lines. Additive effects showing increased apoptosis, antiproliferative effects, cell-cycle arrest, and decreased pAKT and pS6 expression, tumor growth, migration, and invasiveness were observed in imatinib-resistant GIST cells with IR activation after coordinated inhibition of IR and KIT by linsitinib (or IR shRNA) and imatinib, respectively, compared with either intervention alone. IGF2 overexpression was responsible for IR activation in imatinib-resistant GIST cells, whereas IR activation did not result from IR amplification, IR mutation, or KIT phosphorylation. Our findings suggest that combinatorial inhibition of IR and KIT warrants clinical evaluation as a novel therapeutic strategy in imatinib-resistant GISTs. Cancer Res; 77(18); 5107-17. ©2017 AACR . ©2017 American Association for Cancer Research.
Su, Feng; Zhang, Wentian; Liu, Jianfang
2015-01-01
It has been validated that c-kit positive (c-kit+) cells in infarcted myocardium are from bone marrow (BM). Given the recent study that in the heart, estrogen receptor alpha (ERα) is involved in adaptive mechanisms by supporting cardiomyocytes survival via post-infarct cardiac c-kit+ cells, we tested a novel hypothesis that membrane ERα (mERа) supports survival of BM c-kit+ cells and enhance protective paracrine function for cardiac repair. Our data showed that myocardial infarction (MI) leads to an increase in c-kit+ first in bone marrow and then specifically within the infarcted myocardium. Also up-regulated mERа in post-infarct BM c-kit+ cells was found in day 3 post MI. In vitro co-culture system, mERа+ enhances the beneficial effects of BM c-kit+ cells by increasing their viability and reducing apoptosis. Post-infarct c-kit+ mERа+ cells population expresses predominant ERα and holds self-renewal as well as cardiac differentiation potentials after MI. In vivo, BM c-kit+ cells reduced infarct size, fibrosis and improved cardiac function. In conclusion, BM c-kit+ mERа+ exerted significantly cardiac protection after MI. A potential important implication of this study is that the manipulation of BM c-kit+ stem cells with ERа-dependent fashion may be helpful in recovering functional performance after cardiac tissue injury. PMID:26191121
Complex interactions in EML cell stimulation by stem cell factor and IL-3.
Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M
2011-03-22
Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34- cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone.
Complex interactions in EML cell stimulation by stem cell factor and IL-3
Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M.
2011-01-01
Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34− cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone. PMID:21383156
Nishikawa, Shingo; Kimura, Hideharu; Koba, Hayato; Yoneda, Taro; Watanabe, Satoshi; Sakai, Tamami; Hara, Johsuke; Sone, Takashi; Kasahara, Kazuo; Nakao, Shinji
2018-03-01
The epidermal growth factor receptor (EGFR) T790M mutation is associated with resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). However, tissues for the genotyping of the EGFR T790M mutation can be difficult to obtain in a clinical setting. The aims of this study were to evaluate a blood-based, non-invasive approach to detecting the EGFR T790M mutation in advanced NSCLC patients using the PointMan™ EGFR DNA enrichment kit, which is a novel method for the selective amplification of specific genotype sequences. Blood samples were collected from NSCLC patients who had activating EGFR mutations and who were resistant to EGFR-TKI treatment. Using cell-free DNA (cfDNA) from plasma, EGFR T790M mutations were amplified using the PointMan™ enrichment kit, and all the reaction products were confirmed using direct sequencing. The concentrations of plasma DNA were then determined using quantitative real-time PCR. Nineteen patients were enrolled, and 12 patients (63.2%) were found to contain EGFR T790M mutations in their cfDNA, as detected by the kit. T790M mutations were detected in tumor tissues in 12 cases, and 11 of these cases (91.7%) also exhibited the T790M mutation in cfDNA samples. The concentrations of cfDNA were similar between patients with the T790M mutation and those without the mutation. The PointMan™ kit provides a useful method for determining the EGFR T790M mutation status in cfDNA.
New targets and therapies for gastrointestinal stromal tumors.
Wozniak, Agnieszka; Gebreyohannes, Yemarshet K; Debiec-Rychter, Maria; Schöffski, Patrick
2017-12-01
The majority of gastrointestinal stromal tumors (GIST) are driven by an abnormal receptor tyrosine kinase (RTK) signaling, occurring mainly due to somatic mutations in KIT or platelet derived growth factor receptor alpha (PDGFRA). Although the introduction of tyrosine kinase inhibitors (TKIs) has revolutionized therapy for GIST patients, with time the vast majority of them develop TKI resistance. Advances in understanding the molecular background of GIST resistance allows for the identification of new targets and the development of novel strategies to overcome or delay its occurrence. Areas covered: The focus of this review is on novel, promising therapeutic approaches to overcome heterogeneous resistance to registered TKIs. These approaches involve new TKIs, including drugs specific for a mutated form of KIT/PDGFRA, drugs with inhibitory effect against multiple RTKs, compounds targeting dysregulated downstream signaling pathways, drugs affecting KIT expression and degradation, inhibitors of cell cycle, and immunotherapeutics. Expert commentary: As the resistance to standard TKI treatment can be heterogeneous, a combinational approach for refractory GIST could be beneficial. Moreover, the understanding of the molecular background of resistant disease would allow development of a more personalized approach for these patients and their response to targeted therapy could be monitored closely using 'liquid biopsy'.
Aisner, Seena C.; Dahlberg, Suzanne; Hameed, Meera R.; Ettinger, David S.; Schiller, Joan H.; Johnson, David H.; Aisner, Joseph; Loehrer, Patrick J.
2011-01-01
Background Advanced or recurrent nonresectable thymic epithelial tumors show only a modest response to standard chemotherapy. A recent study using octreotide and prednisone in thymic tumors, Eastern Cooperative Oncology Group study E1C97, was conducted to verify the activity of octreotide for thymic tumors. The aim of this study was to determine whether epidermal growth factor receptor (EGFR) immunoreactivity correlated with outcomes and to identify new biologic markers for potential targeted therapy. Three markers, EGFR, C-kit, and Her2/neu, were selected for evaluation in patients with advanced thymic epithelial tumors treated on E1C97. Methods Of the 42 patients entered onto E1C97, 34 patients (World Health Organization [WHO] categories: type A = 1, type AB = 1, type B1 = 10, type B2 = 11 type B3 = 8, and type C = 3) had sufficient tissue available for immunohistologic study. Each tumor was assessed to have 0, 1+, 2+, or 3+ immunore-activity in the cytoplasm or membranes of the neoplastic cells for Her2/neu and EGFR and for the presence or absence of C-kit immunoreactivity. Results EGFR immunoreactivity of 2+ or 3+ was associated with more aggressive thymic tumors (WHO types B2 and B3). However, strong EGFR immunoreactivity was not consistently seen with thymic carcinoma. The presence of EGFR within cells was associated with a significantly improved progression-free survival (PFS) and a trend for overall survival (OS). Twelve patients demonstrated C-kit immunoreactivity; the lack of C-kit immunoreactivity was significantly associated with superior PFS but not OS. Her2/neu immunoreactivity was uniformly negative for all tumors evaluated. There was no association between response and biomarker status. Conclusions High EGFR immunoreactivity is seen in more aggressive thymic neoplasms as classified according to the 2004 WHO, but regardless of classification, the presence of EGFR in tumor cells (1+, 2+, and 3+) is associated with improved performance free survival (PFS) and a trend for better OS. In contrast, the absence of C-kit immunoreactivity was associated with improved PFS. These data suggest that EGFR and C-kit may be prognostic, and further studies of these markers in subcategories of thymic malignancies is warranted. PMID:20421818
The usefulness of c-Kit in the immunohistochemical assessment of melanocytic lesions
Pilloni, L.; Bianco, P.; Difelice, E.; Cabras, S.; Castellanos, M.E.; Atzori, L.; Ferreli, C.; Mulas, P.; Nemolato, S.; Faa, G.
2011-01-01
C-Kit (CD117), the receptor for the stem cell factor, a growth factor for melanocyte migration and proliferation, has shown differential immunostaining in various benign and malignant melanocytic lesions. The purpose of this study is to compare c-Kit immunostaining in benign nevi and in primary and metastatic malignant melanomas, to determine whether c-Kit can aid in the differential diagnosis of these lesions. c-Kit immunostaining was performed in 60 cases of pigmented lesions, including 39 benign nevi (5 blue nevi, 5 intra-dermal nevi, 3 junctional nevi, 15 cases of primary compound nevus, 11 cases of Spitz nevus), 18 cases of primary malignant melanoma and 3 cases of metastatic melanoma. The vast majority of nevi and melanomas examined in this study were positive for c-Kit, with minimal differences between benign and malignant lesions. C-Kit cytoplasmatic immunoreactivity in the intraepidermal proliferating nevus cells, was detected in benign pigmented lesions as well as in malignant melanoma, increasing with the age of patients (P=0.007) in both groups. The patient’s age at presentation appeared to be the variable able to cluster benign and malignant pigmented lesions. The percentage of c-Kit positive intraepidermal nevus cells was better associated with age despite other variables (P=0.014). The intensity and percentage of c-Kit positivity in the proliferating nevus cells in the dermis was significantly increased in malignant melanocytic lesions (P=0.015 and P=0.008) compared to benign lesions (compound melanocytic nevi, Spitz nevi, intradermal nevi, blue nevi). Immunostaning for c-Kit in metastatic melanomas was negative. Interestingly in two cases of melanoma occurring on a pre-existent nevus, the melanoma tumor cells showed strong cytoplasmatic and membranous positivity for c-kit, in contrast with the absence of any immunoreactivity in pre-existent intradermal nevus cells. C-Kit does not appear to be a strong immunohistochemical marker for distinguishing melanoma from melanocytic nevi, if we consider c-Kit expression in intraepidermal proliferating cells. The c-Kit expression in proliferating melanocytes in the dermis could help in the differential diagnosis between a superficial spreading melanoma (with dermis invasion) and a compound nevus or an intradermal nevus. Finally, c-Kit could be a good diagnostic tool for distinguishing benign compound nevi from malignant melanocytic lesions with dermis invasion and to differentiate metastatic melanoma from primary melanoma. PMID:22193299
Tsai, S
1996-01-01
The lymphohematopoietic progenitors represent < 0.01% of nucleated marrow cells. We have shown that murine lymphohematopoietic progenitors can be immortalized by a recombinant retroviral vector harboring a dominant-negative retinoic acid (RA) receptor. The immortalized progenitors proliferate as a stem-cell factor-dependent clonal line designated EML C1. The EML C1 cell line spontaneously generates prepro-B-lymphocytes and erythroid and myeloid progenitors. Upon stimulation with interleukin 7 and marrow stromal cells, the prepro-B-lymphocytes express recombination-activating gene 1 (RAG-1) and undergo D-J rearrangements of the immunoglobulin heavy-chain genes. With erythropoietin, the erythroid progenitors proliferate and differentiate into red cells. Generation of the common progenitors for neutrophils and macrophages [colony-forming units-granulocyte-macrophage (CFU-GM)] is suppressed in EML C1 cells but is inducible by high concentrations of RA. An additional block in neutrophil differentiation occurs at the promyelocyte stage, but this can also be overcome by high concentrations of RA. Although c-fms is homologous to c-kit, which encodes the receptor for stem-cell factor (SCF), EML C1 cells neither express c-fms nor respond to macrophage colony-stimulating factor (M-CSF), the ligand for c-fms. Transduction and expression of c-fms cDNA in EML C1 cells confers responsiveness to M-CSF. This finding indicates that c-kit and c-fms share substantially overlapping signal-transduction pathways. However, c-fms-transduced EML C1 cells (EML C1/c-fms cells) exhibit different development patterns when stimulated by SCF alone or by M-CSF alone. When stimulated by SCF alone, EML C1/c-fms cells show mostly erythroid and B-lymphoid development. When stimulated by M-CSF alone, development switches to mostly myeloid (neutrophil and macrophage) development. This observation suggests that c-kit and c-fms must have unique signal-transduction pathways in addition to the common ones.
Oncogenic activation of v-kit involves deletion of a putative tyrosine-substrate interaction site.
Herbst, R; Munemitsu, S; Ullrich, A
1995-01-19
The transforming gene of the Hardy-Zuckerman-4 strain of feline sarcoma virus, v-kit, arose by transduction of the cellular c-kit gene, which encodes the receptor tyrosine kinase (RTK) p145c-kit. To gain insight into the molecular basis of the v-kit transforming potential, we characterized the feline c-kit by cDNA cloning. Comparison of the feline v-kit and c-kit sequences revealed, in addition to deletions of the extracellular and transmembrane domains, three additional mutations in the v-kit oncogene product: deletion of tyrosine-569 and valine-570, the exchange of aspartate at position 761 to glycine, and replacement of the C-terminal 50 amino acids by five unrelated residues. Examinations of individual v-kit mutations in the context of chimeric receptors yielded inhibitory effects for some mutants on both autophosphorylation and substrate phosphorylation functions. In contrast, deletion of tyrosine-569 and valine-570 significantly enhanced transforming and mitogenic activities of p145c-kit, while the other mutations had no significant effects. Conservation in subclass III RTKs and the identification of the corresponding residue in beta PDGF-R, Y579, as a binding site for src family tyrosine kinases suggests an important role for Y568 in kit signal regulation and the definition of its oncogenic potential. Repositioning of Y571 by an inframe two codon deletion may be the crucial alteration resulting in enhancement of v-kit oncogenic activity.
Discovery of amido-benzisoxazoles as potent c-Kit inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunz, Roxanne K.; Rumfelt, Shannon; Chen, Ning
2010-01-12
Deregulation of the receptor tyrosine kinase c-Kit is associated with an increasing number of human diseases, including certain cancers and mast cell diseases. Interference of c-Kit signaling with multi-kinase inhibitors has been shown clinically to successfully treat gastrointestinal stromal tumors and mastocytosis. Targeted therapy of c-Kit activity may provide therapeutic advantages against off-target effects for non-oncology applications. A new structural class of c-Kit inhibitors is described, including in vitro c-Kit potency, kinase selectivity, and the observed binding mode.
Perfetti, Vittorio; Laurini, Erik; Aulić, Suzana; Fermeglia, Maurizio; Riboni, Roberta; Lucioni, Marco; Dallera, Elena; Delfanti, Sara; Pugliese, Luigi; Latteri, Francesco Saverio; Pietrabissa, Andrea; Pricl, Sabrina
2017-01-01
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. GISTs express the receptor tyrosine kinase KIT, and the majority of GISTs present KIT gain-of-function mutations that cluster in the 5′ end of the receptor juxtamembrane domain. On the other hand, little information is known about GISTs carrying mutations in the 3′ end of the KIT juxtamembrane domain. Here we report and discuss a clinical case of localized duodenal GIST whose molecular characterization revealed the presence of a new 21 nucleotide/7 amino acid deletion in the 3′ end of KIT juxtamembrane domain (Δ574–580). The patient was treated with Imatinib at standard regimen dose (400 mg/day), and responded well as the original tumor mass reduced, ultimately allowing conservative surgery. In line with these clinical evidences computer simulations, biophysical techniques and in vitro experiments demonstrated that the receptor tyrosine kinase KIT carrying the Δ574–580 mutation displays constitutive phosphorylation, which can be switched-off upon Imatinib treatment. In addition, results from this study showed that a clinical useful procedure, neoadjuvant treatment, can occasionally be of value for the understanding of the molecular pathogenesis of GIST. PMID:28915580
Reyes-Sebastian, Josefina; Montiel-Cervantes, Laura Arcelia; Reyes-Maldonado, Elba; Dominguez-Lopez, Maria Lilia; Ortiz-Butron, Rocio; Castillo-Alvarez, Aida; Lezama, Ruth Angélica
2018-03-01
Receptor tyrosine kinase (RTK) activity may contribute to carcinogenesis. The c-Kit receptor, a member of the RTK family, is expressed in immature haematopoietic system cells. Acute lymphoblastic leukaemia (ALL) presents incompletely differentiated lymphoblasts, and consequently, c-Kit expression can be detected in these cells. The BCR-ABL kinase, which is usually present in both ALL and chronic myeloid leukaemia, can trigger signalling pathways with neoplastic effects. However, a certain number of ALL patients and chronic myeloid leukaemia patients do not express this kinase, raising the question of which other proteins that intervene in signalling pathways may be involved in the development of these diseases. To test whether c-Kit has proliferative effects and affects the inhibition of apoptosis of leukaemic lymphoblasts that do not express BCR-ABL. We cultured RS4:11 lymphoblasts and analysed the expression and activation of c-Kit by immunofluorescence, and flow cytometry, evaluation of cell proliferation, apoptosis, cyclin D1 and Bak expression were carried out by flow cytometry; activation of AKT and survivin expression were tested by immunoblot. The c-Kit receptor was found to induce proliferation and to increase the expression of cyclin D1 via the PI3K/AKT/NF-kB signalling pathway. Additionally, the c-Kit/PI3K/AKT pathway increased the inhibition of apoptosis and survivin expression. Similarly, c-Kit was observed to reduce the expression of the pro-apoptotic Bak protein. These results suggest that, in leukaemic lymphoblasts, c-Kit triggers a signalling pathway with proliferative and anti-apoptotic effects; information to this effect has not yet been reported in the literature.
Synthesis and biological evaluation of di-aryl urea derivatives as c-Kit inhibitors.
Ravez, Séverine; Arsenlis, Stéphane; Barczyk, Amélie; Dupont, Anthony; Frédérick, Raphaël; Hesse, Stéphanie; Kirsch, Gilbert; Depreux, Patrick; Goossens, Laurence
2015-11-15
Inhibition of receptor tyrosine kinases (RTKs) continued to be a successful approach for the treatment of many types of human cancers and many potent small molecules kinase inhibitors have been discovered the last decade. In the present study, we describe the synthesis of thienopyrimidine derivatives and their pharmacological evaluation against nine kinases (EGFR, PDGFR-ß, c-Kit, c-Met, Src, Raf, VEGFR-1, -2 and -3). Most of the synthesized compounds showed from moderate to potent activities against c-Kit with IC50 values in the nanomolar range. Among them, 4-anilino(urea)thienopyrimidine analogs showed selectivity and potent c-Kit inhibition with IC50 values less than 6 nM. Docking simulation was performed for the most promising compound 9 into the c-Kit active site to determine the potential binding mode. This study reveal that the 4-anilino(urea)thienopyrimidine is an interesting scaffold to design novel potent and selective c-Kit inhibitors which may make promising candidates for cancers where c-Kit receptors are overexpressed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hashimoto, K.; Tsujimura, T.; Moriyama, Y.; Yamatodani, A.; Kimura, M.; Tohya, K.; Morimoto, M.; Kitayama, H.; Kanakura, Y.; Kitamura, Y.
1996-01-01
Two mutations of c-kit receptor tyrosine kinase (KIT), valine-559 to glycine (G559) and aspartic acid-814 to valine (V814), resulted in its constitutive activation. To examine the transforming and differentiation-inducing potential of the mutant KIT, we used the murine interleukin-3-dependent IC-2 mast cell line as a transfectant. The IC-2 cells contained few basophilic granules and did not express KIT on the surface. The KITG559 or KITV814 gene was introduced into IC-2 cells using a retroviral vector. KITG559 and KITV814 expressed in IC-2 cells were constitutively phosphorylated on tyrosine and demonstrated kinase activity in the absence of stem cell factor, which is a ligand for KIT. IC-2 cells expressing either KITG559 or KITV814 (IC-2G559 or IC-2V814 cells) showed factor-independent growth in suspension culture and produced tumors in nude athymic mice. In addition, IC-2G559 and IC-2V814 cells showed a more mature phenotype compared with the phenotype of the original IC-2 cells, especially after transplantation into nude mice. The number of basophilic granules and the content of histamine increased remarkably. KITG559 and KITV814 also influenced the transcriptional phenotype of mouse mast cell proteases (MMCP) in IC-2 cells. The expression of MMCP-2, MMCP-4, and MMCP-6 was much greater in IC-2G559 and IC-2V814 cells than in the original IC-2 cells. The results indicated that constitutively activated KIT had not only oncogenic activity but also differentiation-inducing activity in mast cells. Images Figure 1 Figure 4 Figure 5 Figure 6 PMID:8546206
Hayashi, Yujiro; Asuzu, David T.; Gibbons, Simon J.; Aarsvold, Kirsten H.; Bardsley, Michael R.; Lomberk, Gwen A.; Mathison, Angela J.; Kendrick, Michael L.; Shen, K. Robert; Taguchi, Takahiro; Gupta, Anu; Rubin, Brian P.; Fletcher, Jonathan A.; Farrugia, Gianrico; Urrutia, Raul A.; Ordog, Tamas
2013-01-01
Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes. PMID:24116170
Tyrosine Kinase Inhibitors Induce Down-Regulation of c-Kit by Targeting the ATP Pocket
Descarpentries, Clotilde; Frisan, Emilie; Adam, Kevin; Verdier, Frederique; Floquet, Célia; Dubreuil, Patrice; Lacombe, Catherine; Fontenay, Michaela; Mayeux, Patrick; Kosmider, Olivier
2013-01-01
The stem cell factor receptor (SCF) c-Kit plays a pivotal role in regulating cell proliferation and survival in many cell types. In particular, c-Kit is required for early amplification of erythroid progenitors, while it must disappear from cell surface for the cell entering the final steps of maturation in an erythropoietin-dependent manner. We initially observed that imatinib (IM), an inhibitor targeting the tyrosine kinase activity of c-Kit concomitantly down-regulated the expression of c-Kit and accelerated the Epo-driven differentiation of erythroblasts in the absence of SCF. We investigated the mechanism by which IM or related masitinib (MA) induce c-Kit down-regulation in the human UT-7/Epo cell line. We found that the down-regulation of c-Kit in the presence of IM or MA was inhibited by a pre-incubation with methyl-β-cyclodextrin suggesting that c-Kit was internalized in the absence of ligand. By contrast to SCF, the internalization induced by TKI was independent of the E3 ubiquitin ligase c-Cbl. Furthermore, c-Kit was degraded through lysosomal, but not proteasomal pathway. In pulse-chase experiments, IM did not modulate c-Kit synthesis or maturation. Analysis of phosphotyrosine peptides in UT-7/Epo cells treated or not with IM show that IM did not modify overall tyrosine phosphorylation in these cells. Furthermore, we showed that a T670I mutation preventing the full access of IM to the ATP binding pocket, did not allow the internalization process in the presence of IM. Altogether these data show that TKI-induced internalization of c-Kit is linked to a modification of the integrity of ATP binding pocket. PMID:23637779
Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity.
Basciani, Sabrina; Brama, Marina; Mariani, Stefania; De Luca, Gabriele; Arizzi, Mario; Vesci, Loredana; Pisano, Claudio; Dolci, Susanna; Spera, Giovanni; Gnessi, Lucio
2005-03-01
Leydig cell tumors are usually benign tumors of the male gonad. However, if the tumor is malignant, no effective treatments are currently available. Leydig cell tumors express platelet-derived growth factor (PDGF), kit ligand and their respective receptors, PDGFR and c-kit. We therefore evaluated the effects of imatinib mesylate (imatinib), a selective inhibitor of the c-kit and PDGFR tyrosine kinases, on the growth of rodent Leydig tumor cell lines in vivo and in vitro, and examined, in human Leydig cell tumor samples, the expression of activated PDGFR and c-kit and the mutations in exons of the c-kit gene commonly associated with solid tumors. Imatinib caused concentration-dependent decreases in the viability of Leydig tumor cell lines, which coincided with apoptosis and inhibition of proliferation and ligand-stimulated phosphorylation of c-kit and PDGFRs. Mice bearing s.c. allografts of a Leydig tumor cell line treated with imatinib p.o., had an almost complete inhibition of tumor growth, less tumor cell proliferation, increased apoptosis, and a lesser amount of tumor-associated mean vessel density compared with controls. No drug-resistant tumors appeared during imatinib treatment but tumors regrew after drug withdrawal. Human Leydig cell tumors showed an intense expression of the phosphorylated form of c-kit and a less intense expression of phosphorylated PDGFRs. No activating mutations in common regions of mutation of the c-kit gene were found. Our studies suggest that Leydig cell tumors might be a potential target for imatinib therapy.
Luo, Cong; Shen, Jiayu; Ying, Jieer; Fang, Xianhua; Wang, Xiaohong; Fu, Zhixuan; Liu, Peng
2017-01-01
Malignant melanoma is one kind of malignant disease which has high rates of mortality, metastasis, and poor prognosis. The therapeutic landscape is rapidly changing with the development of novel agents in recent decades, such as anti-PD-1 agents, anti-CTLA-4 agents, and BRAF inhibitors. However, since most of these novel agents are very expensive, not all patients can afford them. Apatinib is a novel oral small-molecule tyrosine kinase inhibitor targeting the intracellular domain of vascular endothelial growth factor receptor 2 (VEGFR-2) and may also be effective on Ret, c-KIT, and c-src. Temozolomide (TMZ) is a second-generation alkylating agent and a cytotoxic drug for melanoma treatment. In this work, we reported a case of metastatic melanoma with an excellent response to apatinib/TMZ combination therapy with progression-free survival for more than one year. This patient showed high expression of CD117, VEGFR-3, and KIT mutation in exon 11, suggesting that apatinib may induce clinical response via inhibiting VEGFR and c-KIT. Apatinib/TMZ combination therapy could be a new option for the treatment of advanced melanoma with KIT mutation.
A change in structural integrity of c-Kit mutant D816V causes constitutive signaling.
Raghav, Pawan Kumar; Singh, Ajay Kumar; Gangenahalli, Gurudutta
2018-03-01
Several signaling pathways, ligands, and genes that regulate proliferative and self-renewal properties of the Hematopoietic Stem Cells (HSCs) have been studied meticulously. One of the signaling pathways that play a crucial role in the process of hematopoiesis is the Stem Cell Factor (SCF) mediated c-Kit pathway. The c-Kit is a Receptor Tyrosine Kinase (RTK), which is expressed in the cells including HSCs. It undergoes dimerization upon binding with its cognate ligand SCF. As a result, phosphorylation of the Juxtamembrane (JM) domain of c-Kit takes place at Tyr568 and Tyr570 residues. These phosphorylated residues become the docking sites for protein tyrosine phosphatases (PTPs) namely SHP-1 and SHP-2, which in turn cause dephosphorylation and negative regulation of the downstream signaling responsible for the cell proliferation. Interestingly, it has been reported that the mutation of c-Kit at D816V makes it independent of SCF stimulation and SHP-1/SHP-2 inhibition, thereby, causing its constitutive activation. The present study was commenced to elucidate the structural behavior of this mutation in the JM and A-loop region of c-Kit using Molecular Dynamics (MD) simulations of the wild-type and mutant c-Kit in unphosphorylated and phosphorylated states. The energy difference computed between the wild type and mutant (D816V) c-Kit, and protein-protein docking and complex analysis revealed the impact of this single residue mutation on the integrity dynamics of c-Kit that makes it independent of SHP-1/SHP-2 negative regulation. Copyright © 2018 Elsevier B.V. All rights reserved.
Revheim, Mona-Elisabeth; Seierstad, Therese; Berner, Jeanne-Marie; Bruland, Oyvind Sverre; Røe, Kathrine; Ohnstad, Hege Oma; Bjerkehagen, Bodil; Bach-Gansmo, Tore
2009-11-01
The majority of gastrointestinal stromal tumours (GISTs) contain oncogenic KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) or platelet-derived growth factor-alpha (PDGFRA) receptor tyrosine kinase (TK) mutations and are initially, but only temporarily sensitive to TK inhibitors. The aim of this study was to establish and characterize a human GIST xenograft that could be used for evaluating various molecularly targeted therapies. GIST tissue from four patients was implanted under the skin of athymic nude mice. In one case a tumour line was established. The xenograft showed characteristic GIST morphology and exhibited the same mutation profile as that of the patient. A human GIST xenograft with mutation in KIT exons 11 and 17 has been established and maintained in nude mice for 3 years (13 passages). This model will enable further studies on mechanisms of resistance, combination therapies and allow testing of novel targeted therapies.
Yantiss, Rhonda K; Rosenberg, Andrew E; Sarran, Lisa; Besmer, Peter; Antonescu, Cristina R
2005-04-01
Multiple gastrointestinal stromal tumors typically occur in familial form associated with KIT receptor tyrosine kinase or platelet-derived growth factor receptor-alpha (PDGFRA) germline mutations, but may also develop in the setting of type 1 neurofibromatosis. The molecular abnormalities of gastrointestinal stromal tumors arising in neurofibromatosis have not been extensively studied. We identified three patients with type 1 neuro-fibromatosis and multiple small intestinal stromal tumors. Immunostains for CD117, CD34, desmin, actins, S-100 protein, and keratins were performed on all of the tumors. DNA was extracted from representative paraffin blocks from separate tumor nodules in each case and subjected to a nested polymerase chain reaction, using primers for KIT exons 9, 11, 13, and 17 and PDGFRA exons 12 and 18, followed by direct sequencing. The mean patient age was 56 years (range: 37-86 years, male/female ratio: 2/1). One patient had three tumors, one had five, and one had greater than 10 tumor nodules, all of which demonstrated histologic features characteristic of gastrointestinal stromal tumors and stained strongly for CD117 and CD34. One patient died of disease at 35 months, one was disease free at 12 months and one was lost to follow-up. DNA extracts from 10 gastrointestinal stromal tumors (three from each of two patients and four from one patient) were subjected to polymerase chain reactions and assessed for mutations. All of the tumors were wild type for KIT exons 9, 13, and 17 and PDGFRA exons 12 and 18. Three tumors from one patient had identical point mutations in KIT exon 11, whereas the other tumors were wild type at this locus. We conclude that, although most patients with type 1 neurofibromatosis and gastrointestinal stromal tumors do not have KIT or PDGFRA mutations, KIT germline mutations might be implicated in the pathogenesis of gastrointestinal stromal tumors in some patients.
Vicinanza, Carla; Aquila, Iolanda; Scalise, Mariangela; Cristiano, Francesca; Marino, Fabiola; Cianflone, Eleonora; Mancuso, Teresa; Marotta, Pina; Sacco, Walter; Lewis, Fiona C; Couch, Liam; Shone, Victoria; Gritti, Giulia; Torella, Annalaura; Smith, Andrew J; Terracciano, Cesare Mn; Britti, Domenico; Veltri, Pierangelo; Indolfi, Ciro; Nadal-Ginard, Bernardo; Ellison-Hughes, Georgina M; Torella, Daniele
2017-12-01
Multipotent adult resident cardiac stem cells (CSCs) were first identified by the expression of c-kit, the stem cell factor receptor. However, in the adult myocardium c-kit alone cannot distinguish CSCs from other c-kit-expressing (c-kit pos ) cells. The adult heart indeed contains a heterogeneous mixture of c-kit pos cells, mainly composed of mast and endothelial/progenitor cells. This heterogeneity of cardiac c-kit pos cells has generated confusion and controversy about the existence and role of CSCs in the adult heart. Here, to unravel CSC identity within the heterogeneous c-kit-expressing cardiac cell population, c-kit pos cardiac cells were separated through CD45-positive or -negative sorting followed by c-kit pos sorting. The blood/endothelial lineage-committed (Lineage pos ) CD45 pos c-kit pos cardiac cells were compared to CD45 neg (Lineage neg /Lin neg ) c-kit pos cardiac cells for stemness and myogenic properties in vitro and in vivo. The majority (~90%) of the resident c-kit pos cardiac cells are blood/endothelial lineage-committed CD45 pos CD31 pos c-kit pos cells. In contrast, the Lin neg CD45 neg c-kit pos cardiac cell cohort, which represents ⩽10% of the total c-kit pos cells, contain all the cardiac cells with the properties of adult multipotent CSCs. These characteristics are absent from the c-kit neg and the blood/endothelial lineage-committed c-kit pos cardiac cells. Single Lin neg c-kit pos cell-derived clones, which represent only 1-2% of total c-kit pos myocardial cells, when stimulated with TGF-β/Wnt molecules, acquire full transcriptome and protein expression, sarcomere organisation, spontaneous contraction and electrophysiological properties of differentiated cardiomyocytes (CMs). Genetically tagged cloned progeny of one Lin neg c-kit pos cell when injected into the infarcted myocardium, results in significant regeneration of new CMs, arterioles and capillaries, derived from the injected cells. The CSC's myogenic regenerative capacity is dependent on commitment to the CM lineage through activation of the SMAD2 pathway. Such regeneration was not apparent when blood/endothelial lineage-committed c-kit pos cardiac cells were injected. Thus, among the cardiac c-kit pos cell cohort only a very small fraction has the phenotype and the differentiation/regenerative potential characteristics of true multipotent CSCs.
Siemens, Helge; Jackstadt, Rene; Kaller, Markus; Hermeking, Heiko
2013-01-01
The c-Kit receptor tyrosine kinase is commonly over-expressed in different types of cancer. p53 activation is known to result in the down-regulation of c-Kit. However, the underlying mechanism has remained unknown. Here, we show that the p53-induced miR-34 microRNA family mediates repression of c-Kit by p53 via a conserved seed-matching sequence in the c-Kit 3'-UTR. Ectopic miR-34a resulted in a decrease in Erk signaling and transformation, which was dependent on the down-regulation of c-Kit expression. Furthermore, ectopic expression of c-Kit conferred resistance of colorectal cancer (CRC) cells to treatment with 5-fluorouracil (5-FU), whereas ectopic miR-34a sensitized the cells to 5-FU. After stimulation with c-Kit ligand/stem cell factor (SCF) Colo320 CRC cells displayed increased migration/invasion, whereas ectopic miR-34a inhibited SCF-induced migration/invasion. Activation of a conditional c-Kit allele induced several stemness markers in DLD-1 CRC cells. In primary CRC samples elevated c-Kit expression also showed a positive correlation with markers of stemness, such as Lgr5, CD44, OLFM4, BMI-1 and β-catenin. On the contrary, activation of a conditional miR-34a allele in DLD-1 cells diminished the expression of c-Kit and several stemness markers (CD44, Lgr5 and BMI-1) and suppressed sphere formation. MiR-34a also suppressed enhanced sphere-formation after exposure to SCF. Taken together, our data establish c-Kit as a new direct target of miR-34 and demonstrate that this regulation interferes with several c-Kit-mediated effects on cancer cells. Therefore, this regulation may be potentially relevant for future diagnostic and therapeutic approaches. PMID:24009080
Huntingtin-interacting protein 1: a Merkel cell carcinoma marker that interacts with c-Kit.
Ames, Heather M; Bichakjian, Christopher K; Liu, Grace Y; Oravecz-Wilson, Katherine I; Fullen, Douglas R; Verhaegen, Monique E; Johnson, Timothy M; Dlugosz, Andrzej A; Ross, Theodora S
2011-10-01
Merkel cell carcinoma (MCC) is a neoplasm thought to originate from the neuroendocrine Merkel cells of the skin. Although the prevalence of MCC has been increasing, treatments for this disease remain limited because of a paucity of information regarding MCC biology. We have found that the endocytic oncoprotein Huntingtin-interacting protein 1 (HIP1) is expressed at high levels in ∼90% of MCC tumors and serves as a more reliable histological cytoplasmic stain than the gold standard, cytokeratin 20. Furthermore, high anti-HIP1 antibody reactivity in the sera of a cohort of MCC patients predicts the presence of metastases. Another protein that is frequently expressed at high levels in MCC tumors is the stem cell factor (SCF) receptor tyrosine kinase, c-Kit. In working toward an understanding of how HIP1 might contribute to MCC tumorigenesis, we have discovered that HIP1 interacts with SCF-activated c-Kit. These data not only identify HIP1 as a molecular marker for management of MCC patients but also show that HIP1 interacts with and slows the degradation of c-Kit.
Gozgit, Joseph M.; Wong, Matthew J.; Wardwell, Scott; Tyner, Jeffrey W.; Loriaux, Marc M.; Mohemmad, Qurish K.; Narasimhan, Narayana I.; Shakespeare, William C.; Wang, Frank; Druker, Brian J.; Clackson, Tim; Rivera, Victor M.
2011-01-01
Ponatinib (AP24534) is a novel multitargeted kinase inhibitor that potently inhibits native and mutant BCR-ABL at clinically achievable drug levels. Ponatinib also has in vitro inhibitory activity against a discrete set of kinases implicated in the pathogenesis of other hematologic malignancies, including FLT3, KIT, fibroblast growth factor receptor 1 (FGFR1), and platelet derived growth factor receptor α (PDGFRα). Here, using leukemic cell lines containing activated forms of each of these receptors, we show that ponatinib potently inhibits receptor phosphorylation and cellular proliferation with IC50 values comparable to those required for inhibition of BCR-ABL (0.3 to 20 nmol/L). The activity of ponatinib against the FLT3-ITD mutant, found in up to 30% of acute myeloid leukemia (AML) patients, was particularly notable. In MV4-11 (FLT3-ITD+/+) but not RS4;11 (FLT3-ITD−/−) AML cells, ponatinib inhibited FLT3 signaling and induced apoptosis at concentrations of less than 10 nmol/L. In an MV4-11 mouse xenograft model, once daily oral dosing of ponatinib led to a dose-dependent inhibition of signaling and tumor regression. Ponatinib inhibited viability of primary leukemic blasts from a FLT3-ITD positive AML patient (IC50 4 nmol/L) but not those isolated from 3 patients with AML expressing native FLT3. Overall, these results support the investigation of ponatinib in patients with FLT3-ITD–driven AML and other hematologic malignancies driven by KIT, FGFR1, or PDGFRα. PMID:21482694
Zheng, Huimei; Wang, Xuexiang; Guo, Pengfei; Ge, Wanzhong; Yan, Qinfeng; Gao, Weiqiang; Xi, Yongmei; Yang, Xiaohang
2017-05-01
In Drosophila, fat-body remodeling accompanied with fat mobilization is an ecdysone-induced dynamic process that only occurs during metamorphosis. Here, we show that the activated Drosophila platelet-derived growth factor/VEGF receptor (PVR) is sufficient to induce shape changes in the fat body, from thin layers of tightly conjugated polygonal cells to clusters of disaggregated round-shaped cells. These morphologic changes are reminiscent of those seen during early pupation upon initiation of fat-body remodeling. Activation of PVR also triggers an early onset of lipolysis and mobilization of internal storage, as revealed by the appearance of small lipid droplets and up-regulated lipolysis-related genes. We found that PVR displays a dynamic expression pattern in the fat body and peaks at the larval-prepupal transition under the control of ecdysone signaling. Removal of PVR, although it does not prevent ecdysone-induced fat-body remodeling, causes ecdysone signaling to be up-regulated. Our data reveal that PVR is active in a dual-secured mechanism that involves an ecdysone-induced fat-body remodeling pathway and a reinforced PVR pathway for effective lipid mobilization. Ectopic expression of activated c-kit-the mouse homolog of PVR in the Drosophila fat body-also results in a similar phenotype. This may suggest a novel function of c-kit as it relates to lipid metabolism in mammals.-Zheng, H., Wang, X., Guo, P., Ge, W., Yan, Q., Gao, W., Xi, Y., Yang, X. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila . © FASEB.
Lyberg, Katarina; Ali, Hani Abdulkadir; Grootens, Jennine; Kjellander, Matilda; Tirfing, Malin; Arock, Michel; Hägglund, Hans; Nilsson, Gunnar; Ungerstedt, Johanna
2017-02-07
Systemic mastocytosis (SM) is a clonal bone marrow disorder, where therapeutical options are limited. Over 90% of the patients carry the D816V point mutation in the KIT receptor that renders this receptor constitutively active. We assessed the sensitivity of primary mast cells (MC) and mast cell lines HMC1.2 (D816V mutated), ROSA (KIT WT) and ROSA (KIT D816V) cells to histone deacetylase inhibitor (HDACi) treatment. We found that of four HDACi, suberoyl anilide hydroxamic acid (SAHA) was the most effective in killing mutated MC. SAHA downregulated KIT, followed by major MC apoptosis. Primary SM patient MC cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas primary MC from healthy subjects were less affected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive SM, with almost 100% cell death among MC from the mast cell leukemia patient. Additionally, ROSA (KIT D816V) was more affected by HDACi than ROSA (KIT WT) cells. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/H3 decreased significantly in the KIT region. This epigenetic silencing was seen only in the KIT region and not in control genes upstream and downstream of KIT, indicating that the downregulation of KIT is exerted by specific epigenetic silencing. In conclusion, KIT D816V mutation sensitized MC to HDACi mediated killing, and SAHA may be of value as specific treatment for SM, although the specific mechanism of action requires further investigation.
Lyberg, Katarina; Ali, Hani Abdulkadir; Grootens, Jennine; Kjellander, Matilda; Tirfing, Malin; Arock, Michel; Hägglund, Hans
2017-01-01
Systemic mastocytosis (SM) is a clonal bone marrow disorder, where therapeutical options are limited. Over 90% of the patients carry the D816V point mutation in the KIT receptor that renders this receptor constitutively active. We assessed the sensitivity of primary mast cells (MC) and mast cell lines HMC1.2 (D816V mutated), ROSA (KIT WT) and ROSA (KIT D816V) cells to histone deacetylase inhibitor (HDACi) treatment. We found that of four HDACi, suberoyl anilide hydroxamic acid (SAHA) was the most effective in killing mutated MC. SAHA downregulated KIT, followed by major MC apoptosis. Primary SM patient MC cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas primary MC from healthy subjects were less affected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive SM, with almost 100% cell death among MC from the mast cell leukemia patient. Additionally, ROSA (KIT D816V) was more affected by HDACi than ROSA (KIT WT) cells. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/H3 decreased significantly in the KIT region. This epigenetic silencing was seen only in the KIT region and not in control genes upstream and downstream of KIT, indicating that the downregulation of KIT is exerted by specific epigenetic silencing. In conclusion, KIT D816V mutation sensitized MC to HDACi mediated killing, and SAHA may be of value as specific treatment for SM, although the specific mechanism of action requires further investigation. PMID:28038453
Protein Tyrosine Phosphatase PRL2 Mediates Notch and Kit Signals in Early T Cell Progenitors.
Kobayashi, Michihiro; Nabinger, Sarah C; Bai, Yunpeng; Yoshimoto, Momoko; Gao, Rui; Chen, Sisi; Yao, Chonghua; Dong, Yuanshu; Zhang, Lujuan; Rodriguez, Sonia; Yashiro-Ohtani, Yumi; Pear, Warren S; Carlesso, Nadia; Yoder, Mervin C; Kapur, Reuben; Kaplan, Mark H; Daniel Lacorazza, Hugo; Zhang, Zhong-Yin; Liu, Yan
2017-04-01
The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow hematopoietic stem and progenitor cells (HSPCs) that continuously feed thymic progenitors remain largely unknown. While Notch signal is indispensable for T cell specification and differentiation, the downstream effectors are not well understood. PRL2, a protein tyrosine phosphatase that regulates hematopoietic stem cell proliferation and self-renewal, is highly expressed in murine thymocyte progenitors. Here we demonstrate that protein tyrosine phosphatase PRL2 and receptor tyrosine kinase c-Kit are critical downstream targets and effectors of the canonical Notch/RBPJ pathway in early T cell progenitors. While PRL2 deficiency resulted in moderate defects of thymopoiesis in the steady state, de novo generation of T cells from Prl2 null hematopoietic stem cells was significantly reduced following transplantation. Prl2 null HSPCs also showed impaired T cell differentiation in vitro. We found that Notch/RBPJ signaling upregulated PRL2 as well as c-Kit expression in T cell progenitors. Further, PRL2 sustains Notch-mediated c-Kit expression and enhances stem cell factor/c-Kit signaling in T cell progenitors, promoting effective DN1-DN2 transition. Thus, we have identified a critical role for PRL2 phosphatase in mediating Notch and c-Kit signals in early T cell progenitors. Stem Cells 2017;35:1053-1064. © 2016 AlphaMed Press.
Rusten, L S; Smeland, E B; Jacobsen, F W; Lien, E; Lesslauer, W; Loetscher, H; Dubois, C M; Jacobsen, S E
1994-01-01
Stem cell factor (SCF), a key regulator of hematopoiesis, potently synergizes with a number of hematopoietic growth factors. However, little is known about growth factors capable of inhibiting the actions of SCF. TNF-alpha has been shown to act as a bidirectional regulator of myeloid cell proliferation and differentiation. This study was designed to examine interactions between TNF-alpha and SCF. Here, we demonstrate that TNF-alpha potently and directly inhibits SCF-stimulated proliferation of CD34+ hematopoietic progenitor cells. Furthermore, TNF-alpha blocked all colony formation stimulated by SCF in combination with granulocyte colony-stimulating factor (CSF) or CSF-1. The synergistic effect of SCF observed in combination with GM-CSF or IL-3 was also inhibited by TNF-alpha, resulting in colony numbers similar to those obtained in the absence of SCF. These effects of TNF-alpha were mediated through the p55 TNF receptor, whereas little or no inhibition was signaled through the p75 TNF receptor. Finally, TNF-alpha downregulated c-kit cell-surface expression on CD34+ bone marrow cells, and this was predominantly a p55 TNF receptor-mediated event as well. Images PMID:7518828
Garton, Andrew J; Crew, Andrew P A; Franklin, Maryland; Cooke, Andrew R; Wynne, Graham M; Castaldo, Linda; Kahler, Jennifer; Winski, Shannon L; Franks, April; Brown, Eric N; Bittner, Mark A; Keily, John F; Briner, Paul; Hidden, Chris; Srebernak, Mary C; Pirrit, Carrie; O'Connor, Matthew; Chan, Anna; Vulevic, Bojana; Henninger, Dwight; Hart, Karen; Sennello, Regina; Li, An-Hu; Zhang, Tao; Richardson, Frank; Emerson, David L; Castelhano, Arlindo L; Arnold, Lee D; Gibson, Neil W
2006-01-15
OSI-930 is a novel inhibitor of the receptor tyrosine kinases Kit and kinase insert domain receptor (KDR), which is currently being evaluated in clinical studies. OSI-930 selectively inhibits Kit and KDR with similar potency in intact cells and also inhibits these targets in vivo following oral dosing. We have investigated the relationships between the potency observed in cell-based assays in vitro, the plasma exposure levels achieved following oral dosing, the time course of target inhibition in vivo, and antitumor activity of OSI-930 in tumor xenograft models. In the mutant Kit-expressing HMC-1 xenograft model, prolonged inhibition of Kit was achieved at oral doses between 10 and 50 mg/kg and this dose range was associated with antitumor activity. Similarly, prolonged inhibition of wild-type Kit in the NCI-H526 xenograft model was observed at oral doses of 100 to 200 mg/kg, which was the dose level associated with significant antitumor activity in this model as well as in the majority of other xenograft models tested. The data suggest that antitumor activity of OSI-930 in mouse xenograft models is observed at dose levels that maintain a significant level of inhibition of the molecular targets of OSI-930 for a prolonged period. Furthermore, pharmacokinetic evaluation of the plasma exposure levels of OSI-930 at these effective dose levels provides an estimate of the target plasma concentrations that may be required to achieve prolonged inhibition of Kit and KDR in humans and which would therefore be expected to yield a therapeutic benefit in future clinical evaluations of OSI-930.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedersen, Malin; Loefstedt, Tobias; Sun Jianmin
Signaling by the receptor for stem cell factor (SCF), c-Kit, is of major importance for hematopoiesis, melanogenesis and reproduction, and the biological responses are commonly proliferation and cell survival. Thus, constitutive activation due to c-Kit mutations is involved in the pathogenesis of several forms of cancer, e.g. leukemias, gastrointestinal stromal tumors and testicular tumors. Tumor survival requires oxygen supply through induced neovascularization, a process largely mediated by the vascular endothelial growth factor (VEGF), a prominent target of the transcription factors hypoxia-inducible factor-1 (HIF-1) and HIF-2. Using Affymetrix microarrays we have identified genes that are upregulated following SCF stimulation. Interestingly, manymore » of the genes induced were found to be related to a hypoxic response. These findings were corroborated by our observation that SCF stimulation of the hematopoietic cell lines M-07e induces HIF-1{alpha} and HIF-2{alpha} protein accumulation at normoxia. In addition, SCF-induced HIF-1{alpha} was transcriptionally active, and transcribed HIF-1 target genes such as VEGF, BNIP3, GLUT1 and DEC1, an effect that could be reversed by siRNA against HIF-1{alpha}. We also show that SCF-induced accumulation of HIF-1{alpha} is dependent on both the PI-3-kinase and Ras/MEK/Erk pathways. Our data suggest a novel mechanism of SCF/c-Kit signaling in angiogenesis and tumor progression.« less
Chen, Lei L; Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G; Jimenez, Arnie; Velasco, Marco A; Tripp, Sheryl R; Andtbacka, Robert H I; Gouw, Launce; Rodgers, George M; Zhang, Liansheng; Chan, Benjamin K; Cassidy, Pamela B; Benjamin, Robert S; Leachman, Sancy A; Frazier, Marsha L
2017-01-01
We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.
Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G.; Jimenez, Arnie; Velasco, Marco A.; Tripp, Sheryl R.; Andtbacka, Robert H. I.; Gouw, Launce; Rodgers, George M.; Zhang, Liansheng; Chan, Benjamin K.; Cassidy, Pamela B.; Benjamin, Robert S.; Leachman, Sancy A.; Frazier, Marsha L.
2017-01-01
We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation. PMID:28880927
Giantin, M; Aresu, L; Aricò, A; Gelain, M E; Riondato, F; Martini, V; Comazzi, S; Dacasto, M
2013-04-15
The tyrosine-kinase receptor c-KIT (c-KIT) plays an important role in proliferation, survival and differentiation of progenitor cells in normal hematopoietic cells. In human hematological malignancies, c-KIT is mostly expressed by progenitor cell neoplasia and seldom by those involving mature cells. Tyrosine kinase inhibitors (TKIs) are actually licensed for the first- and second-line treatment of human hematologic disorders. Aim of the present study was to evaluate c-KIT mRNA and protein expression and complementary DNA (cDNA) mutations in canine leukemia. Eleven acute lymphoblastic leukemia (ALL) and acute undifferentiated leukemia (AUL) and 12 chronic lymphocytic leukemia (CLL) were enrolled in this study. The amounts of c-KIT mRNA and protein were determined, in peripheral blood samples, by using quantitative real time RT-PCR, flow cytometry and immunocytochemistry, respectively. The presence of mutations on c-KIT exons 8-11 and 17 were investigated by cDNA sequencing. Higher amounts of c-KIT mRNA were found in ALL/AUL compared to CLL, and this latter showed a lower pattern of gene expression. Transcriptional data were confirmed at the protein level. No significant gain-of-function mutations were ever observed in both ALL/AUL and CLL. Among canine hematological malignancies, ALL/AUL typically show a very aggressive biological behavior, partly being attributable to the lack of efficacious therapeutic options. The high level of c-KIT expression found in canine ALL/AUL might represent the rationale for using TKIs in future clinical trials. Copyright © 2013 Elsevier B.V. All rights reserved.
Serpi, Raisa; Tolonen, Anna‐Maria; Tenhunen, Olli; Pieviläinen, Oskari; Kubin, Anna‐Maria; Vaskivuo, Tommi; Soini, Ylermi; Kerkelä, Risto; Leskinen, Hanna; Ruskoaho, Heikki
2009-01-01
Abstract There is strong evidence for the use of angiotensin converting enzyme inhibitors and beta‐blockers to reduce morbidity and mortality in patients with myocardial infarction (MI), whereas the effect of angiotensin receptor blockers is less clear. We evaluated the effects of an angiotensin receptor blocker losartan and a beta‐blocker metoprolol on left ventricular (LV) remodeling, c‐kit+ cells, proliferation, fibrosis, apoptosis, and angiogenesis using a model of coronary ligation in rats. Metoprolol treatment for 2 weeks improved LV systolic function. In contrast, losartan triggered deleterious structural remodeling and functional deterioration of LV systolic function, ejection fraction being 41% and fractional shortening 47% lower in losartan group than in controls 2 weeks after MI. The number of c‐kit+ cells as well as expression of Ki‐67 was increased by metoprolol. Losartan‐induced thinning of the anterior wall and ventricular dilation were associated with increased apoptosis and fibrosis, while losartan had no effect on the expression of c‐kit or Ki‐67. Metoprolol or losartan had no effect on microvessel density. These results demonstrate that beta‐blocker treatment attenuated adverse remodeling via c‐kit+ cells and proliferation, whereas angiotensin receptor blocker‐induced worsening of LV systolic function was associated with increased apoptosis and fibrosis in the peri‐infarct region. PMID:20443934
Tauchi, T; Boswell, H S; Leibowitz, D; Broxmeyer, H E
1994-01-01
Enforced expression of p210bcr-abl transforms interleukin 3 (IL-3)-dependent hematopoietic cell lines to growth factor-independent proliferation. It has been demonstrated that nonreceptor tyrosine kinase oncogenes may couple to the p21ras pathway to exert their transforming effect. In particular, p210bcr-abl was recently found to effect p21ras activation in hematopoietic cells. In this context, experiments were performed to evaluate a protein signaling pathway by which p210bcr-abl might regulate p21ras. It was asked whether Shc p46/p52, a protein containing a src-homology region 2 (SH2) domain, and known to function upstream from p21ras, might form specific complexes with p210bcr-abl and thus, possibly alter p21ras activity by coupling to the guanine nucleotide exchange factor (Sos/CDC25) through the Grb2 protein-Sos complex. This latter complex has been previously demonstrated to occur ubiquitously. We found that p210bcr-abl formed a specific complex with Shc and with Grb2 in three different murine cell lines transfected with a p210bcr-abl expression vector. There appeared to be a higher order complex containing Shc, Grb2, and bcr-abl proteins. In contrast to p210bcr-abl transformed cells, in which there was constitutive tight association between Grb2 and Shc, binding between Grb2 and Shc was Steel factor (SLF)-dependent in a SLF-responsive, nontransformed parental cell line. The SLF-dependent association between Grb2 and Shc in nontransformed cells involved formation of a complex of Grb2 with c-kit receptor after SLF treatment. Thus, p210bcr-abl appears to function in a hematopoietic p21ras activation pathway to allow growth factor-independent coupling between Grb2, which exists in a complex with the guanine nucleotide exchange factor (Sos), and p21ras. Shc may not be required for Grb2-c-kit interaction, because it fails to bind strongly to c-kit.
Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien
2016-06-27
Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. ©2016 Ngkelo et al.
Shen, Cheng-Cheng; Chen, Bing; Gu, Jian-Teng; Ning, Jiao-Lin; Zeng, Jing; Yi, Bin; Lu, Kai-Zhi
2018-03-01
Recent studies have shown that pulmonary angiogenesis is an important pathological process in the development of hepatopulmonary syndrome (HPS), and growing evidence has indicated that Stromal cell-derived factor 1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) axis is involved in pulmonary vascular disease by mediating the accumulation of c-kit+ cells. This study aimed to test the effect of AMD3100, an antagonist of CXCR4, in HPS pulmonary angiogenesis. Common bile duct ligation (CBDL) rats were used as experimental HPS model and were treated with AMD3100 (1.25mg/kg/day, i.p.) or 0.9% saline for 3weeks. The sham rats underwent common bile duct exposure without ligation. The c-kit+ cells accounts and its angiogenic-related functions, prosurvival signals, pulmonary angiogenesis and arterial oxygenation were analysed in these groups. Our results showed that pulmonary SDF-1/CXCR4, Akt, Erk and VEGF/VEGFR2 were significantly activated in CBDL rats, and the numbers of circulating and pulmonary c-kit+ cells were increased in CBDL rats compared with control rats. Additionally, the angiogenic-related functions of c-kit+ cells and pulmonary microvessel counts were also elevated in CBDL rats. CXCR4 inhibition reduced pulmonary c-kit+ cells and microvessel counts and improved arterial oxygenation within 3weeks in CBDL rats. The pulmonary prosurvival signals and pro-angiogenic activity of c-kit+ cells were also down-regulated in AMD3100-treated rats. In conclusion, AMD3100 treatment attenuated pulmonary angiogenesis in CBDL rats and prevented the development of HPS via reductions in pulmonary c-kit+ cells and inhibition of the prosurvival signals. Our study provides new insights in HPS treatment. Copyright © 2017. Published by Elsevier B.V.
Radiosensitization Effect of STI-571 on Pancreatic Cancer Cells In Vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Hye Won; Wen, Jing; Lim, Jong-Baeck
2009-11-01
Purpose: To examine STI-571-induced radiosensitivity in human pancreatic cancer cells in vitro. Methods and Materials: Three human pancreatic cancer cell lines (Bxpc-3, Capan-1, and MiaPaCa-2) exhibiting different expression levels of c-Kit and platelet-derived growth factor receptor beta (PDGFRbeta) and showing different K-ras mutation types were used. For evaluation of the antitumor activity of STI-571 in combination with radiation, clonogenic survival assays, Western blot analysis, and the annexin V/propidium iodide assay with microscopic evaluation by 4',6-diamidino-2-phenylindole were conducted. Results: Dramatic phosphorylated (p)-c-Kit and p-PDGFRbeta attenuation, a modest dose- and time-dependent growth inhibition, and significant radiosensitization were observed after STI-571 treatment inmore » view of apoptosis, although the levels of growth inhibition and increased radiosensitization were different according to cell lines. The grades of radiosensitivity corresponded to the attenuation levels of p-c-Kit and p-PDGFRbeta by STI-571, particularly to those of p-c-Kit, and the radiosensitivity was partially affected by K-ras mutation in pancreatic cancer cells. Among downstream pathways associated with c-Kit or PDGFRbeta, p-PLCgamma was more closely related to radiosensitivity compared with p-Akt1 or p-extracellular signal-regulated kinase 1. Conclusion: STI-571 enhances radiation response in pancreatic cancer cells. This effect is affected by the attenuation levels of p-c-Kit or p-PDGFRbeta, and K-ras mutation status. Among them, p-c-Kit plays more important roles in the radiosensitivity in pancreatic cancer compared with p-PDGFRbeta or K-ras mutation status.« less
Nagata, H; Worobec, A S; Oh, C K; Chowdhury, B A; Tannenbaum, S; Suzuki, Y; Metcalfe, D D
1995-01-01
Both stem cells and mast cells express c-kit and proliferate after exposure to c-kit ligand. Mutations in c-kit may enhance or interfere with the ability of c-kit receptor to initiate the intracellular pathways resulting in cell proliferation. These observations suggested to us that mastocytosis might in some patients result from mutations in c-kit. cDNA synthesized from peripheral blood mononuclear cells of patients with indolent mastocytosis, mastocytosis with an associated hematologic disorder, aggressive mastocytosis, solitary mastocytoma, and chronic myelomonocytic leukemia unassociated with mastocytosis was thus screened for a mutation of c-kit. This analysis revealed that four of four mastocytosis patients with an associated hematologic disorder with predominantly myelodysplastic features had an A-->T substitution at nt 2468 of c-kit mRNA that causes an Asp-816-->Val substitution. One of one patient examined who had mastocytosis with an associated hematologic disorder had the corresponding mutation in genomic DNA. Identical or similar amino acid substitutions in mast cell lines result in ligand-independent autophosphorylation of the c-kit receptor. This mutation was not identified in the patients within the other disease categories or in 67 of 67 controls. The identification of the point mutation Asp816Val in c-kit in patients with mastocytosis with an associated hematologic disorder provides insight not only into the pathogenesis of this form of mastocytosis but also into how hematopoiesis may become dysregulated and may serve to provide a means of confirming the diagnosis, assessing prognosis, and developing intervention strategies. Images Fig. 1 Fig. 2 Fig. 3 PMID:7479840
Nagata, H; Worobec, A S; Oh, C K; Chowdhury, B A; Tannenbaum, S; Suzuki, Y; Metcalfe, D D
1995-11-07
Both stem cells and mast cells express c-kit and proliferate after exposure to c-kit ligand. Mutations in c-kit may enhance or interfere with the ability of c-kit receptor to initiate the intracellular pathways resulting in cell proliferation. These observations suggested to us that mastocytosis might in some patients result from mutations in c-kit. cDNA synthesized from peripheral blood mononuclear cells of patients with indolent mastocytosis, mastocytosis with an associated hematologic disorder, aggressive mastocytosis, solitary mastocytoma, and chronic myelomonocytic leukemia unassociated with mastocytosis was thus screened for a mutation of c-kit. This analysis revealed that four of four mastocytosis patients with an associated hematologic disorder with predominantly myelodysplastic features had an A-->T substitution at nt 2468 of c-kit mRNA that causes an Asp-816-->Val substitution. One of one patient examined who had mastocytosis with an associated hematologic disorder had the corresponding mutation in genomic DNA. Identical or similar amino acid substitutions in mast cell lines result in ligand-independent autophosphorylation of the c-kit receptor. This mutation was not identified in the patients within the other disease categories or in 67 of 67 controls. The identification of the point mutation Asp816Val in c-kit in patients with mastocytosis with an associated hematologic disorder provides insight not only into the pathogenesis of this form of mastocytosis but also into how hematopoiesis may become dysregulated and may serve to provide a means of confirming the diagnosis, assessing prognosis, and developing intervention strategies.
Huntingtin Interacting Protein 1: a Merkel Cell Carcinoma Marker That Interacts with c-Kit
Ames, Heather M.; Bichakjian, Christopher K.; Liu, Grace Y.; Oravecz-Wilson, Katherine I.; Fullen, Douglas R.; Verhaegen, Monique; Johnson, Timothy M.; Dlugosz, Andrzej A.; Ross, Theodora S.
2011-01-01
Merkel Cell Carcinoma (MCC) is a neoplasm thought to originate from the neuroendocrine Merkel cells of the skin. While the prevalence of MCC has been increasing, treatments for this disease remain limited due to a paucity of information regarding MCC biology. We have found that the endocytic oncoprotein Huntingtin interacting protein 1 (HIP1) is expressed at high levels in close to 90% of MCC tumors and serves as a more reliable histological cytoplasmic stain than the gold standard, cytokeratin 20 (CK20). Furthermore, high anti-HIP1 antibody reactivity in the sera of a cohort of MCC patients predicts the presence of metastases. Another protein that is frequently expressed at high levels in MCC tumors is the stem cell factor (SCF) receptor tyrosine kinase, c-Kit. In working towards an understanding of how HIP1 might contribute to MCC tumorigenesis, we have discovered that HIP1 interacts with SCF activated c-Kit. These data not only identify HIP1 as a molecular marker for management of MCC patients but also show that HIP1 interacts with and slows the degradation of c-Kit. PMID:21697888
Kalfusová, Alena; Kodet, Roman
2017-01-01
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. Most of them arise due to activating mutations in KIT (75 - 85 %) or PDGFRA (less than 10 %) genes. Identification of the activating mutations in KIT and PDGFRA genes, which code for receptor tyrosine kinases (RTKs), has improved the outcome of targeted therapy of metastatic, unresectable or recurrent GISTs. Primary and/or secondary resistance represents a significant problem in the targeted therapy by Imatinib mesylate (IM) in patients with GIST. An important mechanism of the secondary resistance is the evolvement of secondary mutations. Except for primary and secondary resistance, there is another problem of disease progression - a failure of tumor cells eradication even in the long term therapy of tyrosine kinase inhibitors. GISTs without mutations in KIT/PDGFRA genes constitute 10 - 15% GISTs in adults, and a majority (85 %) of pediatric GISTs. KIT/PDGFRA wild-type GISTs represent a heterogeneous group of tumors with several molecular-genetics and/or morphologic differences. KIT/PDGFRA wild-type GISTs are different in their molecular features, for example in mutations in the BRAF, KRAS, NF1 genes or defects of succinate dehydrogenase (SDH) subunits. KIT/PDGFRA wild-type GISTs are generally less sensitive to targeted therapy by tyrosine kinase inhibitors in comparison with KIT/PDGFRA mutated GISTs. Inhibitors of BRAF, PI3K (mTOR) or inhibitors of IGF1R and VEGFR receptors provide alternative therapeutic strategies.
Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment.
Arai, Yasuyuki; Choi, Uimook; Corsino, Cristina I; Koontz, Sherry M; Tajima, Masaki; Sweeney, Colin L; Black, Mary A; Feldman, Steven A; Dinauer, Mary C; Malech, Harry L
2018-05-02
We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (<1%-13.1%). This resulted in significant depletion of the BM c-kit + population (9.0%-0.1%). Because congenic Thy1.1 CAR-T cells were used in the Thy1.2-recipient mice, anti-Thy1.1 antibody could be used to deplete CAR-T cells in vivo before donor BM transplant. This achieved 20%-40% multilineage engraftment. We applied this conditioning to achieve an average of 28% correction of chronic granulomatous disease mice by wild-type BM transplant. Our findings provide a proof of concept that c-kit CAR-T cells can achieve effective BM conditioning without chemo-/radiotherapy. Our work also demonstrates that co-expression of a trafficking receptor can enhance targeting of CAR-T cells to a designated tissue. Published by Elsevier Inc.
Zhu, Bo; Li, Lan-ying; Lü, Guo-yi; Xue, Yu-liang; Ye, Tie-hu
2010-04-01
To explore the effects of naloxone on the expression of c-kit receptor (c-kit R) and its ligand stem cell factor (SCF) in human embryo neuronal hypoxic injury. Serum-free cerebral cortical cultures prepared from embryonic human brains were deprived of both oxygen and glucose which would set up an environment more likely with that of in vivo ischemic injury. Neurons in 24-well culture plates were randomly divided into four groups: control group, hypoxia group, naloxone 0.5 microg/ml group and naloxone 10 microg/ml group. MTT assay and biological analysis were performed to study the cell death and the changes of extracellular concentrations of lactate dehydrogenase (LDH) after combined oxygen-glucose deprivation. Neurons in 25 ml culture flasks were also randomly allocated into four groups as previously described. Intracellular total RNA were extracted at different time points: pre-hypoxia, immediately after hypoxia, and 3, 6, 12, and 24 hours after reoxygenation. The changes of SCF/c-kit R mRNA expression in hypoxic neurons treated with different concentrations of naloxone pre and post oxygen-glucose deprivation were determined with RT-PCR. The cell vitality detected by MTT assay decreased significantly in hypoxia group and naloxone 0.5 microg/ml group when compared with control group (P<0.01), while no significant difference was found between naloxone 0.5 microg/ml group and hypoxia group or between naloxone 10 microg/ml group and control group. Extracellular concentration of LDH significantly increased in hypoxia group (P<0.05), while no difference was found between naloxone 0.5 microg/ml group and control group, between naloxone 0.5 microg/ml and hypoxia group, or between naloxone 10 microg/ml and control group (all P>0.05). Immediately after oxygen-glucose deprivation, the expression of SCF/c-kit R mRNA increased significantly (P<0.01). Among those the expression of SCF presented a distribution of double-peak value within 24 hours. After treated with different concentrations of naloxone, the peak value of each group were delayed to appear and went down with the increasing of naloxone concentration. The peak values in all treated groups were significantly different from that in control group (P<0.01). The expression of SCF/c-kit R mRNA increases at the early stage after combined oxygen-glucose deprivation. Naloxone 0.5 microg/ml can attenuate cell injuries and regulate the expression of SCF/c-kit R. Naloxone may protect neurons by modulating the expressions of some cytokines.
Li, Hai; Chen, Yan; Liu, Shi; Hou, Xiao-Hua
2016-06-21
To investigate the effects of different parameters of gastric electrical stimulation (GES) on interstitial cells of Cajal (ICCs) and changes in the insulin-like growth factor 1 (IGF-1) signal pathway in streptozotocin-induced diabetic rats. Male rats were randomized into control, diabetic (DM), diabetic with sham GES (DM + SGES), diabetic with GES1 (5.5 cpm, 100 ms, 4 mA) (DM + GES1), diabetic with GES2 (5.5 cpm, 300 ms, 4 mA) (DM + GES2) and diabetic with GES3 (5.5 cpm, 550 ms, 2 mA) (DM + GES3) groups. The expression levels of c-kit, M-SCF and IGF-1 receptors were evaluated in the gastric antrum using Western blot analysis. The distribution of ICCs was observed using immunolabeling for c-kit, while smooth muscle cells and IGF-1 receptors were identified using α-SMA and IGF-1R antibodies. Serum level of IGF-1 was tested using enzyme-linked immunosorbent assay. Gastric emptying was delayed in the DM group but improved in all GES groups, especially in the GES2 group. The expression levels of c-kit, M-SCF and IGF-1R were decreased in the DM group but increased in all GES groups. More ICCs (c-kit(+)) and smooth muscle cells (α-SMA(+)/IGF-1R(+)) were observed in all GES groups than in the DM group. The average level of IGF-1 in the DM group was markedly decreased, but it was up-regulated in all GES groups, especially in the GES2 group. The results suggest that long-pulse GES promotes the regeneration of ICCs. The IGF-1 signaling pathway might be involved in the mechanism underlying this process, which results in improved gastric emptying.
Growth control of genetically modified cells using an antibody/c-Kit chimera.
Kaneko, Etsuji; Kawahara, Masahiro; Ueda, Hiroshi; Nagamune, Teruyuki
2012-05-01
Gene therapy has been regarded as an innovative potential treatment against serious congenital diseases. However, applications of gene therapy remain limited, partly because its clinical success depends on therapeutic gene-transduced cells acquiring a proliferative advantage. To address this problem, we have developed the antigen-mediated genetically modified cell amplification (AMEGA) system, which uses chimeric receptors to enable the selective proliferation of gene-transduced cells. In this report, we describe mimicry of c-Kit signaling and its application to the AMEGA system. We created an antibody/c-Kit chimera in which the extracellular domain of c-Kit is replaced with an anti-fluorescein single-chain Fv antibody fragment and the extracellular D2 domain of the erythropoietin receptor. A genetically modified mouse pro-B cell line carrying this chimera showed selective expansion in the presence of fluorescein-conjugated BSA (BSA-FL) as a growth inducer. By further engineering the transmembrane domain of the chimera to reduce interchain interaction we attained stricter ligand-dependency. Since c-Kit is an important molecule in the expansion of hematopoietic stem cells (HSCs), this antibody/c-Kit chimera could be a promising tool for gene therapy targeting HSCs. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
FUNCTIONAL DEREGULATION OF KIT: LINK TO MAST CELL PROLIFERATIVE DISEASES AND OTHER NEOPLASMS
Cruse, Glenn; Metcalfe, Dean D.; Olivera, Ana
2014-01-01
SYNOPSIS Signaling through the receptor tyrosine kinase KIT mediates differentiation, proliferation and survival of hematopoietic precursor cells and mast cells. Constitutive KIT signaling due to somatic point mutations in c-Kit is an important occurrence in the development of mast cell proliferation disorders and other hematological malignancies. In this review, we discuss the common gain-of-function mutations found in these malignancies, particularly in mast cell proliferation disorders, and summarize the current understanding of the molecular mechanisms by which transforming point mutations in KIT may affect KIT structure and function and lead to altered downstream signaling and cellular transformation. Drugs targeting KIT have shown mixed success in the treatment of these diseases. A brief overview of the most common KIT inhibitors currently used, the reasons for the varied clinical results of such inhibitors and a discussion of potential new strategies are provided. PMID:24745671
Interkinase domain of kit contains the binding site for phosphatidylinositol 3' kinase.
Lev, S; Givol, D; Yarden, Y
1992-01-01
Our previous analysis of the signal transduction pathway used by the c-kit-encoded receptor for the stem cell factor (SCF) indicated efficient coupling to the type I phosphatidylinositol 3' kinase (PI3K). In an attempt to localize the receptor's site of interaction with PI3K, we separately deleted either the noncatalytic 68-amino-acid-long interkinase domain or the carboxyl-terminal portion distal to the catalytic sequences. Loss of ligand-induced association of PI3K with the former deletion mutant and retention of the PI3K association by the carboxyl-terminally deleted receptor implied interactions of PI3K with the kinase insert. This was further supported by partial inhibition of the association by an anti-peptide antibody directed against the kinase insert and lack of effect of an antibody directed to the carboxyl tail of the SCF receptor. A bacterially expressed kinase insert domain was used as a fusion protein to directly test its presumed function as a PI3K association site. This protein bound PI3K from cell lysate as demonstrated by PI3K activity and by an associated phosphoprotein of 85 kDa. The association was dependent on phosphorylation of the tyrosine residues on the expressed kinase insert. On the basis of these observations, we conclude that the kinase insert domain of the SCF receptor selectively interacts with the p85 regulatory subunit of PI3K and that this association requires phosphorylation of tyrosine residues in the kinase insert region, with apparently no involvement of the bulk cytoplasmic structure or tyrosine kinase function of the receptor. Images PMID:1370584
Obata, Yuuki; Toyoshima, Shota; Wakamatsu, Ei; Suzuki, Shunichi; Ogawa, Shuhei; Esumi, Hiroyasu; Abe, Ryo
2014-01-01
Kit is a receptor-type tyrosine kinase found on the plasma membrane. It can transform mast cells through activating mutations. Here, we show that a mutant Kit from neoplastic mast cells from mice, Kit(D814Y), is permanently active and allows cells to proliferate autonomously. It does so by activating two signalling pathways from different intracellular compartments. Mutant Kit from the cell surface accumulates on endolysosomes through clathrin-mediated endocytosis, which requires Kit’s kinase activity. Kit(D814Y) is constitutively associated with phosphatidylinositol 3-kinase, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. It resists destruction because it is under-ubiquitinated. Kit(D814Y) also appears in the endoplasmic reticulum soon after biosynthesis, and there, can activate STAT5 aberrantly. These mechanisms of oncogenic signalling are also seen in rat and human mast cell leukemia cells. Thus, oncogenic Kit signalling occurs from different intracellular compartments, and the mutation acts by altering Kit trafficking as well as activation. PMID:25493654
Small, D; Levenstein, M; Kim, E; Carow, C; Amin, S; Rockwell, P; Witte, L; Burrow, C; Ratajczak, M Z; Gewirtz, A M
1994-01-01
We cloned the cDNA for stem cell tyrosine kinase 1 (STK-1), the human homolog of murine Flk-2/Flt-3, from a CD34+ hematopoietic stem cell-enriched library and investigated its expression in subsets of normal human bone marrow. The cDNA encodes a protein of 993 aa with 85% identity and 92% similarity to Flk-2/Flt-3. STK-1 is a member of the type III receptor tyrosine kinase family that includes KIT (steel factor receptor), FMS (colony-stimulating factor 1R), and platelet-derived growth factor receptor. STK-1 expression in human blood and marrow is restricted to CD34+ cells, a population greatly enriched for stem/progenitor cells. Anti-STK-1 antiserum recognizes polypeptides of 160 and 130 kDa in several STK-1-expressing cell lines and in 3T3 cells transfected with a STK-1 expression vector. Antisense oligonucleotides directed against STK-1 sequences inhibited hematopoietic colony formation, most strongly in long-term bone marrow cultures. These data suggest that STK-1 may function as a growth factor receptor on hematopoietic stem and/or progenitor cells. Images Fig. 2 Fig. 3 Fig. 4 PMID:7507245
Xiang, Zhifu; Kreisel, Frederike; Cain, Jennifer; Colson, AnnaLynn; Tomasson, Michael H.
2007-01-01
Activating mutations in c-KIT are associated with gastrointestinal stromal tumors, mastocytosis, and acute myeloid leukemia. In attempting to establish a murine model of human KITD816V (hKITD816V)-mediated leukemia, we uncovered an unexpected relationship between cellular transformation and intracellular trafficking. We found that transport of hKITD816V protein was blocked at the endoplasmic reticulum in a species-specific fashion. We exploited these species-specific trafficking differences and a set of localization domain-tagged KIT mutants to explore the relationship between subcellular localization of mutant KIT and cellular transformation. The protein products of fully transforming KIT mutants localized to the Golgi apparatus and to a lesser extent the plasma membrane. Domain-tagged KITD816V targeted to the Golgi apparatus remained constitutively active and transforming. Chemical inhibition of intracellular transport demonstrated that Golgi localization is sufficient, but plasma membrane localization is dispensable, for downstream signaling mediated by KIT mutation. When expressed in murine bone marrow, endoplasmic reticulum-localized hKITD816V failed to induce disease in mice, while expression of either Golgi-localized HyKITD816V or cytosol-localized, ectodomain-deleted KITD816V uniformly caused fatal myeloproliferative diseases. Taken together, these data demonstrate that intracellular, non-plasma membrane receptor signaling is sufficient to drive neoplasia caused by mutant c-KIT and provide the first animal model of myelomonocytic neoplasia initiated by human KITD816V. PMID:17060458
Current advances in biomarkers for targeted therapy in triple-negative breast cancer
Fleisher, Brett; Clarke, Charlotte; Ait-Oudhia, Sihem
2016-01-01
Triple-negative breast cancer (TNBC) is a complex heterogeneous disease characterized by the absence of three hallmark receptors: human epidermal growth factor receptor 2, estrogen receptor, and progesterone receptor. Compared to other breast cancer subtypes, TNBC is more aggressive, has a higher prevalence in African-Americans, and more frequently affects younger patients. Currently, TNBC lacks clinically accepted targets for tailored therapy, warranting the need for candidate biomarkers. BiomarkerBase, an online platform used to find biomarkers reported in clinical trials, was utilized to screen all potential biomarkers for TNBC and select only the ones registered in completed TNBC trials through clinicaltrials.gov. The selected candidate biomarkers were classified as surrogate, prognostic, predictive, or pharmacodynamic (PD) and organized by location in the blood, on the cell surface, in the cytoplasm, or in the nucleus. Blood biomarkers include vascular endothelial growth factor/vascular endothelial growth factor receptor and interleukin-8 (IL-8); cell surface biomarkers include EGFR, insulin-like growth factor binding protein, c-Kit, c-Met, and PD-L1; cytoplasm biomarkers include PIK3CA, pAKT/S6/p4E-BP1, PTEN, ALDH1, and the PIK3CA/AKT/mTOR-related metabolites; and nucleus biomarkers include BRCA1, the gluco-corticoid receptor, TP53, and Ki67. Candidate biomarkers were further organized into a “cellular protein network” that demonstrates potential connectivity. This review provides an inventory and reference point for promising biomarkers for breakthrough targeted therapies in TNBC. PMID:27785100
2010-01-01
Background Gastrointestinal stromal tumors (GIST) represent the most common mesenchymal tumors of the gastrointestinal tract. About 85% carry an activating mutation in the KIT or PDGFRA gene. Approximately 10% of GIST are so-called wild type GIST (wt-GIST) without mutations in the hot spots. In the present study we evaluated appropriate reference genes for the expression analysis of formalin-fixed, paraffin-embedded and fresh frozen samples from gastrointestinal stromal tumors. We evaluated the gene expression of KIT as well as of the alternative receptor tyrosine kinase genes FLT3, CSF1-R, PDGFRB, AXL and MET by qPCR. wt-GIST were compared to samples with mutations in KIT exon 9 and 11 and PDGFRA exon 18 in order to evaluate whether overexpression of these alternative RTK might contribute to the pathogenesis of wt-GIST. Results Gene expression variability of the pooled cDNA samples is much lower than the single reverse transcription cDNA synthesis. By combining the lowest variability values of fixed and fresh tissue, the genes POLR2A, PPIA, RPLPO and TFRC were chosen for further analysis of the GIST samples. Overexpression of KIT compared to the corresponding normal tissue was detected in each GIST subgroup except in GIST with PDGFRA exon 18 mutation. Comparing our sample groups, no significant differences in the gene expression levels of FLT3, CSF1R and AXL were determined. An exception was the sample group with KIT exon 9 mutation. A significantly reduced expression of CSF1R, FLT3 and PDGFRB compared to the normal tissue was detected. GIST with mutations in KIT exon 9 and 11 and in PDGFRA exon 18 showed a significant PDGFRB downregulation. Conclusions As the variability of expression levels for the reference genes is very high comparing fresh frozen and formalin-fixed tissue there is a strong need for validation in each tissue type. None of the alternative receptor tyrosine kinases analyzed is associated with the pathogenesis of wild-type or mutated GIST. It remains to be clarified whether an autocrine or paracrine mechanism by overexpression of receptor tyrosine kinase ligands is responsible for the tumorigenesis of wt-GIST. PMID:21171987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Essa; Tasker, Andrew; White, Ryan D.
2008-12-09
Inhibition of c-Kit has the potential to treat mast cell associated fibrotic diseases. We report the discovery of several aminoquinazoline pyridones that are potent inhibitors of c-Kit with greater than 200-fold selectivity against KDR, p38, Lck, and Src. In vivo efficacy of pyridone 16 by dose-dependent inhibition of histamine release was demonstrated in a rodent pharmacodynamic model of mast cell activation.
Epidermal growth factor receptor mutations in 510 Finnish non--small-cell lung cancer patients.
Mäki-Nevala, Satu; Rönty, Mikko; Morel, Mike; Gomez, Maria; Dawson, Zoe; Sarhadi, Virinder Kaur; Telaranta-Keerie, Aino; Knuuttila, Aija; Knuutila, Sakari
2014-06-01
Among the driver gene mutations in non-small-cell lung cancer, mutations in epidermal growth factor receptor (EGFR) are the most important because of their predictive role in selecting patients eligible for targeted therapy. Our aim was to study EGFR mutations in a Finnish non-small-cell lung cancer cohort of 528 patients. Mutation testing was conducted on DNA extracted from paraffin-embedded, formalin-fixed tumor material using the following real-time polymerase chain reaction-based kits: Therascreen EGFR PCR Kit and cobas EGFR Mutation Test. EGFR mutation frequency was 11.4% and all positive cases were adenocarcinomas, of which a majority had an acinar predominant pattern. Mutations were seen significantly more often in females and never-smokers than in males and smokers. The most frequent mutations were L858R in exon 21 and deletions in exon 19. Overall survival of the patients, not treated with EGFR inhibitor, did not differ between EGFR mutation-positive and EGFR mutation-negative patients. EGFR mutation profile in this Finnish non-small-cell lung cancer cohort resembles in many respect with that of other Western European cohorts, even though the overall frequency of mutations is slightly higher. We show the occurrence of EGFR mutations in patients with occupational asbestos exposure and also in those diagnosed with chronic obstructive pulmonary disease who have not been often investigated before.
Remission of Psoriasis in a Patient with Hepatocellular Carcinoma Treated with Sorafenib.
Antoniou, Efstathios A; Koutsounas, Ioannis; Damaskos, Christos; Koutsounas, Sotiris
Psoriasis is a chronic, immune-mediated and angiogenesis-dependent disease. Activated keratinocytes in psoriatic lesions produce pro-angiogenic cytokines, including vascular endothelial growth factor (VEGF), which binds to vascular endothelial growth factor receptor (VEGFR) and promotes cell proliferation and angiogenesis. Sorafenib (BAY 43-9006) is a molecular multikinase inhibitor of RAF kinase, platelet-derived growth factor (PDGF), VEGFR-1, -2, -3, platelet-derived growth factor receptor (PDGFR)-β and c-Kit. This molecule inhibits tumor cell proliferation and angiogenesis and it is currently approved for the treatment of hepatocellular carcinoma (HCC). We present the complete remission of resistant psoriasis in a hepatitis C virus (HCV)-infected cirrhotic patient who was treated with sorafenib, for recurrent HCC. Several targeted therapies have demonstrated efficacy against psoriasis. More research and well-designed studies, both in novel drugs and those already marketed for other indications, are needed to determine their value as potential novel therapies for psoriasis. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
CD117/c-kit in Cancer Stem Cell-Mediated Progression and Therapeutic Resistance
Young, Tyler R.; Mobley, Mary E.
2018-01-01
Metastasis is the primary cause of cancer patient morbidity and mortality, but due to persisting gaps in our knowledge, it remains untreatable. Metastases often occur as patient tumors progress or recur after initial therapy. Tumor recurrence at the primary site may be driven by a cancer stem-like cell or tumor progenitor cell, while recurrence at a secondary site is driven by metastatic cancer stem cells or metastasis-initiating cells. Ongoing efforts are aimed at identifying and characterizing these stem-like cells driving recurrence and metastasis. One potential marker for the cancer stem-like cell subpopulation is CD117/c-kit, a tyrosine kinase receptor associated with cancer progression and normal stem cell maintenance. Further, activation of CD117 by its ligand stem cell factor (SCF; kit ligand) in the progenitor cell niche stimulates several signaling pathways driving proliferation, survival, and migration. This review examines evidence that the SCF/CD117 signaling axis may contribute to the control of cancer progression through the regulation of stemness and resistance to tyrosine kinase inhibitors. PMID:29518044
Mimeault, Murielle; Batra, Surinder K
2013-01-01
Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse. PMID:23301832
Bandara, Geethani; Muñoz-Cano, Rosa; Tobío, Araceli; Yin, Yuzhi; Komarow, Hirsh D.; Desai, Avanti; Metcalfe, Dean D.; Olivera, Ana
2018-01-01
Mastocytosis is a disorder resulting from an abnormal mast cell (MC) accumulation in tissues that is often associated with the D816V mutation in KIT, the tyrosine kinase receptor for stem cell factor. Therapies available to treat aggressive presentations of mastocytosis are limited, thus exploration of novel pharmacological targets that reduce MC burden is desirable. Since increased generation of the lipid mediator sphingosine-1-phosphate (S1P) by sphingosine kinase (SPHK) has been linked to oncogenesis, we studied the involvement of the two SPHK isoforms (SPHK1 and SPHK2) in the regulation of neoplastic human MC growth. While SPHK2 inhibition prevented entry into the cell cycle in normal and neoplastic human MCs with minimal effect on cell survival, SPHK1 inhibition caused cell cycle arrest in G2/M and apoptosis, particularly in D816V-KIT MCs. This was mediated via activation of the DNA damage response (DDR) cascade, including phosphorylation of the checkpoint kinase 2 (CHK2), CHK2-mediated M-phase inducer phosphatase 3 depletion, and p53 activation. Combination treatment of SPHK inhibitors with KIT inhibitors showed greater growth inhibition of D816V-KIT MCs than either inhibitor alone. Furthermore, inhibition of SPHK isoforms reduced the number of malignant bone marrow MCs from patients with mastocytosis and the growth of D816V-KIT MCs in a xenograft mouse model. Our results reveal a role for SPHK isoforms in the regulation of growth and survival in normal and neoplastic MCs and suggest a regulatory function for SPHK1 in the DDR in MCs with KIT mutations. The findings also suggest that targeting the SPHK/S1P axis may provide an alternative to tyrosine kinase inhibitors, alone or in combination, for the treatment of aggressive mastocytosis and other hematological malignancies associated with the D816V-KIT mutation. PMID:29643855
Bandara, Geethani; Muñoz-Cano, Rosa; Tobío, Araceli; Yin, Yuzhi; Komarow, Hirsh D; Desai, Avanti; Metcalfe, Dean D; Olivera, Ana
2018-01-01
Mastocytosis is a disorder resulting from an abnormal mast cell (MC) accumulation in tissues that is often associated with the D816V mutation in KIT, the tyrosine kinase receptor for stem cell factor. Therapies available to treat aggressive presentations of mastocytosis are limited, thus exploration of novel pharmacological targets that reduce MC burden is desirable. Since increased generation of the lipid mediator sphingosine-1-phosphate (S1P) by sphingosine kinase (SPHK) has been linked to oncogenesis, we studied the involvement of the two SPHK isoforms (SPHK1 and SPHK2) in the regulation of neoplastic human MC growth. While SPHK2 inhibition prevented entry into the cell cycle in normal and neoplastic human MCs with minimal effect on cell survival, SPHK1 inhibition caused cell cycle arrest in G2/M and apoptosis, particularly in D816V-KIT MCs. This was mediated via activation of the DNA damage response (DDR) cascade, including phosphorylation of the checkpoint kinase 2 (CHK2), CHK2-mediated M-phase inducer phosphatase 3 depletion, and p53 activation. Combination treatment of SPHK inhibitors with KIT inhibitors showed greater growth inhibition of D816V-KIT MCs than either inhibitor alone. Furthermore, inhibition of SPHK isoforms reduced the number of malignant bone marrow MCs from patients with mastocytosis and the growth of D816V-KIT MCs in a xenograft mouse model. Our results reveal a role for SPHK isoforms in the regulation of growth and survival in normal and neoplastic MCs and suggest a regulatory function for SPHK1 in the DDR in MCs with KIT mutations. The findings also suggest that targeting the SPHK/S1P axis may provide an alternative to tyrosine kinase inhibitors, alone or in combination, for the treatment of aggressive mastocytosis and other hematological malignancies associated with the D816V-KIT mutation.
Cáceres-Cortés, J R
1997-01-01
Mice bearing mutations at either of two loci, dominant White spotting(W) or Steel(Sl), exhibit development defects in hematopoietic, melanocytic and germ cells. Genetics studies have shown that the SI locus encodes the Steel factor (SF), which is the ligand for the tyrosine kinase receptor c-kit, the product of the W locus. SF is synthesized in membrane-bound form and can be processed to produce a soluble form. Cell-cell interaction is important in the production of normal blood cells in vivo and in vitro and in the cellular expansion of leukemic cells. We discuss here how SF decreases the requirements in cell interaction for blast colony formation in acute myeloblastic leukemia (AML) and the presence of membrane-bound SF possibly contributes to the density-dependent growth of the AML blasts. We explain that SF is mainly a survival factor for hematopoietic cells, of little proliferative effect, which maintains CD34+ hematopoietic cells in an undifferentiated state. These properties would potentially allow the maintenance of hematopoietic cells in culture for the purpose of marrow purging or gene therapy. The activation of the c-kit signal transduction pathway may play a significant role in the development of many types of non-hematological malignancies by disrupting normal cell-cell interactions and allowing the growth of cancer cell populations. In summary, the properties of the SF indicate it has a role for survival signals during the process of normal differentiation, AML proliferation and in the maintenance of many c-kit+ tumors.
Promotion of Cancer Stem-Like Cell Properties in Hepatitis C Virus-Infected Hepatocytes
Kwon, Young-Chan; Bose, Sandip K.; Steele, Robert; Meyer, Keith; Di Bisceglie, Adrian M.; Ray, Ratna B.
2015-01-01
ABSTRACT We have previously reported that hepatitis C virus (HCV) infection of primary human hepatocytes (PHH) induces the epithelial mesenchymal transition (EMT) state and extends hepatocyte life span (S. K. Bose, K. Meyer, A. M. Di Bisceglie, R. B. Ray, and R. Ray, J Virol 86:13621–13628, 2012, http://dx.doi.org/10.1128/JVI.02016-12). These hepatocytes displayed sphere formation on ultralow binding plates and survived for more than 12 weeks. The sphere-forming hepatocytes expressed a number of cancer stem-like cell (CSC) markers, including high levels of the stem cell factor receptor c-Kit. The c-Kit receptor is regarded as one of the CSC markers in hepatocellular carcinoma (HCC). Analysis of c-Kit mRNA displayed a significant increase in the liver biopsy specimens of chronically HCV-infected patients. We also found c-Kit is highly expressed in transformed human hepatocytes (THH) infected in vitro with cell culture-grown HCV genotype 2a. Further studies suggested that HCV core protein significantly upregulates c-Kit expression at the transcriptional level. HCV infection of THH led to a significant increase in the number of spheres displayed on ultralow binding plates and in enhanced EMT and CSC markers and tumor growth in immunodeficient mice. The use of imatinib or dasatinib as a c-Kit inhibitor reduced the level of sphere-forming cells in culture. The sphere-forming cells were sensitive to treatment with sorafenib, a multikinase inhibitor, that is used for HCC treatment. Further, stattic, an inhibitor of the Stat3 molecule, induced sphere-forming cell death. A combination of sorafenib and stattic had a significantly stronger effect, leading to cell death. These results suggested that HCV infection potentiates CSC generation, and selected drugs can be targeted to efficiently inhibit cell growth. IMPORTANCE HCV infection may develop into HCC as an end-stage liver disease. We focused on understanding the mechanism for the risk of HCC from chronic HCV infection and identified targets for treatment. HCV-infected primary and transformed human hepatocytes (PHH or THH) generated CSC. HCV-induced spheres were highly sensitive to cell death from sorafenib and stattic treatment. Thus, our study is highly significant for HCV-associated HCC, with the potential for developing a target-specific strategy for improved therapies. PMID:26355082
Jiang, Ninghong; Xie, Feng; Guo, Qisang; Li, Ming-Qing; Xiao, Jingjing; Sui, Long
2017-06-01
Toll-like receptor 4 is overexpressed in various tumors, including cervical carcinoma. However, the role of Toll-like receptor 4 in cervical cancer remains controversial, and the underlying mechanisms are largely elusive. Therefore, Toll-like receptor 4 in cervical cancer and related mechanisms were investigated in this study. Quantitative reverse transcription polymerase chain reaction and western blot analyses were used to detect messenger RNA and protein levels in HeLa, Caski, and C33A cells with different treatments. Proliferation was quantified using Cell Counting Kit-8. Cell cycle distribution and apoptosis were assessed by flow cytometry. Higher levels of Toll-like receptor 4 expression were found in human papillomavirus-positive cells compared to human papillomavirus-negative cells. Proliferation of HeLa and Caski cells was promoted in lipopolysaccharide-stimulated groups but suppressed in short hairpin RNA-transfected groups. Apoptosis rates were lower in lipopolysaccharide-stimulated groups relative to short hairpin RNA-transfected groups. In addition, G2-phase distribution was enhanced when Toll-like receptor 4 was downregulated. Moreover, the pNF-κBp65 level was positively correlated with the Toll-like receptor 4 level in HeLa and Caski cells, though when an nuclear factor-κB inhibitor was applied to lipopolysaccharide-stimulated groups, the patterns of proliferation and apoptosis were opposite to those of the lipopolysaccharide-stimulated groups without inhibitor treatment. In conclusion, these data suggest that Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells at least in part through the Toll-like receptor 4/nuclear factor-κB pathway, which may be correlated with the occurrence and development of cervical carcinoma.
De Vita, Serena; Schneider, Rebekka K.; Garcia, Michael; Wood, Jenna; Gavillet, Mathilde; Ebert, Benjamin L.; Gerbaulet, Alexander; Roers, Axel; Levine, Ross L.; Mullally, Ann; Williams, David A.
2014-01-01
Systemic Mastocytosis (SM) is a clonal disease characterized by abnormal accumulation of mast cells in multiple organs. Clinical presentations of the disease vary widely from indolent to aggressive forms, and to the exceedingly rare mast cell leukemia. Current treatment of aggressive SM and mast cell leukemia is unsatisfactory. An imatinib-resistant activating mutation of the receptor tyrosine kinase KIT (KIT D816V) is most frequently present in transformed mast cells and is associated with all clinical forms of the disease. Thus the etiology of the variable clinical aggressiveness of abnormal mast cells in SM is unclear. TET2 appears to be mutated in primary human samples in aggressive types of SM, suggesting a possible role in disease modification. In this report, we demonstrate the cooperation between KIT D816V and loss of function of TET2 in mast cell transformation and demonstrate a more aggressive phenotype in a murine model of SM when both mutations are present in progenitor cells. We exploit these findings to validate a combination treatment strategy targeting the epigenetic deregulation caused by loss of TET2 and the constitutively active KIT receptor for the treatment of patients with aggressive SM. PMID:24788138
Exclusion of EDNRB and KIT as the basis for white spotting in Border Collies.
Metallinos, D; Rine, J
2000-01-01
White spotting patterns in mammals can be caused by mutations in the genes for the endothelin B receptor and c-Kit, whose protein products are necessary for proper migration, differentiation or survival of the melanoblast population of cells. Although there are many different dog breeds that segregate white spotting patterns, no genes have been identified that are linked to these phenotypes. An intercross was generated from a female Newfoundland and a male Border Collie and the white spotting phenotypes of the intercross progeny were evaluated by measuring percentage surface area of white in the puppies. The Border Collie markings segregated as a simple autosomal recessive (7/25 intercross progeny had the phenotype). Two candidate genes, for the endothelin B receptor (EDNRB) and c-Kit (KIT), were evaluated for segregation with the white spotting pattern. Polymorphisms between the Border Collie and Newfoundland were identified for EDNRB using Southern analysis after a portion of the canine gene had been cloned. Polymorphisms for KIT were identified using a microsatellite developed from a bacterial artificial chromosome containing the canine gene. Both EDNRB and KIT were excluded as a cause of the white spotting pattern in at least two of the intercross progeny. Although these genes have been implicated in white spotting in other mammals, including horses, pigs, cows, mice and rats, they do not appear to be responsible for the white spotting pattern found in the Border Collie breed of dog.
Exclusion of EDNRB and KIT as the basis for white spotting in Border Collies
Metallinos, Danika; Rine, Jasper
2000-01-01
Background: White spotting patterns in mammals can be caused by mutations in the genes for the endothelin B receptor and c-Kit, whose protein products are necessary for proper migration, differentiation or survival of the melanoblast population of cells. Although there are many different dog breeds that segregate white spotting patterns, no genes have been identified that are linked to these phenotypes. Results: An intercross was generated from a female Newfoundland and a male Border Collie and the white spotting phenotypes of the intercross progeny were evaluated by measuring percentage surface area of white in the puppies. The Border Collie markings segregated as a simple autosomal recessive (7/25 intercross progeny had the phenotype). Two candidate genes, for the endothelin B receptor (EDNRB) and c-Kit (KIT), were evaluated for segregation with the white spotting pattern. Polymorphisms between the Border Collie and Newfoundland were identified for EDNRB using Southern analysis after a portion of the canine gene had been cloned. Polymorphisms for KIT were identified using a microsatellite developed from a bacterial artificial chromosome containing the canine gene. Conclusions: Both EDNRB and KIT were excluded as a cause of the white spotting pattern in at least two of the intercross progeny. Although these genes have been implicated in white spotting in other mammals, including horses, pigs, cows, mice and rats, they do not appear to be responsible for the white spotting pattern found in the Border Collie breed of dog. PMID:11178229
Galimi, F; Bagnara, G P; Bonsi, L; Cottone, E; Follenzi, A; Simeone, A; Comoglio, P M
1994-12-01
Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c-MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU-GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.
A de novo mutation in KIT causes white spotting in a subpopulation of German Shepherd dogs.
Wong, A K; Ruhe, A L; Robertson, K R; Loew, E R; Williams, D C; Neff, M W
2013-06-01
Although variation in the KIT gene is a common cause of white spotting among domesticated animals, KIT has not been implicated in the diverse white spotting observed in the dog. Here, we show that a loss-of-function mutation in KIT recapitulates the coat color phenotypes observed in other species. A spontaneous white spotting observed in a pedigree of German Shepherd dogs was mapped by linkage analysis to a single locus on CFA13 containing KIT (pairwise LOD = 15). DNA sequence analysis identified a novel 1-bp insertion in the second exon that co-segregated with the phenotype. The expected frameshift and resulting premature stop codons predicted a severely truncated c-Kit receptor with presumably abolished activity. No dogs homozygous for the mutation were recovered from multiple intercrosses (P = 0.01), suggesting the mutation is recessively embryonic lethal. These observations are consistent with the effects of null alleles of KIT in other species. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.
2012-01-01
Background Canine mast cell tumour proliferation depends to a large extent on the activity of KIT, a tyrosine kinase receptor. Inhibitors of the KIT tyrosine kinase have recently been introduced and successfully applied as a therapeutic agent for this tumour type. However, little is known on the downstream target genes of this signaling pathway and molecular changes after inhibition. Results Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1. Conclusions Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect. PMID:22747577
Ingram, David A.; Yang, Feng-Chun; Travers, Jeffrey B.; Wenning, Mary Jo; Hiatt, Kelly; New, Sheryl; Hood, Antoinette; Shannon, Kevin; Williams, David A.; Clapp, D. Wade
2000-01-01
Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's “two hit” model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1−/− murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W41 mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras–mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W41) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types. PMID:10620616
Ingram, D A; Yang, F C; Travers, J B; Wenning, M J; Hiatt, K; New, S; Hood, A; Shannon, K; Williams, D A; Clapp, D W
2000-01-03
Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.
Obata, Y; Horikawa, K; Takahashi, T; Akieda, Y; Tsujimoto, M; Fletcher, J A; Esumi, H; Nishida, T; Abe, R
2017-01-01
Gastrointestinal stromal tumors (GISTs) are caused by gain-of-function mutations in the Kit receptor tyrosine kinase. Most primary GIST patients respond to the Kit inhibitor imatinib, but this drug often becomes ineffective because of secondary mutations in the Kit kinase domain. The characteristic intracellular accumulation of imatinib-sensitive and -resistant Kit protein is well documented, but its relationship to oncogenic signaling remains unknown. Here, we show that in cancer tissue from primary GIST patients as well as in cell lines, mutant Kit accumulates on the Golgi apparatus, whereas normal Kit localizes to the plasma membrane (PM). In imatinib-resistant GIST with a secondary Kit mutation, Kit localizes predominantly on the Golgi apparatus. Both imatinib-sensitive and imatinib-resistant Kit (Kit(mut)) become fully auto-phosphorylated only on the Golgi and only if in a complex-glycosylated form. Kit(mut) accumulates on the Golgi during the early secretory pathway, but not after endocytosis. The aberrant kinase activity of Kit(mut) prevents its export from the Golgi to the PM. Furthermore, Kit(mut) on the Golgi signals and activates the phosphatidylinositol 3-kinase–Akt (PI3K–Akt) pathway, signal transducer and activator of transcription 5 (STAT5), and the Mek–Erk pathway. Blocking the biosynthetic transport of Kit(mut) to the Golgi from the endoplasmic reticulum inhibits oncogenic signaling. PM localization of Kit(mut) is not required for its signaling. Activation of Src-family tyrosine kinases on the Golgi is essential for oncogenic Kit signaling. These results suggest that the Golgi apparatus serves as a platform for oncogenic Kit signaling. Our study demonstrates that Kit(mut)’s pathogenicity is related to its mis-localization, and may offer a new strategy for treating imatinib-resistant GISTs. PMID:28192400
Bosbach, Benedikt; Rossi, Ferdinand; Yozgat, Yasemin; Loo, Jennifer; Zhang, Jennifer Q; Berrozpe, Georgina; Warpinski, Katherine; Ehlers, Imke; Veach, Darren; Kwok, Andrew; Manova, Katia; Antonescu, Cristina R; DeMatteo, Ronald P; Besmer, Peter
2017-10-03
Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic Kit V558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant Kit V558Δ/+ mice, double-mutant Kit V558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in Kit V558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing Kit V558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha-restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant Kit V558Δ;T669I/+ tumors.
Bosbach, Benedikt; Rossi, Ferdinand; Yozgat, Yasemin; Loo, Jennifer; Zhang, Jennifer Q.; Berrozpe, Georgina; Warpinski, Katherine; Ehlers, Imke; Kwok, Andrew; Manova, Katia; Antonescu, Cristina R.; DeMatteo, Ronald P.; Besmer, Peter
2017-01-01
Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic KitV558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant KitV558Δ/+ mice, double-mutant KitV558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in KitV558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing KitV558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha–restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant KitV558Δ;T669I/+ tumors. PMID:28923937
Gupta, Divya; Chandrashekar, Laxmisha; Larizza, Lidia; Colombo, Elisa A; Fontana, Laura; Gervasini, Cristina; Thappa, Devinder M; Rajappa, Medha; Rajendiran, Kalai Selvi; Sreenath, Gubbi Shamanna; Kate, Vikram
2017-02-01
Familial lentiginosis syndromes are characterized by a wide array of manifestations resulting from activation of molecular pathways which control growth, proliferation, and differentiation of a broad range of tissues. Familial gastrointestinal stromal tumors (GISTs) are often accompanied by additional features like hyperpigmentation, mastocytosis, and dysphagia. They have been described with mutations in c-kit (most commonly), platelet-derived growth factor receptor A, neurofibromatosis-1, and succinate dehydrogenase genes. We report on molecular characterization and tumor histopathology of two siblings in whom lentigines and café-au-lait macules were present along with multifocal GIST. Immuhistochemical analysis of CD34 and CD117 was performed on GIST biopsy samples from both siblings, while c-kit mutational analysis was done by PCR and direct sequencing on DNA from peripheral blood leukocytes of all family members and from paraffin-embedded gastric biopsy specimens of affected siblings. Histopathology revealed positive expression of CD117 and CD34. Mutational analysis showed the germline c.1676T>C mutation in c-kit exon 11, (p.(Val559Ala)), in the peripheral blood of both siblings and a second exon 11 mutation, c.1669T>A (p.(Trp557Arg)) in the tumor biopsy of one of them. Initiation of imatinib treatment resulted in striking resolution of their hyperpigmentation and a stable gastrointestinal disease in one of them. A c-kit mutational test in familial GISTs is indicated before initiation of imatinib therapy, as it can help predict tumor response to treatment. © 2017 The International Society of Dermatology.
Reith, A D; Ellis, C; Maroc, N; Pawson, T; Bernstein, A; Dubreuil, P
1993-01-01
Point mutations in highly conserved amino acid residues in the catalytic domain of the Kit receptor tyrosine kinase (RTK) are responsible for the coat color, fertility and hematopoietic defects of mice bearing mutant alleles at the dominant white-spotting (W) locus. The dominant nature of structural Kit mutations suggests that expression of other kinase-defective RTKs might also specifically interfere with signal transduction by normal receptors. To test this possibility, we have investigated the functional consequences of introducing analogous mutations into the RTK encoded by the c-fms proto-oncogene. Both Fms37 (glu582-->lys) and Fms42 (asp776-->asn) mutant proteins, corresponding to the strongly dominant-negative W37 and W42 mutant c-kit alleles, had undetectable in vitro kinase activity and were unable to transform Rat-2 fibroblasts in the presence of exogenous CSF-1. Moreover, expression of Fms37 or Fms42 proteins in Rat-2 cells specifically inhibited anchorage-independent growth mediated by the normal Fms receptor in the presence of exogenous CSF-1 and conferred a dominant loss of Fms-associated PI3-kinase activity on CSF-1 stimulation. Mutant RTKs, bearing point substitutions identical to those present in mild or severe W mutants, may provide a generally applicable strategy for inducing dominant loss of function defects in RTK-mediated signalling pathways.
Bone-induced c-kit expression in prostate cancer: a driver of intraosseous tumor growth
Mainetti, Leandro E.; Zhe, Xiaoning; Diedrich, Jonathan; Saliganan, Allen D.; Cho, Won Jin; Cher, Michael L.; Heath, Elisabeth; Fridman, Rafael; Kim, Hyeong-Reh Choi; Bonfil, R. Daniel
2014-01-01
Loss of BRCA2 function stimulates prostate cancer (PCa) cell invasion and is associated with more aggressive and metastatic tumors in PCa patients. Concurrently, the receptor tyrosine kinase c-kit is highly expressed in skeletal metastases of PCa patients and induced in PCa cells placed into the bone microenvironment in experimental models. However, the precise requirement of c-kit for intraosseous growth of PCa and its relation to BRCA2 expression remain unexplored. Here, we show that c-kit expression promotes migration and invasion of PCa cells. Alongside, we found that c-kit expression in PCa cells parallels BRCA2 downregulation. Gene rescue experiments with human BRCA2 transgene in c-kit-transfected PCa cells resulted in reduction of c-kit protein expression and migration and invasion, suggesting a functional significance of BRCA2 downregulation by c-kit. The inverse association between c-kit and BRCA2 gene expressions in PCa cells was confirmed using laser capture microdissection in experimental intraosseous tumors and bone metastases of PCa patients. Inhibition of bone-induced c-kit expression in PCa cells transduced with lentiviral short hairpin RNA reduced intraosseous tumor incidence and growth. Overall, our results provide evidence of a novel pathway that links bone-induced c-kit expression in PCa cells to BRCA2 downregulation and supports bone metastasis. PMID:24798488
c-Kit modifies the inflammatory status of smooth muscle cells
Song, Lei; Martinez, Laisel; Zigmond, Zachary M.; Hernandez, Diana R.; Lassance-Soares, Roberta M.; Selman, Guillermo
2017-01-01
Background c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. Methods High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (KitW/W–v) and control (Kit+/+) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. Results The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. Discussion Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation. PMID:28626608
c-Kit modifies the inflammatory status of smooth muscle cells.
Song, Lei; Martinez, Laisel; Zigmond, Zachary M; Hernandez, Diana R; Lassance-Soares, Roberta M; Selman, Guillermo; Vazquez-Padron, Roberto I
2017-01-01
c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (Kit W/W-v ) and control (Kit +/+ ) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation.
Transcriptional profiling reveals regulated genes in the hippocampus during memory formation
NASA Technical Reports Server (NTRS)
Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.
2002-01-01
Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.
The Role of the Stem Cell Factor/c-kit Complex in Neurofibrormatosis.
1997-10-01
investigations of the Kit/ stem cell factor complex in hyperplasias of these cells. In the request for no-cost extension, several experiments were listed to be...soluble stem cell factor from the NF1 knockout Schwann cells. We also found that most neural tumors express mRNA for Kit, and also for stem cell factor.
Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction
Richart, Adèle; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Guerin, Coralie; Gautier, Gregory; Blank, Ulrich; Heymes, Christophe; Luche, Elodie; Cousin, Béatrice; Rodewald, Hans-Reimer
2016-01-01
Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. PMID:27353089
Lee, Donna M; Duensing, Anette
2018-02-01
Transcriptional regulation of the KIT receptor tyrosine kinase, a master regulator in gastrointestinal stromal tumors (GIST) and their precursors, the interstitial cells of Cajal (ICC), is part of a positive feedback loop involving the transcription factor ETV1. A new study now shows that the forkhead box (FOX) family transcription factor FOXF1 not only is an upstream regulator of ETV1 and hence ICC/GIST lineage-specific gene transcription, but also functions as lineage-specific pioneer factor with an active role in chromatin rearrangement to facilitate ETV1 binding and transcriptional activity. Cancer Discov; 8(2); 146-9. ©2018 AACR See related article by Ran et al., p. 234 . ©2018 American Association for Cancer Research.
Cytoskeleton in Mast Cell Signaling
Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda
2012-01-01
Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling. PMID:22654883
Single-cell analysis of the fate of c-kit-positive bone marrow cells
NASA Astrophysics Data System (ADS)
Czarna, Anna; Sanada, Fumihiro; Matsuda, Alex; Kim, Junghyun; Signore, Sergio; Pereira, João D.; Sorrentino, Andrea; Kannappan, Ramaswamy; Cannatà, Antonio; Hosoda, Toru; Rota, Marcello; Crea, Filippo; Anversa, Piero; Leri, Annarosa
2017-10-01
The plasticity of c-kit-positive bone marrow cells (c-kit-BMCs) in tissues different from their organ of origin remains unclear. We tested the hypothesis that c-kit-BMCs are functionally heterogeneous and only a subgroup of these cells possesses cardiomyogenic potential. Population-based assays fall short of identifying the properties of individual stem cells, imposing on us the introduction of single cell-based approaches to track the fate of c-kit-BMCs in the injured heart; they included viral gene-tagging, multicolor clonal-marking and transcriptional profiling. Based on these strategies, we report that single mouse c-kit-BMCs expand clonally within the infarcted myocardium and differentiate into specialized cardiac cells. Newly-formed cardiomyocytes, endothelial cells, fibroblasts and c-kit-BMCs showed in their genome common sites of viral integration, providing strong evidence in favor of the plasticity of a subset of BMCs expressing the c-kit receptor. Similarly, individual c-kit-BMCs, which were infected with multicolor reporters and injected in infarcted hearts, formed cardiomyocytes and vascular cells organized in clusters of similarly colored cells. The uniform distribution of fluorescent proteins in groups of specialized cells documented the polyclonal nature of myocardial regeneration. The transcriptional profile of myogenic c-kit-BMCs and whole c-kit-BMCs was defined by RNA sequencing. Genes relevant for engraftment, survival, migration, and differentiation were enriched in myogenic c-kit-BMCs, a cell subtype which could not be assigned to a specific hematopoietic lineage. Collectively, our findings demonstrate that the bone marrow comprises a category of cardiomyogenic, vasculogenic and/or fibrogenic c-kit-positive cells and a category of c-kit-positive cells that retains an undifferentiated state within the damaged heart.
Single-cell analysis of the fate of c-kit-positive bone marrow cells.
Czarna, Anna; Sanada, Fumihiro; Matsuda, Alex; Kim, Junghyun; Signore, Sergio; Pereira, João D; Sorrentino, Andrea; Kannappan, Ramaswamy; Cannatà, Antonio; Hosoda, Toru; Rota, Marcello; Crea, Filippo; Anversa, Piero; Leri, Annarosa
2017-01-01
The plasticity of c-kit-positive bone marrow cells (c-kit-BMCs) in tissues different from their organ of origin remains unclear. We tested the hypothesis that c-kit-BMCs are functionally heterogeneous and only a subgroup of these cells possesses cardiomyogenic potential. Population-based assays fall short of identifying the properties of individual stem cells, imposing on us the introduction of single cell-based approaches to track the fate of c-kit-BMCs in the injured heart; they included viral gene-tagging, multicolor clonal-marking and transcriptional profiling. Based on these strategies, we report that single mouse c-kit-BMCs expand clonally within the infarcted myocardium and differentiate into specialized cardiac cells. Newly-formed cardiomyocytes, endothelial cells, fibroblasts and c-kit-BMCs showed in their genome common sites of viral integration, providing strong evidence in favor of the plasticity of a subset of BMCs expressing the c-kit receptor. Similarly, individual c-kit-BMCs, which were infected with multicolor reporters and injected in infarcted hearts, formed cardiomyocytes and vascular cells organized in clusters of similarly colored cells. The uniform distribution of fluorescent proteins in groups of specialized cells documented the polyclonal nature of myocardial regeneration. The transcriptional profile of myogenic c-kit-BMCs and whole c-kit-BMCs was defined by RNA sequencing. Genes relevant for engraftment, survival, migration, and differentiation were enriched in myogenic c-kit-BMCs, a cell subtype which could not be assigned to a specific hematopoietic lineage. Collectively, our findings demonstrate that the bone marrow comprises a category of cardiomyogenic, vasculogenic and/or fibrogenic c-kit-positive cells and a category of c-kit-positive cells that retains an undifferentiated state within the damaged heart.
Loss of c-Kit function impairs arteriogenesis in a mouse model of hindlimb ischemia.
Hernandez, Diana R; Artiles, Adriana; Duque, Juan C; Martinez, Laisel; Pinto, Mariana T; Webster, Keith A; Velazquez, Omaida C; Vazquez-Padron, Roberto I; Lassance-Soares, Roberta M
2018-04-01
Arteriogenesis is a process whereby collateral vessels remodel usually in response to increased blood flow and/or wall stress. Remodeling of collaterals can function as a natural bypass to alleviate ischemia during arterial occlusion. Here we used a genetic approach to investigate possible roles of tyrosine receptor c-Kit in arteriogenesis. Mutant mice with loss of c-Kit function (Kit W/W-v ), and controls were subjected to hindlimb ischemia. Blood flow recovery was evaluated pre-, post-, and weekly after ischemia. Foot ischemic damage and function were assessed between days 1 to 14 post-ischemia while collaterals remodeling were measured 28 days post-ischemia. Both groups of mice also were subjected to wild type bone marrow cells transplantation 3 weeks before hindlimb ischemia to evaluate possible contributions of defective bone marrow c-Kit expression on vascular recovery. Kit W/W-v mice displayed impaired blood flow recovery, greater ischemic damage and foot dysfunction after ischemia compared to controls. Kit W/W-v mice also demonstrated impaired collateral remodeling consistent with flow recovery findings. Because arteriogenesis is a biological process that involves bone marrow-derived cells, we investigated which source of c-Kit signaling (bone marrow or vascular) plays a major role in arteriogenesis. Kit W/W-v mice transplanted with bone marrow wild type cells exhibited similar phenotype of impaired blood flow recovery, greater tissue ischemic damage and foot dysfunction as nontransplanted Kit W/W-v mice. This study provides evidence that c-Kit signaling is required during arteriogenesis. Also, it strongly suggests a vascular role for c-Kit signaling because rescue of systemic c-Kit activity by bone marrow transplantation did not augment the functional recovery of Kit W/W-v mouse hindlimbs. Copyright © 2017 Elsevier Inc. All rights reserved.
Yin, Dan-Dan; Luo, Jun-Hui; Zhao, Zhu-Ye; Liao, Ying-Jun; Li, Ying
2018-05-01
Renal interstitial fibrosis is a final pathway that is observed in various types of kidney diseases, including diabetic kidney disease (DKD). The present study investigated the effect of tranilast on renal interstitial fibrosis and the association between its role and mast cell infiltration in a rat model of DKD. A total of 30 healthy 6‑week‑old male Sprague‑Dawley rats were randomly divided into the following four groups: Normal control group; DKD model group; low‑dose tranilast group (200 mg/kg/day); and high‑dose tranilast group (400 mg/kg/day). The morphological alterations of tubulointerstitial fibrosis were evaluated by Masson's trichrome staining, while mast cell infiltration into the renal tubular interstitium was measured by toluidine blue staining and complement C3a receptor 1 (C3aR) immunohistochemical staining (IHC). The expression of fibronectin (FN), collagen I (Col‑I), stem cell factor (SCF) and proto‑oncogene c‑kit (c‑kit) was detected by IHC, western blotting and reverse transcription‑quantitative‑polymerase chain reaction. The results demonstrated that tubulointerstitial fibrosis and mast cell infiltration were observed in DKD model rats, and this was improved dose‑dependently in the tranilast treatment groups. The expression of FN, Col‑I, SCF and c‑kit mRNA and protein was upregulated in the tubulointerstitium of DKD model rats compared with the normal control rats, and tranilast inhibited the upregulated expression of these markers. Furthermore, the degree of SCF and c‑kit expression demonstrated a significant positive correlation with C3aR‑positive mast cells and the markers of renal interstitial fibrosis. The results of the present study indicate that mast cell infiltration may promote renal interstitial fibrosis via the SCF/c‑kit signaling pathway. Tranilast may prevent renal interstitial fibrosis through inhibition of mast cell infiltration mediated through the SCF/c-kit signaling pathway.
Cardiac c-Kit Biology Revealed by Inducible Transgenesis.
Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M; Ilves, Kelli; Nguyen, Kristine P; Payne, Christina R; Sacchi, Veronica; Monsanto, Megan M; Casillas, Alexandria R; Khalafalla, Farid G; Wang, Bingyan J; Ebeid, David E; Alvarez, Roberto; Dembitsky, Walter P; Bailey, Barbara A; van Berlo, Jop; Sussman, Mark A
2018-06-22
Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart, upregulating c-Kit expression in response to pathological stress. c-Kit myocardial biology is more complex and varied than previously appreciated or documented, demonstrating validity in multiple points of coexisting yet heretofore seemingly irreconcilable published findings. © 2018 American Heart Association, Inc.
Factors for C-Kit Expression in Cardiac Outgrowth Cells and Human Heart Tissue.
Matsushita, Satoshi; Minematsu, Kazuo; Yamamoto, Taira; Inaba, Hirotaka; Kuwaki, Kenji; Shimada, Akie; Yokoyama, Yasutaka; Amano, Atsushi
2017-12-12
We determined the factors associated with the expression of c-kit in the heart and the proliferation of c-kit-positive (c-kit pos ) cardiac stem cells among the outgrowth cells cultured from human cardiac explants.Samples of the right atrium (RA), left atrium (LA), and left ventricle obtained from patients during open-heart surgery were processed for cell culture of outgrowth cells and tissue analysis. The total number of growing cells and the population of c-kit pos cells were measured and compared with c-kit expression in native tissues and characteristics of the patients according to the region of the heart.We analyzed 452 samples from 334 patients. Atrial fibrillation (AF) in the patients reduced the number of outgrowth cells from the RA and LA, and aging was a co-factor for the LA. The c-kit pos population from the RA was associated with serum brain natriuretic peptide (BNP). C-kit expression in native tissue was also associated with BNP expression. However, we observed no relationship in expression between outgrowth cells and native tissue. In addition, the RA tissue provided the highest number of c-kit pos cells, and the left ventricle provided the lowest.C-kit was weakly expressed in response to damage. In addition, no correlation between outgrowth cells and native tissue was found for c-kit expression.
The clinical significance of c-Kit mutations in metastatic oral mucosal melanoma in China.
Ma, Xuhui; Wu, Yunteng; Zhang, Tian; Song, Hao; Jv, Houyu; Guo, Wei; Ren, Guoxin
2017-10-10
c-Kit mutations are frequently detected in mucosal melanomas, but their clinical significance in metastatic oral mucosal melanomas (OMM) remains unclear. The main purpose of this study was to investigate the clinical and pathological features of metastatic OMMs with c-Kit mutations and the efficiency of the tyrosine kinase inhibitor imatinib in treating metastatic OMMs. We found thatresidual primary lesion and neck lymph nodes could act as independent prognostic factors in metastatic OMM patients. c-Kit mutations were detected in 22 out of 139 (15.8%) metastatic OMM patients. Under chemotherapy, the overall survival (OS) of c-Kit mutant patients was significantly shorter than that of wild-type patients. The Ki67 expression was significantly higher in c-Kit mutant patients than in wild-type patients. In distant metastatic OMM patients with c-Kit mutations, the treatment with c-Kit inhibitor resulted in a better OS. In conclusion, residual primary lesion, cervical lymph nodes and c-Kit mutations act as adverse prognostic factors of metastatic OMMs. The Kit inhibitor imatinib could benefit metastatic OMM patients with c-Kit mutations.
Chen, Xi; Dou, Hu; Wang, Xingjuan; Huang, Yi; Lu, Ling; Bin, Junqing; Su, Yongchun; Zou, Lin; Yu, Jie; Bao, Liming
2018-04-01
The prevalence and clinical relevance of KIT mutations in childhood core-binding factor (CBF) acute myeloid leukemia (AML) have not been well characterized. In this study, a total of 212 children with de novo AML were enrolled from a Chinese population and 50 (23.5%) of the patients were deemed CBF-AML. KIT mutations were identified in 30% of the CBF-AML cohort. The KIT mutations were clustered in exon 17 and exon 8, and KIT mutations in exons 8 and 17 were correlated with a shorter overall survival (OS) (5-year OS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .007) and event-free survival (EFS) (5-year EFS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .003). Multivariate analysis revealed KIT mutations as an independent risk factor in CBF-AML. Our results suggest that KIT mutations are a molecular marker for an inferior prognosis in pediatric CBF-AML.
Pak and Rac GTPases promote oncogenic KIT–induced neoplasms
Martin, Holly; Mali, Raghuveer Singh; Ma, Peilin; Chatterjee, Anindya; Ramdas, Baskar; Sims, Emily; Munugalavadla, Veerendra; Ghosh, Joydeep; Mattingly, Ray R.; Visconte, Valeria; Tiu, Ramon V.; Vlaar, Cornelis P.; Dharmawardhane, Suranganie; Kapur, Reuben
2013-01-01
An acquired somatic mutation at codon 816 in the KIT receptor tyrosine kinase is associated with poor prognosis in patients with systemic mastocytosis and acute myeloid leukemia (AML). Treatment of leukemic cells bearing this mutation with an allosteric inhibitor of p21–activated kinase (Pak) or its genetic inactivation results in growth repression due to enhanced apoptosis. Inhibition of the upstream effector Rac abrogates the oncogene-induced growth and activity of Pak. Although both Rac1 and Rac2 are constitutively activated via the guanine nucleotide exchange factor (GEF) Vav1, loss of Rac1 or Rac2 alone moderately corrected the growth of KIT-bearing leukemic cells, whereas the combined loss resulted in 75% growth repression. In vivo, the inhibition of Vav or Rac or Pak delayed the onset of myeloproliferative neoplasms (MPNs) and corrected the associated pathology in mice. To assess the role of Rac GEFs in oncogene-induced transformation, we used an inhibitor of Rac, EHop-016, which specifically targets Vav1 and found that EHop-016 was a potent inhibitor of human and murine leukemic cell growth. These studies identify Pak and Rac GTPases, including Vav1, as potential therapeutic targets in MPN and AML involving an oncogenic form of KIT. PMID:24091327
Alturkmani, Hani J; Pessetto, Ziyan Y; Godwin, Andrew K
2015-01-01
Introduction Gastrointestinal stromal tumor (GIST) is the most common non-epithelial malignancy of the GI tract. With the discovery of KIT and later PDGFRA gain-of-function mutations as factors in the pathogenesis of the disease, GIST was the quintessential model for targeted therapy. Despite the successful clinical use of imatinib mesylate, a selective receptor tyrosine kinase (RTK) inhibitor that targets KIT, PDGFRA and BCR-ABL, we still do not have treatment for the long-term control of advanced GIST. Areas covered This review summarizes the drugs that are under investigation or have been assessed in trials for GIST treatment. The article focuses on their mechanisms of actions, the preclinical evidence of efficacy, and the clinical trials concerning safety and efficacy in humans. Expert opinion It is known that KIT and PDGFRA mutations in GIST patients influence the response to treatment. This observation should be taken into consideration when investigating new drugs. RECIST was developed to help uniformly report efficacy trials in oncology. Despite the usefulness of this system, many questions are being addressed about its validity in evaluating the true efficacy of drugs knowing that new targeted therapies do not affect the tumor size as much as they halt progression and prolong survival. PMID:26098203
Amati, L; Marzulli, G; Martulli, M; Chiloiro, M; Jirillo, E
2010-01-01
Body mass index (BMI), serum cytokines and serum obesity markers were evaluated in 33 obese children before, during and after a hypocaloric diet. The cytometric bead array "human inflammatory kit" was used for the evaluation of serum interleukin (IL)-1beta, IL-6, IL-10 and tumor necrosis factor-alpha. On the other hand, the following obesity biomarkers were evaluated by means of a flowcytomix-human obesity 9 plex kit: Soluble Isoform of CD40 Ligand; Soluble Intercellular Adhesion Molecule-1; Leptin; Monocyte Chemoattractant Protein 1; Myeloperoxidase; Osteoprotegerin; Resistin and Soluble TNF-receptors. Actually, throughout the study modifications of BMI were negligible and, therefore, serum cytokines and obesity markers did not show any significant changes in comparison with baseline values. On the other hand, at the different time points considered the majority of obesity markers were higher than normal controls, thus indicating a low grade inflammation in childhood obesity. Therefore, attempts at reducing this inflammatory status in children which predisposes to the metabolic syndrome outcome are discussed.
Chieosilapatham, Panjit; Niyonsaba, François; Kiatsurayanon, Chanisa; Okumura, Ko; Ikeda, Shigaku; Ogawa, Hideoki
2017-10-01
In addition to their microbicidal properties, host defense peptides (HDPs) display various immunomodulatory functions, including keratinocyte production of cytokines/chemokines, proliferation, migration and wound healing. Recently, a novel HDP named AMP-IBP5 (antimicrobial peptide derived from insulin-like growth factor-binding protein 5) was shown to exhibit antimicrobial activity against numerous pathogens, even at concentrations comparable to those of human β-defensins and LL-37. However, the immunomodulatory role of AMP-IBP5 in cutaneous tissue remains unknown. To investigate whether AMP-IBP5 triggers keratinocyte activation and to clarify its mechanism. Production of cytokines/chemokines and growth factors was determined by appropriate ELISA kits. Cell migration was assessed by in vitro wound closure assay, whereas cell proliferation was analyzed using BrdU incorporation assay complimented with XTT assay. MAPK and NF-κB activation was determined by Western blotting. Intracellular cAMP levels were assessed using cAMP enzyme immunoassay kit. Among various cytokines/chemokines and growth factors tested, AMP-IBP5 selectively increased the production of IL-8 and VEGF. Moreover, AMP-IBP5 markedly enhanced keratinocyte migration and proliferation. AMP-IBP5-induced keratinocyte activation was mediated by Mrg X1-X4 receptors with MAPK and NF-κB pathways working downstream, as evidenced by the inhibitory effects of MrgX1-X4 siRNAs and ERK-, JNK-, p38- and NF-κB-specific inhibitors. We confirmed that AMP-IBP5 indeed induced MAPK and NF-κB activation. Furthermore, AMP-IBP5-induced VEGF but not IL-8 production correlated with an increase in intracellular cAMP. Our findings suggest that in addition to its antimicrobial function, AMP-IBP5 might contribute to wound healing process through activation of keratinocytes. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Gong, Yaoyao; Huang, Lei; Cheng, Wenfang; Li, Xueliang; Lu, Jia; Lin, Lin; Si, Xinmin
2014-01-01
Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract and loss of ICC is associated with many GI motility disorders. Previous studies have shown that ICC have the capacity to regenerate or restore, and several growth factors are critical to their growth, maintenance or regeneration. The present study aimed to investigate the roles of interleukin-9 (IL-9) in the growth, maintenance and pacemaker functions of cultured ICC. Here, we report that IL-9 promotes proliferation of ICC, and culturing ICC with IL-9 enhances cholecystokinin-8-induced Ca²⁺ transients, which is probably caused by facilitating maintenance of ICC functions under culture condition. We also show co-localizations of cholecystokinin-1 receptor and IL-9 receptor with c-kit by double-immunohistochemical labeling. In conclusion, IL-9 can promote ICC growth and help maintain ICC functions; IL-9 probably performs its functions via IL-9 receptors on ICC.
KIT Suppresses BRAFV600E-Mutant Melanoma by Attenuating Oncogenic RAS/MAPK Signaling.
Neiswender, James V; Kortum, Robert L; Bourque, Caitlin; Kasheta, Melissa; Zon, Leonard I; Morrison, Deborah K; Ceol, Craig J
2017-11-01
The receptor tyrosine kinase KIT promotes survival and migration of melanocytes during development, and excessive KIT activity hyperactivates the RAS/MAPK pathway and can drive formation of melanomas, most notably of rare melanomas that occur on volar and mucosal surfaces of the skin. The much larger fraction of melanomas that occur on sun-exposed skin is driven primarily by BRAF- or NRAS-activating mutations, but these melanomas exhibit a surprising loss of KIT expression, which raises the question of whether loss of KIT in these tumors facilitates tumorigenesis. To address this question, we introduced a kit(lf) mutation into a strain of Tg(mitfa:BRAF V600E ); p53(lf) melanoma-prone zebrafish. Melanoma onset was accelerated in kit(lf); Tg(mitfa:BRAF V600E ); p53(lf) fish. Tumors from kit(lf) animals were more invasive and had higher RAS/MAPK pathway activation. KIT knockdown also increased RAS/MAPK pathway activation in a BRAF V600E -mutant human melanoma cell line. We found that pathway stimulation upstream of BRAF V600E could paradoxically reduce signaling downstream of BRAF V600E , and wild-type BRAF was necessary for this effect, suggesting that its activation can dampen oncogenic BRAF V600E signaling. In vivo , expression of wild-type BRAF delayed melanoma onset, but only in a kit -dependent manner. Together, these results suggest that KIT can activate signaling through wild-type RAF proteins, thus interfering with oncogenic BRAF V600E -driven melanoma formation. Cancer Res; 77(21); 5820-30. ©2017 AACR . ©2017 American Association for Cancer Research.
Mitchell, Sarah G; Bunting, Silvia T; Saxe, Debra; Olson, Thomas; Keller, Frank G
2017-04-01
An activating point mutation of the c-KIT tyrosine kinase receptor gene, D816H, has been described in germ cell tumors (GCTs). We report an adolescent diagnosed with an ovarian mixed GCT and systemic mastocytosis with chronic myelomonocytic leukemia (SM-CMML). The teratoma and dysgerminoma differed by copy number aberrations via single nucleotide polymorphism (SNP) microarray, but were inclusive of the same c-KIT D816H point mutation (c.2446G>C) also identified in blood and bone marrow mast cells. These findings indicate not only a clonal origin of the GCT and hematologic malignancy, but also suggest a rare KIT mutation may be playing a fundamental role in malignancy development. © 2016 Wiley Periodicals, Inc.
Gevaert, Thomas; Hutchings, Graham; Everaerts, Wouter; Prenen, Hans; Roskams, Tania; Nilius, Bernd; De Ridder, Dirk
2014-04-01
The KIT receptor is considered as a reliable marker for a subpopulation of interstitial cells (IC), and by persistent neonatal inhibition of KIT we have investigated the role of this receptor in the development of IC-networks in bladder and we have observed the functional consequences of this inhibition. Newborn rat pups were treated daily with the KIT inhibitor imatinib mesylate (IM). After 7 days animals were sacrificed and bladder samples were dissected for morphological and functional studies. Morphological research consisted of immunohistochemistry with IC specific antigens (KIT and vimentin) and electron microscopy. The functional studies were based on isolated bladder strips in organ baths, in which spontaneous bladder contractility and the response to a non-subtype selective muscarinic agonist was evaluated. Suburothelial and intramuscular IC were found and characterized in neonatal rat bladder. IM-treatment induced a significant decrease in numbers of IC based on specific immunohistochemical markers, and electron microscopy revealed evidence of IC cell injury. These morphological alterations were observed on intramuscular IC only and not on IC in the suburothelium. Isolated muscle strips from IM-treated animals had a lower contractile frequency and an altered response to muscarinic agonists. The present study shows the presence of regional subpopulations of IC in neonatal rat bladder, provides evidence for a dependence on KIT of the development of intramuscular IC and supports the hypothesis that a poor development of networks of intramuscular IC might have repercussions on spontaneous and muscarinic-induced bladder contractility. © 2013 Wiley Periodicals, Inc.
Ethnicity and Prostate Cancer: Vitamin D Genetic and Sociodemographic Factors
2009-03-01
polymorphisms and two SRD5A2 polymorphisms were genotyped: CDX2 (rs17883968; G/A) in the VDR promoter region and FokI (rs10735810; C/T) in VDR exon 2...and V89L (rs523349) and A49T (rs9282858) in exon 1 of the SRD5A2 gene. DNA for genotyping was extracted from blood samples using a QIAamp blood kit...and CYP3A4 . Hum Hered 2002;54:13^21. 33. John EM, Schwartz GG, Koo J, van den Berg D, Ingles SA. Sun exposure, vitamin D receptor gene polymorphisms
Reichardt, Peter; Demetri, George D; Gelderblom, Hans; Rutkowski, Piotr; Im, Seock-Ah; Gupta, Sudeep; Kang, Yoon-Koo; Schöffski, Patrick; Schuette, Jochen; Soulières, Denis; Blay, Jean-Yves; Goldstein, David; Fly, Kolette; Huang, Xin; Corsaro, Massimo; Lechuga, Maria Jose; Martini, Jean-Francois; Heinrich, Michael C
2016-01-15
Several small studies indicated that the genotype of KIT or platelet-derived growth factor receptor-α (PDGFRA) contributes in part to the level of clinical effectiveness of sunitinib in gastrointestinal stromal tumor (GIST) patients. This study aimed to correlate KIT and PDGFRA mutational status with clinical outcome metrics (progression-free survival [PFS], overall survival [OS], objective response rate [ORR]) in a larger international patient population. This is a non-interventional, retrospective analysis in patients with imatinib-resistant or intolerant GIST who were treated in a worldwide, open-label treatment-use study (Study 1036; NCT00094029) in which sunitinib was administered at a starting dose of 50 mg/day on a 4-week-on, 2-week-off schedule. Molecular status was obtained in local laboratories with tumor samples obtained either pre-imatinib, post-imatinib/pre-sunitinib, or post-sunitinib treatment, and all available data were used in the analyses regardless of collection time. The primary analysis compared PFS in patients with primary KIT exon 11 versus exon 9 mutations (using a 2-sided log-rank test) and secondary analyses compared OS (using the same test) and ORR (using a 2-sided Pearson χ(2) test) in the same molecular subgroups. Of the 1124 sunitinib-treated patients in the treatment-use study, 230 (20%) were included in this analysis, and baseline characteristics were similar between the two study populations. Median PFS was 7.1 months. A significantly better PFS was observed in patients with a primary mutation in KIT exon 9 (n = 42) compared to those with a primary mutation in exon 11 (n = 143; hazard ratio = 0.59; 95 % confidence interval, 0.39-0.89; P = 0.011), with median PFS times of 12.3 and 7.0 months, respectively. Similarly, longer OS and higher ORR were observed in patients with a primary KIT mutation in exon 9 versus exon 11. The data available were limited to investigate the effects of additional KIT or PDGFRA mutations on the efficacy of sunitinib treatment. This large retrospective analysis confirms the prognostic significance of KIT mutation status in patients with GIST. This analysis also confirms the effectiveness of sunitinib as a post-imatinib therapy, regardless of mutational status. NCT01459757.
VEGF and Ki-67 Overexpression in Predicting Poor Overall Survival in Adenoid Cystic Carcinoma.
Park, Seongyeol; Nam, Soo Jeong; Keam, Bhumsuk; Kim, Tae Min; Jeon, Yoon Kyung; Lee, Se-Hoon; Hah, J Hun; Kwon, Tack-Kyun; Kim, Dong-Wan; Sung, Myung-Whun; Heo, Dae Seog; Bang, Yung-Jue
2016-04-01
The purpose of this study was to evaluate potential prognostic factors in patients with adenoid cystic carcinoma (ACC). A total of 68 patients who underwent curative surgery and had available tissue were enrolled in this study. Their medical records and pathologic slides were reviewed and immunohistochemistry for basic fibroblast growth factor, fibroblast growth factor receptor (FGFR) 2, FGFR3, c-kit, Myb proto-oncogene protein, platelet-derived growth factor receptor beta, vascular endothelial growth factor (VEGF), and Ki-67 was performed. Univariate and multivariate analysis was performed for determination of disease-free survival (DFS) and overall survival (OS). In univariate analyses, primary site of nasal cavity and paranasal sinus (p=0.022) and Ki-67 expression of more than 7% (p=0.001) were statistically significant factors for poor DFS. Regarding OS, perineural invasion (p=0.032), high expression of VEGF (p=0.033), and high expression of Ki-67 (p=0.007) were poor prognostic factors. In multivariate analyses, primary site of nasal cavity and paranasal sinus (p=0.028) and high expression of Ki-67 (p=0.004) were independent risk factors for poor DFS, and high expression of VEGF (p=0.011) and Ki-67 (p=0.011) showed independent association with poor OS. High expression of VEGF and Ki-67 were independent poor prognostic factors for OS in ACC.
Kamenz, Thomas; Caca, Karel; Blüthner, Thilo; Tannapfel, Andrea; Mössner, Joachim; Wiedmann, Marcus
2006-01-01
AIM: To investigate the c-kit expression in biliary tract cancer cell lines and histological sections from patients with extrahepatic cholangiocarcinoma (CC) and to evaluate the efficacy of in vitro and in vitro treatment with imatinib mesilate. METHODS: The protein expression of c-kit in the human biliary tract cancer cell lines Mz-ChA-2 and EGI-1 and histological sections from 19 patients with extrahepatic CC was assessed by immunoblotting, immunocytochemistry, and immunohistochemistry. The anti-proliferative effect of imatinib mesilate on biliary tract cancer cell lines Mz-ChA-2 and EGI-1 was studied in vitro by automated cell counting. In addition, immunodeficient NMRI mice (TaconicTM) were subcutaneously injected with 5 x 106 cells of cell lines MzChA-2 and EGI-1. After having reached a tumour volume of 200 mm3, daily treatment was started intraperitoneally with imatinib mesilate at a dose of 50 mg/kg or normal saline (NS). Tumor volume was calculated with a Vernier caliper. After 14 d, mice were sacrificed with tumors excised and tumor mass determined. RESULTS: Immunoblotting revealed presence of c-kit in Mz-ChA-2 and absence in EGI-1 cells. Immunocytochemistry with c-kit antibodies displayed a cytoplasmatic and membraneous localization of receptor protein in Mz-ChA-2 cells and absence of c-kit in EGI-1 cells. c-kit was expressed in 7 of 19 (37%) extrahepatic human CC tissue samples, 2 showed a moderate and 5 a rather weak immunostaining. Imatinib mesilate at a low concentration of 5 µmol/L caused a significant growth inhibition in the c-kit positive cell line Mz-ChA-2 (31%), but not in the c-kit negative cell line EGI-1 (0%) (P < 0.05). Imatinib mesilate at an intermediate concentration of 10 µmol/L inhibited cellular growth of both cell lines (51% vs 57%). Imatinib mesilate at a higher concentration of 20 µmol/L seemed to have a general toxic effect on both cell lines. The IC50 values were 9.7 µmol/L and 11 µmol/L, respectively. After 14 d of in vitro treatment with imatinib mesilate, using the chimeric mouse model, c-kit positive Mz-ChA-2 tumors had a significantly reduced volume and mass as compared to NS treatment (P < 0.05). In contrast to that, treatment of mice bearing c-kit negative EGI-1 tumors did not result in any change of tumor volume and mass as compared to NS treatment. CONCLUSION: c-kit expression is detectable at a moderate to low protein level in biliary tract cancer. Imatinib mesilate exerts marked effects on tumor growth in vitro and in vitro dependent on the level of c-kit expression. PMID:16570351
Zhang, Kam Y. J.
2013-01-01
One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of small molecule protein-protein interaction inhibitors (SMPPIIs). We have developed a method that can be used to evaluate the similarity of electrostatic potentials between small molecules and known protein ligands. This method was implemented in a software called EleKit. Analyses of all available (at the time of research) SMPPII structures indicate that SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the design of new SMPPIIs. PMID:24130741
Yan, Weiwei; Zhu, Zhenyu; Pan, Fei; Huang, Ang; Dai, Guang-Hai
2018-01-01
To explore new biomarkers for indicating the recurrence and prognosis in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients after tumor resection, we investigated the expression and prognostic value of c-kit(CD117) in HBV-related HCC. Immunohistochemistry was used to estimate the expression of c-kit(CD117) and CD34 in the liver cancer tissues. The correlations between the expression of these biomarkers and the clinicopathologic characteristics were analyzed. The positive rate of c-kit(CD117) expression in 206 HCC cases was 48.1%, and c-kit expression was significantly related with CD34-positive microvessel density. CD34-microvessel density numbers were much higher in c-kit(+) HCC tissues than in c-kit(-) HCC tissues (44.13±17.01 vs 26.87±13.16, P =0.003). The expression of c-kit was significantly higher in patients with Edmondson grade III-IV ( P <0.001) and TNM stage III ( P <0.001). Moreover, Kaplan-Meier survival analysis showed that c-kit ( P <0.001) expression was correlated with reduced disease-free survival (DFS). Multivariate analysis identified c-kit as an independent poor prognostic factor of DFS in HCC patients ( P <0.001). Increased c-kit expression could be considered as an independent unfavorable prognostic factor for predicting DFS in HBV-related HCC patients after surgery. These results could be used to identify patients at a higher risk of early tumor recurrence and poor prognosis.
Park, Mira; Kim, Hye-Ryun; Kim, Yeon Sun; Yang, Seung Chel; Yoon, Jung Ah; Lyu, Sang Woo; Lim, Hyunjung Jade; Hong, Seok-Ho; Song, Haengseok
2018-07-15
Early growth response 1 (Egr1) is a key transcription factor that mediates the action of estrogen (E 2 ) to establish uterine receptivity for embryo implantation. However, few direct target genes of EGR1 have been identified in the uterus. Here, we demonstrated that E 2 induced EGR1-regulated transcription of c-Kit, which plays a crucial role in cell fate decisions. Spatiotemporal expression of c-Kit followed that of EGR1 in uteri of ovariectomized mice at various time points after E 2 treatment. E 2 activated ERK1/2 and p38 to induce EGR1, which then activated c-Kit expression in the uterus. EGR1 transfection produced rapid and transient induction of c-KIT in a time- and dose-dependent manner. Furthermore, luciferase assays to measure c-Kit promoter activity confirmed that a functional EGR1 binding site(s) (EBS) was located within -1 kb of the c-Kit promoter. Site-directed mutagenesis and chromatin immunoprecipitation-PCR for three putative EBS within -1 kb demonstrated that the EBS at -818/-805 was critical for EGR1-dependent c-Kit transcription. c-Kit expression was significantly increased in the uterus on day 4 and administration of Masitinib, a c-Kit inhibitor, effectively interfered with embryo implantation. Collectively, our results showed that estrogen induces transcription factor EGR1 to regulate c-Kit transcription for uterine receptivity for embryo implantation in the mouse uterus. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular Alterations of KIT Oncogene in Gliomas
Gomes, Ana L.; Reis-Filho, Jorge S.; Lopes, José M.; Martinho, Olga; Lambros, Maryou B. K.; Martins, Albino; Schmitt, Fernando; Pardal, Fernando; Reis, Rui M.
2007-01-01
Gliomas are the most common and devastating primary brain tumours. Despite therapeutic advances, the majority of gliomas do not respond either to chemo or radiotherapy. KIT, a class III receptor tyrosine kinase (RTK), is frequently involved in tumourigenic processes. Currently, KIT constitutes an attractive therapeutic target. In the present study we assessed the frequency of KIT overexpression in gliomas and investigated the genetic mechanisms underlying KIT overexpression. KIT (CD117) immunohistochemistry was performed in a series of 179 gliomas of various grades. KIT activating gene mutations (exons 9, 11, 13 and 17) and gene amplification analysis, as defined by chromogenic in situ hybridization (CISH) and quantitative real-time PCR (qRT-PCR) were performed in CD117 positive cases. Tumour cell immunopositivity was detected in 15.6% (28/179) of cases, namely in 25% (1/4) of pilocytic astrocytomas, 25% (5/20) of diffuse astrocytomas, 20% (1/5) of anaplastic astrocytomas, 19.5% (15/77) of glioblastomas and one third (3/9) of anaplastic oligoastrocytomas. Only 5.7% (2/35) of anaplastic oligodendrogliomas showed CD117 immunoreactivity. No association was found between tumour CD117 overexpression and patient survival. In addition, we also observed CD117 overexpression in endothelial cells, which varied from 0–22.2% of cases, being more frequent in high-grade lesions. No KIT activating mutations were identified. Interestingly, CISH and/or qRT-PCR analysis revealed the presence of KIT gene amplification in 6 glioblastomas and 2 anaplastic oligoastrocytomas, corresponding to 33% (8/24) of CD117 positive cases. In conclusion, our results demonstrate that KIT gene amplification rather than gene mutation is a common genetic mechanism underlying KIT expression in subset of malignant gliomas. Further studies are warranted to determine whether glioma patients exhibiting KIT overexpression and KIT gene amplification may benefit from therapy with anti-KIT RTK inhibitors. PMID:17726262
Korde, Aruna; Mallia, Madhava; Shinto, Ajit; Sarma, H D; Samuel, Grace; Banerjee, Sharmila
2014-11-01
(99m)Tc-HYNIC-TOC is a cost-effective and logistically viable agent for scintigraphy of neuroendocrine tumors overexpressing somatostatin receptors as compared with [(111)In-DTPA-D-Phe(1)] Octreotide (Octreoscan(®)). Several studies have been reported, wherein the efficacy of this agent is demonstrated. In the present article, the authors report the preparation of a single-vial HYNIC-TOC kit suitable for the preparation of 4-5 patient doses (15 mCi/patient) of (99m)Tc-HYNIC-TOC. The kits were tested for sterility and bacterial endotoxins to assure safety of the product. A significant modification in this kit is the inclusion of buffer in the kit itself, unlike in commercially available kits where the buffer solution has to be added during preparation. (99m)Tc-HYNIC-TOC was prepared by adding 20-80 mCi (740-2960 MBq) of freshly eluted Na(99m)TcO4 in 1-3 mL of sterile saline directly into the kit vial and heating the vial in a water bath at 100°C for 20 minutes. The labeling yield and radiochemical purity of (99m)Tc-HYNIC-TOC, prepared using the lyophilized cold kit, were consistently >90%. The kits were evaluated over a period of 9 months and found to be stable when stored at -20°C. Limited clinical studies performed with the (99m)Tc-HYNIC-TOC, formulated using the kit, showed adequate sensitivity and specificity for the detection of gasteroenteropancreatic neuroendocrine tumors.
Hara, Yasushi; Obata, Yuuki; Horikawa, Keita; Tasaki, Yasutaka; Suzuki, Kyohei; Murata, Takatsugu; Shiina, Isamu; Abe, Ryo
2017-01-01
Gain-of-function mutations in Kit receptor tyrosine kinase result in the development of a variety of cancers, such as mast cell tumours, gastrointestinal stromal tumours (GISTs), acute myeloid leukemia, and melanomas. The drug imatinib, a selective inhibitor of Kit, is used for treatment of mutant Kit-positive cancers. However, mutations in the Kit kinase domain, which are frequently found in neoplastic mast cells, confer an imatinib resistance, and cancers expressing the mutants can proliferate in the presence of imatinib. Recently, we showed that in neoplastic mast cells that endogenously express an imatinib-resistant Kit mutant, Kit causes oncogenic activation of the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway and the signal transducer and activator of transcription 5 (STAT5) but only on endolysosomes and on the endoplasmic reticulum (ER), respectively. Here, we show a strategy for inhibition of the Kit-PI3K-Akt pathway in neoplastic mast cells by M-COPA (2-methylcoprophilinamide), an inhibitor of this secretory pathway. In M-COPA-treated cells, Kit localization in the ER is significantly increased, whereas endolysosomal Kit disappears, indicating that M-COPA blocks the biosynthetic transport of Kit from the ER. The drug greatly inhibits oncogenic Akt activation without affecting the association of Kit with PI3K, indicating that ER-localized Kit-PI3K complex is unable to activate Akt. Importantly, M-COPA but not imatinib suppresses neoplastic mast cell proliferation through inhibiting anti-apoptotic Akt activation. Results of our M-COPA treatment assay show that Kit can activate Erk not only on the ER but also on other compartments. Furthermore, Tyr568/570, Tyr703, Tyr721, and Tyr936 in Kit are phosphorylated on the ER, indicating that these five tyrosine residues are all phosphorylated before mutant Kit reaches the plasma membrane (PM). Our study provides evidence that Kit is tyrosine-phosphorylated soon after synthesis on the ER but is unable to activate Akt and also demonstrates that M-COPA is efficacious for growth suppression of neoplastic mast cells.
Hara, Yasushi; Obata, Yuuki; Horikawa, Keita; Tasaki, Yasutaka; Suzuki, Kyohei; Murata, Takatsugu; Shiina, Isamu; Abe, Ryo
2017-01-01
Gain-of-function mutations in Kit receptor tyrosine kinase result in the development of a variety of cancers, such as mast cell tumours, gastrointestinal stromal tumours (GISTs), acute myeloid leukemia, and melanomas. The drug imatinib, a selective inhibitor of Kit, is used for treatment of mutant Kit-positive cancers. However, mutations in the Kit kinase domain, which are frequently found in neoplastic mast cells, confer an imatinib resistance, and cancers expressing the mutants can proliferate in the presence of imatinib. Recently, we showed that in neoplastic mast cells that endogenously express an imatinib-resistant Kit mutant, Kit causes oncogenic activation of the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway and the signal transducer and activator of transcription 5 (STAT5) but only on endolysosomes and on the endoplasmic reticulum (ER), respectively. Here, we show a strategy for inhibition of the Kit-PI3K-Akt pathway in neoplastic mast cells by M-COPA (2-methylcoprophilinamide), an inhibitor of this secretory pathway. In M-COPA-treated cells, Kit localization in the ER is significantly increased, whereas endolysosomal Kit disappears, indicating that M-COPA blocks the biosynthetic transport of Kit from the ER. The drug greatly inhibits oncogenic Akt activation without affecting the association of Kit with PI3K, indicating that ER-localized Kit-PI3K complex is unable to activate Akt. Importantly, M-COPA but not imatinib suppresses neoplastic mast cell proliferation through inhibiting anti-apoptotic Akt activation. Results of our M-COPA treatment assay show that Kit can activate Erk not only on the ER but also on other compartments. Furthermore, Tyr568/570, Tyr703, Tyr721, and Tyr936 in Kit are phosphorylated on the ER, indicating that these five tyrosine residues are all phosphorylated before mutant Kit reaches the plasma membrane (PM). Our study provides evidence that Kit is tyrosine-phosphorylated soon after synthesis on the ER but is unable to activate Akt and also demonstrates that M-COPA is efficacious for growth suppression of neoplastic mast cells. PMID:28403213
Desneux, Jérémy; Pourcher, Anne-Marie
2014-01-01
Four commercial DNA extraction kits and a minor modification in the DNA elution procedure were evaluated for the quantitation of bacteria in pig manure samples. The PowerSoil®, PowerFecal®, NucleoSpin® Soil kits and QIAamp® DNA Stool Mini kit were tested on raw manure samples and on lagoon effluents for their ability to quantify total bacteria and a subdominant bacteria specific of pig manure contamination: Lactobacillus amylovorus. The NucleoSpin® Soil kit (NS kit), and to a lesser extent the PowerFecal® kit were the most efficient methods. Regardless of the kit utilized, the modified elution procedure increased DNA yield in the lagoon effluent by a factor of 1.4 to 1.8. When tested on 10 piggery effluent samples, compared to the QIAamp kit, the NS kit combined with the modified elution step, increased by a factor up to 1.7 log10 the values of the concentration of L. amylovorus. Regardless of the type of manure, the best DNA quality and the highest concentrations of bacteria were obtained using the NS kit combined with the modification of the elution procedure. The method recommended here significantly improved quantitation of subdominant bacteria in manure. PMID:24838631
Kajimoto, Noriko; Nakai, Norihiro; Ohkouchi, Mizuka; Hashikura, Yuka; Liu-Kimura, Ning-Ning; Isozaki, Koji; Hirota, Seiichi
2015-01-01
Sporadic mast cell neoplasms and gastrointestinal stromal tumors (GISTs) often have various types of somatic gain-of-function mutations of the c-kit gene which encodes a receptor tyrosine kinase, KIT. Several types of germline gain-of-function mutations of the c-kit gene have been detected in families with multiple GISTs. All three types of model mice for the familial GISTs with germline c-kit gene mutations at exon 11, 13 or 17 show development of GIST, while they are different from each other in skin mast cell number. Skin mast cell number in the model mice with exon 17 mutation was unchanged compared to the corresponding wild-type mice. In the present study, we characterized various types of mast cells derived from the model mice with exon 17 mutation (KIT-Asp818Tyr) corresponding to human familial GIST case with human KIT-Asp820Tyr to clarify the role of the c-kit gene mutation in mast cells. Bone marrow-derived cultured mast cells (BMMCs) derived from wild-type mice, heterozygotes and homozygotes were used for the experiments. Immortalized BMMCs, designated as IMC-G4 cells, derived from BMMCs of a homozygote during long-term culture were also used. Ultrastructure, histamine contents, proliferation profiles and phosphorylation of various signaling molecules in those cells were examined. In IMC-G4 cells, presence of additional mutation(s) of the c-kit gene and effect of KIT inhibitors on both KIT autophosphorylation and cell proliferation were also analyzed. We demonstrated that KIT-Asp818Tyr did not affect ultrastructure and proliferation profiles but did histamine contents in BMMCs. IMC-G4 cells had an additional novel c-kit gene mutation of KIT-Tyr421Cys which is considered to induce neoplastic transformation of mouse mast cells and the mutation appeared to be resistant to a KIT inhibitor of imatinib but sensitive to another KIT inhibitor of nilotinib. IMC-G4 cells might be a useful mast cell line to investigate mast cell biology. PMID:26722383
Pawlak, Dariusz; Rangger, Christine; Kolenc Peitl, Petra; Garnuszek, Piotr; Maurin, Michał; Ihli, Laura; Kroselj, Marko; Maina, Theodosia; Maecke, Helmut; Erba, Paola; Kremser, Leopold; Hubalewska-Dydejczyk, Alicja; Mikołajczak, Renata; Decristoforo, Clemens
2016-03-31
A variety of radiolabelled minigastrin analogues targeting the cholecystokinin 2 (CCK2) receptor were developed and compared in a concerted preclinical testing to select the most promising radiotracer for diagnosis and treatment of medullary thyroid carcinoma (MTC). DOTA-DGlu-DGlu-DGlu-DGlu-DGlu-DGlu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 (CP04) after labelling with (111)In displayed excellent characteristics, such as high stability, receptor affinity, specific and persistent tumour uptake and low kidney retention in animal models. Therefore, it was selected for further clinical evaluation within the ERA-NET project GRAN-T-MTC. Here we report on the development of a pharmaceutical freeze-dried formulation of the precursor CP04 for a first multi-centre clinical trial with (111)In-CP04 in MTC patients. The kit formulation was optimised by adjustment of buffer, additives and radiolabelling conditions. Three clinical grade batches of a final kit formulation with two different amounts of peptide (10 or 50 μg) were prepared and radiolabelled with (111)In. Quality control and stability assays of both the kits and the resulting radiolabelled compound were performed by HPLC analysis. Use of ascorbic acid buffer (pH4.5) allowed freeze-drying of the kit formulation with satisfactory pellet-formation. Addition of methionine and gentisic acid as well as careful selection of radiolabelling temperature was required to avoid extensive oxidation of the Met(11)-residue. Trace metal contamination, in particular Zn, was found to be a major challenge during the pharmaceutical filling process in particular for the 10 μg formulation. The final formulations contained 10 or 50 μg CP04, 25mg ascorbic acid, 0.5mg gentisic acid and 5mg L-methionine. The radiolabelling performed by incubation of 200-250 MBq (111)InCl3 at 90 °C for 15 min resulted in reproducible radiochemical purity (RCP) >94%. Kit-stability was proven for >6 months at +5 °C and at +25 °C. The radiolabelled product was stable for >4h at +25 °C. A kit formulation to prepare (111)In-CP04 for clinical application was developed, showing high stability of the kit as well as high RCP of the final product. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
D’Amario, Domenico; Cabral-Da-Silva, Mauricio; Zheng, Hanqiao; Fiorini, Claudia; Goichberg, Polina; Steadman, Elisabeth; Ferreira-Martins, João; Sanada, Fumihiro; Piccoli, Marco; Cappetta, Donato; D’Alessandro, David A.; Michler, Robert E.; Hosoda, Toru; Anastasia, Luigi; Rota, Marcello; Leri, Annarosa; Anversa, Piero; Kajstura, Jan
2012-01-01
Rationale Age and coronary artery disease may negatively affect the function of human cardiac stem cells (hCSCs) and their potential therapeutic efficacy for autologous cell transplantation in the failing heart. Objective Insulin-like growth factor 1 (IGF-1) and 2 (IGF-2), and angiotensin II (Ang II) and their receptors, IGF-1R, IGF-2R and AT1R, were characterized in c-kit-positive-hCSCs to establish whether these systems would allow us to separate hCSC classes with different growth reserve in the aging and diseased myocardium. Methods and Results C-kit-positive-hCSCs were collected from myocardial samples obtained from 24 patients, 48 to 86 years of age, undergoing elective cardiac surgery for coronary artery disease. The expression of IGF-1R in hCSCs recognized a young cell phenotype defined by long telomeres, high telomerase activity, enhanced cell proliferation and attenuated apoptosis. In addition to IGF-1, IGF-1R-positive-hCSCs secreted IGF-2 that promoted myocyte differentiation. Conversely, the presence of IGF-2R and AT1R, in the absence of IGF-1R, identified senescent hCSCs with impaired growth reserve and increased susceptibility to apoptosis. The ability of IGF-1R-positive-hCSCs to regenerate infarcted myocardium was then compared with that of unselected c-kit-positive-hCSCs. IGF-1R-positive-hCSCs improved cardiomyogenesis and vasculogenesis. Pretreatment of IGF-1R-positive-hCSCs with IGF-2 resulted in the formation of more mature myocytes and superior recovery of ventricular structure. Conclusions hCSCs expressing only IGF-1R synthesize both IGF-1 and IGF-2, which are potent modulators of stem cell replication, commitment to the myocyte lineage and myocyte differentiation, pointing to this hCSC subset as the ideal candidate cell for the management of human heart failure. PMID:21546606
Immunohistochemical expression of c-KIT protein in feline soft tissue fibrosarcomas.
Smith, A J; Njaa, B L; Lamm, C G
2009-09-01
C-KIT is the cellular homolog of the feline sarcoma viral oncogene v-KIT, which encodes the tyrosine kinase receptor protein KIT. Mutations and varied expression of this gene have been demonstrated within multiple neoplasms in people and domestic animals. The purpose of this study was to determine if KIT protein is expressed in feline soft tissue fibrosarcomas (ST FSA) using immunohistochemistry (IHC). The computer database at the Oklahoma Animal Disease Diagnostic Laboratory was searched from January 1, 2006, to December 31, 2007, for any domestic cat with an ST FSA. Routinely stained slides from 46 feline ST FSAs were reviewed and graded based on the scale outlined by Kuntz et al. Immunohistochemistry for KIT protein was performed on one representative section from each cat. There were a total of 12/46 (26%) cats that were immunoreactive for KIT. Immunoreactivity was detected in greater than 80% of the neoplastic cells in 4/46 (9%) cats. Immunoreactivity was detected in less than 10% of the neoplastic cells in 8/46 (17%) cats. Immunoreactivity was characterized by evenly distributed cytoplasmic stippling within the neoplastic spindle-shaped cells and/or multinucleated giant cells. Based on these results, KIT immunoreactivity can be detected within feline ST FSAs using IHC. The results of this study also indicate that KIT immunoreactivity in feline ST FSA does not correlate with the histologic grade (P = .141, X(2) = 2.166), survivability (P = .241, X(2) = 1.373), or whether the neoplasm was a spontaneous or an injection site FSA (P = .074, X(2) = 3.184).
Rausch, Jessica L; Boichuk, Sergei; Ali, Areej A; Patil, Sneha S; Liu, Lijun; Lee, Donna M; Brown, Matthew F; Makielski, Kathleen R; Liu, Ying; Taguchi, Takahiro; Kuan, Shih-Fan; Duensing, Anette
2017-01-17
Most gastrointestinal stromal tumors (GISTs) are caused by activating mutations of the KIT receptor tyrosine kinase. The small molecule inhibitor imatinib mesylate was initially developed to target the ABL1 kinase, which is constitutively activated through chromosomal translocation in BCR-ABL1-positive chronic myeloid leukemia. Because of cross-reactivity of imatinib against the KIT kinase, the drug is also successfully used for the treatment of GIST. Although inhibition of KIT clearly has a major role in the therapeutic response of GIST to imatinib, the contribution of concomitant inhibition of ABL in this context has never been explored. We show here that ABL1 is expressed in the majority of GISTs, including human GIST cell lines. Using siRNA-mediated knockdown, we demonstrate that depletion of KIT in conjunction with ABL1 - hence mimicking imatinib treatment - leads to reduced apoptosis induction and attenuated inhibition of cellular proliferation when compared to depletion of KIT alone. These results are explained by an increased activity of the AKT survival kinase, which is mediated by the cyclin-dependent kinase CDK2, likely through direct phosphorylation. Our results highlight that distinct inhibitory properties of targeted agents can impede antitumor effects and hence provide insights for rational drug development. Novel KIT-targeted agents to treat GIST should therefore comprise an increased specificity for KIT while at the same time displaying a reduced ability to inhibit ABL1.
Yui, Shunsuke; Kurosawa, Saiko; Yamaguchi, Hiroki; Kanamori, Heiwa; Ueki, Toshimitsu; Uoshima, Nobuhiko; Mizuno, Ishikazu; Shono, Katsuhiro; Usuki, Kensuke; Chiba, Shigeru; Nakamura, Yukinori; Yanada, Masamitsu; Kanda, Junya; Tajika, Kenji; Gomi, Seiji; Fukunaga, Keiko; Wakita, Satoshi; Ryotokuji, Takeshi; Fukuda, Takahiro; Inokuchi, Koiti
2017-10-01
The clinical impact of KIT mutations in core binding factor acute myeloid leukemia (CBF-AML) is still unclear. In the present study, we analyzed the prognostic significance of each KIT mutation (D816, N822K, and other mutations) in Japanese patients with CBF-AML. We retrospectively analyzed 136 cases of CBF-AML that had gone into complete remission (CR). KIT mutations were found in 61 (45%) of the patients with CBF-AML. D816, N822K, D816 and N822K, and other mutations of the KIT gene were detected in 29 cases (21%), 20 cases (15%), 7 cases (5%), and 5 cases (4%), respectively. The rate of relapse-free survival (RFS) and overall survival (OS) in patients with D816 and with both D816 and N822K mutations was significantly lower than in patients with other or with no KIT mutations (RFS: p < 0.001, OS: p < 0.001). Moreover, stratified analysis of the chromosomal abnormalities t(8;21)(q22;q22) and inv(16)(p13.1q22), t(16;16)(p13.1;q22) showed that D816 mutation was associated with a significantly worse prognosis. In a further multivariate analysis of RFS and OS, D816 mutation was found to be an independent risk factor for significantly poorer prognosis. In the present study, we were able to establish that, of all KIT mutations, D816 mutation alone is an unfavorable prognostic factor.
c-KIT positive schistosomal urinary bladder carcinoma are frequent but lack KIT gene mutations.
Shams, Tahany M; Metawea, Mokhtar; Salim, Elsayed I
2013-01-01
Urinary bladder squamous cell carcinoma (SCC), one of the most common neoplasms in Egypt, is attributed to chronic urinary infection with Schistosoma haematobium (Schistosomiasis). The proto-oncogene c-KIT, encoding a tyrosine kinase receptor and implicated in the development of a number of human malignancies, has not been studied so far in schistosomal urinary bladder SCCs. We therefore determined immunohistochemical (IHC) expression of c-KIT in paraffin sections from 120 radical cystectomies of SCCs originally obtained from the Pathology Department of Suez Canal University (Ismailia, Egypt). Each slide was evaluated for staining intensity where the staining extent of >10% of cells was considered positive. c-KIT overexpression was detected in 78.3% (94/120) of the patients, the staining extents in the tumor cells were 11-50% and >50% in 40 (42.6%) and 54 (57.4%) respectively. The positive cases had 14.9%, 63.8%, 21.3% as weak, moderate and strong intensity respectively. Patients with positive bilharzial ova had significantly higher c-KIT expression than patients without (95.2% vs. 38.9%, P=0.000). Mutation analysis of exons 9-13 was negative in thirty KIT positive cases. The high rate of positivity in SBSCC was one of the striking findings; However, CD117 may be a potential target for site specific immunotherapy to improve the outcome of this tumor.
Mahameed, Mohamed; Tirosh, Boaz
2017-11-01
An optimized biomanufacturing process in mammalian cells is contingent on the ability of the producing cells to reach high viable cell densities. In addition, at the peak of growth, cells need to continue producing the biological entity at a consistent quality. Thus, engineering cells with robust growth performance and resilience to variable stress conditions is highly desirable. The tyrosine kinase receptor, KIT, plays a key role in cell differentiation and the survival of several immune cell types. Its oncogenic mutant, D816V, endows cells with high proliferation capacity, and resistance to kinase inhibitors. Importantly, this onco-KIT mutant when introduced into various cell types is arrested in the endoplasmic reticulum in a constitutively active form. Here, we investigated the effect of oncogenic D816V KIT on the performance of CHO-K1 cells under conventional tissue culture growth settings and when adapted, to shaking conditions. The onco-KIT promoted global protein synthesis, elevated the expression of a secretable transgene, enhanced proliferation, and improved the overall titers of a model glycoprotein. Moreover, the expression of the onco-KIT endowed the cells with a remarkable resistance to various stress conditions. Our data suggest that the introduction of onco-KIT can serve as a strategy for improving glycoprotein biomanufacturing. Biotechnol. Bioeng. 2017;114: 2560-2570. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Small cell carcinoma of the urinary bladder.
Terada, Tadashi
2012-01-01
Primary small cell carcinoma of the urinary bladder is very rare; only several studies have been reported in the English literature. A 62-year-old woman was admitted to our hospital because of hematuria and dysuria. Bladder endoscopy revealed a large polypoid tumor at the bladder base. Transurethral bladder tumorectomy (TUR-BT) was performed. Many TUR-BT specimens were obtained. Histologically, the bladder tumor was pure small cell carcinoma. Immunohistochemically, the tumor cells were positive for cytokeratin (CK) AE1/3, CK CAM5.2, CK8, CK18, neurone-specific enolase, chromogranin, NCAM (CD56), synaptophysin, Ki-67 (labeling=100%), p53, KIT (CD117), and platelet-derived growth factor receptor-α (PDGFRA). The tumor cells were negative for CK5/6, CK 34BE12, CK7, CK14, CK19, CK20, p63, CD45, and TTF-1. A molecular genetic analysis using PCR-direct sequencing showed no mutations of KIT (exons 9, 11, 13 and 17) and PDGFRA (exons 12 and 18) genes. No metastases were found by various imaging techniques. The patient is now treated by cisplatin-based chemotherapy.
Yu, Yang; Jiang, Jiang; He, Yi; Wang, Wei; Shen, Chen; Yang, Bo
2017-08-01
Chronic prostatitis (CP) is a common urological disorder, with bladder voiding dysfunction being the primary clinical manifestation. Resveratrol is polyphenolic compound isolated from numerous plants, with widely‑reported anti-inflammatory properties. The present study aimed to investigate whether resveratrol may improve overactive bladder in rats with CP and to investigate the underlying molecular mechanisms. Furthermore, the potential pharmacological synergy between resveratrol and solifenacin was also investigated as a potential treatment for CP. Following the successful establishment of a rat model of CP by subcutaneously injecting DPT vaccine, rats were treated with resveratrol or a combination of resveratrol + solifenacin. Bladder pressure and volume tests were performed to investigate the effect of resveratrol and solifenacin on urinary dysfunction in rats with chronic prostatitis. Western blot analysis and immunohistochemical staining were used to examine the expression of c‑Kit receptor, stem cell factor (SCF), AKT and phosphorylated‑AKT (p‑AKT) in the bladder tissue. The results of the bladder pressure and volume test indicated that the maximum capacity of the bladder, residual urine volume and maximum voiding pressure in the control group were 0.57 ml, 0.17 ml and 29.62 cm H2O, respectively. These values were increased by 71, 27 and 206% in rats in the CP group compared with the control group. Following treatment with resveratrol, the results in the resveratrol group were reduced by 25.77, 44.23 and 13.32% compared with the CP group. The results of western blot analysis, immunohistochemical staining and immunofluorescence labeling demonstrate that the protein expression of SCF, c‑Kit and p‑AKT in the bladder of rats in the CP group was 4.32, 6.13 and 6.31 times higher compared with the control group, respectively. Following treatment with resveratrol, protein expression was significantly reduced. However, no significant differences were observed between the protein expression of the SCF, c‑Kit and p‑AKT in the bladder between the resveratrol and combination groups. In conclusion, resveratrol may improve overactive bladder by downregulating the protein expression of SCF, c‑Kit and p‑AKT in the bladder of rats with CP. Furthermore, a combination of resveratrol and solifenacin may have potential pharmacological synergy as a treatment for patients with CP.
Hattori, Mai; Ishikawa, Osamu; Oikawa, Daisuke; Amano, Hiroo; Yasuda, Masahito; Kaira, Kyoichi; Ishida-Yamamoto, Akemi; Nakano, Hajime; Sawamura, Daisuke; Terawaki, Shin-Ichi; Wakamatsu, Kaori; Tokunaga, Fuminori; Shimizu, Akira
2018-03-21
Piebaldism is a pigmentary disorder characterized by a white forelock and depigmented patches. Although the loss-of-function mutations in the KIT gene underlie the disease, the intracellular dynamics of the mutant KIT are largely unknown. We herein report a Japanese family with piebaldism in which the affected members showed a mild phenotype. The objective of this study is to investigate the functions and intracellular dynamics of the mutant KIT protein. We performed genetic analyses of the KIT gene using peripheral blood cells. We analyzed the intracellular localization of the mutant KIT protein in HEK293T cells transfected with wild-type (Wt) and/or mutant KIT genes. Immunoprecipitation analyses, immunoblotting and immunofluorescence studies were performed using antibodies against KIT and downstream signaling proteins. Glycosidase digestion analysis was performed to clarify the intracellular localization of KIT protein. A genetic analysis revealed a novel heterozygous mutation c.645_650delTGTGTC which results in the in-frame deletion of Val 216 and Ser 217 in the extracellular domain of KIT. Immunoprecipitation analyses confirmed that the wild and mutant KIT formed a heterodimer after treatment with stem cell factor (SCF); however, the phosphorylation of the downstream signaling factors was decreased. In an immunofluorescence study, the mutant KIT accumulated predominantly in the endoplasmic reticulum (ER) and was sparsely expressed on the cell surface. A glycosidase digestion study revealed that the mutant KIT is predominantly localized in the ER. These data reveal an aberrant function and intracellular localization of mutant KIT protein in piebaldism. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinsella, Paula, E-mail: paula.kinsella@dcu.ie; Howley, Rachel, E-mail: rhowley@rcsi.ie; Doolan, Padraig, E-mail: padraig.doolan@dcu.ie
2012-03-10
High-grade gliomas (HGG), are the most common aggressive brain tumours in adults. Inhibitors targeting growth factor signalling pathways in glioma have shown a low clinical response rate. To accurately evaluate response to targeted therapies further in vitro studies are necessary. Growth factor pathway expression using epidermal growth factor receptor (EGFR), mutant EGFR (EGFRvIII), platelet derived growth factor receptor (PDGFR), C-Kit and C-Abl together with phosphatase and tensin homolog (PTEN) expression and downstream activation of AKT and phosphorylated ribosomal protein S6 (P70S6K) was analysed in 26 primary glioma cultures treated with the tyrosine kinase inhibitors (TKIs) erlotinib, gefitinib and imatinib. Responsemore » to TKIs was assessed using 50% inhibitory concentrations (IC{sub 50}). Response for each culture was compared with the EGFR/PDGFR immunocytochemical pathway profile using hierarchical cluster analysis (HCA) and principal component analysis (PCA). Erlotinib response was not strongly associated with high expression of the growth factor pathway components. PTEN expression did not correlate with response to any of the three TKIs. Increased EGFR expression was associated with gefitinib response; increased PDGFR-{alpha} expression was associated with imatinib response. The results of this in vitro study suggest gefitinib and imatinib may have therapeutic potential in HGG tumours with a corresponding growth factor receptor expression profile. -- Highlights: Black-Right-Pointing-Pointer Non-responders had low EGFR expression, high PDGFR-{beta}, and a low proliferation rate. Black-Right-Pointing-Pointer PTEN is not indicative of response to a TKI. Black-Right-Pointing-Pointer Erlotinib response was not associated with expression of the proteins examined. Black-Right-Pointing-Pointer Imatinib-response correlated with expression of PDGFR-{alpha}. Black-Right-Pointing-Pointer Gefitinib response correlated with increased expression of EGFR.« less
Kaminski, Alexander; Ma, Nan; Donndorf, Peter; Lindenblatt, Nicole; Feldmeier, Gregor; Ong, Lee-Lee; Furlani, Dario; Skrabal, Christian A; Liebold, Andreas; Vollmar, Brigitte; Steinhoff, Gustav
2008-01-01
In the era of intravascular approaches for regenerative cell therapy, the underlying mechanisms of stem cell migration to non-marrow tissue have not been clarified. We hypothesized that next to a local inflammatory response implying adhesion molecule expression, endothelial nitric oxide synthase (eNOS)-dependent signaling is required for stromal- cell-derived factor-1 alpha (SDF-1alpha)-induced adhesion of c-kit+ cells to the vascular endothelium. SDF-1alpha/tumor necrosis factor-alpha (TNF-alpha)-induced c-kit+-cell shape change and migration capacity was studied in vitro using immunohistochemistry and Boyden chamber assays. In vivo interaction of c-kit+ cells from bone marrow with the endothelium in response to SDF-1alpha/TNF-alpha stimulation was visualized in the cremaster muscle microcirculation of wild-type (WT) and eNOS (-/-) mice using intravital fluorescence microscopy. In addition, NOS activity was inhibited with N-nitro-L-arginine-methylester-hydrochloride in WT mice. To reveal c-kit+-specific adhesion behavior, endogenous leukocytes (EL) and c-kit+ cells from peripheral blood served as control. Moreover, intercellular adhesion molecule-1 (ICAM-1) and CXCR4 were blocked systemically to determine their role in inflammation-related c-kit+-cell adhesion. In vitro, SDF-1alpha enhanced c-kit+-cell migration. In vivo, SDF-1alpha alone triggered endothelial rolling-not firm adherence-of c-kit+ cells in WT mice. While TNF-alpha alone had little effect on adhesion of c-kit+ cells, it induced maximum endothelial EL adherence. However, after combined treatment with SDF-1alpha+TNF-alpha, endothelial adhesion of c-kit+ cells increased independent of their origin, while EL adhesion was not further incremented. Systemic treatment with anti-ICAM-1 and anti-CXCR4-monoclonal antibody completely abolished endothelial c-kit+-cell adhesion. In N-nitro-L-arginine-methylester-hydrochloride-treated WT mice as well as in eNOS (-/-) mice, firm endothelial adhesion of c-kit+ cells was entirely abrogated, while EL adhesion was significantly increased. The chemokine SDF-1alpha mediates firm adhesion c-kit+ cells only in the presence of TNF-alpha stimulation via an ICAM-1- and CXCR4-dependent mechanism. The presence of eNOS appears to be a crucial and specific factor for firm c-kit+-cell adhesion to the vascular endothelium.
Chen, Evan C; Karl, Taylor A; Kalisky, Tomer; Gupta, Santosh K; O'Brien, Catherine A; Longacre, Teri A; van de Rijn, Matt; Quake, Stephen R; Clarke, Michael F; Rothenberg, Michael E
2015-09-01
Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 DM colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription polymerase chain reaction, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib after injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5 associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cells. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44(+) cells indicated that KIT can promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT(+) colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. KIT and KITLG are expressed by a subset of human colon tumors. KIT signaling promotes growth of colon cancer cells and organoids in culture and xenograft tumors in mice via its ligand, KITLG, in an autocrine or paracrine manner. Patients with KIT-expressing colon tumors can benefit from KIT RTK inhibitors. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Chen, Evan C.; Karl, Taylor A.; Kalisky, Tomer; Gupta, Santosh K.; O’Brien, Catherine A.; Longacre, Teri A.; van de Rijn, Matt; Quake, Stephen R.; Clarke, Michael F.; Rothenberg, Michael E.
2015-01-01
Background & Aims Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. Methods An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription PCR, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib following injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. Results KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice, compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5-associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cell lines. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44+ cells indicated that KIT may promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT+ colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. Conclusions KIT and KITLG are expressed by a subset of human colon tumors. KIT signaling promotes growth of colon cancer cells and organoids in culture and xenograft tumors in mice via its ligand, KITLG, in an autocrine or paracrine manner. Patients with KIT-expressing colon tumors may benefit from KIT RTK inhibitors. PMID:26026391
Keith, Matthew C L; Bolli, Roberto
2015-03-27
Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c-kit(pos) cell administration to ischemically damaged hearts despite the observed paucity of cardiomyogenic differentiation of these cells. © 2015 American Heart Association, Inc.
Detection of KIT Genotype in Pigs by TaqMan MGB Real-Time Quantitative Polymerase Chain Reaction.
Li, Xiuxiu; Li, Xiaoning; Luo, Rongrong; Wang, Wenwen; Wang, Tao; Tang, Hui
2018-05-01
The dominant white phenotype in domestic pigs is caused by two mutations in the KIT gene: a 450 kb duplication containing the entire KIT gene together with flanking sequences and one splice mutation with a G:A substitution in intron 17. The purpose of this study was to establish a simple, rapid method to determine KIT genotype in pigs. First, to detect KIT copy number variation (CNV), primers for exon 2 of the KIT gene, along with a TaqMan minor groove binder (MGB) probe, were designed. The single-copy gene, estrogen receptor (ESR), was used as an internal control. A real-time fluorescence-based quantitative PCR (FQ-PCR) protocol was developed to accurately detect KIT CNVs. Second, to detect the splice mutation ratio of the G:A substitution in intron 17, a 175 bp region, including the target mutation, was amplified from genomic DNA. Based on the sequence of the resulting amplified fragment, an MGB probe set was designed to detect the ratio of splice mutation to normal using FQ-PCR. A series of parallel amplification curves with the same internal distances were obtained using gradually diluted DNA as templates. The CT values among dilutions were significantly different (p < 0.001) and the coefficients of variation from each dilution were low (from 0.13% to 0.26%). The amplification efficiencies for KIT and ESR were approximately equal, indicating ESR was an appropriate control gene. Furthermore, use of the MGB probe set resulted in detection of the target mutation at a high resolution and stability; standard curves illustrated that the amplification efficiencies of KIT1 (G) and KIT2 (A) were approximately equal (98.8% and 97.2%). In conclusion, a simple, rapid method, with high specificity and stability, for the detection of the KIT genotype in pigs was established using TaqMan MGB probe real-time quantitative PCR.
Medina-García, Veronica; Ocampo-García, Blanca E; Ferro-Flores, Guillermina; Santos-Cuevas, Clara L; Aranda-Lara, Liliana; García-Becerra, Rocio; Ordaz-Rosado, David; Melendez-Alafort, Laura
2015-12-01
About 90% of insulinomas are benign and 5%-15% are malignant. Benign insulinomas express the glucagon-like peptide-1 receptor (GLP-1R) and low levels of somatostatin receptors (SSTR), while malignant insulinomas over-express SSTR or GLP-1R in low levels. A kit for the preparation of Lys(27)((99m)Tc-EDDA/HYNIC)-Exendin(9-39)/(99m)Tc-EDDA/HYNIC-Tyr(3)Octreotide was formulated to detect 100% of insulinomas. The formulation showed radiochemical purity of 97±1%, high stability in human serum, and GLP-1R and SSTR affinity. The biodistribution and imaging studies demonstrated properties suitable for its use as a target-specific agent for the simultaneous molecular imaging of GRP-1R- and/or SSTR-positive tumors. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamlah, Florentine, E-mail: Kamlah@staff.uni-marburg.de; Haenze, Joerg; Arenz, Andrea
2011-08-01
Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug,more » allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells, a phenomenon that could not be observed with carbon ion irradiation. Thus, in this model system evaluating angiogenesis, carbon ion irradiation may have a therapeutic advantage. This observation should be confirmed in orthotopic lung tumor models.« less
Sun, Yuning; Xu, Rongfeng; Huang, Jia; Yao, Yuyu; Pan, Xiaodong; Chen, Zhongpu; Ma, Genshan
2018-02-21
C-kit-positive cardiac stem cells (CSCs) have been shown to be a promising candidate treatment for myocardial infarction and heart failure. Insulin-like growth factor (IGF)-1 is an anabolic growth hormone that regulates cellular proliferation, differentiation, senescence, and death in various tissues. Although IGF-1 promotes the migration and proliferation of c-kit-positive mouse CSCs, the underlying mechanism remains unclear. Cells were isolated from adult mouse hearts, and c-kit-positive CSCs were separated using magnetic beads. The cells were cultured with or without IGF-1, and c-kit expression was measured by Western blotting. IGF-1 induced CSC proliferation and migration, as measured through Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. The miR-193a expression was measured by quantitative real-time PCR (qPCR) assays. IGF-1 enhanced c-kit expression in c-kit-positive CSCs. The activities of the phosphoinositol 3-kinase (PI3K)/AKT signaling pathway and DNA methyltransferases (DNMTs) were enhanced, and their respective inhibitors LY294002 and 5-azacytidine (5-AZA) blunted c-kit expression. Based on the results of quantitative real-time PCR (qPCR) assays, the expression of miR-193a, which is embedded in a CpG island, was down-regulated in the IGF-1-stimulated group and negatively correlated with c-kit expression, whereas c-kit-positive CSCs infected with lentivirus carrying micro-RNA193a displayed reduced c-kit expression, migration and proliferation. IGF-1 upregulated c-kit expression in c-kit-positive CSCs resulting in enhanced CSC proliferation and migration by activating the PI3K/AKT/DNMT signaling pathway to epigenetically silence miR-193a, which negatively modifies the c-kit expression level.
Martin, Lauren; Damaso, Natalie; Mills, DeEtta
2016-10-01
Molecular methods for the detection of mammalian coat color phenotypes have expanded greatly within the past decade. Many phenotypes are associated with a single nucleotide polymorphism mutation in the genetic sequence. Traditionally, these mutations are detected through sequencing, hybridization assays or mini-sequencing. However, these techniques can be expensive and tedious. Previously, CE-SSCP using the F-108 polymer was able to distinguish SNPs for the melanocortin-1 receptor (mc1r) coat color gene in horses (Equus caballus) that differed by one nucleotide substitution. The objective of this study was to expand the detection of coat color SNPs in horses. The genes for the solute carrier family member 2 (slc45a2/matp), type III receptor protein-tyrosine kinase (kit) and mc1r genes using CE-SSCP and F-108 polymer were compared to mini-sequencing with the SNaPshot TM kit. The F-108 polymer reproducibly resolved homozygous and heterozygous individuals for the mc1r and kit markers, but was unable to resolve heterozygous individuals for slc45a2 at 38ºC. The need for temperatures <15ºC, the SNP position being close to the 5'-end, and conformational structures/free energy with similar values resulted in the inability to resolve the secondary structures. Despite this limitation, the CE-SSCP method could be used to provide a rapid phenotypic description for equine forensic investigations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Yi; Zeng, Huizhi; Yu, Yang; Zhang, Jiashu; Zeng, Xiaona; Gong, Fengtao; Duan, Xingping; Liu, Qi; Yang, Bo
2017-07-19
The regulation mechanism of inflammation inducing prostate carcinogenesis remains largely unknown. Therefore, we investigated the role of the c-kit/SCF pathway, which has been associated with the control of prostate carcinogenesis, in chronic prostatitis (CP) rats and evaluated the anti-prostatitis effect of resveratrol. We performed hemolysin and eosin staining to evaluate the histopathological changes in prostates. Multiple approaches evaluated the expression levels of c-kit, stem cell factor (SCF), Sirt1, and carcinogenesis-associated proteins. The CP group exhibited severe diffuse chronic inflammation. Meanwhile, the prostate cells appeared atypia; the activity of c-kit/SCF was upregulated, and carcinogenesis-associated proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. In summary, CP could further cause prostate carcinogenesis, which may be associated with activated c-kit/SCF signaling. Resveratrol treatment could improve the progression of CP via the downregulation of c-kit/SCF by activating Sirt1.
c-kit expression profile and regulatory factors during spermatogonial stem cell differentiation
2013-01-01
Background It has been proven that c-kit is crucial for proliferation, migration, survival and maturation of spermatogenic cells. A periodic expression of c-kit is observed from primordial germ cells (PGCs) to spermatogenetic stem cells (SSCs), However, the expression profile of c-kit during the entire spermatogenesis process is still unclear. This study aims to reveal and compare c-kit expression profiles in the SSCs before and after the anticipated differentiation, as well as to examine its relationship with retinoic acid (RA) stimulation. Results We have found that there are more than 4 transcripts of c-kit expressed in the cell lines and in the testes. The transcripts can be divided into short and long categories. The long transcripts include the full-length canonical c-kit transcript and the 3′ end short transcript. Short transcripts include the 3.4 kb short transcript and several truncated transcripts (1.9-3.2 kb). In addition, the 3.4 kb transcript (starting from intron 9 and covering exons 10 ~ 21) is discovered to be specifically expressed in the spermatogonia. The extracellular domain of Kit is obtained in the spermatogonia stage, but the intracellular domain (50 kDa) is constantly expressed in both SSCs and spermatogonia. The c-kit expression profiles in the testis and the spermatogonial stem cell lines vary after RA stimulation. The wave-like changes of the quantitative expression pattern of c-kit (increase initially and decrease afterwards) during the induction process are similar to that of the in vivo male germ cell development process. Conclusions There are dynamic transcription and translation changes of c-kit before and after SSCs’ anticipated differentiation and most importantly, RA is a significant upstream regulatory factor for c-kit expression. PMID:24161026
Iida, Takao; Mizuno, Yukie; Kaizaki, Yasuharu
2017-10-27
Mutations in RAS and BRAF are predictors of the efficacy of anti-epidermal growth factor receptor (EGFR) therapy in patients with metastatic colorectal cancer (mCRC). Therefore, simple, rapid, cost-effective methods to detect these mutations in the clinical setting are greatly needed. In the present study, we evaluated BNA Real-time PCR Mutation Detection Kit Extended RAS (BNA Real-time PCR), a real-time PCR method that uses bridged nucleic acid clamping technology to rapidly detect mutations in RAS exons 2-4 and BRAF exon 15. Genomic DNA was extracted from 54 formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from mCRC patients. Among the 54 FFPE samples, BNA Real-time PCR detected 21 RAS mutations (38.9%) and 5 BRAF mutations (9.3%), and the reference assay (KRAS Mutation Detection Kit and MEBGEN™ RASKET KIT) detected 22 RAS mutations (40.7%). The concordance rate of detected RAS mutations between the BNA Real-time PCR assay and the reference assays was 98.2% (53/54). The BNA Real-time PCR assay proved to be a more simple, rapid, and cost-effective method for detecting KRAS and RAS mutations compared with existing assays. These findings suggest that BNA Real-time PCR is a valuable tool for predicting the efficacy of early anti-EGFR therapy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Kit fox population trends at the Naval Petroleum Reserves in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, T.T.; Scrivner, J.H.; Warrick, G.
The San Joaquin kit fox was listed as an endangered subspecies following passage of the Endangered Species Protection Act of 1966, and further classified as rare under the California Endangered Species Act of 1970. The San Joaquin kit fox occurs on the Naval Petroleum Reserves in California administered by the Department of Energy (DOE). A long term kit fox population monitoring program was initiated as part of DOE's mitigation strategy to comply with the Endangered Species Act. In addition to monitoring kit fox populations, the program includes assessments of kit fox prey density and assessments of predator abundance. The objectivesmore » of this study were to: describe the long term changes in the kit fox population on the Reserves and assess the roles of coyotes and lagomorphs in kit fox population dynamics. When the fox population on NPR-1 declined between 1980 and 1984, it appeared to have been negatively impacted by a declining prey base (lagomorphs) and an increasing coyote population. Declining lagomorph densities may have been a more important factor because as coyote numbers declined between 1985 and 1990, the kit fox population remained stable. The fox population on NPR-2 remained at a higher and more stable level than the population on NPR-1. The factors determining the higher densities and greater stability of the fox population on NPR-2 are unknown.« less
Magalhaes, Sandra; Banwell, Brenda; Bar-Or, Amit; Fortier, Isabel; Hanwell, Heather E; Lim, Ming; Matt, Georg E; Neuteboom, Rinze F; O'Riordan, David L; Schneider, Paul K; Pugliatti, Maura; Shatenstein, Bryna; Tansey, Catherine M; Wassmer, Evangeline; Wolfson, Christina
2018-06-01
While studying the etiology of multiple sclerosis (MS) in children has several methodological advantages over studying etiology in adults, studies are limited by small sample sizes. Using a rigorous methodological process, we developed the Pediatric MS Tool-Kit, a measurement framework that includes a minimal set of core variables to assess etiological risk factors. We solicited input from the International Pediatric MS Study Group to select three risk factors: environmental tobacco smoke (ETS) exposure, sun exposure, and vitamin D intake. To develop the Tool-Kit, we used a Delphi study involving a working group of epidemiologists, neurologists, and content experts from North America and Europe. The Tool-Kit includes six core variables to measure ETS, six to measure sun exposure, and six to measure vitamin D intake. The Tool-Kit can be accessed online ( www.maelstrom-research.org/mica/network/tool-kit ). The goals of the Tool-Kit are to enhance exposure measurement in newly designed pediatric MS studies and comparability of results across studies, and in the longer term to facilitate harmonization of studies, a methodological approach that can be used to circumvent issues of small sample sizes. We believe the Tool-Kit will prove to be a valuable resource to guide pediatric MS researchers in developing study-specific questionnaire.
Ohno, Hiroaki; Kubo, Kazuo; Murooka, Hideko; Kobayashi, Yoshiko; Nishitoba, Tsuyoshi; Shibuya, Masabumi; Yoneda, Toshiyuki; Isoe, Toshiyuki
2006-11-01
In bone metastatic lesions, osteoclasts play a key role in the development of osteolysis. Previous studies have shown that macrophage colony-stimulating factor (M-CSF) is important for the differentiation of osteoclasts. In this study, we investigated whether an inhibitor of M-CSF receptor (c-Fms) suppresses osteoclast-dependent osteolysis in bone metastatic lesions. We developed small molecule inhibitors against ligand-dependent phosphorylation of c-Fms and examined the effects of these compounds on osteolytic bone destruction in a bone metastasis model. We discovered a novel quinoline-urea derivative, Ki20227 (N-{4-[(6,7-dimethoxy-4-quinolyl)oxy]-2-methoxyphenyl}-N'-[1-(1,3-thiazole-2-yl)ethyl]urea), which is a c-Fms tyrosine kinase inhibitor. The IC(50)s of Ki20227 to inhibit c-Fms, vascular endothelial growth factor receptor-2 (KDR), stem cell factor receptor (c-Kit), and platelet-derived growth factor receptor beta were found to be 2, 12, 451, and 217 nmol/L, respectively. Ki20227 did not inhibit other kinases tested, such as fms-like tyrosine kinase-3, epidermal growth factor receptor, or c-Src (c-src proto-oncogene product). Ki20227 was also found to inhibit the M-CSF-dependent growth of M-NFS-60 cells but not the M-CSF-independent growth of A375 human melanoma cells in vitro. Furthermore, in an osteoclast-like cell formation assay using mouse bone marrow cells, Ki20227 inhibited the development of tartrate-resistant acid phosphatase-positive osteoclast-like cells in a dose-dependent manner. In in vivo studies, oral administration of Ki20227 suppressed osteoclast-like cell accumulation and bone resorption induced by metastatic tumor cells in nude rats following intracardiac injection of A375 cells. Moreover, Ki20227 decreased the number of tartrate-resistant acid phosphatase-positive osteoclast-like cells on bone surfaces in ovariectomized (ovx) rats. These findings suggest that Ki20227 inhibits osteolytic bone destruction through the suppression of M-CSF-induced osteoclast accumulation in vivo. Therefore, Ki20227 may be a useful therapeutic agent for osteolytic disease associated with bone metastasis and other bone diseases.
Dong, Hongquan; Zhang, Xiang; Wang, Yiming; Zhou, Xiqiao; Qian, Yanning; Zhang, Shu
2017-03-01
Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the "first responder" in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the "mast cell degranulator" compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. "Mast cell stabilizer" disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H 1 R), histamine receptor 4 (H 4 R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient Kit W-sh/W-sh mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.
Ferro-Flores, Guillermina; Arteaga de Murphy, Consuelo; Rodriguez-Cortés, Jeanette; Pedraza-López, Martha; Ramírez-Iglesias, María Teresa
2006-04-01
Bombesin is a peptide that was initially isolated from frog skin and which belongs to a large group of neuropeptides with many biological functions. The human equivalent is gastrin-releasing peptide (GRP), whose receptors are over-expressed in a variety of malignant tumours. To prepare a HYNIC-[Lys 3]-bombesin analogue that could be easily labelled with 99mTc from lyophilized kit formulations and to evaluate its potential as an imaging agent for GRP receptor-positive tumours. HYNIC was conjugated to the epsilon-amino group of Lys 3 residue at the N-terminal region of bombesin via succinimidyl-N-Boc-HYNIC at pH 9.0. 99mTc labelling was performed by addition of sodium pertechnetate solution and 0.2 M phosphate buffer pH 7.0 to a lyophilized formulation. Stability studies were carried out by reversed phase HPLC and ITLC-SG analyses in serum and cysteine solutions. In-vitro internalization was tested using human prostate cancer PC-3 cells with blocked and non-blocked receptors. Biodistribution and tumour uptake were determined in PC-3 tumour-bearing nude mice. 99mTc-EDDA/HYNIC-[Lys 3]-bombesin was obtained with radiochemical purities >93% and high specific activity ( approximately 0.1 GBq.nmol). Results of in-vitro studies demonstrated a high stability in serum and cysteine solutions, specific cell receptor binding and rapid internalization. Biodistribution data showed a rapid blood clearance, with predominantly renal excretion and specific binding towards GRP receptor-positive tissues such as pancreas and PC-3 tumours. 99mTc-EDDA/HYNIC-[Lys 3]-bombesin obtained from lyophilized kit formulations has promising characteristics for the diagnosis of malignant tumours that over-express the GRP receptor.
A look at the purchase and use of home pregnancy-test kits.
Coons, S J
1989-04-01
A study was conducted to obtain information regarding the purchase and use of home pregnancy-test kits. Questionnaires were distributed to 438 women entering a family-planning clinic in the fall of 1987. A total of 153 questionnaires were completed and returned, providing a response rate of 34.9%. Results indicated that nearly 40% of the respondents had used a home pregnancy-test kit at least once. Of those who had used a home pregnancy-test kit, the majority did so because of "the speed of obtaining results" or "convenience." Although nearly 87% of the pregnancy-test kits had been purchased in a pharmacy, pharmacists played only a minor role in the decision-making process concerning purchase and use. Some three-fourths of the subjects listed "information on the side of the package," "price," or "advertisements" as the most important factor in the selection of a specific brand of test kit. Only about 7% of the subjects selected "recommendation of the pharmacist" as the most important factor. The results suggest that pharmacists could be doing more to promote the appropriate use of self-testing products, specifically home pregnancy-test kits.
Antonescu, Cristina R; Viale, Agnes; Sarran, Lisa; Tschernyavsky, Sylvia J; Gonen, Mithat; Segal, Neil H; Maki, Robert G; Socci, Nicholas D; DeMatteo, Ronald P; Besmer, Peter
2004-05-15
Gastrointestinal stromal tumors (GISTs) are specific KIT expressing and KIT-signaling driven mesenchymal tumors of the human digestive tract, many of which have KIT-activating mutations. Previous studies have found a relatively homogeneous gene expression profile in GIST, as compared with other histological types of sarcomas. Transcriptional heterogeneity within clinically or molecularly defined subsets of GISTs has not been previously reported. We tested the hypothesis that the gene expression profile in GISTs might be related to KIT genotype and possibly to other clinicopathological factors. An HG-U133A Affymetrix chip (22,000 genes) platform was used to determine the variability of gene expression in 28 KIT-expressing GIST samples from 24 patients. A control group of six intra-abdominal leiomyosarcomas was also included for comparison. Statistical analyses (t tests) were performed to identify discriminatory gene lists among various GIST subgroups. The levels of expression of various GIST subsets were also linked to a modified version of the growth factor/KIT signaling pathway to analyze differences at various steps in signal transduction. Genes involved in KIT signaling were differentially expressed among wild-type and mutant GISTs. High gene expression of potential drug targets, such as VEGF, MCSF, and BCL2 in the wild-type group, and Mesothelin in exon 9 GISTs were found. There was a striking difference in gene expression between stomach and small bowel GISTs. This finding was validated in four separate tumors, two gastric and two intestinal, from a patient with familial GIST with a germ-line KIT W557R substitution. GISTs have heterogeneous gene expression depending on KIT genotype and tumor location, which is seen at both the genomic level and the KIT signaling pathway in particular. These findings may explain their variable clinical behavior and response to therapy.
Leung, Kin K.; Hause, Ronald J.; Barkinge, John L.; Ciaccio, Mark F.; Chuu, Chih-Pin; Jones, Richard B.
2014-01-01
Many human diseases are associated with aberrant regulation of phosphoprotein signaling networks. Src homology 2 (SH2) domains represent the major class of protein domains in metazoans that interact with proteins phosphorylated on the amino acid residue tyrosine. Although current SH2 domain prediction algorithms perform well at predicting the sequences of phosphorylated peptides that are likely to result in the highest possible interaction affinity in the context of random peptide library screens, these algorithms do poorly at predicting the interaction potential of SH2 domains with physiologically derived protein sequences. We employed a high throughput interaction assay system to empirically determine the affinity between 93 human SH2 domains and phosphopeptides abstracted from several receptor tyrosine kinases and signaling proteins. The resulting interaction experiments revealed over 1000 novel peptide-protein interactions and provided a glimpse into the common and specific interaction potentials of c-Met, c-Kit, GAB1, and the human androgen receptor. We used these data to build a permutation-based logistic regression classifier that performed considerably better than existing algorithms for predicting the interaction potential of several SH2 domains. PMID:24728074
Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem
2016-05-01
Persistent pulmonary hypertension(PPH) in congenital diaphragmatic hernia (CDH) is caused by increased vascular cell proliferation and endothelial cell (EC) dysfunction, thus leading to obstructive changes in the pulmonary vasculature. C-Kit and its ligand, stem cell factor(SCF), are expressed by ECs in the developing lung mesenchyme, suggesting an important role during lung vascular formation. Conversely, absence of c-Kit expression has been demonstrated in ECs of dysplastic alveolar capillaries. We hypothesized that c-Kit and SCF expression is increased in the pulmonary vasculature of nitrofen-induced CDH. Timed-pregnant rats received nitrofen or vehicle on gestational day 9(D9). Fetuses were sacrificed on D15, D18, and D21, and divided into control and CDH group. Pulmonary gene expression levels of c-Kit and SCF were analyzed by qRT-PCR. Immunofluorescence double staining for c-Kit and SCF was combined with CD34 to evaluate protein expression in ECs of the pulmonary vasculature. Relative mRNA levels of c-Kit and SCF were significantly increased in lungs of CDH fetuses on D15, D18, and D21 compared to controls. Confocal laser scanning microscopy confirmed markedly increased vascular c-Kit and SCF expression in mesenchymal ECs of CDH lungs on D15, D18, and D21 compared to controls. Increased expression of c-Kit and SCF in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that increased c-Kit signaling during lung vascular formation may contribute to vascular remodeling and thus to PPH. Copyright © 2016 Elsevier Inc. All rights reserved.
Factor Analysis of the WAIS and Twenty French-Kit Reference Tests.
ERIC Educational Resources Information Center
Ramsey, Philip H.
1979-01-01
The Wechsler Adult Intelligence Scale (WAIS) and 20 tests from the French Kit were administered to over 100 undergraduates. Analyses revealed ten factors: verbal comprehension, visualization, memory span, syllogistic reasoning, general reasoning, induction, mechanical knowledge, number facility, spatial orientation, and associative memory.…
Alvarez-Twose, Iván; González de Olano, David; Sánchez-Muñoz, Laura; Matito, Almudena; Esteban-López, Maria I; Vega, Arantza; Mateo, Maria Belén; Alonso Díaz de Durana, Maria D; de la Hoz, Belén; Del Pozo Gil, Maria D; Caballero, Teresa; Rosado, Ana; Sánchez Matas, Isabel; Teodósio, Cristina; Jara-Acevedo, María; Mollejo, Manuela; García-Montero, Andrés; Orfao, Alberto; Escribano, Luis
2010-06-01
Systemic mast cell activation disorders (MCADs) are characterized by severe and systemic mast cell (MC) mediators-related symptoms frequently associated with increased serum baseline tryptase (sBt). To analyze the clinical, biological, and molecular characteristics of adult patients presenting with systemic MC activation symptoms/anaphylaxis in the absence of skin mastocytosis who showed clonal (c) versus nonclonal (nc) MCs and to provide indication criteria for bone marrow (BM) studies. Eighty-three patients were studied. Patients showing clonal BM MCs were grouped into indolent systemic mastocytosis without skin lesions (ISMs(-); n = 48) and other c-MCADs (n = 3)-both with CD25(++) BM MCs and either positive mast/stem cell growth factor receptor gene (KIT) mutation or clonal human androgen receptor assay (HUMARA) tests-and nc-MCAD (CD25-negative BM MCs in the absence of KIT mutation; n = 32) and compared for their clinical, biological, and molecular characteristics. Most clonal patients (48/51; 94%) met the World Health Organization criteria for systemic mastocytosis and were classified as ISMs(-), whereas the other 3 c-MCAD and all nc-MCAD patients did not. In addition, although both patients with ISMs(-) and patients with nc-MCAD presented with idiopathic and allergen-induced anaphylaxis, the former showed a higher frequency of men, cardiovascular symptoms, and insect bite as a trigger, together with greater sBt. Based on a multivariate analysis, a highly efficient model to predict clonality before BM sampling was built that includes male sex (P = .01), presyncopal and/or syncopal episodes (P = .009) in the absence of urticaria and angioedema (P = .003), and sBt >25 microg/L (P = .006) as independent predictive factors. Patients with c-MCAD and ISMs(-) display unique clinical and laboratory features different from nc-MCAD patients. A significant percentage of c-MCAD patients can be considered as true ISMs(-) diagnosed at early phases of the disease. Copyright (c) 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Kim, Jong-Han; Boo, Yoon-Jung; Jung, Cheol-Woong; Park, Sung-Soo; Kim, Seung-Joo; Mok, Young-Jae; Kim, Sang-Dae; Chae, Yang-Suk; Kim, Chong-Suk
2007-01-01
To report an extragastrointestinal stromal tumor (EGIST) that occurs outside the gastrointestinal tract and shows unique clinicopathologic and immunohistochemical features. In our case, we experienced multiple soft tissue tumors that originate primarily in the greater omentum, and in immunohistochemical analysis, the tumors showed features that correspond to malignant EGIST. Two large omental masses measured 15 cm x 10 cm and 5 cm × 4 cm sized and several small ovoid fragments were attached to small intestine, mesentery and peritoneum. On histologic findings, the masses were separated from small bowel serosa and had high mitotic count (115/50 HPFs). In the results of immunohistochemical stains, the tumor showed CD117 (c-kit) positive reactivity and high Ki-67 labeling index. On mutation analysis, the c-kit gene mutation was found in the juxtamembrane domain (exon 11) and it was heterozygote. Platelet-derived growth factor receptor (PDGFR) gene mutation was also found in the juxtamemembrane (exon 12) and it was polymorphism. From above findings, we proposed that there may be several mutational pathways to malignant EGIST, so further investigations could be needed to approach this unfavorable disease entity. PMID:17659683
Visualizing protein interactions and dynamics: evolving a visual language for molecular animation.
Jenkinson, Jodie; McGill, Gaël
2012-01-01
Undergraduate biology education provides students with a number of learning challenges. Subject areas that are particularly difficult to understand include protein conformational change and stability, diffusion and random molecular motion, and molecular crowding. In this study, we examined the relative effectiveness of three-dimensional visualization techniques for learning about protein conformation and molecular motion in association with a ligand-receptor binding event. Increasingly complex versions of the same binding event were depicted in each of four animated treatments. Students (n = 131) were recruited from the undergraduate biology program at University of Toronto, Mississauga. Visualization media were developed in the Center for Molecular and Cellular Dynamics at Harvard Medical School. Stem cell factor ligand and cKit receptor tyrosine kinase were used as a classical example of a ligand-induced receptor dimerization and activation event. Each group completed a pretest, viewed one of four variants of the animation, and completed a posttest and, at 2 wk following the assessment, a delayed posttest. Overall, the most complex animation was the most effective at fostering students' understanding of the events depicted. These results suggest that, in select learning contexts, increasingly complex representations may be more desirable for conveying the dynamic nature of cell binding events.
Wong, Li Ping; Atefi, Narges; AbuBakar, Sazaly
2016-08-12
As there is no specific treatment for dengue, early detection and access to proper treatment may lower dengue fatality. Therefore, having new techniques for the early detection of dengue fever, such as the use of dengue test kit, is vitally important. The aims of the study were: 1) identify factors associated with acceptance of a home self-test kit for dengue fever if the dengue test is available to the public and 2) find out the characteristics of the test kits that influence the use of the dengue test kit. A national telephone survey was carried out with 2,512 individuals of the Malaysian public aged 18-60 years old. Individuals were contacted by random digit dialling covering the whole of Malaysia from February 2012 to June 2013. From 2,512 participants, 6.1 % reported to have heard of the availability of the dengue home test kit and of these, 44.8 % expressed their intention to use the test kit if it was available. Multivariate logistic regressions indicated that participants with primary (OR: 0.65; 95 % CI: 0.43-0.89; p = 0.02, vs. tertiary educational level) and secondary educational levels (OR: 0.73; 95 % CI: 0.57-0.90; p = 0.01, vs. tertiary educational level) were less likely than participants with a tertiary educational level to use a home self-testing dengue kit for dengue if the kit was available. Participants with lower perceived barriers to dengue prevention (level of barriers 0-5) were less likely (OR: 0.67, 95 % CI: 0.53-0.85, p < 0.001, vs. higher perceived barriers) to use a home self-testing dengue kit for dengue if the kit was available compared to those with higher perceived barriers to dengue prevention (level of barriers 6-10). Participants with a lower total dengue fever knowledge score (range 0-22) were also less likely to use a home self-testing dengue kit for dengue if the kit was available (OR: 0.75; 95 % CI: 0.61-0.91, p = 0.001, vs. higher total dengue fever knowledge score) compared to those with a higher total dengue fever knowledge score (range 23-44). With response to characteristics of the test kit, participants indicated that ease of usability and easy to understand instructions were the most important factors influencing the decision to use the dengue home test kit; this was followed by the price of the test kit. The study highlights the need for provision of information to increase knowledge about the home self-testing dengue kit. Educational interventions should target people with low educational levels, those with lower dengue fever knowledge and those with lower perceived barriers to dengue prevention.
Rusu, M C; Motoc, A G M; Pop, F; Folescu, R
2013-01-01
Five samples of human midterm fetal uterus and fallopian tube (four donor bodies) were used to assess whether or not processes of angiogenesis are guided by endothelial tip cells (ETCs), and if cytokine-receptors, such as CD117/c-kit and PDGFR-α, are expressed in the microenvironment of the endothelial tubes. CD34 labeled microvessels in the uterine wall (myometrium and endometrium) and in the wall of the uterine (fallopian) tube, and accurately identified ETCs in both organs. We conclude that sprouting angiogenesis in the developing human female tract is guided by ETCs. Moreover, CD117/c-kit antibodies labeled mural networks of pericytes, α-SMA-positive and desmin-negative, related to the endometrial (but not myometrial) microvessels, and similar labeling was identified in the wall of the uterine tube. PDGFR-α positive labeling, stromal and pericytary, was also found. Thus, sprouting angiogenesis in human fetal genital organs appears to be guided by tip cells and is influenced by tyrosine kinase receptor signaling.
Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice.
Boyer, Hadrien-Gaël; Wils, Julien; Renouf, Sylvie; Arabo, Arnaud; Duparc, Céline; Boutelet, Isabelle; Lefebvre, Hervé; Louiset, Estelle
2017-12-01
Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice. We have also investigated the regulation of aldosterone secretion in mast cell-deficient C57BL/6 Kit W-sh/W-sh mice in comparison with wild-type C57BL/6 mice. Kit W-sh/W-sh mice submitted to normal sodium diet had basal plasma aldosterone levels similar to those observed in wild-type animals. Conversely, low-sodium diet unexpectedly induced an exaggerated aldosterone response, which seemed to result from an increase in adrenal renin and angiotensin type 1 receptor expression. Severe hyperaldosteronism was associated with an increase in systolic blood pressure and marked hypokalemia, which favored polyuria. Adrenal renin and angiotensin type 1 receptor overexpression may represent a compensatory mechanism aimed at activating aldosterone production in the absence of mast cells. Finally, C57BL/6 Kit W-sh/W-sh mice represent an unexpected animal model of primary aldosteronism, which has the particularity to be triggered by sodium restriction. © 2017 American Heart Association, Inc.
Maddens, Stéphane; Charruyer, Alexandra; Plo, Isabelle; Dubreuil, Patrice; Berger, Stuart; Salles, Bernard; Laurent, Guy; Jaffrézou, Jean-Pierre
2002-08-15
Previous studies demonstrated that Kit activation confers radioprotection. However, the mechanism by which Kit signaling interferes with cellular response to ionizing radiation (IR) has not been firmly established. Based on the role of the sphingomyelin (SM) cycle apoptotic pathway in IR-induced apoptosis, we hypothesized that one of the Kit signaling components might inhibit IR-induced ceramide production or ceramide-induced apoptosis. Results show that, in both Ba/F3 and 32D murine cell lines transfected with wild-type c-kit, stem cell factor (SCF) stimulation resulted in a significant reduction of IR-induced apoptosis and cytotoxicity, whereas DNA repair remained unaffected. Moreover, SCF stimulation inhibited IR-induced neutral sphingomyelinase (N-SMase) stimulation and ceramide production. The SCF inhibitory effect on SM cycle was not influenced by wortmannin, a phosphoinositide-3 kinase (PI3K) inhibitor. The SCF protective effect was maintained in 32D-KitYF719 cells in which the PI3K/Akt signaling pathway is abolished due to mutation in Kit docking site for PI3K. In contrast, phospholipase C gamma (PLC gamma) inhibition by U73122 totally restored IR-induced N-SMase stimulation, ceramide production, and apoptosis in Kit-activated cells. Moreover, SCF did not protect 32D-KitYF728 cells (lacking a functional docking site for PLC gamma 1), from IR-induced SM cycle. Finally, SCF-induced radioprotection of human CD34(+) bone marrow cells was also inhibited by U73122. Altogether, these results suggest that SCF radioprotection is due to PLC gamma 1-dependent negative regulation of IR-induced N-SMase stimulation. Beyond the scope of Kit-expressing cells, it suggests that PLC gamma 1 status could greatly influence the post-DNA damage cellular response to IR, and perhaps, to other genotoxic agents.
An immunohistochemical analysis of canine haemangioma and haemangiosarcoma.
Sabattini, S; Bettini, G
2009-01-01
The aim of the present study was to investigate immunohistochemically aspects of the biology of canine endothelial neoplasia. Forty samples of canine cutaneous and visceral haemangiosarcoma (HSA), 29 samples of cutaneous and visceral haemangioma (HA) and 10 control samples of granulation tissue (GT) were labelled with antisera specific for vimentin, smooth muscle actin, von Willebrand factor (vWF), CD117 (KIT), vascular endothelial growth factor receptor-3 (VEGFR-3), vascular endothelial growth factor-C (VEGFC) and CD44. Further antisera were employed to determine the level of cellular proliferation (MIB-1 index) and toluidine blue staining was used to detect populations of tumour-infiltrating mast cells (MCs). There was greater expression of CD117, VEGFR-3 and CD44 in HSA than in HA, suggesting that these proteins might be suitable targets for the future development of novel therapeutic approaches to canine HSA. Marked infiltration of MC was detected in HA, suggesting a possible role for these cells in the pathogenesis of benign vascular neoplasia in the dog.
Meng, Wenbo; Li, Xun; Bai, Zhongtian; Li, Yan; Yuan, Jinqiu; Liu, Tao; Yan, Jun; Zhou, Wence; Zhu, Kexiang; Zhang, Hui; Li, Yumin
2014-01-01
Alpha-fetoprotein not only serves as a diagnostic marker for liver cancer, but also posses a variety of biological functions. However, the role of Alpha-fetoprotein on tumor angiogenesis and cell invasion remains incompletely understood. In this study, we aimed to evaluate if Alpha-fetoprotein can regulate the major angiogenic factors and matrix metalloproteinases in human liver cancer cells. Alpha-fetoprotein silencing was achieved by Stealth RNAi. Expression of Alpha-fetoprotein was examined by a full-automatic electrochemistry luminescence immunity analyzer. Expression of VEGF, VEGFR-2, MMP-9, and MMP-2 was examined by Western blot and immunocytochemistry. Apoptosis was detected by TUNEL assay. Angiogenesis was detected by in vitro angiogenesis assay kit. Silencing of Alpha-fetoprotein led to an increased apoptosis, which was associated with a decreased expression of vascular endothelial growth factor, vascular endothelial growth factor receptor 2, matrix metalloproteinases-2/9. These results suggest that Alpha-fetoprotein may play a regulatory role on angiogenesis and cell invasion during liver cancer development.
KIT Inhibition by Imatinib in Patients with Severe Refractory Asthma
Cahill, Katherine N.; Katz, Howard R.; Cui, Jing; Lai, Juying; Kazani, Shamsah; Crosby-Thompson, Allison; Garofalo, Denise; Castro, Mario; Jarjour, Nizar; DiMango, Emily; Erzurum, Serpil; Trevor, Jennifer L.; Shenoy, Kartik; Chinchilli, Vernon M.; Wechsler, Michael E.; Laidlaw, Tanya M.; Boyce, Joshua A.; Israel, Elliot
2017-01-01
BACKGROUND Mast cells are present in the airways of patients who have severe asthma despite glucocorticoid treatment; these cells are associated with disease characteristics including poor quality of life and inadequate asthma control. Stem cell factor and its receptor, KIT, are central to mast-cell homeostasis. We conducted a proof-of-principle trial to evaluate the effect of imatinib, a KIT inhibitor, on airway hyper-responsiveness, a physiological marker of severe asthma, as well as on airway mast-cell numbers and activation in patients with severe asthma. METHODS We conducted a randomized, double-blind, placebo-controlled, 24-week trial of imatinib in patients with poorly controlled severe asthma who had airway hyperresponsiveness despite receiving maximal medical therapy. The primary end point was the change in airway hyperresponsiveness, measured as the concentration of methacholine required to decrease the forced expiratory volume in 1 second by 20% (PC20). Patients also underwent bronchoscopy. RESULTS Among the 62 patients who underwent randomization, imatinib treatment reduced airway hyperresponsiveness to a greater extent than did placebo. At 6 months, the methacholine PC20 increased by a mean (±SD) of 1.73±0.60 doubling doses in the imatinib group, as compared with 1.07±0.60 doubling doses in the placebo group (P = 0.048). Imatinib also reduced levels of serum tryptase, a marker of mast-cell activation, to a greater extent than did placebo (decrease of 2.02±2.32 vs. 0.56±1.39 ng per milliliter, P = 0.02). Airway mast-cell counts declined in both groups. Muscle cramps and hypophosphatemia were more common in the imatinib group than in the placebo group. CONCLUSIONS In patients with severe asthma, imatinib decreased airway hyperresponsiveness, mast-cell counts, and tryptase release. These results suggest that KIT-dependent processes and mast cells contribute to the pathobiologic basis of severe asthma. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01097694.) PMID:28514613
2002-08-01
an increase in estrogen receptor activity. A second objective is to understand the potential role of Src in estrogen induced mammary ductal development ...bPcis i on to The Ser-ilS-dependent link wt GR- t KaroBio AB, a Swedish pharmaceutical development company with CBP is in addition to the Ser-1l8...the ECL detection kit (Amersham Pharmacia Biotech ). phoresis, stained with Coomassic Blue to monitor expression, and sub- Fluorescence Microscopy
2010-09-01
cancer cells at the plasma membrane level were measured by cell surface biotinylation, using a dedicated kit (cat. #89881) obtained from Pierce...each form of the receptor at the plasma membrane of transfected cells was confirmed by isolation of cell surface proteins obtained by biotinylation...this receptor to interact with both plasma membrane-bound and soluble FKN. Based on our study, it seems reasonable to postulate that the dissemination
A meta-analysis of prognostic value of KIT mutation status in gastrointestinal stromal tumors
Jiang, Zhiqiang; Zhang, Jian; Li, Zhi; Liu, Yingjun; Wang, Daohai; Han, Guangsen
2016-01-01
Numerous types of KIT mutations have been reported in gastrointestinal stromal tumors (GISTs); however, controversy still exists regarding their clinicopathological significance. In this study, we reviewed the publicly available literature to assess the data by a meta-analysis to characterize KIT mutations and different types of KIT mutations in prognostic prediction in patients with GISTs. Twenty-eight studies that included 4,449 patients were identified and analyzed. We found that KIT mutation status was closely correlated with size of tumors and different mitosis indexes, but not with tumor location. KIT mutation was also observed to be significantly correlated with tumor recurrence, metastasis, as well as the overall survival of patients. Interestingly, there was higher risk of progression in KIT exon 9-mutated patients than in exon 11-mutated patients. Five-year relapse-free survival (RFS) rate was significantly higher in KIT exon 11-deleted patients than in those with other types of KIT exon 11 mutations. In addition, RFS for 5 years was significantly worse in patients bearing KIT codon 557–558 deletions than in those bearing other KIT exon 11 deletions. Our results strongly support the hypothesis that KIT mutation status is another evaluable factor for prognosis prediction in GISTs. PMID:27350754
Antonescu, Cristina R; Sommer, Gunhild; Sarran, Lisa; Tschernyavsky, Sylvia J; Riedel, Elyn; Woodruff, James M; Robson, Mark; Maki, Robert; Brennan, Murray F; Ladanyi, Marc; DeMatteo, Ronald P; Besmer, Peter
2003-08-15
Activating mutations of the KIT juxtamembrane region are the most common genetic events in gastrointestinal stromal tumors (GISTs) and have been noted as independent prognostic factors. The impact of KIT mutation in other regions, such as the extracellular or kinase domains, is not well-defined and fewer than 30 cases have been published to date. One hundred twenty GISTs, confirmed by KIT immunoreactivity, were evaluated for the presence of KIT exon 9, 11, 13, and 17 mutations. The relation between the presence/type of KIT mutation and clinicopathological factors was analyzed using Fisher's exact test and log-rank test. Forty-four % of the tumors were located in the stomach, 47% in the small bowel, 6% in the rectum, and 3% in the retroperitoneum. Overall, KIT mutations were detected in 78% of patients as follows: 67% in exon 11, 11% in exon 9, and none in exon 13 or 17. The types of KIT exon 11 mutations were heterogeneous and clustered in the classic "hot spot" at the 5' end of exon 11. Seven % of cases showed internal tandem duplications (ITD) at the 3' end of exon 11, in a region that we designate as a second hot spot for KIT mutations. Interestingly, these cases were associated with: female predominance, stomach location, occurrence in older patients, and favorable outcome. There were significant associations between exon 9 mutations and large tumor size (P < 0.001) and extragastric location (P = 0.02). Ten of these 13 patients with more than 1-year follow-up have developed recurrent disease. Most KIT-expressing GISTs show KIT mutations that are preferentially located within the classic hot spot of exon 11. In addition, we found an association between a second hot spot at the 3'end of exon 11, characterized by ITDs, and a subgroup of clinically indolent gastric GISTs in older females. KIT exon 9 mutations seem to define a distinct subset of GISTs, located predominantly in the small bowel and associated with an unfavorable clinical course.
Evaluation of the kinase domain of c-KIT in canine cutaneous mast cell tumors
Webster, Joshua D; Kiupel, Matti; Yuzbasiyan-Gurkan, Vilma
2006-01-01
Background Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in human mastocytosis patients primarily occur in c-KIT exon 17, which encodes a portion of its kinase domain. In contrast, deletions and internal tandem duplication (ITD) mutations are found in the juxtamembrane domain of c-KIT in approximately 15% of canine MCTs. In addition, ITD c-KIT mutations are significantly associated with aberrant KIT protein localization in canine MCTs. However, some canine MCTs have aberrant KIT localization but lack ITD c-KIT mutations, suggesting that other mutations or other factors may be responsible for aberrant KIT localization in these tumors. Methods In order to characterize the prevalence of mutations in the phospho-transferase portion of c-KIT's kinase domain in canine MCTs exons 16–20 of 33 canine MCTs from 33 dogs were amplified and sequenced. Additionally, in order to determine if mutations in c-KIT exon 17 are responsible for aberrant KIT localization in MCTs that lack juxtamembrane domain c-KIT mutations, c-KIT exon 17 was amplified and sequenced from 18 canine MCTs that showed an aberrant KIT localization pattern but did not have ITD c-KIT mutations. Results No mutations or polymorphisms were identified in exons 16–20 of any of the MCTs examined. Conclusion In conclusion, mutations in the phospho-transferase portion of c-KIT's kinase domain do not play an important role in the progression of canine cutaneous MCTs, or in the aberrant localization of KIT in canine MCTs. PMID:16579858
Boult, Jessica K R; Terkelsen, Jennifer; Walker-Samuel, Simon; Bradley, Daniel P; Robinson, Simon P
2013-01-01
Angiogenesis, the development of new blood vessels, is essential for tumour growth; this process is stimulated by the secretion of numerous growth factors including platelet derived growth factor (PDGF). PDGF signalling, through its receptor platelet derived growth factor receptor (PDGFR), is involved in vessel maturation, stimulation of angiogenesis and upregulation of other angiogenic factors, including vascular endothelial growth factor (VEGF). PDGFR is a promising target for anti-cancer therapy because it is expressed on both tumour cells and stromal cells associated with the vasculature. MLN0518 (tandutinib) is a potent inhibitor of type III receptor tyrosine kinases that demonstrates activity against PDGFRα/β, FLT3 and c-KIT. In this study a multi-parametric MRI and histopathological approach was used to interrogate changes in vascular haemodynamics, structural response and hypoxia in C6 glioma xenografts in response to treatment with MLN0518. The doubling time of tumours in mice treated with MLN0518 was significantly longer than tumours in vehicle treated mice. The perfused vessel area, number of alpha smooth muscle actin positive vessels and hypoxic area in MLN0518 treated tumours were also significantly lower after 10 days treatment. These changes were not accompanied by alterations in vessel calibre or fractional blood volume as assessed using susceptibility contrast MRI. Histological assessment of vessel size and total perfused area did not demonstrate any change with treatment. Intrinsic susceptibility MRI did not reveal any difference in baseline R2* or carbogen-induced change in R2*. Dynamic contrast-enhanced MRI revealed anti-vascular effects of MLN0518 following 3 days treatment. Hypoxia confers chemo- and radio-resistance, and alongside PDGF, is implicated in evasive resistance to agents targeted against VEGF signalling. PDGFR antagonists may improve potency and efficacy of other therapeutics in combination. This study highlights the challenges of identifying appropriate quantitative imaging response biomarkers in heterogeneous models, particularly considering the multifaceted roles of angiogenic growth factors.
Na, Yong Joo; Baek, Heung Su; Ahn, Soo Mi; Shin, Hyun Jung; Chang, Ih-Seop; Hwang, Jae Sung
2007-09-01
It is well known that c-kit is related to pigmentation as well as to the oncology target protein. The objective of this study was to discover a skin-whitening agent that regulates c-kit activity. We have developed a high-throughput screening system using recombinant human c-kit protein. Approximately 10,000 synthetic compounds were screened for their effect on c-kit activity. Phenyl-imidazole sulfonamide derivatives showed inhibitory activity on c-kit phosphorylation in vitro. The effects of one derivative, [4-t-butylphenyl]-N-(4-imidazol-1-yl phenyl)sulfonamide (ISCK03), on stem-cell factor (SCF)/c-kit cellular signaling in 501mel human melanoma cells were examined further. Pretreatment of 501mel cells with ISCK03 inhibited SCF-induced c-kit phosphorylation dose dependently. ISCK03 also inhibited p44/42 ERK mitogen-activated protein kinase (MAPK) phosphorylation, which is known to be involved in SCF/c-kit downstream signaling. However ISCK03 did not inhibit hepatocyte growth factor (HGF)-induced phosphorylation of p44/42 ERK proteins. To determine the in vivo potency of ISCK03, it was orally administered to depilated C57BL/6 mice. Interestingly, oral administration of ISCK03 induced the dose-dependent depigmentation of newly regrown hair, and this was reversed with cessation of ISCK03 treatment. Finally, to investigate whether the inhibitory effect of ISCK03 on SCF/c-kit signaling abolished UV-induced pigmentation, ISCK03 was applied to UV-induced pigmented spots on brownish guinea pig skin. The topical application of ISCK03 promoted the depigmentation of UV-induced hyperpigmented spots. Fontana-Masson staining analysis showed epidermal melanin was diminished in spots treated with ISCK03. These results indicate that phenyl-imidazole sulfonamide derivatives are potent c-kit inhibitors and might be used as skin-whitening agents.
Carvalho, Maria Isabel; Pires, Isabel; Dias, Marlene; Prada, Justina; Gregório, Hugo; Lobo, Luis; Queiroga, Felisbina
2015-01-01
In this study 80 malignant CMT were submitted to immunohistochemical detection of CD3, c-kit, VEGF, and CD31, together with clinicopathological parameters of tumor aggressiveness. CD3+ T-cells and c-kit overexpression revealed a positive correlation with VEGF (r = 0.503, P < 0.0001; r = 0.284, P = 0.023 for CD3 and c-kit, resp.) and CD31 (r = 0.654, P < 0.0001; r = 0.365, P = 0.003 for CD3 and c-kit, resp.). A significant association (P = 0.039) and a positive correlation (r = 0.263, P = 0.039) between CD3 and c-kit were also observed. High CD3/VEGF, c-kit/VEGF, and CD3/c-kit tumors were associated with elevated grade of malignancy (P < 0.0001 for all groups), presence of intravascular emboli (P < 0.0001 for CD3/VEGF and CD3/c-kit; P = 0.002 for c-kit/VEGF), and presence of lymph node metastasis (P < 0.0001 for all groups). Tumors with high CD3/VEGF (P = 0.006), c-kit/VEGF (P < 0.0001), and CD3/c-kit (P = 0.002) were associated with poor prognosis. Interestingly high c-kit/VEGF tumors retained their significance by multivariate analysis arising as independent prognostic factor. PMID:26346272
Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer
2015-05-05
Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.
Biranjia-Hurdoyal, Susheela D; Seetulsingh-Goorah, Sharmila P
2016-01-01
The aim was to determine the performances of four Helicobacter pylori serological detection kits in different target groups, using Amplified IDEIA™ Hp StAR™ as gold standard. Kits studied were Rapid Immunochromatoghraphic Hexagon, Helicoblot 2.1, an EIA IgG kit and EIA IgA kit. Stool and blood samples were collected from 162 apparently healthy participants (control) and 60 Type 2 diabetes mellitus (T2DM) patients. The performances of the four serological detection kits were found to be affected by gender, age, health status and ethnicity of the participants. In the control group, the Helicoblot 2.1 kit had the best performance (AUC = 0.85; p<0.05, accuracy = 86.4%), followed by EIA IgG (AUC = 0.75; p<0.05, accuracy = 75.2%). The Rapid Hexagon and EIA IgA kits had relatively poor performances. In the T2DM subgroup, the kits H2.1 and EIA IgG had best performances, with accuracies of 96.5% and 93.1% respectively. The performance of EIA IgG improved with adjustment of its cut-off value. The performances of the detection kits were affected by various factors which should be taken into consideration.
Stromal and epithelial cells react differentially to c-kit in fibroepithelial tumors of the breast.
Logullo, Angela F; Nonogaki, Suely; Do Socorro Maciel, Maria; Mourão-Neto, Mário; Soares, Fernando Augusto
2008-01-01
The CD117 protein is a tyrosine-kinase receptor encoded by the c-kit gene that frequently bears activating mutations in gastrointestinal tumors. Conflicting findings regarding CD117 expression in other stromal tumors, including phyllodes tumors (PTs), have been reported in the literature. The purpose of this study was to evaluate c-kit expression in the stroma and epithelia of fibroepithelial breast tumors and its correlation with clinical pathological variables. Ninety-six fibroepithelial tumors of the breast, including 14 fibroadenomas (FAs), 12 juvenile FAs and 70 PTs, were classified according to stromal cellularity, atypia, epithelial hyperplasia, mitosis and borders into 45 benign (PTB), 17 borderline (PTBL) and 8 malignant (PTM) tumors. CD117 expression was identified in the stromal component in only two cases of PTBL. Overall, 38 cases (39.6%) showed positive CD117 in the epithelial component, including 20 FAs (10 regular, 10 juvenile) and 18 PTs (11 PTBs and 8 PTBLs). Other cases, including all PTMs, 6 FAs (4 regular, 2 juvenile), 34 PTBs and 10 PTBLs, showed no positivity in the epithelial component. Expression of c-kit did not correlate with diagnosis or malignancy (p>0.05). In conclusion, c-kit is expressed more often in the epithelial than in the stromal component in fibroepithelial tumors of the breast, and is associated with benign lesions.
Khan, Masood U; Bowsher, Ronald R; Cameron, Mark; Devanarayan, Viswanath; Keller, Steve; King, Lindsay; Lee, Jean; Morimoto, Alyssa; Rhyne, Paul; Stephen, Laurie; Wu, Yuling; Wyant, Timothy; Lachno, D Richard
2015-01-01
Increasingly, commercial immunoassay kits are used to support drug discovery and development. Longitudinally consistent kit performance is crucial, but the degree to which kits and reagents are characterized by manufacturers is not standardized, nor are the approaches by users to adapt them and evaluate their performance through validation prior to use. These factors can negatively impact data quality. This paper offers a systematic approach to assessment, method adaptation and validation of commercial immunoassay kits for quantification of biomarkers in drug development, expanding upon previous publications and guidance. These recommendations aim to standardize and harmonize user practices, contributing to reliable biomarker data from commercial immunoassays, thus, enabling properly informed decisions during drug development.
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/Wv mice carrying W and Wv mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/Wv mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/Wv mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/Wv mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/Wv mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/Wv mutant mice. PMID:26727725
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/W(v) mice carrying W and W(v) mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/W(v) mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/W(v) mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/W(v) mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/W(v) mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/W(v) mutant mice.
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/Wv mice carrying W and Wv mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/Wv mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/Wv mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/Wv mutant colon.The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers,but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/Wv mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/Wv mutant mice.
Baumann, U; Chouchakova, N; Gewecke, B; Köhl, J; Carroll, M C; Schmidt, R E; Gessner, J E
2001-07-15
We induced the passive reverse Arthus reaction to IgG immune complexes (IC) at different tissue sites in mice lacking C3 treated or not with a C5aR-specific antagonist, or in mice lacking mast cells (Kit(W)/Kit(W-v) mice), and compared the inflammatory responses with those in the corresponding wild-type mice. We confirmed that IC inflammation of skin can be mediated largely by mast cells expressing C5aR and FcgammaRIII. In addition, we provided evidence for C3-independent C5aR triggering, which may explain why the cutaneous Arthus reaction develops normally in C3(-/-) mice. Furthermore, some, but not all, of the acute changes associated with the Arthus response in the lung were significantly more intense in normal mice than in C3(-/-) or Kit(W)/Kit(W-v) mice, indicating for C3- and mast cell-dependent and -independent components. Finally, we demonstrated that C3 contributed to the elicitation of neutrophils to alveoli, which corresponded to an increased synthesis of TNF-alpha, macrophage-inflammatory protein-2, and cytokine-induced neutrophil chemoattractant. While mast cells similarly influenced alveolar polymorphonuclear leukocyte influx, the levels of these cytokines remained largely unaffected in mast cell deficiency. Together, the phenotypes of C3(-/-) mice and Kit(W)/Kit(W-v) mice suggest that complement and mast cells have distinct tissue site-specific requirements acting by apparently distinct mechanisms in the initiation of IC inflammation.
Hadzijusufovic, E; Peter, B; Herrmann, H; Rülicke, T; Cerny-Reiterer, S; Schuch, K; Kenner, L; Thaiwong, T; Yuzbasiyan-Gurkan, V; Pickl, W F; Willmann, M; Valent, P
2012-01-01
Background Advanced mast cell (MC) disorders are characterized by uncontrolled growth of neoplastic MC in various organs, mediator-related symptoms, and a poor prognosis. Kit mutations supposedly contribute to abnormal growth and drug resistance in these patients. Methods We established a novel canine mastocytoma cell line, NI-1, from a patient suffering from MC leukemia. Results NI-1 cells were found to form mastocytoma lesions in NOD/SCID IL-2Rgammanull mice and to harbor several homozygous Kit mutations, including missense mutations at nucleotides 107(C→T) and 1187(A→G), a 12-bp duplication (nucleotide 1263), and a 12-bp deletion (nucleotide 1550). NI-1 cells expressed several MC differentiation antigens, including tryptase, Kit, and a functional IgE receptor. Compared to the C2 mastocytoma cell line harboring a Kit exon 11 mutation, NI-1 cells were found to be less responsive against the Kit tyrosine kinase inhibitors (TKI) masitinib and imatinib, but were even more sensitive against proliferation-inhibitory effects of the mammalian target of rapamycin (mTOR) blocker RAD001 and PI3-kinase/mTOR blocker NVP-BEZ235. The Kit-targeting multikinase inhibitors PKC412 and dasatinib were also found to override TKI resistance in NI-1 cells, and produced growth inhibition with reasonable IC50 values (<0.1 μM). Conclusion NI-1 may serve as a useful tool to investigate IgE-dependent reactions and mechanisms of abnormal growth and drug resistance in neoplastic MC in advanced mastocytosis. PMID:22583069
Chen, Jun; Liang, Xiu; Chen, Pei-fu
2011-04-01
Inducing animal viruses to adapt to chicken embryos or chicken embryo fibroblasts (CEF) is a common method to develop attenuated live vaccines with full security. Canine distemper virus (CDV) also does this, but the mechanisms and particular receptors remain unclear. Virus overlay protein blot assays were carried out on CEF membrane proteins, which were extracted respectively with a Mem-PER™ kit, a radioimmunoprecipitation assay buffer or a modified co-immunoprecipitation method, and revealed a common 57 kDa positive band that differed from the 42-kDa positive band in Vero cells and also from those receptors reported in lymphocytes and 293 cells, indicating a receptor diversity of CDV and the possibility of the 57-kDa protein acting as a receptor that is involved in adaptive infection of CDV Kunming strain to CEF.
Tian, Ying; Wang, Genjie; Hu, Qingzhu; Xiao, Xichun; Chen, Shuxia
2018-04-01
The AML1/ETO onco-fusion protein is crucial for the genesis of t(8;21) acute myeloid leukemia (AML) and is well documented as a transcriptional repressor through dominant-negative effect. However, little is known about the transactivation mechanism of AML1/ETO. Through large cohort of patient's expression level data analysis and a series of experimental validation, we report here that AML1/ETO transactivates c-KIT expression through directly binding to and mediating the long-range interaction between the promoter and intronic enhancer regions of c-KIT. Gene expression analyses verify that c-KIT expression is significantly high in t(8;21) AML. Further ChIP-seq analysis and motif scanning identify two regulatory regions located in the promoter and intronic enhancer region of c-KIT, respectively. Both regions are enriched by co-factors of AML1/ETO, such as AML1, CEBPe, c-Jun, and c-Fos. Further luciferase reporter assays show that AML1/ETO trans-activates c-KIT promoter activity through directly recognizing the AML1 motif and the co-existence of co-factors. The induction of c-KIT promoter activity is reinforced with the existence of intronic enhancer region. Furthermore, ChIP-3C-qPCR assays verify that AML1/ETO mediates the formation of DNA-looping between the c-KIT promoter and intronic enhancer region through the long-range interaction. Collectively, our data uncover a novel transcriptional activity mechanism of AML1/ETO and enrich our knowledge of the onco-fusion protein mediated transcription regulation. © 2017 Wiley Periodicals, Inc.
Characterization of SV-40 Tag rats as a model to study prostate cancer
2009-01-01
Background Prostate cancer is the second most frequently diagnosed cancer in men. Animal models that closely mimic clinical disease in humans are invaluable tools in the fight against prostate cancer. Recently, a Simian Virus-40 T-antigen (SV-40 Tag) targeted probasin promoter rat model was developed. This model, however, has not been extensively characterized; hence we have investigated the ontogeny of prostate cancer and determined the role of sex steroid receptor and insulin-like growth factor-1 (IGF-1) signaling proteins in the novel SV-40 Tag rat. Methods The SV-40 Tag rat was histopathologically characterized for time to tumor development, incidence and multiplicity and in the ventral, dorsal, lateral and anterior lobes of the prostate. Immunoassay techniques were employed to measure cell proliferation, apoptosis, and sex steroid receptor and growth factor signaling-related proteins. Steroid hormone concentrations were measured via coated well enzyme linked immunosorbent assay (ELISA) kits. Results Prostatic intraepithelial neoplasia (PIN) and well-differentiated prostate cancer developed as early as 2 and 10 weeks of age, respectively in the ventral prostate (VP) followed by in the dorsolateral (DLP). At 8 weeks of age, testosterone and dihydrotestosterone (DHT) concentrations in SV-40 Tag rats were increased when compared to non-transgenic rats. High cell proliferation and apoptotic indices were found in VP and DLP of transgenic rats. Furthermore, we observed increased protein expression of androgen receptor, IGF-1, IGF-1 receptor, and extracellular signal-regulated kinases in the prostates of SV-40 Tag rats. Conclusion The rapid development of PIN and prostate cancer in conjunction with the large prostate size makes the SV-40 Tag rat a useful model for studying prostate cancer. This study provides evidence of the role of sex steroid and growth factor proteins in prostate cancer development and defines appropriate windows of opportunity for preclinical trials and aids in the rational design of chemoprevention, intervention, regression, and therapeutic studies using prostate cancer rodent models. PMID:19171036
Kopp, Hans-Georg; Ramos, Carlos A.; Rafii, Shahin
2010-01-01
Purpose of review During the last several years, a substantial amount of evidence from animal as well as human studies has advanced our knowledge of how bone marrow derived cells contribute to neoangiogenesis. In the light of recent findings, we may have to redefine our thinking of endothelial cells as well as of perivascular mural cells. Recent findings Inflammatory hematopoietic cells, such as macrophages, have been shown to promote neoangiogenesis during tumor growth and wound healing. Dendritic cells, B lymphocytes, monocytes, and other immune cells have also been found to be recruited to neoangiogenic niches and to support neovessel formation. These findings have led to the concept that subsets of hematopoietic cells comprise proangiogenic cells that drive adult revascularization processes. While evidence of the importance of endothelial progenitor cells in adult vasculogenesis increased further, the role of these comobilized hematopoietic cells has been intensely studied in the last few years. Summary Angiogenic factors promote mobilization of vascular endothelial growth factor receptor 1-positive hematopoietic cells through matrix metalloproteinase-9 mediated release of soluble kit-ligand and recruit these proangiogenic cells to areas of hypoxia, where perivascular mural cells present stromal-derived factor 1 (CXCL-12) as an important retention signal. The same factors are possibly involved in mobilization of vascular endothelial growth factor receptor 2-positive endothelial precursors that may participate in neovessel formation. The complete characterization of mechanisms, mediators and signaling pathways involved in these processes will provide novel targets for both anti and proangiogenic therapeutic strategies. PMID:16567962
MLL-ENL cooperates with SCF to transform primary avian multipotent cells.
Schulte, Cathleen E; von Lindern, Marieke; Steinlein, Peter; Beug, Hartmut; Wiedemann, Leanne M
2002-08-15
The MLL gene is targeted by chromosomal translocations, which give rise to heterologous MLL fusion proteins and are associated with distinct types of acute lymphoid and myeloid leukaemia. To determine how MLL fusion proteins alter the proliferation and/or differentiation of primary haematopoietic progenitors, we introduced the MLL-AF9 and MLL-ENL fusion proteins into primary chicken bone marrow cells. Both fusion proteins caused the sustained outgrowth of immature haematopoietic cells, which was strictly dependent on stem cell factor (SCF). The renewing cells have a long in vitro lifespan exceeding the Hayflick limit of avian cells. Analysis of clonal cultures identified the renewing cells as immature, multipotent progenitors, expressing erythroid, myeloid, lymphoid and stem cell surface markers. Employing a two-step commitment/differentiation protocol involving the controlled withdrawal of SCF, the MLL-ENL-transformed progenitors could be induced to terminal erythroid or myeloid differentiation. Finally, in cooperation with the weakly leukaemogenic receptor tyrosine kinase v-Sea, the MLL-ENL fusion protein gave rise to multilineage leukaemia in chicks, suggesting that other activated, receptor tyrosine kinases can substitute for ligand-activated c-Kit in vivo.
Functional interplay between secreted ligands and receptors in melanoma.
Herraiz, Cecilia; Jiménez-Cervantes, Celia; Sánchez-Laorden, Berta; García-Borrón, José C
2018-06-01
Melanoma, the most aggressive form of skin cancer, results from the malignant transformation of melanocytes located in the basement membrane separating the epidermal and dermal skin compartments. Cutaneous melanoma is often initiated by solar ultraviolet radiation (UVR)-induced mutations. Melanocytes intimately interact with keratinocytes, which provide growth factors and melanocortin peptides acting as paracrine regulators of proliferation and differentiation. Keratinocyte-derived melanocortins activate melanocortin-1 receptor (MC1R) to protect melanocytes from the carcinogenic effect of UVR. Accordingly, MC1R is a major determinant of susceptibility to melanoma. Despite extensive phenotypic heterogeneity and high mutation loads, the molecular basis of melanomagenesis and the molecules mediating the crosstalk between melanoma and stromal cells are relatively well understood. Mutations of intracellular effectors of receptor tyrosine kinase (RTK) signalling, notably NRAS and BRAF, are major driver events more frequent than mutations in RTKs. Nevertheless, melanomas often display aberrant signalling from RTKs such as KIT, ERRB1-4, FGFR, MET and PDGFR, which contribute to disease progression and resistance to targeted therapies. Progress has also been made to unravel the role of the tumour secretome in preparing the metastatic niche. However, key aspects of the melanoma-stroma interplay, such as the molecular determinants of dormancy, remain poorly understood. Copyright © 2017 Elsevier Ltd. All rights reserved.
Visualizing Protein Interactions and Dynamics: Evolving a Visual Language for Molecular Animation
Jenkinson, Jodie; McGill, Gaël
2012-01-01
Undergraduate biology education provides students with a number of learning challenges. Subject areas that are particularly difficult to understand include protein conformational change and stability, diffusion and random molecular motion, and molecular crowding. In this study, we examined the relative effectiveness of three-dimensional visualization techniques for learning about protein conformation and molecular motion in association with a ligand–receptor binding event. Increasingly complex versions of the same binding event were depicted in each of four animated treatments. Students (n = 131) were recruited from the undergraduate biology program at University of Toronto, Mississauga. Visualization media were developed in the Center for Molecular and Cellular Dynamics at Harvard Medical School. Stem cell factor ligand and cKit receptor tyrosine kinase were used as a classical example of a ligand-induced receptor dimerization and activation event. Each group completed a pretest, viewed one of four variants of the animation, and completed a posttest and, at 2 wk following the assessment, a delayed posttest. Overall, the most complex animation was the most effective at fostering students' understanding of the events depicted. These results suggest that, in select learning contexts, increasingly complex representations may be more desirable for conveying the dynamic nature of cell binding events. PMID:22383622
Self-Test Kit: Rapid Diagnosis of Urogenital Infections in Military Women
1998-09-01
tract infections or asymptomatic bacteriuria and symptoms from their cervical/vaginal infection. In many cases treatment of their cervical/vaginal...during the second year. We have thus far tested the kit in 234 women with genital complaints. The self-test kit results suggested appropriate treatment in...evaluation, diagnosis and treatment . All of these factors may significantly impact the ability and readiness of military women to perform their assigned
Resveratrol Improves Cell Cycle Arrest in Chronic Prostatitis Rats, by C-kit/SCF Suppression.
He, Yi; Zeng, Huizhi; Yu, Yang; Zhang, Jiashu; Zeng, Xiaona; Gong, Fengtao; Liu, Qi; Yang, Bo
2017-08-01
Chronic prostatitis (CP) with complex pathogenesis is difficult for treatment. c-kit has been associated with the control of cell proliferation of prostate cells. This study aims to evaluate the role of resveratrol, an activator of Sirt1, in regulating the expression of c-kit in CP and investigate the consequent effects on cell cycle. Rat model of CP was established through subcutaneous injections of diphtheria-pertussis-tetanus vaccine and subsequently treated with resveratrol. Hematoxylin and eosin staining was performed to identify the histopathological changes in prostates. Western blotting and immunohistochemical staining examined the expression level of c-kit, stem cell factor (SCF), Sirt1, and cell cycle-associated proteins. The model group exhibited severe diffuse chronic inflammation, characterized by leukocyte infiltration and papillary frond protrusion into the gland cavities, and a notable increase in prostatic epithelial height. Gland lumen diameter was also significantly smaller; the activity of c-kit/SCF in the CP rats was increased significantly compared to the control group. Meanwhile, the cell cycle proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. Dysregulation of cell cycle was involved in the pathological processes of CP, which was improved after resveratrol treatment by the downregulation of c-kit/SCF by activating Sirt1.
Data on quantification of signaling pathways activated by KIT and PDGFRA mutants.
Bahlawane, Christelle; Schmitz, Martine; Letellier, Elisabeth; Arumugam, Karthik; Nicot, Nathalie; Nazarov, Petr V; Haan, Serge
2016-12-01
The present data are related to the article entitled "Insights into ligand stimulation effects on gastro-intestinal stromal tumors signaling" (C. Bahlawane, M. Schmitz, E. Letellier, K. Arumugam, N. Nicot, P.V. Nazarov, S. Haan, 2016) [1]. Constitutive and ligand-derived signaling pathways mediated by KIT and PDGFRA mutated proteins found in gastrointestinal stromal tumors (GIST) were compared. Expression of mutant proteins was induced by doxycycline in an isogenic background (Hek293 cells). Kit was identified by FACS at the cell surface and found to be quickly degraded or internalized upon SCF stimulation for both Kit Wild type and Kit mutant counterparts. Investigation of the main activated pathways in GIST unraveled a new feature specific for oncogenic KIT mutants, namely their ability to be further activated by Kit ligand, the stem cell factor (scf). We were also able to identify the MAPK pathway as the most prominent target for a common inhibition of PDGFRA and KIT oncogenic signaling. Western blotting and micro-array analysis were applied to analyze the capacities of the mutant to induce an effective STATs response. Among all Kit mutants, only Kit Ex11 deletion mutant was able to elicit an effective STATs response whereas all PDGFRA were able to do so.
KIT Mutations Are Common in Testicular Seminomas
Kemmer, Kathleen; Corless, Christopher L.; Fletcher, Jonathan A.; McGreevey, Laura; Haley, Andrea; Griffith, Diana; Cummings, Oscar W.; Wait, Cecily; Town, Ajia; Heinrich, Michael C.
2004-01-01
Expression of KIT tyrosine kinase is critical for normal germ cell development and is observed in the majority of seminomas. Activating mutations in KIT are common in gastrointestinal stromal tumors and mastocytosis. In this study we examined the frequency and spectrum of KIT mutations in 54 testicular seminomas, 1 ovarian dysgerminoma and 37 non-seminomatous germ cell tumors (NSGCT). Fourteen seminomas (25.9%) contained exon 17 point mutations including D816V (6 cases), D816H (3 cases), Y823D (2 cases), and single examples of Y823C, N822K, and T801I. No KIT mutations were found in the ovarian dysgerminoma or the NSGCTs. In transient transfection assays, mutant isoforms D816V, D816H, Y823D, and N822K were constitutively phosphorylated in the absence of the natural ligand for KIT, stem cell factor (SCF). In contrast, activation of T801I and wild-type KIT required SCF. Mutants N822K and Y823D were inhibited by imatinib mesylate (Gleevec, previously STI571) whereas D816V and D816H were both resistant to imatinib mesylate. Biochemical evidence of KIT activation, as assessed by KIT phosphorylation and KIT association with phosphatidylinositol (PI) 3-kinase in tumor cell lysates, was largely confined to seminomas with a genomic KIT mutation. These findings suggest that activating KIT mutations may contribute to tumorigenesis in a subset of seminomas, but are not involved in NSGCT. PMID:14695343
Serological levels of apoptotic bodies, sFAS and TNF in lupus erythematosus.
Alecu, M; Coman, G; Alecu, S
In our study we have investigated the presence of apoptotic bodies, soluble FAS receptor and TNF (tumor necrosis factor) in three clinical forms of lupus erythematosus. Determinations were performed in attack period of: systemic lupus erythematosus (SLE) for 20 patients, 20 patients with subacute cutaneous lupus erythematosus (SCLE), 20 patients with chronic discoid lupus erythematosus (DLE). Determinations were performed by ELISA (for apoptotic bodies, kit Boehringer, normal values 400-800 mU), (for sFAS, kit R&D Systems, normal values 4500-17000 pg/ml) (for TNF, ELISA kit R&D Systems, normal values 0.4-3.6 pg/ml). Results in SLE: apoptotic bodies were increased in 16 cases (980-1030); sFAS in 18 cases (17000-24000 pg/ml) TNF was increased in all 20 cases (40-140 pg/ml). In SCLE with multiple cutaneous lesions and without internal organs disturbance the apoptotic bodies were increased in 10 cases (960-1030 pg/ml), sFAS in 9 cases (17000-22000 pg/ml), and TNF alpha in 9 cases. In DLE, apoptotic bodies were increased in 2 patients (980-1010 pg/ml), sFAS in 3 patients (17000-20000 pg/ml) and TNF in 2 patients (20-40 pg/mil). Investigated values were slightly correlated with immune parameters (anti dsDNA antibodies), but they were correlated with the presence of renal disturbances or extension of cutaneous lesions. We consider that the presence of increased apoptotic bodies as a result of peripheral mononuclear cells apoptosis appear as a nauto-limiting mechanism in a pathological immune response. The increase of sFAS in lupus patients serum might be interpreted as an alteration of apoptosis respectively a deficit in apoptosis which has as a first consequence the persistence of B and T lymphocytes, activated, in the pathogen immune response.
Maroc, N; Rottapel, R; Rosnet, O; Marchetto, S; Lavezzi, C; Mannoni, P; Birnbaum, D; Dubreuil, P
1993-04-01
We recently cloned an additional member of the receptor type tyrosine kinase class III. This new gene, called Flt3 by our group [Rosnet, O., Matteï, M.G., Marchetto, S. & Birnbaum, D. (1991). Genomics, 9, 380-385; Rosnet, O., Marchetto, S., deLapeyriere, O. & Birnbaum, D. (1991). Oncogene, 6, 1641-1650] and Flk2 by others [Matthews, W., Jordan, C.T., Wieg, G.W., Pardoll, D. & Lemischka, I.R. (1991). Cell, 65, 1143-1152] is strongly related to the important developmental genes Kit, Fms and Pdgfr. The murine 3.2-kb full-length cDNA, when introduced into COS-1 cells, shows the expression of two polypeptides with apparent molecular weights of 155 kDa and 132 kDa. Treatment of cells with N-linked glycosylation inhibitors results in the expression of a 110-kDa protein. We have shown that FLT3 contains an intrinsic tyrosine kinase activity. A point mutation in a highly conserved residue within the phosphoryltransferase domain inactivates the catalytic function of this receptor, whereas activation by way of a chimeric molecule between the ligand-binding domain of colony-stimulating factor type 1 (CSF-1) receptor (CSF-1R) and the kinase domain of FLT3 results, in the presence of CSF-1, in the development of the transforming activity of this receptor as shown by anchorage-independent cell growth. Finally, expression analysis of the FLT3 protein shows that, in addition to the hematopoietic system, FLT3 is strongly expressed in neural, gonadal, hepatic and placental tissues in the mouse.
Bibi, Siham; Zhang, Yanyan; Hugonin, Caroline; Mangean, Mallorie Depond; He, Liang; Wedeh, Ghaith; Launay, Jean-Marie; Van Rijn, Sjoerd; Würdinger, Thomas; Louache, Fawzia; Arock, Michel
2016-01-01
Systemic mastocytosis are rare neoplasms characterized by accumulation of mast cells in at least one internal organ. The majority of systemic mastocytosis patients carry KIT D816V mutation, which activates constitutively the KIT receptor. Patient with advanced forms of systemic mastocytosis, such as aggressive systemic mastocytosis or mast cell leukemia, are poorly treated to date. Unfortunately, the lack of in vivo models reflecting KIT D816V+ advanced disease hampers pathophysiological studies and preclinical development of new therapies for such patients. Here, we describe a new in vivo model of KIT D816V+ advanced systemic mastocytosis developed by transplantation of the human ROSAKIT D816V-Gluc mast cell line in NOD-SCID IL-2R g−/− mice, using Gaussia princeps luciferase as a reporter. Intravenous injection of ROSAKIT D816V-Gluc cells led, in 4 weeks, to engraftment in all injected primary recipient mice. Engrafted cells were found at high levels in bone marrow, and at lower levels in spleen, liver and peripheral blood. Disease progression was easily monitored by repeated quantification of Gaussia princeps luciferase activity in peripheral blood. This quantification evidenced a linear relationship between the number of cells injected and the neoplastic mast cell burden in mice. Interestingly, the secondary transplantation of ROSAKIT D816V-Gluc cells increased their engraftment capability. To conclude, this new in vivo model mimics at the best the features of human KIT D816V+ advanced systemic mastocytosis. In addition, it is a unique and convenient tool to study the kinetics of the disease and the potential in vivo activity of new drugs targeting neoplastic mast cells. PMID:27783996
Iwaniec, Urszula T; Turner, Russell T
2013-03-01
A reciprocal association between bone marrow fat and bone mass has been reported in ovariectomized rodents, suggesting that bone marrow adipogenesis has a negative effect on bone growth and turnover balance. Mice with loss of function mutations in kit receptor (kit(W/W-v)) have no bone marrow adipocytes in tibia or lumbar vertebra. We therefore tested the hypothesis that marrow fat contributes to the development of osteopenia by comparing the skeletal response to ovariectomy (ovx) in growing wild type (WT) and bone marrow adipocyte-deficient kit(W/W-v) mice. Mice were ovx at 4 weeks of age and sacrificed 4 or 10 weeks post-surgery. Body composition was measured at necropsy by dual-energy X-ray absorptiometry. Cortical (tibia) and cancellous (tibia and lumbar vertebra) bone architecture were evaluated by microcomputed tomography. Bone marrow adipocyte size and density, osteoblast- and osteoclast-lined bone perimeters, and bone formation were determined by histomorphometry. Ovx resulted in an increase in total body fat mass at 10 weeks post-ovx in both genotypes, but the response was attenuated in the in kit(W/W-v) mice. Adipocytes were present in bone marrow of tibia and lumbar vertebra in WT mice and bone marrow adiposity increased following ovx. In contrast, marrow adipocytes were not detected in either intact or ovx kit(W/W-v) mice. However, ovx in WT and kit(W/W-v) mice resulted in statistically indistinguishable changes in cortical and cancellous bone mass, cortical and cancellous bone formation rate, and cancellous osteoblast and osteoclast-lined bone perimeters. In conclusion, our findings do not support a causal role for increased bone marrow fat as a mediator of ovx-induced osteopenia in mice. Copyright © 2012 Elsevier Inc. All rights reserved.
Bibi, Siham; Zhang, Yanyan; Hugonin, Caroline; Mangean, Mallorie Depond; He, Liang; Wedeh, Ghaith; Launay, Jean-Marie; Van Rijn, Sjoerd; Würdinger, Thomas; Louache, Fawzia; Arock, Michel
2016-12-13
Systemic mastocytosis are rare neoplasms characterized by accumulation of mast cells in at least one internal organ. The majority of systemic mastocytosis patients carry KIT D816V mutation, which activates constitutively the KIT receptor. Patient with advanced forms of systemic mastocytosis, such as aggressive systemic mastocytosis or mast cell leukemia, are poorly treated to date. Unfortunately, the lack of in vivo models reflecting KIT D816V+ advanced disease hampers pathophysiological studies and preclinical development of new therapies for such patients. Here, we describe a new in vivo model of KIT D816V+ advanced systemic mastocytosis developed by transplantation of the human ROSAKIT D816V-Gluc mast cell line in NOD-SCID IL-2R γ-/- mice, using Gaussia princeps luciferase as a reporter. Intravenous injection of ROSAKIT D816V-Gluc cells led, in 4 weeks, to engraftment in all injected primary recipient mice. Engrafted cells were found at high levels in bone marrow, and at lower levels in spleen, liver and peripheral blood. Disease progression was easily monitored by repeated quantification of Gaussia princeps luciferase activity in peripheral blood. This quantification evidenced a linear relationship between the number of cells injected and the neoplastic mast cell burden in mice. Interestingly, the secondary transplantation of ROSAKIT D816V-Gluc cells increased their engraftment capability. To conclude, this new in vivo model mimics at the best the features of human KIT D816V+ advanced systemic mastocytosis. In addition, it is a unique and convenient tool to study the kinetics of the disease and the potential in vivo activity of new drugs targeting neoplastic mast cells.
SDF1 gradient associates with the distribution of c-Kit+ cardiac cells in the heart.
Renko, Outi; Tolonen, Anna-Maria; Rysä, Jaana; Magga, Johanna; Mustonen, Erja; Ruskoaho, Heikki; Serpi, Raisa
2018-01-18
Identification of the adult cardiac stem cells (CSCs) has offered new therapeutic possibilities for treating ischemic myocardium. CSCs positive for the cell surface antigen c-Kit are known as the primary source for cardiac regeneration. Accumulating evidence shows that chemokines play important roles in stem cell homing. Here we investigated molecular targets to be utilized in modulating the mobility of endogenous CSCs. In a four week follow-up after experimental acute myocardial infarction (AMI) with ligation of the left anterior descending (LAD) coronary artery of Sprague-Dawley rats c-Kit+ CSCs redistributed in the heart. The number of c-Kit+ CSCs in the atrial c-Kit niche was diminished, whereas increased amount was observed in the left ventricle and apex. This was associated with increased expression of stromal cell-derived factor 1 alpha (SDF1α), and a significant positive correlation was found between c-Kit+ CSCs and SDF1α expression in the heart. Moreover, the migratory capacity of isolated c-Kit+ CSCs was induced by SDF1 treatment in vitro. We conclude that upregulation of SDF1α after AMI associates with increased expression of endogenous c-Kit+ CSCs in the injury area, and show induced migration of c-Kit+ cells by SDF1.
Cabral, Bruna Lannuce Silva; da Silva, Artur Christian Garcia; de Ávila, Renato Ivan; Cortez, Alane Pereira; Luzin, Rangel Magalhães; Lião, Luciano Morais; de Souza Gil, Eric; Sanz, Gérman; Vaz, Boniek G; Sabino, José R; Menegatti, Ricardo; Valadares, Marize Campos
2017-09-30
This study shows the design, synthesis and antitumoral potential evaluation of a novel chalcone-like compound, (E)-3- (3, 5-di-ter-butyl-4-hydroxyphenyl)-1- (4-hydroxy-3-methoxyphenyl) prop-2-en-1-one [LQFM064) (4)], against human breast adenocarcinoma MCF7 cells. Some toxicological parameters were also investigated. LQFM064) (4) exhibited cytotoxic activity against MCF7 cells (IC 50 =21μM), in a concentration dependent-manner, and triggered significant changes in cell morphology and biochemical/molecular parameters, which are suggestive of an apoptosis inductor. LQFM064) (4) (21μM) induced cell cycle arrest at G0/G1 phase with increased p53 and p21 expressions. It was also shown that the compound (4) did not interfere directly in p53/MDM2 complexation of MCF7 cells. In these cells, externalization of phosphatidylserine, cytochrome c release, increased expression of caspases-7, -8 and -9, reduced mitochondrial membrane potential and ROS overgeneration were also detected following LQFM064 (4) treatment. Further analysis revealed the activation of both apoptotic pathways via modulation of the proteins involved in the extrinsic and intrinsic pathways with an increase in TNF-R1, Fas-L and Bax levels and a reduction in Bcl-2 expression. Furthermore, KIT proto-oncogene receptor tyrosine kinase, insulin-like growth factor (IGF1) and platelet-derived growth factor receptor A (PDGFRA) were downregulated, while glutathione S-transferase P1 (GSTP1) and interferon regulatory factor 5 (IRF5) expressions were increased by LQFM064 (4)-triggered cytotoxic effects in MCF7 cells. Moreover, it can be inferred that compound (4) has a moderate acute oral systemic toxicity hazard, since its estimated LD 50 was 452.50mg/kg, which classifies it as UN GHS Category 4 (300mg/kg>LD 50 <2000mg/kg). Furthermore, LQFM064 (4) showed a reduced potential myelotoxicity (IC 50 =150μM for mouse bone marrow hematopoietic progenitors). In conclusion, LQFM064 (4) was capable of inducing breast cancer cells death via different cytotoxic pathways. Thus, it is a promising alternative for the treatment of neoplasias, especially in terms of the drug resistance development. Copyright © 2017. Published by Elsevier B.V.
Genead, Rami; Fischer, Helene; Hussain, Alamdar; Jaksch, Marie; Andersson, Agneta B; Ljung, Karin; Bulatovic, Ivana; Franco-Cereceda, Anders; Elsheikh, Elzafir; Corbascio, Matthias; Smith, C I Edvard; Sylvén, Christer; Grinnemo, Karl-Henrik
2012-01-01
To explore how cardiac regeneration and cell turnover adapts to disease, different forms of stress were studied for their effects on the cardiac progenitor cell markers c-Kit and Isl1, the early cardiomyocyte marker Nkx2.5, and mast cells. Adult female rats were examined during pregnancy, after myocardial infarction and ischemia-reperfusion injury with/out insulin like growth factor-1(IGF-1) and hepatocyte growth factor (HGF). Different cardiac sub-domains were analyzed at one and two weeks post-intervention, both at the mRNA and protein levels. While pregnancy and myocardial infarction up-regulated Nkx2.5 and c-Kit (adjusted for mast cell activation), ischemia-reperfusion injury induced the strongest up-regulation which occurred globally throughout the entire heart and not just around the site of injury. This response seems to be partly mediated by increased endogenous production of IGF-1 and HGF. Contrary to c-Kit, Isl1 was not up-regulated by pregnancy or myocardial infarction while ischemia-reperfusion injury induced not a global but a focal up-regulation in the outflow tract and also in the peri-ischemic region, correlating with the up-regulation of endogenous IGF-1. The addition of IGF-1 and HGF did boost the endogenous expression of IGF and HGF correlating to focal up-regulation of Isl1. c-Kit expression was not further influenced by the exogenous growth factors. This indicates that there is a spatial mismatch between on one hand c-Kit and Nkx2.5 expression and on the other hand Isl1 expression. In conclusion, ischemia-reperfusion injury was the strongest stimulus with both global and focal cardiomyocyte progenitor cell marker up-regulations, correlating to the endogenous up-regulation of the growth factors IGF-1 and HGF. Also pregnancy induced a general up-regulation of c-Kit and early Nkx2.5+ cardiomyocytes throughout the heart. Utilization of these pathways could provide new strategies for the treatment of cardiac disease.
Ricca, Alexandra V; Hall, Eric W; Khosropour, Christine M; Sullivan, Patrick S
2016-11-01
In the United States, men who have sex with men (MSM) are known to disproportionately have HIV. The authors sought to describe the acceptability of providing at-home dried blood spot specimen collection kits for HIV testing among MSM. Between August 2010 and December 2010, the authors recruited Internet-using, HIV-negative or -unknown MSM to participate in a 12-month study of behavioral risks. Eligible participants were mailed an at-home HIV test. Of the 896 men who were sent a test kit, 735 (82%) returned the kit. Returning a test kit was significantly associated with race (P = .002), highest level of education (P = .012), and annual income (P = .026). The adjusted odds of black, non-Hispanic men returning a test kit were about half of the odds of white, non-Hispanic men returning a test kit (adjusted odds ratios: 0.49; 95% confidence intervals: 0.31-0.78). Men who have sex with men are willing to provide biological specimens as part of an Internet-based HIV prevention study. © The Author(s) 2016.
Recavarren, Rosemary A; Chivukula, Mamatha; Carter, Gloria; Dabbs, David J
2009-10-10
The significance of association between cancer and its microenvironment has been increasingly recognized. It has been shown in animal models that interaction between neoplastic epithelial cells and adjacent stroma can modulate tumor behavior. Carcinoma associated stromal cells can transform normal epithelial cells into neoplastic cells. In breast, columnar cell lesions are non-obligate precursors of low grade ductal carcinoma in situ. Columnar cell lesions can be seen intimately associated with PASH-like-stroma, a lesion we termed as CCPLS. Our aim is to investigate epithelial-stromal interactions in CCPLS and compare them to PASH without columnar cell lesions in breast core needle biopsies. Normal terminal duct lobular unit (TDLU) epithelium was seen in association with columnar cell lesions as well as PASH. Eight (8) cases of each category were examined by a panel of immunostains: CD117 (C-kit), CD34, CD105, bFGF, AR, ER-beta, MIB-1. We observed a markedly decreased expression of c-kit in columnar cell lesions compared to TDLU-epithelium. CD105 showed a quantitative increase in activated vessels in CCPLS compared to PASH. A subset of CCPLS and PASH were androgen receptor positive. A strong nuclear positivity for ER-beta is observed in the epithelium and stroma of all CCPLS cases. We conclude that (1) activated blood vessels predominate in CCPLS; (2) A molecular alteration is signified by c-kit loss in columnar cell lesions; (3) ER-beta and androgen receptor positivity indicate CCPLS are hormonally responsive lesions. Our study suggests an intimate vascular and hormone dependent epithelial-stromal interaction exists in CCPLS lesions.
Impact and Effectiveness of a Stand-Alone NRT Starter Kit in a Statewide Tobacco Cessation Program.
Kerr, Amy N; Schillo, Barbara A; Keller, Paula A; Lachter, Randi B; Lien, Rebecca K; Zook, Heather G
2018-01-01
To examine 2-week nicotine replacement therapy (NRT) starter kit quit outcomes and predictors and the impact of adding this new service on treatment reach. Observational study of a 1-year cohort of QUITPLAN Services enrollees using registration and utilization data and follow-up outcome survey data of a subset of enrollees who received NRT starter kits. ClearWay Minnesota's QUITPLAN Services provides a quit line that is available to uninsured and underinsured Minnesotans and NRT starter kits (a free 2-week supply of patches, gum, or lozenges) that are available to all Minnesota tobacco users. A total of 15 536 adult QUITPLAN Services enrollees and 818 seven-month follow-up survey NRT starter kit respondents. Treatment reach for all services and tobacco quit outcomes and predictors for starter kit recipients. Descriptive analyses, χ 2 analyses, and logistic regression. Treatment reach increased 3-fold after adding the 2-week NRT starter kit service option to QUITPLAN Services compared to the prior year (1.86% vs 0.59%). Among all participants enrolling in QUITPLAN services during a 1-year period, 83.8% (13 026/15 536) registered for a starter kit. Among starter kit respondents, 25.6% reported being quit for 30 days at the 7-month follow-up. After controlling for other factors, using all NRT and selecting more cessation services predicted quitting. An NRT starter kit brought more tobacco users to QUITPLAN services, demonstrating interest in cessation services separate from phone counseling. The starter kit produced high quit rates, comparable to the quit line in the same time period. Cessation service providers may want to consider introducing starter kits to reach more tobacco users and ultimately improve population health.
Evaluation of Cariogenic Bacteria
Nishikawara, Fusao; Nomura, Yoshiaki; Imai, Susumu; Senda, Akira; Hanada, Nobuhiro
2007-01-01
Objectives The evaluation of Mutans streptococci (MS) is one of the index for caries risk. DentocultTM and CRTTM are commercial kits to detect and evaluate MS, conveniently. However, the evaluation of MS has also been carried out simply using an instruction manual. But the instruction manual is not easy to use for evaluation of MS. The aim of this study was to examine the utility of modified Mitis-Salivalius Bacitracin (MSB) agar medium compared with MSB agar medium and commercial kits, and to establish a convenient kit (mMSB-kit) using modified MSB agar. Methods The MS in stimulated saliva from 27 subjects were detected by MSB, modified MSB agar medium and commercial kits. Laboratory and clinically isolated strains of MS were similarly evaluated. The ratios of MS in detected bacteria were compared by ELISA. Results The scores using an mMSB-kit on the basis of modified MSB agar medium were tabulated. Saliva samples showed different levels of MS between culture methods and the commercial kit. Some samples which were full of MS were not detected by the commercial kit. The detection of MS by modified MSB agar medium and mMSB-kit were significantly higher when compared with MSB agar medium,CRTTM, (P< .01) and Dentocult SMTM (P<.05). Conclusion The sensitivity for detection of MS is higher for modified MSB agar medium when compared with MSB agar medium. The mMSB-kit can be used simply, and can be an important contributor for the evaluation of MS as a caries risk factor. PMID:19212495
Architectural Environment: A Resource Kit.
ERIC Educational Resources Information Center
J.B. Speed Art Museum, Louisville, KY.
There are many ways to approach the investigation of architecture. One can look at structural form, climate and topography, the aesthetics of style and decoration, building function, historical factors, cultural meanings, or technology and techniques associated with construction. This resource kit touches upon a few of these approaches, ranging…
Apostolou, Konstantinos G; Schizas, Dimitrios; Vavouraki, Eleni; Michalinos, Adamantios; Tsilimigras, Diamantis I; Garmpis, Nikolaos; Damaskos, Christos; Papalampros, Alexandros; Liakakos, Theodore
2018-04-01
The objective of the present study was to determine the clinicopathological factors and treatment outcomes of patients suffering from mesenteric or retroperitoneal extragastrointestinal stromal tumors (EGISTs). A detailed search in PubMed, using the key words "extragastrointestinal stromal tumors" and "EGIST", found eight studies fulfilling the criteria of this study. Thirty-six patients with a mesenteric and 24 patients with a retroperitoneal EGIST were analyzed, with a follow-up period ranging from 2 to 192 months. Retroperitoneal tumors presented as larger tumors than mesenteric ones, with 95% and 93% immunohistochemical positivity for CD117 antigen, respectively. Surgical resection was performed in 91% of cases, with 57% of patients with mesenteric and 70% of patients with retroperitoneal EGISTs being alive at the last follow-up. EGISTs most commonly are of considerable size and usually with a high mitotic count, rendering them high-risk tumors. Tumor necrosis, nuclear atypia, tumor histology, and mutations in the tyrosine kinase KIT or platelet-derived growth factor receptor A (PDGFRA) gene, seem to influence tumor behavior. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Early kit mortality and growth in farmed mink are affected by litter size rather than nest climate.
Schou, T M; Malmkvist, J
2017-09-01
We investigated the effects of nest box climate on early mink kit mortality and growth. We hypothesised that litters in warm nest boxes experience less hypothermia-induced mortality and higher growth rates during the 1st week of life. This study included data from 749, 1-year-old breeding dams with access to nesting materials. Kits were weighed on days 1 and 7, dead kits were collected daily from birth until day 7 after birth, and nest climate was measured continuously from days 1 to 6. We tested the influences of the following daily temperature (T) and humidity (H) parameters on the number of live-born kit deaths and kit growth: T mean, T min, T max, T var (fluctuation) and H mean. The nest microclimate experienced by the kits was buffered against the ambient climate, with higher temperatures and reduced climate fluctuation. Most (77.0%) live-born kit deaths in the 1st week occurred on days 0 and 1. Seven of 15 climate parameters on days 1 to 3 had significant effects on live-born kit mortality. However, conflicting effects among days, marginal effects and late effects indicated that climate was not the primary cause of kit mortality. Five of 30 climate parameters had significant effects on kit growth. Few and conflicting effects indicated that the climate effect on growth was negligible. One exception was that large nest temperature fluctuations on day 1 were associated with reduced deaths of live-born kit (P<0.001) and increased kit growth (P=0.003). Litter size affected kit vitality; larger total litter size at birth was associated with greater risks of kit death (P<0.001) and reduced growth (P<0.001). The number of living kits in litters had the opposite effect, as kits in large liveborn litters had a reduced risk of death (P<0.001) and those with large mean litter size on days 1 to 7 had increased growth (P=0.026). Nest box temperature had little effect on early kit survival and growth, which could be due to dams' additional maternal behaviour. Therefore, we cannot confirm that temperature is the primary reason for kit mortality, under the conditions of plenty straw access for maternal nest building. Instead, prenatal and/or parturient litter size is the primary factor influencing early kit vitality. The results indicate that the focus should be on litter size and dam welfare around the times of gestation and birth to increase early kit survival in farmed mink.
Lu, Ying; Wang, Zhuojun; Chen, Lu; Wang, Jia; Li, Shulin; Liu, Caixia; Sun, Dong
2018-05-01
Amniotic fluid is an alternative source of stem cells, and human amniotic fluid-derived stem cells (AFSCs) obtained from a small amount of amniotic fluid collected during the second trimester represent a novel source for use in regenerative medicine. These AFSCs are characterized by lower diversity, a higher proliferation rate, and a wider differentiation capability than adult mesenchymal stem cells. AFSCs are selected based on the cell surface marker c-kit receptor (CD117) using immunomagnetic sorting. Glial cell line-derived neurotrophic factor (GDNF) is expressed during early kidney development and regulates the proliferation and differentiation of stem cells in vitro. In this study, c-kit-sorted AFSCs were induced toward osteogenic or adipogenic differentiation. AFSCs engineered via the insertion of GDNF were cocultured with mouse renal tubular epithelial cells (mRTECs), which were preconditioned by hypoxia-reoxygenation in vitro. After coculture for 8 days, AFSCs differentiation into epithelial-like cells was evaluated by performing immunofluorescence, flow cytometry, and quantitative real-time polymerase chain reaction to identify cells expressing the renal epithelial markers, cytokeratin 18 (CK18), E-cadherin, aquaporin-1 (AQP1), and paired box 2 gene (Pax2). The GDNF gene enhanced AFSCs differentiation into RTECs. AFSCs possess self-renewal ability and multiple differentiation potential and thus represent a new source of stem cells.
Cipriani, G; Serboiu, Crenguta S; Gherghiceanu, Mihaela; Simonetta Faussone-Pellegrini, Maria; Vannucchi, Maria Giuliana
2011-01-01
Abstract Caveolin (Cav)-1 is an integral membrane protein of caveolae playing a crucial role in various signal transduction pathways. Caveolae represent the sites for calcium entry and storage especially in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Cav-1−/− mice lack caveolae and show abnormalities in pacing and contractile activity of the small intestine. Presently, we investigated, by transmission electron microscopy (TEM) and immunohistochemistry, whether the absence of Cav-1 in Cav-1−/− mouse small intestine affects ICC, SMC and neuronal morphology, the expression of NK1 and NK2 receptors, and of Ano1 (also called Dog1 or TMEM16A), an essential molecule for slow wave activity in gastrointestinal muscles. ICC were also labelled with c-Kit and tachykinergic neurons with Substance P (SP). In Cav-1−/− mice: (i) ICC were Ano1-negative but maintained c-Kit expression, (ii) NK1 and NK2 receptor immunoreactivity was more intense and, in the SMC, mainly intracytoplasmatic, (iii) SP-immunoreactivity was significantly reduced. Under TEM: (i) ICC, SMC and telocytes lacked typical caveolae but had few and large flask-shaped vesicles we called large-sized caveolae; (ii) SMC and ICC contained an extraordinary high number of mitochondria, (iii) neurons were unchanged. To maintain intestinal motility, loss of caveolae and reduced calcium availability in Cav-1–knockout mice seem to be balanced by a highly increased number of mitochondria in ICC and SMC. Loss of Ano-1 expression, decrease of SP content and consequently overexpression of NK receptors suggest that all these molecules are Cav-1–associated proteins. PMID:21535398
Cipriani, G; Serboiu, Crenguta S; Gherghiceanu, Mihaela; Faussone-Pellegrini, Maria Simonetta; Vannucchi, Maria Giuliana
2011-11-01
Caveolin (Cav)-1 is an integral membrane protein of caveolae playing a crucial role in various signal transduction pathways. Caveolae represent the sites for calcium entry and storage especially in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Cav-1(-/-) mice lack caveolae and show abnormalities in pacing and contractile activity of the small intestine. Presently, we investigated, by transmission electron microscopy (TEM) and immunohistochemistry, whether the absence of Cav-1 in Cav-1(-/-) mouse small intestine affects ICC, SMC and neuronal morphology, the expression of NK1 and NK2 receptors, and of Ano1 (also called Dog1 or TMEM16A), an essential molecule for slow wave activity in gastrointestinal muscles. ICC were also labelled with c-Kit and tachykinergic neurons with Substance P (SP). In Cav-1(-/-) mice: (i) ICC were Ano1-negative but maintained c-Kit expression, (ii) NK1 and NK2 receptor immunoreactivity was more intense and, in the SMC, mainly intracytoplasmatic, (iii) SP-immunoreactivity was significantly reduced. Under TEM: (i) ICC, SMC and telocytes lacked typical caveolae but had few and large flask-shaped vesicles we called large-sized caveolae; (ii) SMC and ICC contained an extraordinary high number of mitochondria, (iii) neurons were unchanged. To maintain intestinal motility, loss of caveolae and reduced calcium availability in Cav-1-knockout mice seem to be balanced by a highly increased number of mitochondria in ICC and SMC. Loss of Ano-1 expression, decrease of SP content and consequently overexpression of NK receptors suggest that all these molecules are Cav-1-associated proteins. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Gonadoblastoma: evidence for a stepwise progression to dysgerminoma in a dysgenetic ovary.
Pauls, Katharina; Franke, Folker E; Büttner, Reinhard; Zhou, Hui
2005-09-01
Gonadoblastomas are neoplasms of dysgenetic gonads which may undergo regression or become overgrown by malignant germ cell tumors (mGCTs). Since little is known about their relationship to normal gonadal development and mGCTs, we studied the phenotype and antigenic profile of gonadoblastomas in comparison with adjacent dysgerminomas and fetal gonads. Three cases of gonadoblastomas and fetal gonads of both sexes were analyzed using oncofetal markers to M2A-antigen (M2A), germ cell alkaline phosphatase (PLAP/GCAP), receptor tyrosine kinase c-kit (c-kit), and somatic angiotensin converting enzyme (sACE) as well as the proliferation marker MIB-1. Morphologically, microfollicular pattern of gonadoblastomas showed a fetal germ cell organization reminiscent of oocytic clusters of fetal ovaries. They contained both cell types, similar to oocytes (M2A-, GCAP-, c-kit+/-, sACE-) and oogonia (M2A+, GCAP+, c-kit+, sACE+). The percentage of germ cells immunoreactive for oncofetal markers and the proliferation index increased from microfollicular over coronary patterns to adjacent dysgerminomas. Supportive cells of gonadoblastomas showed a uniform phenotype (CK18+, vimentin+, sACE+, alpha-inhibin+, M2A-) but in contrast to fetal germ cells lacked a clear equivalence to fetal tissues. Our results show that gonadoblastomas mimic female fetal ovary and exhibit a stepwise progression from follicular pattern to coronary pattern and finally to dysgerminomas.
Khalafalla, Farid G; Greene, Steven; Khan, Hashim; Ilves, Kelli; Monsanto, Megan M; Alvarez, Roberto; Chavarria, Monica; Nguyen, Jonathan; Norman, Benjamin; Dembitsky, Walter P; Sussman, Mark A
2017-11-10
Autologous stem cell therapy using human c-Kit + cardiac progenitor cells (hCPCs) is a promising therapeutic approach for treatment of heart failure (HF). However, hCPCs derived from aged patients with HF with genetic predispositions and comorbidities of chronic diseases exhibit poor proliferative and migratory capabilities, which impair overall reparative potential for injured myocardium. Therefore, empowering functionally compromised hCPCs with proregenerative molecules ex vivo is crucial for improving the therapeutic outcome in patients with HF. To improve hCPC proliferation and migration responses that are critical for regeneration by targeting proregenerative P2Y 2 nucleotide receptor (P2Y 2 R) activated by extracellular ATP and UTP molecules released following injury/stress. c-Kit + hCPCs were isolated from cardiac tissue of patients with HF undergoing left ventricular assist device implantation surgery. Correlations between P2 nucleotide receptor expression and hCPC growth kinetics revealed downregulation of select P2 receptors, including P2Y 2 R, in slow-growing hCPCs compared with fast growers. hCPC proliferation and migration significantly improved by overexpressing or stimulating P2Y 2 R. Mechanistically, P2Y 2 R-induced proliferation and migration were dependent on activation of YAP (yes-associated protein)-the downstream effector of Hippo signaling pathway. Proliferation and migration of functionally impaired hCPCs are enhanced by P2Y 2 R-mediated YAP activation, revealing a novel link between extracellular nucleotides released during injury/stress and Hippo signaling-a central regulator of cardiac regeneration. Functional correlations exist between hCPC phenotypic properties and P2 purinergic receptor expression. Lack of P2Y 2 R and other crucial purinergic stress detectors could compromise hCPC responsiveness to presence of extracellular stress signals. These findings set the stage for subsequent studies to assess purinergic signaling modulation as a potential strategy to improve therapeutic outcome for use of hCPCs in patients with HF. © 2017 American Heart Association, Inc.
Limitations and pitfalls of 99mTc-EDDA/HYNIC-TOC (Tektrotyd) scintigraphy.
Garai, Ildikó; Barna, Sandor; Nagy, Gabor; Forgacs, Attila
2016-01-01
Tektrotyd kit was developed by Polatom company for 99mTc labeling to make an alternative tracer of somatostatin receptor scintigraphy available. Since 2005, 99mTc-EDDA/HYNIC-Tyr3-Octreotide has been used in clinical imaging and achieved high impact in management of patients with neuroendocrine tumors. Knowing the limitations and pitfalls is essential to provide ac-curate diagnosis. Therefore, the potential pitfalls associated with the use of 99mTc-EDDA/HYNIC-TOC are reviewed on the basis of own experience. Data were analyzed of 310 patients who underwent somatostatin receptor scintigraphy with 99mTc-Tektrotyd. Pitfalls during radiolabeling process or acquisition can worsen the sensitivity of SRS (somatostatin receptor scintigraphy). Recognizing physi-ological and clinical pitfalls, the diagnostic accuracy will improve.
Semevolos, Stacy A; Youngblood, Cori D; Grissom, Stephanie K; Gorman, M Elena; Larson, Maureen K
2016-11-01
OBJECTIVE To evaluate 2 processing methods (commercial kit vs conical tube centrifugation) for preparing platelet rich plasma (PRP) for use in llamas and alpacas. SAMPLES Blood samples (30 mL each) aseptically collected from 6 healthy llamas and 6 healthy alpacas. PROCEDURES PRP was prepared from blood samples by use of a commercial kit and by double-step conical tube centrifugation. A CBC was performed for blood and PRP samples. Platelets in PRP samples were activated by means of a freeze-thaw method with or without 23mM CaCl 2 , and concentrations of platelet-derived growth factor-BB and transforming growth factor-β 1 were measured. Values were compared between processing methods and camelid species. RESULTS Blood CBC values for llamas and alpacas were similar. The commercial kit yielded a significantly greater degree of platelet enrichment (mean increase, 8.5 fold vs 2.8 fold) and WBC enrichment (mean increase, 3.7 fold vs 1.9 fold) than did conical tube centrifugation. Llamas had a significantly greater degree of platelet enrichment than alpacas by either processing method. No difference in WBC enrichment was identified between species. Concentrations of both growth factors were significantly greater in PRP samples obtained by use of the commercial kit versus those obtained by conical tube centrifugation. CONCLUSIONS AND CLINICAL RELEVANCE For blood samples from camelids, the commercial kit yielded a PRP product with a higher platelet and WBC concentration than achieved by conical tube centrifugation. Optimal PRP platelet and WBC concentrations for various applications need to be determined for llamas and alpacas.
Pearl-Yafe, Michal; Yolcu, Esma S; Stein, Jerry; Kaplan, Ofer; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir
2007-10-01
The interaction between the Fas receptor and its cognate ligand (FasL) has been implicated in the mutual suppression of donor and host hematopoietic cells after transplantation. Following the observation of deficient early engraftment of Fas and FasL-defective donor cells and recipients, we determined the role of the Fas-FasL interaction. Donor cells were recovered after syngeneic (CD45.1-->CD45.2) transplants from various organs and assessed for expression of Fas/FasL in reference to lineage markers, carboxyfluorescein succinimidyl ester dilution, Sca-1 and c-kit expression. Naïve and bone marrow-homed cells were challenged for apoptosis ex vivo. The Fas receptor and ligand were markedly upregulated to 40% to 60% (p < 0.001 vs 5-10% in naïve cells) within 2 days after syngeneic transplantation, while residual host cells displayed modest and delayed upregulation of these molecules ( approximately 10%). All lin(-)Sca(+)c-kit(+) cells were Fas(+)FasL(+), including 95% of Sca-1(+) and 30% of c-kit(+) cells. Fas and FasL expression varied in donor cells that homed to bone marrow, spleen, liver and lung, and was induced by interaction with the stroma, irradiation, cell cycling, and differentiation. Bone marrow-homed donor cells challenged with supralethal doses of FasL were insensitive to apoptosis (3.2% +/- 1% vs 38% +/- 5% in naïve bone marrow cells), and engraftment was not affected by pretransplantation exposure of donor cells to an apoptotic challenge with FasL. There was no evidence of Fas-mediated suppression of donor and host cell activity after transplantation. Resistance to Fas-mediated apoptosis evolves as a functional characteristic of hematopoietic reconstituting stem and progenitor cells, providing them competitive engraftment advantage over committed progenitors.
González-Vázquez, Armando; Ferro-Flores, Guillermina; Arteaga de Murphy, Consuelo; Gutiérrez-García, Zohar
2006-07-01
99mTc-EDDA/HYNIC-Tyr3-octreotide (99mTc-HYNIC-TOC) has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. The aim of this study was to establish a biokinetic model for 99mTc-HYNIC-TOC prepared from lyophilized kits, and to evaluate its dosimetry as a tumor imaging agent in patients with histologically confirmed neuroendocrine tumors. Whole-body images from eight patients were acquired at 5, 60, 90, 180 min and 24 h after 99mTc-HYNIC-TOC administration obtained from instant freeze-dried kit formulations with radiochemical purities >95%. Regions of interest (ROIs) were drawn around source organs on each time frame. The same set of ROIs was used for all eight scans and the count per minute (cpm) of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate 99mTc-HYNIC-TOC time-activity curves in each organ, to adjust a biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Images showed an average tumor/blood (heart) ratio of 4.3+/-0.7 in receptor-positive tumors at 1 h. The mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv.
Calcium responses in subserosal interstitial cells of the guinea-pig proximal colon.
Tamada, H; Hashitani, H
2014-01-01
In the subserosal layer between the longitudinal muscle layer and mesothelium, heterogeneous populations of interstitial cells are distributed. As the distribution of nerve elements in this layer is sparse as compared with the nerve plexus layer or tunica muscularis, there may be unique communication among subserosal interstitial cells (SSICs). This study aimed to explore functional properties of SSICs. In subserosal preparations of the guinea-pig proximal colon, changes in intracellular Ca(2+) ([Ca(2+) ]i ) were visualized using Fluo-4 Ca(2+) imaging. Immunohistochemistry was also performed to identify the SSICs exhibiting Ca(2+) transients. A majority of SSICs responded to adenosine triphosphate (ATP, 10 μM) by increasing [Ca(2+) ]i , but remained quiescent during the application of acetylcholine (10 μM). ATP-induced Ca(2+) responses were mimicked by adenosine 5'-diphosphate (10 μM), MRS2365 (10 nM) but not α, β-methylene ATP (10 μM) or uridine triphosphate (10 μM), and could be reproduced in Ca(2+) -free solution, suggesting that ATP acts via P2Y receptors, most likely P2Y1 subtype, but not P2X receptors. Live staining of the same preparations after Ca(2+) imaging indicated the ATP-sensitive SSICs were not positive for c-Kit antibody, a specific marker for gastrointestinal interstitial cells of Cajal (ICC). Immunohistochemistry identified vimentin (mesenchymal cell marker)+/Kit- and SK3 (fibroblast-like cell (FLC) marker)+/Kit- cells that had a similar morphology to the ATP-sensitive SSICs in Ca(2+) imaging. A majority of the SSICs in the guinea-pig proximal colon, presumably FLC, are capable of responding to ATP and thus may contribute to smooth muscle relaxation upon stimulation with ATP released from non-neuronal cells. © 2013 John Wiley & Sons Ltd.
Harada, Kaho; Nobuhisa, Ikuo; Anani, Maha; Saito, Kiyoka; Taga, Tetsuya
2017-07-01
In the midgestation mouse embryo, hematopoietic cell clusters containing hematopoietic stem/progenitor cells arise in the aorta-gonad-mesonephros (AGM) region. We have previously reported that forced expression of the Sox17 transcription factor in CD45 low c-Kit high AGM cells, which are the hematopoietic cellular component of the cell clusters, and subsequent coculture with OP9 stromal cells in the presence of three cytokines, stem cell factor (SCF), interleukin-3 (IL-3), and thrombopoietin (TPO), led to the formation and the maintenance of cell clusters with cells at an undifferentiated state in vitro. In this study, we investigated the role of each cytokine in the formation of hematopoietic cell clusters. We cultured Sox17-transduced AGM cells with each of the 7 possible combinations of the three cytokines. The size and the number of Sox17-transduced cell clusters in the presence of TPO, either alone or in combination, were comparable to that observed with the complete set of the three cytokines. Expression of TPO receptor, c-Mpl was almost ubiquitously expressed and maintained in Sox17-transduced hematopoietic cell clusters. In addition, the expression level of c-Mpl was highest in the CD45 low c-Kit high cells among the Sox17-transduced cell clusters. Moreover, c-Mpl protein was highly expressed in the intra-aortic hematopoietic cell clusters in comparison with endothelial cells of dorsal aorta. Finally, stimulation of the endothelial cells prepared from the AGM region by TPO induced the production of hematopoietic cells. These results suggest that TPO contributes to the formation and the maintenance of hematopoietic cell clusters in the AGM region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modjtahedi, Helmout; Essapen, Sharadah
2009-11-01
Aberrant expression of the epidermal growth factor receptor (EGFR) system has been reported in a wide range of epithelial cancers. In some studies, this has also been associated with a poor prognosis and resistance to the conventional forms of therapies. These discoveries have led to the strategic development of several kinds of EGFR inhibitors, five of which have gained US Food and Drug Administration approval for the treatment of patients with non-small-cell lung cancer (gefitinib and erlotinib), metastatic colorectal cancer (cetuximab and panitumumab), head and neck (cetuximab), pancreatic cancer (erlotinib) and breast (lapatinib) cancer. Despite these advances and recent studies on the predictive value of activating EGFR mutation and KRAS mutations with response in non-small-cell lung cancer and colon cancer patients, there is currently no reliable predictive marker for response to therapy with the anti-EGFR monoclonal antibodies cetuximab and panitumumab or the small molecule EGFR tyrosine kinase inhibitors gefitinib and erlotinib. In particular, there has been no clear association between the expression of EGFR, determined by the US Food and Drug Administration-approved EGFR PharmDX kit, and response to the EGFR inhibitors. Here, we discuss some of the controversial data and explanatory factors as well as future studies for the establishment of more reliable markers for response to therapy with EGFR inhibitors. Such investigations should lead to the selection of a more specific subpopulation of cancer patients who benefit from therapy with EGFR inhibitors, but equally to spare those who will receive no benefit or a detrimental effect from such biological agents.
c-KIT receptor expression is strictly associated with the biological behaviour of thyroid nodules
2012-01-01
Background A large amount of information has been collected on the molecular tumorigenesis of thyroid cancer. A low expression of c-KIT gene has been reported during the transformation of normal thyroid epithelium to papillary carcinoma suggesting a possible role of the gene in the differentiation of thyroid tissue rather than in the proliferation. The initial presentation of thyroid carcinoma is through a nodule and the best way nowadays to evaluate it is by fine-needle aspiration (FNA). However many thyroid FNAs are not definitively benign or malignant, yielding an indeterminate or suspicious diagnosis which ranges from 10 to 25% of FNAs. BRAF mutational analysis is commonly used to assess the malignancy of thyroid nodules but unfortunately it still leaves indeterminate diagnoses. The development of molecular initial diagnostic tests for evaluating a thyroid nodule is needed in order to define optimal surgical approach for patients with uncertain diagnosis pre- and intra-operatively. Methods In this study we extracted RNA from 82 FNA smears, 46 malignant and 36 benign at the histology, in order to evaluate by quantitative Real Time PCR the expression levels of c-KIT gene. Results We have found a highly preferential decrease rather than increase in transcript of c-KIT in malignant thyroid lesions compared to the benign ones. To explore the diagnostic utility of c-KIT expression in thyroid nodules, its expression values were divided in four arbitrarily defined classes, with class I characterized by the complete silencing of the gene. Class I and IV represented the two most informative groups, with 100% of the samples found malignant or benign respectively. The molecular analysis was proven by ROC (receiver operating characteristic) analysis to be highly specific and sensitive improving the cytological diagnostic accuracy of 15%. Conclusion We propose the use of BRAF test (after uncertain cytological diagnosis) to assess the malignancy of thyroid nodules at first, then the use of the c-KIT expression to ultimately assess the diagnosis of the nodules that otherwise would remain suspicious. The c-KIT expression-based classification is highly accurate and may provide a tool to overcome the difficulties in today's preoperative diagnosis of thyroid suspicious malignancies. PMID:22233760
Functional TRPV2 and TRPV4 channels in human cardiac c-kit(+) progenitor cells.
Che, Hui; Xiao, Guo-Sheng; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong
2016-06-01
The cellular physiology and biology of human cardiac c-kit(+) progenitor cells has not been extensively characterized and remains an area of active research. This study investigates the functional expression of transient receptor potential vanilloid (TRPV) and possible roles for this ion channel in regulating proliferation and migration of human cardiac c-kit(+) progenitor cells. We found that genes coding for TRPV2 and TRPV4 channels and their proteins are significantly expressed in human c-kit(+) cardiac stem cells. Probenecid, an activator of TRPV2, induced an increase in intracellular Ca(2+) (Ca(2+) i ), an effect that may be attenuated or abolished by the TRPV2 blocker ruthenium red. The TRPV4 channel activator 4α-phorbol 12-13-dicaprinate induced Ca(2+) i oscillations, which can be inhibited by the TRPV4 blocker RN-1734. The alteration of Ca(2+) i by probenecid or 4α-phorbol 12-13-dicprinate was dramatically inhibited in cells infected with TRPV2 short hairpin RNA (shRNA) or TRPV4 shRNA. Silencing TRPV2, but not TRPV4, significantly reduced cell proliferation by arresting cells at the G0/G1 boundary of the cell cycle. Cell migration was reduced by silencing TRPV2 or TRPV4. Western blot revealed that silencing TRPV2 decreased expression of cyclin D1, cyclin E, pERK1/2 and pAkt, whereas silencing TRPV4 only reduced pAkt expression. Our results demonstrate for the first time that functional TRPV2 and TRPV4 channels are abundantly expressed in human cardiac c-kit(+) progenitor cells. TRPV2 channels, but not TRPV4 channels, participate in regulating cell cycle progression; moreover, both TRPV2 and TRPV4 are involved in migration of human cardiac c-kit(+) progenitor cells. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Nelson, Richard E; Angelovic, Aaron W; Nelson, Scott D; Gleed, Jeremy R; Drews, Frank A
2015-05-01
Adherence engineering applies human factors principles to examine non-adherence within a specific task and to guide the development of materials or equipment to increase protocol adherence and reduce human error. Central line maintenance (CLM) for intensive care unit (ICU) patients is a task through which error or non-adherence to protocols can cause central line-associated bloodstream infections (CLABSIs). We conducted an economic analysis of an adherence engineering CLM kit designed to improve the CLM task and reduce the risk of CLABSI. We constructed a Markov model to compare the cost-effectiveness of the CLM kit, which contains each of the 27 items necessary for performing the CLM procedure, compared with the standard care procedure for CLM, in which each item for dressing maintenance is gathered separately. We estimated the model using the cost of CLABSI overall ($45,685) as well as the excess LOS (6.9 excess ICU days, 3.5 excess general ward days). Assuming the CLM kit reduces the risk of CLABSI by 100% and 50%, this strategy was less costly (cost savings between $306 and $860) and more effective (between 0.05 and 0.13 more quality-adjusted life-years) compared with not using the pre-packaged kit. We identified threshold values for the effectiveness of the kit in reducing CLABSI for which the kit strategy was no longer less costly. An adherence engineering-based intervention to streamline the CLM process can improve patient outcomes and lower costs. Patient safety can be improved by adopting new approaches that are based on human factors principles.
Maliken, Bryan D; Kanisicak, Onur; Karch, Jason; Khalil, Hadi; Fu, Xing; Boyer, Justin G; Prasad, Vikram; Zheng, Yi; Molkentin, Jeffery D
2018-04-17
Background -While c-Kit + adult progenitor cells were initially reported to produce new cardiomyocytes in the heart, recent genetic evidence suggests that such events are exceedingly rare. However, to determine if these rare events represent true de novo cardiomyocyte formation we deleted the necessary cardiogenic transcription factors Gata4 and Gata6 from c-Kit-expressing cardiac progenitor cells (CPCs). Methods - Kit allele-dependent lineage tracing and fusion analysis was performed in mice following simultaneous Gata4 and Gata6 cell-type specific deletion to examine rates of putative de novo cardiomyocyte formation from c-Kit + cells. Bone marrow transplantation experiments were used to define the contribution of Kit allele-derived hematopoietic cells versus Kit lineage-dependent cells endogenous to the heart in contributing to apparent de novo lineage-traced cardiomyocytes. A Tie2 CreERT2 transgene was also used to examine the global impact of Gata4 deletion on the mature cardiac endothelial cell network, which was further evaluated with select angiogenesis assays. Results -Deletion of Gata4 in Kit lineage-derived endothelial cells or in total endothelial cells using the Tie2 CreERT2 transgene, but not from bone morrow cells, resulted in profound endothelial cell expansion, defective endothelial cell differentiation, leukocyte infiltration into the heart and a dramatic increase in Kit allele-dependent lineage-traced cardiomyocytes. However, this increase in labeled cardiomyocytes was an artefact of greater leukocyte-cardiomyocyte cellular fusion due to defective endothelial cell differentiation in the absence of Gata4 Conclusions -Past identification of presumed de novo cardiomyocyte formation in the heart from c-Kit + cells using Kit allele lineage tracing appears to be an artefact of labeled leukocyte fusion with cardiomyocytes. Deletion of Gata4 from c-Kit + endothelial progenitor cells or adult endothelial cells negatively impacted angiogenesis and capillary network integrity.
Xu, Ruoyang; Shieh, Y Carol; Stewart, Diana S
2017-01-01
Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) offers a rapid and sensitive molecular method for detection of enteric viruses. Unfortunately, these assays are often hampered by the low virus titre found in foods and PCR inhibition due to matrix carryover during RNA extraction. Four commercial RNA extraction kits (Qiagen's QIAamp Viral RNA Mini and UltraSens Virus kits, MoBio UltraClean Tissue & Cells RNA Isolation kit, and Ambion MagMAX Viral RNA Isolation kit) were evaluated for their ability to extract and purify MS2 bacteriophage RNA, an enteric virus surrogate, from inoculated green onions, a food which has been associated with viral gastroenteritis outbreaks. Inoculated green onion wash concentrates and green onion pieces with and without Qiagen QIAshredder homogenization were assayed in the kit comparison. MS2 detection and PCR inhibition were evaluated using a duplex real-time RT-PCR for MS2 and an exogenous internal amplification control (IAC) assay. Without homogenization, MS2 inoculated at 40pfu/g was detected in at least 4 lots of green onion wash concentrates using the silica-membrane spin-column kits. Inhibition was a factor for the magnetic silica-based MagMAX kit, which resulted in detection of MS2 in 1 of 5. Addition of QIAshredder homogenization prior to extraction did not adversely affect the silica-membrane kit results but improved the MS2 detection by MagMAX to 5 of 5 lots. Use of a 1:10 dilution of primary RNA extracts also improved detection. The QIAamp Viral RNA Mini and MagMAX kits were further compared for detection of MS2 from green onion pieces inoculated at 20 and 5pfu/g. Using homogenization, the MagMAX kit detected 20pfu/g in only 1 of 2 green onion lots, whereas the QIAamp Viral RNA kit detected 2 of 2 lots at 5 pfu/g without homogenization. Published by Elsevier B.V.
Keating, Glenda; Bliwise, Donald L; Saini, Prabhjyot; Rye, David B; Trotti, Lynn Marie
2017-09-01
The hypothalamic peptide hypocretin 1 (orexin A) may be assayed in cerebrospinal fluid to diagnose narcolepsy type 1. This testing is not commercially available, and factors contributing to assay variability have not previously been comprehensively explored. In the present study, cerebrospinal fluid hypocretin concentrations were determined in duplicate in 155 patient samples, across a range of sleep disorders. Intra-assay variability of these measures was analyzed. Inter-assay correlation between samples tested at Emory and at Stanford was high (r = 0.79, p < 0.0001). Intra-assay correlation between samples tested in duplicate in our center was also high (r = 0.88, p < 0.0001); intra-assay variability, expressed as the difference between values as a percentage of the higher value, was low at 9.4% (SD = 7.9%). Although both time the sample spent in the freezer (r = 0.16, p = 0.04) and age of the kit used for assay (t = 3.64, p = 0.0004) were significant predictors of intra-kit variability in univariate analyses, only age of kit was significant in multivariate linear regression (F = 4.93, p = 0.03). Age of radioimmunoassay kit affects intra-kit variability of measured hypocretin values, such that kits closer to expiration exhibit significantly more variability.
ERIC Educational Resources Information Center
Jones, Sandra; Bannister, Rosella
This catalog lists teaching-learning resources available for preview at the Michigan Consumer Education Center. A subject index to multi-media identifies titles of films, video casettes, multi-media kits, and games under seven specific subjects. These are (1) Factors Affecting Consumer Behavior, (2) Money Management and Credit, (3) Buying and…
Wirth, Lori J; Tahara, Makoto; Robinson, Bruce; Francis, Sanjeev; Brose, Marcia S; Habra, Mouhammed Amir; Newbold, Kate; Kiyota, Naomi; Dutcus, Corina E; Mathias, Elton; Guo, Matthew; Sherman, Steven I; Schlumberger, Martin
2018-06-01
Hypertension (HTN) is an established class effect of vascular endothelial growth factor receptor (VEGFR) inhibition. In the phase 3 Study of (E7080) Lenvatinib in Differentiated Cancer of the Thyroid (SELECT) trial, HTN was the most frequent adverse event of lenvatinib, an inhibitor of VEGFR1, VEGFR2, VEGFR3, fibroblast growth factor receptor 1 (FGFR1), FGFR2, FGFR3, FGFR4, platelet-derived growth factor receptor α (PDGFRα), ret proto-oncogene (RET), and stem cell factor receptor (KIT). This exploratory analysis examined treatment-emergent hypertension (TE-HTN) and its relation with lenvatinib efficacy and safety in SELECT. In the multicenter, double-blind SELECT trial, 392 patients with progressive radioiodine-refractory differentiated thyroid cancer (RR-DTC) were randomized 2:1 to lenvatinib (24 mg/d on a 28-day cycle) or placebo. Survival endpoints were assessed with Kaplan-Meier estimates and log-rank tests. The influence of TE-HTN on progression-free survival (PFS) and overall survival (OS) was analyzed with univariate and multivariate Cox proportional hazards models. Overall, 73% of lenvatinib-treated patients and 15% of placebo-treated patients experienced TE-HTN. The median PFS for lenvatinib-treated patients with (n = 190) and without TE-HTN (n = 71) was 18.8 and 12.9 months, respectively (hazard ratio [HR], 0.59; 95% confidence interval [CI], 0.39-0.88; P = .0085). For lenvatinib-treated patients, the objective response rate was 69% with TE-HTN and 56% without TE-HTN (odds ratio, 1.72; 95% CI, 0.98-3.01). The median change in tumor size for patients with and without TE-HTN was -45% and -40%, respectively (P = .2). The median OS was not reached for patients with TE-HTN; for those without TE-HTN, it was 21.7 months (HR, 0.43; 95% CI, 0.27-0.69; P = .0003). Although HTN is a clinically significant adverse event that warrants monitoring and management, TE-HTN was significantly correlated with improved outcomes in patients with RR-DTC, indicating that HTN may be predictive for lenvatinib efficacy in this population. Cancer 2018;124:2365-72. © 2018 American Cancer Society. © 2018 American Cancer Society.
Quek, Richard; Farid, Mohamad; Kanjanapan, Yada; Lim, Cindy; Tan, Iain Beehuat; Kesavan, Sittampalam; Lim, Tony Kiat Hon; Oon, Lynette Lin-Ean; Goh, Brian Kp; Chan, Weng Hoong; Teo, Melissa; Chung, Alexander Yf; Ong, Hock Soo; Wong, Wai Keong; Tan, Patrick; Yip, Desmond
2017-06-01
Benefit of adjuvant imatinib therapy following curative resection in patients with intermediate-risk gastrointestinal stromal tumor (GIST) is unclear. GIST-specific exon mutations, in particular exon 11 deletions, have been shown to be prognostic. We hypothesize that specific KIT mutations may improve risk stratification in patients with intermediate-risk GIST, identifying a subgroup of patients who may benefit from adjuvant therapy. In total, 142 GIST patients with complete clinicopathologic and mutational data from two sites were included. Risk classification was based on the modified National Institute of Health (NIH) criteria. In this cohort, 74% (n = 105) of patients harbored a KIT mutation; 61% (n = 86) were found in exon 11 of which nearly 70% were KIT exon 11 deletions (n = 60). A total of 18% (n = 25) of cases were classified as having intermediate-risk disease. Univariate analysis confirmed tumor size, mitotic index, nongastric origin, presence of tumor rupture and modified NIH criteria were adversely prognostic for relapse-free survival (RFS). Among KIT/PDGFRA mutants, KIT exon 11 deletions had a significantly worse prognosis (hazard ratio 2.31; 95% confidence interval, 1.30-4.10; P = 0.003). Multivariate analysis confirmed KIT exon 11 deletion (P = 0.003) and clinical risk classification (P < 0.001) as independent adverse prognostic factors for RFS. Intermediate-risk patients harboring KIT exon 11 deletions had RFS outcomes similar to high-risk patients. The presence of KIT exon 11 deletion mutation in patients with intermediate-risk GIST is associated with an inferior clinical outcome with RFS similar to high-risk patients. © 2016 John Wiley & Sons Australia, Ltd.
Yeh, Chun-Nan; Chen, Ming-Huang; Chen, Yen-Yang; Yang, Ching-Yao; Yen, Chueh-Chuan; Tzen, Chin-Yuan; Chen, Li-Tzong; Chen, Jen-Shi
2017-07-04
Gastrointestinal stromal tumors (GISTs) are caused by the constitutive activation of KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations. Imatinib selectively inhibits KIT and PDGFR, leading to disease control for 80%-90% of patients with metastatic GIST. Imatinib resistance can occur within a median of 2-3 years due to secondary mutations in KIT. According to preclinical studies, both imatinib and sunitinib are ineffective against exon 17 mutations. However, the treatment efficacy of regorafenib for patients with GIST with exon 17 mutations is still unknown. Documented patients with GIST with exon 17 mutations were enrolled in this study. Patients received 160 mg of oral regorafenib daily on days 1-21 of a 28-day cycle. The primary end point of this trial was the clinical benefit rate (CBR; i.e., complete or partial response [PR], as well as stable disease [SD]) at 16 weeks. The secondary end points of this study included progression free survival (PFS), overall survival, and safety. Between June 2014 to May 2016, 18 patients were enrolled (15 of which were eligible for response evaluation). The CBR at 16 weeks was 93.3% (14 of 15; 6 PR and 8 SD). The median PFS was 22.1 months. The most common grade 3 toxicities were hand-and-foot skin reactions (10 of 18; 55.6%), followed by hypertension (5 of 18; 27.8%). Regorafenib significantly prolonged PFS in patients with advanced GIST harboring secondary mutations of exon 17. A phase III trial of regorafenib versus placebo is warranted. This trial is registered at ClinicalTrials.gov in November 2015, number NCT02606097.Key message: This phase II trial was conducted to assess the efficacy and safety of regorafenib in patients with GIST with exon 17 mutations. The results provide strong evidence that regorafenib significantly prolonged PFS in patients with advanced GIST harboring secondary mutations of exon 17.
Regulation of a mammalian gene bearing a CpG island promoter and a distal enhancer.
Berrozpe, Georgina; Bryant, Gene O; Warpinski, Katherine; Ptashne, Mark
2013-08-15
A quantitative nucleosome occupancy assay revealed rules for nucleosome disposition in yeast and showed how disposition affects regulation of the GAL genes. Here, we show how those findings apply to the control of Kit, a mammalian gene. The Kit promoter lies in a CpG island, and its enhancer (active in mast cells) lies some 150 kb upstream. Nucleosomes form with especially high avidities at the Kit promoter, a reaction that, we surmise, ensures extremely low basal expression. In mast cells, transcriptional activators displace nucleosomes that are less tightly formed at the Kit enhancer. In turn, the active enhancer replaces a single Kit promoter nucleosome with the transcriptional machinery, thereby inducing transcription over 1,000-fold. As at the yeast GAL genes, the inhibitory effects of nucleosomes facilitate high factors of induction by mammalian activators working in the absence of specific repressors. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Xiang, Pengjun; Chen, Tong; Mou, Yi; Wu, Hui; Xie, Peng; Lu, Guo; Gong, Xiaojian; Hu, Qinghua; Zhang, Yihua; Ji, Hui
2015-10-01
The purpose of the present study was to evaluate the potential therapeutic effects of NZ on lipopolysaccharide (LPS)-induced RAW264.7 cells and explore its underlying mechanisms. The effect of NZ on NO generation in LPS-activated macrophage was measured by Griess assay. The concentrations of TNF-α, IL-18, IL-1β were analyzed with ELISA kits. The LPS-induced production of reactive oxygen species (ROS) was determined by flow cytometry. The protein expressions of TLR4, NF-κB and NLRP3 signaling pathway were investigated with Western blot analysis. It was shown that NZ significantly reduced the production of NO and the generation of pro-inflammatory cytokines in LPS-induced RAW264.7 cells. In addition, NZ markedly inhibited the up-regulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and the activation of nuclear factor kappa B (NF-κB) in LPS-stimulated RAW 264.7 macrophages. Of note, NZ suppressed the expression of the inflammasome component such as NOD-like receptor 3(NLRP3), apoptosis-associated speck-like protein containing CARD(ASC), as well as the levels of cytokines including Interleukin-18(IL-18) and Interleukin-1β(IL-1β). These results indicated that NZ inhibited the generations of NO and pro-inflammatory cytokines by suppressing TLR4/MyD88/NF-κB pathway, suggesting that NZ could be an effective candidate for ameliorating LPS-induced inflammatory responses.
Pino, Ana María; Ríos, Susana; Astudillo, Pablo; Fernández, Mireya; Figueroa, Paula; Seitz, Germán; Rodríguez, J Pablo
2010-03-01
Osteoporosis is characterized by low bone mass, microarchitectural deterioration of bone tissue leading to increased bone fragility, and a resulting susceptibility to fractures. Distinctive environmental bone marrow conditions appear to support the development and maintenance of the unbalance between bone resorption and bone formation; these complex bone marrow circumstances would be reflected in the fluid surrounding bone marrow cells. The content of regulatory molecules in the extracellular fluid from the human bone marrow is practically unknown. Since the content of cytokines such as adiponectin, leptin, osteoprogeterin (OPG), soluble receptor activator of nuclear factor kappaB ligand (s-RANKL), tumor necrosis factor alpha, and interleukin 6 (IL-6) may elicit conditions promoting or sustaining osteoporosis, in this work we compared the concentrations of the above-mentioned cytokines and also the level of the soluble receptors for both IL-6 and leptin in the extracellular fluid from the bone marrow of nonosteoporotic and osteoporotic human donors. A supernatant fluid (bone marrow supernatant fluid [BMSF]) was obtained after spinning the aspirated bone marrow samples; donors were classified as nonosteoporotic or osteoporotic after dual-energy X-ray absorptiometry (DXA) measuring. Specific commercially available kits were used for all measurements. The cytokines' concentration in BMSF showed differently among nonosteoporotic and osteoporotic women; this last group was characterized by higher content of proinflammatory and adipogenic cytokines. Also, osteoporotic BMSF differentiated by decreased leptin bioavailability, suggesting that insufficient leptin action may distinguish the osteoporotic bone marrow. Copyright 2010 American Society for Bone and Mineral Research.
Wang, Yaxi; Sun, Tingyi; Sun, Haimei; Yang, Shu; Li, Dandan; Zhou, Deshan
2017-04-06
Claudin-3 is a major protein of tight junctions (TJs) in the intestinal epithelium and is critical for maintaining cell-cell adhesion, barrier function, and epithelium polarity. Recent studies have shown high claudin-3 levels in several solid tumors, but the regulation mechanism of claudin-3 expression remains poorly understood. In the present study, colorectal cancer (CRC) tissues, HT-29 and DLD-1 CRC cell lines, CRC murine model (C57BL/6 mice) and c-kit loss-of-function mutant mice were used. We demonstrated that elevated claudin-3 levels were positively correlated with highly expressed c-kit in CRC tissues based upon analysis of protein expression. In vitro, claudin-3 expression was clearly increased in CRC cells by overexpressed c-kit or stimulated by exogenous recombinant human stem cell factor (rhSCF), while significantly decreased by the treatment with c-kit or c-Jun N-terminal kinase (JNK) inhibitors. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay showed that SCF/c-kit signaling significantly promoted activator protein-1 (AP-1) binding with CLDN-3 promoter and enhanced its transcription activity. Furthermore, decreased expression of claudin-3 was obtained in the colonic epithelium from the c-Kit loss-of-function mutant mice. In conclusion, SCF/c-kit-JNK/AP-1 signaling pathway significantly promoted claudin-3 expression in colonic epithelium and CRC, which could contribute to epithelial barrier function maintenance and to CRC development.
Peng, Yunping; Wu, Junlin; Wang, Jihua; Li, Wenmei; Yu, Shujuan
2012-04-01
Malaria has been recognized as a human disease for thousands of years and remains one of the most common diseases affecting humans worldwide. Therefore, a method for rapidly detecting Plasmodium falciparum is necessary and useful. We have developed Wondfo rapid diagnostic kit based on nano-gold immunochromatography assay for the detection of P. falciparum in patient specimen. In the present study, we demonstrated the sensitivity and specificity of the rapid diagnostic kit in which nano-gold labeling techniques and the monoclonal antibodies against histidine-rich protein-2 of P. falciparum were used to establish two-antibody sandwich immunochromatographic assay for detecting P. falciparum. By using microscopic examination of blood smears as control, the sensitivity, specificity, and feasibility of Wondfo rapid diagnostic kit was determined in the prompt and accurate diagnosis of malaria. In this study, 1,558 blood samples were collected from outpatient clinics in China and detected by both Wondfo kit and microscopic examination. The Wondfo kit did not show cross-reaction with microfilaria, Toxoplasma gondii, and other parasites in the blood. The patient samples positive for rheumatoid factor, HIV, tuberculosis, and syphilis did not show false positivity when testing with Wondfo kit. The detection sensitivity and specificity of Wondfo rapid diagnostic kit were 95.49% and 99.53%, respectively. These results indicate that our rapid diagnostic assay may be useful for detecting P. falciparum in patient specimen.
Li, Peihua; Ye, Huiming; Liu, Jiangwu; Jin, Hongwei; Lin, Yongzhi; Yan, Shuidi; Yu, Yang; Gao, Lei; Xu, Feihai; Zhang, Zhongying
2018-01-01
Tumor marker carbohydrate antigen 15-3 (CA15-3) is used as a biomarker to aid to diagnose and monitor the prognosis of breast cancer patients. A new quantitative determination kit for CA15-3 with chemiluminescent assay was developed by Xiamen InnoDx Biotech Co., Ltd, China. Therefore, we conducted the report to evaluate the performance of the kit. According to the "Guiding principles on performance analysis of diagnostic reagents in vitro", the calibration curve, limit of detection, reportable range, accuracy, precision, anti-interference capability, cross-reaction and comparison by measuring EDTA plasma and serum were carried out. In addition, the kit was performed in parallel to electrochemiluminescence immunoassay kit (Roche) to analyze the correlation between the two kits. Regression equation of calibration curve of the kit was Y=0.7914X+4.1032 (R 2 =.990). Limit of detection was 0.0347 U/mL. The reportable range was 0.5-2400 U/mL. Recovery ratio was 100.0%-104.8%. Coefficient of variations (CVs) of within-run and between-run were 4.8%-7.6% and 5.8%-7.4% respectively. No remarkable interferences (all Bias% were less than ±10%) were detected when samples contained hemoglobin ≤183.8 μmol/L, bilirubin ≤340 μmol/L, triglyceride ≤18.1 mmol/L, or rheumatoid factor ≤400 U/mL. No cross-reaction was present in the kit. Moreover, compared with the results from electrochemiluminescence immunoassay kit (Roche) in 345 serum samples, there was a satisfied correlation coefficient of 0.977 (P<.01), and the kit was simultaneously fit for the detection of EDTA plasma and serum samples. The new kit validated satisfactorily, and it can be used for detecting CA15-3 in clinical practice. © 2017 The Authors Journal of Clinical Laboratory Analysis Published by Wiley Periodicals, Inc.
INTERIM REPORT ON THE EVOLUTION AND ...
A demonstration of screening technologies for determining the presence of dioxin and dioxin-like compounds in soil and sediment was conducted under the U.S. Environmental Protection Agency's(EPA's) Superfund Innovative Technology Evaluation Program in Saginaw, Michigan in 2004. The objectives of the demonstration included evaluating each participating technology's accuracy, precision, sensitivity, sample throughput, tendency for matrix effects, and cost. The test also included an assessment of how well the technology's results compared to those generated by established laboratory methods using high-resolution mass spectrometry (HRMS). The demonstration objectives were accomplished by evaluating the results generated by each technology from 209 soil, sediment, and extract samples. The test samples included performance evaluation (PE) samples (i.e., contaminant concentrations were certified or the samples were spiked with known contaminants) and environmental samples collected from 10 different sampling locations. The PE and environmental samples were distributed to the technology developers in blind, random order. One of the participants in the original SITE demonstration was Hybrizyme Corporation, which demonstrated the use of the AhRC PCR Kit. The AhRC PCR Kit was a technology that reported the concentration of aryl hydrocarbon receptor (AhR) binding compounds in a sample, with units reported as Ah Receptor Binding Units (AhRBU). At the time of the original dem
Parichy, D M; Ransom, D G; Paw, B; Zon, L I; Johnson, S L
2000-07-01
Developmental mechanisms underlying traits expressed in larval and adult vertebrates remain largely unknown. Pigment patterns of fishes provide an opportunity to identify genes and cell behaviors required for postembryonic morphogenesis and differentiation. In the zebrafish, Danio rerio, pigment patterns reflect the spatial arrangements of three classes of neural crest-derived pigment cells: black melanocytes, yellow xanthophores and silver iridophores. We show that the D. rerio pigment pattern mutant panther ablates xanthophores in embryos and adults and has defects in the development of the adult pattern of melanocyte stripes. We find that panther corresponds to an orthologue of the c-fms gene, which encodes a type III receptor tyrosine kinase and is the closest known homologue of the previously identified pigment pattern gene, kit. In mouse, fms is essential for the development of macrophage and osteoclast lineages and has not been implicated in neural crest or pigment cell development. In contrast, our analyses demonstrate that fms is expressed and required by D. rerio xanthophore precursors and that fms promotes the normal patterning of melanocyte death and migration during adult stripe formation. Finally, we show that fms is required for the appearance of a late developing, kit-independent subpopulation of adult melanocytes. These findings reveal an unexpected role for fms in pigment pattern development and demonstrate that parallel neural crest-derived pigment cell populations depend on the activities of two essentially paralogous genes, kit and fms.
Liu, Fei; Zhu, Hua; Yu, Jiangyuan; Han, Xuedi; Xie, Qinghua; Liu, Teli; Xia, Chuanqin; Li, Nan; Yang, Zhi
2017-06-01
Somatostatin receptors are overexpressed in neuroendocrine tumors, whose endogenous ligands are somatostatin. DOTA-TATE is an analogue of somatostatin, which shows high binding affinity to somatostatin receptors. We aim to evaluate the 68 Ga/ 177 Lu-labeling DOTA-TATE kit in neuroendocrine tumor model for molecular imaging and to try human-positron emission tomography/computed tomography imaging of 68 Ga-DOTA-TATE in neuroendocrine tumor patients. DOTA-TATE kits were formulated and radiolabeled with 68 Ga/ 177 Lu for 68 Ga/ 177 Lu-DOTA-TATE (M-DOTA-TATE). In vitro and in vivo stability of 177 Lu-DOTA-TATE were performed. Nude mice bearing human tumors were injected with 68 Ga-DOTA-TATE or 177 Lu-DOTA-TATE for micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging separately, and clinical positron emission tomography/computed tomography images of 68 Ga-DOTA-TATE were obtained at 1 h post-intravenous injection from patients with neuroendocrine tumors. Micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging of 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE both showed clear tumor uptake which could be blocked by excess DOTA-TATE. In addition, 68 Ga-DOTA-TATE-positron emission tomography/computed tomography imaging in neuroendocrine tumor patients could show primary and metastatic lesions. 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE could accumulate in tumors in animal models, paving the way for better clinical peptide receptor radionuclide therapy for neuroendocrine tumor patients in Asian population.
Liver X receptor activation inhibits PC-3 prostate cancer cells via the beta-catenin pathway.
Youlin, Kuang; Li, Zhang; Weiyang, He; Jian, Kang; Siming, Liang; Xin, Gou
2017-03-01
Liver X receptors (LXRs) are nuclear receptors family of ligand-dependent transcription factors that play a crucial role in regulating cholesterol metabolism and inflammation. Recent studies show that LXR agonists exhibit anti-cancer activities in a variety of cancer cell lines including prostate. To further identify the potential mechanisms of LXRα activation on prostate cancer, we investigated the effect of LXR agonist T0901317 on PC3 prostate cancer cell and in which activity of beta-catenin pathway involved. Prostate cancer PC3 cells were transfected with LXR-a siRNA and treated with LXR activator T0901317. qRT-PCR and western blot were used to detect the LXR-a expression. beta-catenin, cyclin D1 and c-MYC were analyzed by western blot. Cell apoptosis was examined by flow cytometry and Cell proliferation was assessed by Cell Counting Kit-8 assay. Cell migration was detected by Transwell chambers. Data showed that T0901317 significantly inhibited PC3 cell proliferation as well as invasion and increased apoptosis in vitro. Furthermore, we found that LXRα activation induced the reduction of beta-catenin expression in PC3 cells, and this inhibitory effect could be totally abolished when cells were treated with LXRα. Meanwhile, the expression of beta-catenin target gene cyclin D1 and c-MYC were also decreased. This study provided additional evidence that LXR activation inhibited PC-3 prostate cancer cells via suppressing beta-catenin pathway. Copyright © 2016 Elsevier GmbH. All rights reserved.
ERIC Educational Resources Information Center
Jones, Sandra
This supplement to the Consumer Education Resources Catalog (see note) lists teaching-learning resources available for preview at the Michigan Consumer Education Center. A subject index to multi-media identifies titles of films, video cassettes, multi-media kits, and games under seven specific subjects. These are (1) Factors Affecting Consumer…
Chen, DaYang; Zhen, HeFu; Qiu, Yong; Liu, Ping; Zeng, Peng; Xia, Jun; Shi, QianYu; Xie, Lin; Zhu, Zhu; Gao, Ya; Huang, GuoDong; Wang, Jian; Yang, HuanMing; Chen, Fang
2018-03-21
Research based on a strategy of single-cell low-coverage whole genome sequencing (SLWGS) has enabled better reproducibility and accuracy for detection of copy number variations (CNVs). The whole genome amplification (WGA) method and sequencing platform are critical factors for successful SLWGS (<0.1 × coverage). In this study, we compared single cell and multiple cells sequencing data produced by the HiSeq2000 and Ion Proton platforms using two WGA kits and then comprehensively evaluated the GC-bias, reproducibility, uniformity and CNV detection among different experimental combinations. Our analysis demonstrated that the PicoPLEX WGA Kit resulted in higher reproducibility, lower sequencing error frequency but more GC-bias than the GenomePlex Single Cell WGA Kit (WGA4 kit) independent of the cell number on the HiSeq2000 platform. While on the Ion Proton platform, the WGA4 kit (both single cell and multiple cells) had higher uniformity and less GC-bias but lower reproducibility than those of the PicoPLEX WGA Kit. Moreover, on these two sequencing platforms, depending on cell number, the performance of the two WGA kits was different for both sensitivity and specificity on CNV detection. The results can help researchers who plan to use SLWGS on single or multiple cells to select appropriate experimental conditions for their applications.
Lai, A A; Fleck, R J; Patzke, J V; Glueck, B G; Shaskan, E G; Rosenberg, B J
1982-01-01
The influence of blood collection methods on dopamine-receptor-blocking activities as determined by a radioreceptor assay kit was investigated. Thirty-one patients treated with one of six neuroleptic drugs (thioridazine, trifluoperazine, haloperidol, chlorpromazine, thiothixene, or fluphenazine) participated in this study. Blood samples were drawn from each patient into five different evacuated blood collection tubes made by the same manufacturer (red-stoppered tube containing no additives, lavender-stoppered tube containing EDTA, green-stoppered tube containing heparin, dark blue-stoppered tube containing no additives, and dark blue-stoppered tube containing heparin). The results show that for five drugs (chlorpromazine, fluphenazine, haloperidol, thiothixene, and trifluoperazine), the dark blue-stoppered tubes without additives resulted in significantly higher dopamine-receptor-blocking activities than the red-, lavender-, or green-stoppered tubes. For thioridazine, the green-stoppered tubes resulted in significantly higher blocking activities than the blue- and red-stoppered tubes. The possible effect of tris(2-butoxyethyl) phosphate, a plasticizer, on dopamine-receptor-blocking activities by neuroleptic drugs is discussed.
Colomar, Mercedes; Cafferata, Maria Luisa; Aleman, Alicia; Tomasso, Giselle; Betran, Ana Pilar
2017-03-31
Antenatal care reduces maternal and perinatal mortality and morbidity through the detection and treatment of some conditions, but its coverage is less than optimal within certain populations. Supply kits for maternal health were designed to overcome barriers present when providing care during pregnancy and childbirth particularly to women from underserved population.We conducted a mixed-methods systematic review on the use of supply kits. This manuscript presents the findings from qualitative studies that reported barriers, facilitators, and user's recommendation in the adoption and implementation of any type of kit designed to be used during pregnancy or childbirth.This review included eight studies, and seven were implemented in developing countries. Most studies assessed the implementation of clean delivery kits to be used during labour and delivery, and contributed to gain insights into factors that may hinder or foster the use of kits.Clean delivery kits were conceived to cope with barriers related mainly to access. The most important barrier identified were those related to the socio-cultural and the lack of knowledge dimension such as who held the decision-making authority in the household, as well as popular beliefs behind the idea that birth preparation could bring bad luck, may prevent clients from adhering to their use. In addition, financial constraints and limited understanding of the instructions of use were accessibility barriers found. On the other hand, once used, clean delivery kits for maternal health were accepted by women and health workers. Convenience, hygienic components, and avoidance of delays in receiving care were viewed as satisfactory features.Supply kits are mostly affordable and easily deployable. Increasing awareness among the population about the offered kits and providing information on their benefits emerges as a critical step to foster use in settings where kits are available. Implementation of this strategy requires low complexity resources and could make the use of kits an accepted alternative to increase the use of evidence-based interventions and thus improve quality of care during pregnancy, childbirth and neonatal period mainly at the community level in low income countries and remote areas with low access.
Horta, Rodrigo dos Santos; Giuliano, Antonio; Lavalle, Gleidice Eunice; Costa, Mariana de Pádua; de Araújo, Roberto Baracat; Constantino-Casas, Fernando; Dobson, Jane Margaret
2018-01-01
The aim of the present prospective-retrospective study was to evaluate the response of high-risk canine mast cell tumours (MCTs) to tyrosine kinase inhibitors (TKIs) and to correlate this with prognostic factors. A total of 24 dogs presented with macroscopic cutaneous MCTs at disease stage II or III, and therefore, at high-risk of associated mortality, were included in the study and treated with masitinib (n=20) or toceranib (n=4). A total of 12/24 dogs achieved an objective response and the overall survival (OS) for all subjects was 113 days. Dogs responding to treatment had a significant increase in OS compared to non-responders (146.5 days vs. 47 days, P=0.02). Internal tandem duplications in exon 11 of the c-kit gene were identified in 6/24 cases. Ki67, KIT immunolabelling and c-kit mutation did not provide information regarding prognosis or prediction of response to TKIs in this population. Initial response to TKIs appears to be the most reliable prognostic factor for survival duration. PMID:29387214
Mucosal Melanomas: A Case-Based Review of the Literature
Seetharamu, Nagashree; Ott, Patrick A.
2010-01-01
Mucosal melanoma is a rare cancer that is clearly distinct from its cutaneous counterpart in biology, clinical course, and prognosis. Recent studies have shown important differences in the frequencies of various genetic alterations in different subtypes of melanoma. Activating mutations in the c-KIT gene are detected in a significant number of patients with mucosal melanoma. This observation has resulted in the initiation of several clinical trials aimed at exploring the role of receptor tyrosine kinases that inhibit c-KIT in this patient population. We herein present a comprehensive literature review of mucosal melanoma along with case vignettes of a number of pertinent cases. We further discuss melanomas of the head and neck, the female genital tract, and the anorectum, which are the three most common sites of mucosal melanoma, with a particular focus on the diagnostic, prognostic, and therapeutic data available in the literature. PMID:20571149
Molecular screening strategies for NF1-like syndromes with café-au-lait macules
Zhang, Jia; Li, Ming; Yao, Zhirong
2016-01-01
Multiple café-au-lait macules (CALM) are usually associated with neurofibromatosis type 1 (NF1), one of the most common hereditary disorders. However, a group of genetic disorders presenting with CALM have mutations that are involved in human skin pigmentation regulation signaling pathways, including KIT ligand/KIT proto-oncogene receptor tyrosine kinase and Ras/mitogen-activated protein kinase. These disorders, which include Legius syndrome, Noonan syndrome with multiple lentigines or LEOPARD syndrome, and familial progressive hyperpigmentation) are difficult to distinguish from NF1 at early stages, using skin appearance alone. Furthermore, certain syndromes are clinically overlapping and molecular testing is a vital diagnostic method. The present review aims to provide an overview of these ‘NF1-like’ inherited diseases and recommend a cost-effective strategy for making a clear diagnosis among these diseases with an ambiguous borderline. PMID:27666661
Molecular screening strategies for NF1-like syndromes with café-au-lait macules (Review).
Zhang, Jia; Li, Ming; Yao, Zhirong
2016-11-01
Multiple café-au-lait macules (CALM) are usually associated with neurofibromatosis type 1 (NF1), one of the most common hereditary disorders. However, a group of genetic disorders presenting with CALM have mutations that are involved in human skin pigmentation regulation signaling pathways, including KIT ligand/KIT proto‑oncogene receptor tyrosine kinase and Ras/mitogen‑activated protein kinase. These disorders, which include Legius syndrome, Noonan syndrome with multiple lentigines or LEOPARD syndrome, and familial progressive hyperpigmentation) are difficult to distinguish from NF1 at early stages, using skin appearance alone. Furthermore, certain syndromes are clinically overlapping and molecular testing is a vital diagnostic method. The present review aims to provide an overview of these 'NF1‑like' inherited diseases and recommend a cost‑effective strategy for making a clear diagnosis among these diseases with an ambiguous borderline.
Targeting Androgen Receptor by Lysosomal Degradation in Prostate Cancer
2014-09-01
chloroquine for 12 h or left untreated. Lysosomes were prepared using the Lysosome Enrichment Kit for Tissue and Cultured Cells (#89839, Pierce... chloroquine for 12 h or left untreated, and the luciferase activity was determined using the same amount of protein lysate (left). The cells were treated...degradation pathway either by increasing the TFEB levels or by activating TFEB using mTORC1 kinase inhibitor, torin 1. Additionally, we determined that the
AGEs/sRAGE, a novel risk factor in the pathogenesis of end-stage renal disease.
Prasad, Kailash; Dhar, Indu; Zhou, Qifeng; Elmoselhi, Hamdi; Shoker, Muhammad; Shoker, Ahmed
2016-12-01
Interaction of advanced glycation end products (AGEs) with its cell-bound receptor (RAGE) results in cell dysfunction through activation of nuclear factor kappa-B, increase in expression and release of inflammatory cytokines, and generation of oxygen radicals. Circulating soluble receptors, soluble receptor (sRAGE), endogenous secretory receptor (esRAGE) and cleaved receptor (cRGAE) act as decoy for RAGE ligands and thus have cytoprotective effects. Low levels of sRAGE and esRAGE have been proposed as biomarkers for many diseases. However sRAGE and esRAGE levels are elevated in diabetes and chronic renal diseases and still tissue injury occurs. It is possible that increases in levels of AGEs are greater than increases in the levels of soluble receptors in these two diseases. Some new parameters have to be used which could be an universal biomarkers for cell dysfunction. It is hypothesized that increases in serum levels of AGEs are greater than the increases in the soluble receptors, and that the levels of AGEs is correlated with soluble receptors and that the ratios of AGEs/sRAGE, AGEs/esRAGE and AGEs/cRAGE are elevated in patients with end-stage renal disease (ESRD) and would serve as an universal risk marker for ESRD. The study subject comprised of 88 patients with ESRD and 20 healthy controls. AGEs, sRAGE and esRAGE were measured using commercially available enzyme linked immune assay kits. cRAGE was calculated by subtracting esRAGE from sRAGE. The data show that the serum levels of AGEs, sRAGE, cRAGE are elevated and that the elevation of AGEs was greater than those of soluble receptors. The ratios of AGEs/sRAGE, AGEs/esRAGE and AGEs/cRAGE were elevated and the elevation was similar in AGEs/sRAGE and AGEs/cRAGE but greater than AGEs/esRAGE. The sensitivity, specificity, accuracy, and positive and negative predictive value of AGEs/sRAGE and AGEs/cRAGE were 86.36 and 84.88 %, 86.36 and 80.95 %, 0.98 and 0.905, 96.2 and 94.8 %, and 61.29 and 56.67 % respectively. There was a positive correlation of sRAGE with esRAGE and cRAGE, and AGEs with esRAGE; and negative correlation between sRAGE and AGEs/sRAGE, esRAGE and AGES/esRAGE, and cRAGE and AGES/cRAGE. In conclusion, AGEs/sRAGE, AGEs/cRAGE and AGEs/esRAGE may serve as universal risk biomarkers for ESRD and that AGEs/sRAGE and AGEs/cRAGE are better risk biomarkers than AGEs/esRAGE.
White spotting in the domestic cat (Felis catus) maps near KIT on feline chromosome B1
Cooper, MP; Fretwell, N; Bailey, SJ; Lyons, LA
2006-01-01
Summary Five feline-derived microsatellite markers were genotyped in a large pedigree of cats that segregates for ventral white spotting. Both KIT and EDNRB cause similar white spotting phenotypes in other species. Thus, three of the five microsatellite markers chosen were on feline chromosome B1 in close proximity to KIT; the other two markers were on feline chromosome A1 near EDNRB. Pairwise linkage analysis supported linkage of the white spotting with the three chromosome B1 markers but not with the two chromosome A1 markers. This study indicates that KIT, or another gene within the linked region, is a candidate for white spotting in cats. Platelet-derived growth factor alpha (PDGFRA) is also a strong candidate, assuming that the KIT–PDGFRA linkage group, which is conserved in many mammalian species, is also conserved in the cat. PMID:16573531
Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan
2015-10-01
Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.
Young, Sean D; Daniels, Joseph; Chiu, ChingChe J; Bolan, Robert K; Flynn, Risa P; Kwok, Justin; Klausner, Jeffrey D
2014-01-01
Rates of unrecognized HIV infection are significantly higher among Latino and Black men who have sex with men (MSM). Policy makers have proposed that HIV self-testing kits and new methods for delivering self-testing could improve testing uptake among minority MSM. This study sought to conduct qualitative assessments with MSM of color to determine the acceptability of using electronic vending machines to dispense HIV self-testing kits. African American and Latino MSM were recruited using a participant pool from an existing HIV prevention trial on Facebook. If participants expressed interest in using a vending machine to receive an HIV self-testing kit, they were emailed a 4-digit personal identification number (PIN) code to retrieve the test from the machine. We followed up with those who had tested to assess their willingness to participate in an interview about their experience. Twelve kits were dispensed and 8 interviews were conducted. In general, participants expressed that the vending machine was an acceptable HIV test delivery method due to its novelty and convenience. Acceptability of this delivery model for HIV testing kits was closely associated with three main factors: credibility, confidentiality, and convenience. Future research is needed to address issues, such as user-induced errors and costs, before scaling up the dispensing method.
Yan, S Q; Hou, J N; Bai, C Y; Jiang, Y; Zhang, X J; Ren, H L; Sun, B X; Zhao, Z H; Sun, J H
2014-04-01
The dominant white coat colour of farmed blue fox is inherited as a monogenic autosomal dominant trait and is suggested to be embryonic lethal in the homozygous state. In this study, the transcripts of KIT were identified by RT-PCR for a dominant white fox and a normal blue fox. Sequence analysis showed that the KIT transcript in normal blue fox contained the full-length coding sequence of 2919 bp (GenBank Acc. No KF530833), but in the dominant white individual, a truncated isoform lacking the entire exon 12 specifically co-expressed with the normal transcript. Genomic DNA sequencing revealed that a single nucleotide polymorphism (c.1867+1G>T) in intron 12 appeared only in the dominant white individuals and a 1-bp ins/del polymorphism in the same intron showed in individuals representing two different coat colours. Genotyping results of the SNP with PCR-RFLP in 185 individuals showed all 90 normal blue foxes were homozygous for the G allele, and all dominant white individuals were heterozygous. Due to the truncated protein with a deletion of 35 amino acids and an amino acid replacement (p.Pro623Ala) located in the conserved ATP binding domain, we propose that the mutant receptor had absent tyrosine kinase activity. These findings reveal that the base substitution at the first nucleotide of intron 12 of KIT gene, resulting in skipping of exon 12, is a causative mutation responsible for the dominant white phenotype of blue fox. © 2013 Stichting International Foundation for Animal Genetics.
Corless, Christopher L.; Harrell, Patina; Lacouture, Mario; Bainbridge, Troy; Le, Claudia; Gatter, Ken; White, Clifton; Granter, Scott; Heinrich, Michael C.
2006-01-01
Oncogenic mutations of the receptor tyrosine kinase KIT contribute to the pathogenesis of gastrointestinal stromal tumors, systemic mastocytosis (SM), and some cases of acute myelogenous leukemia (AML). The D816V substitution in the activation loop of KIT results in relative resistance to the kinase inhibitor imatinib (Gleevec). Because this mutation occurs in 80 to 95% of adult SM, its detection has diagnostic and predictive significance. Unfortunately, the fraction of mutation-positive cells in clinical SM samples is often below the 20 to 30% threshold needed for detection by direct DNA sequencing. We have developed an allele-specific polymerase chain reaction assay using a mutation-specific primer combined with a wild-type blocking oligonucleotide that amplifies D816V at the level of 1% mutant allele in DNA extracted from formalin-fixed, paraffin-embedded tissue. There were no amplifications among 64 KIT wild-type tumors and cell lines, whereas all D816V-mutant samples (eight AML and 11 mast cell disease) were positive. Other D816 substitutions associated with resistance to imatinib in vitro are rare in SM. Among these D816F was detectable with the assay whereas D816H, D816Y, and D816G did not amplify. Nine biopsies (bone marrow, skin, or colon) with suspected SM were negative by denaturing high performance liquid chromatography and/or DNA sequencing but positive by allele-specific polymerase chain reaction. Thus, the assay may be useful in confirming the diagnosis of SM. PMID:17065430
Cossu-Rocca, Paolo; Contini, Marcella; Uras, Maria Gabriela; Muroni, Maria Rosaria; Pili, Francesca; Carru, Ciriaco; Bosincu, Luisanna; Massarelli, Giovannino; Nogales, Francisco F; De Miglio, Maria Rosaria
2012-11-01
Endometrial stromal sarcomas (ESS) are rare uterine malignant mesenchymal neoplasms, which are currently treated by surgery, as effective adjuvant therapies have not yet been established. Tyrosine kinase inhibitors have rarely been applied in ESS therapy, with few reports describing imatinib responsivity. The aim of this study was to analyze the status of different tyrosine kinase receptors in an ESS series, in order to evaluate their potential role as molecular targets. Immunohistochemistry was performed for EGFR, c-KIT, PDGFR-α, PDGFR-β, and ABL on 28 ESS. EGFR, PDGFR-α, and PDGFR-β gene expression was investigated by real-time polymerase chain reaction (qRT-PCR) on selected cases. "Hot-spot" mutations were screened for on EGFR, c-KIT, PDGFR-α, and PDGFR-β genes, by sequencing. All analysis was executed from formalin-fixed, paraffin-embedded specimens. Immunohistochemical overexpression of 2 or more tyrosine kinase receptors was observed in 18 of 28 tumors (64%), whereas only 5 tumors were consistently negative. Gene expression profiles were concordant with immunohistochemical overexpression in only 1 tumor, which displayed both high mRNA levels and specific immunoreactivity for PDGFR-α, and PDGFR-β. No activating mutations were found on the tumors included in the study. This study confirms that TKRs expression is frequently observed in ESS. Considering that the responsiveness to tyrosine kinase inhibitors is known to be related to the presence of specific activating mutations or gene over-expression, which are not detectable in ESS, TKRs immunohistochemical over-expression alone should not be considered as a reliable marker for targeted therapies in ESS. Specific post-translational abnormalities, responsible for activation of TKRs, should be further investigated.
Heidari, Banafsheh; Rahmati-Ahmadabadi, Maryam; Akhondi, Mohammad Mehdi; Zarnani, Amir Hassan; Jeddi-Tehrani, Mahmood; Shirazi, Abolfazl; Naderi, Mohammad Mehdi; Behzadi, Bahareh
2012-10-01
Presently the techniques for making transgenic animals are cumbersome, required costly instruments and trained man-power. The ability of spermatogonial stem cells (SSCs) to integrate foreign genes has provided the opportunity for developing alternate methods for generation of transgenic animals. One of the big challenges in this field is development of the methods to identify and purify donor SSCs by antibody mediated cell sorting. The present study was aimed to identify goat subpopulations of SSCs using polyclonal antibodies against PGP9.5 and c-kit molecular markers as well as the growth characteristics of SSCs during short term culture. One month old goats' testicular samples were subjected for immunohistochemical and immunocytochemical evaluations. The enzymatically isolated SSCs were cultured in DMEM plus FCS supplemented with (treatment) or without (control) growth factors (GDNF, LIF, FGF, and EGF) for 2 weeks. At the end of culture the morphological characteristics of SSCs colonies and immunocytochemical staining were evaluated. The number and size of colonies in treatment groups were significantly (P < 0.01) higher than corresponding values in controls. The presence of PGP 9.5 and c-kit antigens was confirmed in immunocytochemical evaluation. In immunocytochemical evaluation, the proportion of c-kit and PGP9.5 positive cells were significantly (P < 0.001) higher in control and treatment groups, respectively. The presence of PGP9.5 and c-kit antigens was confirmed in goat SSCs. Moreover, culture medium supplementation with growth factors could effectively retain the undifferentiation status of SSCs, reflected as a higher population of PGP9.5 positive cells, after short term culture.
Hou, June Y; Baptiste, Caitlin; Hombalegowda, Radhika Bangalore; Tergas, Ana I; Feldman, Rebecca; Jones, Nathaniel L; Chatterjee-Paer, Sudeshna; Bus-Kwolfski, Ama; Wright, Jason D; Burke, William M
2017-04-15
Optimal treatments for vulvar and vaginal melanomas (VVMs) have not been identified. Herein, the authors compare molecular profiles between VVM and nongynecologic melanoma (NGM) subtypes with the objective of identifying novel, targetable biomarkers. In total, 2304 samples of malignant melanoma that were submitted to Caris Life Sciences between 2009 and 2015 were reviewed. In situ hybridization and immunohistochemistry were used to assess copy numbers and protein expression of selected genes. Sequenced variants were analyzed using a proprietary cancer panel. In total, 51 VVMs (14 vaginal and 37 vulvar melanomas) were compared with 2253 malignant NGMs, including 2127 cutaneous, 105 mucosal, and 21 acral melanomas. In VVMs, B-Raf proto-oncogene serine/threonine kinase (BRAF) was the most frequently mutated gene (26%) compared with 8.3% of mucosal NGMs (P = .008). In BRAF-mutated tumors, fewer VVMs (50%), compared with NGMs (82.1%), had a variant within the valine codon 600 (V600) domain. The KIT mutation rate was highest in VVMs (22%) compared with 3% in cutaneous (P < .001) and 8.8% in mucosal (P = .05) melanoma subtypes. NRAS mutations were rare in VVMs compared with cutaneous (25.9%; P = .009) and acral (40.6%; P = .002) melanoma subtypes. PD-L1 (56%) and PD-1 (75%) were frequently expressed in VVM, whereas PI3KCA pathway mutations and estrogen receptor/progesterone receptor expression were rare. Compared with VVMs that had KIT mutations, wild-type KIT VVMs were more likely to express molecular markers suggestive of platinum resistance (ERCC1), alkylating sensitivity (MGMT), and anthracycline sensitivity (TOP2A). The unique molecular features of VVM render this disease a distinct subtype of melanoma. Gene-based molecular therapy and immunotherapies may be promising and should be evaluated in clinical trials. Cancer 2017;123:1333-1344. © 2016 American Cancer Society. © 2016 American Cancer Society.
Watanabe, Yoshikazu; Hayashida, Kohei; Saito, Daisuke; Takahashi, Toshihiro; Sakai, Junichi; Nakata, Eriko; Kanda, Takashi; Iwai, Takashi; Hirayama, Shigeto; Fujii, Hideaki; Yamakawa, Tomio; Nagase, Hiroshi
2017-08-01
We designed and synthesized novel δ opioid receptor (DOR) agonists 3a-i with an azatricyclodecane skeleton, which was a novel structural class of DOR agonists. Among them, 3b exhibited high values of binding affinity and potent agonistic activity for the DOR that were approximately equivalent to those of 2 which bore an oxazatricyclodecane skeleton. In vitro assays using the blood-brain barrier (BBB) permeability test kit supported the idea that 3b achieved an excellent BBB permeability by converting an oxygen atom of 2 to a carbon atom (methylene group) in the core skeleton. As a result, 3b showed potent antinociceptive effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Chang; Guo, Zhide; Zhang, Pu; Song, Manli; Zhao, Zuoquan; Wu, Xiaowei; Zhang, Xianzhong
2014-08-01
Specific targeting of galactose-carrying molecule to ASGP-R in normal hepatocytes has been demonstrated before. In this study, galactosyl polystyrene was synthesized from controllable ratio of functional monomers and radio-labelled with (99m)Tc by formulated kit for SPECT imaging of hepatic function. p(VLA-co-VNI)(46:54) was synthesized by free-radical copolymerization initiated by AIBN, purified by dialysis, lyophilized to kit with Tricine and TPPTS as co-ligands for (99m)Tc labeling. Radiotracer (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was prepared and evaluated by in vitro stability, in vivo metabolism, ex vivo biodistribution and microSPECT/CT imaging in normal KM mice. MicroSPECT/CT and microMRI imaging were also performed in C57BL/b6 mice with xenograft hepatic carcinoma for hepatic function evaluation. (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was obtained in high radio chemical purity (RCP) (>99%) by using instant kit without further purification and excellent in vitro and in vivo stability. The result of biodistribution showed that liver had high uptake (90.49±10.68 ID%/g) at 30 min after injection and was blocked significantly by cold copolymer. MicroSPECT imaging in normal KM mice at 1h and 4h after injection showed good liver retention and targeting properties. Significant defect of activity was observed in the tumor site which was confirmed by MRI imaging. (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) with lower ratio of targeting moiety has no observable effect on the specific binding affinity and liver uptake. This makes it possible to introduce more imaging units for multi-modality imaging. Furthermore, the instant kit preparation of (99m)Tc-labeling provides great potential for the evaluation of hepatocyte function in clinical application. Copyright © 2014 Elsevier Inc. All rights reserved.
COX-1 Suppression and Follicle Depletion in the Etiology of Menopause-Associated Ovarian Cancer
2008-10-01
form (8), and cause growth inhibition and apoptosis in ovarian cancer cell lines (9). However, the link between morphological inhibition and...of the c-kit receptor. Genes Dev 1990;4:390-400. 2. Mintz B. Embryological development of primordial germ-cells in the mouse: influence of a new...708–14. 12 Rodriguez GC, Walmer DK, Cline M, et al. Effect of progestin on the ovarian epithelium of macaques: cancer prevention through apoptosis
Role of the Neddylation Enzyme Uba3, A New Estrogen Receptor Corepressor in Breast Cancer
2006-09-01
cells acquire ICI 182,780 resistance while retaining expres- sion of ER. MATERIALS AND METHODS Materials The following antibodies and reagents were used...protein assay kit; FBS and csFBS (Hy- Clone Laboratories, Inc., Logan, UT); LipofectAMINE Plus Reagent , geneticin, and other cell culture reagents were...plasmid DNA (adjusted by corresponding empty vectors) by using LipofectAMINE Plus Reagent according to the manufacturer’s guidelines. Five hours later
Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of normozoospermic men.
Safari, Hassan; Khanlarkhani, Neda; Sobhani, Aligholi; Najafi, Atefeh; Amidi, Fardin
2017-07-05
The neurotrophin family of proteins and their receptors act as important proliferative and pro-survival factors in differentiation of nerve cells and are thought to play key roles in the development of reproductive tissues and normal function of spermatozoa. The objective of the present study was to evaluate the effect of Brain-Derived Neurotrophic Factor (BDNF) on the sperm viability and motility, lipid peroxidation (LPO), mitochondrial activity and concentration of leptin, nitric oxide (NO) and insulin in normozoospermic men. Semen samples from 20 normozoospermic men were divided into three groups: (i) control, (ii) BDNF and (iii) BDNF + K252a. BDNF and K252a were added in the dose of 0.133 and 0.1 nM, respectively. Viability was assessed by eosin-nigrosin staining technique, and motility was observed by microscopy. NO concentration and mitochondrial activity were measured with flow cytometry, and LPO was analyzed using enzyme-linked immunosorbent assay (ELISA) kits. Results showed that exogenous BDNF at 0.133 nM could significantly (p < 0.05) influence viability, motility, NO concentration, mitochondrial activity and LPO content. Secretions of insulin and leptin by human sperm were increased in cells exposed to the exogenous BDNF, whereas viability, mitochondrial activity and insulin and leptin secretions were decreased in cells exposed to the K252.
iRhom2 regulates cell surface expression of CSF1R and non-steady state myelopoiesis in mice
Qing, Xiaoping; Lavin, Yonit; Redecha, Patricia; Issuree, Priya D.; Maretzky, Thorsten; Merad, Miriam; McIlwain, David; Mak, Tak W.; Overall, Christopher M.
2016-01-01
The colony stimulating factor 1 receptor (CSF1R) functions as the major receptor for macrophage colony stimulating factor (CSF1) with crucial roles in regulating myelopoeisis. CSF1R can be proteolytically released from the cell surface by A disintegrin and metalloprotease 17 (ADAM17). Here we identified CSF1R as a major substrate of ADAM17 in an unbiased degradomics screen. We explored the impact of CSF1R shedding by ADAM17 and its upstream regulator, inactive rhomboid protein 2 (iRhom2, gene name Rhbdf2), on homeostatic development of mouse myeloid cells. In iRhom2−/− mice, we found constitutive accumulation of membrane-bound CSF1R on myeloid cells at steady state, although cell numbers of these populations were not altered. However, in the context of mixed bone marrow (BM) chimera, under competitive pressure, iRhom2−/− BM progenitor-derived monocytes, tissue macrophages and lung DCs showed a repopulation advantage over those derived from wild type (WT) BM progenitors, suggesting enhanced CSF1R signaling in the absence of iRhom2. In vitro experiments indicate that iRhom2−/− Lin−SCA-1+c-Kit+ (LSKs) cells, but not granulocyte-macrophage progenitors (GMPs), had faster growth rates than WT cells in response to CSF1. Our results shed light on an important role of iRhom2/ADAM17 pathway in regulation of CSF1R shedding and repopulation of monocytes, macrophages and DCs. PMID:27601030
Garcia, L S; Shimizu, R Y
1997-01-01
It is well known that Giardia lamblia and Cryptosporidium parvum can cause severe symptoms in humans, particularly those who are immunologically compromised. Immunoassay procedures offer both increased sensitivity and specificity compared to conventional staining methods. These reagents are also helpful when screening large numbers of patients, particularly in an outbreak situation or when screening patients with minimal symptoms. The data obtained by using 9 diagnostic kits were compared: direct fluorescent-antibody assay (DFA) kits (TechLab Giardia/Crypto IF kit, TechLab Crypto IF kit, and Meridian Merifluor Cryptosporidium/Giardia) and enzyme immunoassay (EIA) kits (Alexon ProSpecT Giardia EZ Microplate Assay, Alexon ProSpecT Cryptosporidium Microplate Assay, Cambridge Giardia lamblia Antigen Microwell ELISA, Meridian Premier Giardia lamblia, Meridian Premier Cryptosporidium, TechLab Giardia CELISA, Trend Giardia lamblia EIA). The test with the Meridian Merifluor Cryptosporidium/Giardia kit was used as the reference method. In various combinations, 60 specimens positive for Giardia, 60 specimens positive for Cryptosporidium, 40 specimens positive for a Giardia-Cryptosporidium mix, and 50 negative fecal specimens were tested. Different species (nine protozoa, three coccidia, one microsporidium, five nematodes, three cestodes, and one trematode) were included in the negative specimens. The sensitivity of EIA for Giardia ranged from 94% (Alexon) to 99% (Trend and Cambridge); the specificity was 100% with all EIA kits tested. The sensitivity of EIA for Cryptosporidium ranged from 98% (Alexon) to 99% (Meridian Premier); specificities were 100%. All DFA results were in agreement, with 100% sensitivity and specificity; however, the TechLab reagents resulted in fluorescence intensity that was generally one level below that seen with the reagents used in the reference method. In addition to sensitivity and specificity, factors such as cost, simplicity, ease of interpretation of results (color, intensity of fluorescence), equipment, available personnel, and number of tests ordered are also important considerations prior to kit selection. PMID:9163474
Deng, Jingjing; Yang, Shu; Yuan, Qing; Chen, Yuzhong; Li, Dandan; Sun, Haimei; Tan, Xinghua; Zhang, Fuchun; Zhou, Deshan
2017-01-01
Acupuncture is a therapy effective in treating postoperative ileus (POI); its underlying mechanisms remain unclear. MicroRNAs (miRNAs) participate in inflammation and injury to the interstitial cells of Cajal (ICCs), both of which are considered to be contributors to POI. C-kit, encoding KIT, a specific marker of ICCs, is predicted to be targeted by miR-19a, an inflammation-related miRNA. Therefore, we investigated a possible link between inflammation, miR-19a, and ICCs in POI, as well as the mechanism by which these factors are affected by acupuncture. The effects of acupuncture on POI were assessed in patients after colorectal resection and in colocolic anastomosis mice. Immunofluorescence staining demonstrated that KIT[Formula: see text]/ano1[Formula: see text] ICCs dramatically decreased around the colonic incision in mice, which was negatively correlated with the pronounced increase in macrophage. However, this decrease was not due to apoptosis. IL-6R was expressed in ICCs, and IL-6 level was significantly increased, as measured by ELISA, in accompaniment with high miR-19a expression. The increase in IL-6 and miR-19a levels was negatively correlated with the decrease in KIT[Formula: see text]/ano1[Formula: see text] ICCs. A luciferase reporter assay demonstrated that miR-19a directly targeted C-kit, indicating that miR-19a caused ICC damage. Interestingly, acupuncture inhibited macrophage activation, IL-6 release, and miR-19a upregulation, while promoting KIT and ano1 restoration in ICCs. High serum miR-19a level in patients after colorectal resection was also reduced by acupuncture. Conclusively, the IL-6 released by macrophages during gastrointestinal surgery upregulated miR-19a, which downregulated KIT in ICCs and finally resulted in POI. Acupuncture can interfere with the "IL-6-miR-19a-KIT" axis, suggesting that it may be a therapeutic mechanism that works against POI.
Aigrain, Louise; Gu, Yong; Quail, Michael A
2016-06-13
The emergence of next-generation sequencing (NGS) technologies in the past decade has allowed the democratization of DNA sequencing both in terms of price per sequenced bases and ease to produce DNA libraries. When it comes to preparing DNA sequencing libraries for Illumina, the current market leader, a plethora of kits are available and it can be difficult for the users to determine which kit is the most appropriate and efficient for their applications; the main concerns being not only cost but also minimal bias, yield and time efficiency. We compared 9 commercially available library preparation kits in a systematic manner using the same DNA sample by probing the amount of DNA remaining after each protocol steps using a new droplet digital PCR (ddPCR) assay. This method allows the precise quantification of fragments bearing either adaptors or P5/P7 sequences on both ends just after ligation or PCR enrichment. We also investigated the potential influence of DNA input and DNA fragment size on the final library preparation efficiency. The overall library preparations efficiencies of the libraries show important variations between the different kits with the ones combining several steps into a single one exhibiting some final yields 4 to 7 times higher than the other kits. Detailed ddPCR data also reveal that the adaptor ligation yield itself varies by more than a factor of 10 between kits, certain ligation efficiencies being so low that it could impair the original library complexity and impoverish the sequencing results. When a PCR enrichment step is necessary, lower adaptor-ligated DNA inputs leads to greater amplification yields, hiding the latent disparity between kits. We describe a ddPCR assay that allows us to probe the efficiency of the most critical step in the library preparation, ligation, and to draw conclusion on which kits is more likely to preserve the sample heterogeneity and reduce the need of amplification.
Jin, Gu; Wang, Fang-Fang; Li, Tao; Jia, Dong-Dong; Shen, Yong; Xu, Hai-Chao
2018-04-26
BACKGROUND Neogambogic acid (NGA) is used in traditional Chinese medicine. The aim of this study was to investigate the effects of NGA on gene signaling pathways involved in osteoclastogenesis in mouse bone marrow-derived monocyte/macrophages (BMMs) and on bone resorption in vitro. MATERIAL AND METHODS Primary mouse BMMs were cultured with increasing concentrations of NGA. Real-time polymerase chain reaction was used to study the expression of mRNAs corresponding to gene products specific to receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation, including tartrate-resistant acid phosphatase (TRAP), calcitonin receptor (CTR), cathepsin K (CTSK), and nuclear factor of activated T cells c1 (NFATc1). A cell counting kit-8 assay was used to evaluate cell proliferation. Western blotting and confocal immunofluorescence microscopy were used to investigate the signaling pathways. A bone resorption model was used to quantify bone resorption. RESULTS An NGA dose of ≤0.4 μg/ml had no significant effect on the proliferation of mouse BMMs in vitro (P>0.05); concentrations of between 0.1-0.4 μg/ml significantly inhibited RANKL-induced osteoclastogenesis (P<0.01) in a dose-dependent manner. Compared with the control group, NGA significantly reduced RANKL-induced bone resorption in vitro (P <0.01), and downregulated the expression of osteoclast-related mRNAs of TRAP, CTR, CTSK, and NFATc1. NGA suppressed the activation of JNK but not the p38 signaling pathway and significantly reduced NF-κB p65 phosphorylation and the nuclear transport of NF-κB molecules, which inhibited NFATc1 expression. CONCLUSIONS NGA suppressed RANKL-induced osteoclastogenesis by inhibiting the JNK and NF-κB pathways in mouse BMMs in vitro and reduced osteoclastic bone resorption.
Yan, Weixin; Zhang, Aiguo; Powell, Michael J
2016-07-21
Gastrointestinal stromal tumors (GISTs) have been recognized as a biologically distinctive type of tumor, different from smooth muscle and neural tumors of the gastrointestinal tract. The identification of genetic aberrations in proto-oncogenes that drive the growth of GISTs is critical for improving the efficacy of cancer therapy by matching targeted drugs to specific mutations. Research into the oncogenic mechanisms of GISTs has found that these tumors frequently contain activating gene mutations in either platelet-derived growth factor receptor A (PDGFRA) or a receptor tyrosine protein associated with a mast cell growth factor receptor encoded by the KIT gene. Mutant cancer subpopulations have the potential to disrupt durable patient responses to molecularly targeted therapy for GISTs, yet the prevalence and size of subpopulations remain largely unexplored. Detection of the cancer subpopulations that harbor low-frequency mutant alleles of target proto-oncogenes through the use of molecular genetic methods, such as polymerase chain reaction (PCR) target amplification technology, is hampered by the high abundance of wild-type alleles, which limit the sensitivity of detection of these minor mutant alleles. This is especially true in the case of mutant tumor DNA derived "driver" and "drug-resistant" alleles that are present in the circulating cell-free tumor DNA (cfDNA) in the peripheral blood circulation of GIST patients. So-called "liquid biopsy" allows for the dynamic monitoring of the patients' tumor status during treatment using minimally invasive sampling. New methodologies, such as a technology that employs a xenonucleic acid (XNA) clamping probe to block the PCR amplification of wild-type templates, have allowed improved molecular detection of these low-frequency alleles both in tissue biopsy samples and in cfDNA. These new methodologies could be widely applied for minimally invasive molecular testing in the therapeutic management of GISTs.
Iwamoto, Ryuta; Kataoka, Tatsuki R; Furuhata, Ayako; Ono, Kazuo; Hirota, Seiichi; Kawada, Kenji; Sakai, Yoshiharu; Haga, Hironori
2016-11-14
We present a case of perivascular epithelioid cell tumor (PEComa), which clinically and histologically mimics a gastrointestinal stromal tumor (GIST). A 42-year-old woman was found to have a mass in the left flank during her annual medical checkup. Computed tomography examination revealed a submucosal tumor of the descending colon. Surgeons and radiologists suspected that the lesion was a GIST, and left hemicolectomy was performed without biopsy. Microscopic examination showed that the lesion was composed of spindle and epithelioid cells, which were immunohistochemically negative for c-kit and positive for platelet-derived growth factor receptor (PDGFR) α. Initial diagnosis of PDGFRα-positive GIST was made. However, gene analysis did not reveal mutations in PDGFRα. Additional immunohistochemistry showed that tumor cells were positive for human melanin black 45 (HMB45), melanA, and the myogenic marker calponin. A final diagnosis of PEComa was made. PEComa should be included in the differential diagnosis of PDGFRα-positive spindle cell tumors in the wall of the gastrointestinal tract.
Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells
Fukuda, Seiji; Abe, Mariko; Onishi, Chie; Taketani, Takeshi; Purevsuren, Jamiyan; Yamaguchi, Seiji; Conway, Edward M.; Pelus, Louis M.
2011-01-01
ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy. PMID:21253548
Analogs, formulations and derivatives of imatinib: a patent review.
Musumeci, Francesca; Schenone, Silvia; Grossi, Giancarlo; Brullo, Chiara; Sanna, Monica
2015-01-01
The Bcr-Abl inhibitor imatinib was approved in 2001 for chronic myeloid leukemia therapy, and dramatically changed the lives of patients affected by this disease. Since it also inhibits platelet derived growth factor receptor (PDGFR) and c-Kit, imatinib is used for various other tumors caused by abnormalities of one or both these two enzymes. This review presents an overview on imatinib formulations and derivatives, synthetic methodologies and therapeutic uses that have appeared in the patent literature since 2008. Innovative imatinib formulations, such as nanoparticles containing the drug, will improve its bioavailability. Moreover, oral solutions or high imatinib content tablets or capsules will improve patient compliance. Some solid formulations and innovative syntheses that have appeared in the last few years will reduce the cost of the drug, offering big advantages for poor countries. Some recently patented efficacious imatinib derivatives are in preclinical studies and could enter clinical trials in the next few years. Overall, Bcr-Abl inhibitors constitute a very appealing research field that can be expected to expand further.
Liu, Y J; Shen, D; Yin, X; Gavine, P; Zhang, T; Su, X; Zhan, P; Xu, Y; Lv, J; Qian, J; Liu, C; Sun, Y; Qian, Z; Zhang, J; Gu, Y; Ni, X
2014-03-04
Gastric cancer (GC) is a leading cause of cancer deaths worldwide. Since the approval of trastuzumab, targeted therapies are emerging as promising treatment options for the disease. This study aimed to explore the molecular segmentation of several known therapeutics targets, human epidermal growth factor receptor 2 (HER2), MET and fibroblast growth factor receptor 2 (FGFR2), within GC using clinically approved or investigational kits and scoring criteria. Knowledge of how these markers are segmented in the same cohort of GC patients could improve future clinical trial designs. Using immunohistochemistry (IHC) and FISH methods, overexpression and amplification of HER2, FGFR2 and MET were profiled in a cohort of Chinese GC samples. The correlations between anti-tumour sensitivity and the molecular segments of HER2, MET and FGFR2 alterations were further tested in a panel of GC cell lines and the patient-derived GC xenograft (PDGCX) model using the targeted inhibitors. Of 172 GC patients, positivity for HER2, MET and FGFR2 alternations was found in 23 (13.4%), 21 (12.2%) and 9 (5.2%) patients, respectively. Positivity for MET was found in 3 of 23 HER2-positive GC patients. Co-positivity for FGFR2 and MET was found in 1 GC patient, and amplification of the two genes was found in different tumour cells. Our study in a panel of GC cell lines showed that in most cell lines, amplification or high expression of a particular molecular marker was mutually exclusive and in vitro sensitivity to the targeted agents lapatinib, PD173074 and crizotinib was only observed in cell lines with the corresponding high expression of the drugs' target protein. SGC031, an MET-positive PDGCX mouse model, responded to crizotinib but not to lapatinib or PD173074. Human epidermal growth factor receptor 2, MET and FGFR2 oncogenic driver alterations (gene amplification and overexpression) occur in three largely distinct molecular segments in GC. A significant proportion of HER2-negative patients may potentially benefit from MET- or FGFR2-targeted therapies.
Escribano, Luis; Alvarez-Twose, Iván; Sánchez-Muñoz, Laura; Garcia-Montero, Andres; Núñez, Rosa; Almeida, Julia; Jara-Acevedo, Maria; Teodósio, Cristina; García-Cosío, Mónica; Bellas, Carmen; Orfao, Alberto
2009-09-01
Indolent systemic mastocytosis is a group of rare diseases for which reliable predictors of progression and outcome are still lacking. Here we investigate the prognostic impact of the clinical, biological, phenotypic, histopathological, and molecular disease characteristics in adults with indolent systemic mastocytosis, who were followed using conservative therapy. A total of 145 consecutive patients were prospectively followed between January 1983 and July 2008; in addition, from 1967 to 1983, 20 patients were retrospectively studied. Multivariate analysis showed that serum beta2-microglobulin (P = .003) together with the presence of mast/stem cell growth factor receptor gene (KIT) mutation in mast cells plus myeloid and lymphoid hematopoietic lineages (P = .02) was the best combination of independent parameters for predicting disease progression (cumulative probability of disease progression of 1.7% +/- 1.2% at 5-10 years and of 8.4% +/- 5.0% at 20-25 years). Regarding overall survival, the best predictive model included age >60 years (P = .005) and development of an associated clonal hematological non-mast cell disorder (P = .03) with a cumulative probability of death of 2.2% +/- 1.3% at 5 years and of 11% +/- 5.9% at 25 years. Indolent systemic mastocytosis in adults has a low disease progression rate, and the great majority of patients have a normal life expectancy, with the presence of KIT mutation in all hematopoietic lineages and increased serum beta2-microglobulin the most powerful independent parameters for predicting transformation into a more aggressive form of the disease.
Development of an incurred cornbread model for gluten detection by immunoassays.
Sharma, Girdhari M; Khuda, Sefat E; Pereira, Marion; Slate, Andrew; Jackson, Lauren S; Pardo, Christopher; Williams, Kristina M; Whitaker, Thomas B
2013-12-11
Gluten that is present in food as a result of cross-contact or misbranding can cause severe health concerns to wheat-allergic and celiac patients. Immunoassays, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow device (LFD), are commonly used to detect gluten traces in foods. However, the performance of immunoassays can be affected by non-assay-related factors, such as food matrix and processing conditions. Gluten (0-500 ppm) and wheat flour (20-1000 ppm) incurred cornbread was prepared at different incurred levels and baking conditions (204.4 °C for 20, 27, and 34 min) to study the accuracy and precision of gluten measurement by seven immunoassay kits (three LFD and four ELISA kits). The stability and immunoreactivity of gluten proteins, as measured by western blot using three different antibodies, were not adversely affected by the baking conditions. However, the gluten recovery varied depending upon the ELISA kit and the gluten source used to make the incurred cornbread, affecting the accuracy of gluten quantification (BioKits, 9-77%; Morinaga, 91-137%; R-Biopharm, 61-108%; and Romer Labs, 113-190%). Gluten recovery was reduced with increased baking time for most ELISA kits analyzed. Both the sampling and analytical variance increased with an increase in the gluten incurred level. The predicted analytical coefficient of variation associated with all ELISA kits was below 12% for all incurred levels, indicative of good analytical precision.
Young, Sean D.; Daniels, Joseph; Chiu, ChingChe J.; Bolan, Robert K.; Flynn, Risa P.; Kwok, Justin; Klausner, Jeffrey D.
2014-01-01
Introduction Rates of unrecognized HIV infection are significantly higher among Latino and Black men who have sex with men (MSM). Policy makers have proposed that HIV self-testing kits and new methods for delivering self-testing could improve testing uptake among minority MSM. This study sought to conduct qualitative assessments with MSM of color to determine the acceptability of using electronic vending machines to dispense HIV self-testing kits. Materials and Methods African American and Latino MSM were recruited using a participant pool from an existing HIV prevention trial on Facebook. If participants expressed interest in using a vending machine to receive an HIV self-testing kit, they were emailed a 4-digit personal identification number (PIN) code to retrieve the test from the machine. We followed up with those who had tested to assess their willingness to participate in an interview about their experience. Results Twelve kits were dispensed and 8 interviews were conducted. In general, participants expressed that the vending machine was an acceptable HIV test delivery method due to its novelty and convenience. Discussion Acceptability of this delivery model for HIV testing kits was closely associated with three main factors: credibility, confidentiality, and convenience. Future research is needed to address issues, such as user-induced errors and costs, before scaling up the dispensing method. PMID:25076208
Unremitting Cell Proliferation in the Secretory Phase of Eutopic Endometriosis
Franco-Murillo, Yanira; Miranda-Rodríguez, José Antonio; Rendón-Huerta, Erika; Montaño, Luis F.; Cornejo, Gerardo Velázquez; Gómez, Lucila Poblano; Valdez-Morales, Francisco Javier; Gonzalez-Sanchez, Ignacio
2014-01-01
Objective: Endometriosis is linked to altered cell proliferation and stem cell markers c-kit/stem cell factor (SCF) in ectopic endometrium. Our aim was to investigate whether c-kit/SCF also plays a role in eutopic endometrium. Design: Eutopic endometrium obtained from 35 women with endometriosis and 25 fertile eumenorrheic women was analyzed for in situ expression of SCF/c-kit, Ki67, RAC-alpha serine/threonine-protein kinase (Akt), phosphorylated RAC-alpha serine/threonin-protein kinase (pAkt), Glycogen synthase kinase 3 beta (GSK3β), and phosphorylated glycogen synthase kinase 3 beta (pGSK3β), throughout the menstrual cycle. Results: Expression of Ki67 and SCF was higher in endometriosis than in control tissue (P < .05) and greater in secretory rather than proliferative (P < .01) endometrium in endometriosis. Expression of c-kit was also higher in endometriosis although similar in both phases. Expression of Akt and GSK3β was identical in all samples and cycle phases, whereas pAkt and pGSK3β, opposed to control tissue, remained overexpressed in the secretory phase in endometriosis. Conclusion: Unceasing cell proliferation in the secretory phase of eutopic endometriosis is linked to deregulation of c-kit/SCF-associated signaling pathways. PMID:25194152
Chymase Cleavage of Stem Cell Factor Yields a Bioactive, Soluble Product
NASA Astrophysics Data System (ADS)
Longley, B. Jack; Tyrrell, Lynda; Ma, Yongsheng; Williams, David A.; Halaban, Ruth; Langley, Keith; Lu, Hsieng S.; Schechter, Norman M.
1997-08-01
Stem cell factor (SCF) is produced by stromal cells as a membrane-bound molecule, which may be proteolytically cleaved at a site close to the membrane to produce a soluble bioactive form. The proteases producing this cleavage are unknown. In this study, we demonstrate that human mast cell chymase, a chymotrypsin-like protease, cleaves SCF at a novel site. Cleavage is at the peptide bond between Phe-158 and Met-159, which are encoded by exon 6 of the SCF gene. This cleavage results in a soluble bioactive product that is 7 amino acids shorter at the C terminus than previously identified soluble SCF. This research shows the identification of a physiologically relevant enzyme that specifically cleaves SCF. Because mast cells express the KIT protein, the receptor for SCF, and respond to SCF by proliferation and degranulation, this observation identifies a possible feedback loop in which chymase released from mast cell secretory granules may solubilize SCF bound to the membrane of surrounding stromal cells. The liberated soluble SCF may in turn stimulate mast cell proliferation and differentiated functions; this loop could contribute to abnormal accumulations of mast cells in the skin and hyperpigmentation at sites of chronic cutaneous inflammation.
Ahmadi, Saharnaz; Farokhi, Maryam; Padidar, Parisa; Falahati, Mojtaba
2015-01-01
In this study the effect of surface modification of mesoporous silica nanoparticles (MSNs) on its adsorption capacities and protein stability after immobilization of beta-lactoglobulin B (BLG-B) was investigated. For this purpose, non-functionalized (KIT-6) and aminopropyl-functionalized cubic Ia3d mesoporous silica ([n-PrNH2-KIT-6]) nanoparticles were used as nanoporous supports. Aminopropyl-functionalized mesoporous nanoparticles exhibited more potential candidates for BLG-B adsorption and minimum BLG leaching than non-functionalized nanoparticles. It was observed that the amount of adsorbed BLG is dependent on the initial BLG concentration for both KIT-6 and [n-PrNH2-KIT-6] mesoporous nanoparticles. Also larger amounts of BLG-B on KIT-6 was immobilized upon raising the temperature of the medium from 4 to 55 °C while such increase was undetectable in the case of immobilization of BLG-B on the [n-PrNH2-KIT-6]. At temperatures above 55 °C the amounts of adsorbed BLG on both studied nanomaterials decreased significantly. By Differential scanning calorimetry or DSC analysis the heterogeneity of the protein solution and increase in Tm may indicate that immobilization of BLG-B onto the modified KIT-6 results in higher thermal stability compared to unmodified one. The obtained results provide several crucial factors in determining the mechanism(s) of protein adsorption and stability on the nanostructured solid supports and the development of engineered nano-biomaterials for controlled drug-delivery systems and biomimetic interfaces for the immobilization of living cells. PMID:26230687
Farag, S; van der Kolk, L E; van Boven, H H; van Akkooi, A C J; Beets, G L; Wilmink, J W; Steeghs, N
2018-04-01
Gastrointestinal stromal tumors (GISTs) occur mostly sporadically. GISTs associated with a familial syndrome are very rare and are mostly wild type for KIT and platelet-derived growth factor alpha (PDGFRA). To date 35 kindreds and 8 individuals have been described with GISTs associated with germline KIT mutations. This is the third family described with a germline p.Trp557Arg mutation in exon 11 of the KIT gene. The effect of imatinib in patients harboring a germline KIT mutation has been rarely described. Moreover, in some studies imatinib treatment was withheld considering the lack of evidence for efficacy of this treatment in GIST patients harboring a germline KIT mutation. This paper describes a 52-year old patient with a de novo germline p.Trp557Arg mutation with multiple GISTs throughout the gastrointestinal tract and cutaneous hyperpigmentation. Imatinib treatment showed long-term regression of the GISTs and evident pathological response was seen after resection. Remarkably, the hyperpigmentation of the skin also diminished during imatinib treatment. Genetic screening of the family revealed the same mutation in two daughters, both with similar cutaneous hyperpigmentation. One daughter, aged 23, was diagnosed with multiple small intestine GISTs, which were resected. She was treated with adjuvant imatinib which prompted rapid regression of the cutaneous hyperpigmentation. Imatinib treatment in GIST patients harboring a germline KIT mutation shows favorable and long-term responses in both the tumor and the phenotypical hyperpigmentation.
Stripes and belly-spots – a review of pigment cell morphogenesis in vertebrates
Kelsh, Robert N.; Harris, Melissa L.; Colanesi, Sarah; Erickson, Carol A.
2009-01-01
Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here –chick, mouse, and zebrafish – each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated progenitor cells play a major role in generating adult pigment cells. PMID:18977309
VPAC1 Targeted 64Cu-TP3805 kit preparation and its evaluation.
Tripathi, Sushil K; Kumar, Pardeep; Trabulsi, Edouard J; Kim, Sung; McCue, Peter A; Intenzo, Charles; Berger, Adam; Gomella, Leonard; Thakur, Mathew L
2017-08-01
Previously, our laboratory has shown that 64 Cu-TP3805 can specifically target VPAC1 receptors and be used for positron emission tomography (PET) imaging of breast (BC) and prostate cancer (PC) in humans. Present work is aimed at the formulation of a freeze-dried diaminedithiol-peptide (N 2 S 2 -TP3805) kit and it's evaluation for the preparation of 64 Cu labeled TP3805. Parameters such as pH, temperature and incubation time were examined that influenced the radiolabeling efficiency and stability of the product. Kits were prepared under different conditions and radiolabeling efficiency of TP3805 kit was evaluated for a range of pH3.5-8.5, after addition of 64 Cu in 30μl, 0.1M HCl. Incubation temperature (37-90°C) and time (30-120min.) were also investigated. Kits were stored at -10°C and their long term stability was determined as a function of their radiolabeling efficiency. Further, stability of 64 Cu-TP3805 complex was evaluated in presence of fetal bovine serum and bovine serum albumin by using SDS polyacrylamide gel electrophoresis. Kits were then used for PET imaging of BC and PC following eIND (101550) and institutional approvals. Specificity of 64 Cu-TP3805 for VPAC1 was examined with digital autoradiography (DAR) of prostate tissues obtained after prostatectomy, benign prostatic hyperplasia (BPH) tissue, and benign and malignant lymph nodes. Results were compared with corresponding tissue histology. Radiolabeling efficiency was ≥95% at final pH ~7.2 when incubated at 50°C for 90min. Kits were stable up to 18months when stored at -10°C, and 64 Cu-TP3805 complex exhibited excellent stability for up to 4h at room temperature. 64 Cu-TP3805 complex did not show any transchelation even after 2h incubation at 37°C in 10% FBS as well as in BSA as determined by SDS PAGE analysis. DAR identified ≥95% of malignant lesions 11 new PC lesions, 20 high grade prostatic intraepithelial neoplasia, 2/2 ejaculatory ducts and 5/5 urethra verumontanum not previously identified The malignant lymph nodes were correctly identified by DAR and for 3/3 BPH patients, and 5/5 cysts, DAR was negative. In human BC (n=19) and PC (n=26) were imaged with 100% sensitivity. Availability of ready to use N 2 S 2 -peptide kits for 64 Cu labeling is convenient and eliminates possible day to day variation during its routine preparation for clinical use. Copyright © 2017 Elsevier Inc. All rights reserved.
Ghosh, Somenath; Singh, Amaresh K; Haldar, Chandana
2014-11-01
Role of melatonin in regulation of immunity and reproduction has never been studied in detail in goats. The aim of the present study was to explore hormonal regulation of immunity in goats with special reference to melatonin. Plasma of male and female goats (n = 18 per sex per season) was processed for hormonal (estrogen, testostrone, and melatonin) and cytokine (interleukin [IL-2], IL-6, and tumor necrosis factor α) measurements during three seasons, i.e., summer, monsoon, and winter. To assess cell-mediated immune response, percent stimulation ratio of thymocytes was recorded during three seasons. To support and establish the modulation by hormones, Western blot analysis for expressions of melatonin receptors (MT1, MT2), androgen receptor, and estrogen receptor α and estimations of marker enzymes, arylalkylamine N-acetyltransferase for melatonin and 3β-hydroxysteroid dehydrogenase activities for steroidogenesis were performed in thymus. All the hormones and cytokines were estimated by commercial kits. Biochemical, immunologic, and Western blot analyses were done by standardized protocols. We noted a significant increase in estrogen and testosterone levels (P < 0.05) in circulation during monsoon along with melatonin (P < 0.05) presenting a parallel relationship. Expressions of melatonin receptors (MT1 and MT2) in thymus of both the sexes were significantly high (P < 0.01) during winter. Estrogen receptor α expression in female thymus was significantly high during monsoon (P < 0.05). However, androgen receptor showed almost static expression pattern in male thymus during three seasons. Further, both arylalkylamineN-acetyltransferase and 3β-hydroxysteroid dehydrogenase enzyme activities were significantly high (P < 0.05; P < 0.01, respectively) during monsoon. These results suggest that there may be a functional parallelism between gonadal steroids and melatonin as melatonin is progonadotrophic in goats. Cell-mediated immune parameters (percent stimulation ratio of thymocytes) and circulatory levels of cytokines (IL-2, IL-6, and tumor necrosis factor α) were significantly high (P < 0.01) during monsoon. In vitro supplementation of gonadal steroids to T-cell culture suppressed immunity but cosupplementation with melatonin restored it. Further, we may also suggest that reproductive and immune seasonality are maintained by variations in circulatory hormones and local synthesis of melatonin and gonadal steroids. These functional interactions between melatonin and gonadal steroid might be of great importance in regulating the goat immunity by developing some hormonal microcircuit (gonadal steroid and melatonin) in lymphatic organs. Copyright © 2014 Elsevier Inc. All rights reserved.
Distinct effects of Broncho-Vaxom (OM-85 BV) on gp130 binding cytokines
Roth, M; Block, L
2000-01-01
BACKGROUND—Broncho-Vaxom (OM-85 BV) is known to support respiratory tract resistance to bacterial infections. In vivo and in vitro studies in animals and humans have shown that the action of the drug is based on the modulation of the host immune response, and it has been found to upregulate interferon γ (IFN-γ) and interleukin (IL)-2, IL-6, and IL-8. These immunomodulatory effects of the compound may explain its stimulation on T helper cells and natural killer cells. Following earlier findings that OM-85 BV induces the synthesis of IL-6, a study was undertaken to investigate its possible effect on other gp130 binding cytokines including IL-11, IL-12, leukaemia inhibitory factor (LIF), oncostatin M (OSM), and ciliary neutrophil factor (CNTF). Its modulation of the corresponding receptors of the above mentioned cytokines and of the signal transducer gp130 in human pulmonary fibroblasts and peripheral blood lymphocytes was also studied. METHODS—Transcription of cytokines was assessed by Northern blot analysis. Secretion of cytokines was analysed using commercially available enzyme linked immunosorbent assay kits. Cytokine receptors and gp130 proteins were determined by Western blot analysis. RESULTS—OM-85 BV increased the expression of IL-11 in human lung fibroblasts, but not in lymphocytes, in a dose and time dependent manner by maximal fivefold within 20 hours. The compound inhibited serum induced IL-12 expression in peripheral blood lymphocytes but did not induce OSM, LIF, or CNTF at any concentration. In lung fibroblasts the expression of the IL-6 receptor was enhanced fourfold at a concentration of 10 µg/ml OM-85 BV while that of the IL-11 receptor was not altered. In peripheral blood lymphocytes LIF receptor α expression was downregulated in the presence of 10 µg/ml OM-85 BV. At a concentration of 10 µg/ml OM-85 BV enhanced gp130 gene transcription fivefold and increased gp130 protein accumulation in cell membranes by 2.5times. CONCLUSION—In vitro OM-85 BV exerts immunomodulatory action via modulation of the signal transducer gp130 and gp130 binding cytokines. The increase of IL-6 and IL-11 may explain enhanced T and B cell activity, immunoglobulin synthesis, and IgM to IgG switch. Suppression of IL-12 and LIF receptor-α further contributes to organ protection. With regard to gp130 mediated signalling of the investigated cytokines, OM-85 BV modifies the host immune response towards an increased sensitisation of cells to gp130 binding proteins. PMID:10899245
Interaction Between a Novel p21 Activated Kinase (PAK6) and Androgen Receptor in Prostate Cancer
2005-02-01
Beest , M., van Es, J., 51. Easwaran, V., Pishvaian, M., Salimuddin, and Byers, S. (1999) Curr. Biol. 9, Loureiro, J., Ypma, A., Hursh, D., Jones, T...antibody was generated and used in the study. 40 Immunofluorescence. Cells were cultured in 8-well Lab Tek chambered cover slides (Nalge Nunc...C19220, Transduction Labs , Lex- To further evaluate the roles of IGF-11 and EGF in ington, KY). Proteins were detected using the ECL kit (Am- AR
Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3 and KIT driven Leukemogenesis
Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H.; Waskow, Emily R.; Visconte, Valeria; Tiu, Ramon V.; Smith, Catherine C.; Shah, Neil; Bunting, Kevin D.; Boswell, H. Scott; Liu, Yan; Chan, Rebecca J.; Kapur, Reuben
2015-01-01
SUMMARY Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPN) and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK), whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. PMID:25456130
Błachnio, Karina
2010-01-01
Detergents commonly used for solubilization of membrane proteins may be ionic or non-ionic. Exposing membrane proteins to detergents, however, can adversely affect their native structure, which can be a major hindrance for functional studies. This is especially true for proteins with multiple transmembrane domains. The ProteoExtract Transmembrane Protein Extraction Kit (TM-PEK), offered by Merck, provides a detergent-free novel reagents to enable the mild and efficient extraction of proteins containing seven transmembrane domains, such as GPCRs (G-Protein Coupled Receptors) e.g.: Frizzled-4 and CELSR-3, from mammalian cells. The fraction enriched in transmembrane proteins using TM-PEK is directly compatible with enzyme assays, non-denaturing gel electrophoresis, 1- and 2-D SDS-PAGE, MS analysis, Western blotting, immunoprecipitation and ELISA. Unlike many alternatives, TM-PEK extraction procedure does not require sonication, extended rigorous vortexing, ultracentrifugation, or incubation of samples at elevated temperatures--thus minimizing the risk of post-extraction degradation or modifications.
Dogra, Atika; Doval, Dinesh Chandra; Sardana, Manjula; Chedi, Subhash Kumar; Mehta, Anurag
2014-01-01
Triple-negative breast cancer (TNBC), characterized by the lack of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2, is typically associated with a poor prognosis. The majority of TNBCs show the expression of basal markers on gene expression profiling and most authors accept TNBC as basal-like (BL) breast cancer. However, a smaller fraction lacks a BL phenotype despite being TNBC. The literature is silent on non-basal-like (NBL) type of TNBC. The present study was aimed at defining behavioral differences between BL and NBL phenotypes. i) Identify the TNBCs and categorize them into BL and NBL breast cancer. ii) Examine the behavioral differences between two subtypes. iii) Observe the pattern of treatment failure among TNBCs. All TNBC cases during January 2009-December 2010 were retrieved. The subjects fitting the inclusion criteria of study were differentiated into BL and NBL phenotypes using surrogate immunohistochemistry with three basal markers 34βE12, c-Kit and EGFR as per the algorithm defined by Nielsen et al. The detailed data of subjects were collated from clinical records. The comparison of clinicopathological features between two subgroups was done using statistical analyses. The pattern of treatment failure along with its association with prognostic factors was assessed. TNBC constituted 18% of breast cancer cases considered in the study. The BL and NBL subtypes accounted for 81% and 19% respectively of the TNBC group. No statistically significant association was seen between prognostic parameters and two phenotypes. Among patients with treatment failure, 19% were with BL and 15% were with NBL phenotype. The mean disease free survival (DFS) in groups BL and NBL was 30.0 and 37.9 months respectively, while mean overall survival (OS) was 31.93 and 38.5 months respectively. Treatment failure was significantly associated with stage (p=.023) among prognostic factors. Disease stage at presentation is an important prognostic factor influencing the treatment failure and survival among TNBCs. Increasing tumor size is related to lymph node positivity. BL tumors have a more aggressive clinical course than that of NBL as shown by shorter DFS and OS, despite having no statistically significant difference between prognostic parameters. New therapeutic alternatives should be explored for patients with this subtype of breast cancer.
Liu, Qing-Mei; Xie, Chun-Lan; Gao, Yuan-Yuan; Liu, Bo; Lin, Wei-Xiang; Liu, Hong; Cao, Min-Jie; Su, Wen-Jin; Yang, Xian-Wen; Liu, Guang-Ming
2018-06-06
Deep-sea-derived butyrolactone I (BTL-I), which was identified as a type of butanolide, was isolated from Aspergillus sp. Ovalbumin (OVA)-induced BALB/c anaphylaxis was established to explore the antifood allergic activity of BTL-I. As a result, BTL-I was able to alleviate OVA-induced allergy symptoms, reduce the levels of histamine and mouse mast cell proteinases, inhibit OVA-specific IgE, and decrease the population of mast cells in the spleen and mesenteric lymph nodes. BTL-I also significantly suppressed mast-dependent passive cutaneous anaphylaxis. Additionally, the maturation of bone marrow-derived mast cells (BMMCs) declined as BTL-I caused down-regulation of c-KIT receptors. Furthermore, molecular docking analyses revealed that BTL-I interacted with the inhibitory receptor, FcγRIIB. In conclusion, the reduction of mast cell function by deep-sea-derived BTL-I as well as its interactions with the inhibitory receptor, FcγRIIB, may contribute to BTL-I-related protection against food anaphylaxis.
Campbell, Rebecca; Fehler-Cabral, Giannina; Bybee, Deborah; Shaw, Jessica
2017-10-01
Throughout the United States, hundreds of thousands of sexual assault kits (SAKs) (also termed "rape kits") have not been submitted by the police for forensic DNA testing. DNA evidence can help sexual assault investigations and prosecutions by identifying offenders, revealing serial offenders through DNA matches across cases, and exonerating those who have been wrongly accused. In this article, we describe a 5-year action research project conducted with 1 city that had large numbers of untested SAKs-Detroit, Michigan-and our examination into why thousands of rape kits in this city were never submitted for forensic DNA testing. This mixed methods study combined ethnographic observations and qualitative interviews to identify stakeholders' perspectives as to why rape kits were not routinely submitted for testing. Then, we quantitatively examined whether these factors may have affected police practices regarding SAK testing, as evidenced by predictable changes in SAK submission rates over time. Chronic resource scarcity only partially explained why the organizations that serve rape victims-the police, crime lab, prosecution, and victim advocacy-could not test all rape kits, investigate all reported sexual assaults, and support all rape survivors. SAK submission rates significantly increased once criminal justice professionals in this city had full access to the FBI DNA forensic database Combined DNA Index System (CODIS), but even then, most SAKs were still not submitted for DNA testing. Building crime laboratories' capacities for DNA testing and training police on the utility of forensic evidence and best practices in sexual assault investigations can help remedy, and possibly prevent, the problem of untested rape kits. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Zhang, Jianhua; Nie, Xianzhou; Boquel, Sébastien; Al-Daoud, Fadi; Pelletier, Yvan
2015-12-01
The sensitivity of reverse transcription-polymerase chain reaction (RT-PCR) for virus detection is influenced by many factors such as specificity of primers and quality of templates. These factors become extremely important for successful detection when virus concentration is low. Total RNA isolated from Potato virus Y (PVY)-infected potato plants using the sodium sulfite RNA isolation method or RNeasy plant mini kit contains a high proportion of host RNA and may also contain trace amount of phenolic and polysaccharide residues, which may inhibit RT-PCR. The goal of this study was to enhance the sensitivity of PVY detection by reducing host RNA in the extract by differential centrifugation followed by extraction using an RNeasy mini kit (DCR method). One-step RT-PCR had relatively low amplification efficiency for PVY RNA when a high proportion of plant RNA was present. SYBR Green-based real time RT-PCR showed that the RNA isolated by the DCR method had a higher cycle threshold value (Ct) for the elongation factor 1-α mRNA (Ef1α) of potato than the Ct value of the RNA extracted using the RNeasy plant mini kit, indicating that the DCR method significantly reduced the proportion of potato RNA in the extract. The detectable amount of RNA extracted using the DCR method was <0.001ng when plant sap from 10 PVY-infected and PVY-free potato leaflets in a 1.5:100 fresh weight ratio was extracted, compared with 0.01 and 0.02ng of RNA using the RNeasy plant mini kit and sodium sulfite RNA isolation methods, respectively. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, M.; Takeishi, Takashi; Geissler, E.N.
1991-07-15
The authors investigated the effects of a newly recognized multifunctional growth factor, the c-kit ligand stem cell factor (SCF), on mouse mast cell proliferation and phenotype. Recombinant rat SCF{sup 164} (rrSCF{sup 164}) induced the development of large numbers of dermal mast cells in normal mice in vivo. Many of these mast cells had features of connective tissue-type mast cells (CTMC), in that they were reactive both with the heparin-binding fluorescent dye berberine sulfate and with safranin. In vitro, rrSCF{sup 164} induced the proliferation of cloned interleukin 3 (IL-3)-dependent mouse mast cells and primary populations of IL-3-dependent, bone marrow-derived cultured mastmore » cells (BMCMC), which represent immature mast cells, and purified peritoneal mast cells, which represent a type of mature CTMC> BMCMC maintained in rrSCF{sup 164} not only proliferated but also matured. These findings identify SCF as a single cytokine that can induce immature, IL-3-dependent mast cells to mature and to acquire multiple characteristics of CTMC. These findings also directly demonstrate that SCF can regulate the development of a cellular lineage expressing c-kit through effects on both proliferation and maturation.« less
21 CFR 864.7290 - Factor deficiency test.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Factor deficiency test. 864.7290 Section 864.7290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7290 Factor deficiency...
21 CFR 864.7290 - Factor deficiency test.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Factor deficiency test. 864.7290 Section 864.7290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7290 Factor deficiency...
21 CFR 864.7290 - Factor deficiency test.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Factor deficiency test. 864.7290 Section 864.7290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7290 Factor deficiency...
21 CFR 864.7290 - Factor deficiency test.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Factor deficiency test. 864.7290 Section 864.7290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7290 Factor deficiency...
Cross-site comparison of ribosomal depletion kits for Illumina RNAseq library construction.
Herbert, Zachary T; Kershner, Jamie P; Butty, Vincent L; Thimmapuram, Jyothi; Choudhari, Sulbha; Alekseyev, Yuriy O; Fan, Jun; Podnar, Jessica W; Wilcox, Edward; Gipson, Jenny; Gillaspy, Allison; Jepsen, Kristen; BonDurant, Sandra Splinter; Morris, Krystalynne; Berkeley, Maura; LeClerc, Ashley; Simpson, Stephen D; Sommerville, Gary; Grimmett, Leslie; Adams, Marie; Levine, Stuart S
2018-03-15
Ribosomal RNA (rRNA) comprises at least 90% of total RNA extracted from mammalian tissue or cell line samples. Informative transcriptional profiling using massively parallel sequencing technologies requires either enrichment of mature poly-adenylated transcripts or targeted depletion of the rRNA fraction. The latter method is of particular interest because it is compatible with degraded samples such as those extracted from FFPE and also captures transcripts that are not poly-adenylated such as some non-coding RNAs. Here we provide a cross-site study that evaluates the performance of ribosomal RNA removal kits from Illumina, Takara/Clontech, Kapa Biosystems, Lexogen, New England Biolabs and Qiagen on intact and degraded RNA samples. We find that all of the kits are capable of performing significant ribosomal depletion, though there are differences in their ease of use. All kits were able to remove ribosomal RNA to below 20% with intact RNA and identify ~ 14,000 protein coding genes from the Universal Human Reference RNA sample at >1FPKM. Analysis of differentially detected genes between kits suggests that transcript length may be a key factor in library production efficiency. These results provide a roadmap for labs on the strengths of each of these methods and how best to utilize them.
Pell, Lisa G; Bassani, Diego G; Nyaga, Lucy; Njagi, Isaac; Wanjiku, Catherine; Thiruchselvam, Thulasi; Macharia, William; Minhas, Ripudaman S; Kitsao-Wekulo, Patricia; Lakhani, Amyn; Bhutta, Zulfiqar A; Armstrong, Robert; Morris, Shaun K
2016-09-08
Each year, more than 200 million children under the age of 5 years, almost all in low- and middle-income countries (LMICs), fail to achieve their developmental potential. Risk factors for compromised development often coexist and include inadequate cognitive stimulation, poverty, nutritional deficiencies, infection and complications of being born low birthweight and/or premature. Moreover, many of these risk factors are closely associated with newborn morbidity and mortality. As compromised development has significant implications on human capital, inexpensive and scalable interventions are urgently needed to promote neurodevelopment and reduce risk factors for impaired development. This cluster randomized trial aims at evaluating the impact of volunteer community health workers delivering either an integrated neonatal survival kit, an early stimulation package, or a combination of both interventions, to pregnant women during their third trimester of pregnancy, compared to the current standard of care in Kwale County, Kenya. The neonatal survival kit comprises a clean delivery kit (sterile blade, cord clamp, clean plastic sheet, surgical gloves and hand soap), sunflower oil emollient, chlorhexidine, ThermoSpot(TM), Mylar infant sleeve, and a reusable instant heater. Community health workers are also equipped with a portable hand-held electric scale. The early cognitive stimulation package focuses on enhancing caregiver practices by teaching caregivers three key messages that comprise combining a gentle touch with making eye contact and talking to children, responsive feeding and caregiving, and singing. The primary outcome measure is child development at 12 months of age assessed with the Protocol for Child Monitoring (Infant and Toddler version). The main secondary outcome is newborn mortality. This study will provide evidence on effectiveness of delivering an innovative neonatal survival kit and/or early stimulation package to pregnant women in Kwale County, Kenya. Study findings will help inform policy on the most appropriate interventions for promoting healthy brain development and reduction of newborn morbidity and mortality in Kenya and other similar settings. ClinicalTrial.gov NCT02208960 (August 1, 2014).
Ranjbar Kohan, Neda; Nazifi, Saeed; Tabandeh, Mohammad Reza; Ansari Lari, Maryam
2018-10-01
L-carnitine (LC) has been shown to protect cardiac metabolism in diabetes patients with cardiovascular diseases (CVDs). Apelin, a newly discovered adipocytokines, is an important regulator of cardiac muscle function; however, the role of the level of expression of Apelin axis in improvement of cardiac function by LC in diabetic patients, is not clear. In the present study, obese insulin-resistant rats were used to determine the effect of LC, when given orally with a high-calorie diet, on Apelin and Apelin receptor (Apj) expression in cardiac muscle. In this experimental study, rats were fed with high-fat/high-carbohydrate diet for five weeks and subsequently were injected with streptozotocin 30 mg/kg for induction of obesity and insulin resistance. After confirming the induction of diabetes (serum glucose above 7.5 mmol/L), the animals received LC 300 mg/kg in drinking water for 28 days. On days 0, 14 and 28 after treatment, cardiac Apelin and Apj gene expression was evaluated by real time polymerase chain reaction (PCR) analysis. Serum levels of insulin, Apelin, glucose, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and the homeostasis model assessment of insulin resistance (HOMA-IR) were also measured using commercial kits. Cardiac Apelin and Apj expression and serum Apelin were increased in obese rats, while LC supplementation decreased the serum levels of Apelin and down-regulated Apelin and Apj expression in cardiac muscle. These changes were associated with reduced insulin resistance markers and serum inflammatory factors and improved lipid profile. We concluded that LC supplementation could attenuate the over-expression of Apelin axis in heart of diabetic rats, a novel mechanism by which LC improves cardiovascular complications in diabetic patients. Copyright© by Royan Institute. All rights reserved.
Suman, Vera J.; Molina, Julian R.; Smallridge, Robert C.; Maples, William J.; Menefee, Michael E.; Rubin, Joseph; Karlin, Nina; Sideras, Kostandinos; Morris, John C.; McIver, Bryan; Hay, Ian; Fatourechi, Vahab; Burton, Jill K.; Webster, Kevin P.; Bieber, Carolyn; Traynor, Anne M.; Flynn, Patrick J.; Cher Goh, Boon; Isham, Crescent R.; Harris, Pamela; Erlichman, Charles
2014-01-01
Context: Pazopanib is a small molecule inhibitor of kinases principally including vascular endothelial growth factor receptors-1, -2, and -3; platelet-derived growth factor receptors-α and -β; and c-Kit. We previously reported a tumor response rate of 49% in patients with advanced differentiated thyroid cancer and 0% in patients with advanced anaplastic thyroid cancer. The present report details results of pazopanib therapy in advanced medullary thyroid cancer (MTC). Objective, Design, Setting, Patients, Intervention, and Outcome Measures: Having noted preclinical activity of pazopanib in MTC, patients with advanced MTC who had disease progression within the preceding 6 months were accrued to this multiinstitutional phase II clinical trial to assess tumor response rate (by Response Evaluation Criteria In Solid Tumors criteria) and safety of pazopanib given orally once daily at 800 mg until disease progression or intolerability. Results: From September 22, 2008, to December 11, 2011, 35 individuals (80% males, median age 60 y) were enrolled. All patients have been followed up until treatment discontinuation or for a minimum of four cycles. Eight patients (23%) are still on the study treatment. The median number of therapy cycles was eight. Five patients attained partial Response Evaluation Criteria In Solid Tumors responses (14.3%; 90% confidence interval 5.8%–27.7%), with a median progression-free survival and overall survival of 9.4 and 19.9 months, respectively. Side effects included treatment-requiring (new) hypertension (33%), fatigue (14%), diarrhea (9%), and abnormal liver tests (6%); 3 of 35 patients (8.6%) discontinued therapy due to adverse events. There was one death of a study patient after withdrawal from the trial deemed potentially treatment related. Conclusions: Pazopanib has promising clinical activity in metastatic MTC with overall manageable toxicities. PMID:24606083
Kim, Hye-Sun; Yi, Bo-Rim; Hwang, Kyung-A; Kim, Seung U; Choi, Kyung-Chul
2013-10-01
The aim of the present study was to investigate the therapeutic efficacy of genetically engineered stem cells (GESTECs) expressing bacterial cytosine deaminase (CD) and/or human interferon-beta (IFN-β) gene against HeLa cervical cancer and the migration factors of the GESTECs toward the cancer cells. Anticancer effect of GESTECs was examined in a co-culture with HeLa cells using MTT assay to measure cell viability. A transwell migration assay was performed so as to assess the migration capability of the stem cells to cervical cancer cells. Next, several chemoattractant ligands and their receptors related to a selective migration of the stem cells toward HeLa cells were determined by real-time PCR. The cell viability of HeLa cells was decreased in response to 5-fluorocytosine (5-FC), a prodrug, indicating that 5-fluorouracil (5-FU), a toxic metabolite, was converted from 5-FC by CD gene and it caused the cell death in a co-culture system. When IFN-β was additionally expressed with CD gene by these GESTECs, the anticancer activity was significantly increased. In the migration assay, the GESTECs selectively migrated to HeLa cervical cancer cells. As results of real-time PCR, chemoattractant ligands such as MCP-1, SCF, and VEGF were expressed in HeLa cells, and several receptors such as uPAR, VEGFR2, and c-kit were produced by the GESTECs. These GESTECs transduced with CD gene and IFN-β may provide a potential of a novel gene therapy for anticervical cancer treatments via their selective tumor tropism derived from VEGF and VEGFR2 expressions between HeLa cells and the GESTECs.
Terada, Tadashi
2014-10-01
The molecular mechanisms of ductal plate (DP) development and differentiation (DD) in human fetal livers (HFLs) are unclear. The author immunohistochemically investigated expressions of NCAM, KIT, KIT, PDGFRA, and neuroendocrine antigens in 32 HFLs. The processes of human intrahepatic bile duct (IBD) DD could be categorized into four stages: DP, remodeling DP, remodeled DP, and mature IBD. NCAM was always expressed in DP and remodeling DP, but not in remodeled DP and mature IBD. The biliary elements were positive for cytokeratin (CK)7, 8, 18, and 19. The hepatoblasts were positive for CK8 and CD18, but negative for CK7 and CK19; however, periportal hepatoblasts showed biliary-type CKs (CK7 and CK19). NCAM was always expressed in DP and remodeling DP, but not in remodeled DP and mature IBD. KIT was occasionally (12/32 cases) expressed in DP and remodeling DP, but not in remodeled DP and mature IBD. NCAM expression was also seen in some hepatoblasts and hematopoietic cells and neurons. KIT was also expressed in some hepatoblasts, hematopoietic cells, and mast cells. MET and PDGFRA were strongly expressed in DP, remodeling DP, remodeled DP, and mature IBD. MET and PDGFRA were also strongly expressed in hepatoblasts and hematopoietic cells. MET and PDGFRA were not expressed in portal mesenchyme, portal veins, sinusoids, and hepatic veins. DP showed immunoreactive chromogranin, synaptophysin, neuron-specific enolase (NSE), and CD56. Expressions of chromogranin and CD56 were infrequently seen in remodeling DP. No expressions of these four neuroendocrine antigens were seen in remodeled DP and mature IBD. The nerve fibers were consistently positive for chromogranin, synaptophysin, NSE, and CD56 in the portal mesenchyme in the stages of remodeling DP, remodeled DP, and mature IBDs. The data suggest that NCAM, KIT/stem cell factor-signaling, NSE, hepatocyte growth factor/MET signaling, PDGFα/PDGFRA signaling, chromogranin, synaptophysin, and CD56 play important roles in DD of biliary cells of HFL. They also suggest that the DP cells having neuroendocrine molecules give rise to hepatic stem/progenitor cells. © 2014 Wiley Periodicals, Inc.
Megías, Javier; Yáñez, Alberto; Moriano, Silvia; O'Connor, José-Enrique; Gozalbo, Daniel; Gil, María-Luisa
2012-07-01
As Toll-like receptors (TLRs) are expressed by hematopoietic stem and progenitor cells (HSPCs), they may play a role in hematopoiesis in response to pathogens during infection. We show here that TLR2, TLR4, and TLR9 agonists (tripalmitoyl-S-glyceryl-L-Cys-Ser-(Lys)4 [Pam3CSK4], lipopolysaccharide [LPS], and CpG oligodeoxynucleotide [ODN]) induce the in vitro differentiation of purified murine lineage negative cells (Lin(-) ) as well as HSPCs (identified as Lin(-) c-Kit(+) Sca-1(+) IL-7Rα(-) [LKS] cells) toward macrophages (Mph), through a myeloid differentiation factor 88 (MyD88)-dependent pathway. In order to investigate the possible direct interaction of soluble microorganism-associated molecular patterns and TLRs on HSPCs in vivo, we designed a new experimental approach: purified Lin(-) and LKS cells from bone marrow of B6Ly5.1 mice (CD45.1 alloantigen) were transplanted into TLR2(-/-) , TLR4(-/-) , or MyD88(-/-) mice (CD45.2 alloantigen), which were then injected with soluble TLR ligands (Pam3CSK4, LPS, or ODN, respectively). As recipient mouse cells do not recognize the TLR ligands injected, interference by soluble mediators secreted by recipient cells is negligible. Transplanted cells were detected in the spleen and bone marrow of recipient mice, and in response to soluble TLR ligands, cells differentiated preferentially to Mph. These results show, for the first time, that HSPCs may be directly stimulated by TLR agonists in vivo, and that the engagement of these receptors induces differentiation toward Mph. Therefore, HSPCs may sense pathogen or pathogen-derived products directly during infection, inducing a rapid generation of cells of the innate immune system. Copyright © 2012 AlphaMed Press.
Salwe, Sukeshani; Kothari, Sweta; Chowdhary, Abhay; Deshmukh, Ranjana A.
2018-01-01
12–14 days of culturing of bone marrow (BM) cells containing various growth factors is widely used method for generating dendritic cells (DCs) from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs' purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference (P < 0.05) between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population. PMID:29682352
Gosavi, Rahul Ashok; Salwe, Sukeshani; Mukherjee, Sandeepan; Dahake, Ritwik; Kothari, Sweta; Patel, Vainav; Chowdhary, Abhay; Deshmukh, Ranjana A
2018-01-01
12-14 days of culturing of bone marrow (BM) cells containing various growth factors is widely used method for generating dendritic cells (DCs) from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs' purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference ( P < 0.05) between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population.
Ayatollahi, Hossein; Shajiei, Arezoo; Sadeghian, Mohammad Hadi; Sheikhi, Maryam; Yazdandoust, Ehsan; Ghazanfarpour, Masumeh; Shams, Seyyede Fatemeh; Shakeri, Sepideh
2017-03-01
Acute myeloid leukemia (AML) is defined as leukemic blast reproduction in bone marrow. Chromosomal abnormalities form different subgroups with joint clinical specifications and results. t(8;21)(q22;q22) and inv(16)(p13;q22) form core binding factor-AML (CBF-AML). c-kit mutation activation occurs in 12.8-46.1% of adults with CBF leukemia. These mutations occur in 20-25% of t(8;21) and 30% of inv(16) cases. In this systematic review, we searched different databases, including PubMed, Scopus, and Embase. Selected articles were measured based on the inclusion criteria of this study and initially compared in terms of titles or abstracts. Finally, articles relevant to the subject of this review were retrieved in full text. Twenty-two articles matched the inclusion criteria and were selected for this review. In this study, c-kit mutations were associated with poor prognosis in AML patients with t(8;21) and inv(16). In addition, these mutations had better prognostic effects on AML patients with inv(16) compared with those with t(8;21). According to the results of this study, c-kit mutations have intense, harmful effects on the relapse and white blood cell increase in CBF-AML adults. However, these mutations have no significant prognostic effects on patients. Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.
Design, Certification, and Deployment of the Colorimetric Water Quality Monitoring Kit (CWQMK)
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeff A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Carrizales, Stephanie M.; McCoy, J. Torin
2009-01-01
In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS) aboard STS-128/17A. The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was developed by a team of scientists and engineers from NASA s Habitability and Environmental Factors Division in the Space Life Sciences Directorate at Johnson Space Center, the Wyle Integrated Science and Engineering Group in Houston, Texas, the University of Utah, and Iowa State University. The CWQMK was flown and deployed as a Station Development Test Objective (SDTO) experiment on ISS. The goal of the SDTO experiment was to evaluate the acceptability of CSPE technology for routine water quality monitoring on ISS. This paper provides an overview of the SDTO experiment, as well as a detailed description of the CWQMK hardware and a summary of the testing and analysis conducted to certify the CWQMK for use on ISS. The results obtained from the SDTO experiment are also reported and discussed in detail.
Analysis of porcine granulosa cell death signaling pathways induced by vinclozolin.
Knet, Malgorzata; Wartalski, Kamil; Hoja-Lukowicz, Dorota; Tabarowski, Zbigniew; Slomczynska, Maria; Duda, Malgorzata
2015-10-01
Recent studies suggest that disturbing androgen-signaling pathways in porcine ovarian follicles may cause granulosa cell (GC) death. For this reason, we investigated which apoptotic pathway is initiated after GC exposure to an environmental antiandrogen, vinclozolin (Vnz), in vitro. Immunocytochemistry, Western blots, and fluorometric assays were used to quantify caspase-3 and -9 expression and activity. To elucidate the specific mechanism of Vnz action and toxicity, GCs were assessed for viability, cytotoxicity, and apoptotic activity using the ApoTox-Glo Triplex Assay. To further determine the mechanism of GC death induced by Vnz, we used the Apoptosis Antibody Array Kit. In response to Vnz stimulus, we found an increased level of caspase-3 protein expression (P ≤ 0.001) and an increase in caspase-3 proteolytic activity (P ≤ 0.001), confirming that Vnz is a potent proapoptotic factor. The strong immunoreaction of caspase-9 after Vnz treatment (P ≤ 0.001) suggests that intrinsic mitochondrial apoptosis pathway was activated during GC death. On the other hand, caspase-8, being a part of the extrinsic receptor pathway, was also activated (P ≤ 0.001). Therefore, it is possible that Vnz induces porcine granulosal apoptosis also through a parallel pathway. Activation of these two pathways was confirmed by the Apoptosis Antibody Array Kit. In conclusion, it is possible that the intrinsic signaling pathway may not act as an initial trigger for GC apoptosis but might contribute to the amplification and propagation of apoptotic cell death in the granulosa layer after treatment with this antiandrogen. Moreover, Vnz disturbs the physiological process of programmed cell death. Consequently, this could explain why atretic follicles are rapidly removed and suggests that normal function of the ovarian follicle may be destroyed. Copyright © 2015 Elsevier Inc. All rights reserved.
Rusu, Mugurel Constantin; Didilescu, Andreea Cristiana; Stănescu, Ruxandra; Pop, Florinel; Mănoiu, Valentina Mariana; Jianu, Adelina Maria; Vâlcu, Marek
2013-02-01
This study aimed to evaluate by immunohistochemistry and transmission electron microscopy (TEM) the morphological features of the oral mucosa endothelial tip cells (ETCs) and to determine the immune and ultrastructural patterns of the stromal nonimmune cells which could influence healing processes. Immune labeling was performed on bioptic samples obtained from six edentulous patients undergoing surgery for dental implants placement; three normal samples were collected from patients prior to the extraction of the third mandibular molar. The antibodies were tested for CD34, CD117(c-kit), platelet derived growth factor receptor-alpha (PDGFR-α), Mast Cell Tryptase, CD44, vimentin, CD45, CD105, alpha-smooth muscle actin, FGF2, Ki67. In light microscopy, while stromal cells (StrCs) of the reparatory and normal oral mucosa, with a fibroblastic appearance, were found positive for a CD34/CD44/CD45/CD105/PDGFR-α/vimentin immune phenotype, the CD117/c-kit labeling led to a positive stromal reaction only in the reparatory mucosa. In TEM, non-immune StrCs presenting particular ultrastructural features were identified as circulating fibrocytes (CFCs). Within the lamina propria CFCs were in close contact with ETCs. Long processes of the ETCs were moniliform, and hook-like collaterals were arising from the dilated segments, suggestive for a different stage migration. Maintenance and healing of oral mucosa are so supported by extensive processes of angiogenesis, guided by ETCs that, in turn, are influenced by the CFCs that populate the stromal compartment both in normal and reparatory states. Therefore, CFCs could be targeted by specific therapies, with pro- or anti-angiogenic purposes. Copyright © 2012 Wiley Periodicals, Inc.
49 CFR 173.161 - Chemical kits and first aid kits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Chemical kits and first aid kits. 173.161 Section... Class 7 § 173.161 Chemical kits and first aid kits. (a) Chemical kits and First aid kits must conform to... 10 kg. (b) Chemical kits and First aid kits are excepted from the specification packaging...
The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer
2005-07-01
METHODS InVitro Growth Assay Tissue Culture DU145, PC3, and LN-17 cells ( 1 x 105 per well) were plated in 12-well plates in RPMI containing 10% FBS. Human...specific ELISA kit. 1 ] LNSI Parental LNCaP, neo, and IL- # OLN-S17 6 overexpressing (LN-S15 c 0.8 - and LN-S17) cells were 0e cultured in either...independence [1,2]. Stat3, a member of Janus Shadyside Medical Center, Suite G03, 5200 Centre Avenue, Kinase (JAK)-Signal Transducers and Activators of
2011-06-01
121.8, 114.6, 67.0, 55.1, 46.6, 45.7, 31.3, 25.9, 24.0, 19.4, 17.6; HRMS: (ESI-TOF) C17H24N2O3H+ expected: 305.1860. found: 305.1860. (S)-1- benzyl -3...chemiluminescent substrate in the presence of hydrogen peroxide using Immun-Star WesternC Chemiluminescent Kit (BioRad). An imaging system VersaDoc Model
New Imaging Kit for Assessment of Estrogen Receptors with Single Photon Emission Computed Tomography
2006-09-01
Radionuclide studies in paediatric nephro-urology. 579Eur J Radiol 2002;43:146–53 58030. Reiman RE, Benua RS, Gelbard AS, Allen JC, Vomero JJ, 581Laughlin...RS, Laughlin JS, Rosen G, Reiman RE, 585McDonald JM. Quantitative scanning of osteogenic sarcoma with 586nitrogen-13-labeled L-glutamate. J Nucl Med...1979;20:782–4 58732. Sordillo PP, Reiman RE, Gelbard AS, Benua RS, Magill GB, 588Laughlin JS. Scanning withL-(13 N) glutamate: assessment of 589the
[Comparison of detection sensitivity in rapid-diagnosis influenza virus kits].
Tokuno, Osamu; Fujiwara, Miki; Nakajoh, Yoshimi; Yamanouchi, Sumika; Adachi, Masayo; Ikeda, Akiko; Kitayama, Shigeo; Takahashi, Toshio; Kase, Tetsuo; Kinoshita, Shouhiro; Kumagai, Shunichi
2009-09-01
Rapid-diagnosis kits able to detect influenza A and B virus by immunochromatography developed by different manufacturers, while useful in early diagnosis, may vary widely in detection sensitivity. We compared sensitivity results for eight virus-detection kits in current use--Quick Chaser FluA, B (Mizuho Medy), Espline Influenza A & B-N (Fujirebio), Capilia Flu A + B (Nippon Beckton Dickinson & Alfesa Pharma), Poctem Influenza A/B (Otsuka Pharma & Sysmex), BD Flu Examan (Nippon Beckton Dickinson), Quick Ex-Flu "Seiken" (Denka Seiken), Quick Vue Rapid SP Influ (DP Pharma Biomedical), and Rapid Testa FLU stick (Daiichi Pure Chemicals)--against influenza virus stocks, contained five vaccination strains (one A/H1N1, two A/H3N2, and two B) and six clinical strains (two A/H1N1, two A/H3N2, and two B). Minimum detection concentrations giving immunologically positive signals in serial dilution and RNA copies in positive dilution in real-time reverse transcriptase-polymerase chain reaction (RT-PCR) were assayed for all kits and virus stock combinations. RNA log10 copy numbers/mL in dilutions within detection limits yielded 5.68-7.02, 6.37-7,17, and 6.5-8.13 for A/H1N1, A/H3N2, and B. Statistically significant differences in sensitivity were observed between some kit combinations. Detection sensitivity tended to be relatively higher for influenza A than B virus. This is assumed due to different principles in kit methods, such as monoclonal antibodies, specimen-extraction conditions, and other unknown factors.
49 CFR 173.161 - Chemical kits and first aid kits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Chemical kits and first aid kits. 173.161 Section... Class 7 § 173.161 Chemical kits and first aid kits. (a) Applicability. Chemical kits and first aid kits... assigned to the chemical kit and first aid kit as a whole must be the most stringent packing group assigned...
A tool kit for evaluating electronic flight bags
DOT National Transportation Integrated Search
2006-09-01
Over the past few years, the Volpe Center has developed a set of five tools that can be used to evaluate Electronic Flight Bags (EFBs) from a human factors perspective. The goal of these tools is to help streamline and standardize EFB human factors a...
Qi, Baochang; Yu, Tiecheng; Wang, Chengxue; Wang, Tiejun; Yao, Jihang; Zhang, Xiaomeng; Deng, Pengfei; Xia, Yongning; Junger, Wolfgang G; Sun, Dahui
2016-10-03
Osteosarcoma is the most prevalent primary malignant bone tumor, but treatment is difficult and prognosis remains poor. Recently, large-dose chemotherapy has been shown to improve outcome but this approach can cause many side effects. Minimizing the dose of chemotherapeutic drugs and optimizing their curative effects is a current goal in the management of osteosarcoma patients. In our study, trypan blue dye exclusion assay was performed to investigate the optimal conditions for the sensitization of osteosarcoma U2OS cells. Cellular uptake of the fluorophores Lucifer Yellow CH dilithium salt and Calcein was measured by qualitative and quantitative methods. Human MTX ELISA Kit and MTT assay were used to assess the outcome for osteosarcoma U2OS cells in the present of shock wave and methotrexate. To explore the mechanism, P2X7 receptor in U2OS cells was detected by immunofluorescence and the extracellular ATP levels was detected by ATP assay kit. All data were analyzed using SPSS17.0 statistical software. Comparisons were made with t test between two groups. Treatment of human osteosarcoma U2OS cells with up to 450 shock wave pulses at 7 kV or up to 200 shock wave pulses at 14 kV had little effect on cell viability. However, this shock wave treatment significantly promoted the uptake of Calcein and Lucifer Yellow CH by osteosarcoma U2OS cells. Importantly, shock wave treatment also significantly enhanced the uptake of the chemotherapy drug methotrexate and increased the rate of methotrexate-induced apoptosis. We found that shock wave treatment increased the extracellular concentration of ATP and that KN62, an inhibitor of P2X7 receptor reduced the capacity methotrexate-induced apoptosis. Our results suggest that shock wave treatment promotes methotrexate-induced apoptosis by altering cell membrane permeability in a P2X7 receptor-dependent manner. Shock wave treatment may thus represent a possible adjuvant therapy for osteosarcoma.
Modulating Leukemia-Initiating Cell Quiescence to Improve Leukemia Treatment
2015-09-01
T- cells and in innate immunity (Lacorazza et al., 2002). It controls the proliferation and homing of CD8+ T- cells via the Kruppel-like factors...Lin2Sca12IL7R2Kit1FccRII/ IIIhighCD34high), megakaryocyte-erythroid progenitor cell (MEP) (Lin2Sca12IL7R2Kit1FccRII/IIIlowCD34low), and common lymphoid ...to this model, the first wave gives rise exclusively to innate immune B cells in early embryonic life and may be derived from progenitor cells
Buzi, F; Maccarinelli, G; Guaragni, B; Ruggeri, F; Radetti, G; Meini, A; Mazzolari, E; Cocchi, D
2004-01-01
Osteoprotegerin (OPG) is a secreted member of the TNF receptor superfamily. OPG is made by osteoblastic cells and is expressed in a wide variety of cell and tissue types. It acts as a decoy receptor by binding the receptor activator of nuclear factors kB (RANKL) and preventing RANKL-induced osteoclast formation and differentiation. Numerous cytokines and hormones (TGF-beta, PTH, vitamin D, glucocorticoids and oestrogens) exert their effects on osteoclastogenesis by regulating the production of OPG. In the present study we compared serum OPG and RANKL concentrations in a group of normal children (1-14 years old) with those of pair-aged children affected by different diseases [Turner's syndrome (TS), early/precocious puberty (PP) and rheumatoid arthritis (RA)]. OPG and RANKL concentrations were measured by an enzyme immunoassay method using a commercial kit. Mean (+/- SD) OPG level in normal children was 4.05 +/- 1.63 pmol/l with no difference between males and females. OPG values in children 1-4 years old (5.87 +/- 2.22 pmol/l) were significantly higher than in children 4-14 years old (3.55 +/- 0.97 pmol/l). OPG levels in children with RA were significantly higher than in controls (6.33 +/- 2.57 pmol/l vs. 4.05 +/- 1.63 pmol/l, P < 0.01); patients with TS or PP had OPG levels superimposable to those of controls (2.61 +/- 0.67 pmol/l and 3.99 +/- 0.85 pmol/l, respectively), but in TS OPG levels were significantly lower than in age-matched females. Mean RANKL concentration in normal subjects was 0.81 +/- 1.55 pmol/l; there was a slight decline in RANKL levels with age. RANKL concentrations in subjects with TS, PP, RA and controls did not differ significantly, and did not differ from those published in adult normal subjects. It appears from our data that OPG serum levels in healthy children aged > 4 years are similar to those present in young adult men, with higher levels in the first 4 years of life. Although the meaning of the alterations of OPG levels observed in pathological conditions is still obscure, they appear potentially interesting in view of a key role played by this protein in bone homeostasis.
Lukaszyk, Ewelina; Lukaszyk, Mateusz; Koc-Zorawska, Ewa; Bodzenta-Lukaszyk, Anna; Malyszko, Jolanta
2017-06-01
Fibroblast growth factor 23 (FGF-23) levels are elevated in impaired renal function. Inflammation and iron are potential regulators of FGF-23. The aim of the study was to evaluate the association between FGF-23 concentration, novel iron status biomarkers and inflammatory parameters among patients with early stages of chronic kidney disease (CKD). The study population included 84 patients with CKD in the early stage. Serum hemoglobin, fibrinogen, creatinine, iron, transferrin saturation and ferritin levels were measured using standard laboratory methods. Commercially available kits were used to measure: intact FGF-23, hepcidin, soluble transferrin receptor (sTfR), interleukin 6 (IL-6) and high-sensitivity C-reactive protein (hsCRP). In patients with CKD no differences in FGF-23 concentration according to iron status were observed. Lower iron concentration was associated with higher concentrations of hsCRP, IL-6 and fibrinogen. In univariate and multivariate analysis FGF-23 correlated with fibrinogen ( r = -0.23, p < 0.05) and eGFR ( r = -0.36, p < 0.05). FGF-23 is affected by kidney function and fibrinogen but not iron status parameters in the early stages of CKD. Our data are paving the way for further studies on the role of FGF-23 in iron metabolism, especially in early stages of CKD.
Neuroprotection by stem cell factor in rat cortical neurons involves AKT and NFkappaB.
Dhandapani, Krishnan M; Wade, F Marlene; Wakade, Chandramohan; Mahesh, Virendra B; Brann, Darrell W
2005-10-01
Stem cell factor (SCF) is a highly expressed cytokine in the central nervous system. In the present study, we demonstrate a neuroprotective role for SCF and its tyrosine kinase receptor, c-kit, against camptothecin-induced apoptosis and glutamate excitotoxicity in rat cortical neurons. This protection was blocked by pharmacological or molecular inhibition of either the MEK/ERK or PI3K/Akt signaling pathways. The importance of these pathways was further confirmed by the activation of both ERK, in a MEK-dependent manner, and Akt, via PI3K. Activation of Akt increased the binding of the p50 and p65 subunits of NFkappaB, which was also important for neuroprotection. Akt inhibition prevented NFkappaB binding, suggesting a role for Akt in SCF-induced NFkappaB. Pharmacological inhibition of NFkappaB or dominant negative IkappaB also prevented neuroprotection by SCF. SCF up-regulated the anti-apoptotic genes, bcl-2 and bcl-xL in an NFkappaB-dependent manner. Together, these findings demonstrate a neuroprotective role for SCF in cortical neurons, an effect that was mediated by Akt and ERK, as well as NFkappaB-mediated gene transcription. SCF represents a novel therapeutic target in the treatment of neurodegenerative disease.
Fibroblast growth factor receptors in breast cancer.
Wang, Shuwei; Ding, Zhongyang
2017-05-01
Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.
Feng, Tang; Jian-Xia, Tang; Feng, Lu; Sui, Xu; Ya-Ping, Gu; De-Sheng, Tong; Guo-Ding, Zhu; Hai-Yong, Hua; Hua-Yun, Zhou; Jun, Cao
2016-03-21
To evaluate the Wondfo Rapid Diagnostic Kit (Pf-LDH/Pan -pLDH) for detecting Plasmodium ovale and analyze the influence of parasitaemia, concentration and polymorphism of pLDH on the performances. A total of 100 blood samples from P. ovale patients confirmed by PCR were detected with the Wondfo Rapid Diagnostic Kit according to the manufacturers'instructions. The parasitaemia was determined by the microscopic examination. The concentration of pLDH was measured by ELISA tests. The LDH gene of P. ovale was amplified by PCR and sequenced. The influence of these three factors on the positive rate was analyzed. The overall positive rate of Wondfo Rapid Diagnostic Kit was 70.0% (70/100). The positive rate was 27.3% for the samples with parasitaemia ≤ 500 parasites/μl and reached 75.0%-75.4% when parasitaemia > 500 parasites/μl. The positive rate was 6.7% for samples with a low pLDH concentration ( A values ≤ 0.100) and reached 95.1%-100% at a high pLDH concentration ( A values > 0.100). The results of sequence analysis indicated that all the samples could be divided into 2 types, P. o. curtisi and P. o. wallikeri . The gene homology of LDH between 2 types was 97%. There were 24 single nucleotide polymorphism (s) (SNPs) between 2 types, while only 3 SNPs were non-synonymous mutations. The homology of LDH amino acid sequences between 2 types was 99%; only 3 amino acids were different. The positive rates for P. o. curtisi and P. o. wallikeri were 73.1% (38/52) and 66.7% (32/48) respectively; there was no statistically significant difference ( P > 0.05). The Wondfo Rapid Diagnostic Kit (Pf-LDH/Pan-pLDH) performs better than most of the similar products for the detection of P. ovale , and the positive rates are closely related to the parasitaemia and concentration of pLDH, while no related to the polymorphism of pLDH gene.
Chai, Mengya; Liu, Bo; Sun, Fude; Wei, Peng; Chen, Peng; Xu, Lida; Luo, Shi-Zhong
2017-07-01
Kit ligand (KITL) plays important roles in cell proliferation, differentiation, and survival via interaction with its receptor Kit. The previous studies demonstrated that KITL formed a noncovalent homodimer through transmembrane (TM) domain; however, the undergoing mechanism of transmembrane association that determines KITL TM dimerization is still not clear. Herein, molecular dynamics (MD) simulation strategy and TOXCAT assay were combined to characterize the dimerization interface and structure of KITL TM in details. KITL TM formed a more energetically favorable noncovalent dimer through a conserved SxxxGxxxG motif in the MD simulation. Furthermore, the TOXCAT results demonstrated that KITL TM self-associated strongly in the bilayer membrane environment. Mutating any one of the small residues Ser11, Gly15 or Gly19 to Ile disrupted KITL TM dimerization dramatically, which further validated our MD simulation results. In addition, our results showed that Tyr22 could help to stabilize the TM interactions via interacting with the phosphoric group in the bilayer membrane. Pro7 did not induce helix kinks or swivel angles in KITL TM, but it was related with the pitch of the turn around this residue so as to affect the dimer formation. Combining the results of computer modeling and experimental mutagenesis studies on the KITL TM provide new insights for the transmembrane helix association of KITL dimerization. Proteins 2017; 85:1362-1370. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Yilmaz, Ömer H.; Kiel, Mark J.; Morrison, Sean J.
2006-01-01
Recent advances have increased the purity of hematopoietic stem cells (HSCs) isolated from young mouse bone marrow. However, little attention has been paid to the purity of HSCs from other contexts. Although Thy-1lowSca-1+Lineage-c-kit+ cells from young bone marrow are highly enriched for HSCs (1 in 5 cells gives long-term multilineage reconstitution after transplantation into irradiated mice), the same population from old, reconstituted, or cytokine-mobilized mice engrafts much less efficiently (1 in 78 to 1 in 185 cells gives long-term multilineage reconstitution). To test whether we could increase the purity of HSCs isolated from these contexts, we examined the SLAM family markers CD150 and CD48. All detectable HSCs from old, reconstituted, and cyclophosphamide/G-CSF-mobilized mice were CD150+CD48-, just as in normal young bone marrow. Thy-1lowSca-1+Lineage-c-kit+ cells from old, reconstituted, or mobilized mice included mainly CD48+ and/or CD150- cells that lacked reconstituting ability. CD150+CD48-Sca-1+Lineage-c-kit+ cells from old, reconstituted, or mobilized mice were much more highly enriched for HSCs, with 1 in 3 to 1 in 7 cells giving long-term multilineage reconstitution. SLAM family receptor expression is conserved among HSCs from diverse contexts, and HSCs from old, reconstituted, and mobilized mice engraft relatively efficiently after transplantation when contaminating cells are eliminated. PMID:16219798
Yilmaz, Omer H; Kiel, Mark J; Morrison, Sean J
2006-02-01
Recent advances have increased the purity of hematopoietic stem cells (HSCs) isolated from young mouse bone marrow. However, little attention has been paid to the purity of HSCs from other contexts. Although Thy-1 low Sca-1+ Lineage- c-kit+ cells from young bone marrow are highly enriched for HSCs (1 in 5 cells gives long-term multilineage reconstitution after transplantation into irradiated mice), the same population from old, reconstituted, or cytokine-mobilized mice engrafts much less efficiently (1 in 78 to 1 in 185 cells gives long-term multilineage reconstitution). To test whether we could increase the purity of HSCs isolated from these contexts, we examined the SLAM family markers CD150 and CD48. All detectable HSCs from old, reconstituted, and cyclophosphamide/G-CSF-mobilized mice were CD150+ CD48-, just as in normal young bone marrow. Thy-1 low Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice included mainly CD48+ and/or CD150- cells that lacked reconstituting ability. CD150+ CD48- Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice were much more highly enriched for HSCs, with 1 in 3 to 1 in 7 cells giving long-term multilineage reconstitution. SLAM family receptor expression is conserved among HSCs from diverse contexts, and HSCs from old, reconstituted, and mobilized mice engraft relatively efficiently after transplantation when contaminating cells are eliminated.
Zhai, Lei; Sun, Nan; Zhang, Bo; Liu, Shui-Tao; Zhao, Zhe; Jin, Hai-Chao; Ma, Xin-Long; Xing, Geng-Yan
2016-03-01
To observe the effect of extracorporeal shock waves (ESWs) on bone marrow mesenchymal stem cells (MSCs) in patients with avascular necrosis of the femoral head, we collected bone marrow donated by patients and then cultivated and passaged MSCs in vitro using density gradient centrifugation combined with adherence screening methods. The P3 generation MSCs were divided into the ESW group and the control group. The cell counting kit for MSCs detected some proliferation differences. Cytochemistry, alkaline phosphatase staining and Alizarin red staining were used to determine alkaline phosphatase content. Simultaneously, real-time polymerase factor α1, osteocalcin and peroxisome proliferator-activated receptor γ. Together, the results of our study first indicate that moderate ESW intensity, which is instrumental in enhancing MSC proliferation, inducing conversion of MSCs into osteoblasts, and inhibiting differentiation of MSCs into adipocytes from MSCs, is one of the effective mechanisms for treating avascular necrosis of the femoral head. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Profile of bosutinib and its clinical potential in the treatment of chronic myeloid leukemia
Amsberg, Gunhild Keller-von; Koschmieder, Steffen
2013-01-01
Bosutinib (SKI-606) is an orally available, once-daily, dual Src and Abl kinase inhibitor with promising clinical potential in first-, second-, and third-line treatment of chronic myeloid leukemia (CML). Bosutinib effectively inhibits wild-type BCR-ABL and most imatinib-resistant BCR-ABL mutations except for V299L and T315I. Low hematologic toxicity is a remarkable characteristic of this novel second-generation tyrosine kinase inhibitor, and this has been ascribed to its minimal activity against the platelet-derived growth factor receptor and KIT. Low-grade, typically self-limiting diarrhea, which usually appears within the first few weeks after treatment initiation, represents the predominant toxicity of bosutinib. Other treatment-associated adverse events are mostly mild to moderate. Bosutinib has been approved by the US Food and Drug Administration for the treatment of chronic, accelerated, or blast phase Philadelphia chromosome-positive CML in adult patients with resistance or intolerance to prior therapy. This review summarizes the main properties of bosutinib and the currently available data on its clinical potential in the treatment of CML. PMID:23493838
Gastrointestinal Stromal Tumors - Diagnosis and Surgical Treatment.
Alecu, L; Tulin, A; Enciu, O; Bărbulescu, M; Ursuţ, B; Obrocea, F
2015-01-01
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors of the gastrointestinal tract, previously classified as leiomyomas, leiomyosarcomas, leiomyoblastomas or schwannomas. They are now recognized as a distinct entity with origin in the mesodermal interstitial cell of Cajal, cells that express the c-KIT protein (tirozine kinase receptor). The definitive diagnosis is established by immunohistochemistry, more than 95% of GISTs being positive for CD117. Despite the major progress of chemotherapy, the treatment of choice is surgery, and it implies the complete resection of the tumor. The evolution of these tumors is unpredictable and the prognosis depends on localization, tumor size and mitotic index. Benign tumors have an excellent prognosis after surgery, with a 5 year survival of 90%, while malignant tumors resistant to radiotherapy and chemotherapy have a dismal prognosis even after surgical resection, with a median survival of 1 year. We studied a group of 15 patients diagnosed with TSGI in the Surgery Clinic of the Prof. Dr. Agrippa Ionescu Clinical Emergency Hospital, between 2003 and 2013, following the particularities of presentation, diagnosis and treatment, with focus on the prognostic factors according to available literature data. Celsius.
Cyanide and the human brain: perspectives from a model of food (cassava) poisoning.
Tshala-Katumbay, Desire D; Ngombe, Nadege N; Okitundu, Daniel; David, Larry; Westaway, Shawn K; Boivin, Michael J; Mumba, Ngoyi D; Banea, Jean-Pierre
2016-08-01
Threats by fundamentalist leaders to use chemical weapons have resulted in renewed interest in cyanide toxicity. Relevant insights may be gained from studies on cyanide mass intoxication in populations relying on cyanogenic cassava as the main source of food. In these populations, sublethal concentrations (up to 80 μmol/l) of cyanide in the blood are commonplace and lead to signs of acute toxicity. Long-term toxicity signs include a distinct and irreversible spastic paralysis, known as konzo, and cognition deficits, mainly in sequential processing (visual-spatial analysis) domains. Toxic culprits include cyanide (mitochondrial toxicant), thiocyanate (AMPA-receptor chaotropic cyanide metabolite), cyanate (protein-carbamoylating cyanide metabolite), and 2-iminothiazolidine-4-carboxylic acid (seizure inducer). Factors of susceptibility include younger age, female gender, protein-deficient diet, and, possibly, the gut functional metagenome. The existence of uniquely exposed and neurologically affected populations offers invaluable research opportunities to develop a comprehensive understanding of cyanide toxicity and test or validate point-of-care diagnostic tools and treatment options to be included in preparedness kits in response to cyanide-related threats. © 2016 New York Academy of Sciences.
Cyanide and the human brain: perspectives from a model of food (cassava) poisoning
Tshala-Katumbay, Desire D.; Ngombe, Nadege N.; Okitundu, Daniel; David, Larry; Westaway, Shawn K.; Boivin, Michael J.; Mumba, Ngoyi D.; Banea, Jean-Pierre
2016-01-01
Threats by fundamentalist leaders to use chemical weapons have resulted in renewed interest in cyanide toxicity. Relevant insights may be gained from studies on cyanide mass intoxication in populations relying on cyanogenic cassava as the main source of food. In these populations, sublethal concentrations (up to 80 µmol/L) of cyanide in the blood are commonplace and lead to signs of acute toxicity. Long-term toxicity signs include a distinct and irreversible spastic paralysis, known as konzo, and cognition deficits, mainly in sequential processing (visual–spatial analysis) domains. Toxic culprits include cyanide (mitochondrial toxicant), thiocyanate (AMPA-receptor chaotropic cyanide metabolite), cyanate (protein-carbamoylating cyanide metabolite), and 2-iminothiazolidine-4-carboxylic acid (seizure inducer). Factors of susceptibility include younger age, female gender, protein-deficient diet, and, possibly, the gut functional metagenome. The existence of uniquely exposed and neurologically affected populations offers invaluable research opportunities to develop a comprehensive understanding of cyanide toxicity and test or validate point-of-care diagnostic tools and treatment options to be included in preparedness kits in response to cyanide-related threats. PMID:27450775
Li, Xuefei; Zhou, Caicun
2017-01-01
Somatic mutations in the gene encoding epidermal growth factor receptor (EGFR) play an important role in determining targeted treatment modalities in non-small cell lung cancer (NSCLC). The EGFR T790M mutation emerges in approximately 50% of cases who acquire resistance to tyrosine kinase inhibitors. Detecting EGFR T790M mutation in tumor tissue is challenging due to heterogeneity of the tumor, low abundance of the mutation and difficulty for re-biopsy in patients with advanced disease. Alternatively, circulating tumor DNA (ctDNA) has been proposed as a non-invasive method for mutational analysis. The presence of EGFR mutations in ctDNA predicts response to the EGFR TKIs in the first-line setting. Molecular testing is now considered a standard care for NSCLC. The advent of standard commercially available kits and targeted mutational analysis has revolutionized the accuracy of mutation detection platforms for detection of EGFR mutations. Our review provides an overview of various commonly used platforms for detecting EGFR T790M mutation in tumor tissue and plasma. PMID:29246024
Dempsey, Steven J; Gese, Eric M; Kluever, Bryan M; Lonsinger, Robert C; Waits, Lisette P
2015-01-01
Development and evaluation of noninvasive methods for monitoring species distribution and abundance is a growing area of ecological research. While noninvasive methods have the advantage of reduced risk of negative factors associated with capture, comparisons to methods using more traditional invasive sampling is lacking. Historically kit foxes (Vulpes macrotis) occupied the desert and semi-arid regions of southwestern North America. Once the most abundant carnivore in the Great Basin Desert of Utah, the species is now considered rare. In recent decades, attempts have been made to model the environmental variables influencing kit fox distribution. Using noninvasive scat deposition surveys for determination of kit fox presence, we modeled resource selection functions to predict kit fox distribution using three popular techniques (Maxent, fixed-effects, and mixed-effects generalized linear models) and compared these with similar models developed from invasive sampling (telemetry locations from radio-collared foxes). Resource selection functions were developed using a combination of landscape variables including elevation, slope, aspect, vegetation height, and soil type. All models were tested against subsequent scat collections as a method of model validation. We demonstrate the importance of comparing multiple model types for development of resource selection functions used to predict a species distribution, and evaluating the importance of environmental variables on species distribution. All models we examined showed a large effect of elevation on kit fox presence, followed by slope and vegetation height. However, the invasive sampling method (i.e., radio-telemetry) appeared to be better at determining resource selection, and therefore may be more robust in predicting kit fox distribution. In contrast, the distribution maps created from the noninvasive sampling (i.e., scat transects) were significantly different than the invasive method, thus scat transects may be appropriate when used in an occupancy framework to predict species distribution. We concluded that while scat deposition transects may be useful for monitoring kit fox abundance and possibly occupancy, they do not appear to be appropriate for determining resource selection. On our study area, scat transects were biased to roadways, while data collected using radio-telemetry was dictated by movements of the kit foxes themselves. We recommend that future studies applying noninvasive scat sampling should consider a more robust random sampling design across the landscape (e.g., random transects or more complete road coverage) that would then provide a more accurate and unbiased depiction of resource selection useful to predict kit fox distribution.
Li, Hao; Wang, Qi; Chen, Xinmin; Ding, Yi; Li, Wei
2016-11-01
Oral epithelial cells have currently been found to play an important role in inflammatory modulation in periodontitis. Mangiferin is a natural glucosylxanthone with anti-inflammatory activity. The aim of this study was to investigate the regulatory effect of mangiferin on lipopolysaccharide (LPS)-induced production of proinflammatory cytokine interleukin-6 (IL-6) in oral epithelial cells and the underlying mechanisms. The levels of LPS-induced IL-6 production in OKF6/TERT-2 oral keratinocytes were detected using enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor (TLR) 2 and TLR4 was determined using western blot analysis. And the phosphorylation of TLR downstream nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) was examined using cell-based protein phosphorylation ELISA kits. We found that mangiferin reduced LPS-upregulated IL-6 production in OKF6/TERT-2 cells. Additionally, mangiferin inhibited LPS-induced TLR2 and TLR4 overexpression, and suppressed the phosphorylation of NF-κB, p38 MAPK and JNK. Moreover, mangiferin repressed IL-6 production and TLR signaling activation in a dose-dependent manner after 24h treatment. Mangiferin decreases LPS-induced production of IL-6 in human oral epithelial cells by suppressing TLR signaling, and this glucosylxanthone may have potential for the treatment of periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tamlin, V S; Kessell, A E; Mccoy, R J; Dobson, E C; Smith, T S; Hebart, M; Brown, L; Mitrovic, D; Peaston, A E
2017-10-01
To measure the prevalence of internal tandem duplications (ITDs) in exon 11 of the proto-oncogene C-KIT in a sample of Australian cutaneous canine mast cell tumours (MCTs) drawn from general practice and to evaluate relationships between tumour mutation status and prognostic factors including signalment, tumour histological grade, tumour anatomical location and tumour size. C-KIT exon 11 ITDs were detected by PCR in DNA extracted from formalin-fixed, paraffin-embedded canine MCTs sourced from three veterinary diagnostic laboratories in Adelaide and Melbourne. Tumours were graded according to two different systems (Patnaik and Kiupel systems) by board-certified anatomical pathologists blinded to the PCR results. Relationships between tumour mutation status and prognostic factors were evaluated using a generalised binary logistic regression analysis. ITDs were identified in 13 of 74 cutaneous canine MCT samples, giving an overall prevalence of 17.6% (95% confidence interval: 8.9-26.2%). ITDs were detected in 10 of 18 Patnaik grade III MCTs (55.6%) and 11 of 22 Kiupel high-grade MCTs (50%). Wald chi-square analysis revealed that detection of tumour ITDs was significantly associated with both Patnaik's and Kiupel's histologic grading systems (each: P < 0.001). The presence of the ITDs in MCTs was not associated with signalment, tumour anatomical location or tumour size. The prevalence of C-KIT exon 11 ITDs in Australian canine MCTs is similar to the prevalence in overseas canine populations (overall prevalence in Australia approximately 18%). ITDs were more frequently identified in higher grade MCTs. © 2017 Australian Veterinary Association.
Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis.
Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H; Waskow, Emily R; Visconte, Valeria; Tiu, Ramon V; Smith, Catherine C; Shah, Neil; Bunting, Kevin D; Boswell, H Scott; Liu, Yan; Chan, Rebecca J; Kapur, Reuben
2014-11-20
Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
21 CFR 864.7695 - Platelet factor 4 radioimmunoassay.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Platelet factor 4 radioimmunoassay. 864.7695 Section 864.7695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7695 Platelet...
21 CFR 864.7695 - Platelet factor 4 radioimmunoassay.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Platelet factor 4 radioimmunoassay. 864.7695 Section 864.7695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7695 Platelet...
21 CFR 864.7695 - Platelet factor 4 radioimmunoassay.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Platelet factor 4 radioimmunoassay. 864.7695 Section 864.7695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7695 Platelet...
21 CFR 864.7695 - Platelet factor 4 radioimmunoassay.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Platelet factor 4 radioimmunoassay. 864.7695 Section 864.7695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7695 Platelet...
21 CFR 864.7695 - Platelet factor 4 radioimmunoassay.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Platelet factor 4 radioimmunoassay. 864.7695 Section 864.7695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7695 Platelet...
The Dtk receptor tyrosine kinase, which binds protein S, is expressed during hematopoiesis.
Crosier, P S; Freeman, S A; Orlic, D; Bodine, D M; Crosier, K E
1996-02-01
Dtk (Tyro 3/Sky/Rse/Brt/Tif) belongs to a recently recognized subfamily of receptor tyrosine kinases that also includes Ufo (Axl/Ark) and Mer (Eyk). Ligands for Dtk and Ufo have been identified as protein S and the related molecule Gas6, respectively. This study examined expression of Dtk during ontogeny of the hematopoietic system and compared the pattern of expression with that of Ufo. Both receptors were abundantly expressed in differentiating embryonic stem cells, yolk sac blood islands, para-aortic splanchnopleural mesoderm, fractionated AA4+ fetal liver cells, and fetal thymus from day 14 until birth. Although Ufo was expressed at moderate levels in adult bone marrow, expression of Dtk in this tissue was barely detectable. In adult bone marrow subpopulations fractionated using counterflow centrifugal elutriation, immunomagnetic bead selection for lineage-depletion and FACS sorting for c-kit expression, very low levels of Dtk and/or Ufo were detected in some cell fractions. These results suggest that Dtk and Ufo are likely to be involved in the regulation of hematopoiesis, particularly during the embryonic stages of blood cell development.
Identification of novel indole based heterocycles as selective estrogen receptor modulator.
Singla, Ramit; Prakash, Kunal; Bihari Gupta, Kunj; Upadhyay, Shishir; Dhiman, Monisha; Jaitak, Vikas
2018-04-24
In the present study, we have designed and synthesized indole derivatives by coalescing the indole nucleus with chromene carbonitrile and dihydropyridine nucleus. Two compounds 5c and 6d were selected from series I and II after sequential combinatorial library generation, docking, absorption, distribution, metabolism and excretion (ADME) filtering, anti-proliferative activity, cytotoxicity, and ER-α competitor assay kit by utilizing estrogen receptor-α (ER-α) dominant T47D BC cells line and PBMCs (Peripheral Blood Mononuclear Cells). Cell imaging experiment suggested that both the compounds successfully cross cellular biomembrane and accumulate in nuclear, cytoplasmic and plasma membrane region. Semiquantitative RT-PCR and Western blotting experiments further supported that both compounds reduced the expression of mRNA and receptor protein of ER-α, thereby preventing downstream transactivation and signaling pathway in T47D cells line. Current findings imply that 5c and 6d represent novel ER-α antagonists and may be used in the development of chemotherapy for the management of BC. Copyright © 2018 Elsevier Inc. All rights reserved.
In vitro and in vivo anti-cancer activity of silymarin on oral cancer.
Won, Dong-Hoon; Kim, Lee-Han; Jang, Boonsil; Yang, In-Hyoung; Kwon, Hye-Jeong; Jin, Bohwan; Oh, Seung Hyun; Kang, Ju-Hee; Hong, Seong-Doo; Shin, Ji-Ae; Cho, Sung-Dae
2018-05-01
Silymarin, a standardized extract from milk thistle fruits has been found to exhibit anti-cancer effects against various cancers. Here, we explored the anti-cancer activity of silymarin and its molecular target in human oral cancer in vitro and in vivo. Silymarin dose-dependently inhibited the proliferation of HSC-4 oral cancer cells and promoted caspase-dependent apoptosis. A human apoptosis protein array kit showed that death receptor 5 may be involved in silymarin-induced apoptosis, which was also shown through western blotting, immunocytochemistry, and reverse transcription-polymerase chain reaction. Silymarin increased cleaved caspase-8 and truncated Bid, leading to accumulation of cytochrome c. In addition, silymarin activated death receptor 5/caspase-8 to induce apoptotic cell death in two other oral cancer cell lines (YD15 and Ca9.22). Silymarin also suppressed tumor growth and volume without any hepatic or renal toxicity in vivo. Taken together, these results provide in vitro and in vivo evidence supporting the anti-cancer effect of silymarin and death receptor 5, and caspase-8 may be essential players in silymarin-mediated apoptosis in oral cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCue, P.M.; O'Farrell, T.P.
1986-07-01
Serum from endangered San Joaquin kit foxes, Vulpes macrotis mutica, and sympatric wildlife inhabiting the Elk Hills Petroleum Reserve, Kern County, and Elkhorn Plain, San Luis Obispo County, California, was collected in 1981 to 1982 and 1984, and tested for antibodies against 10 infectious disease pathogens. Proportions of kit fox sera containing antibodies against diseases were: canine parvovirus, 100% in 1981 to 1982 and 67% in 1984; infectious canine hepatitis, 6% in 1981 to 1982 and 21% in 1984; canine distemper, 0 in 1981 to 1982 and 14% in 1984; tularemia, 8% in 1981 to 1982 and 31% in 1984;more » Brucella abortus, 8% in 1981 to 1982 and 3% in 1984; Brucella canis, 14% in 1981 to 1982 and 0 in 1984; toxoplasmosis, 6% in 1981 to 1982; coccidioidomycosis, 3% in 1981 to 1982; and plague and leptospirosis, 0 in 1981 to 1982. High population density, overlapping home ranges, ability to disperse great distances, and infestation by ectoparasites were cited as possible factors in the transmission and maintenance of these diseases in kit fox populations.« less
Rectal GIST presenting as a submucosal calculus.
Testroote, Mark; Hoornweg, Marije; Rhemrev, Steven
2007-04-01
This case report presents an incidental finding of a rectal GIST (gastrointestinal stromal tumor) presenting as a submucosal calculus, not previously reported. A 53-year-old man without a significant medical history presented with abdominal pain in the left lower quadrant, and with constipation. Upon rectal examination, a hard submucosal swelling was palpated 4 cm from the anus, at 3 o'clock, in the left rectum wall. X-ray photos, computerized tomography (CT)-scan and a magnetic resonance imaging (MRI) scan clearly showed a calculus. Excision revealed a turnip-like lesion, 3.1 x 2.3 x 1.8 cm. Analysis showed it was a rectal GIST, a rare mesenchymal tumor of the gastrointestinal tract, which expressed CD117 (or c-kit, a marker of kit-receptor tyrosine kinase) and CD34. Calcification is not a usual clinicopathological feature of GISTs [1-3], and although a number of rectal GISTs have been reported [4-9], we have found no cases so far of rectal GIST presenting as a submucosal calculus. In general, GISTs are rare mesenchymal tumors of the gastrointestinal tract (nerve tissue, smooth muscle). Histology and immunohistochemistry discriminate gastrointestinal stromal tumors from leiomyomas and neurinomas. The most important location is the stomach; the rectal location is rare. Usually, the classic signs of malignancy such as cellular invasion and metastasis are missing. A set of histologic criteria stratifies GIST for risk of malignant behavior such as mitotic activity and tumor size, cellular pleomorphism, developmental stage of the cell and quantity of cytoplasma [7,13]. Tumors with a high mitotic activity and size above 5 cm are considered malignant. Recent pharmacological advances such as tyrosine kinase inhibitors have determined c-kit (i.e., CD117) as the most important marker, amongst others. C-kit positive tumors respond extremely well to chemotherapy with Imatinib (Glivec, Gleevec) [10-12].
Sensitive and reliable detection of Kit point mutation Asp 816 to Val in pathological material
Kähler, Christian; Didlaukat, Sabine; Feller, Alfred C; Merz, Hartmut
2007-01-01
Background Human mastocytosis is a heterogenous disorder which is linked to a gain-of-function mutation in the kinase domain of the receptor tyrosine kinase Kit. This D816V mutation leads to constitutive activation and phosphorylation of Kit with proliferative disorders of mast cells in the peripheral blood, skin, and spleen. Most PCR applications used so far are labour-intensive and are not adopted to daily routine in pathological laboratories. The method has to be robust and working on such different materials like archival formalin-fixed, paraffin-embedded tissue (FFPE) and blood samples. Such a method is introduced in this publication. Methods The Kit point mutation Asp 816 to Val is heterozygous which means a problem in detection by PCR because the wild-type allele is also amplified and the number of cells which bear the point mutation is in most of the cases low. Most PCR protocols use probes to block the wild-type allele during amplification with more or less satisfying result. This is why point-mutated forward primers were designed and tested for efficiency in amplification of the mutated allele. Results One primer combination (A) fits the most for the introduced PCR assay. It was able just to amplify the mutated allele with high specificity from different patient's materials (FFPE or blood) of varying quality and quantity. Moreover, the sensitivity for this assay was convincing because 10 ng of DNA which bears the point mutation could be detected in a total volume of 200 ng of DNA. Conclusion The PCR assay is able to deal with different materials (blood and FFPE) this means quality and quantity of DNA and can be used for high-througput screening because of its robustness. Moreover, the method is easy-to-use, not labour-intensive, and easy to realise in a standard laboratory. PMID:17900365
Wagner, Andrew J; Agulnik, Mark; Heinrich, Michael C; Mahadevan, Daruka; Riedel, Richard F; von Mehren, Margaret; Trent, Jonathan; Demetri, George D; Corless, Christopher L; Yule, Murray; Lyons, John F; Oganesian, Aram; Keer, Harold
2016-07-01
Gastrointestinal stromal tumours (GIST) treated with the tyrosine kinase inhibitor (TKI) imatinib can become resistant when additional mutations in the receptor tyrosine kinases KIT or PDGFRA block imatinib activity. Mutated KIT requires the molecular chaperone heat-shock protein 90 (HSP90) to maintain stability and activity. Onalespib (AT13387) is a potent non-ansamycin HSP90 inhibitor. We hypothesised that the combination of onalespib and imatinib may be safe and effective in managing TKI-resistant GIST. In this dose-escalation study, we evaluated the safety and efficacy of combination once-weekly intravenous onalespib for 3 weeks and daily oral imatinib in 28-d cycles. Twenty-six patients with TKI-resistant GIST were enrolled into four sequential dose cohorts of onalespib (dose range, 150-220 mg/m(2)) and imatinib 400 mg. The relationship between tumour mutational status (KIT/PDGFRA) and efficacy of treatment was explored. Common onalespib-related adverse events were diarrhoea (58%), nausea (50%), injection site events (46%), vomiting (39%), fatigue (27%), and muscle spasms (23%). Overall, 81% of patients reported more than one onalespib-related gastrointestinal disorder. Nine patients (35%) had a best response of stable disease, including two patients who had KIT mutations known to be associated with resistance to imatinib and sunitinib. Disease control at 4 months was achieved in five patients (19%), and median progression-free survival was 112 d (95% confidence interval 43-165). One patient with PDGFRA-mutant GIST had a partial response for more than 376 d. The combination of onalespib plus imatinib was well tolerated but exhibited limited antitumour activity as dosed in this TKI-resistant GIST patient population. Trial registration ID: clinicaltrials.gov: NCT01294202. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hegde, Venkatesh L.; Singh, Udai P.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi
2015-01-01
Cannabidiol (CBD) is a natural non-psychotropic cannabinoid from marijuana (Cannabis sativa) with anti-epileptic and anti-inflammatory properties. Effect of CBD on naïve immune system is not precisely understood. In this study, we observed that administering CBD into naïve mice triggers robust induction of CD11b+Gr-1+ MDSC in the peritoneum, which expressed functional Arg1, and potently suppressed T cell proliferation ex vivo. Further, CBD-MDSC suppressed LPS-induced acute inflammatory response upon adoptive transfer in vivo. CBD-induced suppressor cells were comprised of CD11b+Ly6-G+Ly6-C+ granulocytic and CD11b+Ly6-G−Ly6-C+ monocytic subtypes, with monocytic MDSC exhibiting higher T cell suppressive function. Induction of MDSC by CBD was markedly attenuated in Kit-mutant (KitW/W-v) mast cell-deficient mice. MDSC response was reconstituted upon transfer of WT bone marrow-derived mast cells in KitW/W-v mice suggesting the key role of cKit (CD117) as well as mast cells. Moreover, mast cell activator compound 48/80 induced significant levels of MDSC in vivo. CBD administration in mice induced G-CSF, CXCL1 and M-CSF, but not GM-CSF. G-CSF was found to play a key role in MDSC mobilization inasmuch as neutralizing G-CSF caused a significant decrease in MDSC. Lastly, CBD enhanced the transcriptional activity of PPARγ in luciferase reporter assay, and PPARγ selective antagonist completely inhibited MDSC induction in vivo suggesting its critical role. Together, the results suggest that CBD may induce activation of PPARγ in mast cells leading to secretion of G-CSF and consequent MDSC mobilization. CBD being a major component of Cannabis, our study indicates that marijuana may modulate or dysregulate the immune system by mobilizing MDSC. PMID:25917103
Sasaki-Iwaoka, Haruna; Ohori, Makoto; Imasato, Akira; Taguchi, Katsunari; Minoura, Kyoko; Saito, Tetsu; Kushima, Kiyoshi; Imamura, Emiko; Kubo, Satoshi; Furukawa, Shigetada; Morokata, Tatsuaki
2018-06-05
Interleukin (IL)-12 and IL-23 share a common subunit (p40) and function in T-helper (Th) 1 and Th17 immunity, respectively. Anti-IL-12/23p40 and specific anti-IL-23 antibodies are currently in clinical use for psoriasis and undergoing trials for autoimmune diseases. Since expression levels of the IL-23 receptor are likely to be much lower than those of IL-23, an anti-IL-23 receptor antibody might offer greater promise in inhibiting the IL-23-IL-17 pathways involved in inflammatory disorders. To our knowledge, no anti-IL-23 receptor antibody has been trialed in clinical studies to date. This study describes the generation and characterization of AS2762900-00, a fully human monoclonal antibody against the IL-23 receptor. AS2762900-00 bound both human and cynomolgus monkey IL-23 receptors. AS2762900-00 showed potent inhibitory effects on IL-23-induced Kit-225 cell proliferation compared to the existing anti-IL-12/23p40 antibody, ustekinumab. In a single dose administration pharmacodynamics study in cynomolgus monkeys, 1 mg/kg of AS2762900-00 significantly inhibited (> 85%) IL-23-induced STAT3 phosphorylation in blood for up to 84 days. Therefore, AS2762900-00 represents a potent novel IL-23-IL-17 pathway inhibitor with the potential to be developed into a new therapy for the treatment of autoimmune diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
... Kit Read the MMWR Science Clips Cancer and obesity Overweight and obesity are associated with cancer Language: ... a cancer associated with overweight and obesity. Problem Obesity is a leading cancer risk factor. What’s happening? ...
Radotinib induces high cytotoxicity in c-KIT positive acute myeloid leukemia cells.
Heo, Sook-Kyoung; Noh, Eui-Kyu; Kim, Jeong Yi; Jo, Jae-Cheol; Choi, Yunsuk; Koh, SuJin; Baek, Jin Ho; Min, Young Joo; Kim, Hawk
2017-06-05
Previously, we reported that radotinib, a BCR-ABL1 tyrosine kinase inhibitor, induced cytotoxicity in acute myeloid leukemia (AML) cells. However, the effects of radotinib in the subpopulation of c-KIT-positive AML cells were unclear. We observed that low-concentration radotinib had more potent cytotoxicity in c-KIT-positive cells than c-KIT-negative cells from AML patients. To address this issue, cell lines with high c-KIT expression, HEL92.1.7, and moderate c-KIT expression, H209, were selected. HEL92.1.7 cells were grouped into intermediate and high c-KIT expression populations. The cytotoxicity of radotinib against the HEL92.1.7 cell population with intermediate c-KIT expression was not different from that of the population with high c-KIT expression. When H209 cells were grouped into c-KIT expression-negative and c-KIT expression-positive populations, radotinib induced cytotoxicity in the c-KIT-positive population, but not the c-KIT-negative population. Thus, radotinib induces cytotoxicity in c-KIT-positive cells, regardless of the c-KIT expression intensity. Therefore, radotinib induces significant cytotoxicity in c-KIT-positive AML cells, suggesting that radotinib is a potential target agent for the treatment of c-KIT-positive malignancies including AML. Copyright © 2017 Elsevier B.V. All rights reserved.
Gordon, Nancy P; Green, Beverly B
2015-06-11
The one-sample fecal immunochemical test (FIT) is gaining popularity for colorectal cancer (CRC) screening of average-risk people. However, uptake and annual use remain suboptimal. In 2013, we mailed questionnaires to three groups of nonHispanic White, Black, and Latino Kaiser Permanente Northern California (KPNC) members ages 52-76 who received FIT kits in 2010-2012: Continuers did the FIT all 3 years; Converts in 2012, but not 2010 or 2011; and Nonusers in none of the 3 years. The questionnaires covered social influences, perceived CRC risk, reasons for using (Continuers, Converts) or avoiding using (Nonusers) the FIT, and recommendations for improving the kit. Continuers (n = 607, response rate 67.5%), Converts (n = 317, response rate 35.6%), and Nonusers (n = 215, response rate 21.1%) did not differ in perceived risk or family history of CRC, but Nonusers were less likely than Continuers and Converts to know someone who had polyps or CRC. Continuers, Converts, and Nonusers did not differ in social network encouragement of CRC screening, but did differ in believing that it was very important that they be screened (88.3%, 68.4%, 47.7%) and that their medical team thought it very important that they be screened (88.6%, 79.9%, 53.9%). Approximately half of Continuers and Converts completed the FIT to please their doctor. Converts were less likely than Continuers to use the FIT to "make sure they were OK" (53.7% vs. 72.6%) or "protect their health" (46.1% vs. 76.4%). Nearly half of Converts completed the FIT out of guilt. Approximately half of FIT kit users suggested adding a disposable glove, extra paper, and wider-mouth tube to the kit. Nonusers' reasons for not using the FIT included discomfort, disgust, or embarrassment (59.6%); thinking it unnecessary (32.9%); fatalism/fear (15.5%); and thinking it too difficult to use (14.5%), but <10% did not want CRC screening at all. Nonusers and irregular users of the FIT are less intrinsically motivated to get CRC screening than long-term users and more averse to preparing their stool sample. Changes to the FIT kit to address discomfort and difficulty factors might improve uptake and continued use.
Locati, L D; Perrone, F; Cortelazzi, B; Bergamini, C; Bossi, P; Civelli, E; Morosi, C; Lo Vullo, S; Imbimbo, M; Quattrone, P; Dagrada, G P; Granata, R; Resteghini, C; Mirabile, A; Alfieri, S; Orlandi, E; Mariani, L; Saibene, G; Pilotti, S; Licitra, L
2016-12-01
Pre-clinical and clinical evidence suggests a rationale for the use of anti-angiogenic agents, including sorafenib, in recurrent and/or metastatic salivary gland carcinomas (RMSGCs). This study evaluates the activity of sorafenib in patients with RMSGCs and also investigates whether the activity of sorafenib could be related to its main tailored targets (i.e. BRAF, vascular endothelial growth factor receptor 2 [VEGFR2], platelet-derived growth factor receptor α [PDGFRα] and β, RET, KIT). Patients received sorafenib at 400 mg BID. The primary end-point was response rate (RR) including complete response or partial response (PR); secondary end-points included RR according to Choi criteria, disease control rate (DCR), overall survival (OS), and progression-free survival (PFS). Thirty-seven patients (19 adenoid cystic cancers, ACC) were enrolled. Six PRs were recorded. RR was 16% (95% confidence interval [CI]: 6-32; 11% in ACC and 22% in non-ACC). Choi criteria could be applied in 30 out of 37 cases with a RR of 50% (95% CI: 31-69%); DCR was 76% (95% CI: 59-88%). Incidence of ≥G3 adverse events was 29.7%. Median PFS and OS for the entire population were 5.9 months and 23.4 months, respectively. Median PFS and OS were 8.9 and 26.4 months for ACC versus 4.2 and 12.3 months for non-ACC patients. All the cases showed expression of PDGFRβ in the stroma and VEGFR2 in endothelial cells; PDGFRα positivity was found in the stroma of four (27%) cases. All except for two cases showed no PDGFRβ, VEGFR2 and PDGFRα expression in the tumour cells. KIT expression was restricted to ACC and a weak RET expression was limited to one adenocarcinoma, not otherwise specified (NOS). No BRAF mutation was found. No correlation was observed between the sorafenib activity and the expression of its markers although all six responders (two ACC, one adenocarcinoma, NOS, one salivary duct cancer [SDC], one high-grade mucoepidermoid [HG-MEC] and one poorly-differentiated cancer) are enriched in the stromal component showing a PDGFRβ immunodecoration. In ACCs, immunohistochemistry revealed MYB protein expression in 15/16 cases (94%) and the MYB-NFIB fusion oncogene was observed in 9/14 (64%). Sorafenib is the first anti-angiogenic agent to demonstrate activity in RMSGC patients, particularly in some histotypes such as HG-MEC, SDC and adenocarcinoma, NOS. The PDGFRβ-positive rich stromal component characterising these histotypes and the lack of correlation between the activity of sorafenib and its targets suggests anti-angiogenic effect as the prevalent mechanism of action of sorafenib in SGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Techni-kits and Techni-kit Building Systems
NASA Technical Reports Server (NTRS)
Callender, E. D.; Hartsough, C.; Morris, R. V.; Yamamoto, Y.
1985-01-01
Techni-kits consists of theories, methods, standards and computer based tools that assist in design of information-intensive systems. Techni-kit "building system" is techni-kit that builds techni-kits.
NASA Technical Reports Server (NTRS)
1988-01-01
M.H. Marks Enterprises' Power Factor Controller (PFC) matches voltage with motor's actual need. Plugged into a motor, PFC continuously determines motor load by sensing shifts between voltage and current flow. When it senses a light load, it cuts voltage to the minimum needed. It offers potential energy savings ranging from eight percent up to 65 percent depending on the application. Myles Marks started out with the notion of writing an article for Popular Electronics magazine at the same time offering to furnish kits to readers interested in assembling PFC's. Within two weeks from publication he had orders for 500 kits and orders are still coming three years later.
Friel, Jutta; Itoh, Katsuhiko; Bergholz, Ulla; Jücker, Manfred; Stocking, Carol; Harrison, Paul; Ostertag, Wolfram
2002-03-01
Hemopoiesis takes place in a microenvironment where hemopoietic cells are closely associated with stroma by various interactions. Stroma coregulates the proliferation and differentiation of hemopoietic cells. Stroma-hemopoietic-cell contact can be supported by locally produced membrane associated growth factors. The stroma derived growth factor, stem cell factor (SCF) is important in hemopoiesis. We examined the different biological interactions of membrane bound and soluble SCF with human hemopoietic cells expressing the SCF receptor, c-kit. To analyze the function of the SCF isoforms in inducing the proliferation of hemopoietic TF1 or Cord blood (CB) CD34+ cells we used stroma cell lines that differ in their presentation of no SCF, membrane SCF, or soluble SCF. We established a new coculture system using an epithelial cell line that excludes potential interfering effects with other known stroma encoded hemopoietic growth factors. We show that soluble SCF, in absence of membrane-bound SCF, inhibits long term clonal growth of primary or established CD34+ hemopoietic cells, whereas membrane-inserted SCF "dominantly" induces long term proliferation of these cells. We demonstrate a hierarchy of these SCF isoforms in the interaction of stroma with hemopoietic TF1 cells. Membrane-bound SCF is "dominant" over soluble SCF, whereas soluble SCF acts epistatically in interacting with hemopoietic cells compared with other stroma derived factors present in SCF deficient stroma. A hierarchy of stroma cell lines can be arranged according to their presentation of membrane SCF or soluble SCF. In our model system, membrane-bound SCF expression is sufficient to confer stroma properties to an epithelial cell line but soluble SCF does not.
Nuclear receptors in pancreatic tumor cells.
Damaskos, Christos; Garmpis, Nikolaos; Karatzas, Theodore; Kostakis, Ioannis D; Nikolidakis, Lampros; Kostakis, Alkiviadis; Kouraklis, Gregory
2014-12-01
This review focuses on nuclear receptors expressed in pancreatic cancer. An extensive search of articles published up to March 2013 was conducted using the MEDLINE database. The key words used were "pancreatic cancer", "molecular receptors" and "growth factors". A total of 112 articles referred to pancreatic cancer, molecular receptors and/or growth factors were included. Receptors of growth factors, such as the epithelial growth factor receptor, insulin-like growth factor-1 receptor, vascular endothelial growth factor receptor and others, such as integrin α5β1, somatostatin receptors, the death receptor 5, claudin, notch receptors, mesothelin receptors, follicle-stimulating hormone receptors, the MUC1 receptor, the adrenomedullin receptor, the farnesoid X receptor, the transferrin receptor, sigma-2 receptors, the chemokine receptor CXCR4, the urokinase plasminogen activator receptor, the ephrine A2 receptor, the GRIA3 receptor, the RON receptor and the angiotensin II receptor AT-1 are expressed in pancreatic tumor cells. These molecules are implicated in tumor growth, apoptosis, angiogenesis, metastasis etc. After identifying the molecular receptors associated with the pancreatic cancer, many more target molecules playing important roles in tumor pathophysiology and senescence-associated signal transduction in cancer cells will be identified. This may have a significant influence on diagnosis, therapy and prognosis of pancreatic cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Kobayashi, Masato; Kuroki, Shiori; Kurita, Sena; Miyamoto, Ryo; Tani, Hiroyuki; Tamura, Kyoichi; Bonkobara, Makoto
2017-10-01
Overexpression of KIT is one of the mechanisms that contributes to imatinib resistance in KIT mutation-driven tumors. Here, the mechanism underlying this overexpression of KIT was investigated using an imatinib-sensitive canine mast cell tumor (MCT) line CoMS, which has an activating mutation in KIT exon 11. A KIT-overexpressing imatinib-resistant subline, rCoMS1, was generated from CoMS cells by their continuous exposure to increasing concentrations of imatinib. Neither a secondary mutation nor upregulated transcription of KIT was detected in rCoMS1 cells. A decrease in KIT ubiquitination, a prolonged KIT life-span, and KIT overexpression were found in rCoMS1 cells. These events were suppressed by withdrawal of imatinib and were re-induced by re‑treatment with imatinib. These findings suggest that imatinib elicited overexpression of KIT via suppression of its ubiquitination. These results also indicated that imatinib-induced overexpression of KIT in rCoMS1 cells was not a permanently acquired feature but was a reversible response of the cells. Moreover, the pan deubiquitinating enzyme inhibitor PR619 prevented imatinib induction of KIT overexpression, suggesting that the imatinib-induced decrease in KIT ubiquitination could be mediated by upregulation and/or activation of deubiquitinating enzyme(s). It may be possible that a similar mechanism of KIT overexpression underlies the acquisition of imatinib resistance in some human tumors that are driven by KIT mutation.
Inflammatory Cytokines Induce Ubiquitination and Loss of the Prostate Suppressor Protein NKX3.1
2007-10-01
Lipoproteins ( LDL ), these receptors mediate the innate immune response against bacterial infection.(44) MSR1 maps to chromosome 8p22 and is shown to...with 5% FBS and grown to 80% confluency. Cells were treated with 40 ng/ml TNF-α for 6 hours and total RNA was extracted using a RNeasy mini kit (Qiagen...NKX3.1 and β-actin primers were added at a final concentration of 0.6µM to 1.5 µg template RNA . Qiagen OneStep RT-PCR enzyme mix was used for
Elmasri, Harun; Ghelfi, Elisa; Yu, Chen-wei; Traphagen, Samantha; Cernadas, Manuela; Cao, Haiming; Shi, Guo-Ping; Plutzky, Jorge; Sahin, Mustafa; Hotamisligil, Gokhan; Cataltepe, Sule
2013-01-01
Fatty acid binding protein 4 (FABP4) plays an important role in regulation of glucose and lipid homeostasis as well as inflammation through its actions in adipocytes and macrophages. FABP4 is also expressed in a subset of endothelial cells, but its role in this cell type is not known. We found that FABP4-deficient human umbilical vein endothelial cells (HUVECs) demonstrate a markedly increased susceptibility to apoptosis as well as decreased migration and capillary network formation. Aortic rings from FABP4−/− mice demonstrated decreased angiogenic sprouting, which was recovered by reconstitution of FABP4. FABP4 was strongly regulated by mTORC1 and inhibited by Rapamycin. FABP4 modulated activation of several important signaling pathways in HUVECs, including downregulation of P38, eNOS, and stem cell factor (SCF)/c-kit signaling. Of these, the SCF/c-kit pathway was found to have a major role in attenuated angiogenic activity of FABP4-deficient ECs as provision of exogenous SCF resulted in a significant recovery in cell proliferation, survival, morphogenesis, and aortic ring sprouting. These data unravel a novel pro-angiogenic role for endothelial cell-FABP4 and suggest that it could be exploited as a potential target for diseases associated with pathological angiogenesis. PMID:22562362
A technical assessment of the porcine ejaculated spermatozoa for a sperm-specific RNA-seq analysis.
Gòdia, Marta; Mayer, Fabiana Quoos; Nafissi, Julieta; Castelló, Anna; Rodríguez-Gil, Joan Enric; Sánchez, Armand; Clop, Alex
2018-04-26
The study of the boar sperm transcriptome by RNA-seq can provide relevant information on sperm quality and fertility and might contribute to animal breeding strategies. However, the analysis of the spermatozoa RNA is challenging as these cells harbor very low amounts of highly fragmented RNA, and the ejaculates also contain other cell types with larger amounts of non-fragmented RNA. Here, we describe a strategy for a successful boar sperm purification, RNA extraction and RNA-seq library preparation. Using these approaches our objectives were: (i) to evaluate the sperm recovery rate (SRR) after boar spermatozoa purification by density centrifugation using the non-porcine-specific commercial reagent BoviPure TM ; (ii) to assess the correlation between SRR and sperm quality characteristics; (iii) to evaluate the relationship between sperm cell RNA load and sperm quality traits and (iv) to compare different library preparation kits for both total RNA-seq (SMARTer Universal Low Input RNA and TruSeq RNA Library Prep kit) and small RNA-seq (NEBNext Small RNA and TailorMix miRNA Sample Prep v2) for high-throughput sequencing. Our results show that pig SRR (~22%) is lower than in other mammalian species and that it is not significantly dependent of the sperm quality parameters analyzed in our study. Moreover, no relationship between the RNA yield per sperm cell and sperm phenotypes was found. We compared a RNA-seq library preparation kit optimized for low amounts of fragmented RNA with a standard kit designed for high amount and quality of input RNA and found that for sperm, a protocol designed to work on low-quality RNA is essential. We also compared two small RNA-seq kits and did not find substantial differences in their performance. We propose the methodological workflow described for the RNA-seq screening of the boar spermatozoa transcriptome. FPKM: fragments per kilobase of transcript per million mapped reads; KRT1: keratin 1; miRNA: micro-RNA; miscRNA: miscellaneous RNA; Mt rRNA: mitochondrial ribosomal RNA; Mt tRNA: mitochondrial transference RNA; OAZ3: ornithine decarboxylase antizyme 3; ORT: osmotic resistance test; piRNA: Piwi-interacting RNA; PRM1: protamine 1; PTPRC: protein tyrosine phosphatase receptor type C; rRNA: ribosomal RNA; snoRNA: small nucleolar RNA; snRNA: small nuclear RNA; SRR: sperm recovery rate; tRNA: transfer RNA.
Kobayashi, Eiji; Deguchi, Matsuo; Kagita, Masanori; Yoshioka, Nori; Kita, Mifumi; Asari, Seishi; Suehisa, Etsuji; Hidaka, Yoh; Iwatani, Yoshinori
2015-01-01
The determination of antibody to hepatitis B core antigen (HBcAb) has become an important means of evaluating the risk factors of de novo hepatitis B virus (HBV) infection before starting intensive immunosuppressive drug therapies. Four dominant HBcAb determination reagents used in Japan were evaluated with HBcIgM, HBsAg, HBsAb, HBeAb, and HBV DNA reagents in order to study their clinical utility. Four kinds of HBcAb reagent kits (HBcAb Total and HBcAb-IgG reagent) were evaluated with 526 clinical specimens, including 344 negative specimens, at Osaka University Hospital. The dynamic range of each kit was evaluated by testing serially diluted serum from pooled sera with high HBcAb concentration. The reagent that showed the largest dynamic range was the Lumipulse HBcAb-N (HBcAb-IgG reagent). Regarding clinical sensitivity and specificity, Centaur HBcAb (HBcAb Total reagent) gave several "doubtful negative" results and ARCHITECT HBcII (HBcAb Total reagent) had the most discrepant positive results. By comparing the cut-off-index distribution of negative specimens using a parameter of "distance from the mean to the cut-off divided by the SD", Centaur was determined to be the best (distance/SD = 12.65), with Lumipulse and Elecsys Anti-HBc (HBcAb Total reagent) in the second group (8.13 and 7.00, respectively), and ARCHITECT rated as the worst (3.25). In this evaluation, Elecsys and Lumipulse HBcAb kits showed good clinical sensitivity and specificity and were considered to be suitable for evaluating the risk factors of de novo HBV infection.
Choline Alleviates Parenteral Nutrition-Associated Duodenal Motility Disorder in Infant Rats.
Zhu, Jie; Wu, Yang; Guo, Yonggao; Tang, Qingya; Lu, Ting; Cai, Wei; Huang, Haiyan
2016-09-01
Parenteral nutrition (PN) has been found to influence duodenal motility in animals. Choline is an essential nutrient, and its deficiency is related to PN-associated organ diseases. Therefore, this study was aimed to investigate the role of choline supplementation in an infant rat model of PN-associated duodenal motility disorder. Three-week-old Sprague-Dawley male rats were fed chow and water (controls), PN solution (PN), or PN plus intravenous choline (600 mg/kg) (PN + choline). Rats underwent jugular vein cannulation for infusion of PN solution or 0.9% saline (controls) for 7 days. Duodenal oxidative stress status, concentrations of plasma choline, phosphocholine, and betaine and serum tumor necrosis factor (TNF)-α were assayed. The messenger RNA (mRNA) and protein expression of c-Kit proto-oncogene protein (c-Kit) and membrane-bound stem cell factor (mSCF) together with the electrophysiological features of slow waves in the duodenum were also evaluated. Rats on PN showed increased reactive oxygen species; decreased total antioxidant capacity in the duodenum; reduced plasma choline, phosphocholine, and betaine; and enhanced serum TNF-α concentrations, which were reversed by choline intervention. In addition, PN reduced mRNA and protein expression of mSCF and c-Kit, which were inversed under choline administration. Moreover, choline attenuated depolarized resting membrane potential and declined the frequency and amplitude of slow waves in duodenal smooth muscles of infant rats induced by PN, respectively. The addition of choline to PN may alleviate the progression of duodenal motor disorder through protecting smooth muscle cells from injury, promoting mSCF/c-Kit signaling, and attenuating impairment of interstitial cells of Cajal in the duodenum during PN feeding. © 2015 American Society for Parenteral and Enteral Nutrition.
Mohammadi, M; Talebkhan, Y; Khalili, G; Mahboudi, F; Massarrat, S; Zamaninia, L; Oghalaei, A
2008-01-01
To evaluate a home-made ELISA kit for detection of Helicobacter pylori (Hp) infection and comparison of its immunologic criteria with those of foreign commercial kits. A home-made IgG ELISA kit was developed using soluble antigenic fractions of Hp proteins. Confirmed sera were tested and serological criteria were evaluated through assessment of 199 serum samples. The accuracy, sensitivity and specificity values of home-made kit were 92, 92 and 90.4%, respectively. These immunologic criteria for Trinity kit were 95.2, 95.2 and 95% in comparison with IBL kit (91.3, 92.2 and 88.5%), BIOHIT kit (72.4, 41.6 and 94.1%) and HelicoBlot2.1 (94.2, 93.4 and 100%). Kappa agreement assessment demonstrated that two of the imported ELISA kits had fair to moderate agreement with the home-made kit while the other one had a poor agreement value. Apart from comparable values between the home-made kit and the most efficient imported kit (Trinity) there was significant cost benefit. Therefore, we recommend the home-made kit as a suitable substitution for detection of Hp infection in the Iranian population.
2018-02-15
possible mutation in the fibroblast growth factor receptor 3 gene, and type 3, the most common, associated with insulin resistant states and...like growth factor receptor 1 (IGFR1), fibroblast growth factor receptors (FGFR), and epidermal growth factor receptor (EGFR), have all been proposed...as contributing factors. EGFR is a pivotal receptor because it interacts with several other growth factors (PDGF, TF-B, protein kinase C). They
Fukuishi, Nobuyuki; Igawa, Yuusuke; Kunimi, Tomoyo; Hamano, Hirofumi; Toyota, Masao; Takahashi, Hironobu; Kenmoku, Hiromichi; Yagi, Yasuyuki; Matsui, Nobuaki; Akagi, Masaaki
2013-01-01
While gene knockout technology can reveal the roles of proteins in cellular functions, including in mast cells, fetal death due to gene manipulation frequently interrupts experimental analysis. We generated mast cells from mouse fetal liver (FLMC), and compared the fundamental functions of FLMC with those of bone marrow-derived mouse mast cells (BMMC). Under electron microscopy, numerous small and electron-dense granules were observed in FLMC. In FLMC, the expression levels of a subunit of the FcεRI receptor and degranulation by IgE cross-linking were comparable with BMMC. By flow cytometry we observed surface expression of c-Kit prior to that of FcεRI on FLMC, although on BMMC the expression of c-Kit came after FcεRI. The surface expression levels of Sca-1 and c-Kit, a marker of putative mast cell precursors, were slightly different between bone marrow cells and fetal liver cells, suggesting that differentiation stage or cell type are not necessarily equivalent between both lineages. Moreover, this indicates that phenotypically similar mast cells may not have undergone an identical process of differentiation. By comprehensive analysis using the next generation sequencer, the same frequency of gene expression was observed for 98.6% of all transcripts in both cell types. These results indicate that FLMC could represent a new and useful tool for exploring mast cell differentiation, and may help to elucidate the roles of individual proteins in the function of mast cells where gene manipulation can induce embryonic lethality in the mid to late stages of pregnancy. PMID:23573287
Taniguchi, Kan; Matsuura, Kimio; Matsuoka, Takanori; Nakatani, Hajime; Nakano, Takumi; Furuya, Yasuo; Sugimoto, Takeki; Kobayashi, Michiya; Araki, Keijiro
2005-06-01
Hirschsprung's disease is a congenital aganglionic neural disorder of the segmental distal intestine characterized by unsettled pathogenesis. The relationship between Hirschsprung's disease and pacemaker cells (PMC), which almost corresponds to that of the interstitial cells of Cajal (ICC), was morphologically observed at the level of the intermuscular layer corresponding to Auerbach's plexus using ls/ls mice. These mice are an ideal model because of their large intestinal aganglionosis and gene abnormalities, which are similar to the human form of the disease. Immunostaining using anti-c-kit receptor antibody (ACK2), a marker of PMC, applied to whole-mount muscle-layer specimens, revealed the presence of c-kit immunopositive multipolar cells with many cytoplasmic processes in normal mice. For ls/ls mice, however, there were significantly fewer processes. The average number of processes per positive cell of 2.5 for the aganglionic large intestine was fewer than 3.5 for the large and small intestine of normal mice, indicating the inability to form connections between nerves and PMC in the aganglionic intestine. For normal mice with an Auerbach's plexus, the process attachment of ICC to the Auerbach's plexus was observed by scanning electron microscopy. However, for ls/ls mice no attachment to the intermuscular nerve without Auerbach's plexus was found, although transmission electron microscopy showed no difference in the cell structure and organelles of the c-kit immunopositive cells between the normal and ls/ls mice. These findings suggest that in the aganglionic intestine of Hirschsprung's disease, aplasia of enteric ganglia induces secondary disturbances during the normal development of intestinal PMC.
Nagle, D L; Martin-DeLeon, P; Hough, R B; Bućan, M
1994-01-01
We are studying the chromosomal structure of three developmental mutations, dominant spotting (W), patch (Ph), and rump white (Rw) on mouse chromosome 5. These mutations are clustered in a region containing three genes encoding tyrosine kinase receptors (Kit, Pdgfra, and Flk1). Using probes for these genes and for a closely linked locus, D5Mn125, we established a high-resolution physical map covering approximately 2.8 Mb. The entire chromosomal segment mapped in this study is deleted in the W19H mutation. The map indicates the position of the Ph deletion, which encompasses not more than 400 kb around and including the Pdgfra gene. The map also places the distal breakpoint of the Rw inversion to a limited chromosomal segment between Kit and Pdgfra. In light of the structure of the Ph-W-Rw region, we interpret the previously published complementation analyses as indicating that the pigmentation defect in Rw/+ heterozygotes could be due to the disruption of Kit and/or Pdgfra regulatory sequences, whereas the gene(s) responsible for the recessive lethality of Rw/Rw embryos is not closely linked to the Ph and W loci and maps proximally to the W19H deletion. The structural analysis of chromosomal rearrangements associated with W19H, Ph, and Rw combined with the high-resolution physical mapping points the way toward the definition of these mutations in molecular terms and isolation of homologous genes on human chromosome 4. Images PMID:8041773
Pathologic Stimulus Determines Lineage Commitment of Cardiac C-kit+ Cells.
Chen, Zhongming; Zhu, Wuqiang; Bender, Ingrid; Gong, Wuming; Kwak, Il-Youp; Yellamilli, Amritha; Hodges, Thomas J; Nemoto, Natsumi; Zhang, Jianyi; Garry, Daniel J; van Berlo, Jop H
2017-12-12
Although cardiac c-kit + cells are being tested in clinical trials, the circumstances that determine lineage differentiation of c-kit + cells in vivo are unknown. Recent findings suggest that endogenous cardiac c-kit + cells rarely contribute cardiomyocytes to the adult heart. We assessed whether various pathological stimuli differentially affect the eventual cell fates of c-kit + cells. We used single-cell sequencing and genetic lineage tracing of c-kit + cells to determine whether various pathological stimuli would result in different fates of c-kit + cells. Single-cell sequencing of cardiac CD45 - c-kit + cells showed innate heterogeneity, indicative of the existence of vascular and mesenchymal c-kit + cells in normal hearts. Cardiac pressure overload resulted in a modest increase in c-kit-derived cardiomyocytes, with significant increases in the numbers of endothelial cells and fibroblasts. Doxorubicin-induced acute cardiotoxicity did not increase c-kit-derived endothelial cell fates but instead induced cardiomyocyte differentiation. Mechanistically, doxorubicin-induced DNA damage in c-kit + cells resulted in expression of p53. Inhibition of p53 blocked cardiomyocyte differentiation in response to doxorubicin, whereas stabilization of p53 was sufficient to increase c-kit-derived cardiomyocyte differentiation. These results demonstrate that different pathological stimuli induce different cell fates of c-kit + cells in vivo. Although the overall rate of cardiomyocyte formation from c-kit + cells is still below clinically relevant levels, we show that p53 is central to the ability of c-kit + cells to adopt cardiomyocyte fates, which could lead to the development of strategies to preferentially generate cardiomyocytes from c-kit + cells. © 2017 American Heart Association, Inc.
Scott, Shannon D; Plotnikoff, Ronald C; Karunamuni, Nandini; Bize, Raphaël; Rodgers, Wendy
2008-10-02
There is an emerging knowledge base on the effectiveness of strategies to close the knowledge-practice gap. However, less is known about how attributes of an innovation and other contextual and situational factors facilitate and impede an innovation's adoption. The Healthy Heart Kit (HHK) is a risk management and patient education resource for the prevention of cardiovascular disease (CVD) and promotion of cardiovascular health. Although previous studies have demonstrated the HHK's content validity and practical utility, no published study has examined physicians' uptake of the HHK and factors that shape its adoption. Conceptually informed by Rogers' Diffusion of Innovation theory, and Theory of Planned Behaviour, this study had two objectives: (1) to determine if specific attributes of the HHK as well as contextual and situational factors are associated with physicians' intention and actual usage of the HHK kit; and (2), to determine if any contextual and situational factors are associated with individual or environmental barriers that prevent the uptake of the HHK among those physicians who do not plan to use the kit. A sample of 153 physicians who responded to an invitation letter sent to all family physicians in the province of Alberta, Canada were recruited for the study. Participating physicians were sent a HHK, and two months later a study questionnaire assessed primary factors on the physicians' clinical practice, attributes of the HHK (relative advantage, compatibility, complexity, trialability, observability), confidence and control using the HHK, barriers to use, and individual attributes. All measures were used in path analysis, employing a causal model based on Rogers' Diffusion of Innovations Theory and Theory of Planned Behaviour. 115 physicians (follow up rate of 75%) completed the questionnaire. Use of the HHK was associated with intention to use the HHK, relative advantage, and years of experience. Relative advantage and the observability of the HHK benefits were also significantly associated with physicians' intention to use the HHK. Physicians working in solo medical practices reported experiencing more individual and environmental barriers to using the HHK. The results of this study suggest that future information innovations must demonstrate an advantage over current resources and the research evidence supporting the innovation must be clearly visible. Findings also suggest that the innovation adoption process has a social element, and collegial interactions and discussions may facilitate that process. These results could be valuable for knowledge translation researchers and health promotion developers in future innovation adoption planning.
Lydié, Nathalie; de Barbeyrac, Bertille; Bluzat, Lucile; Le Roy, Chloé; Kersaudy-Rahib, Delphine
2017-05-01
In recent years, the internet has widely facilitated Chlamydia trachomatis home-sampling. In France (2012), the Chlamyweb Study evaluated an intervention (Chlamyweb) involving home-based self-sampling via the internet. One element of the study consisted of a randomised controlled trial (RCT), which is reported in detail elsewhere. The focus of this paper, however, is on describing the Chlamyweb Intervention and reporting on the non-RCT element of the evaluation of that intervention by the Chlamyweb Study. This involves (1) describing the design and roll-out of the Chlamyweb Intervention, (2) comparing the socio-behavioural profiles of the participants in the intervention with a nationally representative general population sample and (3) examining the factors that influence the acceptance and return of a self-sampling kit supplied to participants in the course of the intervention. Self-sampling kits were offered to sexually active people aged 18-24 years living on the mainland French. Participants' characteristics were compared with the general population to describe recruited and participant populations. Multivariate analyses by conditional logistic regression were performed to determine factors that were predictors of kit acceptation and use. 7215 people aged 18-24 years were included. Compared with the general population, Chlamyweb reached larger proportions of women, younger people and people with several partners in the previous year. 3372 (46.7%) agreed to receive a self-sampling kit and 2084 (61.8%) returned it, with more women doing so than men. The participation rate was associated with age, place of birth, occupational status, number of partners and condom use, differently for men and women. The offer of easy-to-use, self-sampling kits free of charge appeared to be a logistically feasible strategy for testing in France and reached a large and diverse population including individuals who have limited access to the traditional healthcare system. AFFSAPS n° IDRCB 0211-A01000-41; pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Zhang, Wenchang; Wu, Tingting; Zhang, Chenyun; Luo, Lingfeng; Xie, Meimei; Huang, Huiling
2017-10-05
Since the 1990s, the rising problem that gonad reproductive toxicity on adult female after exposing to cadmium (Cd), an environmental endocrine disruptor, has attracted high attention at home and abroad,and was systematically studied. Our research focuses on a further problem is that early cadmium exposure (during birth to before puberty) impact on development and function of ovarian cells and its possible mechanism. Our research focuses on the changes of ovarian cells growth and development after the newborn rat ovaries with cadmium exposure in vitro, and different expression of ovarian cells development-related factors, SCF/c-kit and changes of their DNA methylation status. We obtained ovaries from 4-day-old SD rats and cultured them in DMEM/F12 mixed with α-MEM media in vitro. Different doses of cadmium were designed as control, 0.5, 5, 10 and 50μM, and then the constituent ratio of ovarian follicle and follicular oocytes diameter were observed with microscope after 4-h exposure. We found that the increased constituent ratio of original follicle and decreased diameter of all levels of follicular oocytes(compared with control, with statistically significant differences, P<0.01).After the measurement of expression of SCF/c-kit by qRT-PCR and Western Blotting, the mRNA and protein expression of SCF/c-kit in ovarian were both decreased. We further found that the increased constituent ratio of growth follicle and increased diameter of oocytes under the treatment of adding SCF in cell culture media. Finally, MALDI-TOF-MS method showed DNA-low methylation status of SCF/c-kit promoter region after Cd exposure. Overall, we concluded that the exposure of cadimium (5-50μM) on newborn rats ovaries could inhibit follicle development.SCF/c-kit system might mediate follicle development damage caused by cadmium, which is associated with DNA hypomethylation of SCF/c-kit promoter region may be worthy of further study. Copyright © 2017. Published by Elsevier B.V.
Pahlavan, Autusa; Sharma, Girdhari M; Pereira, Marion; Williams, Kristina M
2016-10-01
Gluten from wheat, rye, and barley can trigger IgE-mediated allergy or Celiac disease in sensitive individuals. Gluten-free labeled foods are available as a safe alternative. Immunoassays such as the enzyme-linked immunosorbent assay (ELISA) are commonly used to quantify gluten in foods. However, various non-assay related factors can affect gluten quantitation. The effect of gluten-containing grain cultivars, thermal processing, and enzymatic hydrolysis on gluten quantitation by various ELISA kits was evaluated. The ELISA kits exhibited variations in gluten quantitation depending on the gluten-containing grain and their cultivars. Acceptable gluten recoveries were obtained in 200mg/kg wheat, rye, and barley-spiked corn flour thermally processed at various conditions. However, depending on the enzyme, gluten grain source, and ELISA kit used, measured gluten content was significantly reduced in corn flour spiked with 200mg/kg hydrolyzed wheat, rye, and barley flour. Thus, the gluten grain source and processing conditions should be considered for accurate gluten analysis. Published by Elsevier Ltd.
[DNA analysis of chromosome Y in the area of the azoospermia factor (AZF) in infertile men].
Kolárová, J; Santavá, A; Vrtĕl, R
2001-09-01
Establishment of investigation of sterile male DNA in AZF region--choice of loci and primers for investigation, optimization of PCR conditions (polymerase chain reaction). For practice. Department of Medical Genetics and Foetal Medicine, Faculty of Medicine, Palacky University and Faculty Hospital Olomouc. PCR amplification of DNA isolated from blood of sterile men and consequential electrophoresis of synthesized DNA fragments to appoint microdeletions in AZF. From January to June 2000 were detected the microdeletions in AZF of 3 out of 79 sterile men (3.80%) by means of the Experteam firm kit. From July to December 2000 were tested and optimized conditions of amplification of 10 AZF loci to substitute the kit and they were used for examination of the first 20 sterile men of our collection. In our laboratory was established routine examination male sterility related to microdeletions in AZF. With our collection of loci was substituted the original Experteam firm kit and was widened spectrum of observed loci.
He, Yi; Zeng, Hui-Zhi; Yu, Yang; Zhang, Jia-Shu; Duan, Xingping; Zeng, Xiao-Na; Gong, Feng-Tao; Liu, Qi; Yang, Bo
2017-09-01
We investigated whether prostate fibrosis was associated with urinary dysfunction in chronic prostatitis (CP) and whether resveratrol improved urinary dysfunction and the underlying molecular mechanism. Rat model of CP was established via subcutaneous injections of DPT vaccine and subsequently treated with resveratrol. Bladder pressure and volume tests investigated the effect of resveratrol on urinary dysfunction in CP rats. Western blotting and immunohistochemical staining examined the expression level of C-kit/SCF and TGF-β/Wnt/β-catenin. Compared to the control group, the maximum capacity of the bladder, residual urine volume and maximum voiding pressure, the activity of C-kit/SCF and TGF-β/Wnt/β-catenin pathways were increased significantly in the CP group. Resveratrol treatment significantly improved these factors. CP induced significantly prostate fibrosis, which exhibits a close relationship with urinary dysfunction. Resveratrol improved fibrosis, which may be associated with the suppression of C-kit/SCF and TGF-β/Wnt/β-catenin pathway. Copyright © 2017 Elsevier B.V. All rights reserved.
Edwards, Lynn; Gibson, Rick; Carson, Shannon Ryan; Sampalli, Tara
2013-01-01
Healthcare is in a constant state of change and evolution driven by a multitude of complex factors and interactions. Consequently, organizations, teams and individuals in healthcare have to habitually realign their working relationships. Furthermore, research has shown that "working together" relationships fail in the absence of a defined framework. In this research, a novel framework and a tool kit for working together have been developed and evaluated. The framework has a formal process to articulate the intended purpose/outcome, clearly align the type of working relationship with the purpose and identify the barriers and facilitators to working relationships in healthcare.
Percentile-Based Journal Impact Factors: A Neglected Collection Development Metric
ERIC Educational Resources Information Center
Wagner, A. Ben
2009-01-01
Various normalization techniques to transform journal impact factors (JIFs) into a standard scale or range of values have been reported a number of times in the literature, but have seldom been part of collection development librarians' tool kits. In this paper, JIFs as reported in the Journal Citation Reports (JCR) database are converted to…
Performance evaluation of a chemiluminescence microparticle immunoassay for CK-MB.
Lin, Zhi-Yuan; Fang, Yi-Zhen; Jin, Hong-Wei; Lin, Hua-Yue; Dai, Zhang; Luo, Qing; Li, Hong-Wei; Lin, Yan-Ling; Huang, Shui-Zhen; Gao, Lei; Xu, Fei-Hai; Zhang, Zhong-Ying
2018-03-31
To verify and evaluate the performance characteristics of a creatine kinase phosphokinase isoenzymes MB (CK-MB) assay kit, which produced by Xiamen Innodx Biotech Co. Ltd. Evaluation was carried out according to "Guidelines for principle of analysis performance evaluation of in vitro diagnostic reagent." The performance parameters included detection limit, linearity range, reportable range, recovery test, precision verification, interference test, cross-reactivity, matrix effect, and method comparison. The detection limit was 0.1 ng/mL. The assay had clinical linearity over range of 0.1 ng/mL-500 ng/mL. Reportable range was from 0.1 ng/mL to 1000 ng/mL. The average percent of recovery was 99.66%. The coefficient of variation (CV) for within-run and between-run of low CK-MB sample was 5.55% and 6.16%, respectively. As for high-level sample, it was 7.88% and 7.80%. In medical decision level, the relative deviation (Bias) of all interference tests was lower than 15%. When the sample had mild-hemolysis; hemoglobin ≤15 g/L; triglyceride ≤17 mmol/L; bilirubin ≤427.5 μmol/L; rheumatoid factor ≤206U/mL, there was no significant interference to be found. Moreover, assay kit had no cross-reaction with CK-MM and CK-BB. At last, total diagnostic accuracy of kit was 93.24%, when compared with refer kit. Overall the results of the verification study indicated the performance of kit is met the requirements of the clinical test. © 2018 Wiley Periodicals, Inc.
Baker, Erin J.; Kellogg, Christina A.
2014-01-01
Coral microbiology is an expanding field, yet there is no standard DNA extraction protocol. Although many researchers depend on commercial extraction kits, no specific kit has been optimized for use with coral samples. Both soil and plant DNA extraction kits from MO BIO Laboratories, Inc., have been used by many research groups for this purpose. MO BIO recently replaced their PowerPlant® kit with an improved PowerPlantPro kit, but it was unclear how these changes would affect the kit’s use with coral samples. In order to determine which kit produced the best results, we conducted a comparison between the original PowerPlant kit, the new PowerPlantPro kit, and an alternative kit, PowerSoil, using samples from several different coral genera. The PowerPlantPro kit had the highest DNA yields, but the lack of 16S rRNA gene amplification in many samples suggests that much of the yield may be coral DNA rather than microbial DNA. The most consistent positive amplifications came from the PowerSoil kit.
Zenner, H P; Pfister, M; Friese, N; Zrenner, E; Röcken, M
2014-07-01
To evaluate present options for the indication of cochlear implants (CI) and new forms of treatment for head and neck cancer, melanomas and basal cell carcinomas, with emphasis on future perspectives. A literature search was performed in the PubMed database. Search parameters were "personalized medicine", "individualized medicine" and "molecular medicine". Personalized medicine based on molecular-genetic evaluation of functional proteins such as otoferlin, connexin 26 and KCNQ4 or the Usher gene is becoming increasingly important for the indication of CI in the context of infant deafness. Determination of HER2/EGFR mutations in the epithelial growth factor receptor (EGFR) gene may be an important prognostic parameter for therapeutic decisions in head and neck cancer patients. In basal cell carcinoma therapy, mutations in the Hedgehog (PCTH1) and Smoothened (SMO) pathways strongly influence the indication of therapeutic Hedgehog inhibition, e.g. using small molecules. Analyses of c-Kit receptor, BRAF-600E and NRAS mutations are required for specific molecular therapy of metastasizing melanomas. The significant advances in the field of specific molecular therapy are best illustrated by the availability of the first gene therapeutic procedures for treatment of RPE65-induced infantile retinal degradation. The aim of personalized molecular medicine is to identify patients who will respond particularly positively or negatively (e.g. in terms of adverse side effects) to a therapy using the methods of molecular medicine. This should allow a specific therapy to be successfully applied or preclude its indication in order to avoid serious adverse side effects. This approach serves to stratify patients for adequate treatment.
iRhom2 regulates CSF1R cell surface expression and non-steady state myelopoiesis in mice.
Qing, Xiaoping; Rogers, Lindsay; Mortha, Arthur; Lavin, Yonit; Redecha, Patricia; Issuree, Priya D; Maretzky, Thorsten; Merad, Miriam; McIlwain, David; Mak, Tak W; Overall, Christopher M; Blobel, Carl P; Salmon, Jane E
2016-12-01
CSF1R (colony stimulating factor 1 receptor) is the main receptor for CSF1 and has crucial roles in regulating myelopoeisis. CSF1R can be proteolytically released from the cell surface by ADAM17 (A disintegrin and metalloprotease 17). Here, we identified CSF1R as a major substrate of ADAM17 in an unbiased degradomics screen. We explored the impact of CSF1R shedding by ADAM17 and its upstream regulator, inactive rhomboid protein 2 (iRhom2, gene name Rhbdf2), on homeostatic development of mouse myeloid cells. In iRhom2-/- mice, we found constitutive accumulation of membrane-bound CSF1R on myeloid cells at steady state, although cell numbers of these populations were not altered. However, in the context of mixed bone marrow (BM) chimera, under competitive pressure, iRhom2-/- BM progenitor-derived monocytes, tissue macrophages and lung DCs showed a repopulation advantage over those derived from wild-type (WT) BM progenitors, suggesting enhanced CSF1R signaling in the absence of iRhom2. In vitro experiments indicate that iRhom2-/- Lin - SCA-1 + c-Kit + (LSKs) cells, but not granulocyte-macrophage progenitors (GMPs), had faster growth rates than WT cells in response to CSF1. Our results shed light on an important role of iRhom2/ADAM17 pathway in regulation of CSF1R shedding and repopulation of monocytes, macrophages and DCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss.
Miller, David J; Hemmrich, Georg; Ball, Eldon E; Hayward, David C; Khalturin, Konstantin; Funayama, Noriko; Agata, Kiyokazu; Bosch, Thomas C G
2007-01-01
Characterization of the innate immune repertoire of extant cnidarians is of both fundamental and applied interest--it not only provides insights into the basic immunological 'tool kit' of the common ancestor of all animals, but is also likely to be important in understanding the global decline of coral reefs that is presently occurring. Recently, whole genome sequences became available for two cnidarians, Hydra magnipapillata and Nematostella vectensis, and large expressed sequence tag (EST) datasets are available for these and for the coral Acropora millepora. To better understand the basis of innate immunity in cnidarians, we scanned the available EST and genomic resources for some of the key components of the vertebrate innate immune repertoire, focusing on the Toll/Toll-like receptor (TLR) and complement pathways. A canonical Toll/TLR pathway is present in representatives of the basal cnidarian class Anthozoa, but neither a classic Toll/TLR receptor nor a conventional nuclear factor (NF)-kappaB could be identified in the anthozoan Hydra. Moreover, the detection of complement C3 and several membrane attack complex/perforin domain (MAC/PF) proteins suggests that a prototypic complement effector pathway may exist in anthozoans, but not in hydrozoans. Together with data for several other gene families, this implies that Hydra may have undergone substantial secondary gene loss during evolution. Such losses are not confined to Hydra, however, and at least one MAC/PF gene appears to have been lost from Nematostella. Consideration of these patterns of gene distribution underscores the likely significance of gene loss during animal evolution whilst indicating ancient origins for many components of the vertebrate innate immune system.
Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions
NASA Technical Reports Server (NTRS)
Du, Brian J.; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick; Younker, Diane R.; Putcha, Lakshmi
2009-01-01
Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the space flight environment may adversely affect the shelf life of pharmaceuticals aboard space missions.
Nicholls, C; Karim, K; Piletsky, S; Saini, S; Setford, S
2006-01-15
The preparation of a molecularly imprinted polymer (MIP) for pentachlorophenol is described together with two alternative reporter derivatives for use in a displacement imprinted polymer receptor analysis (DIPRA) format procedure. In this procedure, alternative reporter molecules were rebound to the synthetic receptor sites and their displacement by the target analyte was employed as the basis of a simple procedure for the measurement of chlorophenols in water and packaging material samples. Water samples were extracted using the standard procedure (EPA 528) and a detection limit of 0.5 microg l(-1) was achieved using the DIPRA detection method, with good agreement between the displacement technique and GC-ECD analysis. A variety of packaging materials, extracted using a buffered detergent solution were also analysed using the DIPRA procedure and showed good agreement with GC results. In addition, investigation of the cross-reactivity of a range of pesticides and materials commonly encountered in environmental analysis indicated the procedure gave good discrimination between pesticides bearing a chlorophenolic moiety and other materials. The procedure is considered highly suitable for use as a rapid field-test method or for incorporation into a test kit device.
Lin, Quan; Li, Yan; Zhang, Duo; Jin, Hongjuan
2016-12-01
Decreasing levels of cytokines are associated with better responses to therapies, while increasing levels are related to progression or recurrence and decreased survival. NF-κB's role in the cell cycle and its ubiquity are only stressed out by the evidence for the importance of activation (aberrant activation in the majority of cancers) of both canonical and non-canonical pathways in advanced basal cell carcinomas (aBCCs), a subset of basal cell carcinoma (BCC). NF-κB acts through its canonical, or classical, form activated by interleukin-1 (IL-1), regulates cytoprotective, innate, and adaptive immune responses. However, NF-κB2 often acts through its non-canonical or alternate pathway. During the two-year study period, we selected 21 patients presenting with aBCCs due to delay in accessing medical attention with an advanced form of BCCs (n = 19) and infiltrative BCCs (n = 2). Initial diagnosis of BCCs of head and neck was made clinically and verified by skin biopsy. Venous blood was drawn and serum was obtained. Samples were collected at baseline and every three days thereafter (days 3, 6, 9, etc. until surgery). Antigenes' quantities (cytokines) were determined by ELISA kits. Initially, the mean value of all cytokine subjects was significantly different related to the control group (P <0.05). Changes in serum levels of circulating soluble receptor activator of NF-κB and interleukins-1 (α and β) were observed following the surgery. Changes in serum levels of circulating soluble receptor activator of NF-κB and interleukins-1 (α and β) are evident throughout our study period and a certain regularity in its dynamics is evident as the follow-up period moves away. It was therefore concluded that measurement of these factors might be useful in predicting the overall outcome of patients with aBCCs. This study highlights the systemic effects of aBCCs, but further studies are required on this topic. © The Author(s) 2016.
Lin, Quan; Li, Yan; Zhang, Duo; Jin, Hongjuan
2016-01-01
Decreasing levels of cytokines are associated with better responses to therapies, while increasing levels are related to progression or recurrence and decreased survival. NF-κB’s role in the cell cycle and its ubiquity are only stressed out by the evidence for the importance of activation (aberrant activation in the majority of cancers) of both canonical and non-canonical pathways in advanced basal cell carcinomas (aBCCs), a subset of basal cell carcinoma (BCC). NF-κB acts through its canonical, or classical, form activated by interleukin-1 (IL-1), regulates cytoprotective, innate, and adaptive immune responses. However, NF-κB2 often acts through its non-canonical or alternate pathway. During the two-year study period, we selected 21 patients presenting with aBCCs due to delay in accessing medical attention with an advanced form of BCCs (n = 19) and infiltrative BCCs (n = 2). Initial diagnosis of BCCs of head and neck was made clinically and verified by skin biopsy. Venous blood was drawn and serum was obtained. Samples were collected at baseline and every three days thereafter (days 3, 6, 9, etc. until surgery). Antigenes’ quantities (cytokines) were determined by ELISA kits. Initially, the mean value of all cytokine subjects was significantly different related to the control group (P <0.05). Changes in serum levels of circulating soluble receptor activator of NF-κB and interleukins-1 (α and β) were observed following the surgery. Changes in serum levels of circulating soluble receptor activator of NF-κB and interleukins-1 (α and β) are evident throughout our study period and a certain regularity in its dynamics is evident as the follow-up period moves away. It was therefore concluded that measurement of these factors might be useful in predicting the overall outcome of patients with aBCCs. This study highlights the systemic effects of aBCCs, but further studies are required on this topic. PMID:27760847
Wang, Xiaolong; Chen, Jiajun; Wang, Hongbo; Yu, Hao; Wang, Changliang; You, Jiabin; Wang, Pengfei; Feng, Chunmei; Xu, Guohui; Wu, Xu; Zhao, Rui; Zhang, Guohua
2017-08-01
Caspase-3 activation and apoptosis are associated with various neurodegenerative disorders. Calcium activation is an important factor in promoting apoptosis. We, therefore, assessed the role of intracellular calcium in ethanol-induced activation of caspase-3 in H4 human neuroglioma cells and the protective effect of the NMDA receptor antagonist, memantine, on ethanol-induced apoptosis in H4 cells. H4 cells were treated with 100 mM EtOH (in culture medium) for 2 days. For interaction studies, cells were treated with memantine (4 μM), EDTA (1 mM), or BAPTA-AM (10 μM) before treatment with EtOH. Knockdown of the gene encoding the NR1 subunit of the NMDA receptor was performed using RNAi. Apoptosis was detected by Annexin V-FITC/PI staining and flow cytometry. Cell viability was detected using an MTS cell proliferation kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration. The levels of NR1, caspase-3, IP3R1, and SERCA1 proteins were detected by western blotting. NR1, IP3R1, and SERCA1 mRNA levels were detected by qPCR. We observed increased expression of NR1, IP3R1, SERCA1, and increased intracellular levels of calcium ions in H4 cells exposed to ethanol. In addition, the calcium chelators, EDTA and BAPTA, and RNAi disruption of the NMDA receptor reduced ethanol-induced caspase-3 activation in H4 cells. Memantine treatment reduced the ethanol-induced increase of intracellular calcium, caspase-3 activation, apoptosis, and the ethanol-induced decrease in cell viability. Our results indicate that ethanol-induced caspase-3 activation and apoptosis are likely to be dependent on cytosolic calcium levels and that they can be reduced by memantine treatment.
FGFR4 Downregulation of Cell Adhesion in Prostate Cancer
2008-09-01
Fibroblast Growth Factor Receptor 4, is a member of the FGFR family of RTK ( receptor tyrosine kinase) growth factor receptors . A common...work supported by this award: Cancer Research Coordinating Committee (CRCC) Intersection of NF- B and Fibroblast Growth Factor Receptor Signaling...disease. REFERENCES 1. Wang J, Stockton DW, Ittmann M. The fibroblast growth factor receptor -4
Germline mutations of KIT in gastrointestinal stromal tumor (GIST) and mastocytosis.
Ke, Hengning; Kazi, Julhash U; Zhao, Hui; Sun, Jianmin
2016-01-01
Somatic mutations of KIT are frequently found in mastocytosis and gastrointestinal stromal tumor (GIST), while germline mutations of KIT are rare, and only found in few cases of familial GIST and mastocytosis. Although ligand-independent activation is the common feature of KIT mutations, the phenotypes mediated by various germline KIT mutations are different. Germline KIT mutations affect different tissues such as interstitial cells of Cajal (ICC), mast cells or melanocytes, and thereby lead to GIST, mastocytosis, or abnormal pigmentation. In this review, we summarize germline KIT mutations in familial mastocytosis and GIST and discuss the possible cellular context dependent transforming activity of KIT mutations.
The challenges of lean manufacturing implementation in kitting assembly
NASA Astrophysics Data System (ADS)
Fansuri, A. F. H.; Rose, A. N. M.; Nik Mohamed, N. M. Z.; Ahmad, H.
2017-10-01
Literature studies shows that lean manufacturing goes way back with the original founder Eli Whitney in year 1799. The main purpose of lean manufacturing is to identify and eliminate waste in production. The application of lean manufacturing can be carried out in any industrial processes with regards to the understanding of lean principles, theories and practices. Kitting is one of the important aspects in a successful production. The continuous supply of materials from store to production has to be systematic and able to achieve lean standard for it to be successful. The objective of this paper is to review the implementation of lean manufacturing in kitting assembly. Previous papers show that, the implementation of lean manufacturing in kitting assembly may be beneficial to the organization such as reduce in space occupancy, part shortages, lead time and manpower. Based on previous research, some industries may tend to change between kitting and line stocking which are due to lack of understanding when implementing kitting and causes longer lead time and materials overflow in store. With a proper understanding on what to kit, where to kit, how to kit, why to kit and who kits the material with a standardised process flow may ensure the success of kitting.
Matulonis, Ursula A.; Berlin, Suzanne; Ivy, Percy; Tyburski, Karin; Krasner, Carolyn; Zarwan, Corrine; Berkenblit, Anna; Campos, Susana; Horowitz, Neil; Cannistra, Stephen A.; Lee, Hang; Lee, Julie; Roche, Maria; Hill, Margaret; Whalen, Christin; Sullivan, Laura; Tran, Chau; Humphreys, Benjamin D.; Penson, Richard T.
2009-01-01
Purpose Angiogenesis is important for epithelial ovarian cancer (EOC) growth, and blocking angiogenesis can lead to EOC regression. Cediranib is an oral tyrosine kinase inhibitor (TKI) of vascular endothelial growth factor receptor (VEGFR) -1, VEGFR-2, VEGFR-3, and c-kit. Patients and Methods We conducted a phase II study of cediranib for recurrent EOC or peritoneal or fallopian tube cancer; cediranib was administered as a daily oral dose, and the original dose was 45 mg daily. Because of toxicities observed in the first 11 patients, the dose was lowered to 30 mg. Eligibility included ≤ two lines of chemotherapy for recurrence. End points included response rate (via Response Evaluation Criteria in Solid Tumors [RECIST] or modified Gynecological Cancer Intergroup CA-125), toxicity, progression-free survival (PFS), and overall survival (OS). Results Forty-seven patients were enrolled; 46 were treated. Clinical benefit rate (defined as complete response [CR] or partial response [PR], stable disease [SD] > 16 weeks, or CA-125 nonprogression > 16 weeks), which was the primary end point, was 30%; eight patients (17%; 95% CI, 7.6% to 30.8%) had a PR, six patients (13%; 95% CI, 4.8% to 25.7%) had SD, and there were no CRs. Eleven patients (23%) were removed from study because of toxicities before two cycles. Grade 3 toxicities (> 20% of patients) included hypertension (46%), fatigue (24%), and diarrhea (13%). Grade 2 hypothyroidism occurred in 43% of patients. Grade 4 toxicities included CNS hemorrhage (n = 1), hypertriglyceridemia/hypercholesterolemia/elevated lipase (n = 1), and dehydration/elevated creatinine (n = 1). No bowel perforations or fistulas occurred. Median PFS was 5.2 months, and median OS has not been reached; median follow-up time is 10.7 months. Conclusion Cediranib has activity in recurrent EOC, tubal cancer, and peritoneal cancer with predictable toxicities observed with other TKIs. PMID:19826113
Matulonis, Ursula A; Berlin, Suzanne; Ivy, Percy; Tyburski, Karin; Krasner, Carolyn; Zarwan, Corrine; Berkenblit, Anna; Campos, Susana; Horowitz, Neil; Cannistra, Stephen A; Lee, Hang; Lee, Julie; Roche, Maria; Hill, Margaret; Whalen, Christin; Sullivan, Laura; Tran, Chau; Humphreys, Benjamin D; Penson, Richard T
2009-11-20
Angiogenesis is important for epithelial ovarian cancer (EOC) growth, and blocking angiogenesis can lead to EOC regression. Cediranib is an oral tyrosine kinase inhibitor (TKI) of vascular endothelial growth factor receptor (VEGFR) -1, VEGFR-2, VEGFR-3, and c-kit. We conducted a phase II study of cediranib for recurrent EOC or peritoneal or fallopian tube cancer; cediranib was administered as a daily oral dose, and the original dose was 45 mg daily. Because of toxicities observed in the first 11 patients, the dose was lowered to 30 mg. Eligibility included
Lustosa, Lygia Paccini; Máximo Pereira, Leani Souza; Coelho, Fernanda Matos; Pereira, Daniele Sirineu; Silva, Juscélio Pereira; Parentoni, Adriana Netto; Dias, Rosângela Correa; Domingues Dias, João Marcos
2013-04-01
To examine the impact of a muscle resistance program (MRP) on muscular and functional performance and on interleukin 6 (IL-6) and soluble tumor necrosis factor receptor-1 (sTNFr1) plasma levels in prefrail community-dwelling women. Randomized controlled trial crossover design with a postintervention and short-term follow-up. University hospital. Prefrail community-dwelling women (N=32; ≥65y). The MRP was designed based on the exercise at 75% of each participant's maximum load (10wk, 3 times/wk). Plasma concentrations of IL-6 and sTNFr1 (high-sensitivity enzyme-linked immunosorbent assay kits), muscle strength of the knee extensors (isokinetic), and functional performance (Timed Up & Go [TUG] test and 10-meter walk test [10MWT]). There were significant differences in functional and muscular performance between the pre-MRP, post-MRP, and 10-week follow-up period. After the MRP, both functional (TUG, pre-MRP=11.1s vs post-MRP=10.4s, P=.00; 10MWT, pre-MRP=4.9s vs post-MRP, 4.4s, P=.00) and muscular performances (pre-MRP=77.8% and post-MRP=83.1%, P=.02) improved. After cessation of the MRP (follow-up period), sTNFr1 plasma levels increased by 21.4% at 10-week follow-up (post-MRP, 406.4pg/mL; 10-week follow-up, 517.0pg/mL; P=.03). There were significant differences in sTNFr1 (P=.01). The MRP was effective in improving functional and muscular performances, although alterations in plasma levels of IL-6 and sTNFr1 could not be identified after the MRP. Cessation of the MRP after 10 weeks resulted in increased plasma levels of sTNFr1. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Stålhammar, Gustav; Farrajota, Pedro; Olsson, Ann; Silva, Cristina; Hartman, Johan; Elmberger, Göran
2015-08-01
Human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are widely used semiquantitative assays for selecting breast cancer patients for HER2 antibody therapy. However, both techniques have been shown to have disadvantages. Our aim was to test a recent automated technique of combined IHC and brightfield dual in situ hybridization-gene protein detection platform (GPDP)-in breast cancer HER2 protein, gene, and chromosome 17 centromere status evaluations, comparing the results in accordance to the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from both 2007 and 2013. The GPDP technique performance was evaluated on 52 consecutive whole slide invasive breast cancer cases with HER2 IHC 2/3+ scoring results. Applying in turns the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from 2007 and 2013 to both FISH and GPDP DISH assays, the HER2 gene amplification results showed 100% concordance among amplified/nonamplified cases, but there was a shift in 4 cases toward positive from equivocal results and toward equivocal from negative results. This might be related to the emphasis on the average HER2 copy number in the 2013 criteria. HER2 expression by IVD market IHC kit (Pathway®) has a strong correlation with GPDP HER2 protein, including a full concordance for all cases scored as 3+ and a reduction from 2+ to 1+ in 7 cases corresponding to nonamplified cases. Gene protein detection platform HER2 protein "solo" could have spared the need for 7 FISH studies. In addition, the platform offered advantages on interpretation reassurance including selecting areas for counting gene signals paralleled with protein IHC expression, on heterogeneity detection, interpretation time, technical time, and tissue expense. Copyright © 2015 Elsevier Inc. All rights reserved.
Pai, Trupti; Shet, Tanuja; Patil, Asawari; Shetty, Omshree; Singh, Angad; Desai, Sangeeta B
2018-05-01
Context PathVysion-a US Food and Drug Administration-approved dual-probe human epidermal growth factor receptor ( HER2) fluorescence in situ hybridization (FISH) assay-provides the HER2: CEP17 ratio, a centromeric enumeration probe ratio for determining HER2 status in breast cancers. However, pericentromeric amplifications might then skew the HER2: CEP17 ratio, underestimating the HER2 status, which calls into question the use of CEP17 as the reference probe. Objective To analyze the utility of a noncentromeric chromosome 17 reference locus ( D17S122) to assess HER2 gene status in cases showing "nonclassical" FISH patterns with the CEP17 probe. Design The HER2 status of breast cancers accessioned in the years 2015-2017, displaying "nonclassical" or "equivocal" results by the PathVysion (Abbott Molecular Inc, Des Plaines, Illinois) HER2 DNA Probe Kit were reflex tested using an alternate FISH probe (ZytoLight SPEC/D17S122, ZytoVision, Bremerhaven, Germany) and interpreted with American Society of Clinical Oncology/College of American Pathologists 2013 guidelines. Results Of 37 cases, 17 were FISH equivocal. With the alternate D17S122 probe, 13 (76.4%) were reclassified as amplified, 3 (17.6%) as nonamplified, and a single case retained an equivocal result. Of the 17 cases with a chromosome 17 polysomy pattern, disomy, polysomy, and monosomy patterns were seen with 14 cases, 2 cases, and 1 case, respectively. Within the 17 cases with polysomy pattern, 3 (17.6%) demonstrated an unusual colocalization pattern of HER2 and CEP17, which was not observed with the alternate probe. Conclusions The denominator-stable alternate probe is a useful adjunct in the diagnostic armamentarium to analyze HER2 status in cases with FISH equivocal and complex patterns.
Kang, Minyong; Lee, Kyoung-Hwa; Lee, Hye Sun; Jeong, Chang Wook; Kwak, Cheol; Kim, Hyeon Hoe; Ku, Ja Hyeon
2017-02-04
Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR) inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1), chloroquine (CQ) and 3-methyladenine (3-MA) were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8) assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI) was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA) remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating a novel therapeutic strategy to treat advanced bladder cancer.
Matei, Daniela; Sill, Michael W.; Lankes, Heather A.; DeGeest, Koen; Bristow, Robert E.; Mutch, David; Yamada, S. Diane; Cohn, David; Calvert, Valerie; Farley, John; Petricoin, Emanuel F.; Birrer, Michael J.
2011-01-01
Purpose Sorafenib is a kinase inhibitor targeting Raf and other kinases (ie, vascular endothelial growth factor receptor [VEGFR], platelet-derived growth factor receptor [PDGFR], Flt3, and c-KIT). This study assessed its activity and tolerability in patients with recurrent ovarian cancer (OC) or primary peritoneal carcinomatosis (PPC). Methods This open-label, multi-institutional, phase II study used a two-stage design. Eligible patients had persistent or recurrent OC/PPC after one to two prior cytotoxic regimens, and they experienced progression within 12 months of platinum-based therapy. Treatment consisted of sorafenib 400 mg orally twice per day. Primary end points were progression-free survival (PFS) at 6 months and toxicity by National Cancer Institute criteria. Secondary end points were tumor response and duration of PFS and overall survival. Biomarker analyses included measurement of ERK and b-Raf expression in tumors and phosphorylation of ERK (pERK) in peripheral-blood lymphocytes (PBLs) before and after 1 month of treatment. Results Seventy-three patients were enrolled, of which 71 were eligible. Fifty-nine eligible patients (83%) had measurable disease, and 12 (17%) had detectable disease. Significant grade 3 or 4 toxicities included the following: rash (n = 7), hand-foot syndrome (n = 9), metabolic (n = 10), GI (n = 3), cardiovascular (n = 2), and pulmonary (n = 2). Only patients with measurable disease were used to assess efficacy. Fourteen survived progression free for at least 6 months (24%; 90% CI, 15% to 35%). Two patients had partial responses (3.4%; 90% CI, 1% to 10%); 20 had stable disease; 30 had progressive disease; and seven could not have their tumor assessed. ERK and b-Raf were expressed in all tumors. Exploratory analyses indicated that pERK in post-treatment PBL specimens was associated with PFS. Conclusion Sorafenib has modest antitumor activity in patients with recurrent OC, but the activity was at the expense of substantial toxicity. PMID:21098323
Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K
1999-02-01
Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.
Ma, Zhanqiang; Ji, Weiwei; Fu, Qiang; Ma, Shiping
2013-12-01
Formononetin has shown a variety of pharmacologic properties including anti-inflammatory effect. In the present study, we analyzed the role of formononetin in acute lung injury induced by lipopolysaccharide (LPS) in mice. The cell counting in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by wet/dry weight ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity was assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, tumor necrosis factor-α (TNF-α) and IL-6,were assayed by enzyme-linked immunosorbent assay method. Pathological changes of hung tissues were observed by HE staining. Peroxisome proliferator-activated receptor (PPAR)-γ gene expression was measured by real-time PCR. The data showed that treatment with the formononetin group markedly attenuated inflammatory cell numbers in the BALF, increased PPAR-γ gene expression and improved SOD activity and inhibited MPO activity. The histological changes of the lungs were also significantly improved by formononetin compared to LPS group. The results indicated that formononetin has a protective effect on LPS-induced acute lung injury in mice.
Kathawala, Rishil J.; Sodani, Kamlesh; Chen, Kang; Patel, Atish; Abuznait, Alaa H.; Anreddy, Nagaraju; Sun, Yue-Li; Kaddoumi, Amal; Ashby, Charles R.; Chen, Zhe-Sheng
2014-01-01
Paclitaxel displays clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. In this study, we show that masitinib, a small molecule stem-cell growth factor receptor (c-Kit) tyrosine kinase inhibitor, at non-toxic concentrations, significantly attenuates paclitaxel resistance in HEK293 cells transfected with ABCC10. Our in vitro studies indicated that masitinib (2.5 μM) enhanced the intracellular accumulation and decreased the efflux of paclitaxel by inhibiting the ABCC10 transport activity without altering the expression level of ABCC10 protein. Furthermore, masitinib, in combination with paclitaxel, significantly inhibited the growth of ABCC10-expressing tumors in nude athymic mice in vivo. Masitinib administration also resulted in a significant increase in the levels of paclitaxel in the plasma, tumors and lungs compared to paclitaxel alone. In conclusion, the combination of paclitaxel and masitinib could serve as a novel and useful therapeutic strategy to reverse paclitaxel resistance mediated by ABCC10. PMID:24431074
IL-4 downregulates expression of the target receptor CD30 in neoplastic canine mast cells
Bauer, K.; Hadzijusufovic, E.; Cerny-Reiterer, S.; Hoermann, G.; Reifinger, M.; Pirker, A.; Valent, P.; Willmann, M.
2018-01-01
CD30 is a novel therapeutic target in human mast cell (MC) neoplasms. In this ‘comparative oncology’ study, we examined CD30 expression and regulation in neoplastic canine MC using a panel of immunomodulatory cytokines [interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-13 and stem cell factor (SCF)] and the canine mastocytoma cell lines NI-1 and C2. Of all cytokines tested IL-4 was found to downregulate expression of CD30 in NI-1 and C2 cells. We also found that the CD30-targeting antibody-conjugate brentuximab vedotin induces growth inhibition and apoptosis in both MC lines. Next, we asked whether IL-4-induced downregulation of CD30 interferes with brentuximab vedotin-effects. Indeed, pre-incubation of NI-1 cells with IL-4 decreased responsiveness towards brentuximab vedotin. To overcome IL-4-mediated resistance, we applied drug combinations and found that brentuximab vedotin synergizes with the Kit-targeting drugs masitinib and PKC412 in inhibiting growth of NI-1 and C2 cells. In summary, CD30 is a new marker and IL-4-regulated target in neoplastic canine MC. PMID:27507155
Identification and characterization of putative stem cells in the adult pig ovary.
Bui, Hong-Thuy; Van Thuan, Nguyen; Kwon, Deug-Nam; Choi, Yun-Jung; Kang, Min-Hee; Han, Jae-Woong; Kim, Teoan; Kim, Jin-Hoi
2014-06-01
Recently, the concept of 'neo-oogenesis' has received increasing attention, since it was shown that adult mammals have a renewable source of eggs. The purpose of this study was to elucidate the origin of these eggs and to confirm whether neo-oogenesis continues throughout life in the ovaries of the adult mammal. Adult female pigs were utilized to isolate, identify and characterize, including their proliferation and differentiation capabilities, putative stem cells (PSCs) from the ovary. PSCs were found to comprise a heterogeneous population based on c-kit expression and cell size, and also express stem and germ cell markers. Analysis of PSC molecular progression during establishment showed that these cells undergo cytoplasmic-to-nuclear translocation of Oct4 in a manner reminiscent of gonadal primordial germ cells (PGCs). Hence, cells with the characteristics of early PGCs are present or are generated in the adult pig ovary. Furthermore, the in vitro establishment of porcine PSCs required the presence of ovarian cell-derived extracellular regulatory factors, which are also likely to direct stem cell niche interactions in vivo. In conclusion, the present work supports a crucial role for c-kit and kit ligand/stem cell factor in stimulating the growth, proliferation and nuclear reprogramming of porcine PSCs, and further suggests that porcine PSCs might be the culture equivalent of early PGCs. © 2014. Published by The Company of Biologists Ltd.
Lyn-Cook, Beverly D; Xie, Chenghui; Oates, Jarren; Treadwell, Edward; Word, Beverly; Hammons, George; Wiley, Kenneth
2014-09-01
Increased expression of pro-inflammatory cytokines such as interferon, tumor necrosis factors (TNFs) and specific interleukins (ILs) has been found in a number of autoimmune diseases, including systemic lupus erythematous (SLE). These cytokines are induced by toll-like receptors (TLRs). Toll-like receptors are activated in response to accumulation of apoptotic bodies. These receptors play critical roles in innate immune systems. Increased levels of interferon-alpha (INF-α) have also been found in many SLE patients and often correlate with disease severity. The objectives of this study were to examine the expression of selected TLRs and cytokines that have been identified in animal models and some limited human studies in a group of African Americans (AA) and European Americans (EA) women with lupus in comparison to age-matched non-lupus women. Blood samples were consecutively obtained by informed consent from 286 patients, 153 lupus and 136 non-lupus, seen in the rheumatology clinics at East Carolina University. Cytokines were analyzed from blood serum using enzyme linked immunoassay (ELISA) for IL-6 and INF-α. Total RNA was isolated, using a Paxgene kit, from peripheral blood mononuclear cells of African American and European American women blood samples. Quantitative real-time PCR using the CFX real-time system was conducted on all samples to determine TLRs 7 and 9, as well as INF-α expression. Toll-like receptor 7 (p<0.01) and 9 (p=0.001) expression levels were significantly increased in lupus patients compared to age-matched controls. African American women with lupus had a 2-fold increase in TLR-9 expression level when compared to their healthy controls or European American lupus patients. However, there was no ethnic difference in expression of TLR-7 in lupus patients. INF-α expression was significantly higher in lupus patients (p<0.0001) and also showed ethnic difference in expression. Serum levels revealed significant increases in expression of IL-6, IFN-γ and TNF-α in lupus patients compared to non-lupus patients. African American women with lupus had significantly higher serum levels of IL-6 and TNF-α. African American women with lupus demonstrated increased levels of specific pro-inflammatory cytokines and Toll-like receptors when compared to EA women. Increased expression in these lupus patients provides an opportunity for targeting with antagonist as a new therapy for systemic lupus erythematous. Published by Elsevier Ltd.
Glidewell, Jill; Reefhuis, Jennita; Rasmussen, Sonja A; Woomert, Alison; Hobbs, Charlotte; Romitti, Paul A; Crider, Krista S
2014-04-01
As epidemiological studies expand to examine gene-environment interaction effects, it is important to identify factors associated with participation in genetic studies. The National Birth Defects Prevention Study is a multisite case-control study designed to investigate environmental and genetic risk factors for major birth defects. The National Birth Defects Prevention Study includes maternal telephone interviews and mailed buccal cell self-collection kits. Because subjects can participate in the interview, independent of buccal cell collection, detailed analysis of factors associated with participation in buccal cell collection was possible. Multivariable logistic regression models were used to identify the factors associated with participation in the genetic component of the study. Buccal cell participation rates varied by race/ethnicity (non-Hispanic whites, 66.9%; Hispanics, 60.4%; and non-Hispanic blacks, 47.3%) and study site (50.2-74.2%). Additional monetary incentive following return of buccal cell kit and shorter interval between infant's estimated date of delivery and interview were associated with increased participation across all racial/ethnic groups. Higher education and delivering an infant with a birth defect were associated with increased participation among non-Hispanic whites and Hispanics. Factors associated with participation varied by race/ethnicity. Improved understanding of factors associated with participation may facilitate strategies to increase participation, thereby improving generalizability of study findings.
Correlation of EGFR expression, gene copy number and clinicopathological status in NSCLC.
Gaber, Rania; Watermann, Iris; Kugler, Christian; Reinmuth, Nils; Huber, Rudolf M; Schnabel, Philipp A; Vollmer, Ekkehard; Reck, Martin; Goldmann, Torsten
2014-09-17
Epidermal Growth Factor Receptor (EGFR) targeting therapies are currently of great relevance for the treatment of lung cancer. For this reason, in addition to mutational analysis immunohistochemistry (IHC) of EGFR in lung cancer has been discussed for the decision making of according therapeutic strategies. The aim of this study was to obtain standardization of EGFR-expression methods for the selection of patients who might benefit of EGFR targeting therapies. As a starting point of a broad investigation, aimed at elucidating the expression of EGFR on different biological levels, four EGFR specific antibodies were analyzed concerning potential differences in expression levels by Immunohistochemistry (IHC) and correlated with fluorescence in situ hybridization (FISH) analysis and clinicopathological data. 206 tumor tissues were analyzed in a tissue microarray format employing immunohistochemistry with four different antibodies including Dako PharmDx kit (clone 2-18C9), clone 31G7, clone 2.1E1 and clone SP84 using three different scoring methods. Protein expression was compared to FISH utilizing two different probes. EGFR protein expression determined by IHC with Dako PharmDx kit, clone 31G7 and clone 2.1E1 (p ≤ 0.05) correlated significantly with both FISH probes independently of the three scoring methods; best correlation is shown for 31G7 using the scoring method that defined EGFR positivity when ≥ 10% of the tumor cells show membranous staining of moderate and severe intensity (p=0.001). Overall, our data show differences in EGFR expression determined by IHC, due to the applied antibody. Highest concordance with FISH is shown for antibody clone 31G7, evaluated with score B (p=0.001). On this account, this antibody clone might by utilized for standard evaluation of EGFR expression by IHC. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_165.
Costa Casagrande, T A; de Oliveira Barros, L M; Fukumasu, H; Cogliati, B; Chaible, L M; Dagli, M L Z; Matera, J M
2015-03-01
This study investigated the correlation between KIT gene expression determined by immunohistochemistry and real-time polymerase chain reaction (RT-PCR) and the rate of tumour recurrence and tumour-related deaths in dogs affected with mast cell tumour (MCT). Kaplan-Meier curves were constructed to compare tumour recurrence and tumour-related death between patients. The log-rank test was used to check for significant differences between curves. KIT-I, KIT-II and KIT-III staining patterns were observed in 9 (11.11%), 50 (61.73%) and 22 (27.16%) tumours, respectively. Tumour recurrence rates and tumour-related deaths were not associated with KIT staining patterns (P = 0278, P > 0.05), KIT (P = 0.289, P > 0.05) or KIT ligand (P = 0.106, P > 0.05) gene expression. Despite the lack of association between KIT staining pattern and patient survival time, the results suggest a correlation between aberrant KIT localization and increased proliferative activity of MCTs. RT-PCR seems to be a sensible method for quantitative detection of KIT gene expression in canine MCT, although expressions levels are not correlated with prognosis. © 2013 Blackwell Publishing Ltd.
Targeting c-KIT (CD117) by dasatinib and radotinib promotes acute myeloid leukemia cell death.
Heo, Sook-Kyoung; Noh, Eui-Kyu; Kim, Jeong Yi; Jeong, Yoo Kyung; Jo, Jae-Cheol; Choi, Yunsuk; Koh, SuJin; Baek, Jin Ho; Min, Young Joo; Kim, Hawk
2017-11-10
Dasatinib and radotinib are oral BCR-ABL tyrosine kinase inhibitors that were developed as drugs for the treatment of chronic myeloid leukemia. We report here that the c-KIT (CD117) targeting with dasatinib and radotinib promotes acute myeloid leukemia (AML) cell death, and c-KIT endocytosis is essential for triggering c-KIT-positive AML cell death by dasatinib and radotinib during the early stages. In addition, dasatinib and radotinib reduce heat shock protein 90β (HSP90β) expression and release Apaf-1 in c-KIT-positive AML cells. Finally, this activates a caspase-dependent apoptotic pathway in c-KIT-positive AML cells. Moreover, the inhibition of c-KIT endocytosis by dynamin inhibitor (DY) reversed cell viability and c-KIT expression by dasatinib and radotinib. HSP90β expression was recovered by DY in c-KIT-positive AML cells as well. Furthermore, the effect of radotinib on c-KIT and HSP90β showed the same pattern in a xenograft animal model using HEL92.1.7 cells. Therefore, dasatinib and radotinib promote AML cell death by targeting c-KIT. Taken together, these results indicate that dasatinib and radotinib treatment have a potential role in anti-leukemic therapy on c-KIT-positive AML cells.
Jiang, Feng; Hu, Wei; Zhang, Bicheng; Xu, Jing; Shui, Yongjie; Zhou, Xiaofeng; Ren, Xiaoqiu; Chen, Xiaozhong; Shen, Li; Wei, Qichun
2016-10-01
In the era of intensity-modulated radiotherapy, distant metastasis is currently the main cause of treatment failure for nasopharyngeal carcinoma (NPC). Additional therapeutic strategies are required to control the metastasis and improve survival. One strategy is targeted therapy, for example against c-Kit. In the current study, the frequency of c-Kit expression was determined immunohistochemically in 106 NPC patients. c-Kit expression changes during the course of radiation therapy were detected in 41 cases via weekly biopsy. Twelve cases (11.3%) had c-Kit expression scores of 3 + and 16 (15.1%) had scores of 2 + . Thus, c-Kit overexpression (2 + or 3 + ) was observed in 28 (26.4%) patients. There were 35 (33.0%) and 43 (40.6%) patients with c-Kit expression scores of 1 + and 0, respectively. Furthermore, a trend of decreased c-Kit expression was observed after commencing radiotherapy according to the 41 NPC patients who were biopsied weekly. Therefore, c-Kit overexpression was identified to be common in NPC, and evaluating c-Kit as a therapeutic target for metastatic NPC via c-Kit overexpression subsequent to first line treatment may be of interest. To the best of our knowledge, the present study is the first to demonstrate a trend of decreased c-Kit expression during the course of radiotherapy.
Higashi, Yusuke; Sukhanov, Sergiy; Parthasarathy, Sampath; Delafontaine, Patrice
2008-01-01
Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 μg/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2 ± 1.7 h from 24.4 ± 4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. PMID:18723765
NASA Astrophysics Data System (ADS)
Astutik, J.
2017-02-01
Food additives are materials that can not be separated from the lives of students and the community. Based on the preliminary questionnaire, it indicates the lack of kit supporting material additives in some schools and communities. The research objectives of this development are (1) to develop Kit experiment (SAYOFU KIT) and supplementary books to improve student learning outcomes in the classroom and public awareness on food additives (2) to describe the feasibility and potential effectiveness of SAYOFU KIT developed (3) to analyze the practice of SAYOFU KIT and benefits for students and the community. This development study uses 4-D models Thiagarajan, et al (1974). Through some stages, they are: defining, designing, developing and disseminating which involes the students and community. The developed SAYOFU KIT includes additives sample kit, borax test kit, curcumin test kit, formaldehyde test kit, modification heater to the identification of dyes and dye test paper. The study is conducted at SMP Plus Hidayatul Mubtadiin, and TKIT Al Uswah. The products are validated by experts and education practitioners. Qualitative data processing uses descriptive method, whereas quantitative data by using the N-gain. The average yield of expert validation of SAYOFU KIT with supplementary books 76.50% teacher’s book and 76.30% student’s book are eligible. The average yield of 96.81% validation of educational practitioners criteria, piloting a small group of 83.15%, and 82.89% field trials are very decent. The average yield on the student questionnaire responses SAYOFU kit and supplementary book is 87.6% with the criteria very well worth it. N-Gain 0:56 cognitive achievement with the criteria enough. The results of the public poll showed 95% feel the benefits SAYOFU kits for testing food. Based from description indicates that SAYOFU Kit developed feasible, practical, useful to support inquiry learning and improve student learning outcomes as well as public awareness of food additives.
Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei
2017-05-01
Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.
Development of a novel rapid immunochromatographic test specific for the H5 influenza virus.
Miyagawa, Eiji; Kogaki, Hiroyuki; Uchida, Yoshiaki; Fujii, Nobuyuki; Shirakawa, Takashi; Sakoda, Yoshihrio; Kida, Hiroshi
2011-05-01
Three anti-H5 influenza virus monoclonal antibody (mAb) clones, IFH5-26, IFH5-115 and IFH5-136, were obtained by immunising a BALB/C mouse with inactivated A/duck/Hokkaido/Vac-1/04 (H5N1). These mAbs were found to recognise specifically the haemagglutinin (HA) epitope of the influenza H5 subtypes by western blotting with recombinant HAs; however, these mAbs have no neutralising activity for A/duck/Hokkaido/84/02 (H5N3) or A/Puerto Ric/8/34 (H1N1). Each epitope of these mAbs was a conformational epitope that was formed from the regions located between 46 to 60 amino acids (aa) and 312 to 322 aa for IFH5-115, from 101 to 113 aa and 268 to 273 aa for IFH5-136 and from 61 to 80 aa and 290 to 300 aa for IFH5-26. The epitopes were located in the loop regions between the receptor region and alpha-helix structure in haemagglutinin 1 (HA1). Influenza A virus H5-specific rapid immunochromatographic test kits were tested as solid phase antibody/alkaline phosphate-conjugated mAb in the following three combinations: IFH5-26/IFH5-115, IFH5-136/IFH5-26 and IFH5-136/IFH5-115. In every combination, only influenza A H5 subtypes were detected. For effective clinical application, rapid dual discrimination immunochromatographic test kits in combination with H5 HA-specific mAb, IFA5-26 and IFA5-115 and the influenza A NP NP-specific mAb, FVA2-11, were developed. The dual discrimination immunochromatographic tests kits detected influenza A virus H5 subtypes as H5 line-positive and all influenza A subtypes as A line-positive simultaneously. The dual discrimination immunochromatographic test kits may be useful for discriminating highly pathogenic avian influenza A H5N1 viruses from seasonal influenza A virus, as well as for confirming influenza infection status in human, avian and mammalian hosts. Copyright © 2011 Elsevier B.V. All rights reserved.
[Development of surgical antibioprophylaxis kits: evaluation of the impact on prescribing habits].
Aouizerate, P; Guizard, M
2002-01-01
In our hospital, surgical antibioprophylaxis (ATBP) was too often administered too late, thus raising the infectious risk. Antibiotic stocks of the anaesthesia department were also systematically used, instead of nominal prescriptions of these drugs. The pharmacy could neither charge antibiotics to each surgical department nor quantify and differentiate ATBP from curative antibiotic therapy. The pharmacy and anaesthesia departments therefore set out to standardize surgical ATBP, in order to adapt this treatment to each surgical indication, and particularly in the case of allergy to beta-lactamase antibiotics (second line treatment kits). Consequently, prescription forms were developed and supplied to each surgery department, as well as ATBP kits. The kits were prepared and distributed by the pharmacy, and comprised boxes containing antibiotics in sufficient quantities to respect the protocols approved by the French Society of Anaesthesia and Resuscitation (SFAR). A protocol describing prescriptions, dispensation and administration has been presented to physicians and nurses. Fifteen surgical departments were included in our study and 30 different kits were prepared. From 1998 to 2001, 5586 surgical operations required administration of a kit (second line treatment kits in 5% of cases): 1848 (33%) in visceral surgery; 764 (13.8%) in urology; 802 (14%) in orthopaedics; 13 (0.2%) in vascular and thoracic surgery; 1236 (22%) in ear-nose-throat (ENT), periodontics and ophtalmology, and 923 (17%) in gynaecology and obstetrics. 93% of filled prescriptions forms were spontaneously returned to the pharmacy, the others were obtained during the renewal of kit stocks. The cost (over 4 years) of ATBP was quantified: 157,871 F for the 15 departments included, 26,123 F in visceral surgery, 13,520 F in urology, 73,741 F in orthopaedics, 569 F in vascular surgery, 39,720 F in ENT/ophthalmology/periodontics and 4,198 F in gynaecology and obstetrics. According to the Altemeier classification, 2226 class I, 3151 class II, and 209 class III surgical operations were performed. Since the kits have been brought into use, the committee for the protection against nosocomial infections (CLIN) has observed a reduction in the incidence of post-operative infections, according to the Altemeier classification: from 1.6% to 0.5% in class I, from 6.5% to 4.3% in class II, and from 11% to 8.5% in class III. The difference was statistically significant only for classes I (p < 0.01) and II (p < 0.001), and unchanged for class III (p = 0.3). No analysis was carried out for class IV (curative treatments). Both nurses and physicians have greatly appreciated the implementation of this organization. The advantage in terms of post-operative infections, administration exhaustiveness and stock management is obvious. The prescribed kits were systematically appropriate for the surgical interventions. In orthopaedics, cefamandole was used over 24 h (188 kits) in ligament plasty and osteotomy, or for 48 h (499 kits) in prosthetic surgery; 24 amoxicillin/clavulanic acid (first line) and 9 clindamycin/gentamicin (second line) single dose kits have been prescribed in traumatic indications. In ophthalmology, kits were only prescribed in endophtalmitis (24 ofloxacin/fosfomycin single amount kits), implant replacement or cornea graft (1076 ofloxacin 24 h kits) and cataract surgery in diabetic patients (12 ofloxacin single amount kits). In ENT and periodontics, 124 surgical operations required cefazolin single dose kits. In vascular surgery, 5 pefloxacin/gentamicin 48 h kits and 1 amoxicillin/clavulanic acid 48 h kit were used in contaminated limb amputation, 1 cefamandole 48 h kit in class I surgery and 1 vancomycin 24 h kit (betalactamase antibiotic allergy); in thoracic surgery, 1 cefamandole 24 h kit was used for a thoracic wound. In visceral surgery, 9 different kits have been used, depending on the opening (class II) or not (class I) of the digestive tract. 797 cefazolin (first line) and 68 clindamycin/gentamicin (second line) single dose kits were used in class I surgery, and 689 amoxicillin/clavulanic acid single dose (SD) kits in class II surgery. Specific protocols consisted of 18 ceftriaxone/metronidazole and 48 metronidazole/gentamicin SD kits in oesophagus surgery, 11 ceftriaxone and 17 gentamicin SD kits in biliary endoscopy, 137 metronidazole SD kits in proctology and 34 amoxicillin/gentamicin 6 h kits for prevention of endocarditis. In urology, 133 cefotaxime and 20 pefloxacin/gentamicin SD kits were precribed in renal lithiasis, 102 amoxicillin/clavulanic acid SD kits in cystectomy, 27 amoxicillin/gentamicin 6 h kits in endocarditis prevention and 58 cefamandole SD kits in all other indications. In gynaecology and obstetrics, 534 cefazoline and 19 clindamycin/gentamicin (second line) SD kits were used, and 370 doxycyclin SD kits were prescribed in pregnancy termination. Some departments (orthopaedics and visceral surgery) adapted the protocols to their needs, specifically with regard to treatment duration. However, these situations were quickly corrected. A constant follow-up and update of this system, associated with routine audits, should allow the maintenance and possibly the improvement of these results, hence shortening treatment duration.
Novel somatic and germline mutations in intracranial germ cell tumours.
Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M; Gibbs, Richard A; Leal, Suzanne M; Wheeler, David A; Lau, Ching C
2014-07-10
Intracranial germ cell tumours (IGCTs) are a group of rare heterogeneous brain tumours that are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographical and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically five- to eightfold greater in Japan and other East Asian countries than in Western countries, with peak incidence near the time of puberty. About half of the tumours are located in the pineal region. The male-to-female incidence ratio is approximately 3-4:1 overall, but is even higher for tumours located in the pineal region. Owing to the scarcity of tumour specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next-generation sequencing, single nucleotide polymorphism array and expression array. We find the KIT/RAS signalling pathway frequently mutated in more than 50% of IGCTs, including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gains of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional co-repressor and tumour suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, which codes for a histone demethylase and is a coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway.
Novel somatic and germline mutations in intracranial germ cell tumors
Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D.; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M.; Gibbs, Richard A.; Leal, Suzanne M.; Wheeler, David A.; Lau, Ching C.
2015-01-01
Intracranial germ cell tumors (IGCTs) are a group of rare heterogeneous brain tumors which are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographic and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically 5–8 fold greater in Japan and other East Asian countries than in Western countries1 with peak incidence near the time of puberty2. About half of the tumors are located in the pineal region. The male-to-female incidence ratio is approximately 3–4:1 overall but even higher for tumors located in the pineal region3. Due to the scarcity of tumor specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next generation sequencing, SNP array and expression array. We find the KIT/RAS signaling pathway frequently mutated in over 50% of IGCTs including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gain of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional corepressor and tumor suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, a histone demethylase and coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway. PMID:24896186
Bernheim, Alain; Toujani, Saloua; Saulnier, Patrick; Robert, Thomas; Casiraghi, Odile; Validire, Pierre; Temam, Stéphane; Menard, Philippe; Dessen, Philippe; Fouret, Pierre
2008-05-01
Adenoid cystic carcinoma (ACC) is a rare but distinctive tumor. Oligonucleotide array comparative genomic hybridization has been applied for cataloging genomic copy number alterations (CNAs) in 17 frozen salivary or bronchial tumors. Only four whole chromosome CNAs were found, and most cases had 2-4 segmental CNAs. No high level amplification was observed. There were recurrent gains at 7p15.2, 17q21-25, and 22q11-13, and recurrent losses at 1p35, 6q22-25, 8q12-13, 9p21, 12q12-13, and 17p11-13. The minimal region of gain at 7p15.2 contained the HOXA cluster. The minimal common regions of deletions contained the CDKN2A/CDKN2B, TP53, and LIMA1 tumor suppressor genes. The recurrent deletion at 8q12.3-13.1 contained no straightforward tumor suppressor gene, but the MIRN124A2 microRNA gene, whose product regulates MMP2 and CDK6. Among unique CNAs, gains harbored CCND1, KIT/PDGFRA/KDR, MDM2, and JAK2. The CNAs involving CCND1, MDM2, KIT, CDKN2A/2B, and TP53 were validated by FISH and/or multiplex ligation-dependent probe amplification. Although most tumors overexpressed cyclin D1 compared with surrounding glands, the only case to overexpress MDM2 had the corresponding CNA. In conclusion, our report suggests that ACC is characterized by a relatively low level of structural complexity. Array CGH and immunohistochemical data implicate MDM2 as the oncogene targeted at 12q15. The gain at 4q12 warrants further exploration as it contains a cluster of receptor kinase genes (KIT/PDGFRA/KDR), whose products can be responsive to specific therapies.
Sjölund, Katarina; Andersson, Anna; Nilsson, Erik; Nilsson, Ola; Ahlman, Håkan
2010-01-01
Background Gastrointestinal stromal tumors (GISTs) express the receptor tyrosine kinase KIT. Most GISTs have mutations in the KIT or PDGFRA gene, causing activation of tyrosine kinase. Imatinib, a tyrosine kinase inhibitor (TKI), is the first-line palliative treatment for advanced GISTs. Sunitinib was introduced for patients with mutations not responsive to imatinib. The aim was to compare the survival of patients with high-risk resected GISTs treated with TKI prior to surgery with historical controls and to determine if organ-preserving surgery was facilitated. Methods Ten high-risk GIST-patients had downsizing/adjuvant TKI treatment: nine with imatinib and one with sunitinib. The patients were matched with historical controls (n = 89) treated with surgery alone, from our population-based series (n = 259). Mutational analysis of KIT and PDGFRA was performed in all cases. The progression-free survival was calculated. Results The primary tumors decreased in mean diameter from 20.4 cm to 10.5 cm on downsizing imatinib. Four patients with R0 resection and a period of adjuvant imatinib had no recurrences versus 67% in the historical control group. Four patients with residual liver metastases have stable disease on continuous imatinib treatment after surgery. One patient has undergone reoperation with liver resection. The downsizing treatment led to organ-preserving surgery in nine patients and improved preoperative nutritional status in one patient. Conclusions Downsizing TKI is recommended for patients with bulky tumors with invasion of adjacent organs. Sunitinib can be used for patients in case of imatinib resistance (e.g., wild-type GISTs), underlining the importance of mutational analysis for optimal surgical planning. PMID:20512492
Guggenberg, Elisabeth Von; Mikolajczak, Renata; Janota, Barbara; Riccabona, Georg; Decristoforo, Clemens
2004-10-01
[(99m)Tc-EDDA-HYNIC-D-Phe(1),Tyr(3)]-Octreotide ((99m)Tc-EDDA/HYNIC-TOC) is a promising new radiopharmaceutical with the potential to replace [(111)In-DTPA-D-Phe(1)]-Octreotide ((111)In-DTPA-OCT) as the radiopharmaceutical for somatostatin receptor scintigraphy due to the advantage of improved image quality, lower radiation dose for the patient, and daily availability. Here we describe the development of a freeze-dried kit formulation based on the Tricine/EDDA exchange labeling approach for the preparation of this radiopharmaceutical in a clinical setting. Three parameters were of major importance to achieve a suitable formulation with a radiochemical purity (RCP) >90%: addition of bulking agent, the pH of the freeze-drying solution, and the content of stannous chloride. The final formulation consisted of 20 mg Tricine, 10 mg EDDA, 50 mg Mannitol, 20 microg SnCl(2). 2H(2)O, and 20 microg [HYNIC-D-Phe(1), Tyr(3)]-Octreotide (HYNIC-TOC). Radiolabeling was performed by addition of 0.2 M Na(2)HPO(4) to adjust the pH to 6-7, followed by 0.5-2 GBq (99m)Tc sodium pertechnetate, in a total volume of 2 mL and incubation for 10 min in a boiling water bath. Mean RCP values of 10 batches showed values >90% over a storage period of up to 1 year, a high stability up to 24 h of the final preparation, and retained biological activity. The developed kit formulation forms the basis for further clinical evaluation of this promising new radiopharmaceutical. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association
49 CFR 173.165 - Polyester resin kits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Polyester resin kits. 173.165 Section 173.165... Polyester resin kits. (a) Except for transportation by aircraft, polyester resin kits consisting of a base... resin kits consisting of a base material component (Class 3, Packing Group II or III) and an activator...
Miao, Bin; Zhang, Shuwen; Wang, Hong; Yang, Tiecheng; Zhou, Deshan; Wang, Bao-en
2013-08-01
The purpose of this study was to investigate the mechanism by which magnolol treatment prevents lipopolysaccharide (LPS)-induced septic dysmotility in mice. Sepsis was induced by intravenous tail vein injection of LPS (4 mg/kg body weight). Animals were divided into three groups: the magnolol-treated septic group, the placebo-treated septic group, and the control group. Intestinal transit and circular smooth muscle contraction were measured 12 h after LPS injection, and immunocytochemisty was performed to study the morphology of interstitial cells of Cajal (ICCs). Stem cell factor (SCF) expression and c-kit phosphorylation were determined by Western blot analysis, and the mRNA levels of inducible NO synthase (iNOS) were determined by RT-PCR. Nitric oxide (NO) content, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) concentration were detected using commercial kits. Intestinal transit and muscular contractility were significantly lower in the LPS-treated group than in the control group. Immunocytochemical experiments showed that the total number of ICCs, and the total and average lengths of the ICC processes were significantly decreased in the LPS-treated group compared with those in the control group. In LPS-treated animals, magnolol pretreatment significantly accelerated intestinal transit, increased circular muscle contraction, and prevented ICC morphology changes. Phosphorylation of c-kit and expression of SCF were significantly downregulated in LPS-treated animals compared with control animals. Magnolol pretreatment prevented sepsis-induced decreases in c-kit phosphorylation and SCF expression in LPS-treated animals. Magnolol pretreatment prevented the sepsis-induced increase in NO concentration, iNOS expression, and MDA concentration, and decrease in SOD activity in LPS-treated animals. Our results suggest that magnolol treatment prevents sepsis-induced intestinal dysmotility by regulating SCF/c-kit and NO signaling to maintain functional ICCs.
Göde, Sercan; Turhal, Göksel; Tarhan, Ceyda; Yaman, Banu; Kandiloğlu, Gülşen; Öztürk, Kerem; Kaya, İsa; Midilli, Raşit; Karcı, Bülent
2017-05-05
Mucosal melanoma is a rare malignancy arising from melanocytes of the mucosal surfaces. The pattern and frequency of oncogenic mutations and histopathological biomarkers have a role on distinct tumour behaviour and survival. To assess the rate of C-KIT positivity and its effect on survival of surgically treated sinonasal malignant melanoma patients with other histopathological biomarkers and clinical features. Retrospective cross-sectional study. Seventeen sinonasal malignant melanoma patients with a mean age of 65.41 (39-86) years were included. Overall survival and disease-specific survival rates were calculated. The impact of age, gender, stage and extent of the disease, type of surgery, and adjuvant therapies were also taken into consideration. The effect of mitotic index, pigmentation, S100, HMB-45, Melan-A and C-KIT on survival were evaluated. Median tumour size was 20 mm (interquartile range=27.5 mm). Pigmentation was present in 7 (41.2%) cases. Median number of mitoses per millimetre squared was 11 (interquartile range=13). Melan A was positive in 7 (41.2%) patients, ulceration was present in 6 cases (35.3%), and necrosis was present in (47.1%) 8 cases. Six patients (35.3%) were positive for S100, 14 (82.4%) specimens stained positive for HMB-45 and C-KIT (CD117) was positive in 9 cases (52.9%). Three patients (16.7%) developed distant metastasis. Five year overall and disease free survival rates were 61.4% and 43.8%, respectively. Although C-KIT positive sinonasal malignant melanoma patients (52.9%) can be candidates for targeted tumour therapies, the studied clinical or histopathological features along with C-KIT seem to have no significant effect on survival in a small group of patients with sinonasal malignant melanoma.
Tze, Christina Ng Van; Fitzgerald, Henry; Qureshi, Akhtar; Tan, Huck Joo; Low, May Lee
2016-01-01
The aim of this study was to assess the rate of uptake of a customised annual Colorectal Cancer Awareness, Screening and Treatment Project (CCASTP) using faecal immunohistochemical test (FIT) kits in low income communities in Malaysia. The immediate objectives were (1) to evaluate the level of adherence of CRC screening among lowincome groups, (2) to assess the knowledge and awareness of the screened population and (3) to assess the accuracy of FIT kits. A total of 1,581 FIT kits were distributed between years 2010 to 2015 to healthy asymptomatic participants of the annual CCASTP organized by Empowered the Cancer Advocacy Society of Malaysia. Data for sociodemographic characteristics, critical health and lifestyle information of the registered subjects were collected. Findings for use of the FIT kits were collected when they were returned for stool analyses. Those testingd positive were invited to undergo a colonoscopy examination. A total of 1,436 (90.8%) of the subjects retuned the FITkits, showing high compliance. Among the 129 subjects with positive FIT results, 92 (71.3%) underwent colonoscopy. Six cases (6.5%) of CRC were found. Based on the data collected, the level of awareness of stool examination and knowledge about CRC was poor amongst the participants. Gender, age group, ethnicity and risk factors (i.e. smoking, lack of exercise and low consumption of fresh fruits) were associated with positive FITkit results. In conclusion, CRC screening can be performed in the community with a single FITkit. Although CRC knowledge and awareness is poor in lowincome communities, the average return rate of the FIT kits and rate of colonoscopy examination were 91.2% and 70.3%, respectively.
Buffer substitution in malaria rapid diagnostic tests causes false-positive results
2010-01-01
Background Malaria rapid diagnostic tests (RDTs) are kits that generally include 20 to 25 test strips or cassettes, but only a single buffer vial. In field settings, laboratory staff occasionally uses saline, distilled water (liquids for parenteral drugs dilution) or tap water as substitutes for the RDT kit's buffer to compensate for the loss of a diluent bottle. The present study assessed the effect of buffer substitution on the RDT results. Methods Twenty-seven RDT brands were run with EDTA-blood samples of five malaria-free subjects, who were negative for rheumatoid factor and antinuclear antibodies. Saline, distilled water and tap water were used as substitute liquids. RDTs were also run with distilled water, without adding blood. Results were compared to those obtained with the RDT kit's buffer and Plasmodium positive samples. Results Only eight cassettes (in four RDT brands) showed no control line and were considered invalid. Visible test lines occurred for at least one malaria-free sample and one of the substitutes in 20/27 (74%) RDT brands (saline: n = 16; distilled water: n = 17; and tap water: n = 20), and in 15 RDTs which were run with distilled water only. They occurred for all Plasmodium antigens and RDT formats (two-, three- and four-band RDTs). Clearance of the background of the strip was excellent except for saline. The aspects (colour, intensity and crispness) of the control and the false-positive test lines were similar to those obtained with the RDT kits' buffer and Plasmodium positive samples. Conclusion Replacement of the RDT kit's dedicated buffer by saline, distilled water and tap water can cause false-positive test results. PMID:20650003
Islam, Rafiqul; Kar, Sumit; Islam, Clarinda; Farmen, Raymond
2018-06-01
There has been an increased use of commercial kits for biomarker measurement, commensurate with the increased demand for biomarkers in drug development. However, in most cases these kits do not meet the quality attributes for use in regulated environment. The process for adaptation of these kits can be frustrating, time consuming and resource intensive. In addition, a lack of harmonized guidance for the validation of biomarker poses a significant challenge in the adaptation of kits in a regulated environment. The purpose of this perspective is to propose a tiered approach to commercial drug development kits with clearly defined quality attributes and to demonstrate how these kits can be adapted to perform analytical validation in a regulated environment.
The Use of Kits in the Analysis of Tissue Lipids Requires Validation.
Rider, T; LeBoeuf, R C; Tso, Patrick; Jandacek, R J
2016-04-01
The ready availability and ease of use of kits for the measurement of serum lipids has greatly facilitated these measurements. In many cases it would be convenient to use these kits in the determination of lipid concentrations in tissues. The successful application of serum kits in tissue analysis requires that two important issues be considered. First, the solvent system for the extraction of the lipids and the solvent used for analysis by the kit must be compatible with the reactions in the kit. Second, the concentration range in the analyzed solution must be within the range for which the kit is used. We report here that lipids in liver and adipose tissues may be significantly underestimated by the use of some kits. We recommend that the use of kits for tissue analysis of lipids be validated for the specific analysis.