Sample records for factor receptor lifr

  1. Expression of leukemia inhibitory factor and leukemia inhibitory factor receptor in the canine pituitary gland and corticotrope adenomas.

    PubMed

    Hanson, J M; Mol, J A; Meij, B P

    2010-05-01

    Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the IL-6 family that activates the hypothalamic-pituitary-adrenal axis and promotes corticotrope cell differentiation during development. The aim of this study was to investigate the expression of LIF and its receptor (LIFR) in the canine pituitary gland and in corticotrope adenomas, and to perform a mutation analysis of LIFR. Using immunohistochemistry, immunofluorescence, and quantitative expression analysis, LIF and LIFR expression were studied in pituitary glands of control dogs and in specimens of corticotrope adenoma tissue collected through hypophysectomy in dogs with pituitary-dependent hypercortisolism (PDH, Cushing's disease). Using sequence analysis, cDNA was screened for mutations in the LIFR. In the control pituitary tissues and corticotrope adenomas, there was a low magnitude of LIF expression. The LIFR, however, was highly expressed and co-localized with ACTH(1-24) expression. Cytoplasmatic immunoreactivity of LIFR was preserved in corticotrope adenomas and adjacent nontumorous cells of pars intermedia. No mutation was found on mutation analysis of the complete LIFR cDNA. Surprisingly, nuclear to perinuclear immunoreactivity for LIFR was present in nontumorous pituitary cells of the pars distalis in 10 of 12 tissue specimens from PDH dogs. These data show that LIFR is highly co-expressed with adrenocorticotropic hormone (ACTH) and alpha-melanocyte-stimulating hormone (alpha-MSH) in the canine pituitary gland and in corticotrope adenomas. Nuclear immunoreactivity for LIFR in nontumorous cells of the pars distalis may indicate the presence of a corticotrope adenoma. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  2. The leukemia inhibitory factor receptor gene is not involved in the etiology of pituitary dwarfism in German shepherd dogs.

    PubMed

    Hanson, J M; Mol, J A; Leegwater, P A J; Kooistra, H S; Meij, B P

    2006-12-01

    Pituitary dwarfism in German shepherd dogs is characterized by combined pituitary hormone deficiency (CPHD) and intrapituitary cyst formation. Activation of the leukemia inhibitory factor (LIF)-LIF receptor (LIFR) signal transduction pathway results in a similar phenotype in (transgenic) mice. We therefore assessed the role of the LIFR in the etiology of pituitary dwarfism in German shepherd dogs. A polymorphic microsatellite marker (UULIFR) was used to analyze the segregation of the LIFR gene in 22 German shepherd dogs from 4 pedigrees, each including one dwarf. There was no allelic association between UULIFR and the dwarfism phenotype. Based on our findings LIFR was excluded as a candidate gene for CPHD.

  3. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice

    PubMed Central

    Walker, Emma C.; McGregor, Narelle E.; Poulton, Ingrid J.; Solano, Melissa; Pompolo, Sueli; Fernandes, Tania J.; Constable, Matthew J.; Nicholson, Geoff C.; Zhang, Jian-Guo; Nicola, Nicos A.; Gillespie, Matthew T.; Martin, T. John; Sims, Natalie A.

    2010-01-01

    Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr–/– osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer. PMID:20051625

  4. Long non-coding RNA-CTD-2108O9.1 represses breast cancer metastasis by influencing leukemia inhibitory factor receptor.

    PubMed

    Wang, Mozhi; Wang, Mengshen; Wang, Zhenning; Yu, Xueting; Song, Yongxi; Wang, Chong; Xu, Yujie; Wei, Fengheng; Zhao, Yi; Xu, Yingying

    2018-06-01

    Breast cancer (BC) is an aggressive malignant disease in women worldwide with a high tendency to metastasize. However, important biomarkers for BC metastasis remain largely undefined. In the present study, we identified that long non-coding RNA-CTD-2108O9.1 is downregulated in BC tissues and cells and acts as a metastatic inhibitor of BC. Mechanistic investigation determined that lncRNA-CTD-2108O9.1 represses metastasis by targeting leukemia inhibitory factor receptor (LIFR), which is designated as a metastasis suppressor in BC. Our study characterizes a significant tumor suppressor active in BC metastasis repression through the known metastasis inhibitor LIFR. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation

    PubMed Central

    Takahashi, Yutaka; Carpino, Nick; Cross, James C.; Torres, Miguel; Parganas, Evan; Ihle, James N.

    2003-01-01

    Suppressor of cytokine signaling 3 (SOCS3) binds cytokine receptors and thereby suppresses cytokine signaling. Deletion of SOCS3 causes an embryonic lethality that is rescued by a tetraploid rescue approach, demonstrating an essential role in placental development and a non-essential role in embryo development. Rescued SOCS3-deficient mice show a perinatal lethality with cardiac hypertrophy. SOCS3-deficient placentas have reduced spongiotrophoblasts and increased trophoblast secondary giant cells. Enforced expression of SOCS3 in a trophoblast stem cell line (Rcho-1) suppresses giant cell differentiation. Conversely, SOCS3-deficient trophoblast stem cells differentiate more readily to giant cells in culture, demonstrating that SOCS3 negatively regulates trophoblast giant cell differentiation. Leukemia inhibitory factor (LIF) promotes giant cell differentiation in vitro, and LIF receptor (LIFR) deficiency results in loss of giant cell differentiation in vivo. Finally, LIFR deficiency rescues the SOCS3-deficient placental defect and embryonic lethality. The results establish SOCS3 as an essential regulator of LIFR signaling in trophoblast differentiation. PMID:12554639

  6. Functional role of a long non-coding RNA LIFR-AS1/miR-29a/TNFAIP3 axis in colorectal cancer resistance to pohotodynamic therapy.

    PubMed

    Liu, Kuijie; Yao, Hongliang; Wen, Yu; Zhao, Hua; Zhou, Nanjiang; Lei, Sanlin; Xiong, Li

    2018-05-25

    Colorectal Cancer (CRC) is one of the most common digestive system malignant tumors. Recently, PDT has been used as a first-line treatment for colon cancer; however, limited curative effect was obtained due to resistance of CRC to PDT. During the past decades, accumulating CRC-related long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs have been reported to exert diverse functions through various biological processes; their dysregulation might trigger and/or promote the pathological changes. Herein, we performed microarrays analysis to identify dysregulated lncRNAs, miRNAs and mRNAs in PDT-treated HCT116 cells to figure out the lncRNA-miRNA interactions related to the resistance of CRC to PDT treatment, and the downstream mRNA target, as well as the molecular mechanism. We found a total of 1096 lncRNAs dysregulated in PDT-treated CRC HCT116 cells; among them, LIFR-AS1 negatively interacted with miR-29a, one of the dysregulated miRNAs in PDT-treated CRC cells, to affect the resistance of CRC to PDT. LIFR-AS1 knockdown attenuated, whereas miR-29a inhibition enhanced the cellular effect of PDT on HCT116 cell proliferation and apoptosis. Furthermore, among the dysregulated mRNAs, TNFAIP3 was confirmed to be a direct target of miR-29a and exerted a similar effect to LIFR-AS1 on the cellular effects of PDT. In summary, LIFR-AS1 serves as a competitive endogenous RNA (ceRNA) for miR-29a to inhibit its expression and up-regulate downstream target TNFAIP3 expression, finally modulating the resistance of CRC to PDT. We provide an experimental basis for this lncRNA/miRNA/mRNA network being a promising target in CRC resistance to PDT treatment. Copyright © 2018. Published by Elsevier B.V.

  7. Inter-species chimeras of leukaemia inhibitory factor define a major human receptor-binding determinant.

    PubMed Central

    Owczarek, C M; Layton, M J; Metcalf, D; Lock, P; Willson, T A; Gough, N M; Nicola, N A

    1993-01-01

    Human leukaemia inhibitory factor (hLIF) binds to both human and mouse LIF receptors (LIF-R), while mouse LIF (mLIF) binds only to mouse LIF-R. Moreover, hLIF binds with higher affinity to the mLIF-R than does mLIF. In order to define the regions of the hLIF molecule responsible for species-specific interaction with the hLIF-R and for the unusual high-affinity binding to the mLIF-R, a series of 15 mouse/human LIF hybrids has been generated. Perhaps surprisingly, both of these properties mapped to the same region of the hLIF molecule. The predominant contribution was from residues in the loop linking the third and fourth helices, with lesser contributions from residues in the third helix and the loop connecting the second and third helices in the predicted three-dimensional structure. Since all chimeras retained full biological activity and receptor-binding activity on mouse cells, and there was little variation in the specific biological activity of the purified proteins, it can be concluded that the overall secondary and tertiary structures of each chimera were intact. This observation also implied that the primary binding sites on mLIF and hLIF for the mLIF-R were unaltered by inter-species domain swapping. Consequently, the site on the hLIF molecule that confers species-specific binding to the hLIF-R and higher affinity binding to the mLIF-R, must constitute an additional interaction site to that used by both mLIF and hLIF to bind to the mLIF-R. These studies define a maximum of 15 amino acid differences between hLIF and mLIF that are responsible for the different properties of these proteins. Images PMID:8253075

  8. Localization of functional receptor epitopes on the structure of ciliary neurotrophic factor indicates a conserved, function-related epitope topography among helical cytokines.

    PubMed

    Panayotatos, N; Radziejewska, E; Acheson, A; Somogyi, R; Thadani, A; Hendrickson, W A; McDonald, N Q

    1995-06-09

    By rational mutagenesis, receptor-specific functional analysis, and visualization of complex formation in solution, we identified individual amino acid side chains involved specifically in the interaction of ciliary neurotrophic factor (CNTF) with CNTFR alpha and not with the beta-components, gp130 and LIFR. In the crystal structure, the side chains of these residues, which are located in helix A, the AB loop, helix B, and helix D, are surface accessible and are clustered in space, thus constituting an epitope for CNTFR alpha. By the same analysis, a partial epitope for gp130 was also identified on the surface of helix A that faces away from the alpha-epitope. Superposition of the CNTF and growth hormone structures showed that the location of these epitopes on CNTF is analogous to the location of the first and second receptor epitopes on the surface of growth hormone. Further comparison with proposed binding sites for alpha- and beta-receptors on interleukin-6 and leukemia inhibitory factor indicated that this epitope topology is conserved among helical cytokines. In each case, epitope I is utilized by the specificity-conferring component, whereas epitopes II and III are used by accessory components. Thus, in addition to a common fold, helical cytokines share a conserved order of receptor epitopes that is function related.

  9. Increased Expression of Interleukin-6 Family Members and Receptors in Urinary Bladder with Cyclophosphamide-Induced Bladder Inflammation in Female Rats

    PubMed Central

    Girard, Beatrice M.; Cheppudira, Bopaiah P.; Malley, Susan E.; Schutz, Kristin C.; May, Victor; Vizzard, Margaret A.

    2011-01-01

    Recent studies suggest that janus-activated kinases–signal transducer and activator of transcription signaling pathways contribute to increased voiding frequency and referred pain of cyclophosphamide (CYP)-induced cystitis in rats. Potential upstream chemical mediator(s) that may be activated by CYP-induced cystitis to stimulate JAK/STAT signaling are not known in detail. In these studies, members of the interleukin (IL)-6 family of cytokines including, leukemia inhibitory factor (LIF), IL-6, and ciliary neurotrophic factor (CNTF) and associated receptors, IL-6 receptor (R) α, LIFR, and gp130 were examined in the urinary bladder in control and CYP-treated rats. Cytokine and receptor transcript and protein expression and distribution were determined in urinary bladder after CYP-induced cystitis using quantitative, real-time polymerase chain reaction (Q-PCR), western blotting, and immunohistochemistry. Acute (4 h; 150 mg/kg; i.p.), intermediate (48 h; 150 mg/kg; i.p.), or chronic (75 mg/kg; i.p., once every 3 days for 10 days) cystitis was induced in adult, female Wistar rats with CYP treatment. Q-PCR analyses revealed significant (p ≤ 0.01) CYP duration- and tissue- (e.g., urothelium, detrusor) dependent increases in LIF, IL-6, IL-6Rα, LIFR, and gp130 mRNA expression. Western blotting demonstrated significant (p ≤ 0.01) increases in IL-6, LIF, and gp130 protein expression in whole urinary bladder with CYP treatment. CYP-induced cystitis significantly (p ≤ 0.01) increased LIF-immunoreactivity (IR) in urothelium, detrusor, and suburothelial plexus whereas increased gp130-IR was only observed in urothelium and detrusor. These studies suggest that IL-6 and LIF may be potential upstream chemical mediators that activate JAK/STAT signaling in urinary bladder pathways. PMID:21373362

  10. Uterine Deletion of Gp130 or Stat3 Shows Implantation Failure with Increased Estrogenic Responses

    PubMed Central

    Sun, Xiaofei; Bartos, Amanda; Whitsett, Jeffrey A.

    2013-01-01

    Leukemia inhibitory factor (LIF), a downstream target of estrogen, is essential for implantation in mice. LIF function is thought to be mediated by its binding to LIF receptor (LIFR) and recruitment of coreceptor GP130 (glycoprotein 130), and this receptor complex then activates signal transducer and activator of transcription (STAT)1/3. However, the importance of LIFR and GP130 acting via STAT3 in implantation remains uncertain, because constitutive inactivation of Lifr, Gp130, or Stat3 shows embryonic lethality in mice. To address this issue, we generated mice with conditional deletion of uterine Gp130 or Stat3 and show that both GP130 and STAT3 are critical for uterine receptivity and implantation. Implantation failure in these deleted mice is associated with higher uterine estrogenic responses prior to the time of implantation. These heightened estrogenic responses are not due to changes in ovarian hormone levels or expression of their nuclear receptors. In the deleted mice, estrogen-responsive gene, Lactoferrin (Ltf), and Mucin 1 protein, were up-regulated in the uterus. In addition, progesterone-responsive genes, Hoxa10 and Indian hedgehog (Ihh), were markedly down-regulated in STAT3-inactivated uteri. These changes in uteri of deleted mice were reflected by the failure of differentiation of the luminal epithelium, which is essential for blastocyst attachment. PMID:23885093

  11. Birth control vaccine targeting leukemia inhibitory factor.

    PubMed

    Lemons, Angela R; Naz, Rajesh K

    2012-02-01

    The population explosion and unintended pregnancies resulting in elective abortions continue to impose major public health issues. This calls for a better method of contraception. Immunocontraception has been proposed as a valuable alternative that can fulfill most, if not all, of the properties of an ideal contraceptive. There are several targets that are being explored for contraceptive vaccine development. Leukemia inhibitory factor (LIF), a member of interleukin-6 family, is required for embryo development and successful blastocyst implantation in several mammalian species. The present study was conducted to examine if LIF can be a target for the development of a birth control vaccine. Three sequences from LIF and two sequences from LIF-receptor (LIF-R) that span the regions involved in ligand-receptor binding were delineated, and peptides were synthesized based upon these sequences. Antibodies raised against these five peptides reduced LIF bioactivity in an in vitro culture assay using BA/F3 mLIF-R-mpg130 cells. Vaccines were prepared by conjugating these peptides to various carrier proteins. Immunization of female mice with these peptide vaccines induced a long-lasting, circulating as well as local antibody response in various parts of the genital tract, and resulted in a significant (P ≤ 0.05) inhibition in fertility in all the three trials; the LIF-R peptide vaccines proved to be a better vaccine target. The data indicate that LIF/LIF-R is an excellent target for the development of a birth control vaccine. This is the first study, to our knowledge, that examined LIF/LIF-R as a target for immunocontraception. The findings of this study can be easily translated to humans since LIF/LIF-R is also important for implantation and pregnancy in women. Copyright © 2011 Wiley Periodicals, Inc.

  12. Identifying Breast Tumor Suppressors Using in Vitro and in Vivo RNAi Screens

    DTIC Science & Technology

    2011-10-01

    vivo RNA interference screen, breast cancer , tumor suppressor, leukemia inhibitory factor receptor (LIFR) 16. SECURITY CLASSIFICATION OF: 17...The identification of these genes will improve the understanding of the causes of breast cancer , which may lead to therapeutic advancements for... breast cancer prevention and treatment. BODY Objective 1: Identification of breast tumor suppressors using in vitro and in vivo RNAi screens

  13. Fine mapping and positional candidate studies on chromosome 5p13 identify multiple asthma susceptibility loci.

    PubMed

    Kurz, Thorsten; Hoffjan, Sabine; Hayes, M Geoffrey; Schneider, Dan; Nicolae, Raluca; Heinzmann, Andrea; Jerkic, Sylvija P; Parry, Rod; Cox, Nancy J; Deichmann, Klaus A; Ober, Carole

    2006-08-01

    Genome-wide linkage scans to identify asthma susceptibility loci have revealed many linked regions, including a broad region on chromosome 5p. To identify a 5p-linked asthma or bronchial hyperresponsiveness (BHR) locus. We performed fine mapping and positional candidate studies of this region in the Hutterites and an outbred case-control sample from Germany by genotyping 89 single nucleotide polymorphisms (SNPs) in 22 genes. SNP and haplotype analyses were performed. Three genes in a distal region (zinc finger RNA binding protein [ZFR], natriuretic peptide receptor C, and a disintegrin and metalloproteinase domain with thrombospondin type 1 motif [ADAMTS12]) were associated with BHR, whereas 4 genes in a proximal region (prolactin receptor, IL-7 receptor [IL7R], leukemia inhibitory factor receptor [LIFR], and prostaglandin E4 receptor [PTGER4]) were associated with asthma symptoms in the Hutterites. Furthermore, nearly the entire original linkage signal in the Hutterites was generated by individuals who had the risk-associated alleles in ZFR3, natriuretic peptide receptor C, ADAMTS12, LIFR, and PTGER4. Variation in ADAMTS12, IL7R, and PTGER4 were also associated with asthma in the outbred Germans, and the frequencies of long-range haplotypes composed of SNPs at ZFR, ADAMTS12, IL7R, LIFR, and PTGER4 were significantly different between both the German and Hutterite cases and controls. There is little linkage disequilbrium between alleles in these 2 regions in either population. These results suggest that a broad region on 5p, separated by >9 Mb, harbors at least 2 and possibly 5 asthma or BHR susceptibility loci. These findings are consistent with the hypothesis that regions providing evidence for linkage in multiple populations may, in fact, house more than 1 susceptibility locus, as appears to be the case for the linked region on 5p. Identifying asthma or BHR genes could lead to novel therapeutic approaches.

  14. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  15. Fibroblast growth factor receptor inhibitors.

    PubMed

    Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma

    2013-01-01

    Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.

  16. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma

    PubMed Central

    von Bueren, André O.; Ćwiek, Paulina; Rehrauer, Hubert; Djonov, Valentin; Anderle, Pascale; Arcaro, Alexandre

    2015-01-01

    Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation. PMID:25915540

  17. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  18. Clomiphene citrate versus letrozole: molecular analysis of the endometrium in women with polycystic ovary syndrome.

    PubMed

    Wallace, Kedra L; Johnson, Venessia; Sopelak, Victoria; Hines, Randall

    2011-10-01

    To compare the effect of clomiphene citrate (CC) and letrozole on endometrial receptivity in women with polycystic ovary syndrome (PCOS). A randomized controlled trial. University teaching hospital. Ten anovulatory women with PCOS and 5 fertile ovulatory women. Patients received 2.5 mg of letrozole on cycle days 3-7 (5 patients, 1 cycle) or 50 mg of CC on cycle days 5-9 (5 patients, 1 cycle). Serum estrogen (E) and progesterone (P) endometrial protein and messenger RNA (mRNA) expression of leukemia inhibitory factor (LIF), dickkhopf homolog 1 (DKK-1), fibroblast growth factor 22 (FGF-22), and endometrial mRNA expression of LIF/GP130 receptor (LIFR). No statistically significant differences were observed between groups compared with fertile ovulatory women when serum E and P were examined, or between body mass index (BMI), and cycle day at time of biopsy. Letrozole increased mRNA expression of LIF, DKK1, LIFR, and FGF-22, whereas CC only increased endometrial mRNA expression of LIF. Letrozole mRNA expression directly translated into increased protein expression of like genes in the endometrium. The CC protein expression of DKK-1 was significantly decreased compared with controls. Letrozole positively influences a number of markers of endometrial receptivity compared with CC. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    USDA-ARS?s Scientific Manuscript database

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  20. Assembly and activation of neurotrophic factor receptor complexes.

    PubMed

    Simi, Anastasia; Ibáñez, Carlos F

    2010-04-01

    Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.

  1. Understanding Cytokine and Growth Factor Receptor Activation Mechanisms

    PubMed Central

    Atanasova, Mariya; Whitty, Adrian

    2012-01-01

    Our understanding of the detailed mechanism of action of cytokine and growth factor receptors – and particularly our quantitative understanding of the link between structure, mechanism and function – lags significantly behind our knowledge of comparable functional protein classes such as enzymes, G protein-coupled receptors, and ion channels. In particular, it remains controversial whether such receptors are activated by a mechanism of ligand-induced oligomerization, versus a mechanism in which the ligand binds to a pre-associated receptor dimer or oligomer that becomes activated through subsequent conformational rearrangement. A major limitation to progress has been the relative paucity of methods for performing quantitative mechanistic experiments on unmodified receptors expressed at endogenous levels on live cells. In this article we review the current state of knowledge on the activation mechanisms of cytokine and growth factor receptors, critically evaluate the evidence for and against the different proposed mechanisms, and highlight other key questions that remain unanswered. New approaches and techniques have led to rapid recent progress in this area, and the field is poised for major advances in the coming years, which promises to revolutionize our understanding of this large and biologically and medically important class of receptors. PMID:23046381

  2. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    PubMed

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  3. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis.

    PubMed

    Miraoui, Hichem; Marie, Pierre J

    2010-11-02

    Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.

  4. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2more » hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.« less

  5. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  6. Genetics Home Reference: tumor necrosis factor receptor-associated periodic syndrome

    MedlinePlus

    ... Email Facebook Twitter Home Health Conditions TRAPS Tumor necrosis factor receptor-associated periodic syndrome Printable PDF Open ... to view the expand/collapse boxes. Description Tumor necrosis factor receptor-associated periodic syndrome (commonly known as ...

  7. Steroid hormone and epidermal growth factor receptors in meningiomas.

    PubMed

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  8. Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules.

    PubMed

    Bose, Bipasha; Shenoy P, Sudheer

    2016-02-01

    Muscle derived stem cells (MDSCs) are multipotent stem cells that can differentiate into several lineages including skeletal muscle precursor cells. Here, we show that MDSCs from myostatin null mice (Mstn (-/-) ) can be readily induced into pluripotent stem cells without using reprogramming factors. Microarray studies revealed a strong upregulation of markers like Leukemia Inhibitory factor (LIF) and Leukemia Inhibitory factor receptor (LIFR) in Mstn (-/-) MDSCs as compared to wild type MDSCs (WT-MDSCs). Furthermore when cultured in mouse embryonic stem cell media with LIF for 95 days, Mstn (-/-) MDSCs formed embryonic stem cell (ES) like colonies. We termed such ES like cells as the culture-induced pluripotent stem cells (CiPSC). CiPSCs from Mstn (-/-) MDSCs were phenotypically similar to ESCs, expressed high levels of Oct4, Nanog, Sox2 and SSEA-1, maintained a normal karyotype. Furthermore, CiPSCs formed embryoid bodies and teratomas when injected into immunocompromised mice. In addition, CiPSCs differentiated into somatic cells of all three lineages. We further show that culturing in ES cell media, resulted in hypermethylation and downregulation of BMP2 in Mstn(-/-) MDSCs. Western blot further confirmed a down regulation of BMP2 signaling in Mstn (-/-) MDSCs in supportive of pluripotent reprogramming. Given that down regulation of BMP2 has been shown to induce pluripotency in cells, we propose that lack of myostatin epigenetically reprograms the MDSCs to become pluripotent stem cells. Thus, here we report the successful establishment of ES-like cells from adult stem cells of the non-germline origin under culture-induced conditions without introducing reprogramming genes.

  9. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor.

    PubMed

    Gilmore, Andrew P; Valentijn, Anthony J; Wang, Pengbo; Ranger, Ann M; Bundred, Nigel; O'Hare, Michael J; Wakeling, Alan; Korsmeyer, Stanley J; Streuli, Charles H

    2002-08-02

    Novel cancer chemotherapeutics are required to induce apoptosis by activating pro-apoptotic proteins. Both epidermal growth factor (EGF) and insulin-like growth factor (IGF) provide potent survival stimuli in many epithelia, and activation of their receptors is commonly observed in solid human tumors. Here we demonstrate that blockade of the EGF receptor by a new drug in phase III clinical trails for cancer, ZD1839, potently induces apoptosis in mammary epithelial cell lines and primary cultures, as well as in a primary pleural effusion from a breast cancer patient. We identified the mechanism of apoptosis induction by ZD1839. We showed that it prevents cell survival by activating the pro-apoptotic protein BAD. Moreover, we demonstrate that IGF transactivates the EGF receptor and that ZD1839 blocks IGF-mediated phosphorylation of MAPK and BAD. Many cancer therapies kill tumor cells by inducing apoptosis as a consequence of targeting DNA; however, the threshold at which apoptosis can be triggered through DNA damage is often different from that in normal cells. Our results indicate that by targeting a growth factor-mediated survival signaling pathway, BAD phosphorylation can be manipulated therapeutically to induce apoptosis.

  10. Determination of the exact molecular requirements for type 1 angiotensin receptor epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy.

    PubMed

    Smith, Nicola J; Chan, Hsiu-Wen; Qian, Hongwei; Bourne, Allison M; Hannan, Katherine M; Warner, Fiona J; Ritchie, Rebecca H; Pearson, Richard B; Hannan, Ross D; Thomas, Walter G

    2011-05-01

    Major interest surrounds how angiotensin II triggers cardiac hypertrophy via epidermal growth factor receptor transactivation. G protein-mediated transduction, angiotensin type 1 receptor phosphorylation at tyrosine 319, and β-arrestin-dependent scaffolding have been suggested, yet the mechanism remains controversial. We examined these pathways in the most reductionist model of cardiomyocyte growth, neonatal ventricular cardiomyocytes. Analysis with [(32)P]-labeled cardiomyocytes, wild-type and [Y319A] angiotensin type 1 receptor immunoprecipitation and phosphorimaging, phosphopeptide analysis, and antiphosphotyrosine blotting provided no evidence for tyrosine phosphorylation at Y319 or indeed of the receptor, and mutation of Y319 (to A/F) did not prevent either epidermal growth factor receptor transactivation in COS-7 cells or cardiomyocyte hypertrophy. Instead, we demonstrate that transactivation and cardiomyocyte hypertrophy are completely abrogated by loss of G-protein coupling, whereas a constitutively active angiotensin type 1 receptor mutant was sufficient to trigger transactivation and growth in the absence of ligand. These results were supported by the failure of the β-arrestin-biased ligand SII angiotensin II to transactivate epidermal growth factor receptor or promote hypertrophy, whereas a β-arrestin-uncoupled receptor retained these properties. We also found angiotensin II-mediated cardiomyocyte hypertrophy to be attenuated by a disintegrin and metalloprotease inhibition. Thus, G-protein coupling, and not Y319 phosphorylation or β-arrestin scaffolding, is required for epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy via the angiotensin type 1 receptor.

  11. Neuronal expression of fibroblast growth factor receptors in zebrafish.

    PubMed

    Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah

    2013-12-01

    Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Genetics Home Reference: Stüve-Wiedemann syndrome

    MedlinePlus

    ... Changes Stüve-Wiedemann syndrome is usually caused by mutations in the LIFR gene. This gene provides instructions ... of the autonomic nervous system. Most LIFR gene mutations that cause Stüve-Wiedemann syndrome prevent production of ...

  13. Targeting the fibroblast growth factor receptors for the treatment of cancer.

    PubMed

    Lemieux, Steven M; Hadden, M Kyle

    2013-06-01

    Receptor tyrosine kinases (RTKs) are transmembrane proteins that play a critical role in stimulating signal transduction cascades to influence cell proliferation, growth, and differentiation and they have also been shown to promote angiogenesis when they are up-regulated or mutated. For this reason, their dysfunction has been implicated in the development of human cancer. Over the past decade, much attention has been devoted to developing inhibitors and antibodies against several classes of RTKs, including vascular endothelial growth factor receptors (VEGFRs), epidermal growth factor receptors (EGFRs), and platelet-derived growth factor receptors (PDGFRs). More recently, interest in the fibroblast growth factor receptor (FGFR) class of RTKs as a drug target for the treatment of cancer has emerged. Signaling through FGFRs is critical for normal cellular function and their dysregulation has been linked to various malignancies such as breast and prostate cancer. This review will focus on the current state of both small molecules and antibodies as FGFR inhibitors to provide insight into their development and future potential as anti-cancer agents.

  14. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system.

    PubMed

    Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A

    2004-08-01

    In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.

  15. Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer.

    PubMed

    Baker, Cheryl H; Solorzano, Carmen C; Fidler, Isaiah J

    2002-04-01

    We determined whether concurrent blockage of vascular endothelial growth factor (VEGF) receptor and epidermal growth factor (EGF) receptor signaling by two novel tyrosine kinase inhibitors, PTK 787 and PKI 166, respectively, can inhibit angiogenesis and, hence, the growth and metastasis of human pancreatic carcinoma in nude mice. Highly metastatic human pancreatic carcinoma L3.6pl cells were injected into the pancreas of nude mice. Seven days later, groups of mice began receiving oral doses of PTK 787 and PKI 166 three times weekly. Some groups of mice also received i.p. injections of gemcitabine twice a week. The mice were necropsied when the control mice became moribund. Treatment with PTK 787 and PKI 166, with gemcitabine alone, or with the combination of PTK 787, PKI 166, and gemcitabine produced 69, 50, and 97% reduction in the volume of pancreatic tumors, respectively. Administration of protein tyrosine kinase inhibitors and gemcitabine also significantly decreased the incidence of lymph node and liver metastasis. The therapeutic efficacy directly correlated with a decrease in circulating proangiogenic molecules (VEGF, interleukin-8), a decrease in microvessel density, a decrease in proliferating cell nuclear antigen staining, and an increase in apoptosis of tumor cells and endothelial cells. Therapies produced by combining gemcitabine with either PKI 166 or PTK 787 were similar to those produced by combining gemcitabine with both PKI 166 and PTK 787. These results suggest that blockade of either epidermal growth factor receptor or VEGF receptor signaling combined with chemotherapy provides an effective approach to the therapy of pancreatic cancer.

  16. Factors Modulating Estrogen Receptor Activity

    DTIC Science & Technology

    1997-07-01

    public release; distribution unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and should not be...TITLE AND SUBTITLE Activity Factors Modulating Estrogen Receptor 6. AUTHOR( S ) Michael J. Garabedian, Ph.D. 7. PERFORMING ORGANIZATION NAME( S ) AND...ADDRESS(ES) New York University Medical Center New York, New York 10016 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) Commander U.S

  17. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  18. Transforming growth factor-alpha short-circuits downregulation of the epidermal growth factor receptor.

    PubMed

    Ouyang, X; Gulliford, T; Huang, G; Epstein, R J

    1999-04-01

    Transforming growth factor-alpha (TGFalpha) is an epidermal growth factor receptor (EGFR) ligand which is distinguished from EGF by its acid-labile structure and potent transforming function. We recently reported that TGFalpha induces less efficient EGFR heterodimerization and downregulation than does EGF (Gulliford et al., 1997, Oncogene, 15:2219-2223). Here we use isoform-specific EGFR and ErbB2 antibodies to show that the duration of EGFR signalling induced by a single TGFalpha exposure is less than that induced by equimolar EGF. The protein trafficking inhibitor brefeldin A (BFA) reduces the duration of EGF signalling to an extent similar to that seen with TGFalpha alone; the effects of TGFalpha and BFA on EGFR degradation are opposite, however, with TGFalpha sparing EGFR from downregulation but BFA accelerating EGF-dependent receptor loss. This suggests that BFA blocks EGFR recycling and thus shortens EGF-dependent receptor signalling, whereas TGFalpha shortens receptor signalling and thus blocks EGFR downregulation. Consistent with this, repeated application of TGFalpha is accompanied by prolonged EGFR expression and signalling, whereas similar application of EGF causes receptor downregulation and signal termination. These findings indicate that constitutive secretion of pH-labile TGFalpha may perpetuate EGFR signalling by permitting early oligomer dissociation and dephosphorylation within acidic endosomes, thereby extinguishing a phosphotyrosine-based downregulation signal and creating an irreversible autocrine growth loop.

  19. Fibroblast growth factor receptors, developmental corruption and malignant disease.

    PubMed

    Kelleher, Fergal C; O'Sullivan, Hazel; Smyth, Elizabeth; McDermott, Ray; Viterbo, Antonella

    2013-10-01

    Fibroblast growth factors (FGF) are a family of ligands that bind to four different types of cell surface receptor entitled, FGFR1, FGFR2, FGFR3 and FGFR4. These receptors differ in their ligand binding affinity and tissue distribution. The prototypical receptor structure is that of an extracellular region comprising three immunoglobulin (Ig)-like domains, a hydrophobic transmembrane segment and a split intracellular tyrosine kinase domain. Alternative gene splicing affecting the extracellular third Ig loop also creates different receptor isoforms entitled FGFRIIIb and FGFRIIIc. Somatic fibroblast growth factor receptor (FGFR) mutations are implicated in different types of cancer and germline FGFR mutations occur in developmental syndromes particularly those in which craniosynostosis is a feature. The mutations found in both conditions are often identical. Many somatic FGFR mutations in cancer are gain-of-function mutations of established preclinical oncogenic potential. Gene amplification can also occur with 19-22% of squamous cell lung cancers for example having amplification of FGFR1. Ontologic comparators can be informative such as aberrant spermatogenesis being implicated in both spermatocytic seminomas and Apert syndrome. The former arises from somatic FGFR3 mutations and Apert syndrome arises from germline FGFR2 mutations. Finally, therapeutics directed at inhibiting the FGF/FGFR interaction are a promising subject for clinical trials.

  20. Renal atrial natriuretic factor receptors in hamster cardiomyopathy.

    PubMed

    Mukaddam-Daher, S; Jankowski, M; Dam, T V; Quillen, E W; Gutkowska, J

    1995-12-01

    Hamsters with cardiomyopathy (CMO), an experimental model of congestive heart failure, display stimulated renin-angiotensin-aldosterone and enhanced sympathetic nervous activity, all factors that lead to sodium retention, volume expansion and subsequent elevation of plasma atrial natriuretic factor (ANF) by the cardiac atria. However, sodium and water retention persist in CMO, indicating hyporesponsiveness to endogenous ANF. These studies were undertaken to fully characterize renal ANF receptor subtypes in normal hamsters and to evaluate whether alterations in renal ANF receptors may contribute to renal resistance to ANF in cardiomyopathy. Transcripts of the guanylyl cyclase-A (GC-A) and guanylyl cyclase B (GC-B) receptors were detected by quantitative polymerase chain reaction (PCR) in renal cortex, and outer and inner medullas. Compared to normal controls, the cardiomyopathic hamster's GC-A mRNA was similar in cortex but significantly increased in outer and inner medulla. Levels of GC-B mRNA were not altered by the disease. On the other hand, competitive binding studies, autoradiography, and affinity cross-linking demonstrated the absence of functional GC-B receptors in the kidney glomeruli and inner medulla. Also, C-type natriuretic peptide (CNP), the natural ligand for the GC-B receptors, failed to stimulate glomerular production of its second messenger cGMP. In CMO, sodium and water excretion were significantly reduced despite elevated plasma ANF (50.5 +/- 11.1 vs. 309.4 +/- 32.6 pg/ml, P < 0.001). Competitive binding studies of renal glomerular ANF receptors revealed no change in total receptor density, Bmax (369.6 +/- 27.4 vs. 282.8 +/- 26.2 fmol/mg protein), nor in dissociation constant, Kd (647.4 +/- 79.4 vs. 648.5 +/- 22.9 pM). Also, ANF-C receptor density (254.3 +/- 24.8 vs. 233.8 +/- 23.5 fmol/mg protein), nor affinity were affected by heart failure. Inner medullary receptors were exclusively of the GC-A subtype with Bmax (153.2 +/- 26.4 vs. 134

  1. Breast Cancer Risk Factors Defined by Estrogen and Progesterone Receptor Status

    PubMed Central

    Monroe, Kristine R.; Wilkens, Lynne R.; Kolonel, Laurence N.; Pike, Malcolm C.; Henderson, Brian E.

    2009-01-01

    Prospective data on ethnic differences in hormone receptor-defined subtypes of breast cancer and their risk factor profiles are scarce. The authors examined the joint distributions of estrogen receptor (ER) and progesterone receptor (PR) status across 5 ethnic groups and the associations of established risk factors with ER/PR status in the Multiethnic Cohort Study (Hawaii and Los Angeles, California). During an average of 10.4 years of follow-up of 84,427 women between 1993–1996 and 2004/2005, 2,543 breast cancer cases with data on ER/PR status were identified: 1,672 estrogen receptor-positive (ER+)/progesterone receptor-positive (PR+); 303 ER+/progesterone receptor-negative (PR−); 77 estrogen receptor-negative (ER−)/PR+; and 491 ER−/PR−. ER/PR status varied significantly across racial/ethnic groups even within the same tumor stage (for localized tumors, P < 0.0001; for advanced tumors, P = 0.01). The highest fraction of ER−/PR− tumors was observed in African Americans (31%), followed by Latinas (25%), Whites (18%), Japanese (14%), and Native Hawaiians (14%). Associations differed between ER+/PR+ and ER−/PR− cases for postmenopausal obesity (P = 0.02), age at menarche (P = 0.05), age at first birth (P = 0.04), and postmenopausal hormone use (P < 0.0001). African Americans are more likely to be diagnosed with ER−/PR− tumors independently of stage at diagnosis, and there are disparate risk factor profiles across the ER/PR subtypes of breast cancer. PMID:19318616

  2. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    PubMed Central

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  3. Tumor Necrosis Factor Receptor Levels Are Associated With Carotid Atherosclerosis

    PubMed Central

    Elkind, Mitchell S.; Cheng, Jianfeng; Boden-Albala, Bernadette; Rundek, Tanja; Thomas, Joyce; Chen, Hong; Rabbani, LeRoy E.; Sacco, Ralph L.

    2009-01-01

    Background and Purpose Recent evidence suggests that atherosclerosis is an inflammatory condition. Serum levels of inflammatory markers may serve as measures of the severity of atherosclerosis and risk of stroke. We sought to determine whether tumor necrosis factor-α (TNF-α) and TNF receptor levels are associated with carotid plaque thickness. Methods The Northern Manhattan Stroke Study is a community-based study of stroke risk factors. For this cross-sectional analysis, inflammatory marker levels, including TNF-α and TNF receptors 1 and 2, were measured by immunoassay in stroke-free community subjects undergoing carotid duplex Doppler ultrasound. Maximal carotid plaque thickness (MCPT) was measured for each subject. Analyses were stratified by age <70 and ≥70 years. Simple and multiple linear regression analyses were used to calculate the association between marker levels and MCPT. Multiple logistic regression was used to calculate odds ratios and 95% CIs for the association of inflammatory markers with MCPT ≥1.5 mm (>75th percentile), after adjustment for demographic and potential medical confounding factors. Results The mean age of the 279 subjects was 67.6±8.5 years; 49% were men; 63% were Hispanic, 17% black, and 17% white. Mean values for TNF-α and its receptors were as follows: TNF-α, 1.88±3.97 ng/mL; TNF receptor 1, 2.21±0.99 ng/mL; and TNF receptor 2, 4.85±2.23 ng/mL. Mean MCPT was elevated in those in the highest quartiles compared with lowest quartiles of TNF receptor 1 and 2 (1.24 versus 0.79 mm and 1.23 versus 0.80 mm, respectively). Among those aged <70 years, TNF receptor 1 and 2 were associated with an increase in MCPT (mean difference=0.36 mm, P=0.01 for TNF receptor 1 and mean difference=0.10 mm, P=0.04 for TNF receptor 2). After adjustment for sex, race-ethnicity, hypertension, diabetes mellitus, LDL cholesterol, smoking, and body mass index, associations remained (mean difference=0.36 mm, P=0.001 for TNF receptor 1 and mean

  4. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  5. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    PubMed

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  6. Inhibiting the Epidermal Growth Factor Receptor | Center for Cancer Research

    Cancer.gov

    The Epidermal Growth Factor Receptor (EGFR) is a widely distributed cell surface receptor that responds to several extracellular signaling molecules through an intracellular tyrosine kinase, which phosphorylates target enzymes to trigger a downstream molecular cascade. Since the discovery that EGFR mutations and amplifications are critical in a number of cancers, efforts have

  7. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions

    PubMed Central

    Rajasekaran, Deepa; Gröning, Sabine; Schmitz, Corinna; Zierow, Swen; Drucker, Natalie; Bakou, Maria; Kohl, Kristian; Mertens, André; Lue, Hongqi; Weber, Christian; Xiao, Annie; Luker, Gary; Kapurniotu, Aphrodite; Lolis, Elias; Bernhagen, Jürgen

    2016-01-01

    An emerging number of non-chemokine mediators are found to bind to classical chemokine receptors and to elicit critical biological responses. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that exhibits chemokine-like activities through non-cognate interactions with the chemokine receptors CXCR2 and CXCR4, in addition to activating the type II receptor CD74. Activation of the MIF-CXCR2 and -CXCR4 axes promotes leukocyte recruitment, mediating the exacerbating role of MIF in atherosclerosis and contributing to the wealth of other MIF biological activities. Although the structural basis of the MIF-CXCR2 interaction has been well studied and was found to engage a pseudo-ELR and an N-like loop motif, nothing is known about the regions of CXCR4 and MIF that are involved in binding to each other. Using a genetic strain of Saccharomyces cerevisiae that expresses a functional CXCR4 receptor, site-specific mutagenesis, hybrid CXCR3/CXCR4 receptors, pharmacological reagents, peptide array analysis, chemotaxis, fluorescence spectroscopy, and circular dichroism, we provide novel molecular information about the structural elements that govern the interaction between MIF and CXCR4. The data identify similarities with classical chemokine-receptor interactions but also provide evidence for a partial allosteric agonist compared with CXCL12 that is possible due to the two binding sites of CXCR4. PMID:27226569

  8. Gab-family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors.

    PubMed

    Hibi, M; Hirano, T

    2000-04-01

    Gab1 and Gab2 (Grb2 associated binder 1 and 2) are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a potential substrate for the protein tyrosine phosphatase, Corkscrew, Both Gab1 and Gab2, like DOS, have a pleckstrin homology domain and potential binding sites for SH2 and SH3 domains. Gab1 and Gab2 are phosphorylated on tyrosine upon the stimulation of various cytokines, growth factors, and antigen receptors, and interact with signaling molecules, such as Grb2, SHP-2, and PI-3 kinase. Overexpression of Gab1 or Gab2 mimics or enhances growth factor or cytokine-mediated biological processes and activates ERK MAP kinase. These data imply that Gab1 and Gab2 act downstream of a broad range of cytokine and growth factor receptors, as well as T and B antigen receptors, and link these receptors to ERK MAP kinase and biological actions.

  9. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    PubMed

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  10. Harnessing tumor necrosis factor receptors to enhance antitumor activities of drugs.

    PubMed

    Muntané, Jordi

    2011-10-17

    Cancer is the second-leading cause of death in the U.S. behind heart disease and over stroke. The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The inhibition of cell death pathways is one of these tumor characteristics which also include sustained proliferative signaling, evading growth suppressor signaling, replicative immortality, angiogenesis, and promotion of invasion and metastasis. Cell death is mediated through death receptor (DR) stimulation initiated by specific ligands that transmit signaling to the cell death machinery or through the participation of mitochondria. Cell death involving DR is mediated by the superfamily of tumor necrosis factor receptor (TNF-R) which includes TNF-R type I, CD95, DR3, TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 (TRAIL-R1) and -2 (TRAIL-R2), DR6, ectodysplasin A (EDA) receptor (EDAR), and the nerve growth factor (NGF) receptor (NGFR). The expression of these receptors in healthy and tumor cells induces treatment side effects that limit the systemic administration of cell death-inducing therapies. The present review is focused on the different therapeutic strategies such as targeted antibodies or small molecules addressed to selective stimulated DR-mediated apoptosis or reduce cell proliferation in cancer cells.

  11. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    PubMed Central

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  12. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach

    PubMed Central

    Samkoe, Kimberley S.; Tichauer, Kenneth M.; Gunn, Jason R.; Wells, Wendy A.; Hasan, Tayyaba; Pogue, Brian W.

    2014-01-01

    As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant, therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry. Using multiple xenograft tumor models with varying epidermal growth factor receptor (EGFR) expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored immunohistochemistry and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot or in vitro flow cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immuno-staining, with implications for use in non-invasive monitoring of therapy or therapeutic guidance during surgery. PMID:25344226

  13. Transformation-specific interaction of the bovine papillomavirus E5 oncoprotein with the platelet-derived growth factor receptor transmembrane domain and the epidermal growth factor receptor cytoplasmic domain.

    PubMed Central

    Cohen, B D; Goldstein, D J; Rutledge, L; Vass, W C; Lowy, D R; Schlegel, R; Schiller, J T

    1993-01-01

    The bovine papillomavirus E5 transforming protein appears to activate both the epidermal growth factor receptor (EGF-R) and the platelet-derived growth factor receptor (PDGF-R) by a ligand-independent mechanism. To further investigate the ability of E5 to activate receptors of different classes and to determine whether this stimulation occurs through the extracellular domain required for ligand activation, we constructed chimeric genes encoding PDGF-R and EGF-R by interchanging the extracellular, membrane, and cytoplasmic coding domains. Chimeras were transfected into NIH 3T3 and CHO(LR73) cells. All chimeras expressed stable protein which, upon addition of the appropriate ligand, could be activated as assayed by tyrosine autophosphorylation and biological transformation. Cotransfection of E5 with the wild-type and chimeric receptors resulted in the ligand-independent activation of receptors, provided that a receptor contained either the transmembrane domain of the PDGF-R or the cytoplasmic domain of the EGF-R. Chimeric receptors that contained both of these domains exhibited the highest level of E5-induced biochemical and biological stimulation. These results imply that E5 activates the PDGF-R and EGR-R by two distinct mechanisms, neither of which specifically involves the extracellular domain of the receptor. Consistent with the biochemical and biological activation data, coimmunoprecipitation studies demonstrated that E5 formed a complex with any chimera that contained a PDGF-R transmembrane domain or an EGF-R cytoplasmic domain, with those chimeras containing both domains demonstrating the greatest efficiency of complex formation. These results suggest that although different domains of the PDGF-R and EGF-R are required for E5 activation, both receptors are activated directly by formation of an E5-containing complex. Images PMID:8394451

  14. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling

    PubMed Central

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2017-01-01

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr52, which then promoted the dephosphorylation of CAR at Thr38 by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR. PMID:23652203

  15. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    PubMed

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  16. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2007-03-01

    Fibroblast growth factor receptors (Fgfrs) are expressed in the ureteric bud and metanephric mesenchyme of the developing kidney. Furthermore, in vitro and in vivo studies have shown that exogenous fibroblast growth factors (Fgfs) increase growth and maturation of the metanephric mesenchyme and ureteric bud. Deletion of fgf7, fgf10, and fgfr2IIIb (the receptor isoform that binds Fgf7 and Fgf10) in mice lead to smaller kidneys with fewer collecting ducts and nephrons. Overexpression of a dominant negative receptor isoform in transgenic mice has revealed more striking defects including renal aplasia or severe dysplasia. Moreover, deletion of many fgf ligands and receptors in mice results in early embryonic lethality, making it difficult to determine their roles in kidney development. Recently, conditional targeting approaches revealed that deletion of fgf8 from the metanephric mesenchyme interrupts nephron formation. Furthermore, deletion of fgfr2 from the ureteric bud resulted in both ureteric bud branching and stromal mesenchymal patterning defects. Deletion of both fgfr1 and fgfr2 in the metanephric mesenchyme resulted in renal aplasia, characterized by defects in metanephric mesenchyme formation and initial ureteric bud elongation and branching. Thus, Fgfr signaling is critical for growth and patterning of all renal lineages at early and later stages of kidney development.

  17. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    PubMed

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  18. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  19. Atrial natriuretic factor receptor heterogeneity in rat tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andresen, J.W.; Kuno, T.; Kamisaki, Y.

    1986-03-01

    Rat /sup 125/I-atrial natriuretic factor (ANF, 8-33) was used to identify ANF receptors in membrane preparations from rat adrenal gland and lung. When solubilized with Lubrol-PX, the receptors retained a binding profile and properties that correspond to the high affinity and specificity found in crude membranes. Single peaks of binding activity were observed in gel permeation HPLC and density gradient centrifugation analysis of the solubilized preparations. However, when membranes and solubilized preparations were labeled with /sup 125/I-ANF, treated with crosslinking reagent (disuccinimidyl suberate), and analyzed by SDS gel electrophoresis several specifically labeled bands (120,000, 70,000, and 60,000 daltons) were identifiedmore » by autoradiography. The relative distribution of the specifically labeled proteins varied significantly between rat adrenal gland and lung. In adrenal glands the 120K dalton band was the most prominent specifically labeled protein, while the 60K and 70K dalton proteins were labeled to a lesser degree. In lung membranes the lower molecular weight proteins were more prominent. These results suggest the presence of multiple ANF receptor subtypes, the distribution of which varies among tissues. Chromatographic separation and further characterization of these receptors are currently in progress, and preliminary purification studies support this hypothesis.« less

  20. TNF Receptor 2 Makes Tumor Necrosis Factor a Friend of Tumors

    PubMed Central

    Sheng, Yuqiao; Li, Feng; Qin, Zhihai

    2018-01-01

    Tumor necrosis factor (TNF) is widely accepted as a tumor-suppressive cytokine via its ubiquitous receptor TNF receptor 1 (TNFR1). The other receptor, TNFR2, is not only expressed on some tumor cells but also on suppressive immune cells, including regulatory T cells and myeloid-derived suppressor cells. In contrast to TNFR1, TNFR2 diverts the tumor-inhibiting TNF into a tumor-advocating factor. TNFR2 directly promotes the proliferation of some kinds of tumor cells. Also activating immunosuppressive cells, it supports immune escape and tumor development. Hence, TNFR2 may represent a potential target of cancer therapy. Here, we focus on expression and role of TNFR2 in the tumor microenvironment. We summarize the recent progress in understanding how TNFR2-dependent mechanisms promote carcinogenesis and tumor growth and discuss the potential value of TNFR2 in cancer treatment. PMID:29892300

  1. The ubiquitin ligase Nedd4 mediates oxidized low-density lipoprotein-induced downregulation of insulin-like growth factor-1 receptor

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Parthasarathy, Sampath; Delafontaine, Patrice

    2008-01-01

    Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 μg/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2 ± 1.7 h from 24.4 ± 4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. PMID:18723765

  2. Structure of nerve growth factor complexed with the shared neurotrophin receptor p75.

    PubMed

    He, Xiao-Lin; Garcia, K Christopher

    2004-05-07

    Neurotrophins are secreted growth factors critical for the development and maintenance of the vertebrate nervous system. Neurotrophins activate two types of cell surface receptors, the Trk receptor tyrosine kinases and the shared p75 neurotrophin receptor. We have determined the 2.4 A crystal structure of the prototypic neurotrophin, nerve growth factor (NGF), complexed with the extracellular domain of p75. Surprisingly, the complex is composed of an NGF homodimer asymmetrically bound to a single p75. p75 binds along the homodimeric interface of NGF, which disables NGF's symmetry-related second p75 binding site through an allosteric conformational change. Thus, neurotrophin signaling through p75 may occur by disassembly of p75 dimers and assembly of asymmetric 2:1 neurotrophin/p75 complexes, which could potentially engage a Trk receptor to form a trimolecular signaling complex.

  3. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8.

    PubMed

    Auciello, Giulio; Cunningham, Debbie L; Tatar, Tulin; Heath, John K; Rappoport, Joshua Z

    2013-01-15

    Fibroblast growth factor receptors (FGFRs) mediate a wide spectrum of cellular responses that are crucial for development and wound healing. However, aberrant FGFR activity leads to cancer. Activated growth factor receptors undergo stimulated endocytosis, but can continue to signal along the endocytic pathway. Endocytic trafficking controls the duration and intensity of signalling, and growth factor receptor signalling can lead to modifications of trafficking pathways. We have developed live-cell imaging methods for studying FGFR dynamics to investigate mechanisms that coordinate the interplay between receptor trafficking and signal transduction. Activated FGFR enters the cell following recruitment to pre-formed clathrin-coated pits (CCPs). However, FGFR activation stimulates clathrin-mediated endocytosis; FGF treatment increases the number of CCPs, including those undergoing endocytosis, and this effect is mediated by Src and its phosphorylation target Eps8. Eps8 interacts with the clathrin-mediated endocytosis machinery and depletion of Eps8 inhibits FGFR trafficking and immediate Erk signalling. Once internalized, FGFR passes through peripheral early endosomes en route to recycling and degredative compartments, through an Src- and Eps8-dependent mechanism. Thus Eps8 functions as a key coordinator in the interplay between FGFR signalling and trafficking. This work provides the first detailed mechanistic analysis of growth factor receptor clustering at the cell surface through signal transduction and endocytic trafficking. As we have characterised the Src target Eps8 as a key regulator of FGFR signalling and trafficking, and identified the early endocytic system as the site of Eps8-mediated effects, this work provides novel mechanistic insight into the reciprocal regulation of growth factor receptor signalling and trafficking.

  4. Soluble tumor necrosis factor receptor-1 in preterm infants with chronic lung disease.

    PubMed

    Sato, Miho; Mori, Masaaki; Nishimaki, Shigeru; An, Hiromi; Naruto, Takuya; Sugai, Toshiyuki; Shima, Yoshio; Seki, Kazuo; Yokota, Shumpei

    2010-04-01

    It is clear that inflammation plays an important role in developing chronic lung disease in preterm infants. The purpose of the present study is to investigate changes of serum soluble tumor necrosis factor receptor-1 levels over time in infants with chronic lung disease. The serum levels of soluble tumor necrosis factor receptor-1 were measured after delivery, and at 7, 14, 21 and 28 days of age in 10 infants with chronic lung disease and in 18 infants without chronic lung disease. The serum level of soluble tumor necrosis factor receptor-1 was significantly higher in infants with chronic lung disease than in infants without chronic lung disease after delivery. The differences between these two groups remained up to 28 days of age. Prenatal inflammation with persistence into postnatal inflammation may be involved in the onset of chronic lung disease.

  5. Emerging growth factor receptor antagonists for the treatment of renal cell carcinoma.

    PubMed

    Zahoor, Haris; Rini, Brian I

    2016-12-01

    The landscape of systemic treatment for metastatic renal cell carcinoma (RCC) has dramatically changed with the introduction of targeted agents including vascular endothelial growth factor (VEGF) inhibitors. Recently, multiple new agents including growth factor receptor antagonists and a checkpoint inhibitor were approved for the treatment of refractory metastatic RCC based on encouraging benefit shown in clinical trials. Areas covered: The background and biological rationale of existing treatment options including a brief discussion of clinical trials which led to their approval, is presented. This is followed by reviewing the limitations of these therapeutic options, medical need to develop new treatments and major goals of ongoing research. We then discuss two recently approved growth factor receptor antagonists i.e. cabozantinib and lenvatinib, and a recently approved checkpoint inhibitor, nivolumab, and issues pertaining to drug development, and future directions in treatment of metastatic RCC. Expert opinion: Recently approved growth factor receptor antagonists have shown encouraging survival benefit but associated drug toxicity is a major issue. Nivolumab, a programmed death 1 (PD-1) checkpoint inhibitor, has similarly shown survival benefit and is well tolerated. With multiple options now available in this patient population, the right sequence of these agents remains to be determined.

  6. The relationship between somatostatin, epidermal growth factor, and steroid hormone receptors in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reubi, J.C.; Torhorst, J.

    1989-09-15

    The somatostatin (SS) and the epidermal growth factor (EGF) receptor content have been established in 36 primary breast cancers by receptor autoradiography on adjacent tissue sections. Iodine 125 (125I)-EGF was used as radioligand for EGF receptor visualization whereas an iodinated SS-28 analogue or an octapeptide SS analogue were used to measure SS receptors. Six of 36 tumors contained SS receptors, whereas ten of the 36 tumors were shown to contain EGF receptors. None of the tumor samples containing SS receptors were simultaneously EGF receptor positive. In contrast, all SS receptor-positive tumors simultaneously contained steroid receptors. The positive correlation between SSmore » receptors and steroid receptors as well as the negative correlation between SS receptors and EGF receptors therefore suggest that the small percentage of SS receptor-positive breast tumors are a group of differentiated breast tumors with a good prognosis. In these cases, combined hormonetherapy including SS analogs may be of potential interest.« less

  7. Cardioprotective Role of Tumor Necrosis Factor Receptor-Associated Factor 2 by Suppressing Apoptosis and Necroptosis.

    PubMed

    Guo, Xiaoyun; Yin, Haifeng; Li, Lei; Chen, Yi; Li, Jing; Doan, Jessica; Steinmetz, Rachel; Liu, Qinghang

    2017-08-22

    Programmed cell death, including apoptosis, mitochondria-mediated necrosis, and necroptosis, is critically involved in ischemic cardiac injury, pathological cardiac remodeling, and heart failure progression. Whereas apoptosis and mitochondria-mediated necrosis signaling is well established, the regulatory mechanisms of necroptosis and its significance in the pathogenesis of heart failure remain elusive. We examined the role of tumor necrosis factor receptor-associated factor 2 (Traf2) in regulating myocardial necroptosis and remodeling using genetic mouse models. We also performed molecular and cellular biology studies to elucidate the mechanisms by which Traf2 regulates necroptosis signaling. We identified a critical role for Traf2 in myocardial survival and homeostasis by suppressing necroptosis. Cardiac-specific deletion of Traf2 in mice triggered necroptotic cardiac cell death, pathological remodeling, and heart failure. Plasma tumor necrosis factor α level was significantly elevated in Traf2 -deficient mice, and genetic ablation of TNFR1 largely abrogated pathological cardiac remodeling and dysfunction associated with Traf2 deletion. Mechanistically, Traf2 critically regulates receptor-interacting proteins 1 and 3 and mixed lineage kinase domain-like protein necroptotic signaling with the adaptor protein tumor necrosis factor receptor-associated protein with death domain as an upstream regulator and transforming growth factor β-activated kinase 1 as a downstream effector. It is important to note that genetic deletion of RIP3 largely rescued the cardiac phenotype triggered by Traf2 deletion, validating a critical role of necroptosis in regulating pathological remodeling and heart failure propensity. These results identify an important Traf2-mediated, NFκB-independent, prosurvival pathway in the heart by suppressing necroptotic signaling, which may serve as a new therapeutic target for pathological remodeling and heart failure. © 2017 American Heart

  8. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normalmore » epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers.« less

  9. Expression of transforming growth factor alpha and epidermal growth factor receptor messenger RNA in neoplastic and nonneoplastic human kidney tissue.

    PubMed

    Mydlo, J H; Michaeli, J; Cordon-Cardo, C; Goldenberg, A S; Heston, W D; Fair, W R

    1989-06-15

    Using Northern blot analysis, we have demonstrated that mRNA for transforming growth factor alpha (TGF-alpha) was expressed in five malignant kidney tissue specimens but was not detected in their autologous nonneoplastic homologues. In addition, the expression of epidermal growth factor (EGF) receptor mRNA in these malignant tissues was 2- to 3-fold greater than in nontransformed tissues. In two cases examined using immunohistochemistry, we were able to correlate the increased expression of the mRNA with an increase in protein expression. Since TGF-alpha is known to bind to the EGF receptor, the finding of an increased expression of both TGF-alpha and EGF receptor mRNA in kidney tumor tissue suggests that interaction between TGF-alpha and the EGF receptor may play a role in promoting transformation and/or proliferation of kidney neoplasms, perhaps by an autocrine mechanism.

  10. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  11. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.

  12. EphA2 is a functional receptor for the growth factor progranulin.

    PubMed

    Neill, Thomas; Buraschi, Simone; Goyal, Atul; Sharpe, Catherine; Natkanski, Elizabeth; Schaefer, Liliana; Morrione, Andrea; Iozzo, Renato V

    2016-12-05

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. © 2016 Neill et al.

  13. EphA2 is a functional receptor for the growth factor progranulin

    PubMed Central

    Neill, Thomas; Goyal, Atul; Sharpe, Catherine

    2016-01-01

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. PMID:27903606

  14. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    PubMed

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  15. Anticancer molecules targeting fibroblast growth factor receptors.

    PubMed

    Liang, Guang; Liu, Zhiguo; Wu, Jianzhang; Cai, Yuepiao; Li, Xiaokun

    2012-10-01

    The fibroblast growth factor receptor (FGFR) family includes four highly conserved receptor tyrosine kinases: FGFR1-4. Upon ligand binding, FGFRs activate an array of downstream signaling pathways, such as the mitogen activated protein kinase (MAPK) and the phosphoinositide-3-kinase (PI3K)/Akt pathways. These FGFR cascades play crucial roles in tumor cell proliferation, angiogenesis, migration, and survival. The combination of knockdown studies and pharmaceutical inhibition in preclinical models demonstrates that FGFRs are attractive targets for therapeutic intervention in cancer. Multiple FGFR inhibitors with various structural skeletons have been designed, synthesized, and evaluated. Reviews on FGFRs have recently focused on FGFR signaling, pathophysiology, and functions in cancer or other diseases. In this article, we review recent advances in structure-activity relationships (SAR) of FGFR inhibitors, as well as the FGFR-targeting drug design strategies currently employed in targeting deregulated FGFRs by antibodies and small molecule inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Up-regulation of proproliferative genes and the ligand/receptor pair placental growth factor and vascular endothelial growth factor receptor 1 in hepatitis C cirrhosis.

    PubMed

    Huang, Xiao X; McCaughan, Geoffrey W; Shackel, Nicholas A; Gorrell, Mark D

    2007-09-01

    Cirrhosis can lead to hepatocellular carcinoma (HCC). Non-diseased liver and hepatitis C virus (HCV)-associated cirrhosis with or without HCC were compared. Proliferation pathway genes, immune response genes and oncogenes were analysed by a quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunostaining. Real-time RT-PCR showed up-regulation of genes in HCV cirrhosis including the proliferation-associated genes bone morphogenetic protein 3 (BMP3), placental growth factor 3 (PGF3), vascular endothelial growth factor receptor 1 (VEGFR1) and soluble VEGFR1, the oncogene FYN, and the immune response-associated genes toll-like receptor 9 (TLR9) and natural killer cell transcript 4 (NK4). Expressions of TLR2 and the oncogenes B-cell CLL/lymphoma 9 (BCL9) and PIM2 were decreased in HCV cirrhosis. In addition, PIM2 and TLR2 were increased in HCV cirrhosis with HCC compared with HCV cirrhosis. The ligand/receptor pair PGF and VEGFR1 was intensely expressed by the portal tract vascular endothelium. VEGFR1 was expressed in reactive biliary epithelial structures in fibrotic septum and in some stellate cells and macrophages. PGF and VEGFR1 may have an important role in the pathogenesis of the neovascular response in cirrhosis.

  17. Isoforms of receptors of fibroblast growth factors.

    PubMed

    Gong, Siew-Ging

    2014-12-01

    The breadth and scope of Fibroblast Growth Factor signaling is immense, with documentation of its role in almost every organism and system studied so far. FGF ligands signal through a family of four distinct tyrosine kinase receptors, the FGF receptors (FGFRs). One contribution to the diversity of function and signaling of FGFs and their receptors arises from the numerous alternative splicing variants that have been documented in the FGFR literature. The present review discusses the types and roles of alternatively spliced variants of the FGFR family members and the significant impact of alternative splicing on the physiological functions of five broad classes of FGFR isoforms. Some characterized known regulatory mechanisms of alternative splicing and future directions in studies of FGFR alternative splicing are also discussed. Presence, absence, and/or the combination of specific exons within each FGFR protein impart upon each individual isoform its unique function and expression pattern during normal function and in diseased states (e.g., in cancers and birth defects). A better understanding of the diversity of FGF signaling in different developmental contexts and diseased states can be achieved through increased knowledge of the presence of specific FGFR isoforms and their impact on downstream signaling and functions. Modern high-throughput techniques afford an opportunity to explore the distribution and function of isoforms of FGFR during development and in diseases. © 2014 Wiley Periodicals, Inc.

  18. Carboxyl‐terminal Heparin‐binding Fragments of Platelet Factor 4 Retain the Blocking Effect on the Receptor Binding of Basic Fibroblast Growth Factor

    PubMed Central

    Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie

    1993-01-01

    Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164

  19. Biosynthesis and intracellular transport of the receptor for platelet-derived growth factor.

    PubMed Central

    Claesson-Welsh, L; Rönnstrand, L; Heldin, C H

    1987-01-01

    The biosynthesis of the receptor for platelet-derived growth factor (PDGF) was examined in metabolically labeled human foreskin fibroblasts. The receptor was synthesized as a 145-kDa precursor, which, when incubated with endo-beta-N-acetylglucosaminidase H (endo H), underwent a 15-kDa decrease in molecular mass. This indicates that the size of the core protein is about 130 kDa and that the 145-kDa form represents a receptor precursor carrying high-mannose N-linked oligosaccharide groups. Within 15 min after synthesis, the receptor was converted to a 165-kDa form. This form was entirely resistant to endo H treatment and probably represents a receptor molecule that has undergone further posttranslational modification, including O-linked glycosylation. Subsequently, within 30 min, a molecule of 170 kDa--i.e., the size of the mature receptor--appeared. A slightly larger molecule, of 175 kDa, which could be immunoprecipitated from PDGF-stimulated 32P-labeled cells, probably represents a receptor further modified by autophosphorylation. The 170-kDa molecule had an isoelectric point of about 4.5. Addition of PDGF increased the turnover rate of the 170-kDa PDGF receptor. Images PMID:2827155

  20. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  1. Selective binding and oligomerization of the murine granulocyte colony-stimulating factor receptor by a low molecular weight, nonpeptidyl ligand.

    PubMed

    Doyle, Michael L; Tian, Shin-Shay; Miller, Stephen G; Kessler, Linda; Baker, Audrey E; Brigham-Burke, Michael R; Dillon, Susan B; Duffy, Kevin J; Keenan, Richard M; Lehr, Ruth; Rosen, Jon; Schneeweis, Lumelle A; Trill, John; Young, Peter R; Luengo, Juan I; Lamb, Peter

    2003-03-14

    Granulocyte colony-stimulating factor regulates neutrophil production by binding to a specific receptor, the granulocyte colony-stimulating factor receptor, expressed on cells of the granulocytic lineage. Recombinant forms of granulocyte colony-stimulating factor are used clinically to treat neutropenias. As part of an effort to develop granulocyte colony-stimulating factor mimics with the potential for oral bioavailability, we previously identified a nonpeptidyl small molecule (SB-247464) that selectively activates murine granulocyte colony-stimulating factor signal transduction pathways and promotes neutrophil formation in vivo. To elucidate the mechanism of action of SB-247464, a series of cell-based and biochemical assays were performed. The activity of SB-247464 is strictly dependent on the presence of zinc ions. Titration microcalorimetry experiments using a soluble murine granulocyte colony-stimulating factor receptor construct show that SB-247464 binds to the extracellular domain of the receptor in a zinc ion-dependent manner. Analytical ultracentrifugation studies demonstrate that SB-247464 induces self-association of the N-terminal three-domain fragment in a manner that is consistent with dimerization. SB-247464 induces internalization of granulocyte colony-stimulating factor receptor on intact cells, consistent with a mechanism involving receptor oligomerization. These data show that small nonpeptidyl compounds are capable of selectively binding and inducing productive oligomerization of cytokine receptors.

  2. Tumor necrosis factor receptor-associated factor 6 (TRAF6) participates in anti-lipopolysaccharide factors (ALFs) gene expression in mud crab.

    PubMed

    Sun, Wan-Wei; Zhang, Xin-Xu; Wan, Wei-Song; Wang, Shu-Qi; Wen, Xiao-Bo; Zheng, Huai-Ping; Zhang, Yue-Ling; Li, Sheng-Kang

    2017-02-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a key cytoplasm signal adaptor that mediates signals activated by tumor necrosis factor receptor (TNFR) superfamily and the Interleukin-1 receptor/Toll-like receptor (IL-1/TLR) superfamily. The full-length 2492 bp TRAF6 (Sp-TRAF6) from Scylla paramamosain contains 1800 bp of open reading frame (ORF) encoding 598 amino acids, including an N-terminal RING-type zinc finger, two TRAF-type zinc fingers and a conserved C-terminal meprin and TRAF homology (MATH) domain. Multiple alignment analysis shows that the putative amino acid sequence of Sp-TRAf6 has highest identity of 88% with Pt-TRAF6 from Portunus trituberculatus, while the similarity of Sp-TRAF6 with other crustacean sequences was 54-55%. RT-PCR analysis indicated that Sp-TRAF6 transcripts were predominantly expressed in the hepatopancreas and stomach, whereas it was barely detected in the heart and hemocytes in our study. Moreover, Sp-TRAF6 transcripts were significantly up-regulated after Vibrio parahemolyticus and LPS challenges. RNA interference assay was carried out used by siRNA to investigate the genes expression patterns regulated by Sp-TRAF6. The qRT-PCR results showed that silencing Sp-TRAF6 gene could inhibit SpALF1, SpALF2, SpALF5 and SpALF6 expression in hemocytes, while inhibit SpALF1, SpALF3, SpALF4, SpALF5 and SpALF6 expression in hepatopancreas. Taken together, the acute-phase response to immune challenges and the inhibition of SpALFs gene expression indicate that Sp-TRAF6 plays an important role in host defense against pathogen invasions via regulation of ALF gene expression in S. paramamosain. Copyright © 2016. Published by Elsevier Ltd.

  3. Decoding Corticotropin-Releasing Factor Receptor Type 1 Crystal 
Structures

    PubMed Central

    Doré, Andrew S.; Bortolato, Andrea; Hollenstein, Kaspar; Cheng, Robert K.Y.; Read, Randy J.; Marshall, Fiona H.

    2017-01-01

    The structural analysis of class B G protein-coupled receptors (GPCR), cell surface proteins responding to peptide hormones, has until recently been restricted to the extracellular domain (ECD). Cor-ticotropin-releasing factor receptor type 1 (CRF1R) is a class B receptor mediating stress response and also considered a drug target for depression and anxiety. Here we report the crystal structure of the trans-membrane domain of human CRF1R in complex with the small-molecule antagonist CP-376395 in a hex-agonal setting with translational non-crystallographic symmetry. Molecular dynamics and metadynamics simulations on this novel structure and the existing TMD structure for CRF1R provides insight as to how the small molecule ligand gains access to the induced-fit allosteric binding site with implications for the observed selectivity against CRF2R. Furthermore, molecular dynamics simulations performed using a full-length receptor model point to key interactions between the ECD and extracellular loop 3 of the TMD providing insight into the full inactive state of multidomain class B GPCRs. PMID:28183242

  4. Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia.

    PubMed

    Cho, Jay Y; Guo, Changsheng; Torello, Monica; Lunstrum, Gregory P; Iwata, Tomoko; Deng, Chuxia; Horton, William A

    2004-01-13

    Mutations of fibroblast growth factor receptor 3 (FGFR3) are responsible for achondroplasia (ACH) and related dwarfing conditions in humans. The pathogenesis involves constitutive activation of FGFR3, which inhibits proliferation and differentiation of growth plate chondrocytes. Here we report that activating mutations in FGFR3 increase the stability of the receptor. Our results suggest that the mutations disrupt c-Cbl-mediated ubiquitination that serves as a targeting signal for lysosomal degradation and termination of receptor signaling. The defect allows diversion of actively signaling receptors from lysosomes to a recycling pathway where their survival is prolonged, and, as a result, their signaling capacity is increased. The lysosomal targeting defect is additive to other mechanisms proposed to explain the pathogenesis of ACH.

  5. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-09-01

    Fibroblast growth factor receptors (Fgfrs) are expressed throughout the developing kidney. Several early studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB). Transgenic mice that over-express a dominant negative receptor isoform develop renal aplasia/severe dysplasia, confirming the importance of Fgfrs in renal development. Furthermore, global deletion of Fgf7, Fgf10, and Fgfr2IIIb (isoform that binds Fgf7 and Fgf10) in mice leads to small kidneys with fewer collecting ducts and nephrons. Deletion of Fgfrl1, a receptor lacking intracellular signaling domains, causes severe renal dysgenesis. Conditional targeting of Fgf8 from the MM interrupts nephron formation. Deletion of Fgfr2 from the UB results in severe ureteric branching and stromal mesenchymal defects, although loss of Frs2α (major signaling adapter for Fgfrs) in the UB causes only mild renal hypoplasia. Deletion of both Fgfr1 and Fgfr2 in the MM results in renal aplasia with defects in MM formation and initial UB elongation and branching. Loss of Fgfr2 in the MM leads to many renal and urinary tract anomalies as well as vesicoureteral reflux. Thus, Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  6. The DNA replication licensing factor miniature chromosome maintenance 7 is essential for RNA splicing of epidermal growth factor receptor, c-Met, and platelet-derived growth factor receptor.

    PubMed

    Chen, Zhang-Hui; Yu, Yan P; Michalopoulos, George; Nelson, Joel; Luo, Jian-Hua

    2015-01-16

    Miniature chromosome maintenance 7 (MCM7) is an essential component of DNA replication licensing complex. Recent studies indicate that MCM7 is amplified and overexpressed in a variety of human malignancies. In this report, we show that MCM7 binds SF3B3. The binding motif is located in the N terminus (amino acids 221-248) of MCM7. Knockdown of MCM7 or SF3B3 significantly increased unspliced RNA of epidermal growth factor receptor, platelet-derived growth factor receptor, and c-Met. A dramatic drop of reporter gene expression of the oxytocin exon 1-intron-exon 2-EGFP construct was also identified in SF3B3 and MCM7 knockdown PC3 and DU145 cells. The MCM7 or SF3B3 depleted cell extract failed to splice reporter RNA in in vitro RNA splicing analyses. Knockdown of SF3B3 and MCM7 leads to an increase of cell death of both PC3 and DU145 cells. Such cell death induction is partially rescued by expressing spliced c-Met. To our knowledge, this is the first report suggesting that MCM7 is a critical RNA splicing factor, thus giving significant new insight into the oncogenic activity of this protein. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Antagonism of corticotropin-releasing factor CRF1 receptors blocks the enhanced response to cocaine after social stress.

    PubMed

    Ferrer-Pérez, Carmen; Reguilón, Marina D; Manzanedo, Carmen; Aguilar, M Asunción; Miñarro, José; Rodríguez-Arias, Marta

    2018-03-15

    Numerous studies have shown that social defeat stress induces an increase in the rewarding effects of cocaine. In this study we have investigated the role played by the main hypothalamic stress hormone, corticotropin-releasing factor (CRF), in the effects that repeated social defeat (RSD) induces in the conditioned rewarding effects and locomotor sensitization induced by cocaine. A total of 220 OF1 mice were divided into experimental groups according to the treatment received before each social defeat: saline, 5 or 10 mg/kg of the nonpeptidic corticotropin-releasing factor CRF 1 receptor antagonist CP-154,526, or 15 or 30 µg/kg of the peptidic corticotropin-releasing factor CRF 2 receptor antagonist Astressin 2 -B. Three weeks after the last defeat, conditioned place preference (CPP) induced by 1 mg/kg of cocaine was evaluated. Motor response to 10 mg/kg of cocaine was also studied after a sensitization induction. Blockade of corticotropin-releasing factor CRF 1 receptor reversed the increase in cocaine CPP induced by social defeat. Conversely, peripheral corticotropin-releasing factor CRF 2 receptor blockade produced similar effects to those observed in socially stressed animals. The effect of RSD on cocaine sensitization was again blocked by the corticotropin-releasing factor CRF 1 receptor antagonist, while peripheral CRF 2 receptor antagonist did not show effect. Acute administration of Astressin 2 -B induced an anxiogenic response. Our results confirm that CRF modulates the effects of social stress on reinforcement and sensitization induced by cocaine in contrasting ways. These findings highlight CRF receptors as potential therapeutic targets to be explored by research about stress-related addiction problems. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Epidermal Growth Factor-Dependent Transformation by a Human EGF Receptor Proto-Oncogene

    NASA Astrophysics Data System (ADS)

    Velu, Thierry J.; Beguinot, Laura; Vass, William C.; Willingham, Mark C.; Merlino, Glenn T.; Pastan, Ira; Lowy, Douglas R.

    1987-12-01

    The epidermal growth factor (EGF) receptor gene EGFR has been placed in a retrovirus vector to examine the growth properties of cells that experimentally overproduce a full-length EGF receptor. NIH 3T3 cells transfected with the viral DNA or infected with the corresponding rescued retrovirus developed a fully transformed phenotype in vitro that required both functional EGFR expression and the presence of EGF in the growth medium. Cells expressing 4 × 105 EGF receptors formed tumors in nude mice, while control cells did not. Therefore, the EGFR retrovirus, which had a titer on NIH 3T3 cells that was greater than 107 focus-forming units per milliliter, can efficiently transfer and express this gene, and increased numbers of EGF receptors can contribute to the transformed phenotype.

  9. Protein partners in the life history of activated fibroblast growth factor receptors.

    PubMed

    Vecchione, Anna; Cooper, Helen J; Trim, Kimberley J; Akbarzadeh, Shiva; Heath, John K; Wheldon, Lee M

    2007-12-01

    Fibroblast growth factor receptors (FGFRs) are a family of four transmembrane (TM) receptor tyrosine kinases (RTKs) which bind to a large family of fibroblast growth factor (FGF) ligands with varying affinity and specificity. FGFR signaling regulates many physiological and pathological processes in development and tissue homeostasis. Understanding FGFR signaling processes requires the identification of partner proteins which regulate receptor function and biological outputs. In this study, we employ an epitope-tagged, covalently dimerized, and constitutively activated form of FGFR1 to identify potential protein partners by MS. By this approach, we sample candidate FGFR effectors throughout the life history of the receptor. Functional classification of the partners identified revealed specific subclasses involved in protein biosynthesis and folding; structural and regulatory components of the cytoskeleton; known signaling effectors and small GTPases implicated in endocytosis and vesicular trafficking. The kinase dependency of the interaction was determined for a subset of previously unrecognized partners by coimmunoprecipitation, Western blotting, and immunocytochemistry. From this group, the small GTPase Rab5 was selected for functional interrogation. We show that short hairpin (sh) RNA-mediated depletion of Rab5 attenuates the activation of the extracellular-regulated kinase (ERK) 1/2 pathway by FGFR signaling. The strategic approach adopted in this study has revealed bona fide novel effectors of the FGFR signaling pathway.

  10. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer.

    PubMed

    Filardo, Edward J

    2002-02-01

    The biological and biochemical effects of estrogen have been ascribed to its known receptors, which function as ligand-inducible transcription factors. However, estrogen also triggers rapid activation of classical second messengers (cAMP, calcium, and inositol triphosphate) and stimulation of intracellular signaling cascades mitogen-activated protein kinase (MAP K), PI3K and eNOS. These latter events are commonly activated by membrane receptors that either possess intrinsic tyrosine kinase activity or couple to heterotrimeric G-proteins. We have shown that estrogen transactivates the epidermal growth factor receptor (EGFR) to MAP K signaling axis via the G-protein-coupled receptor (GPCR), GPR30, through the release of surface-bound proHB-EGF from estrogen receptor (ER)-negative human breast cancer cells [Molecular Endocrinology 14 (2000) 1649]. This finding is consistent with a growing body of evidence suggesting that transactivation of EGFRs by GPCRs is a recurrent theme in cell signaling. GPCR-mediated transactivation of EGFRs by estrogen provides a previously unappreciated mechanism of cross-talk between estrogen and serum growth factors, and explains prior data reporting the EGF-like effects of estrogen. This novel mechanism by which estrogen activates growth factor-dependent signaling and its implications for breast cancer biology are discussed further in this review.

  11. Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer.

    PubMed

    Mukohara, Toru

    2011-01-01

    Approximately 20% of breast cancers are characterized by overexpression of human epidermal growth factor receptor 2 (HER2) protein and associated gene amplification, and the receptor tyrosine kinase is believed to play a critical role in the pathogenesis of these tumors. The development and implementation of trastuzumab, a humanized monoclonal antibody against the extracellular domain of HER2 protein, has significantly improved treatment outcomes in patients with HER2-overexpressing breast cancer. However, despite this clinical usefulness, unmet needs for better prediction of trastuzumab's response and overcoming primary and acquired resistance remain. In this review, we discuss several potential mechanisms of resistance to trastuzumab that have been closely studied over the last decade. Briefly, these mechanisms include: impaired access of trastuzumab to HER2 by expression of extracellular domain-truncated HER2 (p95 HER2) or overexpression of MUC4; alternative signaling from insulin-like growth factor-1 receptor, other epidermal growth factor receptor family members, or MET; aberrant downstream signaling caused by loss of phosphatase and tensin homologs deleted from chromosome 10 (PTEN), PIK3CA mutation, or downregulation of p27; or FCGR3A polymorphisms. In addition, we discuss potential strategies for overcoming resistance to trastuzumab. Specifically, the epidermal growth factor receptor/HER2 tyrosine kinase inhibitor lapatinib partially overcame trastuzumab resistance in a clinical setting, so its efficacy results and limited data regarding potential mechanisms of resistance to the drug are also discussed. © 2010 Japanese Cancer Association.

  12. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    PubMed

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  13. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering.

    PubMed

    Ratman, Dariusz; Vanden Berghe, Wim; Dejager, Lien; Libert, Claude; Tavernier, Jan; Beck, Ilse M; De Bosscher, Karolien

    2013-11-05

    The activity of the glucocorticoid receptor (GR), a nuclear receptor transcription factor belonging to subclass 3C of the steroid/thyroid hormone receptor superfamily, is typically triggered by glucocorticoid hormones. Apart from driving gene transcription via binding onto glucocorticoid response elements in regulatory regions of particular target genes, GR can also inhibit gene expression via transrepression, a mechanism largely based on protein:protein interactions. Hereby GR can influence the activity of other transcription factors, without contacting DNA itself. GR is known to inhibit the activity of a growing list of immune-regulating transcription factors. Hence, GCs still rule the clinic for treatments of inflammatory disorders, notwithstanding concomitant deleterious side effects. Although patience is a virtue when it comes to deciphering the many mechanisms GR uses to influence various signaling pathways, the current review is testimony of the fact that groundbreaking mechanistic work has been accumulating over the past years and steadily continues to grow. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice1

    PubMed Central

    Sasaki, Takamitsu; Kitadai, Yasuhiko; Nakamura, Toru; Kim, Jang-Seong; Tsan, Rachel Z; Kuwai, Toshio; Langley, Robert R; Fan, Dominic; Kim, Sun-Jin; Fidler, Isaiah J

    2007-01-01

    The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α) and vascular endothelial growth factor (VEGF) but were negative for EGFR, human epidermal growth factor receptor 2 (HER2), and VEGFR. Double immunofluorescence staining revealed that tumor-associated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR), and phosphorylated VEGFR (pVEGFR). Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase) or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01); this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001). AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, and increased the level of apoptosis in both tumor-associated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer. PMID:18084614

  15. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  16. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    PubMed

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  17. Smoking-associated lung cancer prevention by blockade of the beta-adrenergic receptor-mediated insulin-like growth factor receptor activation.

    PubMed

    Min, Hye-Young; Boo, Hye-Jin; Lee, Ho Jin; Jang, Hyun-Ji; Yun, Hye Jeong; Hwang, Su Jung; Smith, John Kendal; Lee, Hyo-Jong; Lee, Ho-Young

    2016-10-25

    Activation of receptor tyrosine kinases (RTKs) is associated with carcinogenesis, but its contribution to smoking-associated lung carcinogenesis is poorly understood. Here we show that a tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced insulin-like growth factor 1 receptor (IGF-1R) activation via β-adrenergic receptor (β-AR) is crucial for smoking-associated lung carcinogenesis. Treatment with NNK stimulated the IGF-1R signaling pathway in a time- and dose-dependent manner, which was suppressed by pharmacological or genomic blockade of β-AR and the downstream signaling including a Gβγ subunit of β-AR and phospholipase C (PLC). Consistently, β-AR agonists led to increased IGF-1R phosphorylation. The increase in IGF2 transcription via β-AR, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-kappa B (NF-κB) was associated with NNK-induced IGF-1R activation. Finally, treatment with β-AR antagonists suppressed the acquisition of transformed phenotypes in lung epithelial cells and lung tumor formation in mice. These results suggest that blocking β-AR-mediated IGF-1R activation can be an effective strategy for lung cancer prevention in smokers.

  18. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.

    PubMed

    Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-05-21

    Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Decreased numbers of chemotactic factor receptors in chronic neutropenia with defective chemotaxis: spontaneous recovery from the neutrophil abnormalities during early childhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, K.; Yamazaki, M.; Miyagawa, Y.

    Childhood chronic neutropenia with decreased numbers of chemotactic factor receptors as well as defective chemotaxis was first demonstrated in an 8-month-old girl. Chemotactic factor receptors on neutrophils were assayed using tritiated N-formyl-methionyl-leucyl-phenylalanine (/sup 3/H-FMLP). The patient's neutrophils had decreased numbers of the receptors: numbers of the receptors were 20,000 (less than 3 SD) as compared with those of control cells of 52,000 +/- 6000 (mean +/- SD) (n = 10). The neutropenia disappeared spontaneously by 28 months of age parallel with the improvement of chemotaxis and increase in numbers of chemotactic factor receptors. These results demonstrate a transient decrease ofmore » neutrophil chemotactic factor receptors as one of the pathophysiological bases of a transient defect of neutrophil chemotaxis in this disorder.« less

  20. Expression of Vascular Endothelial Growth Factor Receptors in Benign Vascular Lesions of the Orbit: A Case Series.

    PubMed

    Atchison, Elizabeth A; Garrity, James A; Castillo, Francisco; Engman, Steven J; Couch, Steven M; Salomão, Diva R

    2016-01-01

    Vascular lesions of the orbit, although not malignant, can cause morbidity because of their location near critical structures in the orbit. For the same reason, they can be challenging to remove surgically. Anti-vascular endothelial growth factor (VEGF) drugs are increasingly being used to treat diseases with prominent angiogenesis. Our study aimed to determine to what extent VEGF receptors and their subtypes are expressed on selected vascular lesions of the orbit. Retrospective case series of all orbital vascular lesions removed by one of the authors (JAG) at the Mayo Clinic. A total of 52 patients who underwent removal of vascular orbital lesions. The pathology specimens from the patients were retrieved, their pathologic diagnosis was confirmed, demographic and clinical information were gathered, and sections from vascular tumors were stained with vascular endothelial growth factor receptor (VEGFR), vascular endothelial growth factor receptor type 1 (VEGFR1), vascular endothelial growth factor receptor type 2 (VEGFR2), and vascular endothelial growth factor receptor type 3 (VEGFR3). The existence and pattern of staining with VEGF and its subtypes on these lesions. There were 28 specimens of venous malformations, 4 capillary hemangiomas, 7 lymphatic malformations, and 6 lymphaticovenous malformations. All samples stained with VEGF, 55% stained with VEGFR1, 98% stained with VEGFR2, and 96% stained with VEGFR3. Most (94%) of the VEGFR2 staining was diffuse. Most orbital vascular lesions express VEGF receptors, which may suggest a future target for nonsurgical treatment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  1. Inhibiting the Epidermal Growth Factor Receptor | Center for Cancer Research

    Cancer.gov

    The Epidermal Growth Factor Receptor (EGFR) is a widely distributed cell surface receptor that responds to several extracellular signaling molecules through an intracellular tyrosine kinase, which phosphorylates target enzymes to trigger a downstream molecular cascade. Since the discovery that EGFR mutations and amplifications are critical in a number of cancers, efforts have been under way to develop and use targeted EGFR inhibitors. These efforts have met with some spectacular successes, but many patients have not responded as expected, have subsequently developed drug-resistant tumors, or have suffered serious side effects from the therapies to date. CCR Investigators are studying EGFR from multiple vantage points with the goal of developing even better strategies to defeat EGFR-related cancers.

  2. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    PubMed Central

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692

  3. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.

    PubMed

    Farroni, Jeffrey S; McCool, Brian A

    2004-08-09

    , these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology.

  4. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. Thesemore » antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.« less

  5. Association of the membrane estrogen receptor, GPR30, with breast tumor metastasis and transactivation of the epidermal growth factor receptor.

    PubMed

    Filardo, Edward J; Quinn, Jeffrey A; Sabo, Edmond

    2008-10-01

    The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases function as a common signaling conduit for membrane receptors that lack intrinsic enzymatic activity, such as G-protein coupled receptors and integrins. GPR30, an orphan member of the seven transmembrane receptor (7TMR) superfamily has been linked to specific estrogen binding, rapid estrogen-mediated activation of adenylyl cyclase and the release of membrane-tethered proHB-EGF. More recently, GPR30 expression in primary breast adenocarcinoma has been associated with pathological parameters commonly used to assess breast cancer progression, including the development of extramammary metastases. This newly appreciated mechanism of cross communication between estrogen and EGF is consistent with the observation that 7TMR-mediated transactivation of the EGFR is a recurrent signaling paradigm and may explain prior data reporting the EGF-like effects of estrogen. The molecular details surrounding GPR30-mediated release of proHB-EGF, the involvement of integrin beta1 as a signaling intermediary in estrogen-dependent EGFR action, and the possible implications of these data for breast cancer progression are discussed herein.

  6. Redox-dependent regulation of epidermal growth factor receptor signaling.

    PubMed

    Heppner, David E; van der Vliet, Albert

    2016-08-01

    Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs) that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR), a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-08-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  8. Tumor Necrosis Factor Receptor-associated Factor 6 Is an Intranuclear Transcriptional Coactivator in Osteoclasts*

    PubMed Central

    Bai, Shuting; Zha, Jikun; Zhao, Haibo; Ross, F. Patrick; Teitelbaum, Steven L.

    2008-01-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with the cytoplasmic domain of receptor activator of NF-κB (RANK) and is an essential component of the signaling complex mediating osteoclastogenesis. However, the osteoclastic activity of TRAF6 is blunted by its association with four and half LIM domain 2 (FHL2), which functions as an adaptor protein in the cytoplasm and transcriptional regulator in the nucleus. We find that TRAF6 also localizes in the nuclei of osteoclasts but not their bone marrow macrophage precursors and that osteoclast intranuclear abundance is specifically increased by RANK ligand (RANKL). TRAF6 nuclear localization requires FHL2 and is diminished in fhl2-/- osteoclasts. Suggesting transcriptional activity, TRAF6 interacts with the transcription factor RUNX1 in the osteoclast nucleus. FHL2 also associates with RUNX1 but does so only in the presence of TRAF6. Importantly, TRAF6 recognizes FHL2 and RUNX1 in osteoclast nuclei, and the three molecules form a DNA-binding complex that recognizes and transactivates the RUNX1 response element in the fhl2 promoter. Finally, TRAF6 and its proximal activator, RANKL, polyubiquitinate FHL2, prompting its proteasomal degradation. These observations suggest a feedback mechanism whereby TRAF6 negatively regulates osteoclast formation by intracytoplasmic sequestration of FHL2 to blunt RANK activation and as a component of a transcription complex promoting FHL2 expression. PMID:18768464

  9. Receptor Signaling Directs Global Recruitment of Pre-existing Transcription Factors to Inducible Elements.

    PubMed

    Cockerill, Peter N

    2016-12-01

    Gene expression programs are largely regulated by the tissue-specific expression of lineage-defining transcription factors or by the inducible expression of transcription factors in response to specific stimuli. Here I will review our own work over the last 20 years to show how specific activation signals also lead to the wide-spread re-distribution of pre-existing constitutive transcription factors to sites undergoing chromatin reorganization. I will summarize studies showing that activation of kinase signaling pathways creates open chromatin regions that recruit pre-existing factors which were previously unable to bind to closed chromatin. As models I will draw upon genes activated or primed by receptor signaling in memory T cells, and genes activated by cytokine receptor mutations in acute myeloid leukemia. I also summarize a hit-and-run model of stable epigenetic reprograming in memory T cells, mediated by transient Activator Protein 1 (AP-1) binding, which enables the accelerated activation of inducible enhancers.

  10. The C Terminus of the Saccharomyces cerevisiae α-Factor Receptor Contributes to the Formation of Preactivation Complexes with Its Cognate G Protein

    PubMed Central

    Dosil, Mercedes; Schandel, Kimberly A.; Gupta, Ekta; Jenness, Duane D.; Konopka, James B.

    2000-01-01

    Binding of the α-factor pheromone to its G-protein-coupled receptor (encoded by STE2) activates the mating pathway in MATa yeast cells. To investigate whether specific interactions between the receptor and the G protein occur prior to ligand binding, we analyzed dominant-negative mutant receptors that compete with wild-type receptors for G proteins, and we analyzed the ability of receptors to suppress the constitutive signaling activity of mutant Gα subunits in an α-factor-independent manner. Although the amino acid substitution L236H in the third intracellular loop of the receptor impairs G-protein activation, this substitution had no influence on the ability of the dominant-negative receptors to sequester G proteins or on the ability of receptors to suppress the GPA1-A345T mutant Gα subunit. In contrast, removal of the cytoplasmic C-terminal domain of the receptor eliminated both of these activities even though the C-terminal domain is unnecessary for G-protein activation. Moreover, the α-factor-independent signaling activity of ste2-P258L mutant receptors was inhibited by the coexpression of wild-type receptors but not by coexpression of truncated receptors lacking the C-terminal domain. Deletion analysis suggested that the distal half of the C-terminal domain is critical for sequestration of G proteins. The C-terminal domain was also found to influence the affinity of the receptor for α-factor in cells lacking G proteins. These results suggest that the C-terminal cytoplasmic domain of the α-factor receptor, in addition to its role in receptor downregulation, promotes the formation of receptor–G-protein preactivation complexes. PMID:10866688

  11. DIRECT MODULATION OF THE PROTEIN KINASE A CATALYTIC SUBUNIT α BY GROWTH FACTOR RECEPTOR TYROSINE KINASES

    PubMed Central

    Caldwell, George B.; Howe, Alan K.; Nickl, Christian K.; Dostmann, Wolfgang R.; Ballif, Bryan A.; Deming, Paula B.

    2011-01-01

    The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The Km for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF and FGF2 and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechansim for regulating PKA activity. PMID:21866565

  12. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells

    PubMed Central

    Tone, Masahide; Tone, Yukiko; Adams, Elizabeth; Yates, Stephen F.; Frewin, Mark R.; Cobbold, Stephen P.; Waldmann, Herman

    2003-01-01

    Recently, agonist antibodies to glucocorticoid-induced tumor necrosis factor receptor (GITR) (tumor necrosis factor receptor superfamily 18) have been shown to neutralize the suppressive activity of CD4+CD25+ regulatory T cells. It was anticipated that this would be the role of the physiological ligand. We have identified and expressed the gene for mouse GITR ligand and have confirmed that its interaction with GITR reverses suppression by CD4+CD25+ T cells. It also, however, provides a costimulatory signal for the antigen-driven proliferation of naïve T cells and polarized T helper 1 and T helper 2 clones. RT-PCR and mAb staining revealed mouse GITR ligand expression in dendritic cells, macrophages, and B cells. Expression was controlled by the transcription factor NF-1 and potentially by alternative splicing of mRNA destabilization sequences. PMID:14608036

  13. Ligand-Independent Epidermal Growth Factor Receptor Overexpression Correlates with Poor Prognosis in Colorectal Cancer.

    PubMed

    Yun, Sumi; Kwak, Yoonjin; Nam, Soo Kyung; Seo, An Na; Oh, Heung-Kwon; Kim, Duck-Woo; Kang, Sung-Bum; Lee, Hye Seung

    2018-01-17

    Molecular treatments targeting epidermal growth factor receptors (EGFRs) are important strategies for advanced colorectal cancer (CRC). However, clinicopathologic implications of EGFRs and EGFR ligand signaling have not been fully evaluated. We evaluated the expression of EGFR ligands and correlation with their receptors, clinicopathologic factors, and patients' survival with CRC. The expression of EGFR ligands, including heparin binding epidermal growth factor like growth factor (HBEGF), transforming growth factor (TGF), betacellulin, and epidermal growth factor (EGF), were evaluated in 331 consecutive CRC samples using mRNA in situ hybridization (ISH). We also evaluated the expression status of EGFR, human epidermal growth factor receptor 2 (HER2), HER3, and HER4 using immunohistochemistry and/or silver ISH. Unlike low incidences of TGF (38.1%), betacellulin (7.9%), and EGF (2.1%), HBEGF expression was noted in 62.2% of CRC samples. However, the expression of each EGFR ligand did not reveal significant correlations with survival. The combined analyses of EGFR ligands and EGFR expression indicated that the ligands‒/EGFR+ group showed a significant association with the worst disease-free survival (DFS, p=0.018) and overall survival (OS, p=0.005). It was also an independent, unfavorable prognostic factor for DFS (p=0.026) and OS (p=0.007). Additionally, HER4 nuclear expression, regardless of ligand expression, was an independent, favorable prognostic factor for DFS (p=0.034) and OS (p=0.049), by multivariate analysis. Ligand-independent EGFR overexpression was suggested to have a significant prognostic impact; thus, the expression status of EGFR ligands, in addition to EGFR, might be necessary for predicting patients' outcome in CRC.

  14. Cardio-oncology Related to Heart Failure: Epidermal Growth Factor Receptor Target-Based Therapy.

    PubMed

    Kenigsberg, Benjamin; Jain, Varun; Barac, Ana

    2017-04-01

    Cancer therapy targeting the epidermal growth factor receptor (EGFR)/erythroblastic leukemia viral oncogene B (ErbB)/human EGFR receptor (HER) family of tyrosine kinases has been successfully used in treatment of several malignancies. The ErbB pathways play a role in the maintenance of cardiac homeostasis. This article summarizes current knowledge about EGFR/ErbB/HER receptor-targeted cancer therapeutics focusing on their cardiotoxicity profiles, molecular mechanisms, and implications in clinical cardio-oncology. The article discusses challenges in predicting, monitoring, and treating cardiac dysfunction and heart failure associated with ErbB-targeted cancer therapeutics and highlights opportunities for researchers and clinical investigators. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Altered Fibroblast Growth Factor Receptor 4 Stability Promotes Prostate Cancer Progression1

    PubMed Central

    Wang, Jianghua; Yu, Wendong; Cai, Yi; Ren, Chengxi; Ittmann, Michael M

    2008-01-01

    Fibroblast growth factor receptor 4 (FGFR-4) is expressed at significant levels in almost all human prostate cancers, and expression of its ligands is ubiquitous. A common polymorphism of FGFR-4 in which arginine (Arg388) replaces glycine (Gly388) at amino acid 388 is associated with progression in human prostate cancer. We show that the FGFR-4 Arg388 polymorphism, which is present in most prostate cancer patients, results in increased receptor stability and sustained receptor activation. In patients bearing the FGFR-4 Gly388 variant, expression of Huntingtin-interacting protein 1 (HIP1), which occurs in more than half of human prostate cancers, also results in FGFR-4 stabilization. This is associated with enhanced proliferation and anchorage-independent growth in vitro. Our findings indicate that increased receptor stability and sustained FGFR-4 signaling occur in most human prostate cancers due to either the presence of a common genetic polymorphism or the expression of a protein that stabilizes FGFR-4. Both of these alterations are associated with clinical progression in patients with prostate cancer. Thus, FGFR-4 signaling and receptor turnover are important potential therapeutic targets in prostate cancer. PMID:18670643

  16. Brain-derived neurotrophic factor and its receptors in Bergmann glia cells.

    PubMed

    Poblete-Naredo, Irais; Guillem, Alain M; Juárez, Claudia; Zepeda, Rossana C; Ramírez, Leticia; Caba, Mario; Hernández-Kelly, Luisa C; Aguilera, José; López-Bayghen, Esther; Ortega, Arturo

    2011-12-01

    Brain-derived neurotrophic factor is an abundant and widely distributed neurotrophin expressed in the Central Nervous System. It is critically involved in neuronal differentiation and survival. The expression of brain-derived neurotrophic factor and that of its catalytic active cognate receptor (TrkB) has been extensively studied in neuronal cells but their expression and function in glial cells is still controversial. Despite of this fact, brain-derived neurotrophic factor is released from astrocytes upon glutamate stimulation. A suitable model to study glia/neuronal interactions, in the context of glutamatergic synapses, is the well-characterized culture of chick cerebellar Bergmann glia cells. Using, this system, we show here that BDNF and its functional receptor are present in Bergmann glia and that BDNF stimulation is linked to the activation of the phosphatidyl-inositol 3 kinase/protein kinase C/mitogen-activated protein kinase/Activator Protein-1 signaling pathway. Accordingly, reverse transcription-polymerase chain reaction (RT-PCR) experiments predicted the expression of full-length and truncated TrkB isoforms. Our results suggest that Bergmann glia cells are able to express and respond to BDNF stimulation favoring the notion of their pivotal role in neuroprotection. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Transforming Growth Factor-B Receptors in Human Breast Cancer.

    DTIC Science & Technology

    1998-05-01

    I., Polyak, K., Iavarone, A., and Massagud, J. Kip/ Cip and Ink4 cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-ß. Genes Dev...specimens. Thirdly, we have developped transient transfection assays to determine how specific TßR mutations affect affect receptor function. Using...Growth Factor-ß (TGFß) is the most potent known inhibitor of cell cycle progression of normal mammary epithelial cells; in addition, it causes cells

  18. Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.

    PubMed

    Tong, Dandan; Liang, Ya-Nan; Stepanova, A A; Liu, Yu; Li, Xiaobo; Wang, Letian; Zhang, Fengmin; Vasilyeva, N V

    2017-02-01

    Recent research indicates that the C-terminal Eps15 homology domain 1 is associated with epithelial growth factor receptor-mediated endocytosis recycling in non-small-cell lung cancer. The aim of this study was to determine the clinical significance of Eps15 homology domain 1 gene expression in relation to phosphorylation of epithelial growth factor receptor expression in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Eps15 homology domain 1, RAB11FIP3, and phosphorylation of epithelial growth factor receptor expression via immunohistochemistry. The clinical significance was assessed via a multivariate Cox regression analysis, Kaplan-Meier curves, and the log-rank test. Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor were upregulated in 60.46% (185/306) and 53.92% (165/306) of tumor tissues, respectively, as assessed by immunohistochemistry. The statistical correlation analysis indicated that Eps15 homology domain 1 overexpression was positively correlated with the increases in phosphorylation of epithelial growth factor receptor ( r = 0.242, p < 0.001) and RAB11FIP3 ( r = 0.165, p = 0.005) expression. The multivariate Cox proportional hazard model analysis demonstrated that the expression of Eps15 homology domain 1 alone is a significant prognostic marker of breast cancer for the overall survival in the total, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. However, the use of combined expression of Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor markers is more effective for the disease-free survival in the overall population, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. Moreover, the combined markers are also significant prognostic markers of breast cancer in the human epidermal growth factor receptor 2 (+), estrogen receptor (+), and estrogen receptor (-) groups. Eps15 homology domain

  19. Phenytoin enhances the phosphorylation of epidermal growth factor receptor and fibroblast growth factor receptor in the subventricular zone and promotes the proliferation of neural precursor cells and oligodendrocyte differentiation.

    PubMed

    Galvez-Contreras, Alma Y; Gonzalez-Castaneda, Rocio E; Campos-Ordonez, Tania; Luquin, Sonia; Gonzalez-Perez, Oscar

    2016-01-01

    Phenytoin is a widely used antiepileptic drug that induces cell proliferation in several tissues, such as heart, bone, skin, oral mucosa and neural precursors. Some of these effects are mediated via fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR). These receptors are strongly expressed in the adult ventricular-subventricular zone (V-SVZ), the main neurogenic niche in the adult brain. The aim of this study was to determine the cell lineage and cell fate of V-SVZ neural progenitors expanded by phenytoin, as well as the effects of this drug on EGFR/FGFR phosphorylation. Male BALB/C mice received 10 mg/kg phenytoin by oral cannula for 30 days. We analysed the proliferation of V-SVZ neural progenitors by immunohistochemistry and western blot. Our findings indicate that phenytoin enhanced twofold the phosphorylation of EGFR and FGFR in the V-SVZ, increased the number of bromodeoxyuridine (BrdU)+/Sox2+ and BrdU+/doublecortin+ cells in the V-SVZ, and expanded the population of Olig2-expressing cells around the lateral ventricles. After phenytoin removal, a large number of BrdU+/Receptor interacting protein (RIP)+ cells were observed in the olfactory bulb. In conclusion, phenytoin enhanced the phosphorylation of FGFR and EGFR, and promoted the expression of neural precursor markers in the V-SVZ. In parallel, the number of oligodendrocytes increased significantly after phenytoin removal. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games.

    PubMed

    Hehlgans, Thomas; Pfeffer, Klaus

    2005-05-01

    The members of the tumour necrosis factor (TNF)/tumour necrosis factor receptor (TNFR) superfamily are critically involved in the maintenance of homeostasis of the immune system. The biological functions of this system encompass beneficial and protective effects in inflammation and host defence as well as a crucial role in organogenesis. At the same time, members of this superfamily are responsible for host damaging effects in sepsis, cachexia, and autoimmune diseases. This review summarizes recent progress in the immunobiology of the TNF/TNFR superfamily focusing on results obtained from animal studies using gene targeted mice. The different modes of signalling pathways affecting cell proliferation, survival, differentiation, apoptosis, and immune organ development as well as host defence are reviewed. Molecular and cellular mechanisms that demonstrate a therapeutic potential by targeting individual receptors or ligands for the treatment of chronic inflammatory or autoimmune diseases are discussed.

  1. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues.

    PubMed

    Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J

    2016-09-01

    Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ

  2. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists.

    PubMed

    Mochizuki, Michiyo; Kori, Masakuni; Kobayashi, Katsumi; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Cho, Suk Young; Pratt, Scott A; Aso, Kazuyoshi

    2016-03-24

    Benzazole derivatives with a flexible aryl group bonded through a one-atom linker as a new scaffold for a corticotropin-releasing factor 1 (CRF1) receptor antagonist were designed, synthesized, and evaluated. We expected that structural diversity could be expanded beyond that of reported CRF1 receptor antagonists. In a structure-activity relationship study, 4-chloro-N(2)-(4-chloro-2-methoxy-6-methylphenyl)-1-methyl-N(7),N(7)-dipropyl-1H-benzimidazole-2,7-diamine 29g had the most potent binding activity against a human CRF1 receptor and the antagonistic activity (IC50 = 9.5 and 88 nM, respectively) without concerns regarding cytotoxicity at 30 μM. Potent CRF1 receptor-binding activity in brain in an ex vivo test and suppression of stress-induced activation of the hypothalamus-pituitary-adrenocortical (HPA) axis were also observed at 138 μmol/kg of compound 29g after oral administration in mice. Thus, the newly designed benzimidazole 29g showed in vivo CRF1 receptor antagonistic activity and good brain penetration, indicating that it is a promising lead for CRF1 receptor antagonist drug discovery research.

  3. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.

    PubMed

    Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel

    2004-02-15

    Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.

  4. Coordinate regulation of estrogen-mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30.

    PubMed

    Quinn, Jeffrey A; Graeber, C Thomas; Frackelton, A Raymond; Kim, Minsoo; Schwarzbauer, Jean E; Filardo, Edward J

    2009-07-01

    Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.

  5. The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling.

    PubMed

    Lievens, Patricia M-J; Mutinelli, Chiara; Baynes, Darcie; Liboi, Elio

    2004-10-08

    Amino acid substitutions at the Lys-650 codon within the activation loop kinase domain of fibroblast growth factor receptor 3 (FGFR3) result in graded constitutive phosphorylation of the receptor. Accordingly, the Lys-650 mutants are associated with dwarfisms with graded clinical severity. To assess the importance of the phosphorylation level on FGFR3 maturation along the secretory pathway, hemagglutinin A-tagged derivatives were studied. The highly activated SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) mutant accumulates in its immature and phosphorylated form in the endoplasmic reticulum (ER), which fails to be degraded. Furthermore, the Janus kinase (Jak)/STAT pathway is activated from the ER by direct recruitment of Jak1. Abolishing the autocatalytic property of the mutated FGFR3 by replacing the critical Tyr-718 reestablishes the receptor full maturation and inhibits signaling. Differently, the low activated hypochondroplasia mutant is present as a mature phosphorylated form on the plasma membrane, although with a delayed transition in the ER, and is completely processed. Signaling does not occur in the presence of brefeldin A; instead, STAT1 is activated when protein secretion is blocked with monensin, suggesting that the hypochondroplasia receptor signals at the exit from the ER. Our results suggest that kinase activity affects FGFR3 trafficking and determines the spatial segregation of signaling pathways. Consequently, the defect in down-regulation of the highly activated receptors results in the increased signaling capacity from the intracellular compartments, and this may determine the severity of the diseases.

  6. Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation.

    PubMed

    Tanaka, Tomohiro; Zhou, Yue; Ozawa, Tatsuhiko; Okizono, Ryuya; Banba, Ayako; Yamamura, Tomohiro; Oga, Eiji; Muraguchi, Atsushi; Sakurai, Hiroaki

    2018-02-16

    The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Results With Accelerated Partial Breast Irradiation in Terms of Estrogen Receptor, Progesterone Receptor, and Human Growth Factor Receptor 2 Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilder, Richard B.; Curcio, Lisa D.; Khanijou, Rajesh K.

    2010-11-01

    Purpose: To report our results with accelerated partial breast irradiation (APBI) in terms of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2/neu) status. Methods and Materials: Between February 2003 and June 2009, 209 women with early-stage breast carcinomas were treated with APBI using multicatheter, MammoSite, or Contura brachytherapy to 34 Gy in 10 fractions twice daily over 5-7 days. Three patient groups were defined by receptor status: Group 1: ER or PR (+) and HER-2/neu (-) (n = 180), Group 2: ER and PR (-) and HER-2/neu (+) (n = 10), and Group 3:more » ER, PR, and HER-2/neu (-) (triple negative breast cancer, n = 19). Median follow-up was 22 months. Results: Group 3 patients had significantly higher Scarff-Bloom-Richardson scores (p < 0.001). The 3-year ipsilateral breast tumor control rates for Groups 1, 2, and 3 were 99%, 100%, and 100%, respectively (p = 0.15). Group 3 patients tended to experience relapse in distant sites earlier than did non-Group 3 patients. The 3-year relapse-free survival rates for Groups 1, 2, and 3 were 100%, 100%, and 81%, respectively (p = 0.046). The 3-year cause-specific and overall survival rates for Groups 1, 2, and 3 were 100%, 100%, and 89%, respectively (p = 0.002). Conclusions: Triple negative breast cancer patients typically have high-grade tumors with significantly worse relapse-free, cause-specific, and overall survival. Longer follow-up will help to determine whether these patients also have a higher risk of ipsilateral breast tumor relapse.« less

  8. ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5.

    PubMed

    Hsu, H; Solovyev, I; Colombero, A; Elliott, R; Kelley, M; Boyle, W J

    1997-05-23

    Members of tumor necrosis factor receptor (TNFR) family signal largely through interactions with death domain proteins and TRAF proteins. Here we report the identification of a novel TNFR family member ATAR. Human and mouse ATAR contain 283 and 276 amino acids, respectively, making them the shortest known members of the TNFR superfamily. The receptor is expressed mainly in spleen, thymus, bone marrow, lung, and small intestine. The intracellular domains of human and mouse ATAR share only 25% identity, yet both interact with TRAF5 and TRAF2. This TRAF interaction domain resides at the C-terminal 20 amino acids. Like most other TRAF-interacting receptors, overexpression of ATAR activates the transcription factor NF-kappaB. Co-expression of ATAR with TRAF5, but not TRAF2, results in synergistic activation of NF-kappaB, suggesting potentially different roles for TRAF2 and TRAF5 in post-receptor signaling.

  9. Role of fibroblast growth factor receptor signaling in kidney development

    PubMed Central

    2011-01-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling “decoy” receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development. PMID:21613421

  10. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies.

    PubMed

    Dwivedi, Pankaj; Greis, Kenneth D

    2017-02-01

    Granulocyte colony-stimulating factor is a hematopoietic cytokine that stimulates neutrophil production and hematopoietic stem cell mobilization by initiating the dimerization of homodimeric granulocyte colony-stimulating factor receptor. Different mutations of CSF3R have been linked to a unique spectrum of myeloid disorders and related malignancies. Myeloid disorders caused by the CSF3R mutations include severe congenital neutropenia, chronic neutrophilic leukemia, and atypical chronic myeloid leukemia. In this review, we provide an analysis of granulocyte colony-stimulating factor receptor, various mutations, and their roles in the severe congenital neutropenia, chronic neutrophilic leukemia, and malignant transformation, as well as the clinical implications and some perspective on approaches that could expand our knowledge with respect to the normal signaling mechanisms and those associated with mutations in the receptor. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  11. Endocannabinoid receptor deficiency affects maternal care and alters the dam's hippocampal oxytocin receptor and brain-derived neurotrophic factor expression.

    PubMed

    Schechter, M; Weller, A; Pittel, Z; Gross, M; Zimmer, A; Pinhasov, A

    2013-10-01

    Maternal care is the newborn's first experience of social interaction, and this influences infant survival, development and social competences throughout life. We recently found that postpartum blocking of the endocannabinoid receptor-1 (CB1R) altered maternal behaviour. In the present study, maternal care was assessed by the time taken to retrieve pups, pups' ultrasonic vocalisations (USVs) and pup body weight, comparing CB1R deleted (CB1R KO) versus wild-type (WT) mice. After culling on postpartum day 8, hippocampal expression of oxytocin receptor (OXTR), brain-derived neurotrophic factor (BDNF) and stress-mediating factors were evaluated in CB1R KO and WT dams. Comparisons were also performed with nulliparous (NP) CB1R KO and WT mice. Compared to WT, CB1R KO dams were slower to retrieve their pups. Although the body weight of the KO pups did not differ from the weight of WT pups, they emitted fewer USVs. This impairment of the dam-pup relationship correlated with a significant reduction of OXTR mRNA and protein levels among CB1R KO dams compared to WT dams. Furthermore, WT dams exhibited elevated OXTR mRNA expression, as well as increased levels of mineralocorticoid and glucocorticoid receptors, compared to WT NP mice. By contrast, CB1R KO dams showed no such elevation of OXTR expression, alongside lower BDNF and mineralocorticoid receptors, as well as elevated corticotrophin-releasing hormone mRNA levels, when compared to CB1R KO NP. Thus, it appears that the disruption of endocannabinoid signalling by CB1R deletion alters expression of the OXTR, apparently leading to deleterious effects upon maternal behaviour. © 2013 British Society for Neuroendocrinology.

  12. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Lowe, Edward D; Carrington, Mark; Higgins, Matthew K

    2014-12-12

    The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50° kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface.

  13. Decoy receptor 3 is a prognostic factor in renal cell cancer.

    PubMed

    Macher-Goeppinger, Stephan; Aulmann, Sebastian; Wagener, Nina; Funke, Benjamin; Tagscherer, Katrin E; Haferkamp, Axel; Hohenfellner, Markus; Kim, Sunghee; Autschbach, Frank; Schirmacher, Peter; Roth, Wilfried

    2008-10-01

    Decoy receptor 3 (DcR3) is a soluble protein that binds to and inactivates the death ligand CD95L. Here, we studied a possible association between DcR3 expression and prognosis in patients with renal cell carcinomas (RCCs). A tissue microarray containing RCC tumor tissue samples and corresponding normal tissue samples was generated. Decoy receptor 3 expression in tumors of 560 patients was examined by immunohistochemistry. The effect of DcR3 expression on disease-specific survival and progression-free survival was assessed using univariate analysis and multivariate Cox regression analysis. Decoy receptor 3 serum levels were determined by ELISA. High DcR3 expression was associated with high-grade (P = .005) and high-stage (P = .048) RCCs. The incidence of distant metastasis (P = .03) and lymph node metastasis (P = .002) was significantly higher in the group with high DcR3 expression. Decoy receptor 3 expression correlated negatively with disease-specific survival (P < .001) and progression-free survival (P < .001) in univariate analyses. A multivariate Cox regression analysis retained DcR3 expression as an independent prognostic factor that outperformed the Karnofsky performance status. In patients with high-stage RCCs expressing DcR3, the 2-year survival probability was 25%, whereas in patients with DcR3-negative tumors, the survival probability was 65% (P < .001). Moreover, DcR3 serum levels were significantly higher in patients with high-stage localized disease (P = .007) and metastatic disease (P = .001). DcR3 expression is an independent prognostic factor of RCC progression and mortality. Therefore, the assessment of DcR3 expression levels offers valuable prognostic information that could be used to select patients for adjuvant therapy studies.

  14. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation.

    PubMed

    Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P; Thiels, Cornelius A; Bechtle, Chad A; Garcia, Claudia M; Zhang, Huiming; Yu, Kai; Ornitz, David M; Beebe, David C; Robinson, Michael L

    2008-06-15

    The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27(kip1) and p57(kip2), increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and alpha-, beta- and gamma-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly.

  15. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor

    PubMed Central

    Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella

    2002-01-01

    Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394

  16. Nuclear receptors in pancreatic tumor cells.

    PubMed

    Damaskos, Christos; Garmpis, Nikolaos; Karatzas, Theodore; Kostakis, Ioannis D; Nikolidakis, Lampros; Kostakis, Alkiviadis; Kouraklis, Gregory

    2014-12-01

    This review focuses on nuclear receptors expressed in pancreatic cancer. An extensive search of articles published up to March 2013 was conducted using the MEDLINE database. The key words used were "pancreatic cancer", "molecular receptors" and "growth factors". A total of 112 articles referred to pancreatic cancer, molecular receptors and/or growth factors were included. Receptors of growth factors, such as the epithelial growth factor receptor, insulin-like growth factor-1 receptor, vascular endothelial growth factor receptor and others, such as integrin α5β1, somatostatin receptors, the death receptor 5, claudin, notch receptors, mesothelin receptors, follicle-stimulating hormone receptors, the MUC1 receptor, the adrenomedullin receptor, the farnesoid X receptor, the transferrin receptor, sigma-2 receptors, the chemokine receptor CXCR4, the urokinase plasminogen activator receptor, the ephrine A2 receptor, the GRIA3 receptor, the RON receptor and the angiotensin II receptor AT-1 are expressed in pancreatic tumor cells. These molecules are implicated in tumor growth, apoptosis, angiogenesis, metastasis etc. After identifying the molecular receptors associated with the pancreatic cancer, many more target molecules playing important roles in tumor pathophysiology and senescence-associated signal transduction in cancer cells will be identified. This may have a significant influence on diagnosis, therapy and prognosis of pancreatic cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors.

    PubMed

    Nishida, K; Yoshida, Y; Itoh, M; Fukada, T; Ohtani, T; Shirogane, T; Atsumi, T; Takahashi-Tezuka, M; Ishihara, K; Hibi, M; Hirano, T

    1999-03-15

    We previously found that the adapter protein Gab1 (110 kD) is tyrosine-phosphorylated and forms a complex with SHP-2 and PI-3 kinase upon stimulation through either the interleukin-3 receptor (IL-3R) or gp130, the common receptor subunit of IL-6-family cytokines. In this report, we identified another adapter molecule (100 kD) interacting with SHP-2 and PI-3 kinase in response to various stimuli. The molecule displays striking homology to Gab1 at the amino acid level; thus, we named it Gab2. It contains a PH domain, proline-rich sequences, and tyrosine residues that bind to SH2 domains when they are phosphorylated. Gab1 is phosphorylated on tyrosine upon stimulation through the thrombopoietin receptor (TPOR), stem cell factor receptor (SCFR), and T-cell and B-cell antigen receptors (TCR and BCR, respectively), in addition to IL-3R and gp130. Tyrosine phosphorylation of Gab2 was induced by stimulation through gp130, IL-2R, IL-3R, TPOR, SCFR, and TCR. Gab1 and Gab2 were shown to be substrates for SHP-2 in vitro. Overexpression of Gab2 enhanced the gp130 or Src-related kinases-mediated ERK2 activation as that of Gab1 did. These data indicate that Gab-family molecules act as adapters for transmitting various signals.

  18. Alkyl isothiocyanates suppress epidermal growth factor receptor kinase activity but augment tyrosine kinase activity.

    PubMed

    Nomura, Takahiro; Uehara, Yoshimasa; Kawajiri, Hiroo; Ryoyama, Kazuo; Yamori, Takao; Fuke, Yoko

    2009-10-01

    We have reported the in vitro and in vivo anticancer activities of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) derived from a Japanese spice, wasabi. In order to obtain some clues about the mechanism of the anticancer activity, we have studied the effect of alkyl isothiocyanates (MITCs) on protein kinase activities. The anti-autophosphorylation activity of MITCs with respect to the epidermal growth factor (EGF)-stimulated receptor kinase of A431 epidermoid carcinoma cells was examined by incorporation of radioactive ATP into an acid-insoluble fraction. Their anti-phosphorylation activity with respect to the non-receptor protein kinase was analyzed by a standard SDS-PAGE method. All the tested MITCs interfered with the EGF-stimulated receptor kinase activity in a dose-dependent manner, although their effects were less than 1/10 of that of erbstatin in microg/ml. On the other hand, the MITCs did not interfere with non-receptor kinases (kinase A, kinase C, tyrosine kinase and calmodulin dependent kinase III), but enhanced non-receptor tyrosine kinase. A possible anticancer mechanism of MITCs may involve the suppression of EGF receptor kinase activity and augmentation of non-receptor PTK.

  19. Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta.

    PubMed

    Okuyama, H; Shimahara, Y; Kawada, N; Seki, S; Kristensen, D B; Yoshizato, K; Uyama, N; Yamaoka, Y

    2001-07-27

    Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.

  20. Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells.

    PubMed

    Albanito, Lidia; Sisci, Diego; Aquila, Saveria; Brunelli, Elvira; Vivacqua, Adele; Madeo, Antonio; Lappano, Rosamaria; Pandey, Deo Prakash; Picard, Didier; Mauro, Loredana; Andò, Sebastiano; Maggiolini, Marcello

    2008-08-01

    Different cellular receptors mediate the biological effects induced by estrogens. In addition to the classical nuclear estrogen receptors (ERs)-alpha and -beta, estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPR)-30. Using as a model system SkBr3 and BT20 breast cancer cells lacking the classical ER, the regulation of GPR30 expression by 17beta-estradiol, the selective GPR30 ligand G-1, IGF-I, and epidermal growth factor (EGF) was evaluated. Transient transfections with an expression plasmid encoding a short 5'-flanking sequence of the GPR30 gene revealed that an activator protein-1 site located within this region is required for the activating potential exhibited only by EGF. Accordingly, EGF up-regulated GPR30 protein levels, which accumulated predominantly in the intracellular compartment. The stimulatory role elicited by EGF on GPR30 expression was triggered through rapid ERK phosphorylation and c-fos induction, which was strongly recruited to the activator protein-1 site found in the short 5'-flanking sequence of the GPR30 gene. Of note, EGF activating the EGF receptor-MAPK transduction pathway stimulated a regulatory loop that subsequently engaged estrogen through GPR30 to boost the proliferation of SkBr3 and BT20 breast tumor cells. The up-regulation of GPR30 by ligand-activated EGF receptor-MAPK signaling provides new insight into the well-known estrogen and EGF cross talk, which, as largely reported, contributes to breast cancer progression. On the basis of our results, the action of EGF may include the up-regulation of GPR30 in facilitating a stimulatory role of estrogen, even in ER-negative breast tumor cells.

  1. Specific Inhibitors of Platelet-Derived Growth Factor or Epidermal Growth Factor Receptor Tyrosine Kinase Reduce Pulmonary Fibrosis in Rats

    PubMed Central

    Rice, Annette B.; Moomaw, Cindy R.; Morgan, Daniel L.; Bonner, James C.

    1999-01-01

    The proliferation of myofibroblasts is a central feature of pulmonary fibrosis. In this study we have used tyrosine kinase inhibitors of the tyrphostin class to specifically block autophosphorylation of the platelet-derived growth factor receptor (PDGF-R) or epidermal growth factor receptor (EGF-R). AG1296 specifically inhibited autophosphorylation of PDGF-R and blocked PDGF-stimulated [3H]thymidine uptake by rat lung myofibroblasts in vitro. AG1478 was demonstrated as a selective blocker of EGF-R autophosphorylation and inhibited EGF-stimulated DNA synthesis in vitro. In a rat model of pulmonary fibrosis caused by intratracheal instillation of vanadium pentoxide (V2O5), intraperitoneal delivery of 50 mg/kg AG1296 or AG1478 in dimethylsulfoxide 1 hour before V2O5 instillation and again 2 days after instillation reduced the number of epithelial and mesenchymal cells incorporating bromodeoxyuridine (Brdu) by ∼50% at 3 and 6 days after instillation. V2O5 instillation increased lung hydroxyproline fivefold 15 days after instillation, and AG1296 was more than 90% effective in preventing the increase in hydroxyproline, whereas AG1478 caused a 50% to 60% decrease in V2O5-stimulated hydroxyproline accumulation. These data provide evidence that PDGF and EGF receptor ligands are potent mitogens for collagen-producing mesenchymal cells during pulmonary fibrogenesis, and targeting tyrosine kinase receptors could offer a strategy for the treatment of fibrotic lung diseases. PMID:10393853

  2. Role of osteoprotegerin/receptor activator of nuclear factor kappa B/receptor activator of nuclear factor kappa B ligand axis in nonalcoholic fatty liver disease.

    PubMed

    Pacifico, Lucia; Andreoli, Gian Marco; D'Avanzo, Miriam; De Mitri, Delia; Pierimarchi, Pasquale

    2018-05-21

    Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease (NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome (MetS), like insulin resistance (IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, MetS, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin (OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesity-related comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of MetS as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD.

  3. Polycythaemia-inducing mutations in the erythropoietin receptor (EPOR): mechanism and function as elucidated by epidermal growth factor receptor-EPOR chimeras.

    PubMed

    Gross, Mor; Ben-Califa, Nathalie; McMullin, Mary F; Percy, Melanie J; Bento, Celeste; Cario, Holger; Minkov, Milen; Neumann, Drorit

    2014-05-01

    Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding. Using this system we analysed three novel EPOR mutations discovered in PFCP patients: a deletion mutation (Del1377-1411), a nonsense mutation (C1370A) and a missense mutation (G1445A). Three different chimeras, bearing these mutations in the cytosolic, EPOR region were generated; Hence, the differences in the chimera-related effects are specifically attributed to the mutations. The results show that the different mutations affect various aspects related to the signalling and metabolism of the chimeric receptors. These include slower degradation rate, higher levels of glycan-mature chimeric receptors, increased sensitivity to low levels of EGF (replacing EPO in this system) and extended signalling cascades. This study provides a novel experimental system to study polycythaemia-inducing mutations in the EPOR, and sheds new light on underlying mechanisms of EPOR over-activation in PFCP patients. © 2014 John Wiley & Sons Ltd.

  4. Phylogenetic analysis of platelet-derived growth factor by radio- receptor assay

    PubMed Central

    1982-01-01

    Competition between 125I-labeled platelet-derived growth factor (PDGF) and unlabeled PDGF forms the basis of a specific "radio-receptor assay" for quantifying PDGF in clotted blood serum. Human clotted blood serum contains 15 ng/ml of PDGF by radio-receptor assay; this corresponds to a PDGF content of approximately 7.5 x 10(-5) pg per circulating platelet, a figure which is corroborated by purification data. Clotted blood sera from mammals, lower vertebrates and marine invertebrates were screened for homologues of human PDGF by radio-receptor assay. All tested specimens from phylum Chordata contain a mitogenic agent that competes with human PDGF for receptor binding. Sera from tunicates down on the chordate line of evolution and sera from all tested animals on the arthropod line of development were negative. The phylogenetic distribution of PDGF homologue does not correlate with platelet distribution since platelets and their precursor cell--the bone marrow megacaryocyte--are unique to the mammalian hematopoietic system. One anatomical feature appearing coordinately with PDGF on the vertebrate line of development is a pressurized circulatory system. The coincidental appearance of these features may lend support to the hypothesis that PDGF plays a role in maintenance and repair of the vascular lining in vivo. PMID:7142300

  5. Fibroblast Growth Factor Receptor-4 and Prostate Cancer Progression

    DTIC Science & Technology

    2007-10-01

    difference between the two FGFR-4 variants? Achondroplasia (dwarfism) is caused by a similar mutation in FGFR-3 (Gly380 to Arg380). Increased FGFR-3...what is the molecular basis for the difference between the two FGFR-4 variants? Achondroplasia is caused by a similar mutation in FGFR-3 (Gly380 to...lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia . Proc Natl Acad Sci U S A 2004;101(2):609-14. 27. Hyun TS, Rao DS

  6. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation.

    PubMed

    Dikov, Mikhail M; Ohm, Joyce E; Ray, Neelanjan; Tchekneva, Elena E; Burlison, Jared; Moghanaki, Drew; Nadaf, Sorena; Carbone, David P

    2005-01-01

    Impaired Ag-presenting function in dendritic cells (DCs) due to abnormal differentiation is an important mechanism of tumor escape from immune control. A major role for vascular endothelial growth factor (VEGF) and its receptors, VEGFR1/Flt-1 and VEGFR2/KDR/Flk-1, has been documented in hemopoietic development. To study the roles of each of these receptors in DC differentiation, we used an in vitro system of myeloid DC differentiation from murine embryonic stem cells. Exposure of wild-type, VEGFR1(-/-), or VEGFR2(-/-) embryonic stem cells to exogenous VEGF or the VEGFR1-specific ligand, placental growth factor, revealed distinct roles of VEGF receptors. VEGFR1 is the primary mediator of the VEGF inhibition of DC maturation, whereas VEGFR2 tyrosine kinase signaling is essential for early hemopoietic differentiation, but only marginally affects final DC maturation. SU5416, a VEGF receptor tyrosine kinase inhibitor, only partially rescued the mature DC phenotype in the presence of VEGF, suggesting the involvement of both tyrosine kinase-dependent and independent inhibitory mechanisms. VEGFR1 signaling was sufficient for blocking NF-kappaB activation in bone marrow hemopoietic progenitor cells. VEGF and placental growth factor affect the early stages of myeloid/DC differentiation. The data suggest that therapeutic strategies attempting to reverse the immunosuppressive effects of VEGF in cancer patients might be more effective if they specifically targeted VEGFR1.

  7. Circulating tumour necrosis factor alpha & soluble TNF receptors in patients with Guillain-Barre syndrome.

    PubMed

    Radhakrishnan, V V; Sumi, M G; Reuben, S; Mathai, A; Nair, M D

    2003-05-01

    Tumour necrosis factor-alpha (TNF-alpha) is regarded as one of the immune factors that can induce demyelination of peripheral nerves in patients with Guillian-Barre syndrome (GBS). This present study was undertaken to find out the role of TNF-alpha and soluble TNF receptors in the pathogenesis of GBS; and to study the effect of intravenous immunoglobulin (ivIg) therapy on the serum TNF-alpha and soluble TNF receptors in patients with GBS. Thirty six patients with GBS in progressive stages of motor weakness were included in this study. The serum TNF-alpha and soluble TNF receptors (TNF-RI, TNF-RII) were measured in the serum samples of these patients before and after ivIg therapy by a sandwich ELISA. Of the 36 patients with GBS, 26 (72.2%) showed elevated serum TNF-alpha levels prior to ivIg therapy. Following a complete course of ivIg therapy there was a progressive decrease in the serum TNF-alpha concentrations in these 26 patients. On the other hand, the soluble TNF receptors, particularly TNF-RII showed an increase in the serum of GBS patients following ivIg therapy. The results indicate that ivIg reduces the serum TNF-alpha concentrations in the GBS patients having elevated levels prior to ivIg therapy. Elevated serum levels of soluble TNF receptors following ivIg therapy may play a protective role by inhibiting the demyelinating effect of TNF-alpha in the peripheral nerves of patients with GBS.

  8. Structural analysis of the human fibroblast growth factor receptor 4 kinase.

    PubMed

    Lesca, E; Lammens, A; Huber, R; Augustin, M

    2014-11-11

    The family of fibroblast growth factor receptors (FGFRs) plays an important and well-characterized role in a variety of pathological disorders. FGFR4 is involved in myogenesis and muscle regeneration. Mutations affecting the kinase domain of FGFR4 may cause cancer, for example, breast cancer or rhabdomyosarcoma. Whereas FGFR1-FGFR3 have been structurally characterized, the structure of the FGFR4 kinase domain has not yet been reported. In this study, we present four structures of the kinase domain of FGFR4, in its apo-form and in complex with different types of small-molecule inhibitors. The two apo-FGFR4 kinase domain structures show an activation segment similar in conformation to an autoinhibitory segment observed in the hepatocyte growth factor receptor kinase but different from the known structures of other FGFR kinases. The structures of FGFR4 in complex with the type I inhibitor Dovitinib and the type II inhibitor Ponatinib reveal the molecular interactions with different types of kinase inhibitors and may assist in the design and development of FGFR4 inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Tumor necrosis factor-alpha inhibits stem cell factor-induced proliferation of human bone marrow progenitor cells in vitro. Role of p55 and p75 tumor necrosis factor receptors.

    PubMed Central

    Rusten, L S; Smeland, E B; Jacobsen, F W; Lien, E; Lesslauer, W; Loetscher, H; Dubois, C M; Jacobsen, S E

    1994-01-01

    Stem cell factor (SCF), a key regulator of hematopoiesis, potently synergizes with a number of hematopoietic growth factors. However, little is known about growth factors capable of inhibiting the actions of SCF. TNF-alpha has been shown to act as a bidirectional regulator of myeloid cell proliferation and differentiation. This study was designed to examine interactions between TNF-alpha and SCF. Here, we demonstrate that TNF-alpha potently and directly inhibits SCF-stimulated proliferation of CD34+ hematopoietic progenitor cells. Furthermore, TNF-alpha blocked all colony formation stimulated by SCF in combination with granulocyte colony-stimulating factor (CSF) or CSF-1. The synergistic effect of SCF observed in combination with GM-CSF or IL-3 was also inhibited by TNF-alpha, resulting in colony numbers similar to those obtained in the absence of SCF. These effects of TNF-alpha were mediated through the p55 TNF receptor, whereas little or no inhibition was signaled through the p75 TNF receptor. Finally, TNF-alpha downregulated c-kit cell-surface expression on CD34+ bone marrow cells, and this was predominantly a p55 TNF receptor-mediated event as well. Images PMID:7518828

  10. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation.

    PubMed Central

    Brown, Sharron A N; Richards, Christine M; Hanscom, Heather N; Feng, Sheau-Line Y; Winkles, Jeffrey A

    2003-01-01

    Fn14 is a growth-factor-inducible immediate-early-response gene encoding a 102-amino-acid type I transmembrane protein. The human Fn14 protein was recently identified as a cell-surface receptor for the tumour necrosis factor (TNF) superfamily member named TWEAK (TNF-like weak inducer of apoptosis). In the present paper, we report that the human TWEAK extracellular domain can also bind the murine Fn14 protein. Furthermore, site-specific mutagenesis and directed yeast two-hybrid interaction assays revealed that the TNFR-associated factor (TRAF) 1, 2, 3 and 5 adaptor molecules bind the murine Fn14 cytoplasmic tail at an overlapping, but non-identical, amino acid sequence motif. We also found that TWEAK treatment of quiescent NIH 3T3 cells stimulates inhibitory kappaBalpha phosphorylation and transcriptional activation of a nuclear factor-kappaB (NF-kappaB) enhancer/luciferase reporter construct. Fn14 overexpression in transiently transfected NIH 3T3 cells also promotes NF-kappaB activation, and this cellular response requires an intact TRAF binding site. These results indicate that Fn14 is a functional TWEAK receptor that can associate with four distinct TRAF family members and stimulate the NF-kappaB transcription factor signalling pathway. PMID:12529173

  11. Tumour necrosis factors modulate the affinity state of the leukotriene B4 receptor on human neutrophils.

    PubMed Central

    Brom, J; Knöller, J; Köller, M; König, W

    1988-01-01

    Pre-incubation of human polymorphonuclear granulocytes with recombinant human tumour necrosis factors (TNF) revealed a time- and dose-dependent reduction of the expression of leukotriene B4-receptor sites. Analysis of the binding data by Scatchard plots showed a shift from a heterologous receptor population (indicating high- and low-affinity subsets) to a homologous population. From the results it is considered that TNF can influence host defence through the modulation of leukotriene B4 receptor affinity. PMID:2851543

  12. Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro-Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice.

    PubMed

    Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C

    2016-02-01

    The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation

  13. Oncostatin M Mediates STAT3-Dependent Intestinal Epithelial Restitution via Increased Cell Proliferation, Decreased Apoptosis and Upregulation of SERPIN Family Members

    PubMed Central

    Beigel, Florian; Friedrich, Matthias; Probst, Corina; Sotlar, Karl; Göke, Burkhard; Diegelmann, Julia; Brand, Stephan

    2014-01-01

    Objective Oncostatin M (OSM) is produced by activated T cells, monocytes, and dendritic cells and signals through two distinct receptor complexes consisting of gp130 and LIFR (I) or OSMR-β and gp130 (II), respectively. Aim of this study was to analyze the role of OSM in intestinal epithelial cells (IEC) and intestinal inflammation. Methods OSM expression and OSM receptor distribution was analyzed by PCR and immunohistochemistry experiments, signal transduction by immunoblotting. Gene expression studies were performed by microarray analysis and RT-PCR. Apoptosis was measured by caspases-3/7 activity. IEC migration and proliferation was studied in wounding and water soluble tetrazolium assays. Results The IEC lines Caco-2, DLD-1, SW480, HCT116 and HT-29 express mRNA for the OSM receptor subunits gp130 and OSMR-β, while only HCT116, HT-29 and DLD-1 cells express LIFR mRNA. OSM binding to its receptor complex activates STAT1, STAT3, ERK-1/2, SAPK/JNK-1/2, and Akt. Microarray analysis revealed 79 genes that were significantly up-regulated (adj.-p≤0.05) by OSM in IEC. Most up-regulated genes belong to the functional categories “immunity and defense” (p = 2.1×10−7), “apoptosis” (p = 3.7×10−4) and “JAK/STAT cascade” (p = 3.4×10−6). Members of the SERPIN gene family were among the most strongly up-regulated genes. OSM significantly increased STAT3- and MEK1-dependent IEC cell proliferation (p<0.05) and wound healing (p = 3.9×10−5). OSM protein expression was increased in colonic biopsies of patients with active inflammatory bowel disease (IBD). Conclusions OSM promotes STAT3-dependent intestinal epithelial cell proliferation and wound healing in vitro. Considering the increased OSM expression in colonic biopsy specimens of patients with active IBD, OSM upregulation may modulate a barrier-protective host response in intestinal inflammation. Further in vivo studies are warranted to elucidate the exact role of OSM in intestinal

  14. F-prostanoid receptor regulation of fibroblast growth factor 2 signaling in endometrial adenocarcinoma cells.

    PubMed

    Sales, Kurt J; Boddy, Sheila C; Williams, Alistair R W; Anderson, Richard A; Jabbour, Henry N

    2007-08-01

    Prostaglandin (PG) F(2alpha) is a potent bioactive lipid in the female reproductive tract, and exerts its function after coupling with its heptahelical G-protein-coupled receptor [F-series-prostanoid (FP) receptor] to initiate cell signaling and target gene transcription. In the present study, we found elevated expression of fibroblast growth factor (FGF) 2, FGF receptor 1 (FGFR1), and FP receptor, colocalized within the neoplastic epithelial cells of endometrial adenocarcinomas. We investigated a role for PGF(2alpha)-FP receptor interaction in modulating FGF2 expression and signaling using an endometrial adenocarcinoma cell line stably expressing the FP receptor to the levels detected in endometrial adenocarcinomas (FPS cells) and endometrial adenocarcinoma tissue explants. PGF(2alpha)-FP receptor activation rapidly induced FGF2 mRNA expression, and elevated FGF2 protein expression and secretion into the culture medium in FPS cells and endometrial adenocarcinoma explants. The effect of PGF(2alpha) on the expression and secretion of FGF2 could be abolished by treatment of FPS cells and endometrial tissues with an FP receptor antagonist (AL8810) and inhibitor of ERK (PD98059). Furthermore, we have shown that FGF2 can promote the expression of FGF2 and cyclooxygenase-2, and enhance proliferation of endometrial adenocarcinoma cells via the FGFR1 and ERK pathways, thereby establishing a positive feedback loop to regulate neoplastic epithelial cell function in endometrial adenocarcinomas.

  15. Anti-epidermal growth factor receptor skin toxicity: a matter of topical hydration.

    PubMed

    Ferrari, Daris; Codecà, Carla; Bocci, Barbara; Crepaldi, Francesca; Violati, Martina; Viale, Giulia; Careri, Carmela; Caldiera, Sarah; Bordin, Veronica; Luciani, Andrea; Zonato, Sabrina; Cassinelli, Gabriela; Foa, Paolo

    2016-02-01

    Skin toxicity is a frequent complication of anti-epidermal growth factor receptor therapy, which can be an obstacle in maintaining the dose intensity and may negatively impact on the clinical outcome of cancer patients. Skin lesions depend on the disruption of the keratinocyte development pathways and no treatment is clearly effective in resolving the cutaneous alterations frequently found during anti-epidermal growth factor receptor therapy. Among systemic treatments, oral tetracycline proved to be useful in preventing skin manifestations. We describe the case of a patient affected by metastatic colorectal cancer, for whom a combination of chemotherapy and cetuximab was used as second-line treatment. The patient developed a symptomatic papulopustular skin rash that disappeared completely after a twice-daily application of a hydrating and moisturizing cream, mainly consisting of a mixture of paraffin, silicone compounds, and macrogol. The marked cutaneous amelioration allowed the patient to continue cetuximab without any further symptoms and was associated with a partial radiological response.

  16. Structural basis for signal recognition and transduction by platelet-activating-factor receptor.

    PubMed

    Cao, Can; Tan, Qiuxiang; Xu, Chanjuan; He, Lingli; Yang, Linlin; Zhou, Ye; Zhou, Yiwei; Qiao, Anna; Lu, Minmin; Yi, Cuiying; Han, Gye Won; Wang, Xianping; Li, Xuemei; Yang, Huaiyu; Rao, Zihe; Jiang, Hualiang; Zhao, Yongfang; Liu, Jianfeng; Stevens, Raymond C; Zhao, Qiang; Zhang, Xuejun C; Wu, Beili

    2018-06-01

    Platelet-activating-factor receptor (PAFR) responds to platelet-activating factor (PAF), a phospholipid mediator of cell-to-cell communication that exhibits diverse physiological effects. PAFR is considered an important drug target for treating asthma, inflammation and cardiovascular diseases. Here we report crystal structures of human PAFR in complex with the antagonist SR 27417 and the inverse agonist ABT-491 at 2.8-Å and 2.9-Å resolution, respectively. The structures, supported by molecular docking of PAF, provide insights into the signal-recognition mechanisms of PAFR. The PAFR-SR 27417 structure reveals an unusual conformation showing that the intracellular tips of helices II and IV shift outward by 13 Å and 4 Å, respectively, and helix VIII adopts an inward conformation. The PAFR structures, combined with single-molecule FRET and cell-based functional assays, suggest that the conformational change in the helical bundle is ligand dependent and plays a critical role in PAFR activation, thus greatly extending knowledge about signaling by G-protein-coupled receptors.

  17. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less

  18. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  19. Small molecule inhibition of fibroblast growth factor receptors in cancer.

    PubMed

    Liang, Guang; Chen, Gaozhi; Wei, Xiaoyan; Zhao, Yunjie; Li, Xiaokun

    2013-10-01

    Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs), which are a sub-family of the superfamily of receptor tyrosine kinases, to regulate human development and metabolism. Uncontrolled FGF signaling is responsible for diverse array of developmental disorders, most notably skeletal syndromes due to FGFR gain-of-function mutations. Studies in the last few years have provided significant evidence for the importance of FGF signaling in the pathogenesis of diverse cancers, including endometrial and bladder cancers. FGFs are both potent mitogenic and angiogenic factors and can contribute to carcinogenesis by stimulating cell proliferation and tumor angiogenesis. Gene knockout and pharmacological inhibition of FGFRs in in vivo and in vitro models validate FGFRs as a target for cancer treatment. Considerable efforts are being expended to develop specific, small-molecule inhibitors for treating FGFR-driven cancers. Recent reviews on the FGF/FGFR system have focused primarily on signaling, pathophysiology, and functions in cancer. In this article, we review the key roles of FGFR in cancer, provide an update on the status of clinical trials with small-molecule FGFR inhibitors, and discuss how the current structural data on FGFR kinases guide the design and characterization of new FGFR inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Unliganded fibroblast growth factor receptor 1 forms density-independent dimers.

    PubMed

    Comps-Agrar, Laëtitia; Dunshee, Diana Ronai; Eaton, Dan L; Sonoda, Junichiro

    2015-10-02

    Fibroblast growth factors receptors (FGFRs) are thought to initiate intracellular signaling cascades upon ligand-induced dimerization of the extracellular domain. Although the existence of unliganded FGFR1 dimers on the surface of living cells has been proposed, this notion remains rather controversial. Here, we employed time-resolved Förster resonance energy transfer combined with SNAP- and ACP-tag labeling in COS7 cells to monitor dimerization of full-length FGFR1 at the cell-surface with or without the coreceptor βKlotho. Using this approach we observed homodimerization of unliganded FGFR1 that is independent of its surface density. The homo-interaction signal observed for FGFR1 was indeed as robust as that obtained for epidermal growth factor receptor (EGFR) and was further increased by the addition of activating ligands or pathogenic mutations. Mutational analysis indicated that the kinase and the transmembrane domains, rather than the extracellular domain, mediate the ligand-independent FGFR1 dimerization. In addition, we observed a formation of a higher order ligand-independent complex by the c-spliced isoform of FGFR1 and βKlotho. Collectively, our approach provides novel insights into the assembly and dynamics of the full-length FGFRs on the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF ormore » thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).« less

  2. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    NASA Astrophysics Data System (ADS)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  3. Factor VIII Interacts with the Endocytic Receptor Low-density Lipoprotein Receptor-related Protein 1 via an Extended Surface Comprising "Hot-Spot" Lysine Residues.

    PubMed

    van den Biggelaar, Maartje; Madsen, Jesper J; Faber, Johan H; Zuurveld, Marleen G; van der Zwaan, Carmen; Olsen, Ole H; Stennicke, Henning R; Mertens, Koen; Meijer, Alexander B

    2015-07-03

    Lysine residues are implicated in driving the ligand binding to the LDL receptor family. However, it has remained unclear how specificity is regulated. Using coagulation factor VIII as a model ligand, we now study the contribution of individual lysine residues in the interaction with the largest member of the LDL receptor family, low-density lipoprotein receptor-related protein (LRP1). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and SPR interaction analysis on a library of lysine replacement variants as two independent approaches, we demonstrate that the interaction between factor VIII (FVIII) and LRP1 occurs over an extended surface containing multiple lysine residues. None of the individual lysine residues account completely for LRP1 binding, suggesting an additive binding model. Together with structural docking studies, our data suggest that FVIII interacts with LRP1 via an extended surface of multiple lysine residues that starts at the bottom of the C1 domain and winds around the FVIII molecule. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Coarse-Grained Molecular Simulation of Epidermal Growth Factor Receptor Protein Tyrosine Kinase Multi-Site Self-Phosphorylation

    PubMed Central

    Koland, John G.

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  5. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    PubMed

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  6. TRPV1 recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1.

    PubMed

    Kim, Sangsung; Kang, Changjoong; Shin, Chan Young; Hwang, Sun Wook; Yang, Young Duk; Shim, Won Sik; Park, Min-Young; Kim, Eunhee; Kim, Misook; Kim, Byung-Moon; Cho, Hawon; Shin, Youngki; Oh, Uhtaek

    2006-03-01

    TRPV1, a cloned capsaicin receptor, is a molecular sensor for detecting adverse stimuli and a key element for inflammatory nociception and represents biophysical properties of native channel. However, there seems to be a marked difference between TRPV1 and native capsaicin receptors in the pharmacological response profiles to vanilloids or acid. One plausible explanation for this overt discrepancy is the presence of regulatory proteins associated with TRPV1. Here, we identify Fas-associated factor 1 (FAF1) as a regulatory factor, which is coexpressed with and binds to TRPV1 in sensory neurons. When expressed heterologously, FAF1 reduces the responses of TRPV1 to capsaicin, acid, and heat, to the pharmacological level of native capsaicin receptor in sensory neurons. Furthermore, silencing FAF1 by RNA interference augments capsaicin-sensitive current in native sensory neurons. We therefore conclude that FAF1 forms an integral component of the vanilloid receptor complex and that it constitutively modulates the sensitivity of TRPV1 to various noxious stimuli in sensory neurons.

  7. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    PubMed

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  8. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    PubMed

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  9. In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe

    NASA Astrophysics Data System (ADS)

    Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong

    2018-02-01

    Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.

  10. Angiogenic factors and their soluble receptors predict organ dysfunction and mortality in post-cardiac arrest syndrome.

    PubMed

    Wada, Takeshi; Jesmin, Subrina; Gando, Satoshi; Yanagida, Yuichiro; Mizugaki, Asumi; Sultana, Sayeeda N; Zaedi, Sohel; Yokota, Hiroyuki

    2012-09-29

    Post-cardiac arrest syndrome (PCAS) often leads to multiple organ dysfunction syndrome (MODS) with a poor prognosis. Endothelial and leukocyte activation after whole-body ischemia/reperfusion following resuscitation from cardiac arrest is a critical step in endothelial injury and related organ damage. Angiogenic factors, including vascular endothelial growth factor (VEGF) and angiopoietin (Ang), and their receptors play crucial roles in endothelial growth, survival signals, pathological angiogenesis and microvascular permeability. The aim of this study was to confirm the efficacy of angiogenic factors and their soluble receptors in predicting organ dysfunction and mortality in patients with PCAS. A total of 52 resuscitated patients were divided into two subgroups: 23 survivors and 29 non-survivors. The serum levels of VEGF, soluble VEGF receptor (sVEGFR)1, sVEGFR2, Ang1, Ang2 and soluble Tie2 (sTie2) were measured at the time of admission (Day 1) and on Day 3 and Day 5. The ratio of Ang2 to Ang1 (Ang2/Ang1) was also calculated. This study compared the levels of angiogenic factors and their soluble receptors between survivors and non-survivors, and evaluated the predictive value of these factors for organ dysfunction and 28-day mortality. The non-survivors demonstrated more severe degrees of organ dysfunction and a higher prevalence of MODS. Non-survivors showed significant increases in the Ang2 levels and the Ang2/Ang1 ratios compared to survivors. A stepwise logistic regression analysis demonstrated that the Ang2 levels or the Ang2/Ang1 ratios on Day 1 independently predicted the 28-day mortality. The receiver operating characteristic curves of the Ang2 levels, and the Ang2/Ang1 ratios on Day 1 were good predictors of 28-day mortality. The Ang2 levels also independently predicted increases in the Sequential Organ Failure Assessment (SOFA) scores. We observed a marked imbalance between Ang1 and Ang2 in favor of Ang2 in PCAS patients, and the effect was more

  11. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific bindingmore » of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.« less

  12. Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes.

    PubMed

    Rajasekar, N; Nath, Chandishwar; Hanif, Kashif; Shukla, Rakesh

    2016-12-01

    Our earlier studies showed that insulin receptor (IR) dysfunction along with neuroinflammation and amyloidogenesis played a major role in streptozotocin (STZ)-induced toxicity in astrocytes. N-methyl-D-aspartate (NMDA) receptor antagonist-memantine shows beneficial effects in Alzheimer's disease (AD) pathology. However, the protective molecular and cellular mechanism of memantine in astrocytes is not properly understood. Therefore, the present study was undertaken to investigate the effect of memantine on insulin receptors, neurotrophic factors, neuroinflammation, and amyloidogenesis in STZ-treated astrocytes. STZ (100 μM) treatment for 24 h in astrocytes resulted significant decrease in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-degrading enzyme (IDE) expression in astrocytes. Treatment with memantine (1-10 μM) improved STZ-induced neurotrophic factor decline (BDNF, GDNF) along with IR dysfunction as evidenced by a significant increase in IR protein expression, phosphorylation of IRS-1, Akt, and GSK-3 α/β in astrocytes. Further, memantine attenuated STZ-induced amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 and amyloid-β 1-42 expression and restored IDE expression in astrocytes. In addition, memantine also displays protective effects against STZ-induced astrocyte activation showed by reduction of inflammatory markers, nuclear factor kappa-B translocation, glial fibrillary acidic protein, cyclooxygenase-2, tumor necrosis factor-α level, and oxidative-nitrostative stress. The results suggest that besides the NMDA receptor antagonisic activity, effect on astroglial IR and neurotrophic factor may also be an important factor in the beneficial effect of memantine in AD pathology. Graphical Abstract Novel neuroprotective mechanisms of memenatine in streptozotocin-induced toxicity in astrocytes.

  13. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    PubMed

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  14. MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

    EPA Science Inventory

    MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
    James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

  15. Vascular Repair After Menstruation Involves Regulation of Vascular Endothelial Growth Factor-Receptor Phosphorylation by sFLT-1

    PubMed Central

    Graubert, Michael D.; Asuncion Ortega, Maria; Kessel, Bruce; Mortola, Joseph F.; Iruela-Arispe, M. Luisa

    2001-01-01

    Regeneration of the endometrium after menstruation requires a rapid and highly organized vascular response. Potential regulators of this process include members of the vascular endothelial growth factor (VEGF) family of proteins and their receptors. Although VEGF expression has been detected in the endometrium, the relationship between VEGF production, receptor activation, and endothelial cell proliferation during the endometrial cycle is poorly understood. To better ascertain the relevance of VEGF family members during postmenstrual repair, we have evaluated ligands, receptors, and activity by receptor phosphorylation in human endometrium throughout the menstrual cycle. We found that VEGF is significantly increased at the onset of menstruation, a result of the additive effects of hypoxia, transforming growth factor-α, and interleukin-1β. Both VEGF receptors, FLT-1 and KDR, followed a similar pattern. However, functional activity of KDR, as determined by phosphorylation studies, revealed activation in the late menstrual and early proliferative phases. The degree of KDR phosphorylation was inversely correlated with the presence of sFLT-1. Endothelial cell proliferation analysis in endometrium showed a peak during the late menstrual and early proliferative phases in concert with the presence of VEGF, VEGF receptor phosphorylation, and decrease of sFLT-1. Together, these results suggest that VEGF receptor activation and the subsequent modulation of sFLT-1 in the late menstrual phase likely contributes to the onset of angiogenesis and endothelial repair in the human endometrium. PMID:11290558

  16. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  17. Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells through the Toll-like receptor 4/nuclear factor-κB pathway.

    PubMed

    Jiang, Ninghong; Xie, Feng; Guo, Qisang; Li, Ming-Qing; Xiao, Jingjing; Sui, Long

    2017-06-01

    Toll-like receptor 4 is overexpressed in various tumors, including cervical carcinoma. However, the role of Toll-like receptor 4 in cervical cancer remains controversial, and the underlying mechanisms are largely elusive. Therefore, Toll-like receptor 4 in cervical cancer and related mechanisms were investigated in this study. Quantitative reverse transcription polymerase chain reaction and western blot analyses were used to detect messenger RNA and protein levels in HeLa, Caski, and C33A cells with different treatments. Proliferation was quantified using Cell Counting Kit-8. Cell cycle distribution and apoptosis were assessed by flow cytometry. Higher levels of Toll-like receptor 4 expression were found in human papillomavirus-positive cells compared to human papillomavirus-negative cells. Proliferation of HeLa and Caski cells was promoted in lipopolysaccharide-stimulated groups but suppressed in short hairpin RNA-transfected groups. Apoptosis rates were lower in lipopolysaccharide-stimulated groups relative to short hairpin RNA-transfected groups. In addition, G2-phase distribution was enhanced when Toll-like receptor 4 was downregulated. Moreover, the pNF-κBp65 level was positively correlated with the Toll-like receptor 4 level in HeLa and Caski cells, though when an nuclear factor-κB inhibitor was applied to lipopolysaccharide-stimulated groups, the patterns of proliferation and apoptosis were opposite to those of the lipopolysaccharide-stimulated groups without inhibitor treatment. In conclusion, these data suggest that Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells at least in part through the Toll-like receptor 4/nuclear factor-κB pathway, which may be correlated with the occurrence and development of cervical carcinoma.

  18. Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.; Loewenberg, B.; Hoefsloot, L.H.

    Severe congenital neutropenia (Kostmann syndrome) is characterized by profound absolute neutropenia and a maturation arrest of marrow progenitor cells at the promyelocyte-myelocyte stage. Marrow cells from such patients frequently display a reduced responsiveness to granulocyte-colony-stimulating factor (G-CSF). G-CSF binds to and activates a specific receptor which transduces signals critical for the proliferation and maturation of granulocytic progenitor cells. Here the authors report the identification of a somatic point mutation in one allele of the G-CSF receptor gene in a patient with severe congenital neutropenia. The mutation results in a cytoplasmic truncation of the receptor. When expressed in murine myeloid cells,more » the mutant receptor transduced a strong growth signal but, in contrast to the wild-type G-CSF receptor, was defective in maturation induction. This mutant receptor chain may act in a dominant negative manner to block granulocytic maturation. 40 refs., figs., 2 tabs.« less

  19. Expression of Epidermal Growth Factor Receptor and Transforming Growth Factor Alpha in Cancer Bladder: Schistosomal and Non-Schistosomal

    PubMed Central

    Badawy, Afkar A.; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Helal, Noha S.; Kamel, Amira

    2017-01-01

    Introduction Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand-receptor combination constitutes an important event in multistep tumorigenesis. Methods This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immuohistochemically stained with EGFR and TGFα antibodies. Results EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy. PMID:28413380

  20. Neomycin is a platelet-derived growth factor (PDGF) antagonist that allows discrimination of PDGF alpha- and beta-receptor signals in cells expressing both receptor types.

    PubMed

    Vassbotn, F S; Ostman, A; Siegbahn, A; Holmsen, H; Heldin, C H

    1992-08-05

    The aminoglycoside neomycin has recently been found to affect certain platelet-derived growth factor (PDGF) responses in C3H/10T1/2 C18 fibroblasts. Using porcine aortic endothelial cells transfected with PDGF alpha- or beta-receptors, we explored the possibility that neomycin interferes with the interaction between the different PDGF isoforms and their receptors. We found that neomycin (5 mM) inhibited the binding of 125I-PDGF-BB to the alpha-receptor with only partial effect on the binding of 125I-PDGF-AA; in contrast, the binding of 125I-PDGF-BB to the beta-receptor was not affected by the aminoglycoside. Scatchard analyses showed that neomycin (5 mM) decreased the number of binding sites for PDGF-BB on alpha-receptor-expressing cells by 87%. Together with cross-competition studies with 125I-labeled PDGF homodimers, the effect of neomycin indicates that PDGF-AA and PDGF-BB bind to both common and unique structures on the PDGF alpha-receptor. Neomycin specifically inhibited the autophosphorylation of the alpha-receptor by PDGF-BB, with less effect on the phosphorylation induced by PDGF-AA and no effect on the phosphorylation of the beta-receptor by PDGF-BB. Thus, neomycin is a PDGF isoform- and receptor-specific antagonist that provides a possibility to compare the signal transduction pathways of alpha- and beta-receptors in cells expressing both receptor types. This approach was used to show that activation of PDGF beta-receptors by PDGF-BB mediated a chemotactic response in human fibroblasts, whereas activation of alpha-receptors by the same ligand inhibited chemotaxis.

  1. Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc.

    PubMed

    Le Maitre, Christine L; Richardson, Stephen M A; Baird, Pauline; Freemont, Anthony J; Hoyland, Judith A

    2005-12-01

    Low back pain (LBP) is a common, debilitating and economically important disorder. Current evidence implicates loss of intervertebral disc (IVD) matrix consequent upon 'degeneration' as a major cause of LBP. Degeneration of the IVD involves increases in degradative enzymes and decreases in the extracellular matrix (ECM) component in a process that is controlled by a range of cytokines and growth factors. Studies have suggested using anabolic growth factors to regenerate the normal matrix of the IVD, hence restoring disc height and reversing degenerative disc disease. However, for such therapies to be successful it is vital that the target cells (i.e. the disc cells) express the appropriate receptors. This immunohistochemical study has for the first time investigated the expression and localization of four potentially beneficial growth factor receptors (i.e. TGFbetaRII, BMPRII, FGFR3 and IGFRI) in non-degenerate and degenerate human IVDs. Receptor expression was quantified across regions of the normal and degenerate disc and showed that cells of the nucleus pulposus (NP) and inner annulus fibrosus (IAF) expressed significantly higher levels of the four growth factor receptors investigated. There were no significant differences between the four growth factor expression in non-degenerate and degenerate biopsies. However, expression of TGFbetaRII, FGFR3 and IGFRI, but not BMP RII, were observed in the ingrowing blood vessels that characterize part of the disease aetiology. In conclusion, this study has demonstrated the expression of the four growth factor receptors at similar levels in the chondrocyte-like cells of the NP and IAF in both non-degenerate and degenerate discs, implicating a role in normal disc homeostasis and suggesting that the application of these growth factors to the degenerate human IVD would stimulate matrix production. However, the expression of some of the growth factor receptors on ingrowing blood vessels might be problematic in a therapeutic

  2. Novel Mechanism for Regulation of Epidermal Growth Factor Receptor Endocytosis Revealed by Protein Kinase A Inhibition

    PubMed Central

    Salazar, Gloria; González, Alfonso

    2002-01-01

    Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40–60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and μ-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of “endocytic evasion,” modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function

  3. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    PubMed

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  4. Fibroblast Growth Factor 10-Fibroblast Growth Factor Receptor 2b Mediated Signaling Is Not Required for Adult Glandular Stomach Homeostasis

    PubMed Central

    Sala, Frederic G.; Ford, Henri R.; Bellusci, Saverio; Grikscheit, Tracy C.

    2012-01-01

    The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10) and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b), in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22) except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis. PMID:23133671

  5. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer?

    PubMed

    Wu, Victoria Shang; Kanaya, Noriko; Lo, Chiao; Mortimer, Joanne; Chen, Shiuan

    2015-09-01

    Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e., estrogen receptor [ER] and progesterone receptor [PgR]) and human epidermal growth factor receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2-) breast cancer and HR-negative (HR-) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Characterization of the expression and clinical features of epidermal growth factor receptor and vascular endothelial growth factor receptor-2 in esophageal carcinoma

    PubMed Central

    NIYAZ, MADINIYAT; ANWER, JURAT; LIU, HUI; ZHANG, LIWEI; SHAYHEDIN, ILYAR; AWUT, IDIRIS

    2015-01-01

    The present study aimed to understand the expression characteristics of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-2 (VEGFR-2) in individuals of Uygur, Han and Kazak ethnicity with esophageal carcinoma in Xinjiang (China) and their interrelation analysis, and to investigate the expression differences in these genes between esophageal carcinoma and pericarcinoma tissue samples, and between the three ethnic groups. The expression levels of EGFR and VEGFR-2 from 119 pairs of esophageal carcinoma tissue and corresponding pericarcinoma tissue from Uygur, Han and Kazak patients with esophageal carcinoma were detected by immunohistochemistry following surgical resection, and an additional five carcinoma in situ specimens were also tested. The relative expression was analyzed among the ethnic groups and clinicopathological parameters. The positive rate of EGFR in esophageal carcinoma tissue from patients of Uygur, Han and Kazak heritage was 70.73, 68.42 and 67.5%, respectively. For VEGFR-2 the positive rate was 73.17, 68.42 and 67.5%, respectively. No significant difference was detected in their expression between the three ethnic groups (P>0.05); however, EGFR and VEGFR-2 overexpression were correlated with lymph node metastasis (P<0.05). VEGF expression was also correlated with the expression of VEGFR-2 in esophageal carcinoma tissues. EGFR was positive in carcinoma in situ samples, while VEGFR-2 was negative. The overexpression of EGFR is therefore an early event and may have a significant role in the progression of esophageal carcinoma pathogenesis. EGFR overexpression may correlate with the expression of VEGFR-2 in esophageal cancer. These results may aid the early diagnosis of esophageal cancer, and the development of individual target treatment in the future. PMID:26788193

  7. The role of tumour necrosis factor alpha and soluble tumour necrosis factor alpha receptors in the symptomatology of schizophrenia.

    PubMed

    Turhan, Levent; Batmaz, Sedat; Kocbiyik, Sibel; Soygur, Arif Haldun

    2016-07-01

    Background Immunological mechanisms may be responsible for the development and maintenance of schizophrenia symptoms. Aim The aim of this study is to measure tumour necrosis factor-alpha (TNF-α), soluble tumour necrosis factor-alpha receptor I (sTNF-αRI), and soluble tumour necrosis factor-alpha receptor II (sTNF-αRII) levels in patients with schizophrenia and healthy individuals, and to determine their relationship with the symptoms of schizophrenia. Methods Serum TNF-α, sTNF-αRI and sTNF-αRII levels were measured. The Positive and Negative Syndrome Scale (PANSS) was administered for patients with schizophrenia (n = 35), and the results were compared with healthy controls (n = 30). Hierarchical regression analyses were undertaken to predict the levels of TNF-α, sTNF-αRI and sTNF-αRII. Results No significant difference was observed in TNF-α levels, but sTNF-αRI and sTNF-αRII levels were lower in patients with schizophrenia. Serum sTNF-αRI and sTNF-αRII levels were found to be negatively correlated with the negative subscale score of the PANSS, and sTNF-αRI levels were also negatively correlated with the total score of the PANSS. Smoking, gender, body mass index were not correlated with TNF-α and sTNF-α receptor levels. Conclusions These results suggest that there may be a change in anti-inflammatory response in patients with schizophrenia due to sTNF-αRI and sTNF-αRII levels. The study also supports low levels of TNF activity in schizophrenia patients with negative symptoms.

  8. Functional characterization of an alpha-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae.

    PubMed

    Mayrhofer, Severine; Pöggeler, Stefanie

    2005-04-01

    The homothallic filamentous ascomycete Sordaria macrospora possesses genes which are thought to encode two pheromone precursors and two seven-transmembrane pheromone receptors. The pheromone precursor genes are termed ppg1 and ppg2. The putative products derived from the gene sequence show structural similarity to the alpha-factor precursors and a-factor precursors of the yeast Saccharomyces cerevisiae. Likewise, sequence similarity has been found between the putative products of the pheromone receptor genes pre2 and pre1 and the S. cerevisiae Ste2p alpha-factor receptor and Ste3p a-factor receptor, respectively. To investigate whether the alpha-factor-like pheromone-receptor pair of S. macrospora is functional, a heterologous yeast assay was used. Our results show that the S. macrospora alpha-factor-like pheromone precursor PPG1 is processed into an active pheromone by yeast MATalpha cells. The S. macrospora PRE2 protein was demonstrated to be a peptide pheromone receptor. In yeast MATa cells lacking the endogenous Ste2p receptor, the S. macrospora PRE2 receptor facilitated all aspects of the pheromone response. Using a synthetic peptide, we can now predict the sequence of one active form of the S. macrospora peptide pheromone. We proved that S. macrospora wild-type strains secrete an active pheromone into the culture medium and that disruption of the ppg1 gene in S. macrospora prevents pheromone production. However, loss of the ppg1 gene does not affect vegetative growth or fertility. Finally, we established the yeast assay as an easy and useful system for analyzing pheromone production in developmental mutants of S. macrospora.

  9. Prediction of breast cancer risk by genetic risk factors, overall and by hormone receptor status.

    PubMed

    Hüsing, Anika; Canzian, Federico; Beckmann, Lars; Garcia-Closas, Montserrat; Diver, W Ryan; Thun, Michael J; Berg, Christine D; Hoover, Robert N; Ziegler, Regina G; Figueroa, Jonine D; Isaacs, Claudine; Olsen, Anja; Viallon, Vivian; Boeing, Heiner; Masala, Giovanna; Trichopoulos, Dimitrios; Peeters, Petra H M; Lund, Eiliv; Ardanaz, Eva; Khaw, Kay-Tee; Lenner, Per; Kolonel, Laurence N; Stram, Daniel O; Le Marchand, Loïc; McCarty, Catherine A; Buring, Julie E; Lee, I-Min; Zhang, Shumin; Lindström, Sara; Hankinson, Susan E; Riboli, Elio; Hunter, David J; Henderson, Brian E; Chanock, Stephen J; Haiman, Christopher A; Kraft, Peter; Kaaks, Rudolf

    2012-09-01

    There is increasing interest in adding common genetic variants identified through genome wide association studies (GWAS) to breast cancer risk prediction models. First results from such models showed modest benefits in terms of risk discrimination. Heterogeneity of breast cancer as defined by hormone-receptor status has not been considered in this context. In this study we investigated the predictive capacity of 32 GWAS-detected common variants for breast cancer risk, alone and in combination with classical risk factors, and for tumours with different hormone receptor status. Within the Breast and Prostate Cancer Cohort Consortium, we analysed 6009 invasive breast cancer cases and 7827 matched controls of European ancestry, with data on classical breast cancer risk factors and 32 common gene variants identified through GWAS. Discriminatory ability with respect to breast cancer of specific hormone receptor-status was assessed with the age adjusted and cohort-adjusted concordance statistic (AUROC(a)). Absolute risk scores were calculated with external reference data. Integrated discrimination improvement was used to measure improvements in risk prediction. We found a small but steady increase in discriminatory ability with increasing numbers of genetic variants included in the model (difference in AUROC(a) going from 2.7% to 4%). Discriminatory ability for all models varied strongly by hormone receptor status. Adding information on common polymorphisms provides small but statistically significant improvements in the quality of breast cancer risk prediction models. We consistently observed better performance for receptor-positive cases, but the gain in discriminatory quality is not sufficient for clinical application.

  10. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  11. Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells.

    PubMed

    Gekle, Michael; Freudinger, Ruth; Mildenberger, Sigrid; Silbernagl, Stefan

    2002-04-01

    Epidermal growth factor (EGF) regulates cell proliferation, differentiation, and ion transport by using extracellular signal-regulated kinase (ERK)1/2 as a downstream signal. Furthermore, the EGF-receptor (EGF-R) is involved in signaling by G protein-coupled receptors, growth hormone, and cytokines by means of transactivation. It has been suggested that steroids interact with peptide hormones, in part, by rapid, potentially nongenomic, mechanisms. Previously, we have shown that aldosterone modulates Na(+)/H(+) exchange in Madin-Darby canine kidney (MDCK) cells by means of ERK1/2 in a way similar to growth factors. Here, we tested the hypothesis that aldosterone uses the EGF-R as a heterologous signal transducer in MDCK cells. Nanomolar concentrations of aldosterone induce a rapid increase in ERK1/2 phosphorylation, cellular Ca(2+) concentration, and Na(+)/H(+) exchange activity similar to increases induced by EGF. Furthermore, aldosterone induced a rapid increase in EGF-R-Tyr phosphorylation, and inhibition of EGF-R kinase abolished aldosterone-induced signaling. Inhibition of ERK1/2 phosphorylation reduced the Ca(2+) response, whereas prevention of Ca(2+) influx did not abolish ERK1/2 phosphorylation. Our data show that aldosterone uses the EGF-R-ERK1/2 signaling cascade to elicit its rapid effects in MDCK cells.

  12. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    PubMed

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  13. Functionality of intrinsic disorder in tumor necrosis factor-α and its receptors.

    PubMed

    Uversky, Vladimir N; El-Baky, Nawal Abd; El-Fakharany, Esmail M; Sabry, Amira; Mattar, Ehab H; Uversky, Alexey V; Redwan, Elrashdy M

    2017-11-01

    Tumor necrosis factor-α (TNF-α) is a pleiotropic inflammatory cytokine that exerts potent cytotoxic effects on solid tumor cells, while not affecting their normal counterparts. It is also known that TNF-α exerts many of its biological functions via interaction with specific receptors. To understand the potential roles of intrinsic disorder in the functioning of this important cytokine, we explored the peculiarities of intrinsic disorder distribution in human TNF-α and its homologs from various species, ranging from zebrafish to chimpanzee. We also studied the peculiarities of intrinsic disorder distribution in human TNF-α receptors, TNFR1 and TNFR2. Analysis revealed that cytoplasmic domains of TNF-α and its receptors are expected to be highly disordered. Furthermore, although the sequence identities of analyzed TNF-α homologs range from 99.57% (between human and chimpanzee proteins) to 22.33% (between frog and fish proteins), their intrinsic disorder profiles are characterized by a remarkable similarity. These observations indicate that the peculiarities of distribution of the intrinsic disorder propensity within the amino acid sequences are evolutionary conserved, and therefore could be of functional importance for this family of proteins. We also show that disordered and flexible regions of human TNF-α and its TNFR1 and TNFR2 receptors are crucial for some of their biological activities. © 2017 Federation of European Biochemical Societies.

  14. Specific receptors for epidermal growth factor in rat intestinal microvillus membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.F.

    Epidermal growth factor (EGF) is present in high concentrations in milk, salivary, and pancreaticobiliary secretions. EGF, delivered to the intestinal lumen by these fluids, appears to influence intestinal proliferation. Because EGF exerts its mitogenic effect through binding to specific membrane-bound receptors, binding studies of {sup 125}I-labeled EGF to purified microvillus membrane (MVM) preparations fetal, newborn, and adult rat small intestine were performed. Using the membrane filter technique, binding of {sup 125}I-EGF to adult MVM was specific, saturable, and reversible. Adult and fetal MVM binding was rapid and reached a plateau after 30 min at both 20 and 37{degree}C. No bindingmore » was detected at 4{degree}C. Specific binding increased linearly from 0 to 75 {mu}g MVM protein. Scatchard analysis revealed a single class of receptors in fetal and adult MVM with an association constant of 1.0 {+-} 0.35 {times} 10{sup 9} and 2.3 {+-} 1.6 {times} 10{sup 9} M{sup {minus}1}, respectively. Binding capacity was 435.0 {+-} 89 and 97.7 {+-} 41.3 fmol {sup 125}I-EGF bound/mg MVM protein for fetal and adult MVM, respectively. Newborn MVM binding was negligible. After binding, cross-linking utilizing disuccinimidyl suberate, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography revealed a 170-kDa receptor. These data demonstrate specific receptors for EGF on MVM of rat small intestine and, thus, suggest a mechanism for the intraluminal regulation of enterocyte proliferation by EGF.« less

  15. Increased tumor necrosis factor receptor 1 expression in human colorectal adenomas

    PubMed Central

    Hosono, Kunihiro; Yamada, Eiji; Endo, Hiroki; Takahashi, Hirokazu; Inamori, Masahiko; Hippo, Yoshitaka; Nakagama, Hitoshi; Nakajima, Atsushi

    2012-01-01

    AIM: To determine the expression statuses of tumor necrosis factor (TNF)-α, its receptors (TNF-R) and downstream effector molecules in human colorectal adenomas. METHODS: We measured the serum concentrations of TNF-α and its receptors in 62 colorectal adenoma patients and 34 healthy controls. The protein expression of TNF-α, TNF-R1, TNF-R2 and downstream signals of the TNF receptors, such as c-Jun N-terminal kinase (JNK), nuclear factor-κ B and caspase-3, were also investigated in human colorectal adenomas and in normal colorectal mucosal tissues by immunohistochemistry. Immunofluorescence confocal microscopy was used to investigate the consistency of expression of TNF-R1 and phospho-JNK (p-JNK). RESULTS: The serum levels of soluble TNF-R1 (sTNF-R1) in adenoma patients were significantly higher than in the control group (3.67 ± 0.86 ng/mL vs 1.57 ± 0.72 ng/mL, P < 0.001). Receiver operating characteristic analysis revealed the high diagnostic sensitivity of TNF-R1 measurements (AUC was 0.928) for the diagnosis of adenoma, and the best cut-off level of TNF-R1 was 2.08 ng/mL, with a sensitivity of 93.4% and a specificity of 82.4%. There were no significant differences in the serum levels of TNF-α or sTNF-R2 between the two groups. Immunohistochemistry showed high levels of TNF-R1 and p-JNK expression in the epithelial cells of adenomas. Furthermore, a high incidence of co-localization of TNF-R1 and p-JNK was identified in adenoma tissue. CONCLUSION: TNF-R1 may be a promising biomarker of colorectal adenoma, and it may also play an important role in the very early stages of colorectal carcinogenesis. PMID:23082052

  16. Epidermal growth factor receptor expression in primary cultured human colorectal carcinoma cells.

    PubMed Central

    Tong, W. M.; Ellinger, A.; Sheinin, Y.; Cross, H. S.

    1998-01-01

    In situ hybridization on human colon tissue demonstrates that epidermal growth factor receptor (EGFR) mRNA expression is strongly increased during tumour progression. To obtain test systems to evaluate the relevance of growth factor action during carcinogenesis, primary cultures from human colorectal carcinomas were established. EGFR distribution was determined in 2 of the 27 primary cultures and was compared with that in well-defined subclones derived from the Caco-2 cell line, which has the unique property to differentiate spontaneously in vitro in a manner similar to normal enterocytes. The primary carcinoma-derived cells had up to three-fold higher total EGFR levels than the Caco-2 subclones and a basal mitotic rate at least fourfold higher. The EGFR affinity constant is 0.26 nmol l(-1), which is similar to that reported in Caco-2 cells. The proliferation rate of Caco-2 cells is mainly induced by EGF from the basolateral cell surface where the majority of receptors are located, whereas primary cultures are strongly stimulated from the apical side also. This corresponds to a three- to fivefold higher level of EGFR at the apical cell surface. This redistribution of EGFR to apical plasma membranes in advanced colon carcinoma cells suggests that autocrine growth factors in the colon lumen may play a significant role during tumour progression. Images Figure 1 Figure 2 PMID:9667648

  17. Suppression of transient receptor potential melastatin 4 expression promotes conversion of endothelial cells into fibroblasts via transforming growth factor/activin receptor-like kinase 5 pathway.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Cabello-Verrugio, Claudio; Armisén, Ricardo; Varela, Diego; Simon, Felipe

    2015-05-01

    To study whether transient receptor potential melastatin 4 (TRPM4) participates in endothelial fibrosis and to investigate the underlying mechanism. Primary human endothelial cells were used and pharmacological and short interfering RNA-based approaches were used to test the transforming growth factor beta (TGF-β)/activin receptor-like kinase 5 (ALK5) pathway participation and contribution of TRPM7 ion channel. Suppression of TRPM4 expression leads to decreased endothelial protein expression and increased expression of fibrotic and extracellular matrix markers. Furthermore, TRPM4 downregulation increases intracellular Ca levels as a potential condition for fibrosis. The underlying mechanism of endothelial fibrosis shows that inhibition of TRPM4 expression induces TGF-β1 and TGF-β2 expression, which act through their receptor, ALK5, and the nuclear translocation of the profibrotic transcription factor smad4. TRPM4 acts to maintain endothelial features and its loss promotes fibrotic conversion via TGF-β production. The regulation of TRPM4 levels could be a target for preserving endothelial function during inflammatory diseases.

  18. The cytoplasmic end of transmembrane domain 3 regulates the activity of the Saccharomyces cerevisiae G-protein-coupled alpha-factor receptor.

    PubMed Central

    Parrish, William; Eilers, Markus; Ying, Weiwen; Konopka, James B

    2002-01-01

    The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors. PMID:11861550

  19. Neurotrophin receptor structure and interactions.

    PubMed

    Yano, H; Chao, M V

    2000-03-01

    Although ligand-induced dimerization or oligomerization of receptors is a well established mechanism of growth factor signaling, increasing evidence indicates that biological responses are often mediated by receptor trans-signaling mechanisms involving two or more receptor systems. These include G protein-coupled receptors, cytokine, growth factor and trophic factor receptors. Greater flexibility is provided when different signaling pathways are merged through multiple receptor signaling systems. Trophic factors exemplified by NGF and its family members, ciliary neurotrophic factor (CNTF) and glial derived neurotrophic factor (GDNF) all utilize increased tyrosine phosphorylation of cellular substrates to mediate neuronal cell survival. Actions of the NGF family of neurotrophins are not only dictated by ras activation through the Trk family of receptor tyrosine kinases, but also a survival pathway defined by phosphatidylinositol-3-kinase activity (Yao and Cooper, 1995), which gives rise to phosphoinositide intermediates that activate the serine/threonine kinase Akt/PKB (Dudek et al., 1997). Induction of the serine-threonine kinase activity is critical for cell survival, as well as cell proliferation. Hence, for many trophic factors, multiple proteins constitute a functional multisubunit receptor complex that activates ras-dependent and ras-independent intracellular signaling. The NGF receptors provide an example of bidirectional crosstalk. In the presence of TrkA receptors, p75 can participate in the formation of high affinity binding sites and enhanced neurotrophin responsiveness leading to a survival or differentiation signal. In the absence of TrkA receptors, p75 can generate, in only specific cell populations, a death signal. These activities include the induction of NF kappa B (Carter et al., 1996); the hydrolysis of sphingomyelin to ceramide (Dobrowsky et al., 1995); and the pro-apoptotic functions attributed to p75. Receptors are generally drawn and viewed as

  20. Structural Basis for Activation of the Receptor Tyrosine Kinase KIT by Stem Cell Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuzawa,S.; Opatowsky, Y.; Zhang, Z.

    2007-01-01

    Stem Cell Factor (SCF) initiates its multiple cellular responses by binding to the ectodomain of KIT, resulting in tyrosine kinase activation. We describe the crystal structure of the entire ectodomain of KIT before and after SCF stimulation. The structures show that KIT dimerization is driven by SCF binding whose sole role is to bring two KIT molecules together. Receptor dimerization is followed by conformational changes that enable lateral interactions between membrane proximal Ig-like domains D4 and D5 of two KIT molecules. Experiments with cultured cells show that KIT activation is compromised by point mutations in amino acids critical for D4-D4more » interaction. Moreover, a variety of oncogenic mutations are mapped to the D5-D5 interface. Since key hallmarks of KIT structures, ligand-induced receptor dimerization, and the critical residues in the D4-D4 interface, are conserved in other receptors, the mechanism of KIT stimulation unveiled in this report may apply for other receptor activation.« less

  1. The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells.

    PubMed

    Eierhoff, Thorsten; Hrincius, Eike R; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina

    2010-09-09

    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake.

  2. The Epidermal Growth Factor Receptor (EGFR) Promotes Uptake of Influenza A Viruses (IAV) into Host Cells

    PubMed Central

    Eierhoff, Thorsten; Hrincius, Eike R.; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina

    2010-01-01

    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake. PMID:20844577

  3. Expression of nerve growth factor and its receptor, tyrosine kinase receptor A, in rooster testes.

    PubMed

    Ma, Wei; Wang, Chunqiang; Su, Yuhong; Tian, Yumin; Zhu, Hongyan

    2015-10-01

    Nerve growth factor (NGF), which is required for the survival and differentiation of the nervous system, is also thought to play an important role in the development of mammalian reproductive tissues. To explore the function of NGF in the male reproductive system of non-mammalian animals, we determined the presence of NGF and its receptor, tyrosine kinase receptor A (TrkA), in rooster testes and investigated the regulation of NGF and TrkA expression by follicle-stimulating hormone (FSH). The mRNA and protein levels of NGF and TrkA in 6-week-old rooster testes were lower than those in 12-, 16- or 20-week age groups; levels were highest in the 16-week group. Immunohistochemistry showed that NGF and TrkA were both detected in spermatogonia, spermatocytes and spermatids. NGF immunoreactivity was observed in Leydig cells and strong TrkA signals were present in Sertoli cells. Meanwhile, FSH increased TrkA transcript levels in rooster testes in a dose-dependent manner. We present novel evidence for the developmental and FSH-regulated expression of the NGF/TrkA system, and our findings suggest that the NGF/TrkA system may play a prominent role in chicken spermatogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Opposite Role of Tumor Necrosis Factor Receptors in Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Wang, Yi; Liu, Guijun; Wang, Renxi; Xiao, He; Li, Xinying; Hou, Chunmei; Shen, Beifen; Guo, Renfeng; Li, Yan; Shi, Yanchun; Chen, Guojiang

    2012-01-01

    Tumor necrosis factor-α (TNF-α) is a key factor for the pathogenesis of inflammatory bowel diseases (IBD), whose function is known to be mediated by TNF receptor 1 (TNFR1) or 2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, acute colitis was induced by dextran sulfate sodium (DSS) instillation in TNFR1 or 2−/− mice. TNFR1 ablation led to exacerbation of signs of colitis, including more weight loss, increased mortality, colon shortening and oedema, severe intestinal damage, and higher levels of myeloperoxidase compared to wild-type counterparts. While, TNFR2 deficiency had opposite effects. This discrepancy was reflected by alteration of proinflammatory cytokine and chemokine production in the colons. Importantly, TNFR1 ablation rendered enhanced apoptosis of colonic epithelial cells and TNFR2 deficiency conferred pro-apoptotic effects of lamina propria (LP)-immune cells, as shown by the decreased ratio of Bcl-2/Bax and enhanced nuclear factor (NF)-κB activity. PMID:23285227

  5. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Li-Juan; Liao, Lan; Yang, Li

    MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and blockmore » of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis.« less

  6. Vascular endothelial growth factor c/vascular endothelial growth factor receptor 3 signaling regulates chemokine gradients and lymphocyte migration from tissues to lymphatics.

    PubMed

    Iwami, Daiki; Brinkman, C Colin; Bromberg, Jonathan S

    2015-04-01

    Circulation of leukocytes via blood, tissue and lymph is integral to adaptive immunity. Afferent lymphatics form CCL21 gradients to guide dendritic cells and T cells to lymphatics and then to draining lymph nodes (dLN). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 (VEGFR-3) are the major lymphatic growth factor and receptor. We hypothesized these molecules also regulate chemokine gradients and lymphatic migration. CD4 T cells were injected into the foot pad or ear pinnae, and migration to afferent lymphatics and dLN quantified by flow cytometry or whole mount immunohistochemistry. Vascular endothelial growth factor receptor 3 or its signaling or downstream actions were modified with blocking monoclonal antibodies (mAbs) or other reagents. Anti-VEGFR-3 prevented migration of CD4 T cells into lymphatic lumen and significantly decreased the number that migrated to dLN. Anti-VEGFR-3 abolished CCL21 gradients around lymphatics, although CCL21 production was not inhibited. Heparan sulfate (HS), critical to establish CCL21 gradients, was down-regulated around lymphatics by anti-VEGFR-3 and this was dependent on heparanase-mediated degradation. Moreover, a Phosphoinositide 3-kinase (PI3K)α inhibitor disrupted HS and CCL21 gradients, whereas a PI3K activator prevented the effects of anti-VEGFR-3. During contact hypersensitivity, VEGFR-3, CCL21, and HS expression were all attenuated, and anti-heparanase or PI3K activator reversed these effects. Vascular endothelial growth factor C/VEGFR-3 signaling through PI3Kα regulates the activity of heparanase, which modifies HS and CCL21 gradients around lymphatics. The functional and physical linkages of these molecules regulate lymphatic migration from tissues to dLN. These represent new therapeutic targets to influence immunity and inflammation.

  7. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    PubMed

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier

  8. Proliferation of NS0 cells in protein-free medium: the role of cell-derived proteins, known growth factors and cellular receptors.

    PubMed

    Spens, Erika; Häggström, Lena

    2009-05-20

    NS0 cells proliferate without external supply of growth factors in protein-free media. We hypothesize that the cells produce their own factors to support proliferation. Understanding the mechanisms behind this autocrine regulation of proliferation may open for the novel approaches to improve animal cell processes. The following proteins were identified in NS0 conditioned medium (CM): cyclophilin A, cyclophilin B (CypB), cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerase, macrophage migration inhibitory factor (MIF), beta(2)-microglobulin, Niemann pick type C2, secretory leukocyte protease inhibitor, thioredoxin-1, TNF-alpha, tumour protein translationally controlled 1 and ubiquitin. Further, cDNA microarray analysis indicated that the genes for IL-11, TNF receptor 6, TGF-beta receptor 1 and the IFN-gamma receptor were transcribed. CypB, IFN-alpha/beta/gamma, IL-11, IL-25, MIF, TGF-beta and TNF-alpha as well as the known growth factors EGF, IGF-I/II, IL-6, leukaemia inhibitory factor and oncostatin M (OSM) were excluded as involved in autocrine regulation of NS0 cell proliferation. The receptors for TGF-beta, IGF and OSM are however present in NS0 cell membranes since TGF-beta(1) caused cell death, and IGF-I/II and OSM improved cell growth. Even though no ligand was found, the receptor subunit gp130, active in signal transduction of the IL-6 like proteins, was shown to be essential for NS0 cells as demonstrated by siRNA gene silencing.

  9. Regulation of atrial natriuretic peptide clearance receptors in mesangial cells by growth factors.

    PubMed

    Paul, R V; Wackym, P S; Budisavljevic, M; Everett, E; Norris, J S

    1993-08-25

    Rat mesangial cells can express both 130-kDa guanylyl cyclase-coupled and 66-kDa non-coupled atrial natriuretic peptide (ANP) receptors (ANPR-A and ANPR-C, respectively). Exposure of mesangial cells, grown in 20% fetal calf serum, to 0.1% serum for 24 h increased total ANP receptor density more than 2-fold (Bmax = 87 versus 37 fmol/mg of cell protein) without changing binding affinity (Kd = 94 versus 88 pM). Radioligand binding and cross-linking studies demonstrated that up-regulation of ANP binding after serum deprivation was entirely due to an increase in ANPR-C, with little or no change in ANPR-A. Inhibition of protein synthesis with cycloheximide blocked up-regulation after serum deprivation. Steady-state ANPR-C mRNA level was increased 15-fold by serum deprivation, as judged by Northern blotting. There was no change in ANPR-A mRNA. Platelet-derived growth factor and phorbol myristate acetate, when added to low serum medium, blocked or reversed the effect of serum deprivation on ANPR-C. We conclude that synthesis and expression of ANPR-C but not ANPR-A is suppressed by serum, platelet-derived growth factor, and phorbol myristate acetate. Suppression of ANPR-C in vivo could contribute to mesangial cell proliferative responses to growth factors.

  10. Targeting mutant fibroblast growth factor receptors in cancer.

    PubMed

    Greulich, Heidi; Pollock, Pamela M

    2011-05-01

    Fibroblast growth factor receptors (FGFRs) play diverse roles in the control of cell proliferation, cell differentiation, angiogenesis and development. Activating the mutations of FGFRs in the germline has long been known to cause a variety of skeletal developmental disorders, but it is only recently that a similar spectrum of somatic FGFR mutations has been associated with human cancers. Many of these somatic mutations are gain-of-function and oncogenic and create dependencies in tumor cell lines harboring such mutations. A combination of knockdown studies and pharmaceutical inhibition in preclinical models has further substantiated genomically altered FGFR as a therapeutic target in cancer, and the oncology community is responding with clinical trials evaluating multikinase inhibitors with anti-FGFR activity and a new generation of specific pan-FGFR inhibitors. Copyright © 2011. Published by Elsevier Ltd.

  11. Nitric oxide donor restores lung growth factor and receptor expression in hyperoxia-exposed rat pups.

    PubMed

    Lopez, Emmanuel; Boucherat, Olivier; Franco-Montoya, Marie-Laure; Bourbon, Jacques R; Delacourt, Christophe; Jarreau, Pierre-Henri

    2006-06-01

    Exposure of newborn rats to hyperoxia impairs alveolarization. Nitric oxide (NO) may prevent this evolution. Angiogenesis and factors involved in this process, but also other growth factors (GFs) involved in alveolar development, are likely potential therapeutic targets for NO. We studied the effects of the NO donor, [Z]-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)aminio]diazen-1-ium-1, 2-diolate, also termed DETANONOate (D-NO), on hyperoxia-induced changes in key regulatory factors of alveolar development in neonatal rats, and its possible preventive effect on the physiologic consequences of hyperoxia. Newborn rat pups were randomized at birth to hyperoxia (> 95% O2) or room air exposure for 6 or 10 d, while receiving D-NO or its diluent. On Day 6, several GFs and their receptors were studied at pre- and/or post-translational levels. Elastin transcript determination on Day 6, and elastin deposition in tissue and morphometric analysis of the lungs on Day 10, were also performed. Hyperoxia decreased the expression of vascular endothelial growth factor (VEGF) receptor (VEGFR) 2, fibroblast growth factor (FGF)-18, and FGF receptors (FGFRs) FGFR3 and FGFR4, increased mortality, and impaired alveolarization and capillary growth. D-NO treatment of hyperoxia-exposed pups restored the expression level of FGF18 and FGFR4, induced an increase of both VEGF mRNA and protein, enhanced elastin expression, and partially restored elastin deposition in alveolar walls. Although, under the present conditions, D-NO failed to prevent the physiologic consequences of hyperoxia in terms of survival and lung alveolarization, our findings demonstrate molecular effects of NO on GFs involved in alveolar development that may have contributed to the protective effects previously reported for NO.

  12. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    PubMed

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  13. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    PubMed

    Smits, A; Funa, K; Vassbotn, F S; Beausang-Linder, M; af Ekenstam, F; Heldin, C H; Westermark, B; Nistér, M

    1992-03-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions.

  14. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    PubMed Central

    Smits, A.; Funa, K.; Vassbotn, F. S.; Beausang-Linder, M.; af Ekenstam, F.; Heldin, C. H.; Westermark, B.; Nistér, M.

    1992-01-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1372158

  15. N-methyl-N'-nitro-N-nitrosoguanidine interferes with the epidermal growth factor receptor-mediated signaling pathway.

    PubMed

    Gao, Zhihua; Yang, Jun; Huang, Yun; Yu, Yingnian

    2005-03-01

    Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.

  16. Bradykinin-induced growth inhibition of normal rat kidney (NRK) cells is paralleled by a decrease in epidermal-growth-factor receptor expression.

    PubMed Central

    Van Zoelen, E J; Peters, P H; Afink, G B; Van Genesen, S; De Roos, D G; Van Rotterdam, W; Theuvenet, A P

    1994-01-01

    Normal rat kidney fibroblasts, grown to density arrest in the presence of epidermal growth factor (EGF), can be induced to undergo phenotypic transformation by treatment with transforming growth factor beta or retinoic acid. Here we show that bradykinin blocks this growth-stimulus-induced loss of density-dependent growth arrest by a specific receptor-mediated mechanism. The effects of bradykinin are specific, and are not mimicked by other phosphoinositide-mobilizing agents such as prostaglandin F2 alpha. Northern-blot analysis and receptor-binding studies demonstrate that bradykinin also inhibits the retinoic acid-induced increase in EGF receptor levels in these cells. These studies provide additional evidence that EGF receptor levels modulate EGF-induced expression of the transformed phenotype in these cells. Images Figure 5 PMID:8135739

  17. Structural Characterization of the Interaction of the Fibroblast Growth Factor Receptor with a Small Molecule Allosteric Inhibitor.

    PubMed

    Kappert, Franziska; Sreeramulu, Sridhar; Jonker, Hendrik R A; Richter, Christian; Rogov, Vladimir V; Proschak, Ewgenij; Hargittay, Bruno; Saxena, Krishna; Schwalbe, Harald

    2018-06-04

    The interaction of fibroblast growth factors (FGFs) with their fibroblast growth factor receptors (FGFRs) are important in the signaling network of cell growth and development. SSR128129E (SSR), a ligand of small molecular weight with potential anti-cancer properties, acts allosterically on the extracellular domains of FGFRs. Up to now, the structural basis of SSR binding to the D3 domain of FGFR remained elusive. This work reports the structural characterization of the interaction of SSR with one specific receptor, FGFR3, by NMR spectroscopy. This information provides a basis for rational drug design for allosteric FGFR inhibitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Update on the pathophysiological activities of the cardiac molecule cardiotrophin-1 in obesity.

    PubMed

    Asrih, Mohamed; Mach, François; Quercioli, Alessandra; Dallegri, Franco; Montecucco, Fabrizio

    2013-01-01

    Cardiotrophin-1 (CT-1) is a heart-targeting cytokine that has been reported to exert a variety of activities also in other organs such as the liver, adipose tissue, and atherosclerotic arteries. CT-1 has been shown to induce these effects via binding to a transmembrane receptor, comprising the leukaemia inhibitory factor receptor (LIFR β ) subunit and the glycoprotein 130 (gp130, a common signal transducer). Both local and systemic concentrations of CT-1 have been shown to potentially play a critical role in obesity. For instance, CT-1 plasma concentrations have been shown to be increased in metabolic syndrome (a cluster disease including obesity) probably due to adipose tissue overexpression. Interestingly, treatment with exogenous CT-1 has been shown to improve lipid and glucose metabolism in animal models of obesity. These benefits might suggest a potential therapeutic role for CT-1. However, beyond its beneficial properties, CT-1 has been also shown to induce some adverse effects, such as cardiac hypertrophy and adipose tissue inflammation. Although scientific evidence is still needed, CT-1 might be considered as a potential example of damage/danger-associated molecular pattern (DAMP) in obesity-related cardiovascular diseases. In this narrative review, we aimed at discussing and updating evidence from basic research on the pathophysiological and potential therapeutic roles of CT-1 in obesity.

  19. Tumour necrosis factor receptor trafficking dysfunction opens the TRAPS door to pro-inflammatory cytokine secretion

    PubMed Central

    Turner, Mark D.; Chaudhry, Anupama; Nedjai, Belinda

    2011-01-01

    Cytokines are secreted from macrophages and other cells of the immune system in response to pathogens. Additionally, in autoinflammatory diseases cytokine secretion occurs in the absence of pathogenic stimuli. In the case of TRAPS [TNFR (tumour necrosis factor receptor)-associated periodic syndrome], inflammatory episodes result from mutations in the TNFRSF1A gene that encodes TNFR1. This work remains controversial, however, with at least three distinct separate mechanisms of receptor dysfunction having been proposed. Central to these hypotheses are the NF-κB (nuclear factor κB) and MAPK (mitogen-activated protein kinase) families of transcriptional activators that are able to up-regulate expression of a number of genes, including pro-inflammatory cytokines. The present review examines each proposed mechanism of TNFR1 dysfunction, and addresses how these processes might ultimately impact upon cytokine secretion and disease pathophysiology. PMID:22115362

  20. Characterization of the diffusion of epidermal growth factor receptor clusters by single particle tracking.

    PubMed

    Boggara, Mohan; Athmakuri, Krishna; Srivastava, Sunit; Cole, Richard; Kane, Ravi S

    2013-02-01

    A number of studies have shown that receptors of the epidermal growth factor receptor family (ErbBs) exist as higher-order oligomers (clusters) in cell membranes in addition to their monomeric and dimeric forms. Characterizing the lateral diffusion of such clusters may provide insights into their dynamics and help elucidate their functional relevance. To that end, we used single particle tracking to study the diffusion of clusters of the epidermal growth factor (EGF) receptor (EGFR; ErbB1) containing bound fluorescently-labeled ligand, EGF. EGFR clusters had a median diffusivity of 6.8×10(-11)cm(2)/s and were found to exhibit different modes of transport (immobile, simple, confined, and directed) similar to that previously reported for single EGFR molecules. Disruption of actin filaments increased the median diffusivity of EGFR clusters to 10.3×10(-11)cm(2)/s, while preserving the different modes of diffusion. Interestingly, disruption of microtubules rendered EGFR clusters nearly immobile. Our data suggests that microtubules may play an important role in the diffusion of EGFR clusters either directly or perhaps indirectly via other mechanisms. To our knowledge, this is the first report probing the effect of the cytoskeleton on the diffusion of EGFR clusters in the membranes of live cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Modulation of tumor necrosis factor (TNF) receptor expression during monocytic differentiation by glucocorticoids.

    PubMed

    Goppelt-Struebe, M; Reiser, C O; Schneider, N; Grell, M

    1996-10-01

    Regulation of tumor necrosis factor receptors by glucocorticoids was investigated during phorbol ester-induced monocytic differentiation. As model system the human monocytic cell lines U937 and THP-1, which express both types of TNF receptors (TNF-R60 and TNF-R80), were differentiated with tetradecanoyl phorbol-13-acetate (TPA, 5 x 10(-9) M) in the presence or absence of dexamethasone (10(-9) - 10(-6) M). Expression of TNF receptors was determined at the mRNA level by Northern blot analysis and at the protein level by FACS analysis. During differentiation, TNF-R60 mRNA was down-regulated, whereas TNF-R80 mRNA levels were increased. Dexamethasone had no effect on TNF-R60 mRNA expression but attenuated TNF-R80 mRNA expression in both cell lines. Cell surface expression of TNF-R60 protein remained essentially unchanged during differentiation of THP-1 cells, whereas a rapid down-regulation of TNF-R80 was observed that was followed by a slow recovery. Surface expression of TNF-R80 was not affected by dexamethasone, whereas TNF-R60 expression was reduced by about 25%. These results indicate differential regulation of the two types of TNF receptors at the mRNA and protein level during monocytic differentiation. Glucocorticoids interfered with mRNA expression of TNF-R80 and protein expression of TNF-R60, but the rather limited effect leaves the question of its functional relevance open. In contrast to other cytokine systems, TNF receptors do not appear to be major targets of glucocorticoid action.

  2. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    USDA-ARS?s Scientific Manuscript database

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  3. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo.

    PubMed Central

    Truss, M; Bartsch, J; Schelbert, A; Haché, R J; Beato, M

    1995-01-01

    Hormonal induction of the mouse mammary tumour virus (MMTV) promoter is mediated by interactions between hormone receptors and other transcription factors bound to a complex array of sites. Previous results suggested that access to these sites is modulated by their precise organization into a positioned regulatory nucleosome. Using genomic footprinting, we show that MMTV promoter DNA is rotationally phased in intact cells containing either episomal or chromosomally integrated proviral fragments. Prior to induction there is no evidence for factors bound to the promoter. Following progesterone induction of cells with high levels of receptor, genomic footprinting detects simultaneous protection over the binding sites for hormone receptors, NF-I and the octamer binding proteins. Glucocorticoid or progestin induction leads to a characteristic chromatin remodelling that is independent of ongoing transcription. The centre of the regulatory nucleosome becomes more accessible to DNase I and restriction enzymes, but the limits of the nucleosome are unchanged and the 145 bp core region remains protected against micrococcal nuclease digestion. Thus, the nucleosome covering the MMTV promoter is neither removed nor shifted upon hormone induction, and all relevant transcription factors bind to the surface of the rearranged nucleosome. Since these factors cannot bind simultaneously to free DNA, maintainance of the nucleosome may be required for binding of factors to contiguous sites. Images PMID:7737125

  4. Filamin A Modulates Kinase Activation and Intracellular Trafficking of Epidermal Growth Factor Receptors in Human Melanoma Cells

    PubMed Central

    Fiori, Jennifer L.; Zhu, Tie-Nian; O'Connell, Michael P.; Hoek, Keith S.; Indig, Fred E.; Frank, Brittany P.; Morris, Christa; Kole, Sutapa; Hasskamp, Joanne; Elias, George; Weeraratna, Ashani T.; Bernier, Michel

    2009-01-01

    The actin-binding protein filamin A (FLNa) affects the intracellular trafficking of various classes of receptors and has a potential role in oncogenesis. However, it is unclear whether FLNa regulates the signaling capacity and/or down-regulation of the activated epidermal growth factor receptor (EGFR). Here it is shown that partial knockdown of FLNa gene expression blocked ligand-induced EGFR responses in metastatic human melanomas. To gain greater insights into the role of FLNa in EGFR activation and intracellular sorting, we used M2 melanoma cells that lack endogenous FLNa and a subclone in which human FLNa cDNA has been stably reintroduced (M2A7 cells). Both tyrosine phosphorylation and ubiquitination of EGFR were significantly lower in epidermal growth factor (EGF)-stimulated M2 cells when compared with M2A7 cells. Moreover, the lack of FLNa interfered with EGFR interaction with the ubiquitin ligase c-Cbl. M2 cells exhibited marked resistance to EGF-induced receptor degradation, which was very active in M2A7 cells. Despite comparable rates of EGF-mediated receptor endocytosis, internalized EGFR colocalized with the lysosomal marker lysosome-associated membrane protein-1 in M2A7 cells but not M2 cells, in which EGFR was found to be sequestered in large vesicles and subsequently accumulated in punctated perinuclear structures after EGF stimulation. These results suggest the requirement of FLNa for efficient EGFR kinase activation and the sorting of endocytosed receptors into the degradation pathway. PMID:19213840

  5. Studying the Stoichiometry of Epidermal Growth Factor Receptor in Intact Cells using Correlative Microscopy.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2015-09-11

    This protocol describes the labeling of epidermal growth factor receptor (EGFR) on COS7 fibroblast cells, and subsequent correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM) of whole cells in hydrated state. Fluorescent quantum dots (QDs) were coupled to EGFR via a two-step labeling protocol, providing an efficient and specific protein labeling, while avoiding label-induced clustering of the receptor. Fluorescence microscopy provided overview images of the cellular locations of the EGFR. The scanning transmission electron microscopy (STEM) detector was used to detect the QD labels with nanoscale resolution. The resulting correlative images provide data of the cellular EGFR distribution, and the stoichiometry at the single molecular level in the natural context of the hydrated intact cell. ESEM-STEM images revealed the receptor to be present as monomer, as homodimer, and in small clusters. Labeling with two different QDs, i.e., one emitting at 655 nm and at 800 revealed similar characteristic results.

  6. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor.

    PubMed

    Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J

    1999-09-15

    We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.

  7. The corticotropin-releasing factor receptor-1 pathway mediates the negative affective states of opiate withdrawal.

    PubMed

    Contarino, Angelo; Papaleo, Francesco

    2005-12-20

    The negative affective symptoms of opiate withdrawal powerfully motivate drug-seeking behavior and may trigger relapse to heroin abuse. To date, no medications exist that effectively relieve the negative affective symptoms of opiate withdrawal. The corticotropin-releasing factor (CRF) system has been hypothesized to mediate the motivational effects of drug dependence. The CRF signal is transmitted by two distinct receptors named CRF receptor-1 (CRF1) and CRF2. Here we report that genetic disruption of CRF1 receptor pathways in mice eliminates the negative affective states of opiate withdrawal. In particular, neither CRF1 receptor heterozygous (CRF1+/-) nor homozygous (CRF1-/-) null mutant mice avoided environmental cues repeatedly paired with the early phase of opiate withdrawal. These results were not due to altered associative learning processes because CRF1+/- and CRF1-/- mice displayed reliable, conditioned place aversions to environmental cues paired with the kappa-opioid receptor agonist U-50,488H. We also examined the impact of CRF1 receptor-deficiency upon opiate withdrawal-induced dynorphin activity in the nucleus accumbens, a brain molecular mechanism thought to underlie the negative affective states of drug withdrawal. Consistent with the behavioral indices, we found that, during the early phase of opiate withdrawal, neither CRF1+/- nor CRF1-/- showed increased dynorphin mRNA levels in the nucleus accumbens. This study reveals a cardinal role for CRF/CRF1 receptor pathways in the negative affective states of opiate withdrawal and suggests therapeutic strategies for the treatment of opiate addiction.

  8. Expression of genes involved in early cell fate decisions in human embryos and their regulation by growth factors.

    PubMed

    Kimber, S J; Sneddon, S F; Bloor, D J; El-Bareg, A M; Hawkhead, J A; Metcalfe, A D; Houghton, F D; Leese, H J; Rutherford, A; Lieberman, B A; Brison, D R

    2008-05-01

    Little is understood about the regulation of gene expression in human preimplantation embryos. We set out to examine the expression in human preimplantation embryos of a number of genes known to be critical for early development of the murine embryo. The expression profile of these genes was analysed throughout preimplantation development and in response to growth factor (GF) stimulation. Developmental expression of a number of genes was similar to that seen in murine embryos (OCT3B/4, CDX2, NANOG). However, GATA6 is expressed throughout preimplantation development in the human. Embryos were cultured in IGF-I, leukaemia inhibitory factor (LIF) or heparin-binding EGF-like growth factor (HBEGF), all of which are known to stimulate the development of human embryos. Our data show that culture in HBEGF and LIF appears to facilitate human embryo expression of a number of genes: ERBB4 (LIF) and LIFR and DSC2 (HBEGF) while in the presence of HBEGF no blastocysts expressed EOMES and when cultured with LIF only two out of nine blastocysts expressed TBN. These data improve our knowledge of the similarities between human and murine embryos and the influence of GFs on human embryo gene expression. Results from this study will improve the understanding of cell fate decisions in early human embryos, which has important implications for both IVF treatment and the derivation of human embryonic stem cells.

  9. Proteomic analyses of signalling complexes associated with receptor tyrosine kinase identify novel members of fibroblast growth factor receptor 3 interactome.

    PubMed

    Balek, Lukas; Nemec, Pavel; Konik, Peter; Kunova Bosakova, Michaela; Varecha, Miroslav; Gudernova, Iva; Medalova, Jirina; Krakow, Deborah; Krejci, Pavel

    2018-01-01

    Receptor tyrosine kinases (RTKs) form multiprotein complexes that initiate and propagate intracellular signals and determine the RTK-specific signalling patterns. Unravelling the full complexity of protein interactions within the RTK-associated complexes is essential for understanding of RTK functions, yet it remains an understudied area of cell biology. We describe a comprehensive approach to characterize RTK interactome. A single tag immunoprecipitation and phosphotyrosine protein isolation followed by mass-spectrometry was used to identify proteins interacting with fibroblast growth factor receptor 3 (FGFR3). A total of 32 experiments were carried out in two different cell types and identified 66 proteins out of which only 20 (30.3%) proteins were already known FGFR interactors. Using co-immunoprecipitations, we validated FGFR3 interaction with adapter protein STAM1, transcriptional regulator SHOX2, translation elongation factor eEF1A1, serine/threonine kinases ICK, MAK and CCRK, and inositol phosphatase SHIP2. We show that unappreciated signalling mediators exist for well-studied RTKs, such as FGFR3, and may be identified via proteomic approaches described here. These approaches are easily adaptable to other RTKs, enabling identification of novel signalling mediators for majority of the known human RTKs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Transcription factor Brn-3α mRNA in cancers, relationship with AR, ER receptors and AKT/m-TOR pathway components

    NASA Astrophysics Data System (ADS)

    Spirina, L. V.; Gorbunov, A. K.; Chigevskaya, S. Y.; Usynin, Y. A.; Kondakova, I. V.; Slonimskaya, E. M.; Usynin, E. A.; Choinzonov, E. L.; Zaitseva, O. S.

    2017-09-01

    Transcription factors POU4F1 (neurogenic factor Brn-3α) play a pivotal role in cancers development. The aim of the study was to reveal the Brn-3α expression, AR, ER expression in cancers development, association with AKT/mTOR pathway activation. 30 patients with locally advanced prostate cancer, 20 patients with papillary thyroid cancer, T2-3N0-1M0 stages and 40 patients with renal cell cancer T2-3N0M0-1 were involved into the study. The expressions of Brn-3α, AR, ERα, components of AKT/m-TOR signaling pathway genes were performed by real-time PCR. The dependence of Brn-3α expression on mRNA levels of steroid hormone receptors and components of AKT/m-TOR signaling pathway in studied cancers were shown. High levels of mRNA of nuclear factor, steroid hormone receptors were found followed by the activation of this signaling pathway in prostate cancer tissue. The reduction of transcription factor Brn-3α was accompanied with tumor invasive growth with increasing rates of AR, ER and 4E-BP1 mRNA. Thyroid cancer development happened in a case of a Brn-3α and steroid hormone receptors decrease. The activation of AKT/m-TOR signaling pathway was established in the metastatic renal cancers, accompanied with the increase of ER mRNA. But there was no correlation between the steroid receptor and Brn-3α. One-direction changes of Brn-3α were observed in the development of prostate and thyroid cancer due to its effect on the steroid hormone receptors and the activation of AKT/m-TOR signaling pathway components. The influence of this factor on the development of the kidney cancer was mediated through m-TOR activity modifications, the key enzyme of oncogenesis.

  11. Kruppel-like Factor 9 is a Negative Regulator of Ligand-dependent Estrogen Receptor Alpha Signaling in Ishikawa Endometrial Adenocarcinoma Cells

    USDA-ARS?s Scientific Manuscript database

    Estrogen (E) and progesterone (P), acting through their respective receptors and other nuclear proteins, exhibit opposing activities in target cells. We previously reported that Krüppel-like factor 9 (KLF9) cooperates with progesterone receptor (PR) to facilitate P-dependent gene transcription in ut...

  12. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis.

    PubMed

    Huang, Yan; Di Lorenzo, Annarita; Jiang, Weidong; Cantalupo, Anna; Sessa, William C; Giordano, Frank J

    2013-09-01

    Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings.

  13. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary

  14. Breaking the barriers: New role for insulin-like growth factor 1 receptor in vascular permeability.

    PubMed

    Xavier, Sandhya

    2015-05-01

    This commentary highlights the article by Liang et al that describes a critical role for insulin-like growth factor 1 receptor in the progression of chronic kidney disease. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. The Growth Factor Progranulin Binds to TNF Receptors and Is Therapeutic Against Inflammatory Arthritis in Mice

    PubMed Central

    Tang, Wei; Lu, Yi; Tian, Qing-Yun; Zhang, Yan; Guo, Feng-Jin; Liu, Guang-Yi; Syed, Nabeel Muzaffar; Lai, Yongjie; Lin, Edward Alan; Kong, Li; Su, Jeffrey; Yin, Fangfang; Ding, Ai-Hao; Zanin-Zhorov, Alexandra; Dustin, Michael L.; Tao, Jian; Craft, Joseph; Yin, Zhinan; Feng, Jian Q.; Abramson, Steven B.; Yu, Xiu-Ping; Liu, Chuan-ju

    2011-01-01

    The growth factor progranulin (PGRN) has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation, but its receptors remain unidentified. We report that PGRN bound directly to tumor necrosis factor receptors (TNFR), and disturbed the TNFα/TNFR interaction. PGRN-deficient mice were susceptible to collagen-induced arthritis, and administration of PGRN reversed inflammatory arthritis. Atsttrin, an engineered protein composed of three PGRN fragments, exhibited selective TNFR binding. PGRN and Atsttrin prevented inflammation in multiple arthritis mouse models and inhibited TNFα-activated intracellular signaling. Collectively, these findings demonstrate that PGRN is a ligand of TNFR, an antagonist of TNFα signaling and plays a critical role in the pathogenesis of inflammatory arthritis in mice. They also suggest new potential therapeutic interventions for various TNFα-mediated pathologies and conditions, including rheumatoid arthritis. PMID:21393509

  16. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy.

    PubMed

    Dharmawardana, Pathirage G; Peruzzi, Benedetta; Giubellino, Alessio; Burke, Terrence R; Bottaro, Donald P

    2006-01-01

    Growth factor receptor-bound 2 (Grb2) is a ubiquitously expressed adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway. As such, it has been implicated in the oncogenesis of several important human malignancies. In addition to this function, research over the last decade has revealed other fundamental roles for Grb2 in cell motility and angiogenesis--processes that also contribute to tumor growth, invasiveness and metastasis. This functional profile makes Grb2 a high priority target for anti-cancer drug development. Knowledge of Grb2 protein structure, its component Src homology domains and their respective structure-function relationships has facilitated the rapid development of sophisticated drug candidates that can penetrate cells, bind Grb2 with high affinity and potently antagonize Grb2 signaling. These novel compounds offer considerable promise in our growing arsenal of rationally designed anti-cancer therapeutics.

  17. Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent.

    PubMed

    Kren, Nancy P; Zagon, Ian S; McLaughlin, Patricia J

    2016-02-01

    Opioid growth factor receptor (OGFr) facilitates growth inhibition in the presence of its specific ligand opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin. The function of the OGF-OGFr axis requires the receptor to translocate to the nucleus. However, the mechanism of nuclear export of OGFr is unknown. In this study, endogenous OGFr, as well as exogenously expressed OGFr-EGFP, demonstrated significant nuclear accumulation in response to leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export, suggesting that OGFr is exported in a CRM1-dependent manner. One consensus sequence for a nuclear export signal (NES) was identified. Mutation of the associated leucines, L217 L220 L223 and L225, to alanine resulted in decreased nuclear accumulation. NES-EGFP responded to LMB, indicating that this sequence is capable of functioning as an export signal in isolation. To determine why the sequence functions differently in isolation than as a full length protein, the localization of subNES was evaluated in the presence and absence of MG132, a potent inhibitor of proteosomal degradation. MG132 had no effect of subNES localization. The role of tandem repeats located at the C-terminus of OGFr was examined for their role in nuclear trafficking. Six of seven tandem repeats were removed to form deltaTR. DeltaTR localized exclusively to the nucleus indicating that the tandem repeats may contribute to the localization of the receptor. Similar to the loss of cellular proliferation activity (i.e. inhibition) recorded with subNES, deltaTR also demonstrated a significant loss of inhibitory activity indicating that the repeats may be integral to receptor function. These experiments reveal that OGFr contains one functional NES, L217 L220 L223 and L225 and can be exported from the nucleus in a CRM1-dependent manner. © 2015 by the Society for Experimental Biology and Medicine.

  18. Insulin-like growth factor-I receptor activity is essential for Kaposi's sarcoma growth and survival.

    PubMed

    Catrina, S-B; Lewitt, M; Massambu, C; Dricu, A; Grünler, J; Axelson, M; Biberfeld, P; Brismar, K

    2005-04-25

    Kaposi's sarcoma (KS) is a highly vascular tumour and is the most common neoplasm associated with human immunodeficiency virus (HIV-1) infection. Growth factors, in particular vascular endothelial growth factor (VEGF), have been shown to play an important role in its development. The role of insulin-like growth factors (IGFs) in the pathophysiology of different tumours led us to evaluate the role of IGF system in KS. The IGF-I receptors (IGF-IR) were identified by immunohistochemistry in biopsies taken from patients with different AIDS/HIV-related KS stages and on KSIMM cells (an established KS-derived cell line). Insulin-like growth factor-I is a growth factor for KSIMM cells with a maximum increase of 3H-thymidine incorporation of 130 +/- 27.6% (P < 0.05) similar to that induced by VEGF and with which it is additive (281 +/- 13%) (P < 0.05). Moreover, specific blockade of the receptor (either by alpha IR3 antibody or by picropodophyllin, a recently described selective IGF-IR tyrosine phosphorylation inhibitor) induced KSIMM apoptosis, suggesting that IGF-IR agonists (IGF-I and -II) mediate antiapoptotic signals for these cells. We were able to identify an autocrine loop essential for KSIMM cell survival in which IGF-II is the IGF-IR agonist secreted by the cells. In conclusion, IGF-I pathway inhibition is a promising therapeutical approach for KS tumours.

  19. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    PubMed

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  20. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening.

    PubMed

    Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong

    2016-01-01

    Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential "new use" drugs. Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential "new use" drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2, FDA: Food and Drug Administration, PDB: Protein Database Bank, RMSDs: Root mean

  1. Correlation between erythropoietin receptor(s) and estrogen and progesterone receptor expression in different breast cancer cell lines.

    PubMed

    Trošt, Nina; Hevir, Neli; Rižner, Tea Lanišnik; Debeljak, Nataša

    2013-03-01

    Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways

  2. A novel fibroblast growth factor receptor family member promotes neuronal outgrowth and synaptic plasticity in aplysia.

    PubMed

    Pollak, Daniela D; Minh, Bui Quang; Cicvaric, Ana; Monje, Francisco J

    2014-11-01

    Fibroblast Growth Factor (FGF) Receptors (FGFRs) regulate essential biological processes, including embryogenesis, angiogenesis, cellular growth and memory-related long-term synaptic plasticity. Whereas canonical FGFRs depend exclusively on extracellular Immunoglobulin (Ig)-like domains for ligand binding, other receptor types, including members of the tropomyosin-receptor-kinase (Trk) family, use either Ig-like or Leucine-Rich Repeat (LRR) motifs, or both. Little is known, however, about the evolutionary events leading to the differential incorporation of LRR domains into Ig-containing tyrosine kinase receptors. Moreover, although FGFRs have been identified in many vertebrate species, few reports describe their existence in invertebrates. Information about the biological relevance of invertebrate FGFRs and evolutionary divergences between them and their vertebrate counterparts is therefore limited. Here, we characterized ApLRRTK, a neuronal cell-surface protein recently identified in Aplysia. We unveiled ApLRRTK as the first member of the FGFRs family deprived of Ig-like domains that instead contains extracellular LRR domains. We describe that ApLRRTK exhibits properties typical of canonical vertebrate FGFRs, including promotion of FGF activity, enhancement of neuritic outgrowth and signaling via MAPK and the transcription factor CREB. ApLRRTK also enhanced the synaptic efficiency of neurons known to mediate in vivo memory-related defensive behaviors. These data reveal a novel molecular regulator of neuronal function in invertebrates, provide the first evolutionary linkage between LRR proteins and FGFRs and unveil an unprecedented mechanism of FGFR gene diversification in primeval central nervous systems.

  3. Inhibiting thyrotropin/insulin-like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro.

    PubMed

    Place, Robert F; Krieger, Christine C; Neumann, Susanne; Gershengorn, Marvin C

    2017-02-01

    Crosstalk between thyrotropin (TSH) receptors and insulin-like growth factor 1 (IGF-1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF-1 receptor-dependent and -independent pathways. Although an anti-IGF-1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF-1 versus TSH receptor signalling in GO pathogenesis. TSH and IGF-1 receptor antagonists were used to probe TSH/IGF-1 receptor crosstalk in primary cultures of Graves' orbital fibroblasts (GOFs) following activation with monoclonal TSH receptor antibody, M22. Inhibition of HA secretion following TSH receptor stimulation was measured by modified HA elisa. TSH receptor antagonist, ANTAG3 (NCGC00242364), inhibited both IGF-1 receptor -dependent and -independent pathways at all doses of M22; whereas IGF-1 receptor antagonists linsitinib and 1H7 (inhibitory antibody) lost efficacy at high M22 doses. Combining TSH and IGF-1 receptor antagonists exhibited Loewe additivity within the IGF-1 receptor-dependent component of the M22 concentration-response. Similar effects were observed in GOFs activated by autoantibodies from GO patients' sera. Our data support TSH and IGF-1 receptors as therapeutic targets for GO, but reveal putative conditions for anti-IGF-1 receptor resistance. Combination treatments antagonizing both receptors yield additive effects by inhibiting crosstalk triggered by TSH receptor stimulatory antibodies. Combination therapy may be an effective strategy for dose reduction and/or compensate for any loss of anti-IGF-1 receptor efficacy. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors

    NASA Astrophysics Data System (ADS)

    Niederman, Thomas M. J.; Ghogawala, Zoher; Carter, Bob S.; Tompkins, Hillary S.; Russell, Margaret M.; Mulligan, Richard C.

    2002-05-01

    The demonstration that angiogenesis is required for the growth of solid tumors has fueled an intense interest in the development of new therapeutic strategies that target the tumor vasculature. Here we report the development of an immune-based antiangiogenic strategy that is based on the generation of T lymphocytes that possess a killing specificity for cells expressing vascular endothelial growth factor receptors (VEGFRs). To target VEGFR-expressing cells, recombinant retroviral vectors were generated that encoded a chimeric T cell receptor comprised of VEGF sequences linked to intracellular signaling sequences derived from the chain of the T cell receptor. After transduction of primary murine CD8 lymphocytes by such vectors, the transduced cells were shown to possess an efficient killing specificity for cells expressing the VEGF receptor, Flk-1, as measured by in vitro cytotoxicity assays. After adoptive transfer into tumor-bearing mice, the genetically modified cytotoxic T lymphocytes strongly inhibited the growth of a variety of syngeneic murine tumors and human tumor xenografts. An increased effect on in vivo tumor growth inhibition was seen when this therapy was combined with the systemic administration of TNP-470, a conventional angiogenesis inhibitor. The utilization of the immune system to target angiogenic markers expressed on tumor vasculature may prove to be a powerful means for controlling tumor growth.

  5. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.

    PubMed

    Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N

    2012-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.

  6. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers.

    PubMed

    Tiong, Kai Hung; Mah, Li Yen; Leong, Chee-Onn

    2013-12-01

    The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.

  7. Productive interaction between transmembrane mutants of the bovine papillomavirus E5 protein and the platelet-derived growth factor beta receptor.

    PubMed

    Lai, Char-Chang; Edwards, Anne P B; DiMaio, Daniel

    2005-02-01

    The bovine papillomavirus E5 protein is a 44-amino-acid transmembrane protein that transforms cells by binding to the transmembrane region of the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in sustained receptor signaling. However, there are published reports that certain mutants with amino acid substitutions in the membrane-spanning segment of the E5 protein transform cells without activating the PDGF beta receptor. We re-examined several of these transmembrane mutants, and here we present five lines of evidence that these mutants do in fact activate the PDGF beta receptor, resulting in cellular signaling and transformation.

  8. GPER-1 agonist G1 induces vasorelaxation through activation of epidermal growth factor receptor-dependent signalling pathway.

    PubMed

    Jang, Eun Jin; Seok, Young Mi; Arterburn, Jeffrey B; Olatunji, Lawrence A; Kim, In Kyeom

    2013-10-01

    The G protein-coupled oestrogen receptor-1 (GPER-1) agonist G1 induces endothelium-dependent relaxation. Activation of the epidermal growth factor (EGF) receptor leads to transduction of signals from the plasma membrane for the release of nitric oxide. We tested the hypothesis that G1 induces endothelium-dependent vasorelaxation through activation of the EGF receptor. Rat aortic rings were mounted in organ baths. After pretreatment with various inhibitors, aortic rings contracted with 11,9-epoxymethano-prostaglandin F2α or KCl were subjected to relaxation by G1. G1 induced endothelium-dependent vasorelaxation, which was attenuated by pretreatment with either L -N(ω) -nitroarginine methyl ester (L -NAME), an inhibitor of nitric oxide synthase, or (3aS,4R,9bR)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline HB-EGF, heparin-binding EGF-like growth factor, a GPER-1 antagonist. Neither a general oestrogen receptor antagonist, ICI 182 780, nor a selective oestrogen receptor-α antagonist, methyl-piperidino-pyrazole dihydrochloride (MPP), had an effect on G1-induced vasorelaxation. However, pretreatment with EGF receptor blockers, AG1478 or DAPH, resulted in attenuated G1-induced vasorelaxation. In addition, pretreatment with Src inhibitor 4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or Akt inhibitor VIII also resulted in attenuated vascular relaxation induced by the cumulative addition of G1. However, neither phosphatidylinositol-3 kinase inhibitors LY294002 and wortmannin nor an extracellular signal-regulated kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto) butadiene monoethanolate had effect on vascular relaxation induced by the cumulative addition of G1. G1 induces endothelium-dependent vasorelaxation through Src-mediated activation of the EGF receptor and the Akt pathway in rat aorta. © 2013 Royal Pharmaceutical Society.

  9. Delayed Parturition and Altered Myometrial Progesterone Receptor Isoform A Expression in Mice Null for Kruppel-like Factor 9

    USDA-ARS?s Scientific Manuscript database

    Pre-term and delayed labor conditions are devastating health problems, with currently unknown etiologies. We previously showed that the transcription factor Krüppel-like factor 9 (KLF9) influences the expression and/or transcriptional activity of receptors for estrogen and progesterone in endometria...

  10. Membrane receptor location defines receptor interaction with signaling proteins in a polarized epithelium.

    PubMed

    Amsler, K; Kuwada, S K

    1999-01-01

    Signal transduction from receptors is mediated by the interaction of activated receptors with proximate downstream signaling proteins. In polarized epithelial cells, the membrane is divided into subdomains: the apical and basolateral membranes. Membrane receptors may be present in one or both subdomains. Using a combination of immunoprecipitation and Western blot analyses, we tested the hypothesis that a tyrosine kinase growth factor receptor, epidermal growth factor receptor (EGFR), interacts with distinct signaling proteins when present at the apical vs. basolateral membrane of a polarized renal epithelial cell. We report here that tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) was induced only when basolateral EGFR was activated. In contrast, tyrosine phosphorylation of several other signaling proteins was increased by activation of receptor at either surface. All signaling proteins were distributed diffusely throughout the cytoplasm; however, PLC-gamma protein also displayed a concentration at lateral cell borders. These results demonstrate that in polarized epithelial cells the array of signaling pathways initiated by activation of a membrane receptor is defined, at least in part, by the membrane location of the receptor.

  11. NMR study of the transforming growth factor-alpha (TGF-alpha)-epidermal growth factor receptor complex. Visualization of human TGF-alpha binding determinants through nuclear Overhauser enhancement analysis.

    PubMed

    McInnes, C; Hoyt, D W; Harkins, R N; Pagila, R N; Debanne, M T; O'Connor-McCourt, M; Sykes, B D

    1996-12-13

    The study of human transforming growth factor-alpha (TGF-alpha) in complex with the epidermal growth factor (EGF) receptor extracellular domain has been undertaken in order to generate information on the interactions of these molecules. Analysis of 1H NMR transferred nuclear Overhauser enhancement data for titration of the ligand with the receptor has yielded specific data on the residues of the growth factor involved in contact with the larger protein. Significant increases and decreases in nuclear Overhauser enhancement cross-peak intensity occur upon complexation, and interpretation of these changes indicates that residues of the A- and C-loops of TGF-alpha form the major binding interface, while the B-loop provides a structural scaffold for this site. These results corroborate the conclusions from NMR relaxation studies (Hoyt, D. W., Harkins, R. N., Debanne, M. T., O'Connor-McCourt, M., and Sykes, B. D. (1994) Biochemistry 33, 15283-15292), which suggest that the C-terminal residues of the polypeptide are immobilized upon receptor binding, while the N terminus of the molecule retains considerable flexibility, and are consistent with structure-function studies of the TGF-alpha/EGF system indicating a multidomain binding model. These results give a visualization, for the first time, of native TGF-alpha in complex with the EGF receptor and generate a picture of the ligand-binding site based upon the intact molecule. This will undoubtedly be of utility in the structure-based design of TGF-alpha/EGF agonists and/or antagonists.

  12. Tyrosine phosphorylation of platelet derived growth factor β receptors in coronary artery lesions: implications for vascular remodelling after directional coronary atherectomy and unstable angina pectoris

    PubMed Central

    Abe, J; Deguchi, J; Takuwa, Y; Hara, K; Ikari, Y; Tamura, T; Ohno, M; Kurokawa, K

    1998-01-01

    Background—Growth factors such as platelet derived growth factor (PDGF) have been postulated to be important mediators of neointimal proliferation observed in atherosclerotic plaques and restenotic lesions following coronary interventions. Binding of PDGF to its receptor results in intrinsic receptor tyrosine kinase activation and subsequent cellular migration, proliferation, and vascular contraction.
Aims—To investigate whether the concentration of PDGF β receptor tyrosine phosphorylation obtained from directional coronary atherectomy (DCA) samples correlate with atherosclerotic plaque burden, the ability of diseased vessels to remodel, coronary risk factors, and clinical events.
Methods—DCA samples from 59 patients and 15 non-atherosclerotic left internal thoracic arteries (LITA) were analysed for PDGF β receptor tyrosine phosphorylation content by receptor immunoprecipitation and antiphosphotyrosine western blot. The amount of PDGF β receptor phosphorylation was analysed in relation to angiographic follow up data and clinical variables.
Results—PDGF β receptor tyrosine phosphorylation in the 59 DCA samples was greater than in the 15 non-atherosclerotic LITA (mean (SD) 0.84 (0.67) v 0.17 (0.08) over a control standard, p < 0.0001). As evaluated by stepwise regression analysis, incorporation of both PDGF β receptor tyrosine phosphorylation and immediate gain correlated strongly (adjusted r2 = 0.579) with late loss, although PDGF β receptor tyramine phosphorylation alone correlated poorly with late loss. Multivariate regression analysis of coronary risk factors and clinical events revealed unstable angina as the most significant correlate of PDGF β receptor tyrosine phosphorylation (F value 20.009, p < 0.0001).
Conclusions—PDGF β receptor tyrosine phosphorylation in atherosclerotic lesions is increased compared with non-atherosclerotic arterial tissues. The association of PDGF β receptor tyrosine phosphorylation with

  13. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konnai, Satoru; Usui, Tatsufumi; Ikeda, Manabu

    2005-09-01

    Previously, we found an up-regulation of tumor necrosis factor alpha (TNF)-{alpha} and an imbalance of TNF receptors in sheep experimentally infected with bovine leukemia virus (BLV). In order to investigate the different TNF-{alpha}-induced responses, in this study we examined the TNF-{alpha}-induced proliferative response and the expression levels of two distinct TNF receptors on peripheral blood mononuclear cells (PBMC) derived from BLV-uninfected cattle and BLV-infected cattle that were aleukemic (AL) or had persistent lymphocytosis (PL). The proliferative response of PBMC isolated from those cattle with PL in the presence of recombinant bovine TNF-{alpha} (rTNF-{alpha}) was significantly higher than those from ALmore » cattle and uninfected cattle and the cells from PL cattle expressed significantly higher mRNA levels of TNF receptor type II (TNF-RII) than those from AL and BLV-uninfected cattle. No difference was found in TNF-RI mRNA levels. Most cells expressing TNF-RII in PL cattle were CD5{sup +} or sIgM{sup +} cells and these cells showed resistance to TNF-{alpha}-induced apoptosis. Additionally, there were significant positive correlations between the changes in provirus load and TNF-RII mRNA levels, and TNF-{alpha}-induced proliferation and TNF-RII mRNA levels. These data suggest that imbalance in the expression of TNF receptors could at least in part contribute to the progression of lymphocytosis in BLV infection.« less

  14. Measurement of Epidermal Growth Factor Receptor-Derived Signals Within Plasma Membrane Clathrin Structures.

    PubMed

    Lucarelli, Stefanie; Delos Santos, Ralph Christian; Antonescu, Costin N

    2017-01-01

    The epidermal growth factor (EGF) receptor (EGFR) is an important regulator of cell growth, proliferation, survival, migration, and metabolism. EGF binding to EGFR triggers the activation of the receptor's intrinsic kinase activity, in turn eliciting the recruitment of many secondary signaling proteins and activation of downstream signals, such as the activation of phosphatidylinositol-3-kinase (PI3K) and Akt, a process requiring the phosphorylation of Gab1. While the identity of many signals that can be activated by EGFR has been revealed, how the spatiotemporal organization of EGFR signaling within cells controls receptor outcome remains poorly understood. Upon EGF binding at the plasma membrane, EGFR is internalized by clathrin-mediated endocytosis following recruitment to clathrin-coated pits (CCPs). Further, plasma membrane CCPs, but not EGFR internalization, are required for EGF-stimulated Akt phosphorylation. Signaling intermediates such as phosphorylated Gab1, which lead to Akt phosphorylation, are enriched within CCPs upon EGF stimulation. These findings indicate that some plasma membrane CCPs also serve as signaling microdomains required for certain facets of EGFR signaling and are enriched in key EGFR signaling intermediates. Understanding how the spatiotemporal organization of EGFR signals within CCP microdomains controls receptor signaling outcome requires imaging methods that can systematically resolve and analyze the properties of CCPs, EGFR and key signaling intermediates. Here, we describe methods using total internal reflection fluorescence microscopy imaging and analysis to systematically study the enrichment of EGFR and key EGFR-derived signals within CCPs.

  15. Inhibiting thyrotropin/insulin‐like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro

    PubMed Central

    Place, Robert F; Neumann, Susanne; Gershengorn, Marvin C

    2017-01-01

    Background and Purpose Crosstalk between thyrotropin (TSH) receptors and insulin‐like growth factor 1 (IGF‐1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF‐1 receptor‐dependent and ‐independent pathways. Although an anti‐IGF‐1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF‐1 versus TSH receptor signalling in GO pathogenesis. Experimental Approach TSH and IGF‐1 receptor antagonists were used to probe TSH/IGF‐1 receptor crosstalk in primary cultures of Graves' orbital fibroblasts (GOFs) following activation with monoclonal TSH receptor antibody, M22. Inhibition of HA secretion following TSH receptor stimulation was measured by modified HA elisa. Key Results TSH receptor antagonist, ANTAG3 (NCGC00242364), inhibited both IGF‐1 receptor ‐dependent and ‐independent pathways at all doses of M22; whereas IGF‐1 receptor antagonists linsitinib and 1H7 (inhibitory antibody) lost efficacy at high M22 doses. Combining TSH and IGF‐1 receptor antagonists exhibited Loewe additivity within the IGF‐1 receptor‐dependent component of the M22 concentration‐response. Similar effects were observed in GOFs activated by autoantibodies from GO patients' sera. Conclusions and Implications Our data support TSH and IGF‐1 receptors as therapeutic targets for GO, but reveal putative conditions for anti‐IGF‐1 receptor resistance. Combination treatments antagonizing both receptors yield additive effects by inhibiting crosstalk triggered by TSH receptor stimulatory antibodies. Combination therapy may be an effective strategy for dose reduction and/or compensate for any loss of anti‐IGF‐1 receptor efficacy. PMID:27987211

  16. Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies.

    PubMed

    Mazor, Ohad; Hillairet de Boisferon, Marc; Lombet, Alain; Gruaz-Guyon, Anne; Gayer, Batya; Skrzydelsky, Delphine; Kohen, Fortune; Forgez, Patricia; Scherz, Avigdor; Rostene, William; Salomon, Yoram

    2002-02-01

    We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives. The binding affinity (Kd) of labeled Eu-EGF to human A431 epidermal carcinoid cells was 3.6 +/- 1.2 nM, similar to the reported Kd values of EGF, whereas the Kd of Eu-NT to human HT29 colon cancer cells (7.4 +/- 0.5 nM) or to Chinese hamster ovary (CHO) cells transfected with the high-affinity NT receptor (CHO-NT1) were about 10-fold higher than the Kd values of NT. The bioactivity of the Eu-labeled EGF as determined by stimulation of cultured murine D1 hematopoietic cell proliferation was nearly the same as that obtained with native EGF. The maximal stimulation of Ca2+ influx with NT and Eu-NT in CHO-NT1 cells was similar, but the respective K0.5 values were 20 pM and 1 nM, corresponding to differences in the binding affinities previously described. The results of these studies indicate that Eu labeling of peptide hormones and growth factor molecules ranging from 10(3) to 10(5) Da can be conveniently accomplished. Importantly, the Eu-labeled products are stable for approximately 2 years and are completely safe for laboratory use compared to the biohazardous radioligands. Thus, Eu-labeled peptides present an attractive alternative for commonly used radiolabeled ligands in biological studies in general and in receptor assays in particular.

  17. Phosphorylation and Intramolecular Stabilization of the Ligand Binding Domain in the Nuclear Receptor Steroidogenic Factor 1

    PubMed Central

    Desclozeaux, Marion; Krylova, Irina N.; Horn, Florence; Fletterick, Robert J.; Ingraham, Holly A.

    2002-01-01

    Steroidogenic factor 1 (SF-1) is an orphan nuclear receptor with no known ligand. We showed previously that phosphorylation at serine 203 located N′-terminal to the ligand binding domain (LBD) enhanced cofactor recruitment, analogous to the ligand-mediated recruitment in ligand-dependent receptors. In this study, results of biochemical analyses and an LBD helix assembly assay suggest that the SF-1 LBD adopts an active conformation, with helices 1 and 12 packed against the predicted alpha-helical bundle, in the apparent absence of ligand. Fine mapping of the previously defined proximal activation function in SF-1 showed that the activation function mapped fully to helix 1 of the LBD. Limited proteolyses demonstrate that phosphorylation of S203 in the hinge region mimics the stabilizing effects of ligand on the LBD. Moreover, similar effects were observed in an SF-1/thyroid hormone LBD chimera receptor, illustrating that the S203 phosphorylation effects are transferable to a heterologous ligand-dependent receptor. Our collective data suggest that the hinge together with helix 1 is an individualized specific motif, which is tightly associated with its cognate LBD. For SF-1, we find that this intramolecular association and hence receptor activity are further enhanced by mitogen-activated protein kinase phosphorylation, thus mimicking many of the ligand-induced changes observed for ligand-dependent receptors. PMID:12242296

  18. Site-Selective Regulation of Platelet-Derived Growth Factor β Receptor Tyrosine Phosphorylation by T-Cell Protein Tyrosine Phosphatase

    PubMed Central

    Persson, Camilla; Sävenhed, Catrine; Bourdeau, Annie; Tremblay, Michel L.; Markova, Boyka; Böhmer, Frank D.; Haj, Fawaz G.; Neel, Benjamin G.; Elson, Ari; Heldin, Carl-Henrik; Rönnstrand, Lars; Östman, Arne; Hellberg, Carina

    2004-01-01

    The platelet-derived growth factor (PDGF) β receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF β receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF β receptor, we compared PDGF β receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF β receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cγ1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cγ1 activity and migratory hyperresponsiveness to PDGF. PDGF β receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPɛ ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF β receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors. PMID:14966296

  19. Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Angelis Campos, Ana Carolina; Rodrigues, Michele Angela; Andrade, Carolina de

    2011-08-26

    Highlights: {yields} EGF and its receptor translocates to the nucleus in liver cells. {yields} Real time imaging shows that EGF moves to the nucleus. {yields} EGF moves with its receptor to the nucleus. {yields} Dynamin and clathrin are necessary for EGFR nuclear translocation. -- Abstract: The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and realmore » time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.« less

  20. A glioma-derived analog to platelet-derived growth factor: demonstration of receptor competing activity and immunological crossreactivity.

    PubMed Central

    Nistér, M; Heldin, C H; Wasteson, A; Westermark, B

    1984-01-01

    A human clonal glioma cell line, U-343 MGa Cl 2, cultured under serum-free conditions, was found to release a factor that competed with 125I-labeled platelet-derived growth factor (125I-PDGF) for binding to human foreskin fibroblasts. The concentration of competing activity in conditioned medium was equal to 20-30 ng of PDGF per ml. The PDGF receptor competing activity had an elution position on Sephadex G-200 close to that of tracer PDGF. The same fractions in the chromatogram also contained growth-promoting activity and material active in a PDGF radioimmunoassay. Incubation of partially purified, 125I-labeled glioma factor with fibroblasts, or rabbit anti-PDGF serum, led to the selective binding of a component with an estimated Mr of 31,000, as shown by NaDodSO4/gel electrophoresis under nonreducing conditions. After reduction this component migrated as a Mr 18,000 protein. Thus, the behavior in NaDodSO4/gel electrophoresis was similar to that of PDGF. Furthermore, incubation of partially purified glioma factor with immobilized PDGF antibodies markedly decreased the amount of PDGF receptor competing activity remaining in the supernatant. These results suggest that the factor produced by glioma cells has structural, immunological, and functional resemblance to PDGF. We previously reported that a human osteosarcoma cell line produces a PDGF-like molecule with growth-promoting activity. Taken together with the recent finding that PDGF is homologous to the transforming gene product of simian sarcoma virus, our present data give additional support for the idea that an autocrine activation of the PDGF receptor may be operational in the growth of human tumors of mesenchymal or glial origin. Images PMID:6322178

  1. Thrombin-induced p38 mitogen-activated protein kinase activation is mediated by epidermal growth factor receptor transactivation pathway

    PubMed Central

    Kanda, Yasunari; Mizuno, Katsushige; Kuroki, Yasutomi; Watanabe, Yasuhiro

    2001-01-01

    Thrombin is a potent mitogen for vascular smooth muscle cells (VSMC) and has been implicated its pathogenic role in vascular remodelling. However, the signalling pathways by which thrombin mediates its mitogenic response are not fully understood.We have previously reported that thrombin activates p38 mitogen-activated protein kinase (p38 MAPK) by a tyrosine kinase-dependent mechanism, and that p38 MAPK has a role in thrombin-induced mitogenic response in rat VSMC.In the present study, we examine the involvement of epidermal growth factor (EGF) receptor in thrombin-induced p38 MAPK activation. We found that thrombin induced EGF receptor tyrosine phosphorylation (transactivation) in A10 cells, a clonal VSMC cell line. A selective inhibitor of EGF receptor kinase (AG1478) inhibited the p38 MAPK activation in a dose-dependent manner, whereas it had no effect on the response to platelet-derived growth factor (PDGF). EGF receptor phosphorylation induced by thrombin was inhibited by BAPTA-AM and GF109203X, which suggest a requirement for intracellular Ca2+ increase and protein kinase C.We next examined the effect of AG1478 on thrombin-induced DNA synthesis. AG1478 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. In contrast, PDGF-induced DNA synthesis was not affected by AG1478.In conclusion, these data suggest that the EGF receptor transactivation and subsequent p38 MAPK activation is required for thrombin-induced proliferation of VSMC. PMID:11309236

  2. PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients.

    PubMed

    Beelen, Karin; Opdam, Mark; Severson, Tesa M; Koornstra, Rutger H T; Vincent, Andrew D; Wesseling, Jelle; Muris, Jettie J; Berns, Els M J J; Vermorken, Jan B; van Diest, Paul J; Linn, Sabine C

    2014-01-27

    Inhibitors of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway can overcome endocrine resistance in estrogen receptor (ER) α-positive breast cancer, but companion diagnostics indicating PI3K/AKT/mTOR activation and consequently endocrine resistance are lacking. PIK3CA mutations frequently occur in ERα-positive breast cancer and result in PI3K/AKT/mTOR activation in vitro. Nevertheless, the prognostic and treatment-predictive value of these mutations in ERα-positive breast cancer is contradictive. We tested the clinical validity of PIK3CA mutations and other canonic pathway drivers to predict intrinsic resistance to adjuvant tamoxifen. In addition, we tested the association between these drivers and downstream activated proteins. Primary tumors from 563 ERα-positive postmenopausal patients, randomized between adjuvant tamoxifen (1 to 3 years) versus observation were recollected. PIK3CA hotspot mutations in exon 9 and exon 20 were assessed with Sequenom Mass Spectometry. Immunohistochemistry was performed for human epidermal growth factor receptor 2 (HER2), phosphatase and tensin homolog (PTEN), and insulin-like growth factor 1 receptor (IGF-1R). We tested the association between these molecular alterations and downstream activated proteins (like phospho-protein kinase B (p-AKT), phospho-mammalian target of rapamycin (p-mTOR), p-ERK1/2, and p-p70S6K). Recurrence-free interval improvement with tamoxifen versus control was assessed according to the presence or absence of canonic pathway drivers, by using Cox proportional hazard models, including a test for interaction. PIK3CA mutations (both exon 9 and exon 20) were associated with low tumor grade. An enrichment of PIK3CA exon 20 mutations was observed in progesterone receptor- positive tumors. PIK3CA exon 20 mutations were not associated with downstream-activated proteins. No significant interaction between PIK3CA mutations or any of the other canonic pathway

  3. Involvement of macrophage migration inhibitory factor and its receptor (CD74) in human breast cancer.

    PubMed

    Richard, Vincent; Kindt, Nadège; Decaestecker, Christine; Gabius, Hans-Joachim; Laurent, Guy; Noël, Jean-Christophe; Saussez, Sven

    2014-08-01

    Macrophage migration inhibitory factor (MIF) and its receptor CD74 appear to be involved in tumorigenesis. We evaluated, by immunohistochemical staining, the tissue expression and distribution of MIF and CD74 in serial sections of human invasive breast cancer tumor specimens. The serum MIF level was also determined in breast cancer patients. We showed a significant increase in serum MIF average levels in breast cancer patients compared to healthy individuals. MIF tissue expression, quantified by a modified Allred score, was strongly increased in carcinoma compared to tumor-free specimens, in the cancer cells and in the peritumoral stroma, with fibroblasts the most intensely stained. We did not find any significant correlation with histoprognostic factors, except for a significant inverse correlation between tumor size and MIF stromal positivity. CD74 staining was heterogeneous and significantly decreased in cancer cells but increased in the surrounding stroma, namely in lymphocytes, macrophages and vessel endothelium. There was no significant variation according to classical histoprognostic factors, except that CD74 stromal expression was significantly correlated with triple-negative receptor (TRN) status and the absence of estrogen receptors. In conclusion, our data support the concept of a functional role of MIF in human breast cancer. In addition to auto- and paracrine effects on cancer cells, MIF could contribute to shape the tumor microenvironment leading to immunomodulation and angiogenesis. Interfering with MIF effects in breast tumors in a therapeutic perspective remains an attractive but complex challenge. Level of co-expression of MIF and CD74 could be a surrogate marker for efficacy of anti-angiogenic drugs, particularly in TRN breast cancer tumor.

  4. Design, synthesis and screening studies of potent thiazol-2-amine derivatives as fibroblast growth factor receptor 1 inhibitors.

    PubMed

    Kumar, B V S Suneel; Lakshmi, Narasu; Kumar, M Ravi; Rambabu, Gundla; Manjashetty, Thimmappa H; Arunasree, Kalle M; Sriram, Dharmarajan; Ramkumar, Kavya; Neamati, Nouri; Dayam, Raveendra; Sarma, J A R P

    2014-01-01

    Fibroblast growth factor receptor 1 (FGFR1) a tyrosine kinase receptor, plays important roles in angiogenesis, embryonic development, cell proliferation, cell differentiation, and wound healing. The FGFR isoforms and their receptors (FGFRs) considered as a potential targets and under intense research to design potential anticancer agents. Fibroblast growth factors (FGF's) and its growth factor receptors (FGFR) plays vital role in one of the critical pathway in monitoring angiogenesis. In the current study, quantitative pharmacophore models were generated and validated using known FGFR1 inhibitors. The pharmacophore models were generated using a set of 28 compounds (training). The top pharmacophore model was selected and validated using a set of 126 compounds (test set) and also using external validation. The validated pharmacophore was considered as a virtual screening query to screen a database of 400,000 virtual molecules and pharmacophore model retrieved 2800 hits. The retrieved hits were subsequently filtered based on the fit value. The selected hits were subjected for docking studies to observe the binding modes of the retrieved hits and also to reduce the false positives. One of the potential hits (thiazole-2-amine derivative) was selected based the pharmacophore fit value, dock score, and synthetic feasibility. A few analogues of the thiazole-2-amine derivative were synthesized. These compounds were screened for FGFR1 activity and anti-proliferative studies. The top active compound showed 56.87% inhibition of FGFR1 activity at 50 µM and also showed good cellular activity. Further optimization of thiazole-2-amine derivatives is in progress.

  5. Type 1 receptor tyrosine kinases are differentially phosphorylated in mammary carcinoma and differentially associated with steroid receptors.

    PubMed Central

    Bacus, S. S.; Chin, D.; Yarden, Y.; Zelnick, C. R.; Stern, D. F.

    1996-01-01

    The neu/erbB-2/HER-2 proto-oncogene is amplified and/or overexpressed in up to 30% of mammary carcinomas and has been variably correlated with poor prognosis. The signaling activity of the encoded receptor tyrosine kinase is regulated by interactions with other type 1 receptors and their ligands. We have used a novel approach, phosphorylation-sensitive anti-Neu antibodies, to quantify signaling by Neu and epidermal growth factor receptor in a panel of frozen sections of mammary carcinoma specimens. We also determined the relationship of Neu, phosphorylated Neu (and epidermal growth factor receptor), and phosphotyrosine to the expression of Neu-related receptors (epidermal growth factor receptor, HER-3, and HER-4) and to prognostic factors (estrogen and progesterone receptor). We found that tyrosine phosphorylation of Neu (and hence signaling activity) is highly variable among mammary carcinomas. Neu and HER-4 were associated with divergent correlates, suggesting that they have profoundly different biological activities. These results have implications for etiology of mammary carcinoma for clinical evaluation of mammary carcinoma patients, and for development of Neu-targeted therapeutic strategies. Images Figure 1 Figure 2 PMID:8579117

  6. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation inmore » HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.« less

  7. Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues.

    PubMed

    Xiong, Jing; Zhou, L I; Lim, Yoon; Yang, Miao; Zhu, Yu-Hong; Li, Zhi-Wei; Fu, Deng-Li; Zhou, Xin-Fu

    2015-07-01

    There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro , while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.

  8. MET Receptor Tyrosine Kinase as an Autism Genetic Risk Factor

    PubMed Central

    Peng, Yun; Huentelman, Matthew; Smith, Christopher; Qiu, Shenfeng

    2014-01-01

    In this chapter, we will briefly discuss recent literature on the role of MET receptor tyrosine kinase (RTK) in brain development and how perturbation of MET signaling may alter normal neurodevelopmental outcomes. Recent human genetic studies have established MET as a risk factor for autism, and the molecular and cellular underpinnings of this genetic risk are only beginning to emerge from obscurity. Unlike many autism risk genes that encode synaptic proteins, the spatial and temporal expression pattern of MET RTK indicates this signaling system is ideally situated to regulate neuronal growth, functional maturation, and establishment of functional brain circuits, particularly in those brain structures involved in higher levels of cognition, social skills, and executive functions. PMID:24290385

  9. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    PubMed Central

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  10. Receptor for macrophage colony-stimulating factor transduces a signal decreasing erythroid potential in the multipotent hematopoietic EML cell line.

    PubMed

    Pawlak, G; Grasset, M F; Arnaud, S; Blanchet, J P; Mouchiroud, G

    2000-10-01

    To test the hypothesis that hematopoietic growth factors may influence lineage choice in pluripotent progenitor cells, we investigated the effects of macrophage colony-stimulating factor (M-CSF) on erythroid and myeloid potentials of multipotent EML cells ectopically expressing M-CSF receptor (M-CSFR). EML cells are stem cell factor (SCF)-dependent murine cells that give rise spontaneously to pre-B cells, burst-forming unit erythroid (BFU-E), and colony-forming unit granulocyte macrophage (CFU-GM). We determined BFU-E and CFU-GM frequencies among EML cells transduced with murine M-CSFR, human M-CSFR, or chimeric receptors, and cultivated in the presence of SCF, M-CSF, or both growth factors. Effects of specific inhibitors of signaling molecules were investigated. EML cells transduced with murine M-CSFR proliferated in response to M-CSF but also exhibited a sharp and rapid decrease in BFU-E frequency associated with an increase in CFU-GM frequency. In contrast, EML cells expressing human M-CSFR proliferated in response to M-CSF without any changes in erythroid or myeloid potential. Using chimeric receptors between human and murine M-CSFR, we showed that the effects of M-CSF on EML cell differentiation potential are mediated by a large region in the intracellular domain of murine M-CSFR. Furthermore, phospholipase C (PLC) inhibitor U73122 interfered with the negative effects of ligand-activated murine M-CSFR on EML cell erythroid potential. We propose that signaling pathways activated by tyrosine kinase receptors may regulate erythroid potential and commitment decisions in multipotent progenitor cells and that PLC may play a key role in this process.

  11. Effects of age and insulin-like growth factor-1 on rat neurotrophin receptor expression after nerve injury.

    PubMed

    Luo, T David; Alton, Timothy B; Apel, Peter J; Cai, Jiaozhong; Barnwell, Jonathan C; Sonntag, William E; Smith, Thomas L; Li, Zhongyu

    2016-10-01

    Neurotrophin receptors, such as p75(NTR) , direct neuronal response to injury. Insulin-like growth factor-1 receptor (IGF-1R) mediates the increase in p75(NTR) during aging. The aim of this study was to examine the effect of aging and insulin-like growth factor-1 (IGF-1) treatment on recovery after peripheral nerve injury. Young and aged rats underwent tibial nerve transection with either local saline or IGF-1 treatment. Neurotrophin receptor mRNA and protein expression were quantified. Aged rats expressed elevated baseline IGF-1R (34% higher, P = 0.01) and p75(NTR) (68% higher, P < 0.01) compared with young rats. Post-injury, aged animals expressed significantly higher p75(NTR) levels (68.5% above baseline at 4 weeks). IGF-1 treatment suppressed p75(NTR) gene expression at 4 weeks (17.2% above baseline, P = 0.002) post-injury. Local IGF-1 treatment reverses age-related declines in recovery after peripheral nerve injuries by suppressing p75(NTR) upregulation and pro-apoptotic complexes. IGF-1 may be considered a viable adjuvant therapy to current treatment modalities. Muscle Nerve 54: 769-775, 2016. © 2016 Wiley Periodicals, Inc.

  12. Induction of cyclooxygenase-2 expression by prostaglandin E2 stimulation of the prostanoid EP4 receptor via coupling to Gαi and transactivation of the epidermal growth factor receptor in HCA-7 human colon cancer cells.

    PubMed

    Yoshida, Kenji; Fujino, Hiromichi; Otake, Sho; Seira, Naofumi; Regan, John W; Murayama, Toshihiko

    2013-10-15

    Increased expressions of cyclooxygenase-2 (COX-2) and its downstream metabolite, prostaglandin E2 (PGE2), are well documented events in the development of colorectal cancer. Interestingly, PGE2 itself can induce the expression of COX-2 thereby creating the potential for positive feedback. Although evidence for such a positive feedback has been previously described, the specific E-type prostanoid (EP) receptor subtype that mediates this response, as well as the relevant signaling pathways, remain unclear. We now report that the PGE2 stimulated induction of COX-2 expression in human colon cancer HCA-7 cells is mediated by activation of the prostanoid EP4 receptor subtype and is followed by coupling of the receptor to Gαi and the activation of phosphatidylinositol 3-kinase. Subsequent activation of metalloproteinases releases membrane bound heparin-binding epidermal growth factor-like growth factor resulting in the transactivation of epidermal growth factor receptors and the activation of the extracellular signal-regulated kinases and induction of COX-2 expression. This induction of COX-2 expression by PGE2 stimulation of the prostanoid EP4 receptor may underlie the upregulation of COX-2 during colorectal cancer and appears to be an early event in the process of tumorigenesis. © 2013 Elsevier B.V. All rights reserved.

  13. Congestive Heart Failure During Osimertinib Treatment for Epidermal Growth Factor Receptor (EGFR)-mutant Non-small Cell Lung Cancer (NSCLC).

    PubMed

    Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki

    2017-08-15

    We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity.

  14. Congestive Heart Failure During Osimertinib Treatment for Epidermal Growth Factor Receptor (EGFR)-mutant Non-small Cell Lung Cancer (NSCLC)

    PubMed Central

    Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki

    2017-01-01

    We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity. PMID:28781309

  15. Antioxidants for Healthy Skin: The Emerging Role of Aryl Hydrocarbon Receptors and Nuclear Factor-Erythroid 2-Related Factor-2

    PubMed Central

    Furue, Masutaka; Uchi, Hiroshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Chiba, Takahito; Ito, Takamichi; Nakahara, Takeshi; Tsuji, Gaku

    2017-01-01

    Skin is the outermost part of the body and is, thus, inevitably exposed to UV rays and environmental pollutants. Oxidative stress by these hazardous factors accelerates skin aging and induces skin inflammation and carcinogenesis. Aryl hydrocarbon receptors (AHRs) are chemical sensors that are abundantly expressed in epidermal keratinocytes and mediate the production of reactive oxygen species. To neutralize or minimize oxidative stress, the keratinocytes also express nuclear factor-erythroid 2-related factor-2 (NRF2), which is a master switch for antioxidant signaling. Notably, there is fine-tuned crosstalk between AHR and NRF2, which mutually increase or decrease their activation states. Many NRF2-mediated antioxidant phytochemicals are capable of up- and downmodulating AHR signaling. The precise mechanisms by which these phytochemicals differentially affect the AHR and NRF2 system remain largely unknown and warrant future investigation. PMID:28273792

  16. Antioxidants for Healthy Skin: The Emerging Role of Aryl Hydrocarbon Receptors and Nuclear Factor-Erythroid 2-Related Factor-2.

    PubMed

    Furue, Masutaka; Uchi, Hiroshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Chiba, Takahito; Ito, Takamichi; Nakahara, Takeshi; Tsuji, Gaku

    2017-03-03

    Skin is the outermost part of the body and is, thus, inevitably exposed to UV rays and environmental pollutants. Oxidative stress by these hazardous factors accelerates skin aging and induces skin inflammation and carcinogenesis. Aryl hydrocarbon receptors (AHRs) are chemical sensors that are abundantly expressed in epidermal keratinocytes and mediate the production of reactive oxygen species. To neutralize or minimize oxidative stress, the keratinocytes also express nuclear factor-erythroid 2-related factor-2 (NRF2), which is a master switch for antioxidant signaling. Notably, there is fine-tuned crosstalk between AHR and NRF2, which mutually increase or decrease their activation states. Many NRF2-mediated antioxidant phytochemicals are capable of up- and downmodulating AHR signaling. The precise mechanisms by which these phytochemicals differentially affect the AHR and NRF2 system remain largely unknown and warrant future investigation.

  17. Role of G protein-coupled receptors (GPCR), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), heparin-binding epidermal growth factor-like growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) in trenbolone acetate-stimulated bovine satellite cell proliferation.

    PubMed

    Thornton, K J; Kamange-Sollo, E; White, M E; Dayton, W R

    2015-09-01

    Implanting cattle with steroids significantly enhances feed efficiency, rate of gain, and muscle growth. However, the mechanisms responsible for these improvements in muscle growth have not been fully elucidated. Trenbolone acetate (TBA), a testosterone analog, has been shown to increase proliferation rate in bovine satellite cell (BSC) cultures. The classical genomic actions of testosterone have been well characterized; however, our results indicate that TBA may also initiate a quicker, nongenomic response that involves activation of G protein-coupled receptors (GPCR) resulting in activation of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) that release membrane-bound heparin-binding epidermal growth factor-like growth factor (hbEGF), which then binds to and activates the epidermal growth factor receptor (EGFR) and/or erbB2. Furthermore, the EGFR has been shown to regulate expression of the IGF-1 receptor (IGF-1R), which is well known for its role in modulating muscle growth. To determine whether this nongenomic pathway is potentially involved in TBA-stimulated BSC proliferation, we analyzed the effects of treating BSC with guanosine 5'-O-2-thiodiphosphate (GDPβS), an inhibitor of all GPCR; a MMP2 and MMP9 inhibitor (MMPI); CRM19, a specific inhibitor of hbEGF; AG1478, a specific EGFR tyrosine kinase inhibitor; AG879, a specific erbB2 kinase inhibitor; and AG1024, an IGF-1R tyrosine kinase inhibitor on TBA-stimulated proliferation rate (H-thymidine incorporation). Assays were replicated at least 9 times for each inhibitor experiment using BSC cultures obtained from at least 3 different animals. Bovine satellite cell cultures were obtained from yearling steers that had no previous exposure to androgenic or estrogenic compounds. As expected, BSC cultures treated with 10 n TBA showed ( < 0.05) increased proliferation rate when compared with control cultures. Additionally, treatment with 5 ng hbEGF/mL stimulated proliferation in BSC cultures ( < 0.05). Treatment

  18. Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex

    PubMed Central

    Tamada, Taro; Honjo, Eijiro; Maeda, Yoshitake; Okamoto, Tomoyuki; Ishibashi, Matsujiro; Tokunaga, Masao; Kuroki, Ryota

    2006-01-01

    A crystal structure of the signaling complex between human granulocyte colony-stimulating factor (GCSF) and a ligand binding region of GCSF receptor (GCSF-R), has been determined to 2.8 Å resolution. The GCSF:GCSF-R complex formed a 2:2 stoichiometry by means of a cross-over interaction between the Ig-like domains of GCSF-R and GCSF. The conformation of the complex is quite different from that between human GCSF and the cytokine receptor homologous domain of mouse GCSF-R, but similar to that of the IL-6/gp130 signaling complex. The Ig-like domain cross-over structure necessary for GCSF-R activation is consistent with previously reported thermodynamic and mutational analyses. PMID:16492764

  19. Age-related changes in expression of transforming growth factor-beta and receptors in cells of intervertebral discs.

    PubMed

    Matsunaga, Shunji; Nagano, Satoshi; Onishi, Toshiyuki; Morimoto, Norio; Suzuki, Shusaku; Komiya, Setsuro

    2003-01-01

    The authors conducted a study to determine age-related changes in expression of transforming growth factor (TGF)-beta1, -beta2, -beta3, and Type I and Type II receptors in various cells in the nucleus pulposus and anulus fibrosus. Immunolocalization of TGFbetas and Type I and II receptors was examined during the aging process of cervical intervertebral discs in senescence-accelerated mice (SAM). The TGFbeta family has important roles for cellular function of various tissues. Its role in disc aging, however, is unknown. Detailed information on the temporal and spatial localization of TGFbetas and their receptors in discs is required before discussing introduction of them clinically into the intervertebral disc. Three groups of five SAM each were used. The groups of SAM were age 8, 24, and 50 weeks, respectively. Hematoxylin and eosin staining and immunohistochemical study involving specific antibodies for TGFbeta1, -beta2, -beta3, and Types I and II TGF receptors were performed. Intervertebral discs exhibited degenerative change with advancing age. The TGFbetas and their receptors were present in the fibrocartilaginous cells within the anulus fibrosus and notochord-like cells within the nucleus pulposus of young mice. Expression of TGFbetas and Type I and Type II receptors changed markedly in the cells within the anulus fibrosus during the aging process. The TGFbetas and their receptors were present in cells within the nucleus pulposus and the anulus fibrosus of young mice, and their expression decreased with age.

  20. Action mechanisms of Liver X Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabbi, Chiara; Warner, Margaret; Gustafsson, Jan-Åke, E-mail: jgustafs@central.uh.edu

    2014-04-11

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; centralmore » nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors.« less

  1. Regulatory role of tumor necrosis factor receptor-associated factor 6 in breast cancer by activating the protein kinase B/glycogen synthase kinase 3β signaling pathway.

    PubMed

    Shen, Hongyu; Li, Liangpeng; Yang, Sujin; Wang, Dandan; Zhou, Siying; Chen, Xiu; Tang, Jinhai

    2017-08-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an endogenous adaptor of innate and adaptive immune responses, and serves a crucial role in tumor necrosis factor receptor and toll‑like/interleukin‑1 receptor signaling. Although studies have demonstrated that TRAF6 has oncogenic activity, its potential contributions to breast cancer in human remains largely uninvestigated. The present study examined the expression levels and function of TRAF6 in breast carcinoma (n=32) and adjacent healthy (n=25) tissue samples. Compared with adjacent healthy tissues, TRAF6 protein expression levels were significantly upregulated in breast cancer tissues. Reverse transcription‑quantitative polymerase chain reaction analysis revealed a significant upregulation of the cellular proliferative marker Ki‑67 and proliferation cell nuclear antigen expression levels in breast carcinoma specimens. Furthermore, protein expression levels of the accessory molecule, transforming growth factor β‑activated kinase 1 (TAK1), were significantly increased in breast cancer patients, as detected by western blot analysis. As determined by MTT assay, TRAF6 exerted profoundly proliferative effects in the MCF‑7 breast cancer cell line; however, these detrimental effects were ameliorated by TAK1 inhibition. Notably, protein kinase B (AKT)/glycogen synthase kinase (GSK)3β phosphorylation levels were markedly upregulated in breast cancer samples, compared with adjacent healthy tissues. In conclusion, an altered TRAF6‑TAK1 axis and its corresponding downstream AKT/GSK3β signaling molecules may contribute to breast cancer progression. Therefore, TRAF6 may represent a potential therapeutic target for the treatment of breast cancer.

  2. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer.

    PubMed

    Merkin, Ross D; Vanner, Elizabeth A; Romeiser, Jamie L; Shroyer, A Laurie W; Escobar-Hoyos, Luisa F; Li, Jinyu; Powers, Robert S; Burke, Stephanie; Shroyer, Kenneth R

    2017-04-01

    Clinicopathological features of breast cancer have limited accuracy to predict survival. By immunohistochemistry (IHC), keratin 17 (K17) expression has been correlated with triple-negative status (estrogen receptor [ER]/progesterone receptor/human epidermal growth factor receptor-2 [HER2] negative) and decreased survival, but K17 messenger RNA (mRNA) expression has not been evaluated in breast cancer. K17 is a potential prognostic cancer biomarker, targeting p27, and driving cell cycle progression. This study compared K17 protein and mRNA expression to ER/progesterone receptor/HER2 receptor status and event-free survival. K17 IHC was performed on 164 invasive breast cancers and K17 mRNA was evaluated in 1097 breast cancers. The mRNA status of other keratins (16/14/9) was evaluated in 113 ER - /HER2 - ductal carcinomas. IHC demonstrated intense cytoplasmic and membranous K17 localization in myoepithelial cells of benign ducts and lobules and tumor cells of ductal carcinoma in situ. In ductal carcinomas, K17 protein was detected in most triple-negative tumors (28/34, 82%), some non-triple-negative tumors (52/112, 46%), but never in lobular carcinomas (0/15). In ductal carcinomas, high K17 mRNA was associated with reduced 5-year event-free survival in advanced tumor stage (n = 149, hazard ratio [HR] = 3.68, P = .018), and large (n = 73, HR = 3.95, P = .047), triple-negative (n = 103, HR = 2.73, P = .073), and ER - /HER2 - (n = 113, HR = 2.99, P = .049) tumors. There were significant correlations among keratins 17, 16, 14, and 9 mRNA levels suggesting these keratins (all encoded on chromosome 17) could be coordinately expressed in breast cancer. Thus, K17 is expressed in a subset of triple-negative breast cancers, and is a marker of poor prognosis in patients with advanced stage and ER - /HER2 - breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Epidermal Growth Factor Receptor Critically Regulates Endometrial Function during Early Pregnancy

    PubMed Central

    Large, Michael J.; Wetendorf, Margeaux; Lanz, Rainer B.; Hartig, Sean M.; Creighton, Chad J.; Mancini, Michael A.; Kovanci, Ertug; Lee, Kuo-Fen; Threadgill, David W.; Lydon, John P.; Jeong, Jae-Wook; DeMayo, Francesco J.

    2014-01-01

    Infertility and adverse gynecological outcomes such as preeclampsia and miscarriage represent significant female reproductive health concerns. The spatiotemporal expression of growth factors indicates that they play an important role in pregnancy. The goal of this study is to define the role of the ERBB family of growth factor receptors in endometrial function. Using conditional ablation in mice and siRNA in primary human endometrial stromal cells, we identified the epidermal growth factor receptor (Egfr) to be critical for endometrial function during early pregnancy. While ablation of Her2 or Erbb3 led to only a modest reduction in litter size, mice lacking Egfr expression are severely subfertile. Pregnancy demise occurred shortly after blastocyst implantation due to defects in decidualization including decreased proliferation, cell survival, differentiation and target gene expression. To place Egfr in a genetic regulatory hierarchy, transcriptome analyses was used to compare the gene signatures from mice with conditional ablation of Egfr, wingless-related MMTV integration site 4 (Wnt4) or boneless morphogenic protein 2 (Bmp2); revealing that not only are Bmp2 and Wnt4 key downstream effectors of Egfr, but they also regulate distinct physiological functions. In primary human endometrial stromal cells, marker gene expression, a novel high content image-based approach and phosphokinase array analysis were used to demonstrate that EGFR is a critical regulator of human decidualization. Furthermore, inhibition of EGFR signaling intermediaries WNK1 and AKT1S1, members identified in the kinase array and previously unreported to play a role in the endometrium, also attenuate decidualization. These results demonstrate that EGFR plays an integral role in establishing the cellular context necessary for successful pregnancy via the activation of intricate signaling and transcriptional networks, thereby providing valuable insight into potential therapeutic targets. PMID

  4. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    PubMed Central

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed. PMID:27468248

  5. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

    PubMed Central

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID

  6. Human epidermal growth factor receptor bispecific ligand trap RB200: abrogation of collagen-induced arthritis in combination with tumour necrosis factor blockade

    PubMed Central

    2011-01-01

    Introduction Rheumatoid arthritis (RA) is a chronic disease associated with inflammation and destruction of bone and cartilage. Although inhibition of TNFα is widely used to treat RA, a significant number of patients do not respond to TNFα blockade, and therefore there is a compelling need to continue to identify alternative therapeutic strategies for treating chronic inflammatory diseases such as RA. The anti-epidermal growth factor (anti-EGF) receptor antibody trastuzumab has revolutionised the treatment of patients with EGF receptor-positive breast cancer. Expression of EGF ligands and receptors (known as HER) has also been documented in RA. The highly unique compound RB200 is a bispecific ligand trap that is composed of full-length extracellular domains of HER1 and HER3 EGF receptors. Because of its pan-HER specificity, RB200 inhibits responses mediated by HER1, HER2 and HER3 in vitro and in vivo. The objective of this study was to assess the effect of RB200 combined with TNF blockade in a murine collagen-induced arthritis (CIA) model of RA. Methods Arthritic mice were treated with RB200 alone or in combination with the TNF receptor fusion protein etanercept. We performed immunohistochemistry to assess CD31 and in vivo fluorescent imaging using anti-E-selectin antibody labelled with fluorescent dye to elucidate the effect of RB200 on the vasculature in CIA. Results RB200 significantly abrogated CIA by reducing paw swelling and clinical scores. Importantly, low-dose RB200 combined with a suboptimal dose of etanercept led to complete abrogation of arthritis. Moreover, the combination of RB200 with etanercept abrogated the intensity of the E-selectin-targeted signal to the level seen in control animals not immunised to CIA. Conclusions The human pan-EGF receptor bispecific ligand trap RB200, when combined with low-dose etanercept, abrogates CIA, suggesting that inhibition of events downstream of EGF receptor activation, in combination with TNFα inhibitors, may

  7. Resveratrol inhibits proteinase-activated receptor-2-induced release of soluble vascular endothelial growth factor receptor-1 from human endothelial cells

    PubMed Central

    Al-Ani, Bahjat

    2013-01-01

    We recently reported that (i) activation of the proinflammatory receptor, proteinase-activated receptor-2 (PAR-2) caused the release of an important biomarker in preeclampsia, soluble vascular endothelial growth factor receptor-1 (sVEGFR-1, also known as sFlt-1) from human umbilical vein endothelial cells (HUVECs), and (ii) that the anti-oxidant and anti-inflammatory agent, resveratrol, is capable of inhibiting the proinflammatory cytokine-induced sVEGFR-1 release from human placenta. Based on these findings and because PAR-2 is upregulated by proinflammatory cytokines, we sought to determine whether resveratrol can inhibit PAR-2-induced sVEGFR-1 release. PAR-2 expressing cells, HUVECs and human embryonic kidney cells (HEK-293) transfected with a human VEGFR-1 promoter-luciferase reporter construct were incubated with PAR-2-activating peptide and/or resveratrol. Cell supernatants were assayed for sVEGFR-1 by enzyme-linked immunosorbent assay (ELISA), and VEGFR-1 promoter-luciferase assay was performed on the harvested cell lysates. Preincubation of HEK-293 cells with resveratrol significantly inhibited PAR-2-induced VEGFR-1 promoter activity without affecting cell viability as assessed by MTT assay. The addition of resveratrol also blocked PAR-2-mediated sVEGFR-1 release from HUVECs. The present study demonstrates that resveratrol suppressed both VEGFR-1 promoter activity and sVEGFR-1 protein release induced by PAR-2 activation, which further endorses our recent findings of a potential therapeutic role for resveratrol in preeclampsia. PMID:26933402

  8. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Raymond; Matthews, Jason, E-mail: jason.matthews@utoronto.ca

    2013-07-15

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 andmore » HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.« less

  9. MET receptor tyrosine kinase as an autism genetic risk factor.

    PubMed

    Peng, Yun; Huentelman, Matthew; Smith, Christopher; Qiu, Shenfeng

    2013-01-01

    In this chapter, we will briefly discuss recent literature on the role of MET receptor tyrosine kinase (RTK) in brain development and how perturbation of MET signaling may alter normal neurodevelopmental outcomes. Recent human genetic studies have established MET as a risk factor for autism, and the molecular and cellular underpinnings of this genetic risk are only beginning to emerge from obscurity. Unlike many autism risk genes that encode synaptic proteins, the spatial and temporal expression pattern of MET RTK indicates this signaling system is ideally situated to regulate neuronal growth, functional maturation, and establishment of functional brain circuits, particularly in those brain structures involved in higher levels of cognition, social skills, and executive functions. © 2013 Elsevier Inc. All rights reserved.

  10. Expression of epidermal growth factor receptor and vascular endothelial growth factor in malignant canine epithelial nasal tumours.

    PubMed

    Shiomitsu, K; Johnson, C L; Malarkey, D E; Pruitt, A F; Thrall, D E

    2009-06-01

    Epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) signalling pathways play a role in carcinogenesis. Inhibition of EGF receptor (EGFR) and of VEGF is effective in increasing the radiation responsiveness of neoplastic cells both in vitro and in human trials. In this study, immunohistochemical evaluation was employed to determine and characterize the potential protein expression levels and patterns of EGFR and VEGF in a variety of canine malignant epithelial nasal tumours. Of 24 malignant canine nasal tumours, 13 (54.2%) were positive for EGFR staining and 22 (91.7%) were positive for VEGF staining. The intensity and percentage of immunohistochemically positive neoplastic cells for EGFR varied. These findings indicate that EGFR and VEGF proteins were present in some malignant epithelial nasal tumours in the dogs, and therefore, it may be beneficial to treat canine patients with tumours that overexpress EGFR and VEGF with specific inhibitors in conjunction with radiation.

  11. Coagulation factor VII is regulated by androgen receptor in breast cancer.

    PubMed

    Naderi, Ali

    2015-02-01

    Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly

    2009-01-15

    The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observedmore » for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.« less

  13. Activation of epidermal growth factor receptor mediates receptor axon sorting and extension in the developing olfactory system of the moth Manduca sexta.

    PubMed

    Gibson, Nicholas J; Tolbert, Leslie P

    2006-04-10

    During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. Copyright 2006 Wiley-Liss, Inc.

  14. Type I insulin-like growth factor receptor signaling in hematological malignancies

    PubMed Central

    Vishwamitra, Deeksha; George, Suraj Konnath; Shi, Ping; Kaseb, Ahmed O.; Amin, Hesham M.

    2017-01-01

    The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma. PMID:27661006

  15. Identification of heparin-binding EGF-like growth factor as a target in intercellular regulation of epidermal basal cell growth by suprabasal retinoic acid receptors.

    PubMed Central

    Xiao, J H; Feng, X; Di, W; Peng, Z H; Li, L A; Chambon, P; Voorhees, J J

    1999-01-01

    The role of retinoic acid receptors (RARs) in intercellular regulation of cell growth was assessed by targeting a dominant-negative RARalpha mutant (dnRARalpha) to differentiated suprabasal cells of mouse epidermis. dnRARalpha lacks transcriptional activation but not DNA-binding and receptor dimerization functions. Analysis of transgenic mice revealed that dnRARalpha dose-dependently impaired induction of basal cell proliferation and epidermal hyperplasia by all-trans RA (tRA). dnRARalpha formed heterodimers with endogenous retinoid X receptor-alpha (RXRalpha) over RA response elements in competition with remaining endogenous RARgamma-RXRalpha heterodimers, and dose-dependently impaired retinoid-dependent gene transcription. To identify genes regulated by retinoid receptors and involved in cell growth control, we analyzed the retinoid effects on expression of the epidermal growth factor (EGF) receptor, EGF, transforming growth factor-alpha, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin genes. In normal epidermis, tRA rapidly and selectively induced expression of HB-EGF but not the others. This induction occurred exclusively in suprabasal cells. In transgenic epidermis, dnRARalpha dose-dependently inhibited tRA induction of suprabasal HB-EGF and subsequent basal cell hyperproliferation. Together, our observations suggest that retinoid receptor heterodimers located in differentiated suprabasal cells mediate retinoid induction of HB-EGF, which in turn stimulates basal cell growth via intercellular signaling. These events may underlie retinoid action in epidermal regeneration during wound healing. PMID:10075925

  16. Impact of epidermal growth factor receptor gene expression level on clinical outcomes in epidermal growth factor receptor mutant lung adenocarcinoma patients taking first-line epidermal growth factor receptor-tyrosine kinase inhibitors.

    PubMed

    Chang, Huang-Chih; Chen, Yu-Mu; Tseng, Chia-Cheng; Huang, Kuo-Tung; Wang, Chin-Chou; Chen, Yung-Che; Lai, Chien-Hao; Fang, Wen-Feng; Kao, Hsu-Ching; Lin, Meng-Chih

    2017-03-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are first-choice treatments for advanced non-small-cell lung cancer patients harboring EGFR mutations. Although EGFR mutations are strongly predictive of patients' outcomes and their response to treatment with EGFR-TKIs, early failure of first-line therapy with EGFR-TKIs in patients with EGFR mutations is not rare. Besides several clinical factors influencing EGFR-TKI efficacies studied earlier such as the Eastern Cooperative Oncology Group performance status or uncommon mutation, we would like to see whether semi-quantify EGFR mutation gene expression calculated by 2 -ΔΔct was a prognostic factor in EGFR-mutant non-small cell lung cancer patients receiving first-line EGFR-TKIs. This retrospective study reviews 926 lung cancer patients diagnosed from January 2011 to October 2013 at the Kaohsiung Chang Gung Memorial Hospital in Taiwan. Of 224 EGFR-mutant adenocarcinoma patients, 148 patients who had 2 -ΔΔct data were included. The best cutoff values of 2 -ΔΔct for in-frame deletions in exon 19 (19 deletion) and a position 858 substituted from leucine (L) to an arginine (R) in exon 21 (L858R) were determined using receiver operating characteristic curves. Patients were divided into high and low 2 -ΔΔct expression based on the above cutoff level. The best cutoff point of 2 -ΔΔct value of 19 deletion and L858R was 31.1 and 104.7, respectively. In all, 92 (62.1%) patients showed high 2 -ΔΔct expression and 56 patients (37.9%) low 2 -ΔΔct expression. The mean age was 65.6 years. Progression-free survival of 19 deletion mutant patients with low versus high expression level was 17.07 versus 12.04 months (P = 0.004), respectively. Progression-free survival of L858 mutant patients was 13.75 and 7.96 months (P = 0.008), respectively. EGFR-mutant lung adenocarcinoma patients with lower EGFR gene expression had longer progression-free survival duration without interfering

  17. Relation of weight maintenance and dietary restraint to peroxisome proliferator-activated receptor gamma2, glucocorticoid receptor, and ciliary neurotrophic factor polymorphisms.

    PubMed

    Vogels, Neeltje; Mariman, Edwin C M; Bouwman, Freek G; Kester, Arnold D M; Diepvens, Kristel; Westerterp-Plantenga, Margriet S

    2005-10-01

    Genetic variation in the peroxisome proliferator-activated receptor gamma2 (PPARgamma2), glucocorticoid receptor (GRL), and ciliary neurotrophic factor (CNTF) genes may play a role in the etiology of obesity. We examined biological, psychological, and genetic determinants associated with weight maintenance (WM) after weight loss. Subjects (n = 120) followed a 6-wk diet and then a 1-y period of WM. Body weight (BW), body composition, leptin concentration, attitude toward eating (measured with the Three-Factor Eating Questionnaire), physical activity, and the polymorphisms of the PPARgamma2, GRL, and CNTF genes were measured. BW loss was 7.0 +/- 3.1 kg. After 1 y, 21 subjects showed successful WM (<10% regain); 99 were unsuccessful (> or =10% regain). Compared with unsuccessful subjects, successful subjects had a higher increase in dietary restraint over time (4.8 +/- 5.0 and 1.8 +/- 3.9, respectively; P < 0.01) but significantly less sensation of general hunger (-4.0 +/- 4.9 and -1.2 +/- 2.7, respectively; P < 0.05). Successful subjects had a significantly different frequency distribution for the PPARgamma2 (P = 0.05) and GRL (P < 0.05) genes than did unsuccessful subjects. The more successful genotypes showed a higher baseline body mass index and waist circumference (PPARgamma2), a greater decrease in disinhibition of dietary restraint (GRL), and less sensation of hunger (GRL). The G/G genotype (GRL) was an independent predictor of successful WM. The different genotypes of the PPARgamma2 and GRL genes contribute to WM, either directly (GRL) or indirectly (PPARgamma2 and GRL) via baseline body mass index and waist circumference, and to changes in Three-Factor Eating Questionnaire scores.

  18. Localization of brain-derived neurotrophic factor, neurotrophin-4, tropomyosin-related kinase b receptor, and p75 NTR receptor by high-resolution immunohistochemistry on the adult mouse neuromuscular junction.

    PubMed

    Garcia, Neus; Tomàs, Marta; Santafe, Manel M; Lanuza, M Angel; Besalduch, Nuria; Tomàs, Josep

    2010-03-01

    Neurotrophins and their receptors, the trk receptor tyrosine kinases (trks) and p75(NTR), are differentially expressed among the cell types that make up synapses. It is important to determine the precise location of these molecules involved in neurotransmission. Here we use immunostaining and Western blotting to study the localization and expression of neurotrophin brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) and the receptors tropomyosin-related kinase b (trkB) and p75(NTR) at the adult neuromuscular junction. Our confocal immunofluorescence results on the whole mounts of the mouse Levator auris longus muscle and on semithin cross-sections showed that BDNF, NT-4, trkB, and p75(NTR) were localized on the three cells in the neuromuscular synapse (motor axons, post-synaptic muscle and Schwann cells).

  19. Orexin–Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine

    PubMed Central

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A.; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I.

    2015-01-01

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R–OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R–OX1R heteromer. Cocaine binding to the σ1R–CRF1R–OX1R complex promotes a long-term disruption of the orexin-A–CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. PMID:25926444

  20. Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine.

    PubMed

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I; Ferré, Sergi; McCormick, Peter J

    2015-04-29

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. Copyright © 2015 the authors 0270-6474/15/356639-15$15.00/0.

  1. Refolding of soluble leukemia inhibitory factor receptor fusion protein (gp 190 sol DAF) from urea.

    PubMed

    Liu, H; Moreau, J F; Gualde, N; Fu, J

    1997-04-01

    The insoluble inclusion bodies of soluble leukemia inhibitory factor receptor fusion protein (gp 190 sol DAF) was solubilized in 8 M urea on the unfolding transitions, and several factors on the aggregate formation were indirectly analyzed for the refolding of gp 190 sol DAF. Results indicate that the refolding yield can be considerably increased at lowering concentration of the unfolding protein, a little soluble protein with the slow refolding appears in the process of the aggregate formation and the concentration of the denaturant must be down to a minimum level for its refolding.

  2. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    PubMed

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  3. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression.

    PubMed

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X; Walterscheid, Jeffrey P; Ullrich, Stephen E

    2004-03-15

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependent manner. The release of biological response modifiers, particularly prostaglandin E2 (PGE2), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE2 secretion. Jet fuel-induced PGE2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin.

  4. Macrophage interleukin-6 and tumour necrosis factor-α are induced by coronavirus fixation to Toll-like receptor 2/heparan sulphate receptors but not carcinoembryonic cell adhesion antigen 1a

    PubMed Central

    Jacques, Alexandre; Bleau, Christian; Turbide, Claire; Beauchemin, Nicole; Lamontagne, Lucie

    2009-01-01

    A rapid antiviral immune response may be related to viral interaction with the host cell leading to activation of macrophages via pattern recognition receptors (PPRs) or specific viral receptors. Carcinoembryonic cell adhesion antigen 1a (CEACAM1a) is the specific receptor for the mouse hepatitis virus (MHV), a coronavirus known to induce acute viral hepatitis in mice. The objective of this study was to understand the mechanisms responsible for the secretion of high-pathogenic MHV3-induced inflammatory cytokines. We report that the induction of the pro-inflammatory cytokines interleukin (IL)-6 and tumour necrosis factor (TNF)-α in peritoneal macrophages does not depend on CEACAM1a, as demonstrated in cells isolated from Ceacam1a−/− mice. The induction of IL-6 and TNF-α production was related rather to the fixation of the spike (S) protein of MHV3 on Toll-like receptor 2 (TLR2) in regions enriched in heparan sulphate and did not rely on viral replication, as demonstrated with denatured S protein and UV-inactivated virus. High levels of IL-6 and TNF-α were produced in livers from infected C57BL/6 mice but not in livers from Tlr2−/− mice. The histopathological observations were correlated with the levels of those inflammatory cytokines. Depending on mouse strain, the viral fixation to heparan sulfate/TLR2 stimulated differently the p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB in the induction of IL-6 and TNF-α. These results suggest that TLR2 and heparan sulphate receptors can act as new viral PPRs involved in inflammatory responses. PMID:19740307

  5. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  6. CCN2/CTGF binds to fibroblast growth factor receptor 2 and modulates its signaling.

    PubMed

    Aoyama, Eriko; Kubota, Satoshi; Takigawa, Masaharu

    2012-12-14

    CCN2 plays a critical role in the development of mesenchymal tissues such as cartilage and bone, and the binding of CCN2 to various cytokines and receptors regulates their signaling.By screening a protein array, we found that CCN2 could bind to fibroblast growth factor receptors (FGFRs) 2 and 3, with a higher affinity toward FGFR2.We ascertained that FGFR2 bound to CCN2 and that the binding of FGFR2 to FGF2 and FGF4 was enhanced by CCN2.CCN2 and FGF2 had a collaborative effect on the phosphorylation of ERK and the differentiation of osteoblastic cells.The present results indicate the biological significance of the binding of CCN2 to FGFR2 in bone metabolism. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression.

    PubMed

    Hashimoto, Kenji

    2013-01-01

    Epidemiological studies have demonstrated a close relationship between depression and cardiovascular disease (CVD). Although it is known that the central nervous system (CNS) contributes to this relationship, the detailed mechanisms involved in this process remain unclear. Recent studies suggest that the endoplasmic reticulum (ER) molecular chaperone sigma-1 receptor and brain-derived neurotrophic factor (BDNF) play a role in the pathophysiology of CVD and depression. Several meta-analysis studies have showed that levels of BDNF in the blood of patients with major depressive disorder (MDD) are lower than normal controls, indicating that blood BDNF might be a biomarker for depression. Furthermore, blood levels of BDNF in patients with CVD are also lower than normal controls. A recent study using conditional BDNF knock-out mice in animal models of myocardial infarction highlighted the role of CNS-mediated mechanisms in the cardioprotective effects of BDNF. In addition, a recent study shows that decreased levels of sigma-1 receptor in the mouse brain contribute to the association between heart failure and depression. Moreover, sigma-1 receptor agonists, including the endogenous neurosteroid dehydroepiandosterone (DHEA) and the selective serotonin reuptake inhibitor (SSRI) fluvoxamine, show potent cardioprotective and antidepressive effects in rodents, via sigma-1 receptor stimulation. Interestingly, agonist activation of sigma-1 receptors increased the secretion of mature BDNF from its precursor proBDNF via chaperone activity in the ER. Given the role of ER stress in the pathophysiology of CVD and MDD, the author will discuss the potential link between sigma-1 receptors and BDNF-TrkB pathway in the pathophysiology of these two diseases. Finally, the author will make a case for potent sigma-1 receptor agonists and TrkB agonists as new potential therapeutic drugs for depressive patients with CVD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Striatal but not frontal cortical up-regulation of the epidermal growth factor receptor in rats exposed to immune activation in utero and cannabinoid treatment in adolescence.

    PubMed

    Idrizi, Rejhan; Malcolm, Peter; Weickert, Cynthia Shannon; Zavitsanou, Katerina; Suresh Sundram

    2016-06-30

    In utero maternal immune activation (MIA) and cannabinoid exposure during adolescence constitute environmental risk factors for schizophrenia. We investigated these risk factors alone and in combination ("two-hit") on epidermal growth factor receptor (EGFR) and neuregulin-1 receptor (ErbB4) levels in the rat brain. EGFR but not ErbB4 receptor protein levels were significantly increased in the nucleus accumbens and striatum of "two-hit" rats only, with no changes seen at the mRNA level. These findings support region specific EGF-system dysregulation as a plausible mechanism in this animal model of schizophrenia pathogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Fibroblast growth factors and their receptors in cancer.

    PubMed

    Wesche, Jørgen; Haglund, Kaisa; Haugsten, Ellen Margrethe

    2011-07-15

    FGFs (fibroblast growth factors) and their receptors (FGFRs) play essential roles in tightly regulating cell proliferation, survival, migration and differentiation during development and adult life. Deregulation of FGFR signalling, on the other hand, has been associated with many developmental syndromes, and with human cancer. In cancer, FGFRs have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. FGFR alterations are detected in a variety of human cancers, such as breast, bladder, prostate, endometrial and lung cancers, as well as haematological malignancies. Accumulating evidence indicates that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-mesenchymal transition, invasion and tumour angiogenesis. Therapeutic strategies targeting FGFs and FGFRs in human cancer are therefore currently being explored. In the present review we will give an overview of FGF signalling, the main FGFR alterations found in human cancer to date, how they may contribute to specific cancer types and strategies for therapeutic intervention.

  10. Identification of a human erythrocyte receptor for colonization factor antigen I pili expressed by H10407 enterotoxigenic Escherichia coli.

    PubMed Central

    Pieroni, P; Worobec, E A; Paranchych, W; Armstrong, G D

    1988-01-01

    We have identified a receptor for colonization factor antigen I (CFA/I) pili in human erythrocyte membranes. Erythrocyte binding assays, using whole organisms, suggested that the CFA/I receptor was a glycoprotein containing important sialic acid moieties. Subsequently, human erythrocyte membranes were extracted with lithium diiodosalicylate to obtain a soluble glycoprotein fraction from which to isolate receptors. The extracted material caused agglutination of the CFA/I+ but not the CFA/I- organisms at a protein concentration of 0.5 mg/ml. The CFA/I receptor was identified in iodinated extract by an affinity isolation procedure, using whole bacterial cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of the washed, extract-coated H10407 CFA/I+ organisms revealed a band with an apparent molecular weight of 26,000 which was present in the original extract but was not observed on extract-coated H10407 CFA/I- bacteria. The addition of purified CFA/I pili reduced binding of the 26,000-molecular-weight receptor to CFA/I+ bacteria. The CFA/I-specific receptor species also bound to wheat germ agglutinin-agarose. This observation supported the suggestion that the CFA/I receptor identified in this report is a sialoglycoprotein. Images PMID:2895745

  11. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55.

    PubMed

    Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P; Brown, Andrew J; Heinemann, Akos; Waldhoer, Maria

    2012-12-28

    The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors.

  12. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55*

    PubMed Central

    Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria

    2012-01-01

    The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546

  13. IDENTIFICATION OF NOVEL FIBROBLAST GROWTH FACTOR RECEPTOR 3 GENE MUTATIONS IN ACTINIC CHEILITIS

    PubMed Central

    Chou, Annie; Dekker, Nusi; Jordan, Richard C.K.

    2009-01-01

    Objective Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) gene are responsible for several craniosynostosis and chondrodysplasia syndromes as well as some human cancers including bladder and cervical carcinoma. Despite a high frequency in some benign skin disorders, FGFR3 mutations have not been reported in cutaneous malignancies. Actinic cheilitis (AC) is a sun-induced premalignancy affecting the lower lip that frequently progresses to squamous cell carcinoma (SCC). The objective of this study was to determine if FGFR3 gene mutations are present in AC and SCC of the lip. Study Design DNA was extracted and purified from micro-dissected, formalin-fixed, paraffin-embedded tissue sections of 20 cases of AC and SCC arising in AC. Exons 7, 15, and 17 were PCR amplified and direct sequenced. Results Four novel somatic mutations in the FGFR3 gene were identified: exon 7 mutation 742C→T (amino acid change R248C), exon 15 mutations 1850A→G (D617G) and 1888G→A (V630M), and exon 17 mutation 2056G→A (E686K). Grade of dysplasia did not correlate with presence of mutations. Conclusion The frequency of FGFR3 receptor mutations suggests a functional role for the FGFR3 receptor in the development of epithelial disorders and perhaps a change may contribute to the pathogenesis of some AC and SCC. PMID:19327639

  14. Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity

    PubMed Central

    Kim, Youngmi; Kim, Eunhee; Wu, Qiulian; Guryanova, Olga; Hitomi, Masahiro; Lathia, Justin D.; Serwanski, David; Sloan, Andrew E.; Weil, Robert J.; Lee, Jeongwu; Nishiyama, Akiko; Bao, Shideng; Hjelmeland, Anita B.; Rich, Jeremy N.

    2012-01-01

    Growth factor-mediated proliferation and self-renewal maintain tissue-specific stem cells and are frequently dysregulated in cancers. Platelet-derived growth factor (PDGF) ligands and receptors (PDGFRs) are commonly overexpressed in gliomas and initiate tumors, as proven in genetically engineered models. While PDGFRα alterations inform intertumoral heterogeneity toward a proneural glioblastoma (GBM) subtype, we interrogated the role of PDGFRs in intratumoral GBM heterogeneity. We found that PDGFRα is expressed only in a subset of GBMs, while PDGFRβ is more commonly expressed in tumors but is preferentially expressed by self-renewing tumorigenic GBM stem cells (GSCs). Genetic or pharmacological targeting of PDGFRβ (but not PDGFRα) attenuated GSC self-renewal, survival, tumor growth, and invasion. PDGFRβ inhibition decreased activation of the cancer stem cell signaling node STAT3, while constitutively active STAT3 rescued the loss of GSC self-renewal caused by PDGFRβ targeting. In silico survival analysis demonstrated that PDGFRB informed poor prognosis, while PDGFRA was a positive prognostic factor. Our results may explain mixed clinical responses of anti-PDGFR-based approaches and suggest the need for integration of models of cancer as an organ system into development of cancer therapies. PMID:22661233

  15. Phase III Randomized Study of Ribociclib and Fulvestrant in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: MONALEESA-3.

    PubMed

    Slamon, Dennis J; Neven, Patrick; Chia, Stephen; Fasching, Peter A; De Laurentiis, Michelino; Im, Seock-Ah; Petrakova, Katarina; Bianchi, Giulia Val; Esteva, Francisco J; Martín, Miguel; Nusch, Arnd; Sonke, Gabe S; De la Cruz-Merino, Luis; Beck, J Thaddeus; Pivot, Xavier; Vidam, Gena; Wang, Yingbo; Rodriguez Lorenc, Karen; Miller, Michelle; Taran, Tetiana; Jerusalem, Guy

    2018-06-03

    Purpose This phase III study evaluated ribociclib plus fulvestrant in patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer who were treatment naïve or had received up to one line of prior endocrine therapy in the advanced setting. Patients and Methods Patients were randomly assigned at a two-to-one ratio to ribociclib plus fulvestrant or placebo plus fulvestrant. The primary end point was locally assessed progression-free survival. Secondary end points included overall survival, overall response rate, and safety. Results A total of 484 postmenopausal women were randomly assigned to ribociclib plus fulvestrant, and 242 were assigned to placebo plus fulvestrant. Median progression-free survival was significantly improved with ribociclib plus fulvestrant versus placebo plus fulvestrant: 20.5 months (95% CI, 18.5 to 23.5 months) versus 12.8 months (95% CI, 10.9 to 16.3 months), respectively (hazard ratio, 0.593; 95% CI, 0.480 to 0.732; P < .001). Consistent treatment effects were observed in patients who were treatment naïve in the advanced setting (hazard ratio, 0.577; 95% CI, 0.415 to 0.802), as well as in patients who had received up to one line of prior endocrine therapy for advanced disease (hazard ratio, 0.565; 95% CI, 0.428 to 0.744). Among patients with measurable disease, the overall response rate was 40.9% for the ribociclib plus fulvestrant arm and 28.7% for placebo plus fulvestrant. Grade 3 adverse events reported in ≥ 10% of patients in either arm (ribociclib plus fulvestrant v placebo plus fulvestrant) were neutropenia (46.6% v 0%) and leukopenia (13.5% v 0%); the only grade 4 event reported in ≥ 5% of patients was neutropenia (6.8% v 0%). Conclusion Ribociclib plus fulvestrant might represent a new first- or second-line treatment option in hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer.

  16. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    PubMed

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  17. Characterization of the receptors for mycobacterial cord factor in Guinea pig.

    PubMed

    Toyonaga, Kenji; Miyake, Yasunobu; Yamasaki, Sho

    2014-01-01

    Guinea pig is a widely used animal for research and development of tuberculosis vaccines, since its pathological disease process is similar to that present in humans. We have previously reported that two C-type lectin receptors, Mincle (macrophage inducible C-type lectin, also called Clec4e) and MCL (macrophage C-type lectin, also called Clec4d), recognize the mycobacterial cord factor, trehalose-6,6'-dimycolate (TDM). Here, we characterized the function of the guinea pig homologue of Mincle (gpMincle) and MCL (gpMCL). gpMincle directly bound to TDM and transduced an activating signal through ITAM-bearing adaptor molecule, FcRγ. Whereas, gpMCL lacked C-terminus and failed to bind to TDM. mRNA expression of gpMincle was detected in the spleen, lymph nodes and peritoneal macrophages and it was strongly up-regulated upon stimulation of zymosan and TDM. The surface expression of gpMincle was detected on activated macrophages by a newly established monoclonal antibody that also possesses a blocking activity. This antibody potently suppressed TNF production in BCG-infected macrophages. Collectively, gpMincle is the TDM receptor in the guinea pig and TDM-Mincle axis is involved in host immune responses against mycobacteria.

  18. An Antagonistic Vascular Endothelial Growth Factor (VEGF) Variant Inhibits VEGF-Stimulated Receptor Autophosphorylation and Proliferation of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Siemeister, Gerhard; Schirner, Michael; Reusch, Petra; Barleon, Bernhard; Marme, Dieter; Martiny-Baron, Georg

    1998-04-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

  19. Analysis of Activated Platelet-Derived Growth Factor β Receptor and Ras-MAP Kinase Pathway in Equine Sarcoid Fibroblasts

    PubMed Central

    Altamura, Gennaro; Corteggio, Annunziata; Nasir, Lubna; Yuan, Zheng Qiang; Roperto, Franco; Borzacchiello, Giuseppe

    2013-01-01

    Equine sarcoids are skin tumours of fibroblastic origin affecting equids worldwide. Bovine papillomavirus type-1 (BPV-1) and, less commonly, type-2 are recognized as etiological factors of sarcoids. The transforming activity of BPV is related to the functions of its major oncoprotein E5 which binds to the platelet-derived growth factor β receptor (PDGFβR) causing its phosphorylation and activation. In this study, we demonstrate, by coimmunoprecipitation and immunoblotting, that in equine sarcoid derived cell lines PDGFβR is phosphorylated and binds downstream molecules related to Ras-mitogen-activated protein kinase-ERK pathway thus resulting in Ras activation. Imatinib mesylate is a tyrosine kinase receptors inhibitor which selectively inhibits the activation of PDGFβR in the treatment of several human and animal cancers. Here we show that imatinib inhibits receptor phosphorylation, and cell viability assays demonstrate that this drug decreases sarcoid fibroblasts viability in a dose-dependent manner. This study contributes to a better understanding of the molecular mechanisms involved in the pathology of sarcoids and paves the way to a new therapeutic approach for the treatment of this common equine skin neoplasm. PMID:23936786

  20. Platelet-Activating Factor (PAF) Receptor Antagonism Modulates Inflammatory Signaling in Experimental Uveitis.

    PubMed

    Elison, Jasmine R; Weinstein, Jessica E; Sheets, Kristopher G; Regan, Cornelius E; Lentz, Jennifer J; Reinoso, Maria; Gordon, William C; Bazan, Nicolas G

    2018-04-11

    The phospholipid mediator platelet-activating factor (PAF) activates an inflammatory response that includes arachidonic acid release and prostaglandin production in the eye, increasing vascular permeability and inflammation. The purpose of this study is to investigate the action of LAU-0901, a novel PAF receptor antagonist, on experimental uveitis. Uveitis was induced in Lewis rats by lipopolysaccharide treatment. LAU-0901 was then delivered systemically in different concentrations at plus 4 and 16 hours, or vehicle injected as controls. Additional animals were used for histological analyses of untreated, uveitis, and uveitis-plus-LAU-0901 retinas. Conventional histological and immunohistochemical methods were employed. A slit lamp and Spectral Domain-Ocular Coherence Tomography (SD-OCT) retinal imager was used for anterior segment photography and posterior pole OCT. Rats were euthanized 4 hours after the second LAU-0901 injection in this 24-hour model. Aqueous humor was collected and quantified, and also analyzed for tumor necrosis factor alpha (TNF-α). Uveitic eyes demonstrated hypopyon formation, leukocyte infiltration, and an increase in aqueous protein and TNF-α levels. LAU-0901 treatment resulted in a dose-dependent reduction in inflammation, reflected by reduced total protein levels (up to a 64% reduction). Moreover, hypopyon was prevented, leukocytes were absent in vitreous and aqueous humor, and TNF-α levels were reduced by 91%. The PAF receptor antagonist LAU-0901 decreases ocular inflammation in a rat model of anterior uveitis in a dose-dependent manner, suggesting that use of this molecule may provide a means to attenuate inflammation onset and offer a future alternative or adjunctive treatment for ocular inflammation.

  1. Comparison of Nerve Growth Factor Receptor Binding Models Using Heterodimeric Muteins

    PubMed Central

    Mehta, Hrishikesh M.; Woo, Sang B.; Neet, Kenneth E.

    2013-01-01

    Nerve growth factor (NGF) is a homodimer that binds to two distinct receptor types, TrkA and p75, to support survival and differentiation of neurons. The high-affinity binding on the cell surface is believed to involve a heteroreceptor complex, but its exact nature is unclear. We developed a heterodimer (heteromutein) of two NGF muteins that can bind p75 and TrkA on opposite sides of the heterodimer, but not two TrkA receptors. Previously described muteins are Δ9/13 that is TrkA negative and 7-84-103 that is signal selective through TrkA. The heteromutein (Htm1) was used to study the heteroreceptor complex formation and function, in the putative absence of NGF-induced TrkA dimerization. Cellular binding assays indicated that Htm1 does not bind TrkA as efficiently as wild-type (wt) NGF but has better affinity than either homodimeric mutein. Htm1, 7-84-103, and Δ9/13 were each able to compete for cold-temperature, cold-chase stable binding on PC12 cells, indicating that binding to p75 was required for a portion of this high-affinity binding. Survival, neurite outgrowth, and MAPK signaling in PC12 cells also showed a reduced response for Htm1, compared with wtNGF, but was better than the parent muteins in the order wtNGF > Htm1 > 7-84-103 >> Δ9/13. Htm1 and 7-84-103 demonstrated similar levels of survival on cells expressing only TrkA. In the longstanding debate on the NGF receptor binding mechanism, our data support the ligand passing of NGF from p75 to TrkA involving a transient heteroreceptor complex of p75-NGF-TrkA. PMID:22903500

  2. Soluble Epidermal Growth Factor Receptors (sEGFRs) in Cancer: Biological Aspects and Clinical Relevance.

    PubMed

    Maramotti, Sally; Paci, Massimiliano; Manzotti, Gloria; Rapicetta, Cristian; Gugnoni, Mila; Galeone, Carla; Cesario, Alfredo; Lococo, Filippo

    2016-04-19

    The identification of molecules that can reliably detect the presence of a tumor or predict its behavior is one of the biggest challenges of research in cancer biology. Biological fluids are intriguing mediums, containing many molecules that express the individual health status and, accordingly, may be useful in establishing the potential risk of cancer, defining differential diagnosis and prognosis, predicting the response to treatment, and monitoring the disease progression. The existence of circulating soluble growth factor receptors (sGFRs) deriving from their membrane counterparts has stimulated the interest of researchers to investigate the use of such molecules as potential cancer biomarkers. But what are the origins of circulating sGFRs? Are they naturally occurring molecules or tumor-derived products? Among these, the epidermal growth factor receptor (EGFR) is a cell-surface molecule significantly involved in cancer development and progression; it can be processed into biological active soluble isoforms (sEGFR). We have carried out an extensive review of the currently available literature on the sEGFRs and their mechanisms of regulation and biological function, with the intent to clarify the role of these molecules in cancer (and other pathological conditions) and, on the basis of the retrieved evidences, speculate about their potential use in the clinical setting.

  3. Existence of muscarinic acetylcholine receptor (mAChR) and fibroblast growth factor receptor (FGFR) heteroreceptor complexes and their enhancement of neurite outgrowth in neural hippocampal cultures.

    PubMed

    Di Liberto, V; Borroto-Escuela, D O; Frinchi, M; Verdi, V; Fuxe, K; Belluardo, N; Mudò, G

    2017-02-01

    Recently, it was demonstrated that G-protein-coupled receptors (GPCRs) can transactivate tyrosine kinase receptors in absence of their ligands. In this work, driven by the observation that mAChRs and fibroblast growth factor receptors (FGFRs) share signalling pathways and regulation of brain functions, it was decided to explore whether mAChRs activation may transactivate FGFRs and, if so, to characterize the related trophic effects in cultured hippocampal neurons. Oxotremorine-M transactivation of FGFRs and related trophic effects were tested in primary hippocampal neurons. Western blotting and in situ proximity ligation assay (PLA) were used to detect FGFR phosphorylation (pFGFR) levels and M 1 R-FGFR1 heteroreceptor complexes, respectively. Oxotremorine-M, a non-selective mAChRs agonist, was able to transactivate FGFR and this transactivation was blocked by Src inhibitors. Oxotremorine-M treatment produced a significant increase in the primary neurite outgrowth that was blocked by pre-treatment with the pFGFR inhibitor SU5402 and Src inhibitors. This trophic effect was almost similar to that induced by fibroblast growth factor-2 (FGF-2). By using atropine as nonselective mAChRs or pirenzepine as selective antagonist for M 1 receptor (M 1 R) we could show that mAChRs are involved in modulating the pFGFRs. Using PLA, M 1 R-FGFR1 heteroreceptor complexes were identified in the hippocampus and cerebral cortex. The current findings, by showing functional mAChR-FGFR interactions, will contribute to advance the understanding of the mechanisms involved in the actions of cholinergic drugs on neuronal plasticity. Data may help to develop novel therapeutic strategies not only for neurodegenerative diseases but also for depression-induced atrophy of hippocampal neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Alternative pathway regulation by factor H modulates Streptococcus pneumoniae induced proinflammatory cytokine responses by decreasing C5a receptor crosstalk.

    PubMed

    van der Maten, Erika; de Bont, Cynthia M; de Groot, Ronald; de Jonge, Marien I; Langereis, Jeroen D; van der Flier, Michiel

    2016-12-01

    Bacterial pathogens not only stimulate innate immune receptors, but also activate the complement system. Crosstalk between complement C5a receptor (C5aR) and other innate immune receptors is known to enhance the proinflammatory cytokine response. An important determinant of the magnitude of complement activation is the activity of the alternative pathway, which serves as an amplification mechanism for complement activation. Both alternative pathway activity as well as plasma levels of factor H, a key inhibitor of the alternative pathway, show large variation within the human population. Here, we studied the effect of factor H-mediated regulation of the alternative pathway on bacterial-induced proinflammatory cytokine responses. We used the human pathogen Streptococcus pneumoniae as a model stimulus to induce proinflammatory cytokine responses in human peripheral blood mononuclear cells. Serum containing active complement enhanced pneumococcal induced proinflammatory cytokine production through C5a release and C5aR crosstalk. We found that inhibition of the alternative pathway by factor H, with a concentration equivalent to a high physiological level, strongly reduced C5a levels and decreased proinflammatory cytokine production in human peripheral blood mononuclear cells. This suggests that variation in alternative pathway activity due to variation in factor H plasma levels affects individual cytokine responses during infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Substance P - Neurokinin-1 Receptor Interaction Upregulates Monocyte Tissue Factor

    PubMed Central

    Khan, Mohammad M; Douglas, Steven D; Benton, Tami D

    2011-01-01

    Monocytes play an important role in hemostasis. In this study, the prothrombotic effects of the neuropeptide substance P (SP) on human monocytes through neurokinin-1 receptor (NK1-R) were characterized. SP upregulated monocyte tissue factor (TF), the major coagulation cascade stimulator, in a concentration and time dependent manner. Specific inhibition of NK1-R completely blocked TF expression. Monocytes stimulated by SP released cytokines and chemokines. When monocytes were stimulated with cytokines or chemokines, TF was expressed by the cytokines (GM-CSF, IFN-γ and TNF-α). Cytokines may play a major role in the mechanism of SP induced monocyte TF expression. NK1-R antagonists (NK1-RA) may have a role in developing novel therapeutic approaches to patients vulnerable to vaso-occlusive disorders. PMID:22115773

  6. Nuclear Receptor Co-Regulator Krüppel-like Factor 9 in Human Endometrial Stromal Cell Differentiation

    USDA-ARS?s Scientific Manuscript database

    The biological actions of ligand-bound estrogen (E) and progesterone (P) receptors are dependent on coregulator partner proteins. We have identified Krüppel-like Factor 9 (KLF9) as important for E and P actions in endometrial cells. Ablation of KLF9 in mice resulted in subfertility due partly to alt...

  7. Epidermal Growth Factor Receptor Mutation as a Risk Factor for Recurrence in Lung Adenocarcinoma.

    PubMed

    Hayasaka, Kazuki; Shiono, Satoshi; Matsumura, Yuki; Yanagawa, Naoki; Suzuki, Hiroyuki; Abe, Jiro; Sagawa, Motoyasu; Sakurada, Akira; Katahira, Masato; Takahashi, Satomi; Endoh, Makoto; Okada, Yoshinori

    2018-06-01

    The presence of epidermal growth factor receptor (EGFR) mutations is an established prognostic factor for patients with advanced lung adenocarcinoma. Here, we examined whether EGFR mutation status is a prognostic factor for patients who had undergone surgery. Clinicopathologic data from 1,463 patients who underwent complete surgical resection for lung adenocarcinoma between 2005 and 2012 were collected. Differences in postoperative recurrence-free survival and overall survival according to EGFR mutation status were evaluated. Of 835 eligible patients, the numbers of patients with wild-type EGFR (WT), exon 19 deletion (Ex19), and exon 21 L858R (Ex21) were 426, 175, and 234, respectively. Patients with Ex19 had a significantly higher incidence of extrathoracic recurrence than patients with Ex21 (p = 0.004). The 5-year recurrence-free survival rates for patients with WT, Ex19, and Ex21 were 63.0%, 67.5%, and 78.2%, respectively. The Ex21 group had a significantly longer recurrence-free survival than the WT group (p < 0.001) and the Ex19 group (p = 0.016). The 5-year overall survival for patients with WT, Ex19, and Ex21 were 76.9%, 86.5%, and 87.5%, respectively. Patients with Ex19 and Ex21 had a significantly longer overall survival than patients with WT (Ex19, p = 0.009; Ex21, p < 0.001). Multivariate analysis for recurrence-free survival showed that Ex19 was significantly associated with a worse prognosis than Ex21 (p = 0.019). Patients with Ex19 had significantly shorter recurrence-free survival and had extrathoracic recurrence more frequently than patients with Ex21 among patients with resected lung adenocarcinoma, implying that Ex19 could be a worse prognostic factor. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Insulin-Like Growth Factor Receptor Signaling is Necessary for Epidermal Growth Factor Mediated Proliferation of SVZ Neural Precursors in vitro Following Neonatal Hypoxia–Ischemia

    PubMed Central

    Alagappan, Dhivyaa; Ziegler, Amber N.; Chidambaram, Shravanthi; Min, Jungsoo; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    In this study, we assessed the importance of insulin-like growth factor (IGF) and epidermal growth factor (EGF) receptor co-signaling for rat neural precursor (NP) cell proliferation and self-renewal in the context of a developmental brain injury that is associated with cerebral palsy. Consistent with previous studies, we found that there is an increase in the in vitro growth of subventricular zone NPs isolated acutely after cerebral hypoxia–ischemia; however, when cultured in medium that is insufficient to stimulate the IGF type 1 receptor, neurosphere formation and the proliferative capacity of those NPs was severely curtailed. This reduced growth capacity could not be attributed simply to failure to survive. The growth and self-renewal of the NPs could be restored by addition of both IGF-I and IGF-II. Since the size of the neurosphere is predominantly due to cell proliferation we hypothesized that the IGFs were regulating progression through the cell cycle. Analyses of cell cycle progression revealed that IGF-1R activation together with EGFR co-signaling decreased the percentage of cells in G1 and enhanced cell progression into S and G2. This was accompanied by increases in expression of cyclin D1, phosphorylated histone 3, and phosphorylated Rb. Based on these data, we conclude that coordinate signaling between the EGF receptor and the IGF type 1 receptor is necessary for the normal proliferation of NPs as well as for their reactive expansion after injury. These data indicate that manipulations that maintain or amplify IGF signaling in the brain during recovery from developmental brain injuries will enhance the production of new brain cells to improve neurological function in children who are at risk for developing cerebral palsy. PMID:24904523

  9. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    PubMed Central

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  10. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  11. 3D Tracking of individual growth factor receptors on polarized cells

    NASA Astrophysics Data System (ADS)

    Werner, James; Stich, Dominik; Cleyrat, Cedric; Phipps, Mary; Wadinger-Ness, Angela; Wilson, Bridget

    We have been developing methods for following 3D motion of selected biomolecular species throughout mammalian cells. Our approach exploits a custom designed confocal microscope that uses a unique spatial filter geometry and active feedback 200 times/second to follow fast 3D motion. By exploiting new non-blinking quantum dots as fluorescence labels, individual molecular trajectories can be observed for several minutes. We also will discuss recent instrument upgrades, including the ability to perform spinning disk fluorescence microscopy on the whole mammalian cell performed simultaneously with 3D molecular tracking experiments. These instrument upgrades were used to quantify 3D heterogeneous transport of individual growth factor receptors (EGFR) on live human renal cortical epithelial cells.

  12. Inhibition of insulin-like growth factor receptor-1 reduces necroptosis-related markers and attenuates LPS-induced lung injury in mice.

    PubMed

    Lee, Su Hwan; Shin, Ju Hye; Song, Joo Han; Leem, Ah Young; Park, Moo Suk; Kim, Young Sam; Chang, Joon; Chung, Kyung Soo

    2018-04-15

    Insulin-like growth factor-1 (IGF-1) levels are known to increase in the bronchoalveolar lavage fluid (BALF) of patients with acute respiratory distress syndrome. Herein, we investigated the role of IGF-1 in lipopolysaccharide (LPS)-induced lung injury. In LPS-treated cells, expressions of receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like protein (MLKL) were decreased in IGF-1 receptor small interfering RNA (siRNA)-treated cells compared to control cells. The levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, and macrophage inflammatory protein 2/C-X-C motif chemokine ligand 2 in the supernatant were significantly reduced in IGF-1 receptor siRNA-treated cells compared to control cells. In LPS-induced murine lung injury model, total cell counts, polymorphonuclear leukocytes counts, and pro-inflammatory cytokine levels in the BALF were significantly lower and histologically detected lung injury was less common in the group treated with IGF-1 receptor monoclonal antibody compared to the non-treated group. On western blotting, RIP3 and phosphorylated MLKL expressions were relatively decreased in the IGF-1 receptor monoclonal antibody group compared to the non-treated group. IGF-1 may be associated with RIP3-mediated necroptosis in vitro, while blocking of the IGF-1 pathway may reduce LPS-induced lung injuries in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Fibroblast growth factor receptors in breast cancer: expression, downstream effects, and possible drug targets.

    PubMed

    Tenhagen, M; van Diest, P J; Ivanova, I A; van der Wall, E; van der Groep, P

    2012-08-01

    Cancer treatments are increasingly focusing on the molecular mechanisms underlying the oncogenic processes present in tumors of individual patients. Fibroblast growth factor receptors (FGFRs) are among the many molecules that are involved in oncogenesis and are currently under investigation for their potential as drug targets in breast cancer patients. These receptor tyrosine kinases play a role in several processes including proliferation, angiogenesis, and migration. Alterations in these basal processes can contribute to the development and progression of tumors. Among breast cancer patients, several subgroups have been shown to harbor genetic aberrations in FGFRs, including amplifications of FGFR1, FGFR2, and FGFR4 and mutations in FGFR2 and FGFR4. Here, we review in vitro and in vivo models that have partly elucidated the molecular implications of these different genetic aberrations, the resulting tumor characteristics, and the potential of FGFRs as therapeutic targets for breast cancer treatment.

  14. Corticotropin-releasing factor stimulates colonic motility via muscarinic receptors in the rat

    PubMed Central

    Kim, Kyung-Jo; Kim, Ki Bae; Yoon, Soon Man; Han, Joung-Ho; Chae, Hee Bok; Park, Seon Mee; Youn, Sei Jin

    2017-01-01

    AIM To measure exogenous corticotropin-releasing factor (CRF)-induced motility of the isolated rat colon and to demonstrate the effect of pharmacologic inhibition on CRF-induced motility. METHODS The isolated vascularly-perfused rat colon was used. Luminal pressure was monitored via microtip catheter pressure transducers in the proximal and distal colon. At first, exogenous CRF was administered in a stepwise manner and the concentration of CRF yielding maximal colonic motility was selected. After recording basal colonic motility, hexamethonium, phentolamine, propranolol, atropine and tetrodotoxin were infused into the isolated colon. Initially, only the test drug was infused; then, CRF was added. The motility index was expressed as percentage change over basal level. RESULTS Administration of 1.4, 14.4, 144 and 288 pmol/L CRF progressively increased colonic motility in the proximal and distal colon. Infusion of atropine or tetrodotoxin reduced CRF-induced motility of both the proximal and distal colon, whereas hexamethonium, phentolamine and propranolol had no effect. CONCLUSION CRF-induced colonic motility appears to be mediated by local cholinergic signaling via muscarinic receptors. Muscarinic receptors are potential targets for counteracting CRF-induced colonic hypermotility. PMID:28638222

  15. Is fibroblast growth factor receptor 4 a suitable target of cancer therapy?

    PubMed

    Heinzle, Christine; Erdem, Zeynep; Paur, Jakob; Grasl-Kraupp, Bettina; Holzmann, Klaus; Grusch, Michael; Berger, Walter; Marian, Brigitte

    2014-01-01

    Fibroblast growth factors (FGF) and their tyrosine kinase receptors (FGFR) support cell proliferation, survival and migration during embryonic development, organogenesis and tissue maintenance and their deregulation is frequently observed in cancer development and progression. Consequently, increasing efforts are focusing on the development of strategies to target FGF/FGFR signaling for cancer therapy. Among the FGFRs the family member FGFR4 is least well understood and differs from FGFRs1-3 in several aspects. Importantly, FGFR4 deletion does not lead to an embryonic lethal phenotype suggesting the possibility that its inhibition in cancer therapy might not cause grave adverse effects. In addition, the FGFR4 kinase domain differs sufficiently from those of FGFRs1-3 to permit development of highly specific inhibitors. The oncogenic impact of FGFR4, however, is not undisputed, as the FGFR4-mediated hormonal effects of several FGF ligands may also constitute a tissue-protective tumor suppressor activity especially in the liver. Therefore it is the purpose of this review to summarize all relevant aspects of FGFR4 physiology and pathophysiology and discuss the options of targeting this receptor for cancer therapy.

  16. Is Fibroblast Growth Factor Receptor 4 a Suitable Target of Cancer Therapy?

    PubMed Central

    Heinzle, Christine; Erdem, Zeynep; Paur, Jakob; Grasl-Kraupp, Bettina; Holzmann, Klaus; Grusch, Michael; Berger, Walter; Marian, Brigitte

    2017-01-01

    Fibroblast growth factors (FGF) and their tyrosine kinase receptors (FGFR) support cell proliferation, survival and migration during embryonic development, organogenesis and tissue maintenance and their deregulation is frequently observed in cancer development and progression. Consequently, increasing efforts are focusing on the development of strategies to target FGF/FGFR signaling for cancer therapy. Among the FGFRs the family member FGFR4 is least well understood and differs from FGFRs1-3 in several aspects. Importantly, FGFR4 deletion does not lead to an embryonic lethal phenotype suggesting the possibility that its inhibition in cancer therapy might not cause grave adverse effects. In addition, the FGFR4 kinase domain differs sufficiently from those of FGFRs1-3 to permit development of highly specific inhibitors. The oncogenic impact of FGFR4, however, is not undisputed, as the FGFR4-mediated hormonal effects of several FGF ligands may also constitute a tissue-protective tumor suppressor activity especially in the liver. Therefore it is the purpose of this review to summarize all relevant aspects of FGFR4 physiology and pathophysiology and discuss the options of targeting this receptor for cancer therapy. PMID:23944363

  17. Estrogen-related receptor alpha induces the expression of vascular endothelial growth factor in breast cancer cells

    PubMed Central

    Stein, Rebecca A.; Gaillard, Stéphanie; McDonnell, Donald P.

    2009-01-01

    Estrogen-related receptor alpha (ERRα) is an orphan member of the nuclear receptor family of transcription factors. In addition to its function as a metabolic regulator, ERRα has been implicated in the growth and progression of several malignancies. In the setting of breast cancer, not only is ERRα a putative negative prognostic factor, but we have recently found that knockdown of its expression retards tumor growth in a xenograft model of this disease. The specific aspects of ERRα function that are responsible for its actions in breast cancer, however, remain unclear. Using the coactivator PGC-1α as a protein ligand to regulate ERRα activity, we analyzed the effects of this receptor on gene expression in the ERα-positive MCF-7 cell line. This analysis led to the identification of a large number of potential ERRα target genes, many of which were subsequently validated in other breast cancer cell lines. Importantly, we demonstrate in this study that activation of ERRα in several different breast cancer cell lines leads to a significant increase in VEGF mRNA expression, an activity that translates into an increase in VEGF protein secretion. The induction of VEGF results from the interaction of ERRα with specific ERR-responsive elements within the VEGF promoter. These findings suggest that ERRα-dependent induction of VEGF may contribute to the overall negative phenotype observed in tumors in which ERRα is expressed and provide validation for its use as a therapeutic target in cancer. PMID:19429439

  18. Combined caveolin-1 and epidermal growth factor receptor expression as a prognostic marker for breast cancer.

    PubMed

    Liang, Ya-Nan; Liu, Yu; Wang, Letian; Yao, Guodong; Li, Xiaobo; Meng, Xiangning; Wang, Fan; Li, Ming; Tong, Dandan; Geng, Jingshu

    2018-06-01

    Previous studies have indicated that caveolin-1 (Cav-1) is able to bind the signal transduction factor epidermal growth factor receptor (EGFR) to regulate its tyrosine kinase activity. The aim of the present study was to evaluate the clinical significance of Cav-1 gene expression in association with the expression of EGFR in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Cav-1 and EGFR expression using immunohistochemistry, and clinical significance was assessed using multivariate Cox regression analysis, Kaplan-Meier estimator curves and the log-rank test. Stromal Cav-1 was downregulated in 38.56% (118/306) of tumor tissues, whereas cytoplasmic EGFR and Cav-1 were overexpressed in 53.92% (165/306) and 44.12% (135/306) of breast cancer tissues, respectively. EGFR expression was positively associated with cytoplasmic Cav-1 and not associated with stromal Cav-1 expression in breast cancer samples; however, low expression of stromal Cav-1 was negatively associated with cytoplasmic Cav-1 expression in total tumor tissues, and analogous results were identified in the chemotherapy group. Multivariate Cox's proportional hazards model analysis revealed that, for patients in the estrogen receptor (ER)(+) group, the expression of stromal Cav-1 alone was a significant prognostic marker of breast cancer. However, in the chemotherapy, human epidermal growth factor receptor 2 (HER-2)(-), HER-2(+) and ER(-) groups, the use of combined markers was more effective prognostic marker. Stromal Cav-1 has a tumor suppressor function, and the combined marker stromal Cav-1/EGFR expression was identified as an improved prognostic marker in the diagnosis of breast cancer. Parenchymal expression of Cav-1 is able to promote EGFR signaling in breast cancer, potentially being required for EGFR-mediated initiation of mitosis.

  19. Epidermal growth factor receptor and variant III targeted immunotherapy

    PubMed Central

    Congdon, Kendra L.; Gedeon, Patrick C.; Suryadevara, Carter M.; Caruso, Hillary G.; Cooper, Laurence J.N.; Heimberger, Amy B.; Sampson, John H.

    2014-01-01

    Immunotherapeutic approaches to cancer have shown remarkable promise. A critical barrier to successfully executing such immune-mediated interventions is the selection of safe yet immunogenic targets. As patient deaths have occurred when tumor-associated antigens shared by normal tissue have been targeted by strong cellular immunotherapeutic platforms, route of delivery, target selection and the immune-mediated approach undertaken must work together to maximize efficacy with safety. Selected tumor-specific targets can spare potential toxicity to normal tissue; however, they are far less common than tumor-associated antigens and may not be present on all patients. In the context of immunotherapy for high-grade glioma, 2 of the most prominently studied antigens are the tumor-associated epidermal growth factor receptor and its tumor-specific genetic deletion variant III. In this review, we will summarize the immune-mediated strategies employed against these targets as well as the caveats particular to these approaches. PMID:25342601

  20. Ala67Thr mutation in the poliovirus receptor CD155 is a potential risk factor for vaccine and wild-type paralytic poliomyelitis.

    PubMed

    Kindberg, Elin; Ax, Cecilia; Fiore, Lucia; Svensson, Lennart

    2009-05-01

    Poliovirus infections can be asymptomatic or cause severe paralysis. Why some individuals develop paralytic poliomyelitis is unknown, but a role for host genetic factors has been suggested. To investigate if a polymorphism, Ala67Thr, in the poliovirus receptor, which has been found to facilitate increased resistance against poliovirus-induced cell lysis and apoptosis, is associated with increased risk of paralytic poliomyelitis, poliovirus receptor genotyping was undertaken among Italian subjects with vaccine-associated (n = 9), or with wild-type paralytic poliomyelitis (n = 6), and control subjects (n = 71), using RFLP-PCR and pyrosequencing. Heterozygous poliovirus receptor Ala67Thr genotype was found in 13.3% of the patients with paresis and in 8.5% of the controls (Odds Ratio = 1.667). The frequency of Ala67Thr among the controls is in agreement with earlier published data. It is concluded that the Ala67Thr mutation in the poliovirus receptor is a possible risk factor for the development of vaccine-associated or paralytic poliomyelitis associated with wild-type virus. Copyright 2009 Wiley-Liss, Inc.

  1. Growth factor pleiotropy is controlled by a receptor Tyr/Ser motif that acts as a binary switch

    PubMed Central

    Guthridge, Mark A; Powell, Jason A; Barry, Emma F; Stomski, Frank C; McClure, Barbara J; Ramshaw, Hayley; Felquer, Fernando A; Dottore, Mara; Thomas, Daniel T; To, Bik; Begley, C Glenn; Lopez, Angel F

    2006-01-01

    Pleiotropism is a hallmark of cytokines and growth factors; yet, the underlying mechanisms are not clearly understood. We have identified a motif in the granulocyte macrophage-colony-stimulating factor receptor composed of a tyrosine and a serine residue that functions as a binary switch for the independent regulation of multiple biological activities. Signalling occurs either through Ser585 at lower cytokine concentrations, leading to cell survival only, or through Tyr577 at higher cytokine concentrations, leading to cell survival as well as proliferation, differentiation or functional activation. The phosphorylation of Ser585 and Tyr577 is mutually exclusive and occurs via a unidirectional mechanism that involves protein kinase A and tyrosine kinases, respectively, and is deregulated in at least some leukemias. We have identified similar Tyr/Ser motifs in other cell surface receptors, suggesting that such signalling switches may play important roles in generating specificity and pleiotropy in other biological systems. PMID:16437163

  2. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations.

    PubMed

    Nguyen, Thao; Mège, René Marc

    2016-11-01

    Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

    PubMed

    Heck, Dorothee; Wortmann, Sebastian; Kraus, Luitgard; Ronchi, Cristina L; Sinnott, Richard O; Fassnacht, Martin; Sbiera, Silviu

    2015-12-01

    Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.

  4. Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors.

    PubMed

    Lukeš, Tomáš; Pospíšil, Jakub; Fliegel, Karel; Lasser, Theo; Hagen, Guy M

    2018-03-01

    Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared with organic dyes, which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented, including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM datasets using a different method: super-resolution optical fluctuation imaging (SOFI). The 2 modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. This dataset has potential for extensive reuse. Complete raw data from SMLM experiments have typically not been published. The YFP data exhibit low signal-to-noise ratios, making data analysis a challenge. These datasets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.

  5. soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling

    PubMed Central

    Selfors, Laura M.; Schutzman, Jennifer L.; Borland, Christina Z.; Stern, Michael J.

    1998-01-01

    Activation of fibroblast growth factor (FGF) receptors elicits diverse cellular responses including growth, mitogenesis, migration, and differentiation. The intracellular signaling pathways that mediate these important processes are not well understood. In Caenorhabditis elegans, suppressors of clr-1 identify genes, termed soc genes, that potentially mediate or activate signaling through the EGL-15 FGF receptor. We demonstrate that three soc genes, soc-1, soc-2, and sem-5, suppress the activity of an activated form of the EGL-15 FGF receptor, consistent with the soc genes functioning downstream of EGL-15. We show that soc-2 encodes a protein composed almost entirely of leucine-rich repeats, a domain implicated in protein–protein interactions. We identified a putative human homolog, SHOC-2, which is 54% identical to SOC-2. We find that shoc-2 maps to 10q25, shoc-2 mRNA is expressed in all tissues assayed, and SHOC-2 protein is cytoplasmically localized. Within the leucine-rich repeats of both SOC-2 and SHOC-2 are two YXNX motifs that are potential tyrosine-phosphorylated docking sites for the SEM-5/GRB2 Src homology 2 domain. However, phosphorylation of these residues is not required for SOC-2 function in vivo, and SHOC-2 is not observed to be tyrosine phosphorylated in response to FGF stimulation. We conclude that this genetic system has allowed for the identification of a conserved gene implicated in mediating FGF receptor signaling in C. elegans. PMID:9618511

  6. Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R).

    PubMed

    Sokolowska, Izabela; Woods, Alisa G; Gawinowicz, Mary Ann; Roy, Urmi; Darie, Costel C

    2013-08-01

    Tumor differentiation factor (TDF) is an under-investigated protein produced by the pituitary with no definitive function. TDF is secreted into the bloodstream and targets the breast and prostate, suggesting that it has an endocrine function. Initially, TDF was indirectly discovered based on the differentiation effect of alkaline pituitary extracts of the mammosomatotropic tumor MtTWlO on MTW9/PI rat mammary tumor cells. Years later, the cDNA clone responsible for this differentiation activity was isolated from a human pituitary cDNA library using expression cloning. The cDNA encoded a 108-amino-acid polypeptide that had differentiation activity on MCF7 breast cancer cells and on DU145 prostate cancer cells in vitro and in vivo. Recently, our group focused on identification of the TDF receptor (TDF-R). As potential TDF-R candidates, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cells fibroblasts or fibroblast-like cells. Here we review the current advances on TDF, with particular focus on the structural investigation of its receptor and on its functional effects on breast and prostate cells.

  7. A comprehensive pathway map of epidermal growth factor receptor signaling

    PubMed Central

    Oda, Kanae; Matsuoka, Yukiko; Funahashi, Akira; Kitano, Hiroaki

    2005-01-01

    The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulate growth, survival, proliferation, and differentiation in mammalian cells. Reflecting this importance, it is one of the best-investigated signaling systems, both experimentally and computationally, and several computational models have been developed for dynamic analysis. A map of molecular interactions of the EGFR signaling system is a valuable resource for research in this area. In this paper, we present a comprehensive pathway map of EGFR signaling and other related pathways. The map reveals that the overall architecture of the pathway is a bow-tie (or hourglass) structure with several feedback loops. The map is created using CellDesigner software that enables us to graphically represent interactions using a well-defined and consistent graphical notation, and to store it in Systems Biology Markup Language (SBML). PMID:16729045

  8. A critical role for transcription factor Smad4 in T cell function independent of transforming growth factor beta receptor signaling

    PubMed Central

    Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A.; Wan, Yisong Y.

    2014-01-01

    Summary Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. While Smad4 was dispensable for T cell generation, homeostasis and effector function, it was essential for T cell proliferation following activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity and anti-tumor immunity. PMID:25577439

  9. Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations.

    PubMed

    Gallo, Leandro H; Nelson, Katelyn N; Meyer, April N; Donoghue, Daniel J

    2015-08-01

    The four receptor tyrosine kinases (RTKs) within the family of Fibroblast Growth Factor Receptors (FGFRs) are critical for normal development but also play an enormous role in oncogenesis. Mutations and/or abnormal expression often lead to constitutive dimerization and kinase activation of FGFRs, and represent the primary mechanism for aberrant signaling. Sequencing of human tumors has revealed a plethora of somatic mutations in FGFRs that are frequently identical to germline mutations in developmental syndromes, and has also identified novel FGFR fusion proteins arising from chromosomal rearrangements that contribute to malignancy. This review details approximately 200 specific point mutations in FGFRs and 40 different fusion proteins created by translocations involving FGFRs that have been identified in human cancer. This review discusses the effects of these genetic alterations on downstream signaling cascades, and the challenge of drug resistance in cancer treatment with antagonists of FGFRs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Expression of a functional epidermal growth factor receptor on human adipose-derived mesenchymal stem cells and its signaling mechanism.

    PubMed

    Baer, Patrick C; Schubert, Ralf; Bereiter-Hahn, Jürgen; Plösser, Michaela; Geiger, Helmut

    2009-05-01

    Adult stem cells act as a pluripotent source of regenerative cells during tissue injury. Despite expanded research in stem cell biology, understanding how growth and migration of adipose-derived adult mesenchymal stem cells (ASC) are governed by interactions with growth factors is very limited. One important property of ASC is the presence of the epidermal growth factor (EGF) receptor and the cellular response to soluble EGF. Expression of the EGF receptor was proven by PCR and Western blotting. Signal transduction was analyzed by Western blotting and PhosFlow assay. EGF caused robust phosphorylation of SHC and ERK1/2, which could be inhibited by EGF receptor antagonist AG1478 and MEK inhibitor PD98059. ASC proliferation was determined by MTT assay. Stem cell migration was analyzed in a modified Boyden chamber. Incubation with EGF led to cell proliferation and induced cell migration, but did not change the undifferentiated state of the cells. In the kidney, injured renal tubular cells express high amounts of EGF. Therefore, our results may highlight a mechanism underlying renal regeneration. Thus, future in vivo studies that focus on the effects of EGF on recruitment of ASC to sites of injury are necessary.

  11. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders.

    PubMed

    Roskoski, Robert

    2018-03-01

    Platelet-derived growth factor (PDGF) was discovered as a serum-derived component necessary for the growth of smooth muscle cells, fibroblasts, and glial cells. The PDGF family is a product of four gene products and consists of five dimeric isoforms: PDGF-AA, PDGF-BB, PDGF-CC, PDGF-DD, and the PDGF-AB heterodimer. This growth factor family plays an essential role in embryonic development and in wound healing in the adult. These growth factors mediate their effects by binding to and activating their receptor protein-tyrosine kinases, which are encoded by two genes: PDGFRA and PDGFRB. The functional receptors consist of the PDGFRα/α and PDGFRβ/β homodimers and the PDGFRα/β heterodimer. Although PDGF signaling is most closely associated with mesenchymal cells, PDGFs and PDGF receptors are widely expressed in the mammalian central nervous system. The PDGF receptors contain an extracellular domain that is made up of five immunoglobulin-like domains (Ig-d1/2/3/4/5), a transmembrane segment, a juxtamembrane segment, a protein-tyrosine kinase domain that contains an insert of about 100 amino acid residues, and a carboxyterminal tail. Although uncommon, activating mutations in the genes for PDGF or PDGF receptors have been documented in various neoplasms including dermatofibrosarcoma protuberans (DFSP) and gastrointestinal stromal tumors (GIST). In most neoplastic diseases, PDGF expression and action appear to involve the tumor stroma. Moreover, this family is pro-angiogenic. More than ten PDGFRα/β multikinase antagonists have been approved by the FDA for the treatment of several neoplastic disorders and interstitial pulmonary fibrosis (www.brimr.org/PKI/PKIs.htm). Type I protein kinase inhibitors interact with the active enzyme form with DFG-D of the proximal activation segment directed inward toward the active site (DFG-D in ). In contrast, type II inhibitors bind to their target with the DFG-D pointing away from the active site (DFG-D out ). We used the Schr

  12. Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration.

    PubMed

    Seki, Ekihiro; Tsutsui, Hiroko; Iimuro, Yuji; Naka, Tetsuji; Son, Gakuhei; Akira, Shizuo; Kishimoto, Tadamitsu; Nakanishi, Kenji; Fujimoto, Jiro

    2005-03-01

    Toll-like receptors (TLRs) act as innate immune signal sensors and play central roles in host defense. Myeloid differentiation factor (MyD) 88 is a common adaptor molecule required for signaling mediated by TLRs. When the receptors are activated, cells bearing TLRs produce various proinflammatory cytokines in a MyD88-dependent manner. Liver regeneration following partial hepatectomy (PH) requires innate immune responses, particularly interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) production by Kupffer cells, although the recognition and activation processes are still unknown. We investigated whether TLR/MyD88 signaling is critical for induction of innate immune responses after PH. In Myd88(-/-) mice after PH, induction of expression of immediate early genes involved in hepatocyte replication and phosphorylation of STAT3 in the liver, and production of TNF-alpha/IL-6 by and activation of NF-kappaB in the Kupffer cells were grossly subnormal and were associated with impaired liver regeneration. However, TLR2, 4 and 9, which recognize gram-negative and -positive bacterial products, are not essential for NF-kappaB activation and IL-6 production after PH, which excludes a possible contribution of TLR2/TLR4 or TLR9 to MyD88-mediated pathways. In conclusion, the TLR/MyD88 pathway is essential for incidental liver restoration, particularly its early phase.

  13. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications.

    PubMed

    Helsten, Teresa; Schwaederle, Maria; Kurzrock, Razelle

    2015-09-01

    Fibroblast growth factors (FGFs) and their receptors (FGFRs) are transmembrane growth factor receptors with wide tissue distribution. FGF/FGFR signaling is involved in neoplastic behavior and also development, differentiation, growth, and survival. FGFR germline mutations (activating) can cause skeletal disorders, primarily dwarfism (generally mutations in FGFR3), and craniofacial malformation syndromes (usually mutations in FGFR1 and FGFR2); intriguingly, some of these activating FGFR mutations are also seen in human cancers. FGF/FGFR aberrations reported in cancers are mainly thought to be gain-of-function changes, and several cancers have high frequencies of FGFR alterations, including breast, bladder, or squamous cell carcinomas (lung and head and neck). FGF ligand aberrations (predominantly gene amplifications) are also frequently seen in cancers, in contrast to hereditary syndromes. There are several pharmacologic agents that have been or are being developed for inhibition of FGFR/FGF signaling. These include both highly selective inhibitors as well as multi-kinase inhibitors. Of note, only four agents (ponatinib, pazopanib, regorafenib, and recently lenvatinib) are FDA-approved for use in cancer, although the approval was not based on their activity against FGFR. Perturbations in the FGFR/FGF signaling are present in both inherited and malignant diseases. The development of potent inhibitors targeting FGF/FGFR may provide new tools against disorders caused by FGF/FGFR alterations.

  14. Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer

    PubMed Central

    Yashiro, Masakazu; Matsuoka, Tasuku

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer. PMID:26937130

  15. Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer.

    PubMed

    Yashiro, Masakazu; Matsuoka, Tasuku

    2016-02-28

    Fibroblast growth factor receptors (FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer.

  16. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.

  17. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  18. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed

    Johnson Hamlet, M R; Perkins, L A

    2001-11-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.

  19. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed Central

    Johnson Hamlet, M R; Perkins, L A

    2001-01-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway. PMID:11729154

  20. The Physiology and Biochemistry of Receptors.

    ERIC Educational Resources Information Center

    Spitzer, Judy A., Ed.

    1983-01-01

    The syllabus for a refresher course on the physiology and biochemistry of receptors (presented at the 1983 American Physiological Society meeting) is provided. Topics considered include receptor regulation, structural/functional aspects of receptors for insulin and insulin-like growth factors, calcium channel inhibitors, and role of lipoprotein…

  1. The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity

    PubMed Central

    Lou, Meizhen; Garrett, Thomas P. J.; McKern, Neil M.; Hoyne, Peter A.; Epa, V. Chandana; Bentley, John D.; Lovrecz, George O.; Cosgrove, Leah J.; Frenkel, Maurice J.; Ward, Colin W.

    2006-01-01

    The insulin receptor (IR) and the type-1 insulin-like growth factor receptor (IGF1R) are homologous multidomain proteins that bind insulin and IGF with differing specificity. Here we report the crystal structure of the first three domains (L1–CR–L2) of human IR at 2.3 Å resolution and compare it with the previously determined structure of the corresponding fragment of IGF1R. The most important differences seen between the two receptors are in the two regions governing ligand specificity. The first is at the corner of the ligand-binding surface of the L1 domain, where the side chain of F39 in IR forms part of the ligand binding surface involving the second (central) β-sheet. This is very different to the location of its counterpart in IGF1R, S35, which is not involved in ligand binding. The second major difference is in the sixth module of the CR domain, where IR contains a larger loop that protrudes further into the ligand-binding pocket. This module, which governs IGF1-binding specificity, shows negligible sequence identity, significantly more α-helix, an additional disulfide bond, and opposite electrostatic potential compared to that of the IGF1R. PMID:16894147

  2. Signaling pathways involved in the inhibition of epidermal growth factor receptor by erlotinib in hepatocellular cancer

    PubMed Central

    Huether, Alexander; Höpfner, Michael; Sutter, Andreas P; Baradari, Viola; Schuppan, Detlef; Scherübl, Hans

    2006-01-01

    AIM: To examine the underlying mechanisms of erlotinib-induced growth inhibition in hepatocellular carcinoma (HCC). METHODS: Erlotinib-induced alterations in gene expression were evaluated using cDNA array technology; changes in protein expression and/or protein activation due to erlotinib treatment as well as IGF-1-induced EGFR transactivation were investigated using Western blotting. RESULTS: Erlotinib treatment inhibited the mitogen activated protein (MAP)-kinase pathway and signal transducer of activation and transcription (STAT)-mediated signaling which led to an altered expression of apoptosis and cell cycle regulating genes as demonstrated by cDNA array technology. Overexpression of proapoptotic factors like caspases and gadds associated with a down-regulation of antiapoptotic factors like Bcl-2, Bcl-XL or jun D accounted for erlotinib's potency to induce apoptosis. Downregulation of cell cycle regulators promoting the G1/S-transition and overexpression of cyclin-dependent kinase inhibitors and gadds contributed to the induction of a G1/G0-arrest in response to erlotinib. Furthermore, we displayed the transactivation of EGFR-mediated signaling by the IGF-1-receptor and showed erlotinib’s inhibitory effects on the receptor-receptor cross talk. CONCLUSION: Our study sheds light on the under-standing of the mechanisms of action of EGFR-TK-inhibition in HCC-cells and thus might facilitate the design of combination therapies that act additively or synergistically. Moreover, our data on the pathways responding to erlotinib treatment could be helpful in predicting the responsiveness of tumors to EGFR-TKIs in the future. PMID:16937526

  3. Taci Is a Traf-Interacting Receptor for Tall-1, a Tumor Necrosis Factor Family Member Involved in B Cell Regulation

    PubMed Central

    Xia, Xing-Zhong; Treanor, James; Senaldi, Giorgio; Khare, Sanjay D.; Boone, Tom; Kelley, Michael; Theill, Lars E.; Colombero, Anne; Solovyev, Irina; Lee, Frances; McCabe, Susan; Elliott, Robin; Miner, Kent; Hawkins, Nessa; Guo, Jane; Stolina, Marina; Yu, Gang; Wang, Judy; Delaney, John; Meng, Shi-Yuan; Boyle, William J.; Hsu, Hailing

    2000-01-01

    We and others recently reported tumor necrosis factor (TNF) and apoptosis ligand–related leukocyte-expressed ligand 1 (TALL-1) as a novel member of the TNF ligand family that is functionally involved in B cell proliferation. Transgenic mice overexpressing TALL-1 have severe B cell hyperplasia and lupus-like autoimmune disease. Here, we describe expression cloning of a cell surface receptor for TALL-1 from a human Burkitt's lymphoma RAJI cell library. The cloned receptor is identical to the previously reported TNF receptor (TNFR) homologue transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI). Murine TACI was subsequently isolated from the mouse B lymphoma A20 cells. Human and murine TACI share 54% identity overall. Human TACI exhibits high binding affinities to both human and murine TALL-1. Soluble TACI extracellular domain protein specifically blocks TALL-1–mediated B cell proliferation without affecting CD40- or lipopolysaccharide-mediated B cell proliferation in vitro. In addition, when injected into mice, soluble TACI inhibits antibody production to both T cell–dependent and –independent antigens. By yeast two-hybrid screening of a B cell library with TACI intracellular domain, we identified that, like many other TNFR family members, TACI intracellular domain interacts with TNFR-associated factor (TRAF)2, 5, and 6. Correspondingly, TACI activation in a B cell line results in nuclear factor κB and c-Jun NH2-terminal kinase activation. The identification and characterization of the receptor for TALL-1 provides useful information for the development of a treatment for B cell–mediated autoimmune diseases such as systemic lupus erythematosus. PMID:10880535

  4. Novel Function for Vascular Endothelial Growth Factor Receptor-1 on Epidermal Keratinocytes

    PubMed Central

    Wilgus, Traci A.; Matthies, Annette M.; Radek, Katherine A.; Dovi, Julia V.; Burns, Aime L.; Shankar, Ravi; DiPietro, Luisa A.

    2005-01-01

    Vascular endothelial growth factor (VEGF-A), a potent stimulus for angiogenesis, is up-regulated in the skin after wounding. Although studies have shown that VEGF is important for wound repair, it is unclear whether this is based solely on its ability to promote angiogenesis or if VEGF can also promote healing by acting directly on non-endothelial cell types. By immunohistochemistry and reverse transcriptase-polymerase chain reaction, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was detected in murine keratinocytes during wound repair and in normal human epidermal keratinocytes (NHEKs). The presence of VEGF receptors on NHEKs was verified by binding studies with 125I-VEGF. In vitro, VEGF stimulated the proliferation of NHEKs, an effect that could be blocked by treatment with neutralizing VEGFR-1 antibodies. A role for VEGFR-1 in keratinocytes was also shown in vivo because treatment of excisional wounds with neutralizing VEGFR-1 antibodies delayed re-epithelialization. Treatment with anti-VEGFR-1 antibodies also reduced the number of proliferating keratinocytes at the leading edge of the wound, suggesting that VEGF sends a proliferative signal to these cells. Together, these data describe a novel role for VEGFR-1 in keratinocytes and suggest that VEGF may play several roles in cutaneous wound repair. PMID:16251410

  5. Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor.

    PubMed Central

    Reedijk, M; Liu, X Q; Pawson, T

    1990-01-01

    The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages. Images PMID:2172781

  6. Antitumor activity of a novel anti-vascular endothelial growth factor receptor-1 monoclonal antibody that does not interfere with ligand binding

    PubMed Central

    Tentori, Lucio; Scimeca, Manuel; Dorio, Annalisa S.; Atzori, Maria Grazia; Failla, Cristina M.; Morea, Veronica; Bonanno, Elena; D'Atri, Stefania; Lacal, Pedro M.

    2016-01-01

    Vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase transmembrane receptor that has also a soluble isoform containing most of the extracellular ligand binding domain (sVEGFR-1). VEGF-A binds to both VEGFR-2 and VEGFR-1, whereas placenta growth factor (PlGF) interacts exclusively with VEGFR-1. In this study we generated an anti-VEGFR-1 mAb (D16F7) by immunizing BALB/C mice with a peptide that we had previously reported to inhibit angiogenesis and endothelial cell migration induced by PlGF. D16F7 did not affect binding of VEGF-A or PlGF to VEGFR-1, thus allowing sVEGFR-1 to act as decoy receptor for these growth factors, but it hampered receptor homodimerization and activation. D16F7 inhibited both the chemotactic response of human endothelial, myelomonocytic and melanoma cells to VEGFR-1 ligands and vasculogenic mimicry by tumor cells. Moreover, D16F7 exerted in vivo antiangiogenic effects in a matrigel plug assay. Importantly, D16F7 inhibited tumor growth and was well tolerated by B6D2F1 mice injected with syngeneic B16F10 melanoma cells. The antitumor effect was associated with melanoma cell apoptosis, vascular abnormalities and decrease of both monocyte/macrophage infiltration and myeloid progenitor mobilization. For all the above, D16F7 may be exploited in the therapy of metastatic melanoma and other tumors or pathological conditions involving VEGFR-1 activation. PMID:27655684

  7. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.

    PubMed

    Qian, Chen; Wong, Carol Wing Yan; Wu, Zhongluan; He, Qiuming; Xia, Huimin; Tam, Paul Kwong Hang; Wong, Kenneth Kak Yuen; Lui, Vincent Chi Hang

    2017-01-01

    Platelet-derived growth factor receptor alpha (PDGFRα) is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures. To address the temporal requirement of Pdgfra in embryonic development. We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies. Current study showed that (i) conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5) resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii) the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives. Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a) the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b) if mutations / sequence variations of these regulatory elements cause these anomalies.

  8. Molecular Cloning and Characterization of Growth Factor Receptor Bound-Protein in Clonorchis sinensis

    PubMed Central

    Bai, Xuelian; Lee, Ji-Yun; Kim, Tae Im; Dai, Fuhong; Lee, Tae-Jin; Hong, Sung-Jong

    2014-01-01

    Background Clonorchis sinensis causes clonorchiasis, a potentially serious disease. Growth factor receptor-bound protein 2 (Grb2) is a cytosolic protein conserved among animals and plays roles in cellular functions such as meiosis, organogenesis and energy metabolism. In the present study, we report first molecular characters of growth factor receptor bound-protein (CsGrb2) from C. sinensis as counter part of Grb2 from animals and its possible functions in development and organogenesis of C. sinensis. Methodology/Principal Findings A CsGrb2 cDNA clone retrieved from the C. sinensis transcriptome encoded a polypeptide with a SH3-SH2-SH3 structure. Recombinant CsGrb2 was bacterially produced and purified to homogeneity. Native CsGrb2 with estimated molecular weight was identified from C. sinensis adult extract by western blotting using a mouse immune serum to recombinant CsGrb2. CsGrb2 transcripts was more abundant in the metacercariae than in the adults. Immunohistochemical staining showed that CsGrb2 was localized to the suckers, mesenchymal tissues, sperms in seminal receptacle and ovary in the adults, and abundantly expressed in most organs of the metacercariae. Recombinant CsGrb2 was evaluated to be little useful as a serodiagnostic reagent for C. sinesis human infections. Conclusion Grb2 protein found in C. sinensis was conserved among animals and suggested to play a role in the organogenesis, energy metabolism and mitotic spermatogenesis of C. sinensis. These findings from C. sinensis provide wider understanding on diverse function of Grb2 in lower animals such as platyhelminths. PMID:24454892

  9. Transcriptional activation of human mu-opioid receptor gene by insulin-like growth factor-I in neuronal cells is modulated by the transcription factor REST.

    PubMed

    Bedini, Andrea; Baiula, Monica; Spampinato, Santi

    2008-06-01

    The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. We investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I up-regulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 signaling pathway and this transcription factor, binding to the signal transducer and activator of transcription-1/3 DNA element located in the promoter, increases OPRM1 transcription. We propose that a reduction in REST is a critical switch enabling IGF-I to up-regulate hMOPr. These findings help clarify how hMOPr expression is regulated in neuronal cells.

  10. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    NASA Astrophysics Data System (ADS)

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  11. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    PubMed Central

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R. PMID:25628267

  12. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1.

    PubMed

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-28

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr(6.63) forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr(6.63) to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr356(6.63) allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  13. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    PubMed

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  14. Structural Basis of Chemokine Sequestration by CrmD, a Poxvirus-Encoded Tumor Necrosis Factor Receptor

    PubMed Central

    Wang, Dongli; Chen, Dongwei; He, Guangjun; Huang, Li; Wang, Hanzhong; Wang, Xinquan

    2011-01-01

    Pathogens have evolved sophisticated mechanisms to evade detection and destruction by the host immune system. Large DNA viruses encode homologues of chemokines and their receptors, as well as chemokine-binding proteins (CKBPs) to modulate the chemokine network in host response. The SECRET domain (smallpox virus-encoded chemokine receptor) represents a new family of viral CKBPs that binds a subset of chemokines from different classes to inhibit their activities, either independently or fused with viral tumor necrosis factor receptors (vTNFRs). Here we present the crystal structures of the SECRET domain of vTNFR CrmD encoded by ectromelia virus and its complex with chemokine CX3CL1. The SECRET domain adopts a β-sandwich fold and utilizes its β-sheet I surface to interact with CX3CL1, representing a new chemokine-binding manner of viral CKBPs. Structure-based mutagenesis and biochemical analysis identified important basic residues in the 40s loop of CX3CL1 for the interaction. Mutation of corresponding acidic residues in the SECRET domain also affected the binding for other chemokines, indicating that the SECRET domain binds different chemokines in a similar manner. We further showed that heparin inhibited the binding of CX3CL1 by the SECRET domain and the SECRET domain inhibited RAW264.7 cell migration induced by CX3CL1. These results together shed light on the structural basis for the SECRET domain to inhibit chemokine activities by interfering with both chemokine-GAG and chemokine-receptor interactions. PMID:21829356

  15. Platelet Activating Factor Receptor Activation Improves siRNA Uptake and RNAi Responses in Well-differentiated Airway Epithelia.

    PubMed

    Krishnamurthy, Sateesh; Behlke, Mark A; Apicella, Michael A; McCray, Paul B; Davidson, Beverly L

    2014-07-15

    Well-differentiated human airway epithelia present formidable barriers to efficient siRNA delivery. We previously reported that treatment of airway epithelia with specific small molecules improves oligonucleotide uptake and facilitates RNAi responses. Here, we exploited the platelet activating factor receptor (PAFR) pathway, utilized by specific bacteria to transcytose into epithelia, as a trigger for internalization of Dicer-substrate siRNAs (DsiRNA). PAFR is a G-protein coupled receptor which can be engaged and activated by phosphorylcholine residues on the lipooligosaccharide (LOS) of nontypeable Haemophilus influenzae and the teichoic acid of Streptococcus pneumoniae as well as by its natural ligand, platelet activating factor (PAF). When well-differentiated airway epithelia were simultaneously treated with either nontypeable Haemophilus influenzae LOS or PAF and transduced with DsiRNA formulated with the peptide transductin, we observed silencing of both endogenous and exogenous targets. PAF receptor antagonists prevented LOS or PAF-assisted DsiRNA silencing, demonstrating that ligand engagement of PAFR is essential for this process. Additionally, PAF-assisted DsiRNA transfection decreased CFTR protein expression and function and reduced exogenous viral protein levels and titer in human airway epithelia. Treatment with spiperone, a small molecule identified using the Connectivity map database to correlate gene expression changes in response to drug treatment with those associated with PAFR stimulation, also induced silencing. These results suggest that the signaling pathway activated by PAFR binding can be manipulated to facilitate siRNA entry and function in difficult to transfect well-differentiated airway epithelial cells.

  16. Huntingtin interacting protein 1 is a novel brain tumor marker that associates with epidermal growth factor receptor.

    PubMed

    Bradley, Sarah V; Holland, Eric C; Liu, Grace Y; Thomas, Dafydd; Hyun, Teresa S; Ross, Theodora S

    2007-04-15

    Huntingtin interacting protein 1 (HIP1) is a multidomain oncoprotein whose expression correlates with increased epidermal growth factor receptor (EGFR) levels in certain tumors. For example, HIP1-transformed fibroblasts and HIP1-positive breast cancers have elevated EGFR protein levels. The combined association of HIP1 with huntingtin, the protein that is mutated in Huntington's disease, and the known overexpression of EGFR in glial brain tumors prompted us to explore HIP1 expression in a group of patients with different types of brain cancer. We report here that HIP1 is overexpressed with high frequency in brain cancers and that this overexpression correlates with EGFR and platelet-derived growth factor beta receptor expression. Furthermore, serum samples from patients with brain cancer contained anti-HIP1 antibodies more frequently than age-matched brain cancer-free controls. Finally, we report that HIP1 physically associates with EGFR and that this association is independent of the lipid, clathrin, and actin interacting domains of HIP1. These findings suggest that HIP1 may up-regulate or maintain EGFR overexpression in primary brain tumors by directly interacting with the receptor. This novel HIP1-EGFR interaction may work with or independent of HIP1 modulation of EGFR degradation via clathrin-mediated membrane trafficking pathways. Further investigation of HIP1 function in brain cancer biology and validation of its use as a prognostic or predictive brain tumor marker are now warranted.

  17. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism.

    PubMed

    Su, W C; Kitagawa, M; Xue, N; Xie, B; Garofalo, S; Cho, J; Deng, C; Horton, W A; Fu, X Y

    1997-03-20

    The achondroplasia class of chondrodysplasias comprises the most common genetic forms of dwarfism in humans and includes achondroplasia, hypochondroplasia and thanatophoric dysplasia types I and II (TDI and TDII), which are caused by different mutations in a fibroblast growth-factor receptor FGFR3 (ref. 1). The molecular mechanism and the mediators of these FGFR3-related growth abnormalities are not known. Here we show that mutant TDII FGFR3 has a constitutive tyrosine kinase activity which can specifically activate the transcription factor Stat1 (for signal transducer and activator of transcription). Furthermore, expression of TDII FGFR3 induced nuclear translocation of Stat1, expression of the cell-cycle inhibitor p21(WAF1/CIP1), and growth arrest of the cell. Thus, TDII FGFR3 may use Stat1 as a mediator of growth retardation in bone development. Consistent with this, Stat1 activation and increased p21(WAF1/CIP1) expression was found in the cartilage cells from the TDII fetus, but not in those from the normal fetus. Thus, abnormal STAT activation and p21(WAF1/CIP1) expression by the TDII mutant receptor may be responsible for this FGFR3-related bone disease.

  18. Receptor-Mediated Uptake and Intracellular Sorting of Multivalent Lipid Nanoparticles Against the Epidermal Growth Factor Receptor (EGFR) and the Human EGFR 2 (HER2)

    NASA Astrophysics Data System (ADS)

    Tran, David Tu

    In the area of receptor-targeted lipid nanoparticles for drug delivery, efficiency has been mainly focused on cell-specificity, endocytosis, and subsequently effects on bioactivity such as cell growth inhibition. Aspects of targeted liposomal uptake and intracellular sorting are not well defined. This dissertation assessed a series of ligands as targeted functional groups against HER2 and EGFR for liposomal drug delivery. Receptor-mediated uptake, both mono-targeted and dual-targeted to multiple receptors of different ligand valence, and the intracellular sorting of lipid nanoparticles were investigated to improve the delivery of drugs to cancer cells. Lipid nanoparticles were functionalized through a new sequential micelle transfer---conjugation method, while the micelle transfer method was extended to growth factors. Through a combination of both techniques, anti-HER2 and anti-EGFR dual-targeted immunoliposomes with different combinations of ligand valence were developed for comparative studies. With the array of lipid nanoparticles, the uptake and cytotoxicity of lipid nanoparticles in relationship to ligand valence, both mono-targeting and dual-targeting, were evaluated on a small panel of breast cancer cell lines that express HER2 and EGFR of varying levels. Comparable uptake ratios of ligand to expressed receptor and apparent cooperativity were observed. For cell lines that express both receptors, additive dose-uptake effects were also observed with dual-targeted immunoliposomes, which translated to marginal improvements in cell growth inhibition with doxorubicin delivery. Colocalization analysis revealed that ligand-conjugated lipid nanoparticles settle to endosomal compartments similar to their attached ligands. Pathway transregulation and pathway saturation were also observed to affect trafficking. In the end, liposomes routed to the recycling endosomes were never observed to traffic beyond the endosomes nor to be exocytose like recycled ligands. Based on

  19. Amino Acid Residues Critical for Endoplasmic Reticulum Export and Trafficking of Platelet-activating Factor Receptor*

    PubMed Central

    Hirota, Nobuaki; Yasuda, Daisuke; Hashidate, Tomomi; Yamamoto, Teruyasu; Yamaguchi, Satoshi; Nagamune, Teruyuki; Nagase, Takahide; Shimizu, Takao; Nakamura, Motonao

    2010-01-01

    Several residues are conserved in the transmembrane domains (TMs) of G-protein coupled receptors. Here we demonstrate that a conserved proline, Pro247, in TM6 of platelet-activating factor receptor (PAFR) is required for endoplasmic reticulum (ER) export and trafficking after agonist-induced internalization. Alanine-substituted mutants of the conserved residues of PAFRs, including P247A, were retained in the ER. Because a PAFR antagonist, Y-24180, acted as a pharmacological chaperone to rescue ER retention, this retention is due to misfolding of PAFR. Methylcarbamyl (mc)-PAF, a PAFR agonist, did not increase the cell surface expression of P247A, even though another ER-retained mutant, D63A, was effectively trafficked. Signaling and accumulation of the receptors in the early endosomes were observed in the mc-PAF-treated P247A-expressing cells, suggesting that P247A was trafficked to the cell surface by mc-PAF, and thereafter disappeared from the surface due to aberrant trafficking, e.g. enhanced internalization, deficiency in recycling, and/or accelerated degradation. The aberrant trafficking was confirmed with a sortase-A-mediated method for labeling cell surface proteins. These results demonstrate that the conserved proline in TM6 is crucial for intracellular trafficking of PAFR. PMID:20007715

  20. Dynamic Regulation of Platelet-Derived Growth Factor Receptor α Expression in Alveolar Fibroblasts during Realveolarization

    PubMed Central

    Chen, Leiling; Acciani, Thomas; Le Cras, Tim; Lutzko, Carolyn

    2012-01-01

    Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α–expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α–positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α–green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α–GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α–GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α–positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial–mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable

  1. Angiotensin II type 1 receptor blockers prevent tumor necrosis factor-alpha-mediated endothelial nitric oxide synthase reduction and superoxide production in human umbilical vein endothelial cells.

    PubMed

    Kataoka, Hiroki; Murakami, Ryuichiro; Numaguchi, Yasushi; Okumura, Kenji; Murohara, Toyoaki

    2010-06-25

    Decrease in endothelial nitric oxide synthase (eNOS) expression is one of the adverse outcomes of endothelial dysfunction. Tumor necrosis factor-alpha (TNF-alpha) is known to decrease eNOS expression and is an important mediator of endothelial dysfunction. We hypothesized that an angiotensin II type 1 (AT1) receptor blocker would improve endothelial function via not only inhibition of the angiotensin II signaling but also inhibition of the TNF-alpha-mediated signaling. Therefore we investigated whether an AT1 receptor blocker would restore the TNF-alpha-induced decrease in eNOS expression in cultured human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with an antioxidant (superoxide dismutase, alpha-tocopherol) or AT1 receptor blockers (olmesartan or candesartan) restored the TNF-alpha-dependent reduction of eNOS. The AT1 receptor blocker decreased the TNF-alpha-dependent increase of 8-isoprostane. The superoxide dismutase activities in HUVEC were stable during AT1 receptor blocker treatment, and the AT1 receptor blocker did not scavenge superoxide directly. The AT1 receptor blocker also decreased TNF-alpha-induced phosphorylation of I kappaB alpha and cell death. These results suggest that AT1 receptor blockers are able to ameliorate TNF-alpha-dependent eNOS reduction or cell injury by inhibiting superoxide production or nuclear factor-kappaB activation. (c) 2010 Elsevier B.V. All rights reserved.

  2. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding.

    PubMed

    Taylor, Eric S; Pol-Fachin, Laercio; Lins, Roberto D; Lower, Steven K

    2017-04-01

    The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. NFIL3 suppresses hypoxia-induced apoptotic cell death by targeting the insulin-like growth factor 2 receptor.

    PubMed

    Lin, Kuan-Ho; Kuo, Chia-Hua; Kuo, Wei-Wen; Ho, Tsung-Jung; Pai, Peiying; Chen, Wei-Kung; Pan, Lung-Fa; Wang, Chien-Cheng; Padma, V Vijaya; Huang, Chih-Yang

    2015-06-01

    The insulin-like growth factor-II/mannose 6-phosphate receptor (IGF2R) over-expression correlates with heart disease progression. The IGF2R is not only an IGF2 clearance receptor, but it also triggers signal transduction, resulting in cardiac hypertrophy, apoptosis and fibrosis. The present study investigated the nuclear factor IL-3 (NFIL3), a transcription factor of the basic leucine zipper superfamily, and its potential pro-survival effects in cardiomyocytes. NFIL3 might play a key role in heart development and act as a survival factor in the heart, but the regulatory mechanisms are still unclear. IGF2 and IGF2R protein expression were highly increased in rat hearts subjected to hemorrhagic shock. IGF2R protein expression was also up-regulated in H9c2 cells exposed to hypoxia. Over-expression of NFIL3 in H9c2 cardiomyoblast cells inhibited the induction of hypoxia-induced apoptosis and down-regulated IGF2R expression levels. Gel shift assay, double-stranded DNA pull-down assay and chromatin immune-precipitation analyses indicated that NFIL3 binds directly to the IGF2R promoter region. Using a luciferase assay, we further observed NFIL3 repress IGF2R gene promoter activity. Our results demonstrate that NFIL3 is an important negative transcription factor, which through binding to the promoter of IGF2R, suppresses the apoptosis induced by IGF2R signaling in H9c2 cardiomyoblast cells under hypoxic conditions. © 2015 Wiley Periodicals, Inc.

  4. A platelet-activating factor (PAF) receptor deficiency exacerbates diet-induced obesity but PAF/PAF receptor signaling does not contribute to the development of obesity-induced chronic inflammation.

    PubMed

    Yamaguchi, Masahiko; Matsui, Masakazu; Higa, Ryoko; Yamazaki, Yasuhiro; Ikari, Akira; Miyake, Masaki; Miwa, Masao; Ishii, Satoshi; Sugatani, Junko; Shimizu, Takao

    2015-02-15

    Platelet-activating factor (PAF) is a well-known phospholipid that mediates acute inflammatory responses. In the present study, we investigated whether PAF/PAF receptor signaling contributed to chronic inflammation in the white adipose tissue (WAT) of PAF receptor-knockout (PAFR-KO) mice. Body and epididymal WAT weights were higher in PAFR-KO mice fed a high-fat diet (HFD) than in wild-type (WT) mice. TNF-α mRNA expression levels in epididymal WAT and the infiltration of CD11c-positive macrophages into epididymal WAT, which led to chronic inflammation, were also elevated in HFD-fed PAFR-KO mice. HFD-fed PAFR-KO mice had higher levels of fasting serum glucose than HFD-fed WT mice as well as impaired glucose tolerance. Although PAF receptor signaling up-regulated the expression of TNF-α and lipopolysaccharide induced the expression of acyl-CoA:lysophosphatidylcholine acyltransferase 2 (LPCAT2) mRNA in bone marrow-derived macrophages, no significant differences were observed in the expression of LPCAT2 mRNA and PAF levels in epididymal WAT between HFD-fed mice and normal diet-fed mice. In addition to our previous finding in which energy expenditure in PAF receptor (PAFR)-deficient mice was low due to impaired brown adipose tissue function, the present study demonstrated that PAF/PAF receptor signaling up-regulated the expression of Ucp1 mRNA, which is essential for cellular thermogenesis, in 3T3-L1 adipocytes. We concluded that the marked accumulation of abdominal fat due to HFD feeding led to more severe chronic inflammation in WAT, which is associated with glucose metabolism disorders, in PAFR-KO mice than in WT mice, and PAF/PAF receptor signaling may regulate energy expenditure and adiposity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Epidermal growth factor receptor and variant III targeted immunotherapy.

    PubMed

    Congdon, Kendra L; Gedeon, Patrick C; Suryadevara, Carter M; Caruso, Hillary G; Cooper, Laurence J N; Heimberger, Amy B; Sampson, John H

    2014-10-01

    Immunotherapeutic approaches to cancer have shown remarkable promise. A critical barrier to successfully executing such immune-mediated interventions is the selection of safe yet immunogenic targets. As patient deaths have occurred when tumor-associated antigens shared by normal tissue have been targeted by strong cellular immunotherapeutic platforms, route of delivery, target selection and the immune-mediated approach undertaken must work together to maximize efficacy with safety. Selected tumor-specific targets can spare potential toxicity to normal tissue; however, they are far less common than tumor-associated antigens and may not be present on all patients. In the context of immunotherapy for high-grade glioma, 2 of the most prominently studied antigens are the tumor-associated epidermal growth factor receptor and its tumor-specific genetic deletion variant III. In this review, we will summarize the immune-mediated strategies employed against these targets as well as the caveats particular to these approaches. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  7. Neuritogenic and neuroprotective properties of peptide agonists of the fibroblast growth factor receptor.

    PubMed

    Li, Shizhong; Bock, Elisabeth; Berezin, Vladimir

    2010-05-26

    Fibroblast growth factor receptors (FGFRs) interact with their cognate ligands, FGFs, and with a number of cell adhesion molecules (CAMs), such as the neural cell adhesion molecule (NCAM), mediating a wide range of events during the development and maintenance of the nervous system. Determination of protein structure, in silico modeling and biological studies have recently resulted in the identification of FGFR binding peptides derived from various FGFs and NCAM mimicking the effects of these molecules with regard to their neuritogenic and neuroprotective properties. This review focuses on recently developed functional peptide agonists of FGFR with possible therapeutic potential.

  8. Gene expression analysis of growth factor receptors in human chondrocytes in monolayer and 3D pellet cultures

    PubMed Central

    Witt, Anika; Salamon, Achim; Boy, Diana; Hansmann, Doris; Büttner, Andreas; Wree, Andreas; Bader, Rainer; Jonitz-Heincke, Anika

    2017-01-01

    The main goal of cartilage repair is to create functional tissue by enhancing the in vitro conditions to more physiological in vivo conditions. Chondrogenic growth factors play an important role in influencing cartilage homeostasis. Insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β1 affect the expression of collagen type II (Col2) and glycosaminoglycans (GAGs) and, therefore, the targeted use of growth factors could make chondrogenic redifferentiation more efficient. In the present study, human chondrocytes were postmortally isolated from healthy articular cartilage and cultivated as monolayer or 3D pellet cultures either under normoxia or hypoxia and stimulated with IGF-1 and/or TGF-β1 to compare the impact of the different growth factors. The mRNA levels of the specific receptors (IGF1R, TGFBR1, TGFBR2) were analyzed at different time points. Moreover, gene expression rates of collagen type 1 and 2 in pellet cultures were observed over a period of 5 weeks. Additionally, hyaline-like Col2 protein and sulphated GAG (sGAG) levels were quantified. Stimulation with IGF-1 resulted in an enhanced expression of IGF1R and TGFBR2 whereas TGF-β1 stimulated TGFBR1 in the monolayer and pellet cultures. In monolayer, the differences reached levels of significance. This effect was more pronounced under hypoxic culture conditions. In pellet cultures, increased amounts of Col2 protein and sGAGs after incubation with TGF-β1 and/or IGF-1 were validated. In summary, constructing a gene expression profile regarding mRNA levels of specific growth factor receptors in monolayer cultures could be helpful for a targeted application of growth factors in cartilage tissue engineering. PMID:28534942

  9. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development.

    PubMed

    Costa, Ricardo; Shah, Ami N; Santa-Maria, Cesar A; Cruz, Marcelo R; Mahalingam, Devalingam; Carneiro, Benedito A; Chae, Young Kwang; Cristofanilli, Massimo; Gradishar, William J; Giles, Francis J

    2017-02-01

    Triple negative breast cancer (TNBC) accounts for 10-20% of cases in breast cancer. Despite recent advances in the treatment of hormonal receptor+ and HER2+ breast cancers, there are no targeted therapies available for TNBC. Evidence supports that most patients with TNBC express the transmembrane Epidermal Growth Factor Receptor (EGFR). However, early phase clinical trials failed to demonstrate significant activity of EGFR-targeted monoclonal antibodies and/or tyrosine kinase inhibitors. Here, we review the recent discoveries related to the underlying biology of the EGFR pathway in TNBC, clinical progress to date and suggest rational future approaches for investigational therapies in TNBC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Loss of Dlg-1 in the Mouse Lens Impairs Fibroblast Growth Factor Receptor Signaling

    PubMed Central

    Lee, SungKyoung; Griep, Anne E.

    2014-01-01

    Coordination of cell proliferation, differentiation and survival is essential for normal development and maintenance of tissues in the adult organism. Growth factor receptor tyrosine kinase signaling pathways and planar cell polarity pathways are two regulators of many developmental processes. We have previously shown through analysis of mice conditionally null in the lens for the planar cell polarity gene (PCP), Dlg-1, that Dlg-1 is required for fiber differentiation. Herein, we asked if Dlg-1 is a regulator of the Fibroblast growth factor receptor (Fgfr) signaling pathway, which is known to be required for fiber cell differentiation. Western blot analysis of whole fiber cell extracts from control and Dlg-1 deficient lenses showed that levels of the Fgfr signaling intermediates pErk, pAkt, and pFrs2α, the Fgfr target, Erm, and the fiber cell specific protein, Mip26, were reduced in the Dlg-1 deficient fiber cells. The levels of Fgfr2 were decreased in Dlg-1 deficient lenses compared to controls. Conversely, levels of Fgfr1 in Dlg-1 deficient lenses were increased compared to controls. The changes in Fgfr levels were found to be specifically in the triton insoluble, cytoskeletal associated fraction of Dlg-1 deficient lenses. Immunofluorescent staining of lenses from E13.5 embryos showed that expression levels of pErk were reduced in the transition zone, a region of the lens that exhibits PCP, in the Dlg-1 deficient lenses as compared to controls. In control lenses, immunofluorescent staining for Fgfr2 was observed in the epithelium, transition zone and fibers. By E13.5, the intensity of staining for Fgfr2 was reduced in these regions of the Dlg-1 deficient lenses. Thus, loss of Dlg-1 in the lens impairs Fgfr signaling and leads to altered levels of Fgfrs, suggesting that Dlg-1 is a modulator of Fgfr signaling pathway at the level of the receptors and that Dlg-1 regulates fiber cell differentiation through its role in PCP. PMID:24824078

  11. Affinity chromatography for purification of the modular protein growth factor receptor-bound protein 2 and development of a screening test for growth factor receptor-bound protein 2 Src homology 3 domain inhibitor using peroxidase-linked ligand.

    PubMed

    Gril, B; Liu, W Q; Lenoir, C; Garbay, C; Vidal, M

    2006-04-01

    Growth factor receptor-bound protein 2 (Grb2) is an adapter protein involved in the Ras-dependent signaling pathway that plays an important role in human cancers initiated by oncogenic receptors. Grb2 is constituted by one Src homology 2 domain surrounded by two SH3 domains, and the inhibition of the interactions produced by these domains could provide an antitumor approach. In evaluating chemical libraries, to search for potential Grb2 inhibitors, it was necessary to elaborate a rapid test for their screening. We have developed, first, a batch method based on the use of an affinity column bearing a Grb2-SH3 peptide ligand to isolate highly purified Grb2. We subsequently describe a very rapid 96-well screening of inhibitors based on a simple competition between purified Grb2 and a peroxidase-coupled proline-rich peptide.

  12. Krüppel-like factors are effectors of nuclear receptor signaling

    PubMed Central

    Knoedler, Joseph R.; Denver, Robert J.

    2015-01-01

    Binding of steroid and thyroid hormones to their cognate nuclear receptors (NRs) impacts virtually every aspect of postembryonic development, physiology and behavior, and inappropriate signaling by NRs may contribute to disease. While NRs regulate genes by direct binding to hormone response elements in the genome, their actions may depend on the activity of other transcription factors (TFs) that may or may not bind DNA. The Krüppel-like family of transcription factors (KLF) is an evolutionarily conserved class of DNA-binding proteins that influence many aspects of development and physiology. Several members of this family have been shown to play diverse roles in NR signaling. For example, KLFs 1) act as accessory transcription factors for NR actions, 2) regulate expression of NR genes, and 3) as gene products of primary NR response genes function as key players in NR-dependent transcriptional networks. In mouse models, deletion of different KLFs leads to aberrant transcriptional and physiological responses to hormones, underscoring the importance of these proteins in the regulation of hormonal signaling. Understanding the functional relationships between NRs and KLFs will yield important insights into mechanisms of NR signaling. In this review we present a conceptual framework for understanding how KLFs participate in NR signaling, and we provide examples of how these proteins function to effect hormone action. PMID:24642391

  13. Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways

    PubMed Central

    Tu, Yizeng; Li, Fugang; Wu, Chuanyue

    1998-01-01

    Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575

  14. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α.

    PubMed

    Zhi, Yunlai; Lu, Hongting; Duan, Yuhe; Sun, Weisheng; Guan, Ge; Dong, Qian; Yang, Chuanmin

    2015-02-01

    Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.

  15. Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor.

    PubMed

    Witters, Lois; Scherle, Peggy; Friedman, Steven; Fridman, Jordan; Caulder, Eian; Newton, Robert; Lipton, Allan

    2008-09-01

    The ErbB family of receptors is overexpressed in numerous human tumors. Overexpression correlates with poor prognosis and resistance to therapy. Use of ErbB-specific antibodies to the receptors (Herceptin or Erbitux) or ErbB-specific small-molecule inhibitors of the receptor tyrosine kinase activity (Iressa or Tarceva) has shown clinical efficacy in several solid tumors. An alternative method of affecting ErbB-initiated tumor growth and survival is to block sheddase activity. Sheddase activity is responsible for cleavage of multiple ErbB ligands and receptors, a necessary step in availability of the soluble, active form of the ligand and a constitutively activated ligand-independent receptor. This sheddase activity is attributed to the ADAM (a disintegrin and metalloprotease) family of proteins. ADAM 10 is the main sheddase of epidermal growth factor (EGF) and HER-2/neu cleavage, whereas ADAM17 is required for cleavage of additional EGF receptor (EGFR) ligands (transforming growth factor-alpha, amphiregulin, heregulin, heparin binding EGF-like ligand). This study has shown that addition of INCB3619, a potent inhibitor of ADAM10 and ADAM17, reduces in vitro HER-2/neu and amphiregulin shedding, confirming that it interferes with both HER-2/neu and EGFR ligand cleavage. Combining INCB3619 with a lapatinib-like dual inhibitor of EGFR and HER-2/neu kinases resulted in synergistic growth inhibition in MCF-7 and HER-2/neu-transfected MCF-7 human breast cancer cells. Combining the INCB7839 second-generation sheddase inhibitor with lapatinib prevented the growth of HER-2/neu-positive BT474-SC1 human breast cancer xenografts in vivo. These results suggest that there may be an additional clinical benefit of combining agents that target the ErbB pathways at multiple points.

  16. DNA copy number gains at loci of growth factors and their receptors in salivary gland adenoid cystic carcinoma.

    PubMed

    Vékony, Hedy; Ylstra, Bauke; Wilting, Saskia M; Meijer, Gerrit A; van de Wiel, Mark A; Leemans, C René; van der Waal, Isaäc; Bloemena, Elisabeth

    2007-06-01

    Adenoid cystic carcinoma (ACC) is a malignant salivary gland tumor with a high mortality rate due to late, distant metastases. This study aimed at unraveling common genetic abnormalities associated with ACC. Additionally, chromosomal changes were correlated with patient characteristics and survival. Microarray-based comparative genomic hybridization was done to a series of 18 paraffin-embedded primary ACCs using a genome-wide scanning BAC array. A total of 238 aberrations were detected, representing more gains than losses (205 versus 33, respectively). Most frequent gains (>60%) were observed at 9q33.3-q34.3, 11q13.3, 11q23.3, 19p13.3-p13.11, 19q12-q13.43, 21q22.3, and 22q13.33. These loci harbor numerous growth factor [fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF)] and growth factors receptor (FGFR3 and PDGFRbeta) genes. Gains at the FGF(R) regions occurred significantly more frequently in the recurred/metastasized ACCs compared with indolent ACCs. Furthermore, patients with 17 or more chromosomal aberrations had a significantly less favorable outcome than patients with fewer chromosomal aberrations (log-rank = 5.2; P = 0.02). Frequent DNA copy number gains at loci of growth factors and their receptors suggest their involvement in ACC initiation and progression. Additionally, the presence of FGFR3 and PDGFRbeta in increased chromosomal regions suggests a possible role for autocrine stimulation in ACC tumorigenesis.

  17. Epidermal growth factor receptor mutation in gastric cancer.

    PubMed

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  18. Tumor necrosis factor-α inhibits angiotensin II receptor type 1 expression in dorsal root ganglion neurons via β-catenin signaling.

    PubMed

    Yang, Y; Wu, H; Yan, J-Q; Song, Z-B; Guo, Q-L

    2013-09-17

    Both tumor necrosis factor (TNF)-α and the angiotensin (Ang) II/angiotensin II receptor type 1 (AT1) axis play important roles in neuropathic pain and nociception. In the present study, we explored the interaction between the two systems by examining the mutual effects between TNF-α and the Ang II/AT1 receptor axis in dorsal root ganglion (DRG) neurons. Rat DRG neurons were treated with TNF-α in different concentrations for different lengths of time in the presence or absence of transcription inhibitor actinomycin D, TNF receptor 1 (TNFR1) inhibitor SPD304, β-catenin signaling inhibitor CCT031374, or different kinase inhibitors. TNF-α decreased the AT1 receptor mRNA level as well as the AT1a receptor promoter activity in a dose-dependent manner within 30 h, which led to dose-dependent inhibition of Ang II-binding AT1 receptor level on the cell membrane. Actinomycin D (1 mg/ml), SPD304 (50 μM), p38 mitogen-activated protein kinase (MAPK) inhibitor PD169316 (25 μM), and CCT031374 (50 μM) completely abolished the inhibitory effect of TNF-α on AT1 receptor expression. TNF-α dose-dependently increased soluble β-catenin and phosphorylated GSK-3β levels, which was blocked by SPD304 and PD169316. In DRG neurons treated with AT2 receptor agonist CGP421140, or Ang II with or without AT1 receptor antagonist losartan or AT2 receptor antagonist PD123319 for 30 h, we found that Ang II and Ang II+PD123319 significantly decreased TNF-α expression, whereas CPG421140 and Ang II+losartan increased TNF-α expression. In conclusion, we demonstrate that TNF-α inhibits AT1 receptor expression at the transcription level via TNFR1 in rat DRG neurons by increasing the soluble β-catenin level through the p38 MAPK/GSK-3β pathway. In addition, Ang II appears to inhibit and induce TNF-α expression via the AT1 receptor and the AT2 receptor in DRG neurons, respectively. This is the first evidence of crosstalk between TNF-α and the Ang II/AT receptor axis in DRG neurons

  19. Clopidogrel inhibits angiogenesis of gastric ulcer healing via downregulation of vascular endothelial growth factor receptor 2.

    PubMed

    Luo, Jiing-Chyuan; Peng, Yen-Ling; Chen, Tseng-Shing; Huo, Teh-Ia; Hou, Ming-Chih; Huang, Hui-Chun; Lin, Han-Chieh; Lee, Fa-Yauh

    2016-09-01

    Although clopidogrel does not cause gastric mucosal injury, it does not prevent peptic ulcer recurrence in high-risk patients. We explored whether clopidogrel delays gastric ulcer healing via inhibiting angiogenesis and to elucidate the possible mechanisms. Gastric ulcers were induced in Sprague Dawley rats, and ulcer healing and angiogenesis of ulcer margin were compared between clopidogrel-treated rats and controls. The expressions of the proangiogenic growth factors and their receptors including basic fibroblast growth factor (bFGF), bFGF receptor (FGFR), vascular endothelial growth factor (VEGF), VEGFR1, VEGFR2, platelet-derived growth factor (PDGF)A, PDGFB, PDGFR A, PDGFR B, and phosphorylated form of mitogenic activated protein kinase pathways over the ulcer margin were compared via western blot and reverse transcription polymerase chain reaction. In vitro, human umbilical vein endothelial cells (HUVECs) were used to elucidate how clopidogrel inhibited growth factors-stimulated HUVEC proliferation. The ulcer sizes were significantly larger and the angiogenesis of ulcer margin was significantly diminished in the clopidogrel (2 and 10 mg/kg/d) treated groups. Ulcer induction markedly increased the expression of phosphorylated form of extracellular signal-regulated kinase (pERK), FGFR2, VEGF, VEGFR2, and PDGFRA when compared with those of normal mucosa. Clopidogrel treatment significantly decreased pERK, FGFR2, VEGF, VEGFR2, and PDGFRA expression at the ulcer margin when compared with those of the respective control group. In vitro, clopidogrel (10(-6)M) inhibited VEGF-stimulated (20 ng/mL) HUVEC proliferation, at least, via downregulation of VEGFR2 and pERK. Clopidogrel inhibits the angiogenesis of gastric ulcer healing at least partially by the inhibition of the VEGF-VEGFR2-ERK signal transduction pathway. Copyright © 2015. Published by Elsevier B.V.

  20. Interaction between the estrogen receptor and fibroblast growth factor receptor pathways in non-small cell lung cancer.

    PubMed

    Siegfried, Jill M; Farooqui, Mariya; Rothenberger, Natalie J; Dacic, Sanja; Stabile, Laura P

    2017-04-11

    The estrogen receptor (ER) promotes non-small cell lung cancer (NSCLC) proliferation. Since fibroblast growth factors (FGFs) are known regulators of stem cell markers in ER positive breast cancer, we investigated whether a link between the ER, FGFs, and stem cell markers exists in NSCLC. In lung preneoplasias and adenomas of tobacco carcinogen exposed mice, the anti-estrogen fulvestrant and/or the aromatase inhibitor anastrozole blocked FGF2 and FGF9 secretion, and reduced expression of the stem cell markers SOX2 and nanog. Mice administered β-estradiol during carcinogen exposure showed increased FGF2, FGF9, SOX2, and Nanog expression in airway preneoplasias. In normal FGFR1 copy number NSCLC cell lines, multiple FGFR receptors were expressed and secreted several FGFs. β-estradiol caused enhanced FGF2 release, which was blocked by fulvestrant. Upon co-inhibition of ER and FGFRs using fulvestrant and the pan-FGFR inhibitor AZD4547, phosphorylation of FRS2, the FGFR docking protein, was maximally reduced, and enhanced anti-proliferative effects were observed. Combined AZD4547 and fulvestrant enhanced lung tumor xenograft growth inhibition and decreased Ki67 and stem cell marker expression. To verify a link between ERβ, the predominant ER in NSCLC, and FGFR signaling in patient tumors, mRNA analysis was performed comparing high versus low ERβ expressing tumors. The top differentially expressed genes in high ERβ tumors involved FGF signaling and human embryonic stem cell pluripotency. These results suggest interaction between the ER and FGFR pathways in NSCLC promotes a stem-like state. Combined FGFR and ER inhibition may increase the efficacy of FGFR inhibitors for NSCLC patients lacking FGFR genetic alterations.

  1. Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells.

    PubMed

    Martinez-Moreno, Julio M; Herencia, Carmen; Montes de Oca, Addy; Muñoz-Castañeda, Juan R; Rodríguez-Ortiz, M Encarnación; Díaz-Tocados, Juan M; Peralbo-Santaella, Esther; Camargo, Antonio; Canalejo, Antonio; Rodriguez, Mariano; Velasco-Gimena, Francisco; Almaden, Yolanda

    2016-03-01

    Clinical and epidemiologic studies reveal an association between vitamin D deficiency and increased risk of cardiovascular disease. Because vascular smooth muscle cell (VSMC)-derived tissue factor (TF) is suggested to be critical for arterial thrombosis, we investigated whether the vitamin D molecules calcitriol and paricalcitol could reduce the expression of TF induced by the proinflammatory cytokine TNF-α in human aortic VSMCs. We found that, compared with controls, incubation with TNF-α increased TF expression and procoagulant activity in a NF-κB-dependent manner, as deduced from the increased nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κB) and direct interaction of NF-κB to the TF promoter. This was accompanied by the up-regulation of TF signaling mediator protease-activated receptor 2 (PAR-2) expression and by the down-regulation of vitamin D receptor expression in a miR-346-dependent way. However, addition of calcitriol or paricalcitol blunted the TNF-α-induced TF expression and activity (2.01 ± 0.24 and 1.32 ± 0.14 vs. 3.02 ± 0.39 pmol/mg protein, P < 0.05), which was associated with down-regulation of NF-κB signaling and PAR-2 expression, as well as with restored levels of vitamin D receptor and enhanced expression of TF pathway inhibitor. Our data suggest that inflammation promotes a prothrombotic state through the up-regulation of TF function in VSMCs and that the beneficial cardiovascular effects of vitamin D may be partially due to decreases in TF expression and its activity in VSMCs. © FASEB.

  2. Molecular and functional characterization of pigeon (Columba livia) tumor necrosis factor receptor-associated factor 3.

    PubMed

    Zhou, Yingying; Kang, Xilong; Xiong, Dan; Zhu, Shanshan; Zheng, Huijuan; Xu, Ying; Guo, Yaxin; Pan, Zhiming; Jiao, Xinan

    2017-04-01

    Tumor necrosis factor receptor-associated factor 3 (TRAF3) plays a key antiviral role by promoting type I interferon production. We cloned the pigeon TRAF3 gene (PiTRAF3) according to its predicted mRNA sequence to investigate its function. The 1704-bp full-length open reading frame encodes a 567-amino acid protein. One Ring finger, two TRAF-type Zinc fingers, one Coiled coil, and one MATH domain were inferred. RT-PCR showed that PiTRAF3 was expressed in all tissues, with relatively weak expression in the heart and liver. In HEK293T cells, over-expression of wild-type, △Ring, △Zinc finger, and △Coiled coil PiTRAF3, but not a △MATH form, significantly increased IFN-β promoter activity. Zinc finger and Coiled coil domains were essential for NF-κB activation. In chicken HD11 cells, PiTRAF3 increased IFN-β promoter activity and four domains were all contributing. R848 stimulation of pigeon peripheral blood mononuclear cells and splenocytes significantly increased expression of PiTRAF3 and the inflammatory cytokine genes CCL5, IL-8, and IL-10. These data demonstrate TRAF3's innate immune function and improve understanding of its involvement in poultry antiviral defense. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Relation of epidermal growth factor receptor and estrogen receptor-independent pS2 protein to the malignant transformation of mucinous cystic neoplasms of the pancreas.

    PubMed

    Kirby, R E; Lewandrowski, K B; Southern, J F; Compton, C C; Warshaw, A L

    1995-01-01

    To evaluate the role of epidermal growth factor receptor (EGF-R) and pS2 protein in the evolution of malignancy in mucinous cystic tumors of the pancreas. Mucinous cystic tumors of the pancreas include histologically benign but premalignant mucinous cystic neoplasms and mucinous cystadenocarcinoma. The molecular events leading to transformation from a benign to a malignant mucinous tumor are not known. Overexpression of EGF-R and detection of an estrogen-induced protein (pS2) has been demonstrated in ductal adenocarcinomas of the pancreas, but these factors have not been evaluated in mucinous cystic tumors. Twenty-six mucinous tumors were examined for EGF-R, pS2 protein, and estrogen and progesterone receptors. Eight (61.2%) of 13 malignant tumors exhibited increased expression of EGF-R, whereas EGF-R was not detected in any of the 13 benign tumors (P = .002). The pS2 protein was detected in nine of 11 malignant and 11 of 11 benign tumors (P = .480). Estrogen and progesterone receptors were not detected in the epithelium of either tumor type. The median survival time of the patients with EGF-R-negative tumors was 29.0 months compared with 14.5 months for those with EGF-R-positive tumors, but this difference did not reach significance owing to the small population size. Overexpression of EGF-R in mucinous cystic tumors, as in ductal adenocarcinomas, may be an important feature associated with malignancy and may have prognostic significance. Failure to detect EGF-R in histologically benign epithelium suggests that the upregulation of EGF-R may be important in the evolution of aggressive behavior. The expression of pS2 protein appears to be independent of estrogen and may play a role in the proliferative activity of mucinous tumors. However, pS2 expression is not a feature associated exclusively with malignancy.

  4. Impact of clinical parameters and systemic inflammatory status on epidermal growth factor receptor-mutant non-small cell lung cancer patients readministration with epidermal growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Chen, Yu-Mu; Lai, Chien-Hao; Rau, Kun-Ming; Huang, Cheng-Hua; Chang, Huang-Chih; Chao, Tung-Ying; Tseng, Chia-Cheng; Fang, Wen-Feng; Chung, Yu-Hsiu; Wang, Yi-Hsi; Su, Mao-Chang; Huang, Kuo-Tung; Liu, Shih-Feng; Chen, Hung-Chen; Chang, Ya-Chun; Chang, Yu-Ping; Wang, Chin-Chou; Lin, Meng-Chih

    2016-11-08

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) readministration to lung cancer patients is common owing to the few options available. Impact of clinical factors on prognosis of EGFR-mutant non-small cell lung cancer (NSCLC) patients receiving EGFR-TKI readministration after first-line EGFR-TKI failure and a period of TKI holiday remains unclear. Through this retrospective study, we aimed to understand the impact of clinical factors in such patients. Of 1386 cases diagnosed between December 2010 and December 2013, 80 EGFR-mutant NSCLC patients who were readministered TKIs after failure of first-line TKIs and intercalated with at least one cycle of cytotoxic agent were included. We evaluated clinical factors that may influence prognosis of TKI readministration as well as systemic inflammatory status in terms of neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR). Baseline NLR and LMR were estimated at the beginning of TKI readministration and trends of NLR and LMR were change amount from patients receiving first-Line TKIs to TKIs readministration. Median survival time since TKI readministration was 7.0 months. In the univariable analysis, progression free survival (PFS) of first-line TKIs, baseline NLR and LMR, and trend of LMR were prognostic factors in patients receiving TKIs readministration. In the multivariate analysis, only PFS of first-line TKIs (p < 0.001), baseline NLR (p = 0.037), and trend of LMR (p = 0.004) were prognostic factors. Longer PFS of first-line TKIs, low baseline NLR, and high trend of LMR were good prognostic factors in EGFR-mutant NSCLC patients receiving TKI readministration.

  5. Effect of acute and continuous morphine treatment on transcription factor expression in subregions of the rat caudate putamen. Marked modulation by D4 receptor activation.

    PubMed

    Gago, Belén; Suárez-Boomgaard, Diana; Fuxe, Kjell; Brené, Stefan; Reina-Sánchez, María Dolores; Rodríguez-Pérez, Luis M; Agnati, Luigi F; de la Calle, Adelaida; Rivera, Alicia

    2011-08-17

    Acute administration of the dopamine D(4) receptor (D(4)R) agonist PD168,077 induces a down-regulation of the μ opioid receptor (MOR) in the striosomal compartment of the rat caudate putamen (CPu), suggesting a striosomal D(4)R/MOR receptor interaction in line with their high co-distribution in this brain subregion. The present work was designed to explore if a D(4)R/MOR receptor interaction also occurs in the modulation of the expression pattern of several transcription factors in striatal subregions that play a central role in drug addiction. Thus, c-Fos, FosB/ΔFosB and P-CREB immunoreactive profiles were quantified in the rat CPu after either acute or continuous (6-day) administration of morphine and/or PD168,077. Acute and continuous administration of morphine induced different patterns of expression of these transcription factors, effects that were time-course and region dependent and fully blocked by PD168,077 co-administration. Moreover, this effect of the D(4)R agonist was counteracted by the D(4)R antagonist L745,870. Interestingly, at some time-points, combined treatment with morphine and PD168,077 substantially increased c-Fos, FosB/ΔFosB and P-CREB expression. The results of this study give indications for a general antagonistic D(4)R/MOR receptor interaction at the level of transcription factors. The change in the transcription factor expression by D(4)R/MOR interactions in turn suggests a modulation of neuronal activity in the CPu that could be of relevance for drug addiction. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse.

    PubMed

    Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani

    2009-07-15

    Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.

  7. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressingmore » the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation

  8. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors.

    PubMed

    El-Gamal, Mohammed I; Al-Ameen, Shahad K; Al-Koumi, Dania M; Hamad, Mawadda G; Jalal, Nouran A; Oh, Chang-Hyun

    2018-01-17

    Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.

  9. Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy.

    PubMed

    Peckys, Diana B; Baudoin, Jean-Pierre; Eder, Magdalena; Werner, Ulf; de Jonge, Niels

    2013-01-01

    Imaging single epidermal growth factor receptors (EGFR) in intact cells is presently limited by the available microscopy methods. Environmental scanning electron microscopy (ESEM) of whole cells in hydrated state in combination with specific labeling with gold nanoparticles was used to localize activated EGFRs in the plasma membranes of COS7 and A549 cells. The use of a scanning transmission electron microscopy (STEM) detector yielded a spatial resolution of 3 nm, sufficient to identify the locations of individual EGFR dimer subunits. The sizes and distribution of dimers and higher order clusters of EGFRs were determined. The distance between labels bound to dimers amounted to 19 nm, consistent with a molecular model. A fraction of the EGFRs was found in higher order clusters with sizes ranging from 32-56 nm. ESEM can be used for quantitative whole cell screening studies of membrane receptors, and for the study of nanoparticle-cell interactions in general.

  10. Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy

    PubMed Central

    Peckys, Diana B.; Baudoin, Jean-Pierre; Eder, Magdalena; Werner, Ulf; de Jonge, Niels

    2013-01-01

    Imaging single epidermal growth factor receptors (EGFR) in intact cells is presently limited by the available microscopy methods. Environmental scanning electron microscopy (ESEM) of whole cells in hydrated state in combination with specific labeling with gold nanoparticles was used to localize activated EGFRs in the plasma membranes of COS7 and A549 cells. The use of a scanning transmission electron microscopy (STEM) detector yielded a spatial resolution of 3 nm, sufficient to identify the locations of individual EGFR dimer subunits. The sizes and distribution of dimers and higher order clusters of EGFRs were determined. The distance between labels bound to dimers amounted to 19 nm, consistent with a molecular model. A fraction of the EGFRs was found in higher order clusters with sizes ranging from 32–56 nm. ESEM can be used for quantitative whole cell screening studies of membrane receptors, and for the study of nanoparticle-cell interactions in general. PMID:24022088

  11. Maintenance of membrane organization in the aging mouse brain as the determining factor for preventing receptor dysfunction and for improving response to anti-Alzheimer treatments.

    PubMed

    Colin, Julie; Thomas, Mélanie H; Gregory-Pauron, Lynn; Pinçon, Anthony; Lanhers, Marie-Claire; Corbier, Catherine; Claudepierre, Thomas; Yen, Frances T; Oster, Thierry; Malaplate-Armand, Catherine

    2017-06-01

    Although a major risk factor for Alzheimer's disease (AD), the "aging" parameter is not systematically considered in preclinical validation of anti-AD drugs. To explore how aging affects neuronal reactivity to anti-AD agents, the ciliary neurotrophic factor (CNTF)-associated pathway was chosen as a model. Comparison of the neuroprotective properties of CNTF in 6- and 18-month old mice revealed that CNTF resistance in the older animals is associated with the exclusion of the CNTF-receptor subunits from rafts and their subsequent dispersion to non-raft cortical membrane domains. This age-dependent membrane remodeling prevented both the formation of active CNTF-receptor complexes and the activation of prosurvival STAT3 and ERK1/2 pathways, demonstrating that age-altered membranes impaired the reactivity of potential therapeutic targets. CNTF-receptor distribution and CNTF signaling responses were improved in older mice receiving dietary docosahexaenoic acid, with CNTF-receptor functionality being similar to those of younger mice, pointing toward dietary intervention as a promising adjuvant strategy to maintain functional neuronal membranes, thus allowing the associated receptors to respond appropriately to anti-AD agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Rab GTPases Regulate Endothelial Cell Protein C Receptor-Mediated Endocytosis and Trafficking of Factor VIIa

    PubMed Central

    Nayak, Ramesh C.; Keshava, Shiva; Esmon, Charles T.; Pendurthi, Usha R.; Rao, L. Vijaya Mohan

    2013-01-01

    Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa. PMID:23555015

  13. Microvascular pericytes express platelet-derived growth factor-beta receptors in human healing wounds and colorectal adenocarcinoma.

    PubMed Central

    Sundberg, C.; Ljungström, M.; Lindmark, G.; Gerdin, B.; Rubin, K.

    1993-01-01

    The expression of platelet-derived growth factor- beta (PDGF-beta) receptors in the microvasculature of human healing wounds and colorectal adenocarcinoma was investigated. Frozen sections were subjected to double immunofluorescence staining using monoclonal antibodies (MAbs) specific for pericytes (MAb 225.28 recognizing the high-molecular weight-melanoma-associated antigen, expressed by activated pericytes during angiogenesis), endothelial cells (MAb PAL-E), laminin, as well as PDGF-beta receptors (MAb PDGFR-B2) and its ligand PDGF-B chain (MAb PDGF 007). Stained sections were analyzed by computer-aided imaging processing that allowed for a numerical quantification of the degree of colocalization of the investigated antigens. An apparent background colocalization, varying between 23 and 35%, between markers for cells not expected to co-localize was recorded. This background could be due to limitations of camera resolution, to out-of-focus fluorescence, and to interdigitations of the investigated structures. In all six tumor specimens, co-localization of PDGF-beta receptors and PAL-E was not different from the background co-localization, whereas that of PDGF-beta receptors and high-molecular weight-melanoma-associated antigen was significantly higher with mean values between 57 and 71%. Qualitatively, the same pattern was obtained in the two investigated healing wounds. PDGF-B chain did not co-localize with either PAL-E or high-molecular weight-melanoma-associated antigen, but PDGF-B chain-expressing cells were, however, frequently found juxtaposed to the microvasculature. The expression of PDGF-beta receptors on pericytes in activated microvessels and the presence of PDGF-B chain-expressing cells in close proximity to the microvasculature of healing wounds and colorectal adenocarcinoma is compatible with a role for PDGF in the physiology of the microvasculature in these conditions. Images Figure 1 p1381-a Figure 3 Figure 4 PMID:8238254

  14. Effects of radiation on the epidermal growth factor receptor pathway in the heart

    PubMed Central

    Sridharan, Vijayalakshmi; Sharma, Sunil K.; Moros, Eduardo G.; Corry, Peter M.; Tripathi, Preeti; Lieblong, Benjamin J.; Guha, Chandan; Hauer-Jensen, Martin; Boerma, Marjan

    2013-01-01

    Purpose Radiation-induced heart disease (RIHD) is a serious side effect of thoracic radiotherapy. The epidermal growth factor receptor (EGFR) pathway is essential for the function and survival of cardiomyocytes. Hence, agents that target the EGFR pathway are cardiotoxic. Tocotrienols protect from radiation injury, but may also enhance the therapeutic effects of EGFR pathway inhibitors in cancer treatment. This study investigates the effects of local irradiation on the EGFR pathway in the heart and tests whether tocotrienols may modify radiation-induced changes in this pathway. Methods Male Sprague-Dawley rats received image-guided localized heart irradiation with 21 Gy. Twenty four hours before irradiation, rats received a single dose of tocotrienol-enriched formulation or vehicle by oral gavage. At time points from 2 hours to 9 months after irradiation, left ventricular expression of EGFR pathway mediators was studied. Results Irradiation caused a decrease in the expression of epidermal growth factor (EGF) and neuregulin-1 (Nrg-1) mRNA from 6 hours up to 10 weeks, followed by an upregulation of these ligands and the receptor erythroblastic leukemia viral oncogene homolog (ErbB)4 at 6 months. In addition, the upregulation of Nrg-1 was statistically significant up to 9 months after irradiation. A long-term upregulation of ErbB2 protein did not coincide with changes in transcription or post-translational interaction with the chaperone heat shock protein 90 (HSP90). Pretreatment with tocotrienols prevented radiation-induced changes at 2 weeks. Conclusions Local heart irradiation causes long-term changes in the EGFR pathway. Studies have to address how radiation may interact with cardiotoxic effects of EGFR inhibitors. PMID:23488537

  15. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Effect of peripheral benzodiazepine receptor ligands on lipopolysaccharide-induced tumor necrosis factor activity in thioglycolate-treated mice.

    PubMed Central

    Matsumoto, T; Ogata, M; Koga, K; Shigematsu, A

    1994-01-01

    To investigate the effect of peripheral and central benzodiazepine receptor ligands on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) activity in mouse macrophages, three types of ligands, 4'-chlorodiazepam (pure peripheral), midazolam (mixed), and clonazepam (pure central), were compared. Midazolam and 4'-chlorodiazepam significantly suppressed LPS (1-microgram/ml)-induced TNF activity in thioglycolate-elicited mouse macrophages. In every concentration examined (0.001 to 100 microM), 4'-chlorodiazepam was the most effective agent, clonazepam was the least effective agent, and midazolam had an effect intermediate between those of the other two ligands. The peripheral benzodiazepine receptor ligands had a dose-dependent suppressive effect, and the 50% inhibitory concentrations were 0.01 microM for 4'-chlorodiazepam and 5 microM for midazolam. Concomitant use of PK 11195 (10 microM), an antagonist of the peripheral benzodiazepine receptor, reversed this suppressive effect with 4'-chlorodiazepam (10 microM) or midazolam (10 microM). PK 11195 showed this antagonistic effect in a dose-dependent manner. Intravenous 4'-chlorodiazepam (5 mg/kg of body weight) significantly suppressed LPS (100-micrograms)-induced TNF activity of sera (2 h postchallenge with LPS) from thioglycolate-treated mice. The present findings suggest that the peripheral benzodiazepine receptor plays an important role in modulating LPS-induced TNF activity in mouse macrophages. PMID:8031051

  17. Epidermal Growth Factor Receptor Tyrosine Kinase: A Potential Target in Treatment of Non-Small-Cell Lung Carcinoma.

    PubMed

    Prabhu, Venugopal Vinod; Devaraj, Niranjali

    2017-01-01

    Lung cancer is responsible for 1.6 million deaths. Approximately 80%-85% of lung cancers are of the non-small-cell variety, which includes squamous cell carcinoma, adenocarcinoma, and large-cell carcinoma. Knowing the stage of cancer progression is a requisite for determining which management approach-surgery, chemotherapy, radiotherapy, and/or immunotherapy-is optimal. Targeted therapeutic approaches with antiangiogenic monoclonal antibodies or tyrosine kinase inhibitors are one option if tumors harbor oncogene mutations. Another, newer approach is directed against cancer-specific molecules and signaling pathways and thus has more limited nonspecific toxicities. This approach targets the epidermal growth factor receptor (EGFR, HER-1/ErbB1), a receptor tyrosine kinase of the ErbB family, which consists of four closely related receptors: HER-1/ErbB1, HER-2/neu/ErbB2, HER-3/ErbB3, and HER-4/ErbB4. Because EGFR is expressed at high levels on the surface of some cancer cells, it has been recognized as an effective anticancer target. EGFR-targeted therapies include monoclonal antibodies (mAbs) and small-molecule tyrosine kinase inhibitors. Tyrosine kinases are an especially important target because they play an important role in the modulation of growth factor signaling. This review highlights various classes of synthetically derived molecules that have been reported in the last few years as potential EGFR-TK inhibitors (TKIs) and their targeted therapies in NSCLC, along with effective strategies for overcoming EGFR-TKI resistance and efforts to develop a novel potent EGFR-TKI as an efficient target of NSCLC treatment in the foreseeable future.

  18. Platelet Activating Factor Receptor Activation Improves siRNA Uptake and RNAi Responses in Well-differentiated Airway Epithelia

    PubMed Central

    Krishnamurthy, Sateesh; Behlke, Mark A; Apicella, Michael A; McCray, Paul B; Davidson, Beverly L

    2014-01-01

    Well-differentiated human airway epithelia present formidable barriers to efficient siRNA delivery. We previously reported that treatment of airway epithelia with specific small molecules improves oligonucleotide uptake and facilitates RNAi responses. Here, we exploited the platelet activating factor receptor (PAFR) pathway, utilized by specific bacteria to transcytose into epithelia, as a trigger for internalization of Dicer-substrate siRNAs (DsiRNA). PAFR is a G-protein coupled receptor which can be engaged and activated by phosphorylcholine residues on the lipooligosaccharide (LOS) of nontypeable Haemophilus influenzae and the teichoic acid of Streptococcus pneumoniae as well as by its natural ligand, platelet activating factor (PAF). When well-differentiated airway epithelia were simultaneously treated with either nontypeable Haemophilus influenzae LOS or PAF and transduced with DsiRNA formulated with the peptide transductin, we observed silencing of both endogenous and exogenous targets. PAF receptor antagonists prevented LOS or PAF-assisted DsiRNA silencing, demonstrating that ligand engagement of PAFR is essential for this process. Additionally, PAF-assisted DsiRNA transfection decreased CFTR protein expression and function and reduced exogenous viral protein levels and titer in human airway epithelia. Treatment with spiperone, a small molecule identified using the Connectivity map database to correlate gene expression changes in response to drug treatment with those associated with PAFR stimulation, also induced silencing. These results suggest that the signaling pathway activated by PAFR binding can be manipulated to facilitate siRNA entry and function in difficult to transfect well-differentiated airway epithelial cells. PMID:25025465

  19. Modification of cytokine-induced killer cells with chimeric antigen receptors (CARs) enhances antitumor immunity to epidermal growth factor receptor (EGFR)-positive malignancies.

    PubMed

    Ren, Xuequn; Ma, Wanli; Lu, Hong; Yuan, Lei; An, Lei; Wang, Xicai; Cheng, Guanchang; Zuo, Shuguang

    2015-12-01

    Epidermal growth factor receptor (EGFR, ErbB1, Her-1) is a cell surface molecule overexpressing in a variety of human malignancies and, thus, is an excellent target for immunotherapy. Immunotherapy targeting EGFR-overexpressing malignancies using genetically modified immune effector cells is a novel and promising approach. In the present study, we have developed an adoptive cellular immunotherapy strategy based on the chimeric antigen receptor (CAR)-modified cytokine-induced killer (CAR-CIK) cells specific for the tumor cells expressing EGFR. To generate CAR-CIK cells, a lentiviral vector coding the EGFR-specific CAR was constructed and transduced into the CIK cells. The CAR-CIK cells showed significantly enhanced cytotoxicity and increased production of cytokines IFN-γ and IL-2 when co-cultured with EGFR-positive cancer cells. In tumor xenografts, adoptive immunotherapy of CAR-CIK cells could inhibit tumor growth and prolong the survival of EGFR-overexpressing human tumor xenografts. Moreover, tumor growth inhibition and prolonged survival in mice with EGFR(+) human cancer were associated with the increased persistence of CAR-CIK cells in vivo. Our study indicates that modification with EGFR-specific CAR strongly enhances the antitumor activity of the CIK cells against EGFR-positive malignancies.

  20. Activated platelet-derived growth factor β receptor and Ras-mitogen-activated protein kinase pathway in natural bovine urinary bladder carcinomas.

    PubMed

    Corteggio, Annunziata; Di Geronimo, Ornella; Roperto, Sante; Roperto, Franco; Borzacchiello, Giuseppe

    2012-03-01

    Bovine papillomavirus types 1 or 2 (BPV-1/2) are involved in the aetiopathogenesis of bovine urinary bladder cancer. BPV-1/2 E5 activates the platelet-derived growth factor β receptor (PDGFβR). The aim of this study was to analyse the Ras/mitogen-activated protein kinase (MAPK) pathway in relation to activation of PDGFβR in natural bovine urinary bladder carcinomas. Co-immunoprecipitation and Western blot analysis demonstrated that recruitment of growth factor receptor bound protein 2 (GRB-2) and Sos-1 to the activated PDGFβR was increased in carcinomas compared to normal tissues. Higher grade bovine urinary bladder carcinomas were associated with activation of Ras, but not with activation of downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (Mek 1/2) or extracellular signal-regulated kinase (Erk 1/2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Cyclotides Isolated from an Ipecac Root Extract Antagonize the Corticotropin Releasing Factor Type 1 Receptor

    PubMed Central

    Fahradpour, Mohsen; Keov, Peter; Tognola, Carlotta; Perez-Santamarina, Estela; McCormick, Peter J.; Ghassempour, Alireza; Gruber, Christian W.

    2017-01-01

    Cyclotides are plant derived, cystine-knot stabilized peptides characterized by their natural abundance, sequence variability and structural plasticity. They are abundantly expressed in Rubiaceae, Psychotrieae in particular. Previously the cyclotide kalata B7 was identified to modulate the human oxytocin and vasopressin G protein-coupled receptors (GPCRs), providing molecular validation of the plants’ uterotonic properties and further establishing cyclotides as valuable source for GPCR ligand design. In this study we screened a cyclotide extract derived from the root powder of the South American medicinal plant ipecac (Carapichea ipecacuanha) for its GPCR modulating activity of the corticotropin-releasing factor type 1 receptor (CRF1R). We identified and characterized seven novel cyclotides. One cyclotide, caripe 8, isolated from the most active fraction, was further analyzed and found to antagonize the CRF1R. A nanomolar concentration of this cyclotide (260 nM) reduced CRF potency by ∼4.5-fold. In contrast, caripe 8 did not inhibit forskolin-, or vasopressin-stimulated cAMP responses at the vasopressin V2 receptor, suggesting a CRF1R-specific mode-of-action. These results in conjunction with our previous findings establish cyclotides as modulators of both classes A and B GPCRs. Given the diversity of cyclotides, our data point to other cyclotide-GPCR interactions as potentially important sources of drug-like molecules. PMID:29033832

  2. Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen

    NASA Astrophysics Data System (ADS)

    Stefan-van Staden, Raluca-Ioana; Comnea-Stancu, Ionela Raluca; Surdu-Bob, Carmen Cristina; Badulescu, Marius

    2015-09-01

    New nanostructured materials based on thin films of Cu and Ni deposited on textile material (veil), as well as gold nanostructured microspheres were used for the design of new stochastic sensors. The stochastic sensors were able to detect simultaneously a panel of biomarkers comprising epidermal growth factor receptor, neuron specific enolase, and carcinoembryonic antigen from whole blood samples with high reliabilities - recovery tests higher than 97.00%, with a RSD (%) lower than 0.1%. The stochastic sensors had shown high sensitivities and low determination levels for the detection of the proposed panel of biomarkers making early detection of lung cancer possible by fast screening of whole blood.

  3. The Estrogen Receptor and Its Variants as Risk Factors in Breast Cancer

    DTIC Science & Technology

    2000-11-01

    34Materials and Methods." observation that the ratio of SRA:AIB I is also significantly increased PCR products were separated on 6% acrylamide gels. which...prostate cancer Gerry Coetzee: Androgen receptor CAG repeat length and breast and prostate cancer risk 1030 COFFEE 1100 Session 2 - Receptor structure...Parker: Role of p160 coactivators in transcriptional activation by estrogen receptors and cross-coupling to other signalling pathways 1550 COFFEE 1615

  4. Fcgamma receptor IIIA polymorphism as a risk factor for acute poliomyelitis.

    PubMed

    Rekand, Tiina; Langeland, Nina; Aarli, Johan A; Vedeler, Christian A

    2002-12-15

    Poliomyelitis is a viral infection that causes flaccid paralysis in approximately 1% of cases. The Fc receptors for immunoglobulin G (FcgammaR) are associated with modifying effects of several infectious and autoimmune diseases. To assess the influence of FcgammaR polymorphisms on the acute and late course of poliomyelitis, 110 Norwegian patients with well-defined histories of acute poliomyelitis were genotyped, of whom 50 suffered from the postpolio syndrome (PPS). In comparison with healthy control subjects without a history of poliomyelitis, significantly fewer patients had the FcgammaRIIIA genotype V/V (P<.01). However, this genotype was not an independent risk factor for PPS. The FcgammaRIIA and IIIB genotypes and allele frequencies did not differ between the patients and control subjects. The FcgammaRIIIA V/V genotype may lower the risk for contracting acute poliomyelitis through better clearance of poliovirus.

  5. Soluble Tumor Necrosis Factor Alpha Promotes Retinal Ganglion Cell Death in Glaucoma via Calcium-Permeable AMPA Receptor Activation.

    PubMed

    Cueva Vargas, Jorge L; Osswald, Ingrid K; Unsain, Nicolas; Aurousseau, Mark R; Barker, Philip A; Bowie, Derek; Di Polo, Adriana

    2015-09-02

    Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of ocular hypertension. Administration of XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers the upregulation of Ca(2+)-permeable AMPA receptor (CP-AMPAR) expression in RGCs of glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in glaucoma. Tumor necrosis factor α (TNFα) has been implicated in retinal ganglion cell (RGC) death, but how TNFα exerts this effect is poorly understood. We report that ocular hypertension, a major risk factor in glaucoma, upregulates TNFα production by Müller cells and microglia. Inhibition of soluble TNFα using a dominant-negative strategy effectively promotes RGC survival. We find that TNFα stimulates the expression of calcium-permeable AMPA receptors (CP-AMPAR) in RGCs, a response that does not depend on abnormal GluA2 mRNA editing but on selective downregulation of the GluA2 subunit by these neurons. Consistent with this, CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA glutamate receptors

  6. Is receptor oligomerization causally linked to activation of the EGF receptor kinase?

    NASA Technical Reports Server (NTRS)

    Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Transduction of a signal from an extracellular peptide hormone to produce an intracellular response is often mediated by a cell surface receptor, which is usually a glycoprotein. The secondary intracellular signal(s) generated after hormone binding to the receptor have been intensively studied. The nature of the primary signal generated by ligand binding to the receptor is understood less well in most cases. The particular case of the epidermal growth factor (EGF) receptor is analyzed, and evidence for or against two dissimilar models of primary signal transduction is reviewed. Evidence for the most widely accepted current model is found to be unconvincing. Evidence for the other model is substantial but indirect; a direct test of this model remains to be done.

  7. The Intracellular Juxtamembrane Domain of the Epidermal Growth Factor (EGF) Receptor Is Responsible for the Allosteric Regulation of EGF Binding*S⃞♦

    PubMed Central

    Macdonald-Obermann, Jennifer L.; Pike, Linda J.

    2009-01-01

    We have previously shown that the binding of epidermal growth factor (EGF) to its receptor can best be described by a model that involves negative cooperativity in an aggregating system (Macdonald, J. L., and Pike, L. J. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 112–117). However, despite the fact that biochemical analyses indicate that EGF induces dimerization of its receptor, the binding data provided no evidence for positive linkage between EGF binding and dimer assembly. By analyzing the binding of EGF to a number of receptor mutants, we now report that in naive, unphosphorylated EGF receptors, ligand binding is positively linked to receptor dimerization but the linkage is abolished upon autophosphorylation of the receptor. Both phosphorylated and unphosphorylated EGF receptors exhibit negative cooperativity, indicating that mechanistically, cooperativity is distinct from the phenomenon of linkage. Nonetheless, both the positive linkage and the negative cooperativity observed in EGF binding require the presence of the intracellular juxtamembrane domain. This indicates the existence of inside-out signaling in the EGF receptor system. The intracellular juxtamembrane domain has previously been shown to be required for the activation of the EGF receptor tyrosine kinase (Thiel, K. W., and Carpenter, G. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 19238–19243). Our experiments expand the role of this domain to include the allosteric control of ligand binding by the extracellular domain. PMID:19336395

  8. Crystallization of a 2:2 complex of granulocyte-colony stimulating factor (GCSF) with the ligand-binding region of the GCSF receptor

    PubMed Central

    Honjo, Eijiro; Tamada, Taro; Maeda, Yoshitake; Koshiba, Takumi; Matsukura, Yasuko; Okamoto, Tomoyuki; Ishibashi, Matsujiro; Tokunaga, Masao; Kuroki, Ryota

    2005-01-01

    The granulocyte-colony stimulating factor (GCSF) receptor receives signals for regulating the maturation, proliferation and differentiation of the precursor cells of neutrophilic granulocytes. The signalling complex composed of two GCSFs (GCSF, 19 kDa) and two GCSF receptors (GCSFR, 34 kDa) consisting of an Ig-like domain and a cytokine-receptor homologous (CRH) domain was crystallized. A crystal of the complex was grown in 1.0 M sodium formate and 0.1 M sodium acetate pH 4.6 and belongs to space group P41212 (or its enantiomorph P43212), with unit-cell parameters a = b = 110.1, c = 331.8 Å. Unfortunately, this crystal form did not diffract beyond 5 Å resolution. Since the heterogeneity of GCSF receptor appeared to prevent the growth of good-quality crystals, the GCSF receptor was fractionated by anion-exchange chromatography. Crystals of the GCSF–fractionated GCSF receptor complex were grown as a new crystal form in 0.2 M ammonium phosphate. This new crystal form diffracted to beyond 3.0 Å resolution and belonged to space group P3121 (or its enantiomorph P3221), with unit-cell parameters a = b = 134.8, c = 105.7 Å. PMID:16511159

  9. Prostaglandin E₂ regulates cellular migration via induction of vascular endothelial growth factor receptor-1 in HCA-7 human colon cancer cells.

    PubMed

    Fujino, Hiromichi; Toyomura, Kaori; Chen, Xiao-bo; Regan, John W; Murayama, Toshihiko

    2011-02-01

    An important event in the development of tumors is angiogenesis, or the formation of new blood vessels. Angiogenesis is also known to be involved in tumor cell metastasis and is dependent upon the activity of the vascular endothelial growth factor (VEGF) signaling pathway. Studies of mice in which the EP3 prostanoid receptors have been genetically deleted have shown a role for these receptors in cancer growth and angiogenesis. In the present study, human colon cancer HCA-7 cells were used as a model system to understand the potential role of EP3 receptors in tumor cell migration. We now show that stimulation of HCA-7 cells with PGE₂ enhanced the up-regulation of VEGF receptor-1 (VEGFR-1) expression by a mechanism involving EP3 receptor-mediated activation of phosphatidylinositol 3-kinase and the extracellular signal-regulated kinases. Moreover, the PGE₂ stimulated increase in VEGFR-1 expression was accompanied by an increase in the cellular migration of HCA-7 cells. Given the known involvement of VEGFR-1 in cellular migration, our results suggest that EP3 receptors may contribute to tumor cell metastasis by increasing cellular migration through the up-regulation of VEGFR-1 signaling. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Selective Glucocorticoid Receptor modulators.

    PubMed

    De Bosscher, Karolien

    2010-05-31

    The ancient two-faced Roman god Janus is often used as a metaphor to describe the characteristics of the Glucocorticoid Receptor (NR3C1), which exhibits both a beneficial side, that serves to halt inflammation, and a detrimental side responsible for undesirable effects. However, recent developments suggest that the Glucocorticoid Receptor has many more faces with the potential to express a range of different functionalities, depending on factors that include the tissue type, ligand type, receptor variants, cofactor surroundings and target gene promoters. This behavior of the receptor has made the development of safer ligands, that trigger the expression program of only a desirable subset of genes, a real challenge. Thus more knowledge-based fundamental research is needed to ensure the design and development of selective Glucocorticoid Receptor modulators capable of reaching the clinic. Recent advances in the characterization of novel selective Glucocorticoid Receptor modulators, specifically in the context of anti-inflammatory strategies, will be described in this review. 2010 Elsevier Ltd. All rights reserved.

  11. Inducible somatic embryogenesis in Theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion.

    PubMed

    Shires, Morgan E; Florez, Sergio L; Lai, Tina S; Curtis, Wayne R

    2017-11-01

    To carry out mass propagation of superior plants to improve agricultural and silvicultural production though advancements in plant cell totipotency, or the ability of differentiated somatic plant cells to regenerate an entire plant. The first demonstration of a titratable control over somatic embryo formation in a commercially relevant plant, Theobroma cacao (Chocolate tree), was achieved using a dexamethasone activatable chimeric transcription factor. This four-fold enhancement in embryo production rate utilized a glucocorticoid receptor fused to an embryogenic transcription factor LEAFY COTYLEDON 2. Where previous T. cacao somatic embryogenesis has been restricted to dissected flower parts, this construct confers an unprecedented embryogenic potential to leaves. Activatable chimeric transcription factors provide a means for elucidating the regulatory cascade associated with plant somatic embryogenesis towards improving its use for somatic regeneration of transgenics and plant propagation.

  12. Effects of inhibitors of N-linked oligosaccharide processing on the biosynthesis and function of insulin and insulin-like growth factor-I receptors.

    PubMed

    Duronio, V; Jacobs, S; Romero, P A; Herscovics, A

    1988-04-15

    We have used specific inhibitors of oligosaccharide processing enzymes as probes to determine the involvement of oligosaccharide residues in the biosynthesis and function of insulin and insulin-like growth factor-I receptors. In a previous study (Duronio, V., Jacobs, S., and Cuatrecasas, P. (1986) J. Biol. Chem. 261, 970-975) swainsonine was used to inhibit mannosidase II, resulting in the production of receptors containing only hybrid-type oligosaccharides. These receptors had a slightly lower molecular weight and were much more sensitive to endoglycosidase H, but otherwise behaved identically to normal receptors. In this study, we used two compounds that inhibit oligosaccharide processing at earlier steps: (i) N-methyl-1-deoxynojirimycin (MedJN), which inhibits glucosidases I and II and yields glucosylated, high mannose oligosaccharides, and (ii) manno-1-deoxynojirimycin (MandJN), which inhibits mannosidase I and yields high mannose oligosaccharides. In the presence of MandJN, HepG2 cells synthesized receptors of lower molecular weight, which were cleaved into alpha and beta subunits and were able to bind hormone and autophosphorylate. These receptors were as sensitive to endoglycosidase H as receptors made in the presence of swainsonine. In the presence of MedJN, receptors of only slightly lower molecular weight than normal were synthesized and were shown to contain some glucosylated high mannose oligosaccharides. These receptors were able to bind hormone and retained hormone-sensitive autophosphorylation activity. In both cases, the incompletely processed receptors could be detected at the cell surface by cross-linking of iodinated hormone and susceptibility to trypsin digestion, although less receptor was present in cells treated with MedJN. Studies of receptor synthesis using pulse-chase labeling showed that the receptor precursors synthesized in the presence of MedJN were cleaved into alpha and beta subunits at a slower rate than normal receptors or those

  13. Immunocytochemical assessment of sigma-1 receptor and human sterol isomerase in breast cancer and their relationship with a series of prognostic factors

    PubMed Central

    Simony-Lafontaine, J; Esslimani, M; Bribes, E; Gourgou, S; Lequeux, N; Lavail, R; Grenier, J; Kramar, A; Casellas, P

    2000-01-01

    The purpose of this study was to immunocytochemically investigate two new markers, the sigma-1 receptor and the human sterol isomerase (hSI), in comparison with a series of clinicopathological and immunocytochemical prognostic factors in a trial including 95 patients with operable primary breast cancers. Our results showed no statistically significant relationship between these two markers and the age of the patients, their menopausal status, the tumour size and its histological grade, the nodal status and the expression of the Ki-67 proliferative marker. However, we evidenced a close correlation between the sigma-1 receptor expression and the hormonal receptor positivity (P = 0.008), essentially due to a link with the progesterone receptor status (P = 0.01). By contrast there was an inverse relationship between hSI expression and the oestrogen receptor and/or progesterone receptor positivity (P = 0.098). A significant relationship was shown between both the sigma-1 receptor, hSI expressions and Bcl2 expression, with P = 0.017 and 0.035 respectively. We also assessed whether the expression of the sigma-1 receptor or hSI might be linked with disease-free survival (DFS) and found that the presence of hSI and the absence of sigma-1 receptor expression were associated with a poorer disease-free survival (P = 0.007). Altogether these results suggest that in primary breast carcinomas in association with the evaluation of the steroid receptor status, the sigma-1 receptor and hSI may be interesting new markers useful to identify those patients who might be able to benefit from an adjuvant therapy. © 2000 Cancer Research Campaign PMID:10864204

  14. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    PubMed

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  15. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    PubMed

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  16. Elevated serum tumor necrosis factor-alpha and soluble tumor necrosis factor receptors correlate with aberrant energy metabolism in liver cirrhosis.

    PubMed

    Shiraki, Makoto; Terakura, Yoichi; Iwasa, Junpei; Shimizu, Masahito; Miwa, Yoshiyuki; Murakami, Nobuo; Nagaki, Masahito; Moriwaki, Hisataka

    2010-03-01

    Protein-energy malnutrition is frequently observed in patients with liver cirrhosis and is associated with their poor prognosis. Tumor necrosis factor-alpha (TNF-alpha) is elevated in those patients and may contribute to the alterations of energy metabolism. Our aim was to characterize the aberrant energy metabolism in cirrhotic patients with regard to TNF-alpha. Twenty-four patients (mean age 65 +/- 6 y) with viral liver cirrhosis who did not have hepatocellular carcinoma or acute infections were studied. Twelve healthy volunteers were recruited after matching for age, gender, and body mass index with the patients and served as controls (59 +/- 8 y). Serum levels of TNF-alpha, soluble 55-kDa TNF receptor (sTNF-R55), soluble 75-kDa TNF receptor (sTNF-R75), and leptin were determined by immunoassay. Substrate oxidation rates of carbohydrate and fat were estimated by indirect calorimetry after overnight bedrest and fasting. In cirrhotic patients, serum levels of TNF-alpha, sTNF-R55, and sTNF-R75 were significantly higher than those in the controls and correlated with the increasing grade of disease severity as defined by Child-Pugh classification. Serum leptin concentration was not different between cirrhotics and controls but correlated with their body mass index. The decrease in substrate oxidation rate of carbohydrate and the increase in substrate oxidation rate of fat significantly correlated with serum TNF-alpha, sTNF-R55, and sTNF-R75 concentrations. Tumor necrosis factor-alpha might be associated with the aberrant energy metabolism in patients with liver cirrhosis. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Advances in the diagnosis and treatment of tumor necrosis factor receptor-associated periodic syndrome.

    PubMed

    Aguado-Gil, L; Irarrazaval-Armendáriz, I; Pretel-Irazabal, M

    2013-09-01

    Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) is a rare autosomal dominant disease included in the group of autoinflammatory syndromes. It is characterized by recurrent episodes of fever and inflammation in different regions of the body. The main clinical manifestations are myalgia, migratory erythematous rash, periorbital edema, and abdominal pain. The diagnosis is reached using gene analysis and prognosis depends on the appearance of amyloidosis secondary to the recurrent episodes of inflammation. Tumor necrosis factor inhibitors and corticosteroids are the most widely used treatments. In recent years, significant advances have been made in the diagnosis and treatment of TRAPS, thanks to a better understanding of its pathogenesis. Dermatologists must be aware that the skin manifestations of TRAPS are particularly important, as they are often diagnostic. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  18. A critical role for transcription factor Smad4 in T cell function that is independent of transforming growth factor β receptor signaling.

    PubMed

    Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A; Wan, Yisong Y

    2015-01-20

    Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. Although Smad4 was dispensable for T cell generation, homeostasis, and effector function, it was essential for T cell proliferation after activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity, and anti-tumor immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    PubMed

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K

    2010-02-19

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.

  20. Azadirachtin Interacts with the Tumor Necrosis Factor (TNF) Binding Domain of Its Receptors and Inhibits TNF-induced Biological Responses*

    PubMed Central

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A.; Manna, Sunil K.

    2010-01-01

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-κB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy. PMID:20018848

  1. Enduring, Handling-Evoked Enhancement of Hippocampal Memory Function and Glucocorticoid Receptor Expression Involves Activation of the Corticotropin-Releasing Factor Type 1 Receptor

    PubMed Central

    Fenoglio, Kristina A.; Brunson, Kristen L.; Avishai-Eliner, Sarit; Stone, Blake A.; Kapadia, Bhumika J.; Baram, Tallie Z.

    2011-01-01

    Early-life experience, including maternal care, influences hippocampus-dependent learning and memory throughout life. Handling of pups during postnatal d 2–9 (P2–9) stimulates maternal care and leads to improved memory function and stress-coping. The underlying molecular mechanisms may involve early (by P9) and enduring reduction of hypothalamic corticotropin-releasing factor (CRF) expression and subsequent (by P45) increase in hippocampal glucocorticoid receptor (GR) expression. However, whether hypothalamic CRF levels influence changes in hippocampal GR expression (and memory function), via reduced CRF receptor activation and consequent lower plasma glucocorticoid levels, is unclear. In this study we administered selective antagonist for the type 1 CRF receptor, NBI 30775, to nonhandled rats post hoc from P10–17 and examined hippocampus-dependent learning and memory later (on P50–70), using two independent paradigms, compared with naive and vehicle-treated nonhandled, and naive and antagonist-treated handled rats. Hippocampal GR and hypothalamic CRF mRNA levels and stress-induced plasma corticosterone levels were also examined. Transient, partial selective blockade of CRF1 in nonhandled rats improved memory functions on both the Morris watermaze and object recognition tests to levels significantly better than in naive and vehicle-treated controls and were indistinguishable from those in handled (naive, vehicle-treated, and antagonist-treated) rats. GR mRNA expression was increased in hippocampal CA1 and the dentate gyrus of CRF1-antagonist treated nonhandled rats to levels commensurate with those in handled cohorts. Thus, the extent of CRF1 activation, probably involving changes in hypothalamic CRF levels and release, contributes to the changes in hippocampal GR expression and learning and memory functions. PMID:15932935

  2. SRC-DEPENDENT PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR ON TYROSINE 845 IS REQUIRED FOR ZINC-INDUCED RAS ACTIVATION

    EPA Science Inventory

    Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation
    Weidong Wu 1 , Lee M. Graves 2 , Gordon N. Gill 3 , Sarah J. Parsons 4 , and James M. Samet 5
    1 Center for Environmental Medicine and Lung Biolo...

  3. Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis.

    PubMed

    Chiodelli, P; Rezzola, S; Urbinati, C; Federici Signori, F; Monti, E; Ronca, R; Presta, M; Rusnati, M

    2017-11-23

    Vascular endothelial growth factor receptor-2 (VEGFR2) is the main pro-angiogenic receptor expressed by endothelial cells (ECs). Using surface plasmon resonance, immunoprecipitation, enzymatic digestion, immunofluorescence and cross-linking experiments with specific sugar-binding lectins, we demonstrated that VEGFR2 bears both α,1-fucose and α(2,6)-linked sialic acid (NeuAc). However, only the latter is required for VEGF binding to VEGFR2 and consequent VEGF-dependent VEGFR2 activation and motogenic response in ECs. Notably, downregulation of β-galactoside α(2,6)-sialyltransferase expression by short hairpin RNA transduction inhibits VEGFR2 α(2,6) sialylation that is paralleled by an increase of β-galactoside α(2,3)-sialyltransferase expression. This results in an ex-novo α(2,3)-NeuAc sialylation of the receptor that functionally replaces the lacking α(2,6)-NeuAc, thus allowing VEGF/VEGFR2 interaction. In keeping with the role of VEGFR2 sialylation in angiogenesis, the α(2,6)-NeuAc-binding lectin Sambucus nigra (SNA) prevents VEGF-dependent VEGFR2 autophosphorylation and EC motility, proliferation and motogenesis. In addition, SNA exerts a VEGF-antagonist activity in tridimensional angiogenesis models in vitro and in the chick-embryo chorioallantoic membrane neovascularization assay and mouse matrigel plug assay in vivo. In conclusion, VEGFR2-associated NeuAc plays an important role in modulating VEGF/VEGFR2 interaction, EC pro-angiogenic activation and neovessel formation. VEGFR2 sialylation may represent a target for the treatment of angiogenesis-dependent diseases.

  4. Oncogenic role of fibroblast growth factor receptor 3 in tumorigenesis of urinary bladder cancer.

    PubMed

    Pandith, Arshad A; Shah, Zafar A; Siddiqi, Mushtaq A

    2013-05-01

    Bladder cancer is the second most common genitourinary tumor and constitutes a very heterogeneous disease. Molecular and pathologic studies suggest that low-grade noninvasive and high-grade invasive urothelial cell carcinoma (UCC) arise via distinct pathways. Low-grade noninvasive UCC represent the majority of tumors at presentation. A high proportion of patients with low-grade UCC develop recurrences but usually with no progression to invasive disease. At presentation, a majority of the bladder tumors (70%-80%) are low-grade noninvasive (pTa). Several genetic changes may occur in bladder cancer, but activating mutations in the fibroblast growth factor receptor 3 (FGFR3) genes are the most common and most specific genetic abnormality in bladder cancer. Interestingly, these mutations are associated with bladder tumors of low stage and grade, which makes the FGFR3 mutation the first marker that can be used for diagnosis of noninvasive bladder tumors. Since the first report of FGFR3 involvement in bladder tumors, numerous studies have been conducted to understand its function and thereby confirm the oncogenic role of this receptor particularly in noninvasive groups. Efforts are on to exploit this receptor as a therapeutic target, which holds much promise in the treatment of bladder cancer, particularly low-grade noninvasive tumors. Further studies need to explore the potential use of FGFR3 mutations in bladder cancer diagnosis, prognosis, and in surveillance of patients with bladder cancer. This review focuses on the role of FGFR3 in bladder tumors in the backdrop of various studies published. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. ARF6 Activated by the LHCG Receptor through the Cytohesin Family of Guanine Nucleotide Exchange Factors Mediates the Receptor Internalization and Signaling*

    PubMed Central

    Kanamarlapudi, Venkateswarlu; Thompson, Aiysha; Kelly, Eamonn; López Bernal, Andrés

    2012-01-01

    The luteinizing hormone chorionic gonadotropin receptor (LHCGR) is a Gs-coupled GPCR that is essential for the maturation and function of the ovary and testis. LHCGR is internalized following its activation, which regulates the biological responsiveness of the receptor. Previous studies indicated that ADP-ribosylation factor (ARF)6 and its GTP-exchange factor (GEF) cytohesin 2 regulate LHCGR internalization in follicular membranes. However, the mechanisms by which ARF6 and cytohesin 2 regulate LHCGR internalization remain incompletely understood. Here we investigated the role of the ARF6 signaling pathway in the internalization of heterologously expressed human LHCGR (HLHCGR) in intact cells using a combination of pharmacological inhibitors, siRNA and the expression of mutant proteins. We found that human CG (HCG)-induced HLHCGR internalization, cAMP accumulation and ARF6 activation were inhibited by Gallein (βγ inhibitor), Wortmannin (PI 3-kinase inhibitor), SecinH3 (cytohesin ARF GEF inhibitor), QS11 (an ARF GAP inhibitor), an ARF6 inhibitory peptide and ARF6 siRNA. However, Dynasore (dynamin inhibitor), the dominant negative mutants of NM23-H1 (dynamin activator) and clathrin, and PBP10 (PtdIns 4,5-P2-binding peptide) inhibited agonist-induced HLHCGR and cAMP accumulation but not ARF6 activation. These results indicate that heterotrimeric G-protein, phosphatidylinositol (PI) 3-kinase (PI3K), cytohesin ARF GEF and ARF GAP function upstream of ARF6 whereas dynamin and clathrin act downstream of ARF6 in the regulation of HCG-induced HLHCGR internalization and signaling. In conclusion, we have identified the components and molecular details of the ARF6 signaling pathway required for agonist-induced HLHCGR internalization. PMID:22523074

  6. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway.

    PubMed

    Shi, Yu; Fukuoka, Masahiro; Li, Guohua; Liu, Youan; Chen, Manyin; Konviser, Michael; Chen, Xin; Opavsky, Mary Anne; Liu, Peter P

    2010-06-22

    Coxsackievirus B3 infection is an excellent model of human myocarditis and dilated cardiomyopathy. Cardiac injury is caused either by a direct cytopathic effect of the virus or through immune-mediated mechanisms. Regulatory T cells (Tregs) play an important role in the negative modulation of host immune responses and set the threshold of autoimmune activation. This study was designed to test the protective effects of Tregs and to determine the underlying mechanisms. Carboxyfluorescein diacetate succinimidyl ester-labeled Tregs or naïve CD4(+) T cells were injected intravenously once every 2 weeks 3 times into mice. The mice were then challenged with intraperitoneal coxsackievirus B3 immediately after the last cell transfer. Transfer of Tregs showed higher survival rates than transfer of CD4(+) T cells (P=0.0136) but not compared with the PBS injection group (P=0.0589). Interestingly, Tregs also significantly decreased virus titers and inflammatory scores in the heart. Transforming growth factor-beta and phosphorylated AKT were upregulated in Tregs-transferred mice and coxsackie-adenovirus receptor expression was decreased in the heart compared with control groups. Transforming growth factor-beta decreased coxsackie-adenovirus receptor expression and inhibited coxsackievirus B3 infection in HL-1 cells and neonatal cardiac myocytes. Splenocytes collected from Treg-, CD4(+) T-cell-, and PBS-treated mice proliferated equally when stimulated with heat-inactivated virus, whereas in the Treg group, the proliferation rate was reduced significantly when stimulated with noninfected heart tissue homogenate. Adoptive transfer of Tregs protected mice from coxsackievirus B3-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway and thus suppresses the immune response to cardiac tissue, maintaining the antiviral immune response.

  7. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer.

    PubMed

    Yamada, Tadaaki; Takeuchi, Shinji; Kita, Kenji; Bando, Hideaki; Nakamura, Takahiro; Matsumoto, Kunio; Yano, Seiji

    2012-02-01

    Epidermal growth factor receptor (EGFR) is an attractive drug target in lung cancer, with several anti-EGFR antibodies and small-molecule inhibitors showing efficacy in lung cancer patients. Patients, however, may develop resistance to EGFR inhibitors. We demonstrated previously that hepatocyte growth factor (HGF) induced resistance to EGFR tyrosine kinase inhibitors in lung cancers harboring EGFR mutations. We therefore determined whether HGF could induce resistance to the anti-EGFR antibody (EGFR Ab) cetuximab in lung cancer cells, regardless of EGFR gene status. Cetuximab sensitivity and signal transduction in lung cancer cells were examined in the presence or absence of HGF, HGF-producing fibroblasts, and cells tranfected with the HGF gene in vitro and in vivo. HGF induced resistance to cetuximab in H292 (EGFR wild) and Ma-1(EGFR mutant) cells. Western blotting showed that HGF-induced resistance was mediated by the Met/Gab1/Akt signaling pathway. Resistance of H292 and Ma-1 cells to cetuximab was also induced by coculture with lung fibroblasts producing high levels of HGF and by cells stably transfected with the HGF gene. This resistance was abrogated by treatment with anti-HGF neutralizing antibody. HGF-mediated resistance is a novel mechanism of resistance to EGFR Ab in lung cancers, with fibroblast-derived HGF inducing cetuximab resistance in H292 tumors in vivo. The involvement of HGF-Met-mediated signaling should be assessed in acquired resistance to EGFR Ab in lung cancer, regardless of EGFR gene status.

  8. Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma

    PubMed Central

    Ng, Kimberly; Futalan, Diahnn; Shen, Ying; Akers, Johnny C.; Steed, Tyler; Kushwaha, Deepa; Schlabach, Michael; Carter, Bob S.; Kwon, Chang-Hyuk; Furnari, Frank; Cavenee, Webster; Elledge, Stephen; Chen, Clark C.

    2014-01-01

    Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment. PMID:24658464

  9. Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma.

    PubMed

    Li, Jie; Zhu, Shan; Kozono, David; Ng, Kimberly; Futalan, Diahnn; Shen, Ying; Akers, Johnny C; Steed, Tyler; Kushwaha, Deepa; Schlabach, Michael; Carter, Bob S; Kwon, Chang-Hyuk; Furnari, Frank; Cavenee, Webster; Elledge, Stephen; Chen, Clark C

    2014-02-28

    Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment.

  10. Downstream-of-FGFR Is a Fibroblast Growth Factor-Specific Scaffolding Protein and Recruits Corkscrew upon Receptor Activation

    PubMed Central

    Petit, Valérie; Nussbaumer, Ute; Dossenbach, Caroline; Affolter, Markus

    2004-01-01

    Fibroblast growth factor (FGF) receptor (FGFR) signaling controls the migration of glial, mesodermal, and tracheal cells in Drosophila melanogaster. Little is known about the molecular events linking receptor activation to cytoskeletal rearrangements during cell migration. We have performed a functional characterization of Downstream-of-FGFR (Dof), a putative adapter protein that acts specifically in FGFR signal transduction in Drosophila. By combining reverse genetic, cell culture, and biochemical approaches, we demonstrate that Dof is a specific substrate for the two Drosophila FGFRs. After defining a minimal Dof rescue protein, we identify two regions important for Dof function in mesodermal and tracheal cell migration. The N-terminal 484 amino acids are strictly required for the interaction of Dof with the FGFRs. Upon receptor activation, tyrosine residue 515 becomes phosphorylated and recruits the phosphatase Corkscrew (Csw). Csw recruitment represents an essential step in FGF-induced cell migration and in the activation of the Ras/MAPK pathway. However, our results also indicate that the activation of Ras is not sufficient to activate the migration machinery in tracheal and mesodermal cells. Additional proteins binding either to the FGFRs, to Dof, or to Csw appear to be crucial for a chemotactic response. PMID:15082772

  11. Downstream-of-FGFR is a fibroblast growth factor-specific scaffolding protein and recruits Corkscrew upon receptor activation.

    PubMed

    Petit, Valérie; Nussbaumer, Ute; Dossenbach, Caroline; Affolter, Markus

    2004-05-01

    Fibroblast growth factor (FGF) receptor (FGFR) signaling controls the migration of glial, mesodermal, and tracheal cells in Drosophila melanogaster. Little is known about the molecular events linking receptor activation to cytoskeletal rearrangements during cell migration. We have performed a functional characterization of Downstream-of-FGFR (Dof), a putative adapter protein that acts specifically in FGFR signal transduction in Drosophila. By combining reverse genetic, cell culture, and biochemical approaches, we demonstrate that Dof is a specific substrate for the two Drosophila FGFRs. After defining a minimal Dof rescue protein, we identify two regions important for Dof function in mesodermal and tracheal cell migration. The N-terminal 484 amino acids are strictly required for the interaction of Dof with the FGFRs. Upon receptor activation, tyrosine residue 515 becomes phosphorylated and recruits the phosphatase Corkscrew (Csw). Csw recruitment represents an essential step in FGF-induced cell migration and in the activation of the Ras/MAPK pathway. However, our results also indicate that the activation of Ras is not sufficient to activate the migration machinery in tracheal and mesodermal cells. Additional proteins binding either to the FGFRs, to Dof, or to Csw appear to be crucial for a chemotactic response.

  12. Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin

    PubMed Central

    Lin, Changsheng; Ear, Jason; Midde, Krishna; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Garcia-Marcos, Mikel; Kufareva, Irina; Abagyan, Ruben; Ghosh, Pradipta

    2014-01-01

    A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein–protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein–protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV—Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs. PMID:25187647

  13. Insulin-like growth factor type-1 receptor down-regulation associated with dwarfism in Holstein calves.

    PubMed

    Blum, J W; Elsasser, T H; Greger, D L; Wittenberg, S; de Vries, F; Distl, O

    2007-10-01

    Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; P<0.05). Plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin concentrations in the three groups during an 8-h period were similar, but integrated GH concentrations (areas under concentration curves) were different (dwarfs>controls, P<0.02; half-siblings>controls, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfs

  14. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid.

    PubMed

    Widenfalk, J; Lundströmer, K; Jubran, M; Brene, S; Olson, L

    2001-05-15

    Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.

  15. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  16. Platelet-derived growth factor receptor mediates activation of ras through different signaling pathways in different cell types.

    PubMed Central

    Satoh, T; Fantl, W J; Escobedo, J A; Williams, L T; Kaziro, Y

    1993-01-01

    A series of pieces of evidence have shown that Ras protein acts as a transducer of the platelet-derived growth factor (PDGF) receptor-mediated signaling pathway: (i) formation of Ras.GTP is detected immediately on PDGF stimulation, and (ii) a dominant inhibitory mutant Ras, as well as a neutralizing anti-Ras antibody, can interfere with PDGF-induced responses. On the other hand, several signal transducing molecules including phosphatidylinositol 3-kinase (PI3-K), GTPase-activating protein (GAP), and phospholipase C gamma (PLC gamma) bind directly to the PDGF receptor and become tyrosine phosphorylated. Recently, it was shown that specific phosphorylated tyrosines of the PDGF receptor are responsible for interaction between the receptor and each signaling molecule. However, the roles of these signaling molecules have not been elucidated, and it remains unclear which molecules are implicated in the Ras pathway. In this study, we measured Ras activation in cell lines expressing mutant PDGF receptors that are deficient in coupling with specific molecules. In fibroblast CHO cells, a mutant receptor (Y708F/Y719F [PI3-K-binding sites]) was unable to stimulate Ras, whereas another mutant (Y739F [the GAP-binding site]) could do so, suggesting an indispensable role of PI3-K or a protein that binds to the same sites as PI3-K for PDGF-stimulated Ras activation. By contrast, both of the above mutants were capable of stimulating Ras protein in a pro-B-cell line, BaF3. Furthermore, a mutant receptor (Y977F/Y989F [PLC gamma-binding sites]) could fully activate Ras, and the direct activation of protein kinase C and calcium mobilization had almost no effect on the GDP/GTP state of Ras in this cell line. These results suggest that, in the pro-B-cell transfectants, each of the above pathways (PI3-K, GAP, and PLC gamma) can be eliminated without a loss of Ras activation. It remains unclear whether another unknown essential pathway which regulates Ras protein exists within BaF3 cells

  17. Relationship between serum response factor and androgen receptor in prostate cancer.

    PubMed

    Prencipe, Maria; O'Neill, Amanda; O'Hurley, Gillian; Nguyen, Lan K; Fabre, Aurelie; Bjartell, Anders; Gallagher, William M; Morrissey, Colm; Kay, Elaine W; Watson, R William

    2015-11-01

    Serum response factor (SRF) is an important transcription factor in castrate-resistant prostate cancer (CRPC). Since CRPC is associated with androgen receptor (AR) hypersensitivity, we investigated the relationship between SRF and AR. Transcriptional activity was assessed by luciferase assay. Cell proliferation was measured by MTT and flow cytometry. Protein expression in patients was assessed by immunohistochemistry. To investigate AR involvement in SRF response to androgen, AR expression was down-regulated using siRNA. This resulted in the abrogation of SRF induction post-DHT. Moreover, DHT stimulation failed to induce SRF transcriptional activity in AR-negative PC346 DCC cells, which was only restored following AR over-expression. Next, SRF expression was down-regulated by siRNA, resulting in AR increased transcriptional activity in castrate-resistant LNCaP Abl cells but not in the parental LNCaP. This negative feedback loop in the resistant cells was confirmed by immunohistochemistry which showed a negative correlation between AR and SRF expression in CRPC bone metastases and a positive correlation in androgen-naïve prostatectomies. Cell proliferation was next assessed following SRF inhibition, demonstrating that SRF inhibition is more effective than AR inhibition in castrate-resistant cells. Our data support SRF as a promising therapeutic target in combination with current treatments. © 2015 Wiley Periodicals, Inc.

  18. Functional properties of an isolated. cap alpha beta. heterodimeric human placenta insulin-like growth factor 1 receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.

    1988-05-03

    Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta..more » heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.« less

  19. RNA Expression Profiling Reveals Differentially Regulated Growth Factor and Receptor Expression in Redirected Cancer Cells.

    PubMed

    Schmucker, Hannah S; Park, Jang Pyo; Coissieux, Marie-May; Bentires-Alj, Mohamed; Feltus, F Alex; Booth, Brian W

    2017-05-01

    Tumorigenic cells can be redirected to adopt a normal phenotype when transplanted into cleared mammary fat pads of juvenile female mice in specific ratios with normal epithelial cells. The redirected tumorigenic cells enter stem cell niches and provide progeny that differentiate into all mammary epithelial subtypes. We have developed an in vitro model that mimics the in vivo phenomenon. The shift in phenotype to redirection should be accomplished through a return to a normal gene expression state. To measure this shift, we interrogated the transcriptome of various in vitro model states in search for casual genes. For this study, expression of growth factors, cytokines, and their associated receptors was examined. In all, we queried 251 growth factor and cytokine-related genes. We found numerous growth factor and cytokine genes whose expression levels switched from expression levels seen in cancer cells to expression levels observed in normal cells. The comparisons of gene expression between normal mammary epithelial cells, tumor-derived cells, and redirected cancer cells have revealed insight into active and inactive growth factors and cytokines in cancer cell redirection.

  20. Inhibition of fibroblast growth factor receptor with AZD4547 mitigates juvenile nasopharyngeal angiofibroma.

    PubMed

    Le, Tran; New, Jacob; Jones, Joel W; Usman, Shireen; Yalamanchali, Sreeya; Tawfik, Ossama; Hoover, Larry; Bruegger, Dan E; Thomas, Sufi Mary

    2017-10-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a benign tumor that presents in adolescent males. Although surgical excision is the mainstay of treatment, recurrences complicate treatment. There is a need to develop less invasive approaches for management. JNA tumors are composed of fibroblasts and vascular endothelial cells. We identified fibroblast growth factor receptor (FGFR) and vascular endothelial growth factor (VEGF) expression in JNA-derived fibroblasts. FGFR influences fibroblast proliferation and VEGF is necessary for angiogenesis. We hypothesized that targeting FGFR would mitigate JNA fibroblast proliferation, invasion, and migration, and that targeting the VEGF receptor would attenuate endothelial tubule formation. After informed consent, fibroblasts from JNA explants of 3 patients were isolated. Fibroblasts were treated with FGFR inhibitor AZD4547, 0 to 25 μg/mL for 72 hours and proliferation was quantified using CyQuant assay. Migration and invasion of JNA were assessed using 24-hour transwell assays with subsequent fixation and quantification. Mitigation of FGFR and downstream signaling was evaluated by immunoblotting. Tubule formation was assessed in human umbilical vein endothelial cells (HUVECs) treated with vehicle control (dimethylsulfoxide [DMSO]) or semaxanib (SU5416) as well as in serum-free media (SFM) or JNA conditioned media (CM). Tubule length was compared between treatment groups. Compared to control, AZD4547 inhibited JNA fibroblast proliferation, migration, and invasion through inhibition of FGFR and downstream signaling, specifically phosphorylation of - p44/42 mitogen activated protein kinase (p44/42 MAPK). JNA fibroblast CM significantly increased HUVEC tubule formation (p = 0.0039). AZD4547 effectively mitigates FGFR signaling and decreases JNA fibroblast proliferation, migration, and invasion. SU5416 attenuated JNA fibroblast-induced tubule formation. AZD4547 may have therapeutic potential in the treatment of JNA. © 2017 ARS

  1. Epidermal growth factor receptor is required for estradiol-stimulated bovine satellite cell proliferation.

    PubMed

    Reiter, B C; Kamanga-Sollo, E; Pampusch, M S; White, M E; Dayton, W R

    2014-07-01

    The objective of this study was to assess the role of the epidermal growth factor receptor (EGFR) in estradiol-17β (E2)-stimulated proliferation of cultured bovine satellite cells (BSCs). Treatment of BSC cultures with AG1478 (a specific inhibitor of EGFR tyrosine kinase activity) suppresses E2-stimulated BSC proliferation (P < 0.05). In addition, E2-stimulated proliferation is completely suppressed (P < 0.05) in BSCs in which EGFR expression is silenced by treatment with EGFR small interfering RNA (siRNA). These results indicate that EGFR is required for E2 to stimulate proliferation in BSC cultures. Both AG1478 treatment and EGFR silencing also suppress proliferation stimulated by LR3-IGF-1 (an IGF1 analogue that binds normally to the insulin-like growth factor receptor (IGFR)-1 but has little or no affinity for IGF binding proteins) in cultured BSCs (P < 0.05). Even though EGFR siRNA treatment has no effect on IGFR-1β mRNA expression in cultured BSCs, IGFR-1β protein level is substantially reduced in BSCs treated with EGFR siRNA. These data suggest that EGFR silencing results in post-transcriptional modifications that result in decreased IGFR-1β protein levels. Although it is clear that functional EGFR is necessary for E2-stimulated proliferation of BSCs, the role of EGFR is not clear. Transactivation of EGFR may directly stimulate proliferation, or EGFR may function to maintain the level of IGFR-1β which is necessary for E2-stimulated proliferation. It also is possible that the role of EGFR in E2-stimulated BSC proliferation may involve both of these mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    PubMed

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  3. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuzaki, Shinichi; Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp; Yamada, Hidenori

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connectivemore » tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.« less

  4. Alginate Sulfates Mitigate Binding Kinetics of Proangiogenic Growth Factors with Receptors toward Revascularization.

    PubMed

    Schmidt, John; Lee, Min Kyung; Ko, Eunkyung; Jeong, Jae Hyun; DiPietro, Luisa A; Kong, Hyunjoon

    2016-07-05

    Ever since proangiogenic growth factors have been used as a vascular medicine to treat tissue ischemia, efforts have been increasingly made to develop a method to enhance efficacy of growth factors in recreating microvascular networks, especially at low dose. To this end, we hypothesized that polysaccharides substituted with sulfate groups would amplify growth factor receptor activation and stimulate phenotypic activities of endothelial cells involved in neovascularization. We examined this hypothesis by modifying alginate with a controlled number of sulfates and using it to derive a complex with vascular endothelial growth factor (VEGF), as confirmed with fluorescence resonance energy transfer (FRET) assay. Compared with the bare VEGF and with a mixture of VEGF and unmodified alginates, the VEGF complexed with alginate sulfates significantly reduced the dissociation rate with the VEGFR-2, elevated VEGFR-2 phosphorylation level, and increased the number of endothelial sprouts in vitro. Furthermore, the VEGF-alginate sulfate complex improved recovery of perfusion in an ischemic hindlimb of a mouse due to the increase of the capillary density. Overall, this study not only demonstrates an important cofactor of VEGF but also uncovers an underlying mechanism by which the cofactor mitigates the VEGF-induced signaling involved in the binding kinetics and activation of VEGFR. We therefore believe that the results of this study will be highly useful in improving the therapeutic efficacy of various growth factors and expediting their uses in clinical treatments of wounds and tissue defects.

  5. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  6. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emittedmore » filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.« less

  7. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists.

    PubMed

    Rivier, J; Gulyas, J; Kirby, D; Low, W; Perrin, M H; Kunitake, K; DiGruccio, M; Vaughan, J; Reubi, J C; Waser, B; Koerber, S C; Martinez, V; Wang, L; Taché, Y; Vale, W

    2002-10-10

    We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2). Additionally, we introduced deletions and substitutions known to increase duration of action to yield antagonists such as cyclo(31-34)[DPhe(11),His(12),C(alpha)MeLeu(13,39),Nle(17),Glu(31),Lys(34)]Ac-sauvagine((8-40)) (astressin(2)-B) with CRF(2) selectivities greater than 100-fold. CRF receptor autoradiography was performed in rat tissue known to express CRF(2) and CRF(1) in order to confirm that astressin(2)-B could indeed bind to established CRF(2) but not CRF(1) receptor-expressing tissues. Extended duration of action of astressin(2)-B vs that of antisauvagine-30 is demonstrated in

  8. Frequency of Epidermal Growth Factor Receptor Mutation in Smokers with Lung Cancer Without Pulmonary Emphysema.

    PubMed

    Takeda, Kenichi; Yamasaki, Akira; Igishi, Tadashi; Kawasaki, Yuji; Ito-Nishii, Shizuka; Izumi, Hiroki; Sakamoto, Tomohiro; Touge, Hirokazu; Kodani, Masahiro; Makino, Haruhiko; Yanai, Masaaki; Tanaka, Natsumi; Matsumoto, Shingo; Araki, Kunio; Nakamura, Hiroshige; Shimizu, Eiji

    2017-02-01

    Chronic obstructive pulmonary disease is a smoking-related disease, and is categorized into the emphysema and airway dominant phenotypes. We examined the relationship between emphysematous changes and epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma. The medical records for 250 patients with lung adenocarcinoma were retrospectively reviewed. All patients were categorized into the emphysema or non-emphysema group. Wild-type EGFR was detected in 136 (54%) and mutant EGFR in 48 (19%). Emphysematous changes were observed in 87 (36%) patients. EGFR mutation was highly frequent in the non-emphysema group (p=0.0014). Multivariate logistic regression analysis showed that emphysema was an independent risk factor for reduced frequency of EGFR mutation (Odds Ratio=3.47, p=0.005). Our data showed a relationship between emphysematous changes and EGFR mutation status. There might be mutually exclusive genetic risk factors for carcinogenesis and development of emphysematous changes. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice

    PubMed Central

    Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y.; DeMayo, Francesco J.; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W.

    2005-01-01

    Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, ARGAL4DBD, which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators. PMID:15983373

  10. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice.

    PubMed

    Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y; DeMayo, Francesco J; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W

    2005-07-05

    Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, AR(GAL4DBD), which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators.

  11. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins.

    PubMed

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-10-01

    Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis. Copyright © 2015. Published by Elsevier Ltd.

  12. Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis.

    PubMed

    Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine I

    2017-01-03

    The Gram-positive bacterial cell wall (CW) peptidoglycan-teichoic acid complex is released into the host environment during bacterial metabolism or death. It is a highly inflammatory Toll-like receptor 2 (TLR2) ligand, and previous in vivo studies have demonstrated its ability to recapitulate pathological features of pneumonia and meningitis. We report that an actin-dependent pathway is involved in the internalization of the CW by epithelial and endothelial cells, in addition to the previously described platelet-activating factor receptor (PAFr)-dependent uptake pathway. Unlike the PAFr-dependent pathway, which is mediated by clathrin and dynamin and does not lead to signaling, the alternative pathway is sensitive to 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and engenders Rac1, Cdc42, and phosphatidylinositol 3-kinase (PI3K) signaling. Upon internalization by this macropinocytosis-like pathway, CW is trafficked to lysosomes. Intracellular CW trafficking is more complex than previously recognized and suggests multiple points of interaction with and without innate immune signaling. Streptococcus pneumoniae is a major human pathogen infecting the respiratory tract and brain. It is an established model organism for understanding how infection injures the host. During infection or bacterial growth, bacteria shed their cell wall (CW) into the host environment and trigger inflammation. A previous study has shown that CW enters and crosses cell barriers by interacting with a receptor on the surfaces of host cells, termed platelet-activating factor receptor (PAFr). In the present study, by using cells that are depleted of PAFr, we identified a second pathway with features of macropinocytosis, which is a receptor-independent fluid uptake mechanism by cells. Each pathway contributes approximately the same amount of cell wall trafficking, but the PAFr pathway is silent, while the new pathway appears to contribute to the host inflammatory response to CW insult. Copyright © 2017

  13. Selective Imaging of Vascular Endothelial Growth Factor Receptor-1 and Receptor-2 in Atherosclerotic Lesions in Diabetic and Non-diabetic ApoE-/- Mice.

    PubMed

    Tekabe, Yared; Johnson, Lynne L; Rodriquez, Krissy; Li, Qing; Backer, Marina; Backer, Joseph M

    2018-02-01

    Plaque vulnerability is associated with inflammation and angiogenesis, processes that rely on vascular endothelial growth factor (VEGF) signaling via two receptors, VEGFR-1 and VEGFR-2. We have recently reported that enhanced uptake of scVEGF-PEG-DOTA/Tc-99m (scV/Tc) single photon emission computed tomography (SPECT) tracer that targets both VEGFR-1 and VEGFR-2, identifies accelerated atherosclerosis in diabetic relative to non-diabetic ApoE -/- mice. Since VEGFR-1 and VEGFR-2 may play different roles in atherosclerotic plaques, we reasoned that selective imaging of each receptor can provide more detailed information on plaque biology. Recently described VEGFR-1 and VEGFR-2 selective mutants of scVEGF, named scVR1 and scVR2, were site-specifically derivatized with Tc-99m chelator DOTA via 3.4 kDa PEG linker, and their selectivity to the cognate receptors was confirmed in vitro. scVR1 and scVR2 conjugates were radiolabeled with Tc-99m to specific activity of 110 ± 11 MBq/nmol, yielding tracers named scVR1/Tc and scVR2/Tc. 34-40 week old diabetic and age-matched non-diabetic ApoE -/- mice were injected with tracers, 2-3 h later injected with x-ray computed tomography (CT) contrast agent and underwent hybrid SPECT/CT imaging. Tracer uptake, localized to proximal aorta and brachiocephalic vessels, was quantified as %ID from. Tracer uptake was also quantified as %ID/g from gamma counting of harvested plaques. Harvested atherosclerotic arterial tissue was used for immunofluorescent analyses of VEGFR-1 and VEGFR-2 and various lineage-specific markers. Focal, receptor-mediated uptake in proximal aorta and brachiocephalic vessels was detected for both scVR1/Tc and scVR2/Tc tracers. Uptake of scVR1/Tc and scVR2/Tc was efficiently inhibited only by "cold" proteins of the same receptor selectivity. Tracer uptake in this area, expressed as %ID, was higher in diabetic vs. non- diabetic mice for scVR1/Tc (p = 0.01) but not for scVR2/Tc. Immunofluorescent analysis

  14. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin levels in gingival crevicular fluid

    PubMed Central

    Sarlati, Fatemeh; Sattari, Mandana; Razzaghi, Shilan; Nasiri, Malihe

    2012-01-01

    Background: Osteoclastogenesis is coordinated by the interaction of three members of the tumor necrosis factor (TNF) superfamily: Osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL)/receptor activator of nuclear factor kappa B (RANK). The aim of this study was to investigate RANKL and OPG levels, and their relative ratio in gingival crevicular fluid (GCF) of patients with chronic and aggressive periodontitis, as well as healthy controls. Materials and Methods: In this analytical study, GCF was obtained from healthy (n = 10), mild chronic periodontitis (n = 18), moderate chronic periodontitis (n = 18), severe chronic periodontitis (n = 20), and generalized aggressive periodontitis (n = 20) subjects. RANKL and OPG concentrations were measured by enzyme-linked immunosorbent assay. Statistical tests used were Kruskal–Wallis test, Mann–Whitney U rank sum test, and Spearman's rank correlation analysis. The level of statistical significance was set at P < 0.05. Results: Mean RANKL concentration showed no statistically significant differences between groups (P = 0.58). There were also no significant differences between mean OPG concentration in the five groups (P = 0.0.56). Moreover, relative RANKL/OPG ratio did not reveal a significant difference between the three study group subjects: healthy, chronic periodontitis (mild, moderate, severe), and aggressive periodontitis (P = 0.41). There was statistically significant correlation between the concentration of sRANKL and Clinical Attachment Level (CAL) in moderate chronic periodontitis patients (R = 0.48, P = 0.04). There was also negative correlation between OPG concentration and CAL in moderate chronic periodontitis patients, although not significant (R = −0.13). Conclusion: RANKL was prominent in periodontitis sites, especially in moderate periodontitis patients, whereas OPG was not detectable in some diseased sites with bleeding on probing, supporting the role of these two molecules in

  15. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    PubMed Central

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling. PMID:19103595

  16. Breast density and parenchymal texture measures as potential risk factors for estrogen-receptor positive breast cancer

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina

    2014-03-01

    Accurate assessment of a woman's risk to develop specific subtypes of breast cancer is critical for appropriate utilization of chemopreventative measures, such as with tamoxifen in preventing estrogen-receptor positive breast cancer. In this context, we investigate quantitative measures of breast density and parenchymal texture, measures of glandular tissue content and tissue structure, as risk factors for estrogen-receptor positive (ER+) breast cancer. Mediolateral oblique (MLO) view digital mammograms of the contralateral breast from 106 women with unilateral invasive breast cancer were retrospectively analyzed. Breast density and parenchymal texture were analyzed via fully-automated software. Logistic regression with feature selection and was performed to predict ER+ versus ER- cancer status. A combined model considering all imaging measures extracted was compared to baseline models consisting of density-alone and texture-alone features. Area under the curve (AUC) of the receiver operating characteristic (ROC) and Delong's test were used to compare the models' discriminatory capacity for receptor status. The density-alone model had a discriminatory capacity of 0.62 AUC (p=0.05). The texture-alone model had a higher discriminatory capacity of 0.70 AUC (p=0.001), which was not significantly different compared to the density-alone model (p=0.37). In contrast the combined density-texture logistic regression model had a discriminatory capacity of 0.82 AUC (p<0.001), which was statistically significantly higher than both the density-alone (p<0.001) and texture-alone regression models (p=0.04). The combination of breast density and texture measures may have the potential to identify women specifically at risk for estrogen-receptor positive breast cancer and could be useful in triaging women into appropriate risk-reduction strategies.

  17. Cell-free synthesis of functional human epidermal growth factor receptor: Investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids

    PubMed Central

    Quast, Robert B.; Ballion, Biljana; Stech, Marlitt; Sonnabend, Andrei; Varga, Balázs R.; Wüstenhagen, Doreen A.; Kele, Péter; Schiller, Stefan M.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system. PMID:27670253

  18. Synthesis, structure-activity relationships, and in vivo evaluation of N3-phenylpyrazinones as novel corticotropin-releasing factor-1 (CRF1) receptor antagonists.

    PubMed

    Hartz, Richard A; Ahuja, Vijay T; Arvanitis, Argyrios G; Rafalski, Maria; Yue, Eddy W; Denhart, Derek J; Schmitz, William D; Ditta, Jonathan L; Deskus, Jeffrey A; Brenner, Allison B; Hobbs, Frank W; Payne, Joseph; Lelas, Snjezana; Li, Yu-Wen; Molski, Thaddeus F; Mattson, Gail K; Peng, Yong; Wong, Harvey; Grace, James E; Lentz, Kimberley A; Qian-Cutrone, Jingfang; Zhuo, Xiaoliang; Shu, Yue-Zhong; Lodge, Nicholas J; Zaczek, Robert; Combs, Andrew P; Olson, Richard E; Bronson, Joanne J; Mattson, Ronald J; Macor, John E

    2009-07-23

    Evidence suggests that corticotropin-releasing factor-1 (CRF(1)) receptor antagonists may offer therapeutic potential for the treatment of diseases associated with elevated levels of CRF such as anxiety and depression. A pyrazinone-based chemotype of CRF(1) receptor antagonists was discovered. Structure-activity relationship studies led to the identification of numerous potent analogues including 12p, a highly potent and selective CRF(1) receptor antagonist with an IC(50) value of 0.26 nM. The pharmacokinetic properties of 12p were assessed in rats and Cynomolgus monkeys. Compound 12p was efficacious in the defensive withdrawal test (an animal model of anxiety) in rats. The synthesis, structure-activity relationships and in vivo properties of compounds within the pyrazinone chemotype are described.

  19. Ligand binding and dynamics of the monomeric epidermal growth factor receptor ectodomain

    PubMed Central

    Loeffler, Hannes H; Winn, Martyn D

    2013-01-01

    The ectodomain of the human epidermal growth factor receptor (hEGFR) controls input to several cell signalling networks via binding with extracellular growth factors. To gain insight into the dynamics and ligand binding of the ectodomain, the hEGFR monomer was subjected to molecular dynamics simulation. The monomer was found to be substantially more flexible than the ectodomain dimer studied previously. Simulations where the endogeneous ligand EGF binds to either Subdomain I or Subdomain III, or where hEGFR is unbound, show significant differences in dynamics. The molecular mechanics Poisson–Boltzmann surface area method has been used to derive relative free energies of ligand binding, and we find that the ligand is capable of binding either subdomain with a slight preference for III. Alanine-scanning calculations for the effect of selected ligand mutants on binding reproduce the trends of affinity measurements. Taken together, these results emphasize the possible role of the ectodomain monomer in the initial step of ligand binding, and add details to the static picture obtained from crystal structures. Proteins 2013; 81:1931–1943. © 2013 The Authors. Proteins published by Wiley Periodicals, Inc. PMID:23760854

  20. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development.

    PubMed

    Walker, Kenneth A; Sims-Lucas, Sunder; Bates, Carlton M

    2016-06-01

    Fibroblast growth factor receptors (FGFRs) and FGF ligands are highly expressed in the developing kidney and lower urinary tract. Several classic studies showed many effects of exogenous FGF ligands on embryonic renal tissues in vitro and in vivo. Another older landmark publication showed that mice with a dominant negative Fgfr fragment had severe renal dysplasia. Together, these studies revealed the importance of FGFR signaling in kidney and lower urinary tract development. With the advent of modern gene targeting techniques, including conditional knockout approaches, several publications have revealed critical roles for FGFR signaling in many lineages of the kidney and lower urinary tract at different stages of development. FGFR signaling has been shown to be critical for early metanephric mesenchymal patterning, Wolffian duct patterning including induction of the ureteric bud, ureteric bud branching morphogenesis, nephron progenitor survival and nephrogenesis, and bladder mesenchyme patterning. FGFRs pattern these tissues by interacting with many other growth factor signaling pathways. Moreover, the many genetic Fgfr and Fgf animal models have structural defects mimicking numerous congenital anomalies of the kidney and urinary tract seen in humans. Finally, many studies have shown how FGFR signaling is critical for kidney and lower urinary tract patterning in humans.

  1. The growth receptors and their role in wound healing.

    PubMed

    Rolfe, Kerstin J; Grobbelaar, Adriaan O

    2010-11-01

    Abnormal wound healing is a major problem in healthcare today, with both scarring and chronic wounds affecting large numbers of individuals worldwide. Wound healing is a complex process involving several variables, including growth factors and their receptors. Chronic wounds fail to complete the wound healing process, while scarring is considered to be an overzealous wound healing process. Growth factor receptors and their ligands are being investigated to assess their potential in the development of therapeutic strategies to improve wound healing. This review discusses potential therapeutics for manipulating growth factors and their corresponding receptors for the treatment of abnormal wound healing.

  2. Concentrations of tumour necrosis factor-α and its soluble receptors in the serum of teenagers with atherosclerosis risk factors: obesity or obesity combined with hypertension.

    PubMed

    Obuchowicz, Anna; Kniażewska, Maria; Zmudzińska-Kitczak, Joanna; Urban, Katarzyna; Gonciarz-Majda, Anna

    2014-11-01

    Obesity and hypertension are recognised risk factors for the development of atherosclerosis. It has not been proven whether their co-existence increases the synthesis of pro-inflammatory TNF-α and what the levels of soluble receptors of this cytokine (sTNF-R) are. This study is aimed to investigate whether there exists a relationship between TNF-α and sTNF-R concentrations in blood serum with the occurrence of obesity or obesity combined with primary hypertension in teenagers. 68 persons, aged 9-17, including 32 persons with primary obesity (Group I) and 36 with primary obesity combined with primary hypertension (Group II). TNF-α (pg/mL) and sTNF-R (ng/mL) concentrations were determined in serum samples using the ELISA method with sets of reagents manufactured by Bender Med Systems GmbH. No significant differences in TNF-α, sTNF-R, glucose or insulin concentrations were found between Group I and Group II. These concentrations were not correlated with the age and the nutritional status of the patients or with each other in either of the groups. Both obese teenagers and teenagers exhibiting obesity combined with hypertension (as two atherosclerosis risk factors) are characterised by comparable concentrations of TNF-α and its soluble receptors.

  3. Interleukin 6 inhibits proliferation and, in cooperation with an epidermal growth factor receptor autocrine loop, increases migration of T47D breast cancer cells.

    PubMed

    Badache, A; Hynes, N E

    2001-01-01

    Interleukin (IL)-6, a multifunctional regulator of immune response, hematopoiesis, and acute phase reactions, has also been shown to regulate cancer cell proliferation. We have investigated IL-6 signaling pathways and cellular responses in the T47D breast carcinoma cell line. The IL-6-type cytokines, IL-6 and oncostatin M, simultaneously inhibited cell proliferation and increased cell migration. In T47D cells, IL-6 stimulated the activation of Janus-activated kinase 1 tyrosine kinase and signal transducers and activators of transcription (STAT) 1 and STAT3 transcription factors. Expression of dominant negative STAT3 in the cells strongly reduced IL-6-mediated growth inhibition but did not prevent IL-6-induced cell migration. IL-6 treatment led to activation of the mitogen-activated protein kinase (MAPK) and the phosphatidylinositol 3'-kinase (PI3K) pathways. Inhibition of MAPK or PI3K activity reversed IL-6- and oncostatin M-stimulated migration. Because cross-talk between cytokine receptors and members of the ErbB family of receptor tyrosine kinases has been described previously, we have examined their interaction in T47D cells. Down-regulation of ErbB receptor activity, through the use of specific pharmacological inhibitors or dominant negative receptor constructs, revealed that IL-6-induced MAPK activation was largely dependent on epidermal growth factor (EGF) receptor activity, but not on ErbB-2 activity. Using a monoclonal antibody that interferes with EGF receptor-ligand interaction, we have shown that in T47D cells, IL-6 cooperates with an EGF receptor autocrine activity loop for signaling through the MAPK and PI3K pathways and for cell migration. Both the tyrosine phosphatase SHP-2 and the multisubstrate docking molecule Gab1, which are potential links between IL-6 and the MAPK/PI3K pathways, were constitutively associated with the active EGF receptor. On IL-6 stimulation, SHP-2 and Gab1 were recruited to the gp130 subunit of the IL-6 receptor and tyrosine

  4. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism.

    PubMed

    Bonaventure, J; Rousseau, F; Legeai-Mallet, L; Le Merrer, M; Munnich, A; Maroteaux, P

    1996-05-03

    The mapping of the achondroplasia locus to the short arm of chromosome 4 and the subsequent identification of a recurrent missense mutation (G380R) in the fibroblast growth factor receptor 3 (FGFR-3) gene has been followed by the detection of common FGFR-3 mutations in two clinically related disorders: thanatophoric dwarfism (types I and II) and hypochondroplasia. The relative clinical homogeneity of achondroplasia was substantiated by demonstration of its genetic homogeneity as more than 98% of all patients hitherto reported exhibit mutations in the transmembrane receptor domain. Although most hypochondroplasia cases were accounted for by a recurrent missense substitution (N540K) in the first tyrosine kinase (TK 1) domain of the receptor, a significant proportion (40%) of our patients did not harbor the N540K mutation and three hypochondroplasia families were not linked to the FGFR-3 locus, thus supporting clinical heterogeneity of this condition. In thanatophoric dwarfism (TD), a recurrent FGFR-3 mutation located in the second tyrosine kinase (TK 2) domain of the receptor was originally detected in 100% of TD II cases, our series seven distinct mutations in three different protein domains were identified in 25 of 26 TD I patients, suggesting that TD, like achondroplasia, is a genetically homogenous skeletal disorder.

  5. Generalization of rapidly recurring seizures is suppressed in mice lacking glial cell line-derived neurotrophic factor family receptor alpha2.

    PubMed

    Nanobashvili, A; Kokaia, Z; Lindvall, O

    2003-01-01

    Recent experimental evidence indicates that neurotrophic factors play a role in the pathophysiology of epilepsy. The objective of this study was to explore whether signaling through one of the glial cell line-derived neurotrophic factor family receptors, GFRalpha2, influences the severity of kindling-evoked, rapidly recurring seizures and the subsequent development of permanent hyperexcitability. We applied the rapid kindling model to adult mice, using 40 threshold stimulations delivered with 5-min interval in the ventral hippocampus. Generalized seizures were fewer and developed later in response to kindling stimulations in mice lacking GFRalpha2. However, GFRalpha2 gene deletion did not influence the acquisition of the permanent abnormal excitability as assessed 4 weeks later. In situ hybridization revealed marked and dynamic changes of GFRalpha2 mRNA levels in several forebrain areas following the stimulus-evoked seizures. Our findings provide evidence that signaling through the GFRalpha2 receptor contributes to seizure generalization in rapid kindling.

  6. Epidermal growth factor receptor tyrosine kinase inhibitors: application in non-small cell lung cancer.

    PubMed

    Thomas, Melodie

    2003-12-01

    Despite treatment advances over the past decade, long-term survival for patients with non-small cell lung cancer (NSCLC) remains poor, and treatment options available after second-line therapy are limited. Increased understanding of cancer biology has led to the identification of several potential targets for treatment. The epidermal growth factor receptor (EGFR) belongs to a family of plasma membrane receptor tyrosine kinases that controls many important cellular functions, from growth and proliferation to cell death. This receptor is a particularly promising therapeutic target because it often is overexpressed in patients with NSCLC and has been implicated in the pathogenesis as well as the proliferation, invasion, and metastasis of lung cancer and other malignancies. New agents developed to inhibit EGFR function include small-molecule tyrosine kinase inhibitors, monoclonal antibodies to EGFR, and pan-EGFR inhibitors. Completed and ongoing clinical trials have shown that EGFR inhibitors have remarkable efficacy for patients with relapsed NSCLC. Among these, two phase 2 trials have shown that ZD1839 is effective when used as monotherapy. The response rates are comparable with those for docetaxel given in the second-line setting. Another phase 2 trial has shown that OSI-774 is effective in the same setting. Data from phase 3 trials indicate that adding an EGFR tyrosine kinase inhibitor to chemotherapy does not provide an additional survival benefit, as compared with standard chemotherapy alone for first-line treatment of NSCLC. It appears that EGFR tyrosine kinase inhibitors are safe and well tolerated by patients with cancer. Further studies will elucidate how these new agents can best be used for NSCLC and other tumor types.

  7. Virus Infection and Death Receptor-Mediated Apoptosis.

    PubMed

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-10-27

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.

  8. Virus Infection and Death Receptor-Mediated Apoptosis

    PubMed Central

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-01-01

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis. PMID:29077026

  9. Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors.

    PubMed

    Ping Li, Wen; Meyer, Laura A; Capretto, David A; Sherman, Christopher D; Anderson, Carolyn J

    2008-04-01

    The epidermal growth-factor receptor (EGFR) and its ligands have been recognized as critical factors in the pathophysiology of tumorigenesis. Overexpression of the EGFR plays a significant role in the tumor progression of a wide variety of solid human cancers. Therefore, the EGFR represents an attractive target for the design of novel diagnostic and therapeutic agents for cancer. Cetuximab (C225, Erbitux) was the first monoclonal antibody targeted against the ligand-binding site of EGFR approved by the Food and Drug Administration for the treatment of patients with EGFR-expressing, metastatic colorectal carcinoma, although clinical trials showed variability in the response to this treatment. The aim of this study involved using cetuximab to design a positron emission tomography (PET) agent to image the overexpression of EGFR in tumors. Cetuximab was conjugated with the chelator, DOTA, for radiolabeling with the positron-emitter, 64Cu (T(1/2) = 12.7 hours). 64Cu-DOTA-cetuximab showed high binding affinity to EGFR-positive A431 cells (K(D) of 0.28 nM). Both biodistribution and microPET imaging studies with 64Cu-DOTA-cetuximab demonstrated greater uptake at 24 hours postinjection in EGFR-positive A431 tumors (18.49% +/- 6.50% injected dose per gram [ID/g]), compared to EGFR-negative MDA-MB-435 tumors (2.60% +/- 0.35% ID/g). A431 tumor uptake at 24 hours was blocked with unlabeled cetuximab (10.69% +/- 2.72% ID/g), suggesting that the tumor uptake was receptor mediated. Metabolism experiments in vivo showed that 64Cu-DOTA-cetuximab was relatively stable in the blood of tumor-bearing mice; however, there was significant metabolism in the liver and tumors. 64Cu-DOTA-cetuximab is a potential agent for imaging EGFR-positive tumors in humans.

  10. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Ji Yeon; Choi, Young Keun; Kook, Hyun

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-inducedmore » retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O{sub 2}). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice.« less

  11. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri

    PubMed Central

    MATSUO, Yosuke; MIYOSHI, Yukihiro; OKADA, Sanae; SATOH, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion. PMID:24936355

  12. The insulin receptor.

    PubMed

    Kaplan, S A

    1984-03-01

    Cells are endowed with specific cognitive molecules that function as receptors for hormones, neurotransmitters, and other intercellular messengers. The receptor molecules may be present in the plasma membrane, cytoplasm, or nucleus. When occupied by the messenger, the receptor is coupled to the cellular machinery that responds to the message-bearing molecules. For some hormones the events following attachment of the messenger to the receptor are well known. An example is the generation of cAMP after combination of glucagon with its receptor and the series of steps culminating in activation of phosphorylase. In the case of many other messengers, including insulin, the nature of these coupling steps is not known. Receptors are subject to the regulatory processes of synthesis, degradation, and conformational change; alterations in receptor properties may have significant effects on the qualitative and quantitative responses of the cell to the extracellular messenger. The insulin receptor is located in the plasma membrane, is composed of two pairs of subunits, and has a molecular weight of about 350,000. It is located in cells such as adipocytes, hepatocytes, and skeletal muscle cells as well as in cells not considered to be typical target organ cells. Insulin receptors in nonfetal cells are downregulated by exposure of the cells to high concentrations of insulin. Other factors that regulate insulin binding include muscular exercise, diet, thyroid hormones, glucocorticoids, androgens, estrogens, and cyclic nucleotides. The fetus has high concentrations of insulin receptors in several tissues. These begin to appear early in fetal life and may outnumber those found in adult tissues. Fetal insulin receptors are unusual in that they may not undergo downregulation but may experience the opposite when exposed to insulin in high concentrations. Thus the offspring of a mother with poorly controlled diabetes may be placed in double jeopardy by fetal hyperinsulinemia and

  13. Novel Positive Regulatory Role for the SPL6 Transcription Factor in the N TIR-NB-LRR Receptor-Mediated Plant Innate Immunity

    PubMed Central

    Padmanabhan, Meenu S.; Ma, Shisong; Burch-Smith, Tessa M.; Czymmek, Kirk; Huijser, Peter; Dinesh-Kumar, Savithramma P.

    2013-01-01

    Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5. PMID:23516366

  14. Development of EMab-51, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in Flow Cytometry, Western Blot, and Immunohistochemistry.

    PubMed

    Itai, Shunsuke; Kaneko, Mika K; Fujii, Yuki; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Chang, Yao-Wen; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-10-01

    The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG 1 , kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.

  15. Role of Glutamine 17 of the Bovine Papillomavirus E5 Protein in Platelet-Derived Growth Factor β Receptor Activation and Cell Transformation

    PubMed Central

    Klein, Ophir; Polack, Glenda W.; Surti, Toral; Kegler-Ebo, Deena; Smith, Steven O.; DiMaio, Daniel

    1998-01-01

    The bovine papillomavirus E5 protein is a small, homodimeric transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) β receptor through transmembrane and juxtamembrane interactions, resulting in receptor activation and cell transformation. Glutamine 17 in the transmembrane domain of the 44-amino-acid E5 protein is critical for complex formation and receptor activation, and we previously proposed that glutamine 17 forms a hydrogen bond with threonine 513 of the PDGF β receptor. We have constructed and analyzed mutant E5 proteins containing all possible amino acids at position 17 and examined the ability of these proteins to transform C127 fibroblasts, which express endogenous PDGF β receptor. Although several position 17 mutants were able to transform cells, mutants containing amino acids with side groups that were unable to participate in hydrogen bonding interactions did not form a stable complex with the PDGF β receptor or transform cells, in agreement with the proposed interaction between position 17 of the E5 protein and threonine 513 of the receptor. The nature of the residue at position 17 also affected the ability of the E5 proteins to dimerize. Overall, there was an excellent correlation between the ability of the various E5 mutant proteins to bind the PDGF β receptor, lead to receptor tyrosine phosphorylation, and transform cells. Similar results were obtained in Ba/F3 hematopoietic cells expressing exogenous PDGF β receptor. In addition, treatment of E5-transformed cells with a specific inhibitor of the PDGF receptor tyrosine kinase reversed the transformed phenotype. These results confirm the central importance of the PDGF β receptor in mediating E5 transformation and highlight the critical role of the residue at position 17 of the E5 protein in the productive interaction with the PDGF β receptor. On the basis of molecular modeling analysis and the known chemical properties of the amino acids, we

  16. Role of glutamine 17 of the bovine papillomavirus E5 protein in platelet-derived growth factor beta receptor activation and cell transformation.

    PubMed

    Klein, O; Polack, G W; Surti, T; Kegler-Ebo, D; Smith, S O; DiMaio, D

    1998-11-01

    The bovine papillomavirus E5 protein is a small, homodimeric transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor through transmembrane and juxtamembrane interactions, resulting in receptor activation and cell transformation. Glutamine 17 in the transmembrane domain of the 44-amino-acid E5 protein is critical for complex formation and receptor activation, and we previously proposed that glutamine 17 forms a hydrogen bond with threonine 513 of the PDGF beta receptor. We have constructed and analyzed mutant E5 proteins containing all possible amino acids at position 17 and examined the ability of these proteins to transform C127 fibroblasts, which express endogenous PDGF beta receptor. Although several position 17 mutants were able to transform cells, mutants containing amino acids with side groups that were unable to participate in hydrogen bonding interactions did not form a stable complex with the PDGF beta receptor or transform cells, in agreement with the proposed interaction between position 17 of the E5 protein and threonine 513 of the receptor. The nature of the residue at position 17 also affected the ability of the E5 proteins to dimerize. Overall, there was an excellent correlation between the ability of the various E5 mutant proteins to bind the PDGF beta receptor, lead to receptor tyrosine phosphorylation, and transform cells. Similar results were obtained in Ba/F3 hematopoietic cells expressing exogenous PDGF beta receptor. In addition, treatment of E5-transformed cells with a specific inhibitor of the PDGF receptor tyrosine kinase reversed the transformed phenotype. These results confirm the central importance of the PDGF beta receptor in mediating E5 transformation and highlight the critical role of the residue at position 17 of the E5 protein in the productive interaction with the PDGF beta receptor. On the basis of molecular modeling analysis and the known chemical properties of the

  17. Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia.

    PubMed

    Kinsella, Sinéad; König, Hans-Georg; Prehn, Jochen H M

    2016-01-01

    Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). In the present study, we identified the proapoptotic Bcl-2 family protein Bid as a positive regulator of mutant SOD1-induced TLR-nuclear factor-κB (NF-κB) signaling in microglia. bid-deficient primary mouse microglia showed reduced NF-κB signaling in response to TLR4 activation or exposure to conditioned medium derived from SOD1 (G93A) expressing NSC-34 cells. Attenuation of NF-κB signaling in bid-deficient microglia was associated with lower levels of phosphorylated IKKα/β and p65, with a delayed degradation of IκBα and enhanced degradation of Peli1. Upstream of IKK, we found that Bid interacted with, and promoted, the K63-linked polyubiquitination of the E3 ubiquitin ligase tumor necrosis factor receptor associated factor 6 (TRAF6) in microglia. Our study suggests a key role for Bid in the regulation of TLR4-NF-κB proinflammatory signaling during mutant SOD1-induced disease pathology. Bid promotes TLR4-NF-κB signaling by interacting with TRAF6 and promoting TRAF6 K63-linked polyubiquitination in microglia.

  18. Brain-Derived Neurotrophic Factor Signaling Rewrites the Glucocorticoid Transcriptome via Glucocorticoid Receptor Phosphorylation

    PubMed Central

    Lambert, W. Marcus; Xu, Chong-Feng; Neubert, Thomas A.; Chao, Moses V.

    2013-01-01

    Abnormal glucocorticoid and neurotrophin signaling has been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a nonphosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF- and Dex-regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels of BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism. PMID:23878391

  19. Source apportionments of PM2.5 organic carbon using molecular marker Positive Matrix Factorization and comparison of results from different receptor models

    NASA Astrophysics Data System (ADS)

    Heo, Jongbae; Dulger, Muaz; Olson, Michael R.; McGinnis, Jerome E.; Shelton, Brandon R.; Matsunaga, Aiko; Sioutas, Constantinos; Schauer, James J.

    2013-07-01

    Four hundred fine particulate matter (PM2.5) samples collected over a 1-year period at two sites in the Los Angeles Basin were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and organic molecular markers. The results were used in a Positive Matrix Factorization (PMF) receptor model to obtain daily, monthly and annual average source contributions to PM2.5 OC. Results of the PMF model showed similar source categories with comparable year-long contributions to PM2.5 OC across the sites. Five source categories providing reasonably stable profiles were identified: mobile, wood smoke, primary biogenic, and two types of secondary organic carbon (SOC) (i.e., anthropogenic and biogenic emissions). Total primary emission factors and total SOC factors contributed approximately 60% and 40%, respectively, to the annual-average OC concentrations. Primary sources showed strong seasonal patterns with high winter peaks and low summer peaks, while SOC showed a reverse pattern with highs in the spring and summer in the region. Interestingly, smoke from forest fires which occurred episodically in California during the summer and fall of 2009 was identified and combined with the primary biogenic source as one distinct factor to the OC budget. The PMF resolved factors were further investigated and compared to a chemical mass balance (CMB) model and a second multi-variant receptor model (UNMIX) using molecular markers considered in the PMF. Good agreement between the source contribution from mobile sources and biomass burning for three models were obtained, providing additional weight of evidence that these source apportionment techniques are sufficiently accurate for policy development. However, the CMB model did not quantify primary biogenic emissions, which were included in other sources with the SOC. Both multivariate receptor models, the PMF and the UNMIX, were unable to separate source contributions from diesel and gasoline engines.

  20. Low-dose naltrexone targets the opioid growth factor-opioid growth factor receptor pathway to inhibit cell proliferation: mechanistic evidence from a tissue culture model.

    PubMed

    Donahue, Renee N; McLaughlin, Patricia J; Zagon, Ian S

    2011-09-01

    Naltrexone (NTX) is an opioid antagonist that inhibits or accelerates cell proliferation in vivo when utilized in a low (LDN) or high (HDN) dose, respectively. The mechanism of opioid antagonist action on growth is not well understood. We established a tissue culture model of LDN and HDN using short-term and continuous opioid receptor blockade, respectively, in human ovarian cancer cells, and found that the duration of opioid receptor blockade determines cell proliferative response. The alteration of growth by NTX also was detected in cells representative of pancreatic, colorectal and squamous cell carcinomas. The opioid growth factor (OGF; [Met(5)]-enkephalin) and its receptor (OGFr) were responsible for mediating the action of NTX on cell proliferation. NTX upregulated OGF and OGFr at the translational but not at the transcriptional level. The mechanism of inhibition by short-term NTX required p16 and/or p21 cyclin-dependent inhibitory kinases, but was not dependent on cell survival (necrosis, apoptosis). Sequential administration of short-term NTX and OGF had a greater inhibitory effect on cell proliferation than either agent alone. Given the parallels between short-term NTX in vitro and LDN in vivo, we now demonstrate at the molecular level that the OGF-OGFr axis is a common pathway that is essential for the regulation of cell proliferation by NTX.