Science.gov

Sample records for factor receptor negatively

  1. A dominant negative mutation suppresses the function of normal epidermal growth factor receptors by heterodimerization.

    PubMed Central

    Kashles, O; Yarden, Y; Fischer, R; Ullrich, A; Schlessinger, J

    1991-01-01

    Recent studies provide evidence that defective receptors can function as a dominant negative mutation suppressing the action of wild-type receptors. This causes various diminished responses in cell culture and developmental disorders in murine embryogenesis. Here, we describe a model system and a potential mechanism underlying the dominant suppressing response caused by defective epidermal growth factor (EGF) receptors. We used cultured 3T3 cells coexpressing human wild-type receptors and an inactive deletion mutant lacking most of the cytoplasmic domain. When expressed alone, EGF was able to stimulate the dimerization of either wild-type or mutant receptors in living cells as revealed by chemical covalent cross-linking experiments. In response to EGF, heterodimers and homodimers of wild-type and mutant receptors were observed in cells coexpressing both receptor species. However, only homodimers of wild-type EGF receptors underwent EGF-induced tyrosine autophosphorylation in living cells. These results indicate that the integrity of both receptor moieties within receptor dimers is essential for kinase activation and autophosphorylation. Moreover, the presence of mutant receptors in cells expressing wild-type receptors diminished the number of high-affinity binding sites for EGF, reduced the rate of receptor endocytosis and degradation, and diminished biological signalling via EGF receptors. We propose that heterodimerization with defective EGF receptors functions as a dominant negative mutation suppressing the activation and response of normal receptors by formation of unproductive heterodimers. Images PMID:1705006

  2. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  3. Reproductive factors and risk of hormone receptor positive and negative breast cancer: a cohort study

    PubMed Central

    2013-01-01

    Background The association of reproductive factors with hormone receptor (HR)-negative breast tumors remains uncertain. Methods Within the EPIC cohort, Cox proportional hazards models were used to describe the relationships of reproductive factors (menarcheal age, time between menarche and first pregnancy, parity, number of children, age at first and last pregnancies, time since last full-term childbirth, breastfeeding, age at menopause, ever having an abortion and use of oral contraceptives [OC]) with risk of ER-PR- (n = 998) and ER+PR+ (n = 3,567) breast tumors. Results A later first full-term childbirth was associated with increased risk of ER+PR+ tumors but not with risk of ER-PR- tumors (≥35 vs. ≤19 years HR: 1.47 [95% CI 1.15-1.88] ptrend < 0.001 for ER+PR+ tumors; ≥35 vs. ≤19 years HR: 0.93 [95% CI 0.53-1.65] ptrend = 0.96 for ER-PR- tumors; P het = 0.03). The risk associations of menarcheal age, and time period between menarche and first full-term childbirth with ER-PR-tumors were in the similar direction with risk of ER+PR+ tumors (phet = 0.50), although weaker in magnitude and statistically only borderline significant. Other parity related factors such as ever a full-term birth, number of births, age- and time since last birth were associated only with ER+PR+ malignancies, however no statistical heterogeneity between breast cancer subtypes was observed. Breastfeeding and OC use were generally not associated with breast cancer subtype risk. Conclusion Our study provides possible evidence that age at menarche, and time between menarche and first full-term childbirth may be associated with the etiology of both HR-negative and HR-positive malignancies, although the associations with HR-negative breast cancer were only borderline significant. PMID:24321460

  4. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development.

    PubMed

    Costa, Ricardo; Shah, Ami N; Santa-Maria, Cesar A; Cruz, Marcelo R; Mahalingam, Devalingam; Carneiro, Benedito A; Chae, Young Kwang; Cristofanilli, Massimo; Gradishar, William J; Giles, Francis J

    2017-02-01

    Triple negative breast cancer (TNBC) accounts for 10-20% of cases in breast cancer. Despite recent advances in the treatment of hormonal receptor+ and HER2+ breast cancers, there are no targeted therapies available for TNBC. Evidence supports that most patients with TNBC express the transmembrane Epidermal Growth Factor Receptor (EGFR). However, early phase clinical trials failed to demonstrate significant activity of EGFR-targeted monoclonal antibodies and/or tyrosine kinase inhibitors. Here, we review the recent discoveries related to the underlying biology of the EGFR pathway in TNBC, clinical progress to date and suggest rational future approaches for investigational therapies in TNBC.

  5. Positive and Negative Cross-Talk between Lysophosphatidic Acid Receptor 1, Free Fatty Acid Receptor 4, and Epidermal Growth Factor Receptor in Human Prostate Cancer Cells.

    PubMed

    Hopkins, Mandi M; Liu, Ze; Meier, Kathryn E

    2016-10-01

    Lysophosphatidic acid (LPA) is a lipid mediator that mediates cellular effects via G protein-coupled receptors (GPCRs). Epidermal growth factor (EGF) is a peptide that acts via a receptor tyrosine kinase. LPA and EGF both induce proliferation of prostate cancer cells and can transactivate each other's receptors. The LPA receptor LPA1 is particularly important for LPA response in human prostate cancer cells. Previous work in our laboratory has demonstrated that free fatty acid 4 (FFA4), a GPCR activated by ω-3 fatty acids, inhibits responses to both LPA and EGF in these cells. One potential mechanism for the inhibition involves negative interactions between FFA4 and LPA1, thereby suppressing responses to EGF that require LPA1 In the current study, we examined the role of LPA1 in mediating EGF and FFA4 agonist responses in two human prostate cancer cell lines, DU145 and PC-3. The results show that an LPA1-selective antagonist inhibits proliferation and migration to both LPA and EGF. Knockdown of LPA1 expression, using silencing RNA, blocks responses to LPA and significantly inhibits responses to EGF. The partial response to EGF that is observed after LPA1 knockdown is not inhibited by FFA4 agonists. Finally, the role of arrestin-3, a GPCR-binding protein that mediates many actions of activated GPCRs, was tested. Knockdown of arrestin-3 completely inhibits responses to both LPA and EGF in prostate cancer cells. Taken together, these results suggest that LPA1 plays a critical role in EGF responses and that FFA4 agonists inhibit proliferation by suppressing positive cross-talk between LPA1 and the EGF receptor.

  6. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator

    PubMed Central

    Zhou, Xiang; Hao, Qian; Liao, Peng; Luo, Shiwen; Zhang, Minhong; Hu, Guohui; Liu, Hongbing; Zhang, Yiwei; Cao, Bo; Baddoo, Melody; Flemington, Erik K; Zeng, Shelya X; Lu, Hua

    2016-01-01

    Cancer develops and progresses often by inactivating p53. Here, we unveil nerve growth factor receptor (NGFR, p75NTR or CD271) as a novel p53 inactivator. p53 activates NGFR transcription, whereas NGFR inactivates p53 by promoting its MDM2-mediated ubiquitin-dependent proteolysis and by directly binding to its central DNA binding domain and preventing its DNA-binding activity. Inversely, NGFR ablation activates p53, consequently inducing apoptosis, attenuating survival, and reducing clonogenic capability of cancer cells, as well as sensitizing human cancer cells to chemotherapeutic agents that induce p53 and suppressing mouse xenograft tumor growth. NGFR is highly expressed in human glioblastomas, and its gene is often amplified in breast cancers with wild type p53. Altogether, our results demonstrate that cancers hijack NGFR as an oncogenic inhibitor of p53. DOI: http://dx.doi.org/10.7554/eLife.15099.001 PMID:27282385

  7. The nuclear factor kappa B (NF-κB): A potential therapeutic target for estrogen receptor negative breast cancers

    PubMed Central

    Biswas, Debajit K.; Dai, Sun-Chun; Cruz, Antonio; Weiser, Barbara; Graner, Edgard; Pardee, Arthur B.

    2001-01-01

    The effect of a kinase inhibitor Go6796 on growth of epidermal growth factor (EGF)-stimulated estrogen receptor negative (ER−) breast cancer cells in vivo and role of nuclear factor kappa B (NF-κB) on tumorogenesis have been investigated. This was studied in an animal model by implanting ER− mouse mammary epithelial tumor cells (CSMLO) in syngeneic A-J mice. (i) Local administration of Go6976 an inhibitor of protein kinases C alpha and beta inhibited growth of tumors and caused extensive necrotic degeneration and regression of the tumors without causing any microscopically detectable damage to the vital organs liver and lung. (ii) Stable expression of dominant-negative mutants of the beta subunit (dnIkkβ) of the inhibitory kappa B (IκB) kinase (dnIkk) that selectively blocked activation of NF-κB caused loss of tumorigenic potential of CSMLO cells. Stable expression of dnIkkβ also blocked phorbol 12-myristate 13-acetate (PMA)-induced activation of NF-κB and overexpression of cyclin D1, concomitantly with the loss or reduced tumorigenic potential of these cells. Thus, results from in vivo and in vitro experiments strongly suggest the involvement of NF-κB in ER− mammary epithelial cell-mediated tumorigenesis. We propose that blocking NF-κB activation not only inhibits cell proliferation, but also antagonizes the antiapoptotic role of this transcription factor in ER− breast cancer cells. Thus, NF-κB is a potential target for therapy of EGFR family receptor-overexpressing ER− breast cancers. PMID:11517301

  8. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    PubMed Central

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed. PMID:27468248

  9. Biologic Roles of Estrogen Receptor-β and Insulin-Like Growth Factor-2 in Triple-Negative Breast Cancer

    PubMed Central

    Elshimali, Yahya; Garbán, Hermes; Elashoff, David; Vadgama, Jaydutt; Goodglick, Lee

    2015-01-01

    Triple-negative breast cancer (TNBC) occurs in 10–15% of patients yet accounts for almost half of all breast cancer deaths. TNBCs lack expression of estrogen and progesterone receptors and HER-2 overexpression and cannot be treated with current targeted therapies. TNBCs often occur in African American and younger women. Although initially responsive to some chemotherapies, TNBCs tend to relapse and metastasize. Thus, it is critical to find new therapeutic targets. A second ER gene product, termed ERβ, in the absence of ERα may be such a target. Using human TNBC specimens with known clinical outcomes to assess ERβ expression, we find that ERβ1 associates with significantly worse 5-year overall survival. Further, a panel of TNBC cell lines exhibit significant levels of ERβ protein. To assess ERβ effects on proliferation, ERβ expression in TNBC cells was silenced using shRNA, resulting in a significant reduction in TNBC proliferation. ERβ-specific antagonists similarly suppressed TNBC growth. Growth-stimulating effects of ERβ may be due in part to downstream actions that promote VEGF, amphiregulin, and Wnt-10b secretion, other factors associated with tumor promotion. In vivo, insulin-like growth factor-2 (IGF-2), along with ERβ1, is significantly expressed in TNBC and stimulates high ERβ mRNA in TNBC cells. This work may help elucidate the interplay of metabolic and growth factors in TNBC. PMID:25874233

  10. Impact of palbociclib combinations on treatment of advanced estrogen receptor-positive/human epidermal growth factor 2-negative breast cancer

    PubMed Central

    Boér, Katalin

    2016-01-01

    Breast cancer is a heterogeneous disease with multiple subgroups based on clinical and molecular characteristics. For the largest subgroup of breast cancers, hormone receptor-positive/human epidermal growth factor 2 (HER2)-negative tumors, hormone treatment is the mainstay of therapy and is likely to result in significant improvement in disease outcomes. However, some of these cancers demonstrate de novo or acquired resistance to endocrine therapy. Despite intensive research to develop new strategies to enhance the efficacy of currently available treatment options for hormone receptor-positive breast cancer, progress has been slow, and there were few advances for a period of 10 years. In 2012, a new molecularly targeted therapeutic strategy, inhibition of mammalian target of rapamycin with everolimus, was introduced into clinical practice. Everolimus, in combination with a steroidal aromatase inhibitor, exemestane, resulted in an increase in progression-free survival, but not overall survival in patients with estrogen receptor (ER)+ve advanced disease who had progressed on hormone therapy. In 2015, the first cyclin-dependent kinases 4/6 (CDK4/6) inhibitor, palbociclib, received accelerated US Food and Drug Administration approval for use in combination with letrozole for the treatment of postmenopausal ER+ve/HER2−ve advanced breast cancer as initial, endocrine-based therapy. The addition of palbociclib to endocrine therapy resulted in longer progression-free survival than letrozole alone. One year later, palbociclib received a new indication, use in combination with fulvestrant, in both premenopausal and postmenopausal females with advanced breast cancer of the same subtype with disease progression following endocrine therapy. Adding palbociclib to fulvestrant resulted in a significantly increased median progression-free survival compared to fulvestrant monotherapy. These new combination regimens of palbociclib with endocrine agents represent an important

  11. Oogenic function of the myogenic factor D-MEF2: Negative regulation of the Decapentaplegic receptor gene thick veins

    PubMed Central

    Mantrova, Ekaterina Y.; Schulz, Robert A.; Hsu, Tien

    1999-01-01

    The myogenic factor D-MEF2 is required for the proper differentiation of muscle cells during Drosophila embryogenesis and the correct patterning of indirect flight muscles assembled during later metamorphosis. In addition to these essential myogenic functions, mutant D-mef2 adult females are weakly fertile and produce defective eggs. D-MEF2 is expressed in nurse and follicle cells of the wild-type egg chamber. We have analyzed the D-mef2 oogenic phenotype and show that the gene is required for the normal patterning and differentiation of the centripetally migrating follicle cells that are crucial for development of the anterior chorionic structures. D-mef2 alleles exhibit a genetic interaction with a dominant-negative allele of thick veins (tkv), which encodes a type I receptor of the Decapentaplegic-signaling pathway. tkv RNA is overexpressed in D-mef2 mutant egg chambers, and, conversely, forced expression of D-mef2 represses tkv expression. These results indicate a role for D-MEF2 in the regulation of tkv gene expression and Decapentaplegic signal transduction that are essential for proper determination and/or differentiation of the anterior follicle cells. Additionally, they demonstrate a vital function for the D-MEF2 transcription factor in multiple genetic pathways during Drosophila development. PMID:10518546

  12. Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice

    PubMed Central

    2011-01-01

    Introduction Women who carry a BRCA1 mutation typically develop "triple-negative" breast cancers (TNBC), defined by the absence of estrogen receptor (ER), progesterone receptor and Her2/neu. In contrast to ER-positive tumors, TNBCs frequently express high levels of epidermal growth factor receptor (EGFR). Previously, we found a disproportionate fraction of progenitor cells in BRCA1 mutation carriers with EGFR overexpression. Here we examine the role of EGFR in mammary epithelial cells (MECs) in the emergence of BRCA1-related tumors and as a potential target for the prevention of TNBC. Methods Cultures of MECs were used to examine EGFR protein levels and promoter activity in response to BRCA1 suppression with inhibitory RNA. EGFR was assessed by immunoblot and immunofluorescence analysis, real-time reverse transcriptase-polymerase chain reaction assay (RT-PCR) and flow cytometry. Binding of epidermal growth factor (EGF) to subpopulations of MECs was examined by Scatchard analysis. The responsiveness of MECs to the EGFR inhibitor erlotinib was assessed in vitro in three-dimensional cultures and in vivo. Mouse mammary tumor virus-Cre recombinase (MMTV-Cre) BRCA1flox/flox p53+/- mice were treated daily with erlotinib or vehicle control, and breast cancer-free survival was analyzed using the Kaplan-Meier method. Results Inhibition of BRCA1 in MECs led to upregulation of EGFR with an inverse correlation of BRCA1 with cellular EGFR protein levels (r2 = 0.87) and to an increase in cell surface-expressed EGFR. EGFR upregulation in response to BRCA1 suppression was mediated by transcriptional and posttranslational mechanisms. Aldehyde dehydrogenase 1 (ALDH1)-positive MECs expressed higher levels of EGFR than ALDH1-negative MECs and were expanded two- to threefold in the BRCA1-inhibited MEC population. All MECs were exquisitely sensitive to EGFR inhibition with erlotinib in vitro. EGFR inhibition in MMTV-Cre BRCA1flox/flox p53+/- female mice starting at age 3 months increased

  13. Divergent effects of insulin-like growth factor-1 receptor expression on prognosis of estrogen receptor positive versus triple negative invasive ductal breast carcinoma.

    PubMed

    Hartog, Hermien; Horlings, Hugo M; van der Vegt, Bert; Kreike, Bas; Ajouaou, Abderrahim; van de Vijver, Marc J; Marike Boezen, H; de Bock, Geertruida H; van der Graaf, Winette T A; Wesseling, Jelle

    2011-10-01

    The insulin-like growth factor type 1 receptor (IGF1R) is involved in progression of breast cancer and resistance to systemic treatment. Targeting IGF1R signaling may, therefore, be beneficial in systemic treatment. We report the effect of IGF1R expression on prognosis in invasive ductal breast carcinoma (IDC), the most common type of breast cancer. Immunohistochemistry was performed on tumor tissue of a consecutive cohort of 429 female patients treated for operable primary IDC. Associations between IGF1R expression with clinicopathological parameters, disease free survival (DFS) and breast cancer specific survival (BCSS) were evaluated by multivariate analyses focusing on ER-positive and triple negative IDC (TN-IDC). To enlarge the TN-IDCs cohort, we analyzed a combined dataset of 51 TN-IDC tumors from our series with 64 TN-IDCs with similar clinicopathological parameters. Patients with tumors expressing cytoplasmic IGF1R have a longer DFS and BCSS (DFS: HR 0.46, 95% CI 0.27-0.49, P = 0.005, BCSS: HR 0.38, 95% CI 0.19-0.74, P = 0.005). This effect was most prominent in ER-positive tumors. However, in a combined series of 105 TN-IDCs cytoplasmic IGF1R expression was associated with a shorter DFS (HR = 2.29, 95% CI 1.08-4.84, P = 0.03), also when combined in a multivariate model, including well-known prognostic factors (HR 2.06; 95% CI 0.95-4.47; P = 0.07). IGF1R expression in ER-positive IDC is strongly related to a favorable DFS and BCSS, but to a shorter DFS in TN-IDC tumors. This divergent effect of IGF1R expression in subgroups of IDC may affect selection of patients for IGF1R targeted therapy.

  14. GDC-0941 and Cisplatin in Treating Patients With Androgen Receptor-Negative Triple Negative Metastatic Breast Cancer

    ClinicalTrials.gov

    2015-08-17

    Estrogen Receptor Negative Breast Cancer; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Triple Negative Breast Cancer; Recurrent Breast Cancer; Stage IV Breast Cancer; Triple-negative Breast Cancer

  15. Thromboxane A2 receptor (TBXA2R) is a potent survival factor for triple negative breast cancers (TNBCs)

    PubMed Central

    Orr, Katy; Buckley, Niamh E.; Haddock, Paula; James, Colin; Parent, Jean-Luc; McQuaid, Stephen; Mullan, Paul B.

    2016-01-01

    Triple Negative Breast Cancer (TNBC) is defined by the lack of ERα, PR expression and HER2 overexpression and is the breast cancer subtype with the poorest clinical outcomes. Our aim was to identify genes driving TNBC proliferation and/or survival which could represent novel therapeutic targets. We performed microarray profiling of primary TNBCs and generated differential genelists based on clinical outcomes following the chemotherapy regimen FEC (5-Fluorouracil/Epirubicin/Cyclophosphamide -‘good’ outcome no relapse > 3 years; ‘poor’ outcome relapse < 3 years). Elevated expression of thromboxane A2 receptor (TBXA2R) was observed in ‘good’ outcome TNBCs. TBXA2R expression was higher specifically in TNBC cell lines and TBXA2R knockdowns consistently showed dramatic cell killing in TNBC cells. TBXA2R mRNA and promoter activities were up-regulated following BRCA1 knockdown, with c-Myc being required for BRCA1-mediated transcriptional repression. We demonstrated that TBXA2R enhanced TNBC cell migration, invasion and activated Rho signalling, phenotypes which could be reversed using Rho-associated Kinase (ROCK) inhibitors. TBXA2R also protected TNBC cells from DNA damage by negatively regulating reactive oxygen species levels. In summary, TBXA2R is a novel breast cancer-associated gene required for the survival and migratory behaviour of a subset of TNBCs and could provide opportunities to develop novel, more effective treatments. PMID:27487152

  16. Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary Artery Endothelial Cells: NEW AP-1 TRANSCRIPTION FACTOR SITE AND NEGATIVE REGULATOR.

    PubMed

    Liu, Yiwei; Zhang, Lingxin; Wang, Chuan; Roy, Shama; Shen, Jianzhong

    2016-01-22

    We recently reported that the P2Y2 receptor (P2Y2R) is the predominant nucleotide receptor expressed in human coronary artery endothelial cells (HCAEC) and that P2Y2R activation by ATP or UTP induces dramatic up-regulation of tissue factor (TF), a key initiator of the coagulation cascade. However, the molecular mechanism of this P2Y2R-TF axis remains unclear. Here, we report the role of a newly identified AP-1 consensus sequence in the TF gene promoter and its original binding components in P2Y2R regulation of TF transcription. Using bioinformatics tools, we found that a novel AP-1 site at -1363 bp of the human TF promoter region is highly conserved across multiple species. Activation of P2Y2R increased TF promoter activity and mRNA expression in HCAEC. Truncation, deletion, and mutation of this distal AP-1 site all significantly suppressed TF promoter activity in response to P2Y2R activation. EMSA and ChIP assays further confirmed that upon P2Y2R activation, c-Jun, ATF-2, and Fra-1, but not the typical c-Fos, bound to the new AP-1 site. In addition, loss-of-function studies using siRNAs confirmed a positive transactivation role of c-Jun and ATF-2 but unexpectedly revealed a strong negative role of Fra-1 in P2Y2R-induced TF up-regulation. Furthermore, we found that P2Y2R activation promoted ERK1/2 phosphorylation through Src, leading to Fra-1 activation, whereas Rho/JNK mediated P2Y2R-induced activation of c-Jun and ATF-2. These findings reveal the molecular basis for P2Y G protein-coupled receptor control of endothelial TF expression and indicate that targeting the P2Y2R-Fra-1-TF pathway may be an attractive new strategy for controlling vascular inflammation and thrombogenicity associated with endothelial dysfunction.

  17. Dominant negative and loss of function mutations of the c-kit (mast/stem cell growth factor receptor) proto-oncogene in human piebaldism

    SciTech Connect

    Spritz, R.A.; Giebel, L.B.; Holmes, S.A. )

    1992-02-01

    Piebaldism is an autosomal dominant disorder of melanocyte development and is characterized by congenital white parches of skin and hair from which melanocytes are completely absent. A similar disorder of the mouse, 'dominant white spotting' (W), results from mutations of the c-kit proto-oncogene, which encodes the cellular tyrosine kinases receptor for the mast/stem cell growth factor. The authors have identified c-kit gene mutations in three patients with piebaldism. A missense substitution (Phe[r arrow]Leu) at codon 584, within the tyrosine kinases domain, is associated with a severe piebald phenotype, whereas two different frameshifts, within codons 561 and 642, are both associated with a variable and relatively mild piebald phenotype. This is consistent with a possible 'dominant negative' effect of missense c-kit polypeptides on the function of the dimeric receptor.

  18. The Chicken Ovalbumin Upstream Promoter-Transcription Factor II Negatively Regulates the Transactivation of Androgen Receptor in Prostate Cancer Cells

    PubMed Central

    Song, Chin-Hee; Lee, Hyun Joo; Park, Eunsook; Lee, Keesook

    2012-01-01

    Androgen receptor (AR) is involved in the development and progression of prostate cancers. However, the mechanisms by which this occurs remain incompletely understood. In previous reports, chicken ovalbumin upstream promoter-transcription factor II (COUP-TF II) has been suggested to play a role in the development of cancers. In the present study, we explored a putative role of COUP-TF II in prostate cancers by investigating its effect on cell proliferation and a cross-talk between COUP-TF II and AR. Overexpression of COUP-TF II results in the inhibition of androgen-dependent proliferation of prostate cancer cells. Further studies show that COUP-TF II functions as a corepressor of AR. It represses AR transactivation on target promoters containing the androgen response element (ARE) in a dose-dependent manner. In addition, COUP-TF II interacts physically with AR in vitro and in vivo. It binds to both the DNA binding domain (DBD) and the ligand-binding domain (LBD) of AR and disrupts the N/C terminal interaction of AR. Furthermore, COUP-TF II competes with coactivators such as ARA70, SRC-1, and GRIP1 to modulate AR transactivation as well as inhibiting the recruitment of AR to its ARE-containing target promoter. Taken together, our findings suggest that COUP-TF II is a novel corepressor of AR, and provide an insight into the role of COUP-TF II in prostate cancers. PMID:23145053

  19. Immunohistochemical co-expression status of cytokeratin 5/6, androgen receptor, and p53 as prognostic factors of adjuvant chemotherapy for triple negative breast cancer.

    PubMed

    Maeda, Tetsuyo; Nakanishi, Yoko; Hirotani, Yukari; Fuchinoue, Fumi; Enomoto, Katsuhisa; Sakurai, Kenichi; Amano, Sadao; Nemoto, Norimichi

    2016-03-01

    Triple negative breast cancer (TNBC) is immunohistochemically characterised by the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor type 2 (HER2). TNBC is known for its poor prognosis and high recurrence probability. There is no effective targeted treatment for TNBC, but only adjuvant chemotherapies. There are two TNBC subtypes, basal-like and non-basal-like, which are defined based on positive cytokeratin (CK) 5/6 and/or epidermal growth factor receptor (EGFR) expression. In particular, CK5/6 expression is reported to correlate with TNBC recurrence. TNBC lacks ER-α expression, but some TNBCs are known to express the androgen receptor (AR). Moreover, although p53 accumulation is detected in various malignant tumors, its influence on adjuvant chemotherapy for patients with TNBC remains unclear. The aim of this study was to assess the combined immunohistochemical expression of CK 5/6, AR, and p53 as a potential prognostic marker of adjuvant chemotherapy for patients with TNBC. The expression of CK5/6, AR, and p53 in formalin-fixed and paraffin-embedded (FFPE) surgical sections from 52 patients with TNBC was analysed by immunohistochemistry (IHC) and the co-expression patterns in individual cells were investigated by immunofluorescent (IF) staining. Low AR expression was correlated with high clinical stage (P < 0.05) and low nuclear grade (P < 0.05). The expression of CK5/6 and p53 did not correlate with clinicopathological features. Patients who needed adjuvant chemotherapy presented the worst prognosis. In particular, when the IHC expression pattern was CK5/6 (-), AR (-), and p53 (+), the disease free survival (DFS) and overall survival (OS) were the worst. On the other hand, patients with AR (+) and p53 (-) TNBC presented a good prognosis. The analysis of the co-expression status of these three markers showed that no cells presented both AR and CK5/6 expression. Furthermore, TP53 m

  20. Negative Regulation of Grb10 Interacting GYF Protein 2 on Insulin-Like Growth Factor-1 Receptor Signaling Pathway Caused Diabetic Mice Cognitive Impairment

    PubMed Central

    Xie, Jing; Wei, Qianping; Deng, Huacong; Li, Gang; Ma, Lingli; Zeng, Hui

    2014-01-01

    Heterozygous Gigyf2+/− mice exhibits histopathological evidence of neurodegeneration such as motor dysfunction. Several lines of evidence have demonstrated the important role of insulin-like growth factor-1 receptor (IGF1R) signaling pathway in the neuropathogenic process of cognitive impairment, while decreased Grb10-Interacting GYF Protein 2 (GIGYF2) expression can alter IGF1R trafficking and its downstream signaling pathways. Growth factor receptor-bound protein 10 (Grb10), a suppressor of IGF1R pathway, has been shown to play a critical role in regulating diabetes-associated cognitive impairment. It remains unknown whether endogenous GIGYF2 expression contributes to the development of diabetes-associated cognitive impairment. Using streptozotocin (STZ)-induced diabetic mice model, we first demonstrated that a significantly increased level of GIGYF2 expression was correlated with a significant decrease in the expression of phosphorylated IGF1R as well as the phosphorylation of AKT and ERK1/2, two signaling pathways downstream of IGF1R, in the hippocampus of diabetic mice. On the contrary, in situ knockdown of GIGYF2 expression in hippocampus resulted in increased expression of phosphorylated IGF1R expression and correspondingly reversed the down-regulation of ERK1/2 phsophorylation but had no obvious effect on Grb10 expression. Functionally, knockdown of GIGYF2 expression markedly ameliorated diabetes-associated cognitive dysfunction as well as the ultrastructural pathology and abnormal neurobehavioral changes. These results suggest that increased expression of GIGYF2 might contribute to the development of diabetes-associated cognitive disorder via negatively regulating IGF1R signaling pathway. Therefore, down-regulation of GIGYF2 expression may provide a potential novel approach to treat diabetes-associated cognitive impairment caused by aberrant IGF1R signaling pathway. PMID:25268761

  1. Kruppel-like Factor 9 is a Negative Regulator of Ligand-dependent Estrogen Receptor Alpha Signaling in Ishikawa Endometrial Adenocarcinoma Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen (E) and progesterone (P), acting through their respective receptors and other nuclear proteins, exhibit opposing activities in target cells. We previously reported that Krüppel-like factor 9 (KLF9) cooperates with progesterone receptor (PR) to facilitate P-dependent gene transcription in ut...

  2. Negative regulation of ErbB family receptor tyrosine kinases.

    PubMed

    Sweeney, C; Carraway, K L

    2004-01-26

    Receptors of the EGF receptor or ErbB family of growth factor receptor tyrosine kinases are frequently overexpressed in a variety of solid tumours, and the aberrant activation of their tyrosine kinase activities is thought to contribute to tumour growth and progression. Much effort has been put into developing inhibitors of ErbB receptors, and both antibody and small-molecule approaches have exhibited clinical success. Recently, a number of endogenous negative regulatory proteins have been identified that suppress the signalling activity of ErbB receptors in cells. These include intracellular RING finger E3 ubiquitin ligases such as cbl and Nrdp1 that mediate ErbB receptor degradation, and may include a wide variety of secreted and transmembrane proteins that suppress receptor activation by growth factor ligands. It will be of interest to determine the extent to which tumour cells suppress these pathways to promote their progression, and whether restoration of endogenous receptor-negative regulatory pathways may be exploited for therapeutic benefit.

  3. Integrin alpha1beta1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor receptor-mediated Rac activation.

    PubMed

    Chen, Xiwu; Abair, Tristin D; Ibanez, Maria R; Su, Yan; Frey, Mark R; Dise, Rebecca S; Polk, D Brent; Singh, Amar B; Harris, Raymond C; Zent, Roy; Pozzi, Ambra

    2007-05-01

    Integrins control many cell functions, including generation of reactive oxygen species (ROS) and regulation of collagen synthesis. Mesangial cells, found in the glomerulus of the kidney, are able to produce large amounts of ROS via the NADPH oxidase. We previously demonstrated that integrin alpha1-null mice develop worse fibrosis than wild-type mice following glomerular injury and this is due, in part, to excessive ROS production by alpha1-null mesangial cells. In the present studies, we describe the mechanism whereby integrin alpha1-null mesangial cells produce excessive ROS. Integrin alpha1-null mesangial cells have constitutively increased basal levels of activated Rac1, which result in its increased translocation to the cell membrane, excessive ROS production, and consequent collagen IV deposition. Basal Rac1 activation is a direct consequence of ligand-independent increased epidermal growth factor receptor (EGFR) phosphorylation in alpha1-null mesangial cells. Thus, our study demonstrates that integrin alpha1beta1-EGFR cross talk is a key step in negatively regulating Rac1 activation, ROS production, and excessive collagen synthesis, which is a hallmark of diseases characterized by irreversible fibrosis.

  4. Targeting Epigenetics Therapy for Estrogen Receptor-Negative Breast Cancers

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-1-0400 TITLE: Targeting Epigenetics Therapy for Estrogen Receptor...2014 4. TITLE AND SUBTITLE Targeting Epigenetics Therapy for Estrogen Receptor-Negative Breast Cancers 5a. CONTRACT NUMBER 5b...estrogen- receptor positive breast cancer, estrogen receptor negative breast cancer, epigenetics , nuclear hormone receptor, estrogen Overall

  5. Protective effect of 55- but not 75-kD soluble tumor necrosis factor receptor-immunoglobulin G fusion proteins in an animal model of gram- negative sepsis

    PubMed Central

    1994-01-01

    The aim of this study was to compare the ability of both a 55- and 75- kD soluble tumor necrosis factor receptor immunoglobulin G fusion protein (sTNFR-IgG) in protecting against death in a murine model of gram-negative sepsis. Pretreatment with 250 micrograms of the p75 construct delayed but did not avert death in this model, reducing peak bioactive TNF-alpha levels after infection from 76.4 ng ml-1 in control mice to 4.7 ng ml-1 in the treated group (p < 0.05, two-sample t test). However, these low levels of bioactive TNF-alpha persisted in the p75 fusion protein-treated animals compared with the controls and were sufficient to mediate delayed death. In contrast, pretreatment with 200 micrograms of the p55 sTNFR-IgG gave excellent protection against death with complete neutralization of circulating TNF. Studies of the binding of TNF-alpha with the soluble TNFR fusion proteins showed that the p75 fusion construct exchanges bound TNF-alpha about 50-100-fold faster than the p55 fusion protein. Thus, although both fusion proteins in equilibrium bind TNF-alpha with high affinity, the TNF-alpha p55 fusion protein complex is kinetically more stable than the p75 fusion construct, which thus acts as a TNF carrier. The persistent release of TNF-alpha from the p75 fusion construct limits its therapeutic effect in this model of sepsis. PMID:7964492

  6. Targeting the androgen receptor in triple-negative breast cancer.

    PubMed

    Gucalp, Ayca; Traina, Tiffany A

    Triple-negative breast cancer represents approximately 15%-20% of all newly diagnosed breast cancers, but it accounts for a disproportionate number of breast cancer-related deaths each year. Owing to the lack of estrogen, progesterone, and human epidermal growth factor receptor 2 expression, patients with triple-negative breast cancer do not benefit from generally well-tolerated and effective therapies targeting the estrogen and human epidermal growth factor receptor 2 signaling pathways and are faced with an increased risk of disease progression and poorer overall survival. The heterogeneity of triple-negative breast cancer has been increasingly recognized and this may lead to therapeutic opportunities because of newly defined oncogenic drivers and targets. A subset of triple-negative breast tumors expresses the androgen receptor (AR) and this may benefit from treatments that inhibit the AR-signaling pathway. The first proof-of-concept trial established activity of the AR antagonist, bicalutamide, in patients with advanced AR+ triple-negative breast cancer. Since that time, evidence further supports the activity of other next-generation AR-targeted agents such as enzalutamide. Not unlike in estrogen receptor-positive breast cancer, mechanisms of resistance are being investigated and rationale exists for thoughtful, well-designed combination regimens such as AR antagonism with CDK4/6 pathway inhibitors or PI3K inhibitors. Furthermore, novel agents developed for the treatment of prostate cancer, which reduce androgen production such as abiraterone acetate and seviteronel, are being tested as well. This review summarizes the underlying biology of AR signaling in breast cancer development and the available clinical trial data for the use of anti-androgen therapy in the treatment of AR+ triple-negative breast cancer.

  7. Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) negatively regulates the TRAF2 ubiquitin-dependent pathway by suppressing the TRAF2-sphingosine 1-phosphate (S1P) interaction.

    PubMed

    Park, Eui-Soon; Choi, Seunga; Shin, Bongjin; Yu, Jungeun; Yu, Jiyeon; Hwang, Jung-Me; Yun, Hyeongseok; Chung, Young-Ho; Choi, Jong-Soon; Choi, Yongwon; Rho, Jaerang

    2015-04-10

    The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys(63)-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.

  8. Delaying Chemotherapy in the Treatment of Hormone Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer

    PubMed Central

    Brufsky, Adam M.

    2015-01-01

    Global guidelines for the management of locally advanced or metastatic hormone receptor–positive (HR-positive), human epidermal growth factor 2–negative (HER2-negative) breast cancer recommend endocrine therapy as first-line treatment for all patients, regardless of age or postmenopausal status. However, current practice patterns in the United States and Europe suggest that these modes of therapy are not being used as recommended, and many patients with advanced HR-positive, HER2-negative disease are being treated first-line with chemotherapy or switched to chemotherapy after a single endocrine therapy. Given that chemotherapy is associated with increased toxicity and reduced quality of life (QOL) compared with endocrine therapy, prolonging the duration of response obtained with endocrine therapy may help delay chemotherapy and its attendant toxicities. Several strategies to delay or overcome endocrine resistance and thereby postpone chemotherapy have been explored, including the use of second-line endocrine agents with different mechanisms of action, adding targeted agents that inhibit specific resistance pathways, and adding agents that act in complementary or synergistic ways to inhibit tumor cell proliferation. This review analyzes the different therapy options available to HR-positive, HER2-negative patients with advanced breast cancer that can be used to delay chemotherapy and enhance QOL. PMID:26793013

  9. Cell surface interaction of annexin A2 and galectin-3 modulates epidermal growth factor receptor signaling in Her-2 negative breast cancer cells.

    PubMed

    Shetty, Praveenkumar; Bargale, Anil; Patil, Basavraj R; Mohan, Rajashekar; Dinesh, U S; Vishwanatha, Jamboor K; Gai, Pramod B; Patil, Vidya S; Amsavardani, T S

    2016-01-01

    Overexpression and activation of tyrosine kinase receptors like EGFR and Src regulate the progression and metastasis of Her-2 negative breast cancer. Recently we have reported the role of cell membrane interaction of phospholipid-binding protein annexin A2 (AnxA2) and EGFR in regulating cellular signaling in the activation of angiogenesis, matrix degradation, invasion, and cancer metastasis. Beta-galactoside-specific animal lectin galectin-3 is an apoptosis inhibitor, and cell surface-associated extracellular galectin-3 also has a role in cell migration, cancer progression, and metastasis. Similar expression pattern and membrane co-localization of these two proteins made us to hypothesize in the current study that galectin-3 and AnxA2 interaction is critical for Her-2 negative breast cancer progression. By various experimental analyses, we confirm that glycosylated AnxA2 at the membrane surface interacts with galectin-3. N-linked glycosylation inhibitor tunicamycin treatment convincingly blocked AnxA2 membrane translocation and its association with galectin-3. To analyze whether this interaction has any functional relevance, we tried to dissociate this interaction with purified plant lectin from chickpea (Cicer arietinum agglutinin). This highly specific 30 kDa plant lectin could dissociate AnxA2 from endogenous lectin galectin-3 interaction at the cell surface. This dissociation could down-regulate Bcl-2 family proteins, cell proliferation, and migration simultaneously triggering cell apoptosis. Targeting this interaction of membrane surface glycoprotein and its animal lectin in Her-2 negative breast cancer may be of therapeutic value.

  10. Receptor-interacting protein kinase 2 promotes triple-negative breast cancer cell migration and invasion via activation of nuclear factor-kappaB and c-Jun N-terminal kinase pathways

    PubMed Central

    2014-01-01

    Introduction Metastasis is the main cause of breast cancer morbidity and mortality. Processes that allow for tumor cell migration and invasion are important therapeutic targets. Here we demonstrate that receptor-interacting protein kinase 2 (RIP2), a kinase known to be involved in inflammatory processes, also has novel roles in cancer cell migration and invasion. Methods A total of six breast cancer expression databases, including The Cancer Genome Atlas, were assessed for RIP2 expression among various clinical subtypes and its role as a prognostic biomarker. mRNA fluorescence in situ hybridization (FISH) for RIP2 was performed on 17 stage III breast cancers to determine if there was a correlation between RIP2 expression and lymph node involvement. RNA-interference was used to knock-down RIP2 expression in MDA-MB-231, Htb126, SUM149PT, MCF7, T47D, and HCC1428 cells. Cell migration and invasion were measured in vitro by scratch/wound healing and transwell migration assays. A xenograft mouse model was used to assess tumor growth and chemosensitivity to docetaxel in vivo in MDA-MB-231 cells with and without RIP2 small hairpin RNA knockdown. Western blot and immunofluorescence imaging were used to evaluate protein expressions. Results Interrogation of expression databases showed that RIP2 expression is significantly over-expressed in triple-negative breast cancers (TNBC: estrogen-receptor (ER) negative, progesterone-receptor (PR) negative, Her2/neu- (Her2) negative), compared to other clinical subtypes. High RIP2 expression correlates with worse progression-free survival using a combined breast cancer expression array dataset consisting of 946 patients. Multivariate analysis shows RIP2 as an independent prognostic biomarker. Knock-down of RIP2 significantly decreases migration in both scratch/wound healing and transwell migration assays in MDA-MB-231, Htb126, SUM149PT, MCF7, and T47D cells and is correlated with decreased Nuclear Factor-kappaB and c-Jun N

  11. P53 mutations in triple negative breast cancer upregulate endosomal recycling of epidermal growth factor receptor (EGFR) increasing its oncogenic potency.

    PubMed

    Shapira, Iuliana; Lee, Annette; Vora, Reena; Budman, Daniel R

    2013-11-01

    There is no available targeted therapy for triple-negative or its more aggressive subtype, basal-like breast cancer. Multiple therapeutic strategies based on translational knowledge have not improved the treatment options for triple negative patients. As understanding of molecular pathways that drive tumor development is rapidly increasing, it is imperative to adapt our treatment strategies to perturbations in molecular pathways driving the malignant process. Basal-like breast cancers over-express EGFR (without mutations or EGFR gene amplifications) and have p53 mutations. While EGFR drives the malignant behavior in triple negative breast cancer (TNBC), anti-EGFR therapies have fallen short of the expected results in clinical trials. Here we bring evidence that the less than optimal results of the anti-EGFR therapies may be explained in part by the increased potency of the EGFR signaling due to increased endosomal recycling. The functional connection between EGFR and endosomal trafficking in TNBC is mutant p53 found in the most aggressive forms of TNBC. Mutant p53 acquires oncogenic functions and binds p63 protein, a member of p53 family with tumor suppressor activities. In the absence of functional p63 there is an upregulation of endosomal recycling EGFR and integrin to the membrane with increased proinvasive abilities of cancer cells. Blocking endosomal trafficking combined with anti-EGFR treatments may result in better clinical outcomes in TNBC.

  12. Glut1 promotes cell proliferation, migration and invasion by regulating epidermal growth factor receptor and integrin signaling in triple-negative breast cancer cells.

    PubMed

    Oh, Sunhwa; Kim, Hyungjoo; Nam, KeeSoo; Shin, Incheol

    2017-03-01

    Elevated glucose levels in cancer cells can be attributed to increased levels of glucose transporter (GLUT) proteins. Glut1 expression is increased in human malignant cells. To investigate alternative roles of Glut1 in breast cancer, we silenced Glut1 in triple-negative breast-cancer cell lines using a short hairpin RNA (shRNA) system. Glut1 silencing was verified by Western blotting and qRT-PCR. Knockdown of Glut1 resulted in decreased cell proliferation, glucose uptake, migration, and invasion through modulation of the EGFR/ MAPK signaling pathway and integrin β1/Src/FAK signaling pathways. These results suggest that Glut1 not only plays a role as a glucose transporter, but also acts as a regulator of signaling cascades in the tumorigenesis of breast cancer. [BMB Reports 2017; 50(3): 132-137].

  13. CD23 can negatively regulate B-cell receptor signaling

    PubMed Central

    Liu, Chaohong; Richard, Katharina; Wiggins, Melvin; Zhu, Xiaoping; Conrad, Daniel H.; Song, Wenxia

    2016-01-01

    CD23 has been implicated as a negative regulator of IgE and IgG antibody responses. However, whether CD23 has any role in B-cell activation remains unclear. We examined the expression of CD23 in different subsets of peripheral B cells and the impact of CD23 expression on the early events of B-cell receptor (BCR) activation using CD23 knockout (KO) mice. We found that in addition to marginal zone B cells, mature follicular B cells significantly down regulate the surface expression level of CD23 after undergoing isotype switch and memory B-cell differentiation. Upon stimulation with membrane-associated antigen, CD23 KO causes significant increases in the area of B cells contacting the antigen-presenting membrane and the magnitude of BCR clustering. This enhanced cell spreading and BCR clustering is concurrent with increases in the levels of phosphorylation of tyrosine and Btk, as well as the levels of F-actin and phosphorylated Wiskott Aldrich syndrome protein, an actin nucleation promoting factor, in the contract zone of CD23 KO B cells. These results reveal a role of CD23 in the negative regulation of BCR signaling in the absence of IgE immune complex and suggest that CD23 down-regulates BCR signaling by influencing actin-mediated BCR clustering and B-cell morphological changes. PMID:27181049

  14. Discovery of a Negative Allosteric Modulator of GABAB Receptors

    PubMed Central

    2014-01-01

    Initialized from the scaffold of CGP7930, an allosteric agonist of GABAB receptors, a series of noncompetitive antagonists were discovered. Among these compounds, compounds 3, 6, and 14 decreased agonist GABA-induced maximal effect of IP3 production in HEK293 cells overexpressing GABAB receptors and Gqi9 proteins without changing the EC50. Compounds 3, 6, and 14 not only inhibited agonist baclofen-induced ERK1/2 phosphorylation but also blocked CGP7930-induced ERK1/2 phosphorylation in HEK293 cells overexpressing GABAB receptors. The results suggested that compounds 3, 6, and 14 are negative allosteric modulators of GABAB receptors. The representative compound 14 decreased GABA-induced IP3 production with IC50 of 37.9 μM and had no effect on other GPCR Class C members such as mGluR1, mGluR2, and mGluR5. Finally, we showed that compound 14 did not bind to the orthosteric binding sites of GABAB receptors, demonstrating that compound 14 negatively modulated GABAB receptors activity as a negative allosteric modulator. PMID:25050158

  15. Identification of a negative regulatory cis-element in the enhancer core region of the prostate-specific antigen promoter: implications for intersection of androgen receptor and nuclear factor-kappaB signalling in prostate cancer cells.

    PubMed Central

    Cinar, Bekir; Yeung, Fan; Konaka, Hiroyuki; Mayo, Marty W; Freeman, Michael R; Zhau, Haiyen E; Chung, Leland W K

    2004-01-01

    The NF-kappaB (nuclear factor-kappaB) transcription factors mediate activation of a large number of gene promoters containing diverse kappaB-site sequences. Here, PSA (prostate-specific antigen) was used as an AR (androgen receptor)-responsive gene to examine the underlying mechanism by which the NF-kappaB p65 transcription factor down-regulates the transcriptional activity of AR in cells. We observed that activation of NF-kappaB by TNFalpha (tumour necrosis factor alpha) inhibited both basal and androgen-stimulated PSA expression, and that this down-regulation occurred at the promoter level, as confirmed by the super-repressor IkappaBalpha (S32A/S36A), a dominant negative inhibitor of NF-kappaB. Using a linker-scanning mutagenesis approach, we identified a cis -element, designated XBE (X-factor-binding element), in the AREc (androgen response element enhancer core) of the PSA promoter, which negatively regulated several AR-responsive promoters, including that of PSA. When three copies of XBE in tandem were juxtaposed to GRE4 (glucocorticoid response element 4), a 4-6-fold reduction of inducible GRE4 activity was detected in three different cell lines, LNCaP, ARCaP-AR and PC3-AR. Bioinformatics and molecular biochemical studies indicated that XBE is a kappaB-like element that binds specifically to the NF-kappaB p65 subunit; consistent with these observations, only NF-kappaB p65, but not the NF-kappaB p50 subunit, was capable of inhibiting AR-mediated PSA promoter transactivation in LNCaP cells. In addition, our data also showed that AR binds to XBE, as well as to the kappaB consensus site, and that the transfection of AR inhibits the kappaB-responsive promoter in transient co-transfection assays. Collectively, these data indicate that cross-modulation between AR and NF-kappaB p65 transcription factors may occur by a novel mechanism involving binding to a common cis -DNA element. PMID:14715080

  16. Oestrogen receptor negativity in breast cancer: a cause or consequence?

    PubMed Central

    Gajulapalli, Vijaya Narasihma Reddy; Malisetty, Vijaya Lakshmi; Chitta, Suresh Kumar; Manavathi, Bramanandam

    2016-01-01

    Endocrine resistance, which occurs either by de novo or acquired route, is posing a major challenge in treating hormone-dependent breast cancers by endocrine therapies. The loss of oestrogen receptor α (ERα) expression is the vital cause of establishing endocrine resistance in this subtype. Understanding the mechanisms that determine the causes of this phenomenon are therefore essential to reduce the disease efficacy. But how we negate oestrogen receptor (ER) negativity and endocrine resistance in breast cancer is questionable. To answer that, two important approaches are considered: (1) understanding the cellular origin of heterogeneity and ER negativity in breast cancers and (2) characterization of molecular regulators of endocrine resistance. Breast tumours are heterogeneous in nature, having distinct molecular, cellular, histological and clinical behaviour. Recent advancements in perception of the heterogeneity of breast cancer revealed that the origin of a particular mammary tumour phenotype depends on the interactions between the cell of origin and driver genetic hits. On the other hand, histone deacetylases (HDACs), DNA methyltransferases (DNMTs), miRNAs and ubiquitin ligases emerged as vital molecular regulators of ER negativity in breast cancers. Restoring response to endocrine therapy through re-expression of ERα by modulating the expression of these molecular regulators is therefore considered as a relevant concept that can be implemented in treating ER-negative breast cancers. In this review, we will thoroughly discuss the underlying mechanisms for the loss of ERα expression and provide the future prospects for implementing the strategies to negate ER negativity in breast cancers. PMID:27884978

  17. Targeting Thyroid Hormone Receptor Beta in Triple Negative Breast Cancer

    PubMed Central

    Gu, Guowei; Gelsomino, Luca; Covington, Kyle R.; Beyer, Amanda R.; Wang, John; Rechoum, Yassine; Huffman, Kenneth; Carstens, Ryan; Ando, Sebastiano; Fuqua, Suzanne A.W.

    2015-01-01

    Purpose Discover novel nuclear receptor targets in triple negative breast cancer Methods Expression microarray, western blot, qRT-PCR, MTT growth assay, soft agar anchorage-independent growth assay, TRE reporter transactivation assay, statistical analysis. Results We performed microarray analysis using 227 triple negative breast tumors, and clustered the tumors into five groups according to their nuclear receptor expression. Thyroid hormone receptor beta (TRβ) was one of the most differentially expressed nuclear receptors in group 5 compared to other groups. TRβ low expressing patients were associated with poor outcome. We evaluated the role of TRβ in triple negative breast cancer cell lines representing group 5 tumors. Knockdown of TRβ increased soft agar colony and reduced sensitivity to docetaxel and doxorubicin treatment. Docetaxel or doxorubicin long-term cultured cell lines also expressed decreased TRβ protein. Microarray analysis revealed cAMP/PKA signaling was the only KEGG pathways upregulated in TRβ knockdown cells. Inhibitors of cAMP or PKA, in combination with doxorubicin further enhanced cell apoptosis and restored sensitivity to chemotherapy. TRβ-specific agonists enhanced TRβ expression, and further sensitized cells to both docetaxel and doxorubicin. Sensitization was mediated by increased apoptosis with elevated cleaved PARP and caspase 3. Conclusions TRβ represents a novel nuclear receptor target in triple negative breast cancer; low TRβ levels were associated with enhanced resistance to both docetaxel and doxorubicin treatment. TRβ-specific agonists enhance chemosensitivity to these two agents. Mechanistically enhanced cAMP/PKA signaling was associated with TRβ’s effects on response to chemotherapy. PMID:25820519

  18. TBCRC 008: Early Change in 18F-FDG Uptake on PET Predicts Response to Preoperative Systemic Therapy in Human Epidermal Growth Factor Receptor 2–Negative Primary Operable Breast Cancer

    PubMed Central

    Connolly, Roisin M.; Leal, Jeffrey P.; Goetz, Matthew P.; Zhang, Zhe; Zhou, Xian C.; Jacobs, Lisa K.; Mhlanga, Joyce; Joo, H O; Carpenter, John; Storniolo, Anna Maria; Watkins, Stanley; Fetting, John H.; Miller, Robert S.; Sideras, Kostandinos; Jeter, Stacie C.; Walsh, Bridget; Powers, Penny; Zorzi, Jane; Boughey, Judy C.; Davidson, Nancy E.; Carey, Lisa A.; Wolff, Antonio C.; Khouri, Nagi; Gabrielson, Edward; Wahl, Richard L.; Stearns, Vered

    2015-01-01

    Epigenetic modifiers, including the histone deacetylase inhibitor vorinostat, may sensitize tumors to chemotherapy and enhance outcomes. We conducted a multicenter randomized phase II neo-adjuvant trial of carboplatin and nanoparticle albumin-bound paclitaxel (CP) with vorinostat or placebo in women with stage II/III, human epidermal growth factor receptor 2 (HER2)–negative breast cancer, in which we also examined whether change in maximum standardized uptake values corrected for lean body mass (SULmax) on 18F-FDG PET predicted pathologic complete response (pCR) in breast and axillary lymph nodes. Methods Participants were randomly assigned to 12 wk of preoperative carboplatin (area under the curve of 2, weekly) and nab-paclitaxel (100 mg/m2 weekly) with vorinostat (400 mg orally daily, days 1–3 of every 7-d period) or placebo. All patients underwent 18F-FDG PET and research biopsy at baseline and on cycle 1 day 15. The primary endpoint was the pCR rate. Secondary objectives included correlation of change in tumor SULmax on 18F-FDG PET by cycle 1 day 15 with pCR and correlation of baseline and change in Ki-67 with pCR. Results In an intent-to-treat analysis (n = 62), overall pCR was 27.4% (vorinostat, 25.8%; placebo, 29.0%). In a pooled analysis (n = 59), we observed a significant difference in median change in SULmax 15 d after initiating preoperative therapy between those achieving pCR versus not (percentage reduction, 63.0% vs. 32.9%; P = 0.003). Patients with 50% or greater reduction in SULmax were more likely to achieve pCR, which remained statistically significant in multivariable analysis including estrogen receptor status (odds ratio, 5.1; 95% confidence interval, 1.3–22.7; P = 0.023). Differences in baseline and change in Ki-67 were not significantly different between those achieving pCR versus not. Conclusion Preoperative CP with vorinostat or placebo is associated with similar pCR rates. Early change in SULmax on 18F-FDG PET 15 d after the

  19. Pembrolizumab and Enobosarm in Treating Patients With Androgen Receptor Positive Metastatic Triple Negative Breast Cancer

    ClinicalTrials.gov

    2017-04-04

    Androgen Receptor Positive; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Triple-Negative Breast Carcinoma

  20. Intracellular LINGO-1 negatively regulates Trk neurotrophin receptor signaling.

    PubMed

    Meabon, James S; de Laat, Rian; Ieguchi, Katsuaki; Serbzhinsky, Dmitry; Hudson, Mark P; Huber, B Russel; Wiley, Jesse C; Bothwell, Mark

    2016-01-01

    Neurotrophins, essential regulators of many aspects of neuronal differentiation and function, signal via four receptors, p75, TrkA, TrkB and TrkC. The three Trk paralogs are members of the LIG superfamily of membrane proteins, which share extracellular domains consisting of leucine-rich repeat and C2 Ig domains. Another LIG protein, LINGO-1 has been reported to bind and influence signaling of p75 as well as TrkA, TrkB and TrkC. Here we examine the manner in which LINGO-1 influences the function of TrkA, TrkB and TrkC. We report that Trk activation promotes Trk association with LINGO-1, and that this association promotes Trk degradation by a lysosomal mechanism. This mechanism resembles the mechanism by which another LIG protein, LRIG1, promotes lysosomal degradation of receptor tyrosine kinases such as the EGF receptor. We present evidence indicating that the Trk/LINGO-1 interaction occurs, in part, within recycling endosomes. We show that a mutant form of LINGO-1, with much of the extracellular domain deleted, has the capacity to enhance TrkA signaling in PC12 cells, possibly by acting as an inhibitor of Trk down-regulation by full length LINGO-1. We propose that LINGO-1 functions as a negative feedback regulator of signaling by cognate receptor tyrosine kinases including TrkA, TrkB and TrkC.

  1. Inflammation, Prostate Cancer and Negative Regulation of Androgen Receptor Expression

    DTIC Science & Technology

    2009-05-01

    activity, 2) microRNA -mediated regulation of prostate cancer cell proliferation. My data establish that the human AR level is negatively regulated by... cancer , scanning of the cancer microRNA array shows that miR-454 is up regulated in androgen-independent C4-2 cells and overexpression of miR-454...TERMS Androgen receptor, prostate cancer , TNF-α, NF-κB, microRNA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF

  2. Epidermal Growth Factor Receptor Overexpression as a Target for Auger Electron Radiotherapy of Breast Cancer

    DTIC Science & Technology

    1999-08-01

    proportion of estrogen receptor-negative and hormone-resistant breast cancers. Our objective is to construct a human epidermal growth factor (hEGF...61 5 INTRODUCTION Overexpression of the epidermal growth factor receptor (EGFR) occurs in a high proportion of estrogen receptor-negative and...Lac Iq promotor induced by isopropyl-b- D -thiogalactopyranoside (IPTG). The DNA sequence of the final hEGF-CH1 construct was confirmed (FUi. 2). BamHJ

  3. Negative Suppressors of Oncogenic Activation of the Met Receptor Tyrosine Kinase

    DTIC Science & Technology

    2007-03-01

    progesterone (PR) receptor positive), basal ( triple negative : ER/PER/Her2 negative ) and the Her2 (ER/PR negative , Her2 amplification and/or overexpression...AD_________________ Award Number: W81XWH-06-1-0392 TITLE: Negative Suppressors of Oncogenic...CONTRACT NUMBER Negative Suppressors of Oncogenic Activation of the Met Receptor 5b. GRANT NUMBER W81XWH-06-1-0392 5c. PROGRAM ELEMENT NUMBER

  4. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer.

    PubMed

    Haiman, Christopher A; Chen, Gary K; Vachon, Celine M; Canzian, Federico; Dunning, Alison; Millikan, Robert C; Wang, Xianshu; Ademuyiwa, Foluso; Ahmed, Shahana; Ambrosone, Christine B; Baglietto, Laura; Balleine, Rosemary; Bandera, Elisa V; Beckmann, Matthias W; Berg, Christine D; Bernstein, Leslie; Blomqvist, Carl; Blot, William J; Brauch, Hiltrud; Buring, Julie E; Carey, Lisa A; Carpenter, Jane E; Chang-Claude, Jenny; Chanock, Stephen J; Chasman, Daniel I; Clarke, Christine L; Cox, Angela; Cross, Simon S; Deming, Sandra L; Diasio, Robert B; Dimopoulos, Athanasios M; Driver, W Ryan; Dünnebier, Thomas; Durcan, Lorraine; Eccles, Diana; Edlund, Christopher K; Ekici, Arif B; Fasching, Peter A; Feigelson, Heather S; Flesch-Janys, Dieter; Fostira, Florentia; Försti, Asta; Fountzilas, George; Gerty, Susan M; Giles, Graham G; Godwin, Andrew K; Goodfellow, Paul; Graham, Nikki; Greco, Dario; Hamann, Ute; Hankinson, Susan E; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Holbrook, Andrea; Hoover, Robert N; Hu, Jennifer J; Hunter, David J; Ingles, Sue A; Irwanto, Astrid; Ivanovich, Jennifer; John, Esther M; Johnson, Nicola; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Ko, Yon-Dschun; Kolonel, Laurence N; Konstantopoulou, Irene; Kosma, Veli-Matti; Kulkarni, Swati; Lambrechts, Diether; Lee, Adam M; Marchand, Loïc Le; Lesnick, Timothy; Liu, Jianjun; Lindstrom, Sara; Mannermaa, Arto; Margolin, Sara; Martin, Nicholas G; Miron, Penelope; Montgomery, Grant W; Nevanlinna, Heli; Nickels, Stephan; Nyante, Sarah; Olswold, Curtis; Palmer, Julie; Pathak, Harsh; Pectasides, Dimitrios; Perou, Charles M; Peto, Julian; Pharoah, Paul D P; Pooler, Loreall C; Press, Michael F; Pylkäs, Katri; Rebbeck, Timothy R; Rodriguez-Gil, Jorge L; Rosenberg, Lynn; Ross, Eric; Rüdiger, Thomas; Silva, Isabel dos Santos; Sawyer, Elinor; Schmidt, Marjanka K; Schulz-Wendtland, Rüdiger; Schumacher, Fredrick; Severi, Gianluca; Sheng, Xin; Signorello, Lisa B; Sinn, Hans-Peter; Stevens, Kristen N; Southey, Melissa C; Tapper, William J; Tomlinson, Ian; Hogervorst, Frans B L; Wauters, Els; Weaver, JoEllen; Wildiers, Hans; Winqvist, Robert; Van Den Berg, David; Wan, Peggy; Xia, Lucy Y; Yannoukakos, Drakoulis; Zheng, Wei; Ziegler, Regina G; Siddiq, Afshan; Slager, Susan L; Stram, Daniel O; Easton, Douglas; Kraft, Peter; Henderson, Brian E; Couch, Fergus J

    2011-10-30

    Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 × 10(-10)). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 × 10(-9)), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 × 10(-9)). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations.

  5. A Study Evaluating INIPARIB in Combination With Chemotherapy to Treat Triple Negative Breast Cancer Brain Metastasis

    ClinicalTrials.gov

    2016-02-17

    Estrogen Receptor Negative (ER-Negative) Breast Cancer; Progesterone Receptor Negative (PR-Negative) Breast Cancer; Human Epidermal Growth Factor Receptor 2 Negative (HER2-Negative) Breast Cancer; Brain Metastases

  6. Activation of Estrogen Receptor Transfected into a Receptor-Negative Brest Cancer Cell Line Decreases the Metastatic and Invasive Potential of the Cells

    NASA Astrophysics Data System (ADS)

    Garcia, Marcel; Derocq, Danielle; Freiss, Gilles; Rochefort, Henri

    1992-12-01

    Breast cancers containing estrogen receptors are responsive to antiestrogen treatment and have a better prognosis than estrogen receptor-negative tumors. The loss of estrogen and progesterone receptors appears to be associated with a progression to less-differentiated tumors. We transfected the human estrogen receptor into the estrogen receptor-negative metastatic breast cancer cell line MDA-MB-231 in an attempt to restore their sensitivity to antiestrogens. Two stable sublines of MDA-MB-231 cells (HC1 and HE5) expressing functional estrogen receptors were studied for their ability to grow and invade in vitro and to metastasize in athymic nude mice. The number and size of lung metastases developed by these two sublines in ovariectomized nude mice was not markedly altered by tamoxifen but was inhibited 3-fold by estradiol. Estradiol also significantly inhibited in vitro cell proliferation of these sublines and their invasiveness in Matrigel, a reconstituted basement membrane, whereas the antiestrogens 4-hydroxytamoxifen and ICI 164,384 reversed these effects. These results show that estradiol inhibits the metastatic ability of estrogen receptornegative breast cancer cells following transfection with the estrogen receptor, whereas estrogen receptor-positive breast cancers are stimulated by estrogen, indicating that factors other than the estrogen receptor are involved in progression toward hormone independence. Reactivation or transfer of the estrogen receptor gene can therefore be considered as therapeutic approaches to hormone-independent cancers

  7. Negative glucocorticoid receptor response elements and their role in glucocorticoid action.

    PubMed

    Dostert, A; Heinzel, T

    2004-01-01

    The glucocorticoid receptor (GR) belongs to the steroid hormone receptor subclass of nuclear receptors and controls physiological processes through activation and repression of specific target genes. The ligand-activated receptor dimer activates gene expression by binding to specific DNA sequences (glucocorticoid response element, GRE) in the promoter regions of glucocorticoid-regulated genes. In contrast to the regulation of these classical GREs, the repression of negatively regulated target genes is mediated by negative GREs (nGRE), composite GREs or by transrepression. Due to their broad therapeutic spectrum and superior therapeutic effects glucocorticoids (GCs) are the most effective drugs used for the treatment of acute and chronic inflammatory diseases. Unfortunately, long term systemic therapy with GCs is restricted due to their metabolic side effects. It is assumed that transrepression of transcription factors such as AP-1 and NF-kappa B is the main mechanism by which glucocorticoids mediate their anti-inflammatory activity, whereas the side effects of GCs are mainly mediated by GR-DNA-interaction either by activation or by negative regulation of gene expression. While trans-repression has been characterized in detail, the molecular mechanisms of DNA-dependent cis-repression remain unclear. In this review, we focus on current knowledge about nGRE-mediated target gene repression and the relevance and function of these genes for glucocorticoid action. Negative GREs contribute to the regulation of the hypothalamic-pituitary-adrenal (HPA) axis (POMC and CRH), bone (osteocalcin) and skin (keratins) function, inflammation (IL-1beta), angiogenesis (proliferin) and lactation (prolactin). The discovery of the underlying mechanisms, especially the comparison to positive GREs and trans-repression may help in the future to discover and analyze novel selective GR agonists.

  8. Negative elongation factor controls energy homeostasis in cardiomyocytes.

    PubMed

    Pan, Haihui; Qin, Kunhua; Guo, Zhanyong; Ma, Yonggang; April, Craig; Gao, Xiaoli; Andrews, Thomas G; Bokov, Alex; Zhang, Jianhua; Chen, Yidong; Weintraub, Susan T; Fan, Jian-Bing; Wang, Degeng; Hu, Yanfen; Aune, Gregory J; Lindsey, Merry L; Li, Rong

    2014-04-10

    Negative elongation factor (NELF) is known to enforce promoter-proximal pausing of RNA polymerase II (Pol II), a pervasive phenomenon observed across multicellular genomes. However, the physiological impact of NELF on tissue homeostasis remains unclear. Here, we show that whole-body conditional deletion of the B subunit of NELF (NELF-B) in adult mice results in cardiomyopathy and impaired response to cardiac stress. Tissue-specific knockout of NELF-B confirms its cell-autonomous function in cardiomyocytes. NELF directly supports transcription of those genes encoding rate-limiting enzymes in fatty acid oxidation (FAO) and the tricarboxylic acid (TCA) cycle. NELF also shares extensively transcriptional target genes with peroxisome proliferator-activated receptor α (PPARα), a master regulator of energy metabolism in the myocardium. Mechanistically, NELF helps stabilize the transcription initiation complex at the metabolism-related genes. Our findings strongly indicate that NELF is part of the PPARα-mediated transcription regulatory network that maintains metabolic homeostasis in cardiomyocytes.

  9. Fulvestrant, a selective estrogen receptor down-regulator, sensitizes estrogen receptor negative breast tumors to chemotherapy.

    PubMed

    Jiang, Donghai; Huang, Yuan; Han, Ning; Xu, Mingjie; Xu, Liang; Zhou, Lin; Wang, Shu; Fan, Weimin

    2014-05-01

    Drug resistance frequently results in poor prognosis and high 5-year recurrence rate in estrogen receptor-negative (ER-) breast cancer patients. Herein, we examined the reversal effects of fulvestrant on multidrug resistance (MDR) in ER- breast cancer cells. Co-administration of fulvestrant significantly sensitized ER- MDR tumors to paclitaxel both in vitro and in vivo. Further analyses indicated that fulvestrant did not affect P-gp expression, but could inhibit P-gp function and subsequently reverse P-gp mediated drug resistance in ER- breast cancer cells. These results showed that combination of fulvestrant and chemotherapeutic agents might provide an effective treatment for ER- MDR breast cancers.

  10. The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells

    PubMed Central

    O'Donnell, E F; Koch, D C; Bisson, W H; Jang, H S; Kolluri, S K

    2014-01-01

    Identification of new molecular targets for the treatment of breast cancer is an important clinical goal, especially for triple-negative breast cancer, which is refractory to existing targeted treatments. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known primarily as the mediator of dioxin toxicity. However, the AhR can also inhibit cellular proliferation in a ligand-dependent manner and act as a tumor suppressor in mice, and thus may be a potential anticancer target. To investigate the AhR as an anticancer target, we conducted a small molecule screen to discover novel AhR ligands with anticancer properties. We identified raloxifene, a selective estrogen receptor (ER) modulator currently used in the clinic for prevention of ER-positive breast cancer and osteoporosis in post-menopausal women, as an AhR activator. Raloxifene directly bound the AhR and induced apoptosis in ER-negative mouse and human hepatoma cells in an AhR-dependent manner, indicating that the AhR is a molecular target of raloxifene and mediates raloxifene-induced apoptosis in the absence of ER. Raloxifene selectively induced apoptosis of triple-negative MDA-MB-231 breast cancer cells compared with non-transformed mammary epithelial cells via the AhR. Combined with recent data showing that raloxifene inhibits triple-negative breast cancer xenografts in vivo (Int J Oncol. 43(3):785-92, 2013), our results support the possibility of repurposing of raloxifene as an AhR-targeted therapeutic for triple-negative breast cancer patients. To this end, we also evaluated the role of AhR expression on survival of patients diagnosed with breast cancer. We found that higher expression of the AhR is significantly associated with increased overall survival and distant metastasis-free survival in both hormone-dependent (ER-positive) and hormone-independent (ER and progesterone receptor (PR)-negative) breast cancers. Together, our data strongly support the possibility of using the Ah

  11. The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells.

    PubMed

    O'Donnell, E F; Koch, D C; Bisson, W H; Jang, H S; Kolluri, S K

    2014-01-30

    Identification of new molecular targets for the treatment of breast cancer is an important clinical goal, especially for triple-negative breast cancer, which is refractory to existing targeted treatments. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known primarily as the mediator of dioxin toxicity. However, the AhR can also inhibit cellular proliferation in a ligand-dependent manner and act as a tumor suppressor in mice, and thus may be a potential anticancer target. To investigate the AhR as an anticancer target, we conducted a small molecule screen to discover novel AhR ligands with anticancer properties. We identified raloxifene, a selective estrogen receptor (ER) modulator currently used in the clinic for prevention of ER-positive breast cancer and osteoporosis in post-menopausal women, as an AhR activator. Raloxifene directly bound the AhR and induced apoptosis in ER-negative mouse and human hepatoma cells in an AhR-dependent manner, indicating that the AhR is a molecular target of raloxifene and mediates raloxifene-induced apoptosis in the absence of ER. Raloxifene selectively induced apoptosis of triple-negative MDA-MB-231 breast cancer cells compared with non-transformed mammary epithelial cells via the AhR. Combined with recent data showing that raloxifene inhibits triple-negative breast cancer xenografts in vivo (Int J Oncol. 43(3):785-92, 2013), our results support the possibility of repurposing of raloxifene as an AhR-targeted therapeutic for triple-negative breast cancer patients. To this end, we also evaluated the role of AhR expression on survival of patients diagnosed with breast cancer. We found that higher expression of the AhR is significantly associated with increased overall survival and distant metastasis-free survival in both hormone-dependent (ER-positive) and hormone-independent (ER and progesterone receptor (PR)-negative) breast cancers. Together, our data strongly support the possibility of using the Ah

  12. The muscle-specific laminin receptor alpha7 beta1 integrin negatively regulates alpha5 beta1 fibronectin receptor function.

    PubMed

    Tomatis, D; Echtermayer, F; Schöber, S; Balzac, F; Retta, S F; Silengo, L; Tarone, G

    1999-02-01

    alpha7 beta1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the alpha7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with alpha7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the alpha7 beta1. alpha7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of alpha7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the alpha5 beta1 fibronectin receptor. Although cell surface expression of alpha5 beta1 was reduced by a factor of 20-25% in alpha7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of 125I-fibronectin for its surface receptor was decreased by 50% in alpha7 transfectants, indicating that the alpha5 beta1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+ restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in alpha7 transfectants. These data indicate that alpha7 expression leads to the functional down regulation of alpha5beta1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of a negative cooperativity between alpha7 and alpha5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.

  13. The latest progress in research on triple negative breast cancer (TNBC): risk factors, possible therapeutic targets and prognostic markers.

    PubMed

    Jiao, Qingli; Wu, Aiguo; Shao, Guoli; Peng, Haoyu; Wang, Mengchuan; Ji, Shufeng; Liu, Peng; Zhang, Jian

    2014-09-01

    Triple negative breast cancer (TNBC) is one type of breast cancer (BC), which is defined as negative for estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (Her2). Its origins and development seem to be elusive. And for now, drugs like tamoxifen or trastuzumab which specifically apply to ER, PR or Her2 positive BC seem unforeseeable in TNBC clinical treatment. Due to its extreme malignancy, high recurrence rate and poor prognosis, a lot of work on the research of TNBC is needed. This review aims to summarize the latest findings in TNBC in risk factors, possible therapeutic targets and possible prognostic makers.

  14. Survival among women with triple receptor-negative breast cancer and brain metastases

    PubMed Central

    Dawood, S.; Broglio, K.; Esteva, F. J.; Yang, W.; Kau, S.-W.; Islam, R.; Albarracin, C.; Yu, T. K.; Green, M.; Hortobagyi, G. N.; Gonzalez-Angulo, A. M.

    2009-01-01

    Background: The purpose of this study was to determine the incidence of and survival following brain metastases among women with triple receptor-negative breast cancer. Patients and methods: In all, 679 patients with nonmetastatic triple receptor-negative breast cancer diagnosed from 1980 to 2006 were identified. Cumulative incidence of brain metastases was computed. Cox proportional hazards models were fitted to explore factors that predict for development of brain metastases. Survival was computed using the Kaplan–Meier product limit method. Results: Median follow-up was 26.9 months. In all, 42 (6.2%) patients developed brain metastases with a cumulative incidence at 2 and 5 years of 5.6% [95% confidence interval (CI) 3.8% to 7.9%] and 9.6% (95% CI 6.8% to 13%), respectively. A total of 24 (3.5%) patients developed brain metastases as the first site of recurrence with cumulative incidence at 2 and 5 years of 2.0% (95% CI 2.6% to 6.0%) and 4.9% (95% CI 3.2% to 7.0%), respectively. In the multivariable model, no specific factor was observed to be significantly associated with time to brain metastases. Median survival for all patients who developed brain metastases and those who developed brain metastases as the first site of recurrence was 2.9 months (95% CI 2.0–7.6 months) and 5.8 months (95% CI 1.7–11.0 months), respectively. Conclusion: In this single-institutional study, patients with nonmetastatic triple receptor-negative breast tumors have a high early incidence of brain metastases associated with poor survival and maybe an ideal cohort to target brain metastases preventive strategies. PMID:19150943

  15. Epidermal growth factor receptor degradation: an alternative view of oncogenic pathways.

    PubMed

    Kirisits, Andreas; Pils, Dietmar; Krainer, Michael

    2007-01-01

    Positive regulation of epidermal growth factor receptor signalling is related to many human malignancies. Besides overexpression and gain of function mutations, the escape from negative regulation through an increase in epidermal growth factor receptor stability has evolved as yet another key factor contributing to enhanced receptor activity. Intensive research over the past years has provided considerable evidence concerning the molecular mechanisms which provide epidermal growth factor receptor degradation. c-Cbl mediated ubiquitination, endocytosis via clathrin-coated pits, endosomal sorting and lysosomal degradation have become well-investigated cornerstones. Recent findings on the interdependency of the endosomal sorting complexes required for transport in multivesicular body sorting, stress the topicality of receptor tyrosine kinase downregulation. Here, we review the degradation pathway of the epidermal growth factor receptor, following the receptor from ligand binding to the lysosome and illustrating different modes of oncogenic deregulation.

  16. Hormonal therapy followed by chemotherapy or the reverse sequence as first-line treatment of hormone-responsive, human epidermal growth factor receptor-2 negative metastatic breast cancer patients: results of an observational study.

    PubMed

    Bighin, Claudia; Dozin, Beatrice; Poggio, Francesca; Ceppi, Marcello; Bruzzi, Paolo; D'Alonzo, Alessia; Levaggi, Alessia; Giraudi, Sara; Lambertini, Matteo; Miglietta, Loredana; Vaglica, Marina; Fontana, Vincenzo; Iacono, Giuseppina; Pronzato, Paolo; Mastro, Lucia Del

    2017-01-18

    Introduction Although hormonal-therapy is the preferred first-line treatment for hormone-responsive, HER2 negative metastatic breast cancer, no data from clinical trials support the choice between hormonal-therapy and chemotherapy.Methods Patients were divided into two groups according to the treatment: chemotherapy or hormonal-therapy. Outcomes in terms of clinical benefit and median overall survival (OS) were retrospectively evaluated in the two groups. To calculate the time spent in chemotherapy with respect to OS in the two groups, the proportion of patients in chemotherapy relative to those present in either group was computed at every day from the start of therapy.Results From 1999 to 2013, 119 patients received first-line hormonal-therapy (HT-first group) and 100 first-line chemotherapy (CT-first group). Patients in the CT-first group were younger and with poorer prognostic factors as compared to those in HT-first group. Clinical benefit (77 vs 81%) and median OS (50.7 vs 51.1 months) were similar in the two groups. Time spent in chemotherapy was significantly longer during the first 3 years in CT-first group (54-34%) as compared to the HT-first group (11-18%). This difference decreased after the third year and overall was 28% in the CT-first group and 18% in the HT-first group.Conclusions The sequence first-line chemotherapy followed by hormonal-therapy, as compared with the opposite sequence, is associated with a longer time of OS spent in chemotherapy. However, despite the poorer prognostic factors, patients in the CT-first group had a superimposable OS than those in the HT-first group.

  17. A model of spontaneous mouse mammary tumor for human estrogen receptor- and progesterone receptor-negative breast cancer

    PubMed Central

    ZHENG, LIXIANG; ZHOU, BUGAO; MENG, XIANMING; ZHU, WEIFENG; ZUO, AIREN; WANG, XIAOMIN; JIANG, RUNDE; YU, SHIPING

    2014-01-01

    Breast cancer (BC) is the most frequently malignancy in women. Therefore, establishment of an animal model for the development of preventative measures and effective treatment for tumors is required. A novel heterogeneous spontaneous mammary tumor animal model of Kunming mice was generated. The purpose of this study was to characterize the spontaneous mammary tumor model. Histopathologically, invasive nodular masses of pleomorphic tubular neoplastic epithelial cells invaded fibro-vascular stroma, adjacent dermis and muscle tissue. Metastatic spread through blood vessel into liver and lungs was observed by hematoxylin eosin staining. No estrogen receptor (ER) or progesterone receptor (PR) immunoreactivity was detected in their associated malignant tumors, human epidermal growth factor receptor-2 (HER-2) protein weak expression was found by immunohistochemistry. High expression of vascular endothelial growth factor (VEGF), moderate or high expression of c-Myc and cyclin D1 were observed in tumor sections at different stages (2, 4, 6 and 8 weeks after cancer being found) when compared with that of the normal mammary glands. The result showed that the model is of an invasive ductal carcinoma. Remarkably in the mouse model, ER and PR-negative and HER2 weak positivity are observed. The high or moderate expressions of breast cancer markers (VEGF, c-Myc and cyclin D1) in mammary cancer tissue change at different stages. To our knowledge, this is the first report of a spontaneous mammary model displaying colony-strain, outbred mice. This model will be an attractive tool to understand the biology of anti-hormonal breast cancer in women. PMID:25230850

  18. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-β (transforming growth factor-β) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-β type I receptor

    PubMed Central

    2004-01-01

    Inhibitory Smad, Smad7, is a potent inhibitor of TGF-β (transforming growth factor-β) superfamily signalling. By binding to activated type I receptors, it prevents the activation of R-Smads (receptor-regulated Smads). To identify new components of the Smad pathway, we performed yeast two-hybrid screening using Smad7 as bait, and identified NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) as a direct binding partner of Smad7. NEDD4-2 is structurally similar to Smurfs (Smad ubiquitin regulatory factors) 1 and 2, which were identified previously as E3 ubiquitin ligases for R-Smads and TGF-β superfamily receptors. NEDD4-2 functions like Smurfs 1 and 2 in that it associates with TGF-β type I receptor via Smad7, and induces its ubiquitin-dependent degradation. Moreover, NEDD4-2 bound to TGF-β-specific R-Smads, Smads 2 and 3, in a ligand-dependent manner, and induced degradation of Smad2, but not Smad3. However, in contrast with Smurf2, NEDD4-2 failed to induce ubiquitination of SnoN (Ski-related novel protein N), although NEDD4-2 bound to SnoN via Smad2 more strongly than Smurf2. We showed further that overexpressed NEDD4-2 prevents transcriptional activity induced by TGF-β and BMP, whereas silencing of the NEDD4-2 gene by siRNA (small interfering RNA) resulted in enhancement of the responsiveness to TGF-β superfamily cytokines. These data suggest that NEDD4-2 is a member of the Smurf-like C2-WW-HECT (WW is Trp-Trp and HECT is homologous to the E6-accessory protein) type E3 ubiquitin ligases, which negatively regulate TGF-β superfamily signalling through similar, but not identical, mechanisms to those used by Smurfs. PMID:15496141

  19. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2007-03-01

    Fibroblast growth factor receptors (Fgfrs) are expressed in the ureteric bud and metanephric mesenchyme of the developing kidney. Furthermore, in vitro and in vivo studies have shown that exogenous fibroblast growth factors (Fgfs) increase growth and maturation of the metanephric mesenchyme and ureteric bud. Deletion of fgf7, fgf10, and fgfr2IIIb (the receptor isoform that binds Fgf7 and Fgf10) in mice lead to smaller kidneys with fewer collecting ducts and nephrons. Overexpression of a dominant negative receptor isoform in transgenic mice has revealed more striking defects including renal aplasia or severe dysplasia. Moreover, deletion of many fgf ligands and receptors in mice results in early embryonic lethality, making it difficult to determine their roles in kidney development. Recently, conditional targeting approaches revealed that deletion of fgf8 from the metanephric mesenchyme interrupts nephron formation. Furthermore, deletion of fgfr2 from the ureteric bud resulted in both ureteric bud branching and stromal mesenchymal patterning defects. Deletion of both fgfr1 and fgfr2 in the metanephric mesenchyme resulted in renal aplasia, characterized by defects in metanephric mesenchyme formation and initial ureteric bud elongation and branching. Thus, Fgfr signaling is critical for growth and patterning of all renal lineages at early and later stages of kidney development.

  20. Spontaneous feline mammary intraepithelial lesions as a model for human estrogen receptor- and progesterone receptor-negative breast lesions

    PubMed Central

    2010-01-01

    Background Breast cancer is the most frequently diagnosed cancer in women. Intraepithelial lesions (IELs), such as usual ductal hyperplasia (UH), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) are risk factors that predict a woman's chance of developing invasive breast cancer. Therefore, a comparative study that establishes an animal model of pre-invasive lesions is needed for the development of preventative measures and effective treatment for both mammary IELs and tumors. The purpose of this study was to characterize the histologic and molecular features of feline mammary IELs and compare them with those in women. Methods Formalin-fixed, paraffin-embedded specimens (n = 205) from 203 female cats with clinical mammary disease were retrieved from the archives of the Purdue University Animal Disease Diagnostic Laboratory and Veterinary Teaching Hospital (West Lafayette, IN), and the Department of Pathology and Veterinary Clinic, School of Veterinary Medicine (Sassari, Italy). Histologic sections, stained with hematoxylin and eosin (HE), were evaluated for the presence of IELs in tissue adjacent to excised mammary tumors. Lesions were compared to those of humans. Immunohistochemistry for estrogen receptor (ER-alpha), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2/neu) and Ki-67 was performed in IELs and adjacent tumor tissues. Results Intraepithelial lesions were found in 57 of 203 (28%) feline mammary specimens and were categorized as UH (27%), ADH (29%), and DCIS (44%). Most IELs with atypia (ADH and DCIS) were associated with mammary cancer (91%), whereas UH was associated with benign lesions in 53% of cases. Feline IELs were remarkably similar to human IELs. No ER or PR immunoreactivity was detected in intermediate-grade or high-grade DCIS or their associated malignant tumors. HER-2 protein overexpression was found in 27% of IELs. Conclusion The remarkable similarity of feline mammary IELs to those of humans

  1. Helicobacter pylori-Negative Gastritis: Prevalence and Risk Factors

    PubMed Central

    Nordenstedt, Helena; Graham, David Y.; Kramer, Jennifer R.; Rugge, Massimo; Verstovsek, Gordana; Fitzgerald, Stephanie; Alsarraj, Abeer; Shaib, Yasser; Velez, Maria E.; Abraham, Neena; Anand, Bhupinderjit; Cole, Rhonda; El-Serag, Hashem B.

    2014-01-01

    OBJECTIVES Recent studies using histology alone in select patients have suggested that Helicobacter pylori-negative gastritis may be common. The objective of this study was to investigate the prevalence of H. pylori among individuals with histologic gastritis. METHODS Subjects between 40 and 80 years underwent elective esophagogastroduodenoscopy at a VA Medical Center. Gastric biopsies were mapped from seven prespecified sites (two antrum, four corpus, and one cardia) and graded by two gastrointestinal pathologists, using the Updated Sydney System. H. pylori-negative required four criteria: negative triple staining at all seven gastric sites, negative H. pylori culture, negative IgG H. pylori serology, and no previous treatment for H. pylori. Data regarding tobacco smoking, alcohol drinking, nonsteroidal anti-inflammatory drug, and proton pump inhibitor (PPI) use were obtained by questionnaire. RESULTS Of the 491 individuals enrolled, 40.7% (200) had gastritis of at least grade 2 in at least one biopsy site or grade 1 in at least two sites. Forty-one (20.5%) had H. pylori-negative gastritis; most (30 or 73.2%) had chronic gastritis, five (12.2%) had active gastritis, and six (14.6%) had both. H. pylori-negative gastritis was approximately equally distributed in the antrum, corpus, and both antrum and corpus. Past and current PPI use was more frequent in H. pylori-negative vs. H. pylori-positive gastritis (68.2% and 53.8%; P = 0.06). CONCLUSIONS We used multiple methods to define non-H. pylori gastritis and found it in 21% of patients with histologic gastritis. While PPI use is a potential risk factor, the cause or implications of this entity are not known. PMID:23147524

  2. Multi-epitope Folate Receptor Alpha Peptide Vaccine, Sargramostim, and Cyclophosphamide in Treating Patients With Triple Negative Breast Cancer

    ClinicalTrials.gov

    2017-01-24

    Bilateral Breast Carcinoma; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Triple-Negative Breast Carcinoma; Unilateral Breast Carcinoma

  3. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.

    PubMed

    Carty, Michael; Goodbody, Rory; Schröder, Martina; Stack, Julianne; Moynagh, Paul N; Bowie, Andrew G

    2006-10-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll-interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signaling. Expression of SARM blocked gene induction 'downstream' of TRIF but not of MyD88. SARM associated with TRIF, and 'knockdown' of endogenous SARM expression by interfering RNA led to enhanced TRIF-dependent cytokine and chemokine induction. Thus, the fifth mammalian TIR adaptor SARM is a negative regulator of Toll-like receptor signaling.

  4. Expression of androgen receptor in breast cancer & its correlation with other steroid receptors & growth factors

    PubMed Central

    Mishra, Ashwani K.; Agrawal, Usha; Negi, Shivani; Bansal, Anju; Mohil, R.; Chintamani, Chintamani; Bhatnagar, Amar; Bhatnagar, Dinesh; Saxena, Sunita

    2012-01-01

    Background & objectives: Breast cancer is the second most common malignancy in Indian women. Among the members of the steroid receptor superfamily the role of estrogen and progesterone receptors (ER and PR) is well established in breast cancer in predicting the prognosis and management of therapy, however, little is known about the clinical significance of androgen receptor (AR) in breast carcinogenesis. The present study was aimed to evaluate the expression of AR in breast cancer and to elucidate its clinical significance by correlating it with clinicopathological parameters, other steroid receptors (ER and PR) and growth factors receptors (EGFR and CD105). Methods: Expression of AR, ER, PR, epidermal growth factor receptor (EGFR) and endoglin (CD105) was studied in 100 cases of breast cancer by immunohistochemistry (IHC). Risk ratio (RR) along with 95% confidence interval (CI) was estimated to assess the strength of association between the markers and clinicopathological characteristics. Categorical principal component analysis (CATPCA) was applied to obtain new sets of linearly combined expression, for their further evaluation with clinicopathological characteristics (n=100). Results: In 31 cases presenting with locally advanced breast cancer (LABC), the expression of AR, ER, PR, EGFR and CD105 was associated with response to neoadjuvant chemotherapy (NACT). The results indicated the association of AR+ (P=0.001) and AR+/EGFR- (P=0.001) with the therapeutic response to NACT in LABC patients. The AR expression exhibited maximum sensitivity, specificity and likelihood ratio of positive and negative test. The present results showed the benefit of adding AR, EGFR and CD105 to the existing panel of markers to be able to predict response to therapy. Interpretation & conclusions: More studies on the expression profiles of AR+, AR+/CD105+ and AR+/EGFR- in larger set of breast cancer patients may possibly help in confirming their predictive role for therapeutic response

  5. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs).

    PubMed

    Barrows, Douglas; He, John Z; Parsons, Ramon

    2016-09-16

    Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.

  6. Insulin receptor substrate 2 is a negative regulator of memory formation

    PubMed Central

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O’Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, K. Peter

    2015-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1- receptors to downstream signaling pathways. Here, we have deleted Irs2, either in the whole brain or selectively in the forebrain, using the nestin Cre- or D6 Cre- deleter mouse lines respectively. We show that brain- and forebrain-specific Irs2 knockout mice have enhanced hippocampal spatial reference memory. Furthermore, NesCreIrs2KO mice have enhanced spatial working memory and contextual- and cued-fear memory. Deletion of Irs2 in the brain also increases PSD-95 expression and the density of dendritic spines in hippocampal area CA1, possibly reflecting an increase in the number of excitatory synapses per neuron in the hippocampus that can become activated during memory formation. This increase in activated excitatory synapses might underlie the improved hippocampal memory formation observed in NesCreIrs2KO mice. Overall, these results suggest that Irs2 acts as a negative regulator on memory formation by restricting dendritic spine generation. PMID:21597043

  7. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-09-01

    Fibroblast growth factor receptors (Fgfrs) are expressed throughout the developing kidney. Several early studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB). Transgenic mice that over-express a dominant negative receptor isoform develop renal aplasia/severe dysplasia, confirming the importance of Fgfrs in renal development. Furthermore, global deletion of Fgf7, Fgf10, and Fgfr2IIIb (isoform that binds Fgf7 and Fgf10) in mice leads to small kidneys with fewer collecting ducts and nephrons. Deletion of Fgfrl1, a receptor lacking intracellular signaling domains, causes severe renal dysgenesis. Conditional targeting of Fgf8 from the MM interrupts nephron formation. Deletion of Fgfr2 from the UB results in severe ureteric branching and stromal mesenchymal defects, although loss of Frs2α (major signaling adapter for Fgfrs) in the UB causes only mild renal hypoplasia. Deletion of both Fgfr1 and Fgfr2 in the MM results in renal aplasia with defects in MM formation and initial UB elongation and branching. Loss of Fgfr2 in the MM leads to many renal and urinary tract anomalies as well as vesicoureteral reflux. Thus, Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  8. Manifold regularized non-negative matrix factorization with label information

    NASA Astrophysics Data System (ADS)

    Li, Huirong; Zhang, Jiangshe; Wang, Changpeng; Liu, Junmin

    2016-03-01

    Non-negative matrix factorization (NMF) as a popular technique for finding parts-based, linear representations of non-negative data has been successfully applied in a wide range of applications, such as feature learning, dictionary learning, and dimensionality reduction. However, both the local manifold regularization of data and the discriminative information of the available label have not been taken into account together in NMF. We propose a new semisupervised matrix decomposition method, called manifold regularized non-negative matrix factorization (MRNMF) with label information, which incorporates the manifold regularization and the label information into the NMF to improve the performance of NMF in clustering tasks. We encode the local geometrical structure of the data space by constructing a nearest neighbor graph and enhance the discriminative ability of different classes by effectively using the label information. Experimental comparisons with the state-of-the-art methods on theCOIL20, PIE, Extended Yale B, and MNIST databases demonstrate the effectiveness of MRNMF.

  9. Gemini vitamin D analogues inhibit estrogen receptor-positive and estrogen receptor-negative mammary tumorigenesis without hypercalcemic toxicity.

    PubMed

    Lee, Hong Jin; Paul, Shiby; Atalla, Nadi; Thomas, Paul E; Lin, Xinjie; Yang, Ill; Buckley, Brian; Lu, Gang; Zheng, Xi; Lou, You-Rong; Conney, Allan H; Maehr, Hubert; Adorini, Luciano; Uskokovic, Milan; Suh, Nanjoo

    2008-11-01

    Numerous preclinical, epidemiologic, and clinical studies have suggested the benefits of vitamin D and its analogues for the prevention and treatment of cancer. However, the hypercalcemic effects have limited the use of 1alpha,25(OH)(2)D(3), the hormonally active form of vitamin D. To identify vitamin D analogues with better efficacy and low toxicity, we have tested >60 novel Gemini vitamin D analogues with a unique structure of two side chains for growth inhibition of breast cancer cells. Our initial studies found that some Gemini analogues are 5-15 times more active than 1alpha,25(OH)(2)D(3) in growth inhibition assay. In vivo experiments were designed to study the inhibitory effect of selected Gemini vitamin D analogues against mammary carcinogenesis by using (a) an N-methyl-N-nitrosourea-induced estrogen receptor (ER)-positive mammary tumor model and (b) an MCF10DCIS.com xenograft model of ER-negative mammary tumors. Among vitamin D analogues we tested, Gemini 0072 [1alpha,25-dihydroxy-20S-21(3-trideuteromethyl-3-hydroxy-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluoro-19-nor-cholecalciferol] and Gemini 0097 [1alpha,25-dihydroxy-20R-21(3-trideuteromethyl-3-hydroxy-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluoro-19-nor-cholecalciferol] administration inhibited by 60% the NMU-induced mammary tumor burden compared with the NMU-treated control group, but these compounds were devoid of hypercalcemia toxicity. In an ER-negative xenograft model, Gemini 0097 significantly suppressed tumor growth without hypercalcemia toxicity. We found that the inhibitory effect of Gemini 0097 was associated with an increased level of cyclin-dependent kinase inhibitor p21 and the insulin-like growth factor binding protein 3 in both ER-positive and ER-negative mammary tumors. Our results suggest that Gemini vitamin D analogues may be potent agents for the prevention and treatment of both ER-positive and ER-negative breast cancer without hypercalcemia toxicity.

  10. Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues.

    PubMed Central

    Luo, K; Lodish, H F

    1997-01-01

    The type II transforming growth factor-beta (TGF-beta) receptor Ser/Thr kinase (TbetaRII) is responsible for the initiation of multiple TGF-beta signaling pathways, and loss of its function is associated with many types of human cancer. Here we show that TbetaRII kinase is regulated intricately by autophosphorylation on at least three serine residues. Ser213, in the membrane-proximal segment outside the kinase domain, undergoes intra-molecular autophosphorylation which is essential for the activation of TbetaRII kinase activity, activation of TbetaRI and TGF-beta-induced growth inhibition. In contrast, phosphorylation of Ser409 and Ser416, located in a segment corresponding to the substrate recognition T-loop region in a three-dimensional structural model of protein kinases, is enhanced by receptor dimerization and can occur via an intermolecular mechanism. Phosphorylation of Ser409 is essential for TbetaRII kinase signaling, while phosphorylation of Ser416 inhibits receptor function. Mutation of Ser416 to alanine results in a hyperactive receptor that is better able than wild-type to induce TbetaRI activation and subsequent cell cycle arrest. Since on a single receptor either Ser409 or Ser416, but not both simultaneously, can become autophosphorylated, our results show that TbetaRII phosphorylation is regulated intricately and affects TGF-beta receptor signal transduction both positively and negatively. PMID:9155023

  11. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    ERIC Educational Resources Information Center

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  12. Semisynthetic preparation of amentoflavone: A negative modulator at GABA(A) receptors.

    PubMed

    Hanrahan, Jane R; Chebib, Mary; Davucheron, Neil L M; Hall, Belinda J; Johnston, Graham A R

    2003-07-21

    Amentoflavone is found in a number of plants with medicinal properties, including Ginkgo biloba and Hypericum perforatum (St. John's Wort). We have developed a rapid and economic semi-synthetic preparation of amentoflavone from biflavones isolated from autumnal Ginkgo biloba leaves. Several studies have shown that amentoflavone binds to benzodiazepine receptors. Using two electrode voltage-clamp methodology, amentoflavone has been shown to be a negative modulator of GABA at GABA(A) alpha(1)beta(2)gamma(2L) receptors expressed in Xenopus laevis oocytes This action appears to be independent of the flumazenil-sensitive benzodiazepine modulatory sites on the GABA(A) receptor.

  13. Conversion of epidermal growth factor receptor 2 and hormone receptor expression in breast cancer metastases to the brain

    PubMed Central

    2012-01-01

    Introduction We investigated the status of estrogen receptor alpha (ERα), progesterone receptor (PR), and epidermal growth factor receptor 2 (HER2) in primary tumor and in the corresponding brain metastases in a consecutive series of breast cancer patients. Additionally, we studied factors potentially influencing conversion and evaluated its association with survival. Methods The study group included 120 breast cancer patients. ERα, PR, and HER2 status in primary tumors and in matched brain metastases was determined centrally by immunohistochemistry and/or fluorescence in situ hybridization. Results Using the Allred score of ≥ 3 as a threshold, conversion of ERα and PR in brain metastases occurred in 29% of cases for both receptors, mostly from positive to negative. Conversion of HER2 occurred in 14% of patients and was more balanced either way. Time to brain relapse and the use of chemotherapy or trastuzumab did not influence conversion, whereas endocrine therapy induced conversion of ERα (P = 0.021) and PR (P = 0.001), mainly towards their loss. Receptor conversion had no significant impact on survival. Conclusions Receptor conversion, particularly loss of hormone receptors, is a common event in brain metastases from breast cancer, and endocrine therapy may increase its incidence. Receptor conversion does not significantly affect survival. PMID:22898337

  14. Overlapping spectra resolution using non-negative matrix factorization.

    PubMed

    Gao, Hong-Tao; Li, Tong-Hua; Chen, Kai; Li, Wei-Guang; Bi, Xian

    2005-03-31

    Non-negative matrix factorization (NMF), with the constraints of non-negativity, has been recently proposed for multi-variate data analysis. Because it allows only additive, not subtractive, combinations of the original data, NMF is capable of producing region or parts-based representation of objects. It has been used for image analysis and text processing. Unlike PCA, the resolutions of NMF are non-negative and can be easily interpreted and understood directly. Due to multiple solutions, the original algorithm of NMF [D.D. Lee, H.S. Seung, Nature 401 (1999) 788] is not suitable for resolving chemical mixed signals. In reality, NMF has never been applied to resolving chemical mixed signals. It must be modified according to the characteristics of the chemical signals, such as smoothness of spectra, unimodality of chromatograms, sparseness of mass spectra, etc. We have used the modified NMF algorithm to narrow the feasible solution region for resolving chemical signals, and found that it could produce reasonable and acceptable results for certain experimental errors, especially for overlapping chromatograms and sparse mass spectra. Simulated two-dimensional (2-D) data and real GUJINGGONG alcohol liquor GC-MS data have been resolved soundly by NMF technique. Butyl caproate and its isomeric compound (butyric acid, hexyl ester) have been identified from the overlapping spectra. The result of NMF is preferable to that of Heuristic evolving latent projections (HELP). It shows that NMF is a promising chemometric resolution method for complex samples.

  15. Evidence for epidermal growth factor (EGF)-induced intermolecular autophosphorylation of the EGF receptors in living cells.

    PubMed Central

    Honegger, A M; Schmidt, A; Ullrich, A; Schlessinger, J

    1990-01-01

    In response to epidermal growth factor (EGF) stimulation, the intrinsic protein tyrosine kinase of EGF receptor is activated, leading to tyrosine phosphorylation of several cellular substrate proteins, including the EGF receptor molecule itself. To test the mechanism of EGF receptor autophosphorylation in living cells, we established transfected cell lines coexpressing a kinase-negative point mutant of EGF receptor (K721A) with an active EGF receptor mutant lacking 63 amino acids from its carboxy terminus. The addition of EGF to these cells caused tyrosine phosphorylation of the kinase-negative mutant by the active receptor molecule, demonstrating EGF receptor cross-phosphorylation in living cells. After internalization the kinase-negative mutant and CD63 have separate trafficking pathways. This limits their association and the extent of cross-phosphorylation of K721A by CD63. The coexpression of the kinase-negative mutant together with active EGF receptors in the same cells suppressed the mitogenic response toward EGF as compared with that in cells that express active receptors alone. The presence of the kinase-negative mutant functions as a negative dominant mutation suppressing the response of active EGF receptors, probably by interfering with EGF-induced signal transduction. It appears, therefore, that crucial events of signal transduction occur before K721A and active EGF receptors are separated by their different endocytic itineraries. Images PMID:2164634

  16. Novel Strategies for the Treatment of Estrogen Receptor-Negative Breast Cancer

    DTIC Science & Technology

    2009-04-01

    findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position , policy or decision...of breast cancer have focused on the entire genome to identify genes differentially expressed between estrogen receptor (ER)- positive and ER-negative...tumors. Kinase expression knock-down studies show that many of these kinases are essential for the growth of ER-negative, but not ER- positive

  17. Results With Accelerated Partial Breast Irradiation in Terms of Estrogen Receptor, Progesterone Receptor, and Human Growth Factor Receptor 2 Status

    SciTech Connect

    Wilder, Richard B.; Curcio, Lisa D.; Khanijou, Rajesh K.; Eisner, Martin E.; Kakkis, Jane L.; Chittenden, Lucy; Agustin, Jeffrey; Lizarde, Jessica; Mesa, Albert V.; Macedo, Jorge C.; Ravera, John; Tokita, Kenneth M.

    2010-11-01

    Purpose: To report our results with accelerated partial breast irradiation (APBI) in terms of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2/neu) status. Methods and Materials: Between February 2003 and June 2009, 209 women with early-stage breast carcinomas were treated with APBI using multicatheter, MammoSite, or Contura brachytherapy to 34 Gy in 10 fractions twice daily over 5-7 days. Three patient groups were defined by receptor status: Group 1: ER or PR (+) and HER-2/neu (-) (n = 180), Group 2: ER and PR (-) and HER-2/neu (+) (n = 10), and Group 3: ER, PR, and HER-2/neu (-) (triple negative breast cancer, n = 19). Median follow-up was 22 months. Results: Group 3 patients had significantly higher Scarff-Bloom-Richardson scores (p < 0.001). The 3-year ipsilateral breast tumor control rates for Groups 1, 2, and 3 were 99%, 100%, and 100%, respectively (p = 0.15). Group 3 patients tended to experience relapse in distant sites earlier than did non-Group 3 patients. The 3-year relapse-free survival rates for Groups 1, 2, and 3 were 100%, 100%, and 81%, respectively (p = 0.046). The 3-year cause-specific and overall survival rates for Groups 1, 2, and 3 were 100%, 100%, and 89%, respectively (p = 0.002). Conclusions: Triple negative breast cancer patients typically have high-grade tumors with significantly worse relapse-free, cause-specific, and overall survival. Longer follow-up will help to determine whether these patients also have a higher risk of ipsilateral breast tumor relapse.

  18. The Immunophilin-Like Protein XAP2 Is a Negative Regulator of Estrogen Signaling through Interaction with Estrogen Receptor α

    PubMed Central

    Berg, Petra; Korbonits, Marta; Pongratz, Ingemar

    2011-01-01

    XAP2 (also known as aryl hydrocarbon receptor interacting protein, AIP) is originally identified as a negative regulator of the hepatitis B virus X-associated protein. Recent studies have expanded the range of XAP2 client proteins to include the nuclear receptor family of transcription factors. In this study, we show that XAP2 is recruited to the promoter of ERα regulated genes like the breast cancer marker gene pS2 or GREB1 and negatively regulate the expression of these genes in MCF-7 cells. Interestingly, we show that XAP2 downregulates the E2-dependent transcriptional activation in an estrogen receptor (ER) isoform-specific manner: XAP2 inhibits ERα but not ERβ-mediated transcription. Thus, knockdown of intracellular XAP2 levels leads to increased ERα activity. XAP2 proteins, carrying mutations in their primary structures, loose the ability of interacting with ERα and can no longer regulate ER target gene transcription. Taken together, this study shows that XAP2 exerts a negative effect on ERα transcriptional activity and may thus prevent ERα-dependent events. PMID:21984905

  19. Transforming Growth Factor-B Receptors in Human Breast Cancer.

    DTIC Science & Technology

    1998-05-01

    receptor. Nature 370:341-347,1994 60. Wang T, Donahoe P, Zervos AS: Specific interaction of type I receptors of the TGFß family with the immunophilin...Res 56: 44^48,1996 82. Kadin ME. Cavaille-Coll MW, Gertz R. Massague J, Chei- fetz S. George D: Loss of receptors for transforming growth factor ß

  20. Molecular apocrine breast cancers are aggressive estrogen receptor negative tumors overexpressing either HER2 or GCDFP15

    PubMed Central

    2013-01-01

    Introduction Molecular apocrine (MA) tumors are estrogen receptor (ER) negative breast cancers characterized by androgen receptor (AR) expression. We analyzed a group of 58 transcriptionally defined MA tumors and proposed a new tool to identify these tumors. Methods We performed quantitative reverse transcription PCR (qRT-PCR) for ESR1, AR, FOXA1 and AR-related genes, and immunohistochemistry (IHC) for ER, PR, Human Epidermal Growth Factor Receptor 2 (HER2), CK5/6, CK17, EGFR, Ki67, AR, FOXA1 and GCDFP15 and we analyzed clinical features. Results MA tumors were all characterized by ESR1(-) AR(+) FOXA1(+) and AR-related genes positive mRNA profile. IHC staining on these tumors showed 93% ER(-), only 58% AR(+) and 90% FOXA1(+). 67% and 57% MA tumors were HER2(3+) and GCDFP15(+), respectively. Almost all MA tumors (94%) had the IHC signature HER2(3+) or GCDFP15(+) but none of the 13 control basal-like (BL) tumors did. Clinically, MA tumors were rather aggressive, with poor prognostic factors. Conclusion MA tumors could be better defined by their qRT-PCR-AR profile than by AR IHC. In addition, we found that HER2 or GCDFP15 protein overexpression is a sensitive and specific tool to differentiate MA from BL in the context of ER negative tumors. A composite molecular and IHC signature could, therefore, help to identify MA tumors in daily practice. PMID:23663520

  1. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    PubMed Central

    Couch, Fergus J.; Kuchenbaecker, Karoline B.; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A.; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K.; Arver, Brita; Barile, Monica; Barkardottir, Rosa B.; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W.; Benitez, Javier; Blank, Stephanie V.; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S.; Caldes, Trinidad; Caligo, Maria A.; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J.; Chung, Wendy K.; Claes, Kathleen B. M.; Cox, Angela; Cross, Simon S.; Cunningham, Julie M.; Czene, Kamila; Daly, Mary B.; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C.; Dolcetti, Riccardo; Domchek, Susan M.; Dorfling, Cecilia M.; dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M.; Eccles, Diana M.; Ehrencrona, Hans; Ekici, Arif B.; Eliassen, Heather; Ellis, Steve; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D.; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D.; Ganz, Patricia A.; Gapstur, Susan M.; Garber, Judy; Gaudet, Mia M.; Gayther, Simon A.; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G.; Glendon, Gord; Godwin, Andrew K.; Goldberg, Mark S.; Goldgar, David E.; González-Neira, Anna; Greene, Mark H.; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A.; Hamann, Ute; Hansen, Thomas V. O.; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E.; Herzog, Josef; Hogervorst, Frans B. L.; Hollestelle, Antoinette; Hooning, Maartje J.; Hoover, Robert N.; Hopper, John L.; Humphreys, Keith; Hunter, David J.; Huzarski, Tomasz; Imyanitov, Evgeny N.; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M.; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y.; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G.; Knight, Julia A.; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L.; Makalic, Enes; Malone, Kathleen E.; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W. M.; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L.; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M.; Muranen, Taru A.; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Nordestgaard, Børge G.; Nussbaum, Robert L.; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I.; Olson, Janet E.; Osorio, Ana; Park, Sue K.; Peeters, Petra H.; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M.; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J.; Sanchez, Maria-Jose; Santella, Regina M.; Sawyer, Elinor J.; Schmidt, Daniel F.; Schmidt, Marjanka K.; Schmutzler, Rita K.; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F.; Sinilnikova, Olga M.; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I.; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Mary B.; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E.; Tollenaar, Robert A. E. M.; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H. M.; van Rensburg, Elizabeth J.; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N.; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R.; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D. P.; Monteiro, Alvaro A. N.; García-Closas, Montserrat; Easton, Douglas F.

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10−8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction. PMID:27117709

  2. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer.

    PubMed

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K; Arver, Brita; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W; Benitez, Javier; Blank, Stephanie V; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J; Chung, Wendy K; Claes, Kathleen B M; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C; Dolcetti, Riccardo; Domchek, Susan M; Dorfling, Cecilia M; Dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M; Eccles, Diana M; Ehrencrona, Hans; Ekici, Arif B; Eliassen, Heather; Ellis, Steve; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D; Ganz, Patricia A; Gapstur, Susan M; Garber, Judy; Gaudet, Mia M; Gayther, Simon A; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G; Glendon, Gord; Godwin, Andrew K; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Greene, Mark H; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E; Herzog, Josef; Hogervorst, Frans B L; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Humphreys, Keith; Hunter, David J; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G; Knight, Julia A; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L; Makalic, Enes; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W M; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M; Muranen, Taru A; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nordestgaard, Børge G; Nussbaum, Robert L; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Osorio, Ana; Park, Sue K; Peeters, Petra H; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J; Sanchez, Maria-Jose; Santella, Regina M; Sawyer, Elinor J; Schmidt, Daniel F; Schmidt, Marjanka K; Schmutzler, Rita K; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F; Sinilnikova, Olga M; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary B; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E; Tollenaar, Robert A E M; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H M; van Rensburg, Elizabeth J; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D P; Monteiro, Alvaro A N; García-Closas, Montserrat; Easton, Douglas F; Antoniou, Antonis C

    2016-04-27

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.

  3. µ-opioid Receptor Availability in the Amygdala is Associated with Smoking for Negative Affect Relief

    PubMed Central

    Falcone, Mary; Gold, Allison B.; Wileyto, E. Paul; Ray, Riju; Ruparel, Kosha; Newberg, Andrew; Dubroff, Jacob; Logan, Jean; Zubieta, Jon-Kar; Blendy, Julie A.; Lerman, Caryn

    2013-01-01

    Rationale The perception that smoking relieves negative affect contributes to smoking persistence. Endogenous opioid neurotransmission, and the µ-opioid receptor (MOR) in particular, plays a role in affective regulation and is modulated by nicotine. Objectives We examined the relationship of µ-opioid receptor binding availability in the amygdala to the motivation to smoke for negative affect relief and to the acute effects of smoking on affective responses. Methods Twenty-two smokers were scanned on two separate occasions after overnight abstinence using [11C]carfentanil positron emission tomography imaging: after smoking a nicotine-containing cigarette and after smoking a denicotinized cigarette. Self-reports of smoking motives were collected at baseline, and measures of positive and negative affect were collected pre- and post- cigarette smoking. Results Higher MOR availability in the amygdala was associated with motivation to smoke to relieve negative affect. However, MOR availability was unrelated to changes in affect after smoking either cigarette. Conclusions Increased MOR availability in amygdala may underlie the motivation to smoke for negative affective relief. These results are consistent with previous data highlighting the role of µ-opioid receptor neurotransmission in smoking behavior. PMID:22389047

  4. Cognitive involvement by negative modulation of histamine H2 receptors in passive avoidance task in mice.

    PubMed

    Onodera, K; Miyazaki, S; Imaizumi, M

    1998-05-01

    In this study, the intracerebroventricular administration of 4-methylhistamine (3 and 10 micrograms/head), a histamine H2 receptor agonist, shortened the step-through latency in the retention trial using a step-through passive avoidance task in mice. This deteriorating effect of 4-methylhistamine (3 micrograms/head) was clearly antagonized by pretreatment with zolantidine (10 mg/kg, i.p.), a histamine H2 receptor antagonist, 20 min before an acquisition trial. Zolantidine alone at the dose tested had no effect. Thus, it is likely that activation of histamine H2 receptors has a deteriorating effect on avoidance learning in mice. The present results indicate the cognitive involvement by negative modulation of histamine H2 receptors in passive avoidance task in mice.

  5. The sigma-2 receptor as a therapeutic target for drug delivery in triple negative breast cancer

    PubMed Central

    Makvandi, Mehran; Tilahun, Estifanos D.; Lieberman, Brian P.; Anderson, Redmond-Craig; Zeng, Chenbo; Xu, Kuiying; Hou, Catherine; McDonald, Elizabeth S.; Pryma, Daniel A.; Mach, Robert H.

    2015-01-01

    Background Triple-negative breast cancer (TNBC) is associated with high relapse rates and increased mortality when compared with other breast cancer subtypes. In contrast to receptor positive breast cancers, there are no approved targeted therapies for TNBC. Identifying biomarkers for TNBC is of high importance for the advancement of patient care. The sigma-2 receptor has been shown to be overexpressed in triple negative breast cancer in vivo and has been characterized as a marker of proliferation. The aim of the present study was to define the sigma-2 receptor as a target for therapeutic drug delivery and biomarker in TNBC. Methods Three TNBC cell lines were evaluated: MDA-MB-231, HCC1937 and HCC1806. Sigma-2 compounds were tested for pharmacological properties specific to the sigma-2 receptor through competitive inhibition assays. Sigma-2 receptor expression was measured through radioligand receptor saturation studies. Drug sensitivity for taxol was compared to a sigma-2 targeting compound conjugated to a cytotoxic payload, SW IV-134. Cell viability was assessed after treatments for 2 or 48 hours. Sigma-2 blockade was assessed to define sigma-2 mediated cytotoxicity of SW IV-134. Caspase 3/7 activation induced by SW IV-134 was measured at corresponding treatment time points. Results: SW IV-134 was the most potent compound tested in two of the three cell lines and was similarly effective in all three. MDA-MB-231 displayed a statistically significant higher sigma-2 receptor expression and also was the most sensitive cell line evaluated to SW IV-134. Conclusion Targeting the sigma-2 receptor with a cytotoxic payload was effective in all the three cell lines evaluated and provides the proof of concept for future development of a therapeutic platform for the treatment of TNBC. PMID:26453012

  6. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor.

    PubMed

    Surjit, Milan; Ganti, Krishna Priya; Mukherji, Atish; Ye, Tao; Hua, Guoqiang; Metzger, Daniel; Li, Mei; Chambon, Pierre

    2011-04-15

    The glucocorticoid (GC) receptor (GR), when liganded to GC, activates transcription through direct binding to simple (+)GRE DNA binding sequences (DBS). GC-induced direct repression via GR binding to complex "negative" GREs (nGREs) has been reported. However, GR-mediated transrepression was generally ascribed to indirect "tethered" interaction with other DNA-bound factors. We report that GC-induces direct transrepression via the binding of GR to simple DBS (IR nGREs) unrelated to (+)GRE. These DBS act on agonist-liganded GR, promoting the assembly of cis-acting GR-SMRT/NCoR repressing complexes. IR nGREs are present in over 1000 mouse/human ortholog genes, which are repressed by GC in vivo. Thus variations in the levels of a single ligand can coordinately turn genes on or off depending in their response element DBS, allowing an additional level of regulation in GR signaling. This mechanism suits GR signaling remarkably well, given that adrenal secretion of GC fluctuates in a circadian and stress-related fashion.

  7. Characterization of factor XII Tenri, a rare CRM-negative factor XII deficiency.

    PubMed

    Fujihara, Noriko; Tozuka, Minoru; Yamauchi, Kazuyoshi; Ueno, Ichiro; Urasawa, Nobuyuki; Ishikawa, Shinsuke; Hirota-Kawadobora, Masako; Okumura, Nobuo; Hidaka, Hiroya; Katsuyama, Tsutomu

    2004-01-01

    Factor XII Tenri (Y34C), a rare cross-reacting material (CRM)-negative factor XII deficiency, was identified in a 71-yr-old Japanese woman with angina pectoris. In the patient's plasma, factor XII activity and antigen levels were only 1.6% and 5.0%, respectively, of those seen in a normal subject. Immunoblot analysis showed that the secreted factor XII Tenri existed not only as a monomer (76 kDa), but also in complexes with apparent molecular weights of approximately 115, 140, 190, 215, and 225 kDa. After reduction with 2-mercaptoethanol, the factor XII Tenri contained in the complexes was completely converted to monomeric form on immunoblot patterns. It appeared that some of the secreted factor XII Tenri formed several types of disulfide-linked complexes, including a factor XII-alpha1-microglobulin complex, through a newly generated Cys residue. The monomeric form of factor XII Tenri, like normal factor XII, was degraded into 2 major fragments with molecular weights of approximately 45 kDa and 30 kDa following mixing with activated partial-thromboplastin-time measuring reagent (cephalin and ellagic acid), whereas the factor XII Tenri that formed the complexes was not. This indicates that the factor XII Tenri present in disulfide-linked complexes with other proteins (and itself) is not converted to active forms, suggesting that attached proteins obstruct or delay the activation of factor XII via an inhibition of its binding to a negatively charged surface in vitro.

  8. Cellular dynamics of the negative transcription elongation factor NELF

    SciTech Connect

    Yung, Tetsu M.C.; Narita, Takashi; Komori, Toshiharu; Yamaguchi, Yuki; Handa, Hiroshi

    2009-06-10

    Negative Elongation Factor (NELF) is a transcription factor discovered based on its biochemical activity to suppress transcription elongation, and has since been implicated in various diseases ranging from neurological disorders to cancer. Besides its role in promoter-proximal pausing of RNA polymerase II during early stages of transcription, recently we found that it also plays important roles in the 3'-end processing of histone mRNA. Furthermore, NELF has been found to form a distinct subnuclear structure, which we named NELF bodies. These recent developments point to a wide range of potential functions for NELF, and, as most studies on NELF thus far had been carried out in vitro, here, we prepared a complete set of fusion protein constructs of NELF subunits and carried out a general cell biological study of the intracellular dynamics of NELF. Our data show that NELF subunits exhibit highly specific subcellular localizations, such as in NELF bodies or in midbodies, and some shuttle actively between the nucleus and cytoplasm. We further show that loss of NELF from cells can lead to enlarged and/or multiple nuclei. This work serves as a foundation and starting point for further cell biological investigations of NELF in the future.

  9. Expression and prognostic value of estrogen receptor β in patients with triple-negative and triple-positive breast cancer.

    PubMed

    Guo, Liying; Zhu, Qianwen; Aisimutuola, Mulati; Yilamu, Dilimina; Liu, Sha; Jakulin, Adina

    2015-06-01

    The aim of the present study was to investigate the expression of estrogen receptor β (ERβ) in triple-negative and triple-positive breast cancer patients, and evaluate its utility as a prognostic factor. Between January 2000 and December 2010, primary tumor tissue samples were collected from 234 subjects, including 107 triple-negative and 127 triple-positive breast cancer patients. The samples were embedded in paraffin and immunohistochemical staining was conducted to determine the expression levels of ERβ. The Kaplan-Meier method was used to analyze patient survival rates. ERβ expression was observed in 38/107 patients (35.5%) with triple-negative breast cancer and 63/127 patients (49.6%) with triple-positive breast cancer. The ERβ expression rate was significantly decreased in the patients with triple-negative breast cancer, as compared with those with triple-positive breast cancer (P=0.03). Analysis of the survival rates indicated that patients with triple-negative breast cancer and positive ERβ expression exhibited poor disease progression-free survival (DFS) compared with those with negative ERβ expression (P=0.021). However, no statistically significant difference was observed in the DFS between the triple-positive breast cancer patients with positive and negative ERβ expression. Therefore, the expression of ERβ varies between triple-negative and triple-positive breast cancer patients. In addition, positive expression of ERβ indicates a poor prognosis in triple-negative breast cancer patients; however, this is not the case for triple-positive breast cancer patients.

  10. PLZF is a negative regulator of retinoic acid receptor transcriptional activity.

    PubMed

    Martin, Perrine J; Delmotte, Marie-Hélène; Formstecher, Pierre; Lefebvre, Philippe

    2003-09-06

    BACKGROUND: Retinoic acid receptors (RARs) are ligand-regulated transcription factors controlling cellular proliferation and differentiation. Receptor-interacting proteins such as corepressors and coactivators play a crucial role in specifying the overall transcriptional activity of the receptor in response to ligand treatment. Little is known however on how receptor activity is controlled by intermediary factors which interact with RARs in a ligand-independent manner. RESULTS: We have identified the promyelocytic leukemia zinc finger protein (PLZF), a transcriptional corepressor, to be a RAR-interacting protein using the yeast two-hybrid assay. We confirmed this interaction by GST-pull down assays and show that the PLZF N-terminal zinc finger domain is necessary and sufficient for PLZF to bind RAR. The RAR ligand binding domain displayed the highest affinity for PLZF, but corepressor and coactivator binding interfaces did not contribute to PLZF recruitment. The interaction was ligand-independent and correlated to a decreased transcriptional activity of the RXR-RAR heterodimer upon overexpression of PLZF. A similar transcriptional interference could be observed with the estrogen receptor alpha and the glucocorticoid receptor. We further show that PLZF is likely to act by preventing RXR-RAR heterodimerization, both in-vitro and in intact cells. CONCLUSION: Thus RAR and PLZF interact physically and functionally. Intriguingly, these two transcription factors play a determining role in hematopoiesis and regionalization of the hindbrain and may, upon chromosomal translocation, form fusion proteins. Our observations therefore define a novel mechanism by which RARs activity may be controlled.

  11. Identification and Quantification of a New Family of Peptide Endocannabinoids (Pepcans) Showing Negative Allosteric Modulation at CB1 Receptors*

    PubMed Central

    Bauer, Mark; Chicca, Andrea; Tamborrini, Marco; Eisen, David; Lerner, Raissa; Lutz, Beat; Poetz, Oliver; Pluschke, Gerd; Gertsch, Jürg

    2012-01-01

    The α-hemoglobin-derived dodecapeptide RVD-hemopressin (RVDPVNFKLLSH) has been proposed to be an endogenous agonist for the cannabinoid receptor type 1 (CB1). To study this peptide, we have raised mAbs against its C-terminal part. Using an immunoaffinity mass spectrometry approach, a whole family of N-terminally extended peptides in addition to RVD-Hpα were identified in rodent brain extracts and human and mouse plasma. We designated these peptides Pepcan-12 (RVDPVNFKLLSH) to Pepcan-23 (SALSDLHAHKLRVDPVNFKLLSH), referring to peptide length. The most abundant Pepcans found in the brain were tested for CB1 receptor binding. In the classical radioligand displacement assay, Pepcan-12 was the most efficacious ligand but only partially displaced both [3H]CP55,940 and [3H]WIN55,212-2. The data were fitted with the allosteric ternary complex model, revealing a cooperativity factor value α < 1, thus indicating a negative allosteric modulation. Dissociation kinetic studies of [3H]CP55,940 in the absence and presence of Pepcan-12 confirmed these results by showing increased dissociation rate constants induced by Pepcan-12. A fluorescently labeled Pepcan-12 analog was synthesized to investigate the binding to CB1 receptors. Competition binding studies revealed Ki values of several Pepcans in the nanomolar range. Accordingly, using competitive ELISA, we found low nanomolar concentrations of Pepcans in human plasma and ∼100 pmol/g in mouse brain. Surprisingly, Pepcan-12 exhibited potent negative allosteric modulation of the orthosteric agonist-induced cAMP accumulation, [35S]GTPγS binding, and CB1 receptor internalization. Pepcans are the first endogenous allosteric modulators identified for CB1 receptors. Given their abundance in the brain, Pepcans could play an important physiological role in modulating endocannabinoid signaling. PMID:22952224

  12. Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer

    PubMed Central

    Andradas, Clara; Blasco-Benito, Sandra; Castillo-Lluva, Sonia; Dillenburg-Pilla, Patricia; Diez-Alarcia, Rebeca; Juanes-García, Alba; García-Taboada, Elena; Hernando-Llorente, Rodrigo; Soriano, Joaquim; Hamann, Sigrid; Wenners, Antonia; Alkatout, Ibrahim; Klapper, Wolfram; Rocken, Christoph; Bauer, Maret; Arnold, Norbert; Quintanilla, Miguel; Megías, Diego; Vicente-Manzanares, Miguel; Urigüen, Leyre; Gutkind, J. Silvio; Guzmán, Manuel; Pérez-Gómez, Eduardo; Sánchez, Cristina

    2016-01-01

    The orphan G protein-coupled receptor GPR55 has been directly or indirectly related to basic alterations that drive malignant growth: uncontrolled cancer cell proliferation, sustained angiogenesis, and cancer cell adhesion and migration. However, little is known about the involvement of this receptor in metastasis. Here, we show that elevated GPR55 expression in human tumors is associated with the aggressive basal/triple-negative breast cancer population, higher probability to develop metastases, and therefore poor patient prognosis. Activation of GPR55 by its proposed endogenous ligand lysophosphatidylinositol confers pro-invasive features on breast cancer cells both in vitro and in vivo. Specifically, this effect is elicited by coupling to Gq/11 heterotrimeric proteins and the subsequent activation, through ERK, of the transcription factor ETV4/PEA3. Together, these data show that GPR55 promotes breast cancer metastasis, and supports the notion that this orphan receptor may constitute a new therapeutic target and potential biomarker in the highly aggressive triple-negative subtype. PMID:27340777

  13. KISS1R induces invasiveness of estrogen receptor-negative human mammary epithelial and breast cancer cells.

    PubMed

    Cvetkovic, Donna; Dragan, Magdalena; Leith, Sean J; Mir, Zuhaib M; Leong, Hon S; Pampillo, Macarena; Lewis, John D; Babwah, Andy V; Bhattacharya, Moshmi

    2013-06-01

    Kisspeptins (KPs), peptide products of the KISS1 metastasis-suppressor gene, are endogenous ligands for a G protein-coupled receptor (KISS1R). KISS1 acts as a metastasis suppressor in numerous human cancers. However, recent studies have demonstrated that an increase in KISS1 and KISS1R expression in patient breast tumors correlates with higher tumor grade and metastatic potential. We have shown that KP-10 stimulates invasion of estrogen receptor α (ERα)-negative MDA-MB-231 breast cancer cells via transactivation of the epidermal growth factor receptor (EGFR). Here, we report that either KP-10 treatment of ERα-negative nonmalignant mammary epithelial MCF10A cells or expression of KISS1R in MCF10A cells induced a mesenchymal phenotype and stimulated invasiveness. Similarly, exogenous expression of KISS1R in ERα-negative SKBR3 breast cancer cells was sufficient to trigger invasion and induced extravasation in vivo. In contrast, KP-10 failed to transactivate EGFR or stimulate invasiveness in the ERα-positive MCF7 and T47D breast cancer cells. This suggested that ERα negatively regulates KISS1R-dependent breast cancer cell migration, invasion, and EGFR transactivation. In support of this, we found that these KP-10-induced effects were ablated upon exogenous expression of ERα in the MDA-MB-231 cells, by down-regulating KISS1R expression. Lastly, we have identified IQGAP1, an actin cytoskeletal binding protein as a novel binding partner of KISS1R, and have shown that KISS1R regulates EGFR transactivation in breast cancer cells in an IQGAP1-dependent manner. Overall, our data strongly suggest that the ERα status of mammary cells dictates whether KISS1R may be a novel clinical target for treating breast cancer metastasis.

  14. Androgen receptor status is a prognostic marker in non-basal triple negative breast cancers and determines novel therapeutic options.

    PubMed

    Gasparini, Pierluigi; Fassan, Matteo; Cascione, Luciano; Guler, Gulnur; Balci, Serdar; Irkkan, Cigdem; Paisie, Carolyn; Lovat, Francesca; Morrison, Carl; Zhang, Jianying; Scarpa, Aldo; Croce, Carlo M; Shapiro, Charles L; Huebner, Kay

    2014-01-01

    Triple negative breast cancers are a heterogeneous group of tumors characterized by poor patient survival and lack of targeted therapeutics. Androgen receptor has been associated with triple negative breast cancer pathogenesis, but its role in the different subtypes has not been clearly defined. We examined androgen receptor protein expression by immunohistochemical analysis in 678 breast cancers, including 396 triple negative cancers. Fifty matched lymph node metastases were also examined. Association of expression status with clinical (race, survival) and pathological (basal, non-basal subtype, stage, grade) features was also evaluated. In 160 triple negative breast cancers, mRNA microarray expression profiling was performed, and differences according to androgen receptor status were analyzed. In triple negative cancers the percentage of androgen receptor positive cases was lower (24.8% vs 81.6% of non-triple negative cases), especially in African American women (16.7% vs 25.5% of cancers of white women). No significant difference in androgen receptor expression was observed in primary tumors vs matched metastatic lesions. Positive androgen receptor immunoreactivity was inversely correlated with tumor grade (p<0.01) and associated with better overall patient survival (p = 0.032) in the non-basal triple negative cancer group. In the microarray study, expression of three genes (HER4, TNFSF10, CDK6) showed significant deregulation in association with androgen receptor status; eg CDK6, a novel therapeutic target in triple negative cancers, showed significantly higher expression level in androgen receptor negative cases (p<0.01). These findings confirm the prognostic impact of androgen receptor expression in non-basal triple negative breast cancers, and suggest targeting of new androgen receptor-related molecular pathways in patients with these cancers.

  15. Unmixing hyperspectral skin data using non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Mehmood, Asif; Clark, Jeffrey; Sakla, Wesam

    2013-05-01

    The ability to accurately detect a target of interest in a hyperspectral imagery (HSI) is largely dependent on the spatial and spectral resolution. While hyperspectral imaging provides high spectral resolution, the spatial resolution is mostly dependent on the optics and distance from the target. Many times the target of interest does not occupy a full pixel and thus is concealed within a pixel, i.e. the target signature is mixed with other constituent material signatures within the field of view of that pixel. Extraction of spectral signatures of constituent materials from a mixed pixel can assist in the detection of the target of interest. Hyperspectral unmixing is a process to identify the constituent materials and estimate the corresponding abundances from the mixture. In this paper, a framework based on non-negative matrix factorization (NMF) is presented, which is utilized to extract the spectral signature and fractional abundance of human skin in a scene. The NMF technique is employed in a supervised manner such that the spectral bases of each constituent are computed first, and then these bases are applied to the mixed pixel. Experiments using synthetic and real data demonstrate that the proposed algorithm provides an effective supervised technique for hyperspectral unmixing of skin signatures.

  16. The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling

    PubMed Central

    Raja, Erna; Edlund, Karolina; Kahata, Kaoru; Zieba, Agata; Morén, Anita; Watanabe, Yukihide; Voytyuk, Iryna; Botling, Johan; Söderberg, Ola; Micke, Patrick; Pyrowolakis, George; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    The protein kinase LKB1 regulates cell metabolism and growth and is implicated in intestinal and lung cancer. Bone morphogenetic protein (BMP) signaling regulates cell differentiation during development and tissue homeostasis. We demonstrate that LKB1 physically interacts with BMP type I receptors and requires Smad7 to promote downregulation of the receptor. Accordingly, LKB1 suppresses BMP-induced osteoblast differentiation and affects BMP signaling in Drosophila wing longitudinal vein morphogenesis. LKB1 protein expression and Smad1 phosphorylation analysis in a cohort of non-small cell lung cancer patients demonstrated a negative correlation predominantly in a subset enriched in adenocarcinomas. Lung cancer patient data analysis indicated strong correlation between LKB1 loss-of-function mutations and high BMP2 expression, and these two events further correlated with expression of a gene subset functionally linked to apoptosis and migration. This new mechanism of BMP receptor regulation by LKB1 has ramifications in physiological organogenesis and disease. PMID:26701726

  17. Loss of Yes-associated protein (YAP) expression is associated with estrogen and progesterone receptors negativity in invasive breast carcinomas

    PubMed Central

    Tufail, Rozina; Jorda, Mercy; Zhao, Wei; Reis, Isildinha; Nawaz, Zafar

    2011-01-01

    Yes-associated protein (YAP) is a well characterized transcriptional coactivator that interacts with various transcription factors and modulates their transcriptional activities. Phosphorylation of YAP by specific kinases regulates its cellular distribution and transcriptional activation functions. Sequestration of phosphorylated YAP in cytoplasm results in the reduction of transcription from its target genes. Since, YAP has been characterized as a coactivator of estrogen (ER) and progesterone (PR) receptors, we examined the immunohistochemical expression profile of YAP and correlation of YAP expression with that of ER and PR in normal (40 samples) and tumor breast (226 samples) from microarray tissue samples using immunohistochemistry. Here we show that YAP expression is significantly reduced in invasive carcinoma samples compared to normal breast tissues, which express high levels of YAP (YAP was positive for 45.1% of invasive carcinoma samples vs. 82.5% of normal samples p<.0001). Furthermore, our data shows that reduced expression of YAP in invasive carcinoma samples is significantly associated with ER negativity (YAP was negative for 59.9% in ER negative vs. 38.9% in ER positive invasive carcinoma samples, p=0.007) and PR negativity (YAP was negative for 60.1% in PR negative vs. 28.9% in PR positive, p=0.0004). Among invasive carcinoma samples, 42.9% were YAP, ER and PR negative, whereas only 7.5% were found to be YAP, ER and PR positive. On the contrary, 20 out of 23 (87%) normal breast tissues that were positive for ER and PR were also positive for YAP. These data suggest that YAP may act as a tumor suppressor in invasive breast carcinomas and it can also be used as a molecular marker for ER and PR negative breast tumors. PMID:21399893

  18. Outcomes of Breast Cancer Patients With Triple Negative Receptor Status Treated With Accelerated Partial Breast Irradiation

    SciTech Connect

    Wilkinson, J. Ben; Reid, Robert E.; Shaitelman, Simona F.; Chen, Peter Y.; Mitchell, Christine K.; Wallace, Michelle F.; Marvin, Kimberly S.; Grills, Inga S.; Margolis, Jeffrey M.; Vicini, Frank A.

    2011-11-01

    Purpose: Triple negative receptor status (TNRS) of patients undergoing breast-conserving therapy treated with whole-breast irradiation has been associated with increased distant metastasis and decreased disease-free and overall survival. This paper reports the outcomes of TNRS patients treated with accelerated partial breast irradiation (APBI). Methods and Materials: We studied 455 patients who received APBI at our institution, using interstitial, intracavitary, and three-dimensional conformal radiation therapy. TNRS was assigned if a patient tested negative for all three (ER [estrogen receptor], PR [progesterone receptor], and HER2/neu) receptors. Of 202 patients with all receptor results available, 20 patients were designated TNRS, and 182 patients had at least one receptor positive (RP). We analyzed ipsilateral breast tumor recurrence (IBTR), regional nodal failure (RNF), distant metastasis (DM), and overall survival (OS). Results: Mean follow-up was 4.1 years for the TNRS group and 5.1 years for the RP cohort (p = 0.11). TNRS patients had a higher histologic grade (59% TNRS vs. 13% RP; p < 0.001). Mean tumor size, stage N1 disease, and margin status were similar. Based on a 5-year actuarial analysis, the TNRS cohort experienced no IBTR, RNF, or DM, with an OS of 100% versus rates of 1.4% IBTR, 1.5% RNF, and 2.8% DM in the RP cohort (p > 0.52). OS for the RP cohort was 93% at 5 years (p > 0.28). Conclusions: In our patient population, TNRS conferred a clinical outcome similar to that of patients with RP disease treated with APBI. Further investigation with larger patient populations and longer follow-up periods is warranted to confirm that APBI is a safe and effective treatment for patients with localized TNRS breast cancer.

  19. Calcitriol restores antiestrogen responsiveness in estrogen receptor negative breast cancer cells: A potential new therapeutic approach

    PubMed Central

    2014-01-01

    Background Approximately 30% of breast tumors do not express the estrogen receptor (ER) α, which is necessary for endocrine therapy approaches. Studies are ongoing in order to restore ERα expression in ERα-negative breast cancer. The aim of the present study was to determine if calcitriol induces ERα expression in ER-negative breast cancer cells, thus restoring antiestrogen responses. Methods Cultured cells derived from ERα-negative breast tumors and an ERα-negative breast cancer cell line (SUM-229PE) were treated with calcitriol and ERα expression was assessed by real time PCR and western blots. The ERα functionality was evaluated by prolactin gene expression analysis. In addition, the effects of antiestrogens were assessed by growth assay using the XTT method. Gene expression of cyclin D1 (CCND1), and Ether-à-go-go 1 (EAG1) was also evaluated in cells treated with calcitriol alone or in combination with estradiol or ICI-182,780. Statistical analyses were determined by one-way ANOVA. Results Calcitriol was able to induce the expression of a functional ERα in ER-negative breast cancer cells. This effect was mediated through the vitamin D receptor (VDR), since it was abrogated by a VDR antagonist. Interestingly, the calcitriol-induced ERα restored the response to antiestrogens by inhibiting cell proliferation. In addition, calcitriol-treated cells in the presence of ICI-182,780 resulted in a significant reduction of two important cell proliferation regulators CCND1 and EAG1. Conclusions Calcitriol induced the expression of ERα and restored the response to antiestrogens in ERα-negative breast cancer cells. The combined treatment with calcitriol and antiestrogens could represent a new therapeutic strategy in ERα-negative breast cancer patients. PMID:24678876

  20. CpG island methylation profile of estrogen receptor alpha in Iranian females with triple negative or non-triple negative breast cancer: new marker of poor prognosis.

    PubMed

    Ramezani, Fatemeh; Salami, Siamak; Omrani, Mir Davood; Maleki, Davood

    2012-01-01

    One decade early onset of the breast cancer in Iranian females was reported but the basis of the observed difference has remained unclear and difference in gene silencing by epigenetic processes is suggested. Hence, this study was sought to map the methylation status of ER gene CpG islands and its impact on clinicopathological factors of triple negative and non-triple negative ductal cell carcinoma of the breast in Iranian females. Surgically resected formalin-fixed paraffin-embedded breast tissues from sixty Iranian women with confirmed invasive ductal carcinoma were assessed by methylation-specific PCR using primer sets encompassing some of the 29 CpGs across the ER gene CpG island. The estrogen and progesterone receptors, Her-2 overexpression, and nuclear accumulation of P53 were examined using immunohistochemistry (IHC). Methylated ER3, ER4, and ER5 were found in 41.7, 11.3, and 43.3% of the samples, respectively. Significantly higher methylation of ER4 was found in the tumors with nuclear accumulation of P53, and significantly higher methylation of ER5 was found in patients with lymph node involvement and tumor with bigger size or higher grades. Furthermore, significantly higher rate of ER5 methylation was found in patients with Her-2+ tumors and in postmenopausal patients with ER-, PgR-, or ER-/PgR- tumors. However, no significant difference in ERs methylation status was found between triple negative and non-triple negative tumors in pre- and postmenopausal patients. Findings revealed that aberrant hypermethylation of ER-a gene frequently occur in Iranian women with invasive ductal cell carcinoma of the breast. However, methylation of different CpG islands produced a diverse impact on the prognosis of breast cancer, and ER5 was found to be the most frequently methylated region in the Iranian women, and could serve as a marker of poor prognosis.

  1. The GTPase-activating protein GIT2 protects against colitis by negatively regulating Toll-like receptor signaling

    PubMed Central

    Wei, Juncheng; Wei, Chao; Wang, Min; Qiu, Xiao; Li, Yang; Yuan, Yanzhi; Jin, Chaozhi; Leng, Ling; Wang, Jian; Yang, Xiaoming; He, Fuchu

    2014-01-01

    G protein-coupled receptor kinase-interactor 2 (GIT2) regulates thymocyte positive selection, neutrophil-direction sensing, and cell motility during immune responses by regulating the activity of the small GTPases ADP ribosylation factors (Arfs) and Ras-related C3 botulinum toxin substrate 1 (Rac1). Here, we show that Git2-deficient mice were more susceptible to dextran sodium sulfate (DSS)-induced colitis, Escherichia coli, or endotoxin-shock challenge, and a dramatic increase in proinflammatory cytokines was observed in Git2 knockout mice and macrophages. GIT2 is a previously unidentified negative regulator of Toll-like receptor (TLR)-induced NF-κB signaling. The ubiquitination of TNF receptor associated factor 6 (TRAF6) is critical for the activation of NF-κB. GIT2 terminates TLR-induced NF-κB and MAPK signaling by recruiting the deubiquitinating enzyme Cylindromatosis to inhibit the ubiquitination of TRAF6. Finally, we show that the susceptibility of Git2-deficient mice to DSS-induced colitis depends on TLR signaling. Thus, we show that GIT2 is an essential terminator of TLR signaling and that loss of GIT2 leads to uncontrolled inflammation and severe organ damage. PMID:24879442

  2. Toll-like receptor 4 decoy, TOY, attenuates gram-negative bacterial sepsis.

    PubMed

    Jung, Keehoon; Lee, Jung-Eun; Kim, Hak-Zoo; Kim, Ho Min; Park, Beom Seok; Hwang, Seong-Ik; Lee, Jie-Oh; Kim, Sun Chang; Koh, Gou Young

    2009-10-09

    Lipopolysaccharide (LPS), the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2) and Toll-like receptor 4 (TLR4). To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY) using 'the Hybrid leucine-rich repeats (LRR) technique'. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish variable lymphocyte receptor (VLR), and the Fc domain of IgG1 to make it soluble, productive, and functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM), resulting in a favorable pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated LPS-triggered NF-kappaB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of other novel decoy receptor proteins.

  3. Statins May Reduce Breast Cancer Risk, Particularly Hormone Receptor-Negative Disease.

    PubMed

    Vinayak, Shaveta; Kurian, Allison W

    2009-09-01

    Estrogen and progesterone receptor-negative breast cancer disproportionately affects young women and African Americans, has a poor prognosis, and lacks an effective chemoprevention agent. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, known as "statins," are appealing candidate agents for breast cancer chemoprevention because of their demonstrated safety after decades of widespread use. In preclinical studies, statins inhibit multiple cancer-associated pathways in both hormone receptor (HR)-negative and HR-positive cell lines. Epidemiologic studies of statins and breast cancer show inconsistent results, with some suggesting a reduction in HR-negative breast cancer incidence in lipophilic statin users. However, large meta-analyses show no association between statin use and overall risk of breast cancer, although most did not evaluate tumor HR status. Multiple phase 1 and 2 prevention studies of statins for breast cancer risk reduction are ongoing. If results are promising, they may justify a randomized trial of statins for breast cancer chemoprevention, with a focus on HR-negative disease.

  4. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  5. A Phase II Study Evaluating the Role of Androgen Receptors as Targets for Therapy of Pre-treated Post-menopausal Patients With ER/PgR-negative/AR-positive or ER and/or PgRpositive/ AR-positive Metastatic Breast Cancer (ARTT)

    ClinicalTrials.gov

    2016-09-28

    Metastatic Breastcancer; Estrogen Receptor Positive Breast Cancer; Estrogen Receptor Negative Neoplasm; Progesterone Receptor Positive Tumor; Progesterone Receptor Negative Neoplasm; Androgen Receptor Gene Overexpression

  6. PLZF is a negative regulator of retinoic acid receptor transcriptional activity

    PubMed Central

    Martin, Perrine J; Delmotte, Marie-Hélène; Formstecher, Pierre; Lefebvre, Philippe

    2003-01-01

    Background Retinoic acid receptors (RARs) are ligand-regulated transcription factors controlling cellular proliferation and differentiation. Receptor-interacting proteins such as corepressors and coactivators play a crucial role in specifying the overall transcriptional activity of the receptor in response to ligand treatment. Little is known however on how receptor activity is controlled by intermediary factors which interact with RARs in a ligand-independent manner. Results We have identified the promyelocytic leukemia zinc finger protein (PLZF), a transcriptional corepressor, to be a RAR-interacting protein using the yeast two-hybrid assay. We confirmed this interaction by GST-pull down assays and show that the PLZF N-terminal zinc finger domain is necessary and sufficient for PLZF to bind RAR. The RAR ligand binding domain displayed the highest affinity for PLZF, but corepressor and coactivator binding interfaces did not contribute to PLZF recruitment. The interaction was ligand-independent and correlated to a decreased transcriptional activity of the RXR-RAR heterodimer upon overexpression of PLZF. A similar transcriptional interference could be observed with the estrogen receptor alpha and the glucocorticoid receptor. We further show that PLZF is likely to act by preventing RXR-RAR heterodimerization, both in-vitro and in intact cells. Conclusion Thus RAR and PLZF interact physically and functionally. Intriguingly, these two transcription factors play a determining role in hematopoiesis and regionalization of the hindbrain and may, upon chromosomal translocation, form fusion proteins. Our observations therefore define a novel mechanism by which RARs activity may be controlled. PMID:14521715

  7. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma. PMID:27698817

  8. Positive and negative cues for modulating neurite dynamics and receptor expression.

    PubMed

    Wrobel, Melissa R; Sundararaghavan, Harini G

    2017-03-27

    Many current peripheral nerve repair strategies focus on delivering positive, growth promoting cues (e.g. extracellular matrix, ECM) while eliminating negative, growth inhibiting cues (e.g. chondroitin sulfate proteoglycans, CSPGs) at the injury site. We hypothesized that recapitulating the positive and negative cues of the peripheral nerve injury microenvironment would improve regeneration. First, we tested the effects of a characteristic CSPG, chondroitin sulfate A (CSA) on neurite dynamics of dissociated chick embryo dorsal root ganglion (DRG) neurons using time lapse video microscopy. DRG growth was recorded on different adhesive substrates, including a novel, porcine-derived spinal cord matrix (SCM). The SCM significantly increased frequency of neurite extension coordinated by a significant reduction in the neurites' time spent stalled. The SCM also mitigated inhibitory effects of CSA, producing longer neurites than the controls without CSA treatment. Next we aimed to elucidate receptors involved in mediating this behavior by testing the ability of CSA to upregulate cell-substrate binding receptors using flow cytometry. Our results showed a significant increase in syndecan-3 receptor expression in neurons treated with CSA. Furthermore, syndecans would most likely bind to the sulfated glycosaminoglycans measured in the SCM. Finally, we evaluated neurite growth on biomaterial scaffolds featuring CSA and SCM cues. Our results showed significantly increased neurite outgrowth on electrospun hyaluronic acid fibers with SCM and low levels of CSA. Higher incorporation of CSA maintained its inhibitory properties. Future work will evaluate coupling CSPGs with growth-permissive ECM to assess the combined effect on neurite outgrowth.

  9. CD95 death receptor and epidermal growth factor receptor (EGFR) in liver cell apoptosis and regeneration.

    PubMed

    Reinehr, Roland; Häussinger, Dieter

    2012-02-01

    Recent evidence suggests that signaling pathways towards cell proliferation and cell death are much more interconnected than previously thought. Whereas not only death receptors such as CD95 (Fas, APO-1) can couple to both, cell death and proliferation, also growth factor receptors such as the epidermal growth factor receptor (EGFR) are involved in these opposing kinds of cell fate. EGFR is briefly discussed as a growth factor receptor involved in liver cell proliferation during liver regeneration. Then the role of EGFR in activating CD95 death receptor in liver parenchymal cells (PC) and hepatic stellate cells (HSC), which represent a liver stem/progenitor cell compartment, is described summarizing different ways of CD95- and EGFR-dependent signaling in the liver. Here, depending on the hepatic cell type (PC vs. HSC) and the respective signaling context (sustained vs. transient JNK activation) CD95-/EGFR-mediated signaling ends up in either liver cell apoptosis or cell proliferation.

  10. Crossreactive αβ T cell receptors are the predominant targets of thymocyte negative selection

    PubMed Central

    McDonald, Benjamin D.; Bunker, Jeffrey J.; Erickson, Steven A.; Oh-Hora, Masatsugu; Bendelac, Albert

    2015-01-01

    SUMMARY The precise impact of thymic positive and negative selection on the T cell receptor (TCR) repertoire remains controversial. Here, we used unbiased, high-throughput cloning and retroviral expression of individual preselection TCRs to provide a direct assessment of these processes at the clonal level in vivo. We found that 15% of random TCRs induced signaling and directed positive (7.5%) or negative (7.5%) selection, depending on strength of signal, whereas the remaining 85% failed to induce signaling or selection. Most negatively selected TCRs exhibited promiscuous crossreactivity toward multiple other major histocompatibility complex (MHC) haplotypes. In contrast, TCRs that were positively selected or non-selected were minimally crossreactive. Negative selection of crossreactive TCRs led to clonal deletion but also recycling into intestinal CD4−CD8β− intraepithelial lymphocytes (iIELs). Thus, broadly crossreactive TCRs arise at low frequency in the pre-selection repertoire but constitute the primary drivers of thymic negative selection and iIEL lineage differentiation. PMID:26522985

  11. Usefulness of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in hormone-receptor-negative breast cancer

    PubMed Central

    Liu, Chao; Huang, Zhou; Wang, Qiusheng; Sun, Bing; Ding, Lijuan; Meng, Xiangying; Wu, Shikai

    2016-01-01

    Purpose We aimed to investigate the relationship between pretreatment neutrophil-to-lymphocyte ratio (NLR)/platelet-to-lymphocyte ratio (PLR) and the estimation of hormone-receptor-negative (HR−) breast cancer patients’ survival in a Chinese cohort. Patients and methods Of 434 consecutive HR− nonmetastatic breast cancer patients treated between 2004 and 2010 in the Affiliated Hospital of Academy of Military Medical Sciences, 318 eligible cases with complete data were included in the present study. Kaplan–Meier analysis was performed to determine the overall survival (OS) and disease-free survival (DFS). Univariate and multivariate Cox proportional hazards models were used to test the usefulness of NLR and PLR. Results Univariate analysis indicated that both elevated NLR and PLR (both P<0.001) were associated with poor OS. The utility of NLR remained in the multivariate analysis (P<0.001), but not PLR (P=0.104). The analysis results for DFS were almost the same as OS. Subgroup analysis revealed a significant association between increased NLR and PLR (P<0.001 and P=0.011) and poor survival in triple-negative breast cancer. However, for human epidermal growth factor receptor 2-positive breast cancer, only NLR was significantly associated with OS in the multivariate analysis (P=0.001). Conclusion The present study indicates that both increased NLR and PLR are associated with poor survival in HR−breast cancer patients. Meanwhile, NLR is independently correlated with OS and DFS, but PLR is not. PMID:27536129

  12. Placental Kisspeptins Differentially Modulate Vital Parameters of Estrogen Receptor-Positive and -Negative Breast Cancer Cells.

    PubMed

    Rasoulzadeh, Zahra; Ghods, Roya; Kazemi, Tohid; Mirzadegan, Ebrahim; Ghaffari-Tabrizi-Wizsy, Nassim; Rezania, Simin; Kazemnejad, Somaieh; Arefi, Soheila; Ghasemi, Jamileh; Vafaei, Sedigheh; Mahmoudi, Ahmad-Reza; Zarnani, Amir-Hassan

    2016-01-01

    Kisspeptins (KPs) are major regulators of trophoblast and cancer invasion. Thus far, limited and conflicting data are available on KP-mediated modulation of breast cancer (BC) metastasis; mostly based on synthetic KP-10, the most active fragment of KP. Here, we report for the first time comprehensive functional effects of term placental KPs on proliferation, adhesion, Matrigel invasion, motility, MMP activity and pro-inflammatory cytokine production in MDA-MB-231 (estrogen receptor-negative) and MCF-7 (estrogen receptor-positive). KPs were expressed at high level by term placental syncytiotrophoblasts and released in soluble form. Placental explant conditioned medium containing KPs (CM) significantly reduced proliferation of both cell types compared to CM without (w/o) KP (CM-w/o KP) in a dose- and time-dependent manner. In MDA-MB-231 cells, placental KPs significantly reduced adhesive properties, while increased MMP9 and MMP2 activity and stimulated invasion. Increased invasiveness of MDA-MB-231 cells after CM treatment was inhibited by KP receptor antagonist, P-234. CM significantly reduced motility of MCF-7 cells at all time points (2-30 hr), while it stimulated motility of MDA-MB-231 cells. These effects were reversed by P-234. Co-treatment with selective ER modulators, Tamoxifen and Raloxifene, inhibited the effect of CM on motility of MCF-7 cells. The level of IL-6 in supernatant of MCF-7 cells treated with CM was higher compared to those treated with CM-w/o KP. Both cell types produced more IL-8 after treatment with CM compared to those treated with CM-w/o KP. Taken together, our observations suggest that placental KPs differentially modulate vital parameters of estrogen receptor-positive and -negative BC cells possibly through modulation of pro-inflammatory cytokine production.

  13. Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer

    PubMed Central

    Barrow, Timothy M; Barault, Ludovic; Ellsworth, Rachel E; Harris, Holly R; Binder, Alexandra M; Valente, Allyson L; Shriver, Craig D; Michels, Karin B

    2015-01-01

    Epigenetic regulation of imprinted genes enables monoallelic expression according to parental origin, and its disruption is implicated in many cancers and developmental disorders. The expression of hormone receptors is significant in breast cancer as they are indicators of cancer cell growth rate and determine response to endocrine therapies. We investigated the frequency of aberrant events and variation in DNA methylation at nine imprinted sites in invasive breast cancer and examined the association with estrogen and progesterone receptor status. Breast tissue and blood from patients with invasive breast cancer (n=38) and benign breast disease (n=30) were compared to those from healthy individuals (n=36), matched to the cancer patients by age at diagnosis, ethnicity, BMI, menopausal status, and familial history of cancer. DNA methylation and allele-specific expression were analyzed by pyrosequencing. Tumor-specific methylation changes at IGF2 DMR2 were observed in 59% of cancer patients, IGF2 DMR0 in 38%, DIRAS3 DMR in 36%, GRB10 ICR in 23%, PEG3 DMR in 21%, MEST ICR in 19%, H19 ICR in 18%, KvDMR in 8%, and SNRPN/SNURF ICR in 4%. Variation of methylation was significantly greater in breast tissue from cancer patients than healthy individuals and benign breast disease. Aberrant methylation of three or more sites was significantly associated with negative estrogen-alpha (Fisher’s Exact Test, p=0.02) and progesterone-A (p=0.02) receptor status. Aberrant events and increased variation of imprinted gene DNA methylation therefore appear to be frequent in invasive breast cancer and are associated with negative estrogen and progesterone receptor status, without loss of monoallelic expression. PMID:25560175

  14. Placental Kisspeptins Differentially Modulate Vital Parameters of Estrogen Receptor-Positive and -Negative Breast Cancer Cells

    PubMed Central

    Rasoulzadeh, Zahra; Ghods, Roya; Kazemi, Tohid; Mirzadegan, Ebrahim; Ghaffari-Tabrizi-Wizsy, Nassim; Rezania, Simin; Kazemnejad, Somaieh; Arefi, Soheila; Ghasemi, Jamileh; Vafaei, Sedigheh; Mahmoudi, Ahmad-Reza; Zarnani, Amir-Hassan

    2016-01-01

    Kisspeptins (KPs) are major regulators of trophoblast and cancer invasion. Thus far, limited and conflicting data are available on KP-mediated modulation of breast cancer (BC) metastasis; mostly based on synthetic KP-10, the most active fragment of KP. Here, we report for the first time comprehensive functional effects of term placental KPs on proliferation, adhesion, Matrigel invasion, motility, MMP activity and pro-inflammatory cytokine production in MDA-MB-231 (estrogen receptor-negative) and MCF-7 (estrogen receptor-positive). KPs were expressed at high level by term placental syncytiotrophoblasts and released in soluble form. Placental explant conditioned medium containing KPs (CM) significantly reduced proliferation of both cell types compared to CM without (w/o) KP (CM-w/o KP) in a dose- and time-dependent manner. In MDA-MB-231 cells, placental KPs significantly reduced adhesive properties, while increased MMP9 and MMP2 activity and stimulated invasion. Increased invasiveness of MDA-MB-231 cells after CM treatment was inhibited by KP receptor antagonist, P-234. CM significantly reduced motility of MCF-7 cells at all time points (2–30 hr), while it stimulated motility of MDA-MB-231 cells. These effects were reversed by P-234. Co-treatment with selective ER modulators, Tamoxifen and Raloxifene, inhibited the effect of CM on motility of MCF-7 cells. The level of IL-6 in supernatant of MCF-7 cells treated with CM was higher compared to those treated with CM-w/o KP. Both cell types produced more IL-8 after treatment with CM compared to those treated with CM-w/o KP. Taken together, our observations suggest that placental KPs differentially modulate vital parameters of estrogen receptor-positive and -negative BC cells possibly through modulation of pro-inflammatory cytokine production. PMID:27101408

  15. Negatively Cooperative Binding of High Density Lipoprotein to the HDL Receptor SR-BI†

    PubMed Central

    Nieland, Thomas J.F.; Xu, Shangzhe; Penman, Marsha; Krieger, Monty

    2011-01-01

    Scavenger receptor class B, type I (SR-BI) is a high-density lipoprotein (HDL) receptor, which also binds low density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. SR-BI also is a co-receptor for hepatitis C virus and a signaling receptor that regulates cell metabolism. Many investigators have reported that lipoproteins bind to SR-BI via a single class of independent (not interacting), high affinity binding sites (one site model). We have re-investigated the ligand concentration dependence of 125I-HDL binding to SR-BI and SR-BI-mediated specific uptake of [3H]CE from [3H]CE-HDL using an expanded range of ligand concentrations (<1 µg protein/ml, lower than previously reported). Scatchard and non-linear least squares model fitting analyses of the binding and uptake data were both inconsistent with a single class of independent binding sites binding univalent lipoprotein ligands. The data are best fit by models in which SR-BI has either two independent classes of binding sites, or one class of sites exhibiting negative cooperativity due to either classic allostery or ensemble effects (‘ lattice model’). Similar results were observed for LDL. Application of the ‘infinite dilution’ dissociation rate method established that the binding of 125I-HDL to SR-BI at 4 °C exhibits negative cooperativity. The unexpected complexity of the interactions of lipoproteins with SR-BI should be taken into account when interpreting the results of experiments that explore the mechanism(s) by which SR-BI mediates ligand binding, lipid transport and cell signaling. PMID:21254782

  16. Tyrosine kinase activity is essential for the association of phospholipase C-gamma with the epidermal growth factor receptor.

    PubMed Central

    Margolis, B; Bellot, F; Honegger, A M; Ullrich, A; Schlessinger, J; Zilberstein, A

    1990-01-01

    Epidermal growth factor (EGF) treatment of NIH 3T3 cells transfected with wild-type EGF receptor induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma). The EGF receptor and PLC-gamma were found to be physically associated such that antibodies directed against PLC-gamma or the EGF receptor coimmunoprecipitated both proteins. The association between PLC-gamma and wild-type EGF receptor was dependent on the concentration of EGF, but EGF did not enhance the association between PLC-gamma and a kinase-negative mutant of the EGF receptor. Oligomerization of the EGF receptor was not sufficient to induce association of the EGF receptor with PLC-gamma, since the kinase-negative mutant receptor underwent normal dimerization in response to EGF yet did not associate with PLC-gamma. The form of PLC-gamma associated with the EGF receptor appeared to be primarily the non-tyrosine-phosphorylated form. It is concluded that the kinase activity of the EGF receptor is essential for association of PLC-gamma with the EGF receptor, possibly by stimulating receptor autophosphorylation. Images PMID:2153914

  17. Enriched transcription factor signatures in triple negative breast cancer indicates possible targeted therapies with existing drugs

    PubMed Central

    Willis, Scooter; De, Pradip; Dey, Nandini; Long, Bradley; Young, Brandon; Sparano, Joseph A.; Wang, Victoria; Davidson, Nancy E.; Leyland-Jones, Brian R.

    2015-01-01

    Purpose Triple negative (TN) breast cancers which lack expression of the estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2) receptors convey a poor prognosis due in part to a lack of targeted therapies. Methods To identify viable targets for the treatment of TN disease, we have conducted a gene set enrichment analysis (GSEA) on seven different breast cancer whole genome gene expression cohorts comparing TN vs. ER + HER2 − to identify consistently enriched genes that share a common promoter motif. The seven cohorts were profiled on three different genome expression platforms (Affymetrix, Illumina and RNAseq) consisting in total of 2088 samples with IHC metadata. Results GSEA identified enriched gene expression patterns in TN samples that share common promoter motifs associated with SOX9, E2F1, HIF1A, HMGA1, MYC BACH2, CEBPB, and GCNF/NR6A1. Unexpectedly, NR6A1 an orphan nuclear receptor normally expressed in germ cells of gonads is highly expressed in TN and ER + HER2 − samples making it an ideal drug target. Conclusion With the increasing number of large sample size breast cancer cohorts, an exploratory analysis of genes that are consistently enriched in TN sharing common promoter motifs allows for the identification of possible therapeutic targets with extensive validation in patient derived data sets. PMID:26005638

  18. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila.

    PubMed

    Jeon, Mili; Scott, Matthew P; Zinn, Kai

    2012-06-15

    The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  19. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    PubMed Central

    Jeon, Mili; Scott, Matthew P.; Zinn, Kai

    2012-01-01

    Summary The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways. PMID:23213447

  20. N-WASP Is Essential for the Negative Regulation of B Cell Receptor Signaling

    PubMed Central

    Liu, Chaohong; Bai, Xiaoming; Wu, Junfeng; Sharma, Shruti; Upadhyaya, Arpita; Dahlberg, Carin I. M.; Westerberg, Lisa S.; Snapper, Scott B.; Zhao, Xiaodong; Song, Wenxia

    2013-01-01

    Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR) signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott–Aldrich syndrome protein (N-WASP), which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell–specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation. PMID:24223520

  1. Indispensability of chemotherapy in estrogen receptor-negative early breast cancer in elderly women with diabetes mellitus.

    PubMed

    Jia, Xiaoqing; Hong, Qi; Cheng, Jingyi; Li, Jianwei; Wang, Yujie; Mo, Miao; Shao, Zhimin; Shen, Zhenzhou; Liu, Guangyu

    2015-04-01

    To evaluate whether chemotherapy is indispensable in elderly patients with early estrogen receptor (ER)-negative breast cancer and diabetes mellitus (DM), the data on 112 patients, ≥70 years of age, with early, operable ER-negative breast cancer who were treated at the Cancer Hospital of Fudan University, Shanghai, China, between 2000 and 2010, were analyzed. The overall survival (OS), disease-free survival (DFS), and breast cancer-specific survival (BCS) were compared. Survival analysis was performed using the Kaplan-Meier method. The Cox proportional hazards model was used to evaluate the prognostic value of DM and chemotherapy for OS, DFS, and BCS. The univariate Cox regression analysis revealed that DM at diagnosis, the number of positive lymph nodes, and radiotherapy were associated with OS, the number of positive lymph nodes, human epidermal growth factor 2 (HER2/neu) status, and radiotherapy were associated with DFS, and the number of positive lymph nodes, tumor size, HER2/neu status, chemotherapy, and radiotherapy were associated with BCS. The subsequent multivariate analysis identified DM at diagnosis (hazard ratio [HR]=3.797; 95% confidence interval [CI], 1.515-9.520; P=0.004) as an independent prognostic factor for OS (with the addition of chemotherapy regimen). Chemotherapy was not an independent prognostic factor for either OS (HR=1.275; 95% CI, 0.614-2.646; P=0.515) or DFS (HR=0.849; 95% CI, 0.445-1.619; P=0.619) when other possible factors that may affect the results were adjusted. In conclusion, chemotherapy was not found to be indispensable for elderly (≥70 years of age) female patients with early ER-negative breast cancer with DM because, particularly in such patients, the treatment of DM may be more important compared with chemotherapy.

  2. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  3. Negative Suppressors of Oncogenic Activation of the Met Receptor Tyrosine Kinase

    DTIC Science & Technology

    2008-09-01

    plasma membrane compartment where receptors and various Gab1 binding signaling molecules become concentrated. Disruption of this signaling DR...sites for signalling molecules such as p85, Crk, PLCγ and Shp2 (8), which propagate growth factor signalling to induce changes in the actin...required for dorsal ruffle formation (21, 22). Recently, a genetic screen by Affolter’s group identified another endocytic adaptor molecule , STAM (Signal

  4. The glucocorticoid receptor binds to a sequence overlapping the TATA box of the human osteocalcin promoter: a potential mechanism for negative regulation.

    PubMed Central

    Strömstedt, P E; Poellinger, L; Gustafsson, J A; Carlstedt-Duke, J

    1991-01-01

    Expression of the human osteocalcin promoter is negatively regulated by glucocorticoids in vivo. In vitro DNase I and exonuclease III footprinting analysis showed binding of purified glucocorticoid receptor in close proximity to and overlapping with the TATA box of the osteocalcin gene. These results imply competition or interference with binding of the TATA box-binding transcription factor IID as a mechanism of repression of this gene by glucocorticoids. In support of this notion, point mutation analysis of the receptor binding site indicated that flanking nucleotides and not the TATA box motif per se were important for receptor interaction. Moreover, DNA binding competition assays showed specific binding of the receptor only to the TATA box region of the osteocalcin gene and not to the corresponding region of an immunoglobulin heavy-chain promoter. Images PMID:2038339

  5. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance.

    PubMed

    Sun, Yuxiang; Butte, Nancy F; Garcia, Jose M; Smith, Roy G

    2008-02-01

    Ghrelin and the ghrelin receptor (GH secretagogue receptor, GHS-R), are believed to have important roles in energy homeostasis. We describe results from the first studies to be conducted in congenic (N10) adult ghrelin(-/-) and Ghsr(-/-) mice under conditions of both positive (high-fat diet) and negative (caloric restriction) energy balance. In contrast to results from young N2 mutant mice, changes in body weight and energy expenditure are not clearly distinguishable across genotypes. Although respiratory quotient was lower in mice fed a high-fat diet, no differences were evident between littermate wild-type and null genotypes. With normal chow, a modest decrease trend in respiratory quotient was detected in ghrelin(-/-) mice but not in Ghsr(-/-) mice. Under caloric restriction, the weight loss of ghrelin(-/-) and Ghsr(-/-) mice was identical to wild-type littermates, but blood glucose levels were significantly lower. We conclude that adult congenic ghrelin(-/-) and Ghsr(-/-) mice are not resistant to diet-induced obesity but under conditions of negative energy balance show impairment in maintaining glucose homeostasis. These results support our hypothesis that the primary metabolic function of ghrelin in adult mice is to modulate glucose sensing and insulin sensitivity, rather than directly regulate energy intake and energy expenditure.

  6. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes.

    PubMed

    Mizuno, Emi; Iura, Takanobu; Mukai, Akiko; Yoshimori, Tamotsu; Kitamura, Naomi; Komada, Masayuki

    2005-11-01

    Ligand-activated receptor tyrosine kinases undergo endocytosis and are transported via endosomes to lysosomes for degradation. This "receptor down-regulation" process is crucial to terminate the cell proliferation signals produced by activated receptors. During the process, ubiquitination of the receptors serves as a sorting signal for their trafficking from endosomes to lysosomes. Here, we describe the role of a deubiquitinating enzyme UBPY/USP8 in the down-regulation of epidermal growth factor (EGF) receptor (EGFR). Overexpression of UBPY reduced the ubiquitination level of EGFR and delayed its degradation in EGF-stimulated cells. Immunopurified UBPY deubiquitinated EGFR in vitro. In EGF-stimulated cells, UBPY underwent ubiquitination and bound to EGFR. Overexpression of Hrs or a dominant-negative mutant of SKD1, proteins that play roles in the endosomal sorting of ubiquitinated receptors, caused the accumulation of endogenous UBPY on exaggerated endosomes. A catalytically inactive UBPY mutant clearly localized on endosomes, where it overlapped with EGFR when cells were stimulated with EGF. Finally, depletion of endogenous UBPY by RNA interference resulted in elevated ubiquitination and accelerated degradation of EGF-activated EGFR. We conclude that UBPY negatively regulates the rate of EGFR down-regulation by deubiquitinating EGFR on endosomes.

  7. The role of tumour necrosis factor alpha and soluble tumour necrosis factor alpha receptors in the symptomatology of schizophrenia.

    PubMed

    Turhan, Levent; Batmaz, Sedat; Kocbiyik, Sibel; Soygur, Arif Haldun

    2016-07-01

    Background Immunological mechanisms may be responsible for the development and maintenance of schizophrenia symptoms. Aim The aim of this study is to measure tumour necrosis factor-alpha (TNF-α), soluble tumour necrosis factor-alpha receptor I (sTNF-αRI), and soluble tumour necrosis factor-alpha receptor II (sTNF-αRII) levels in patients with schizophrenia and healthy individuals, and to determine their relationship with the symptoms of schizophrenia. Methods Serum TNF-α, sTNF-αRI and sTNF-αRII levels were measured. The Positive and Negative Syndrome Scale (PANSS) was administered for patients with schizophrenia (n = 35), and the results were compared with healthy controls (n = 30). Hierarchical regression analyses were undertaken to predict the levels of TNF-α, sTNF-αRI and sTNF-αRII. Results No significant difference was observed in TNF-α levels, but sTNF-αRI and sTNF-αRII levels were lower in patients with schizophrenia. Serum sTNF-αRI and sTNF-αRII levels were found to be negatively correlated with the negative subscale score of the PANSS, and sTNF-αRI levels were also negatively correlated with the total score of the PANSS. Smoking, gender, body mass index were not correlated with TNF-α and sTNF-α receptor levels. Conclusions These results suggest that there may be a change in anti-inflammatory response in patients with schizophrenia due to sTNF-αRI and sTNF-αRII levels. The study also supports low levels of TNF activity in schizophrenia patients with negative symptoms.

  8. The epidermal growth factor receptor family: Biology driving targeted therapeutics

    PubMed Central

    Wieduwilt, M. J.; Moasser, M. M.

    2011-01-01

    The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in regulating cell proliferation, survival, differentiation and migration. The ErbB receptors carry out both redundant and restricted functions in mammalian development and in the maintenance of tissues in the adult mammal. Loss of regulation of the ErbB receptors underlies many human diseases, most notably cancer. Our understanding of the function and complex regulation of these receptors has fueled the development of targeted therapeutic agents for human malignancies in the last 15 years. Here we review the biology of ErbB receptors, including their structure, signaling, regulation, and roles in development and disease, then briefly touch on their increasing roles as targets for cancer therapy. PMID:18259690

  9. Irradiation of juvenile, but not adult, mammary gland increases stem cell self-renewal and estrogen receptor negative tumors.

    PubMed

    Tang, Jonathan; Fernandez-Garcia, Ignacio; Vijayakumar, Sangeetha; Martinez-Ruis, Haydeliz; Illa-Bochaca, Irineu; Nguyen, David H; Mao, Jian-Hua; Costes, Sylvain V; Barcellos-Hoff, Mary Helen

    2014-03-01

    Children exposed to ionizing radiation have a substantially greater breast cancer risk than adults; the mechanism for this strong age dependence is not known. Here we show that pubertal murine mammary glands exposed to sparsely or densely ionizing radiation exhibit enrichment of mammary stem cell and Notch pathways, increased mammary repopulating activity indicative of more stem cells, and propensity to develop estrogen receptor (ER) negative tumors thought to arise from stem cells. We developed a mammary lineage agent-based model (ABM) to evaluate cell inactivation, self-renewal, or dedifferentiation via epithelial-mesenchymal transition (EMT) as mechanisms by which radiation could increase stem cells. ABM rejected cell inactivation and predicted increased self-renewal would only affect juveniles while dedifferentiation could act in both juveniles and adults. To further test self-renewal versus dedifferentiation, we used the MCF10A human mammary epithelial cell line, which recapitulates ductal morphogenesis in humanized fat pads, undergoes EMT in response to radiation and transforming growth factor β (TGFβ) and contains rare stem-like cells that are Let-7c negative or express both basal and luminal cytokeratins. ABM simulation of population dynamics of double cytokeratin cells supported increased self-renewal in irradiated MCF10A treated with TGFβ. Radiation-induced Notch concomitant with TGFβ was necessary for increased self-renewal of Let-7c negative MCF10A cells but not for EMT, indicating that these are independent processes. Consistent with these data, irradiating adult mice did not increase mammary repopulating activity or ER-negative tumors. These studies suggest that irradiation during puberty transiently increases stem cell self-renewal, which increases susceptibility to developing ER-negative breast cancer.

  10. Astrocyte Mitogen Inhibitor Related to Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Nieto-Sampedro, Manuel

    1988-06-01

    Epidermal growth factor (EGF) is a well-characterized polypeptide hormone with diverse biological activities, including stimulation of astrocyte division. A soluble astrocyte mitogen inhibitor, immunologically related to the EGF receptor, is present in rat brain. Injury to the brain causes a time-dependent reduction in the levels of this inhibitor and the concomitant appearance of EGF receptor on the astrocyte surface. Intracerebral injection of antibody capable of binding the inhibitor caused the appearance of numerous reactive astrocytes. EGF receptor-related inhibitors may play a key role in the control of glial cell division in both normal and injured brain.

  11. Motivational factors and negative affectivity as predictors of alcohol craving.

    PubMed

    Pombo, Samuel; Luísa Figueira, M; Walter, Henriette; Lesch, Otto

    2016-09-30

    Craving is thought to play an important role in alcohol use disorders. The recent inclusion of "craving" as a formal diagnostic symptom calls for further investigation of this subjective phenomenon with multiple dimensions. Considering that alcohol-dependent patients compensate negative physical/emotional states with alcohol, the aim of this study is to investigate alcohol craving and its correlation with drinking measures and affective personality dimensions. A sample of 135 alcohol-dependent patients (104 males and 31 females) was collected from a clinical setting. Subjects self-rated their cravings (Penn Alcohol Craving Scale) and the stage of change. Several personality scales were also administered. Craving was related to drinking status, abstinence time, age, and taking steps. After controlling for these conditions, psychological characteristics related to low self-concept, neuroticism, cyclothymic affective temperament, depression, and hostility were found to be predictors of craving in sober alcohol-dependent patients. Our results support craving as a component of the phenomenology of alcohol dependence and highlight the presence of unpleasant feelings as predictors of craving in sober alcohol-dependent patients without co-occurring psychiatric conditions. The predisposition to experience negative emotions may induce a stronger craving response and increase the likelihood of a first drink and a subsequent loss of control.

  12. miR-29a suppresses MCF-7 cell growth by downregulating tumor necrosis factor receptor 1.

    PubMed

    Zhao, Yiling; Yang, Fenghua; Li, Wenyuan; Xu, Chunyan; Li, Li; Chen, Lifei; Liu, Yancui; Sun, Ping

    2017-02-01

    Tumor necrosis factor receptor 1 is the main receptor mediating many tumor necrosis factor-alpha-induced cellular events. Some studies have shown that tumor necrosis factor receptor 1 promotes tumorigenesis by activating nuclear factor-kappa B signaling pathway, while other studies have confirmed that tumor necrosis factor receptor 1 plays an inhibitory role in tumors growth by inducing apoptosis in breast cancer. Therefore, the function of tumor necrosis factor receptor 1 in breast cancer requires clarification. In this study, we first found that tumor necrosis factor receptor 1 was significantly increased in human breast cancer tissues and cell lines, and knockdown of tumor necrosis factor receptor 1 by small interfering RNA inhibited cell proliferation by arresting the cell cycle and inducing apoptosis. In addition, miR-29a was predicted as a regulator of tumor necrosis factor receptor 1 by TargetScan and was shown to be inversely correlated with tumor necrosis factor receptor 1 expression in human breast cancer tissues and cell lines. Luciferase reporter assay further confirmed that miR-29a negatively regulated tumor necrosis factor receptor 1 expression by binding to the 3' untranslated region. In our functional study, miR-29a overexpression remarkably suppressed cell proliferation and colony formation, arrested the cell cycle, and induced apoptosis in MCF-7 cell. Furthermore, in combination with tumor necrosis factor receptor 1 transfection, miR-29a significantly reversed the oncogenic role caused by tumor necrosis factor receptor 1 in MCF-7 cell. In addition, we demonstrated that miR-29a suppressed MCF-7 cell growth by inactivating the nuclear factor-kappa B signaling pathway and by decreasing cyclinD1 and Bcl-2/Bax protein levels. Taken together, our results suggest that miR-29a is an important regulator of tumor necrosis factor receptor 1 expression in breast cancer and functions as a tumor suppressor by targeting tumor necrosis factor receptor 1 to

  13. Modulation of the NMDA Receptor Through Secreted Soluble Factors.

    PubMed

    Cerpa, Waldo; Ramos-Fernández, Eva; Inestrosa, Nibaldo C

    2016-01-01

    Synaptic activity is a critical determinant in the formation and development of excitatory synapses in the central nervous system (CNS). The excitatory current is produced and regulated by several ionotropic receptors, including those that respond to glutamate. These channels are in turn regulated through several secreted factors that function as synaptic organizers. Specifically, Wnt, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF), and transforming growth factor (TGF) particularly regulate the N-methyl-D-aspartate receptor (NMDAR) glutamatergic channel. These factors likely regulate early embryonic development and directly control key proteins in the function of important glutamatergic channels. Here, we review the secreted molecules that participate in synaptic organization and discuss the cell signaling behind of this fine regulation. Additionally, we discuss how these factors are dysregulated in some neuropathologies associated with glutamatergic synaptic transmission in the CNS.

  14. C-myc gene chromatin of estrogen receptor positive and negative breast cancer cells.

    PubMed

    Miller, T L; Huzel, N J; Davie, J R; Murphy, L C

    1993-02-01

    Expression of the c-myc protooncogene is estrogen regulated in estrogen receptor (ER) positive, hormone-dependent human breast cancer cells, but it is constitutively active in ER negative, hormone-independent breast cancer cells. To determine whether these differences are reflected in c-myc chromatin, DNase I hypersensitive sites (DHS) were mapped. Six DHS were detected in all cell lines studied, with DHS 3(2) being more prominent than DHS 3(1). The accessibility of DHS 2 was markedly greater in ER negative cells than in ER positive cells, and this relative accessibility remained unchanged when cells were grown in estrogen free medium. DHS 2, 3(1) and 3(2) map near the P0, P1 and P2 promoters, respectively. An analysis of promoter usage demonstrated that P2 was the preferred promoter. Thus, the differences in the accessibility of DHS 2 in c-myc chromatin of ER positive and negative cells likely reflects alterations in DNA-protein interactions in this region.

  15. Negative allosteric modulation of nicotinic acetylcholine receptors blocks nicotine self-administration in rats.

    PubMed

    Yoshimura, Ryan F; Hogenkamp, Derk J; Li, Wen Y; Tran, Minhtam B; Belluzzi, James D; Whittemore, Edward R; Leslie, Frances M; Gee, Kelvin W

    2007-12-01

    Drugs that antagonize nicotinic acetylcholine receptors (nAChRs) can be used to inhibit nicotine-induced behavior in both humans and animals. The aim of our experiments is to establish a proof-of-principle that antagonism of nAChRs by negative allosteric modulation can alter behavior in a relevant animal model of addiction, nicotine self-administration. We have identified a novel, negative allosteric modulator of nAChRs, UCI-30002 [N-(1,2,3,4-tetrahydro-1-naphthyl)-4-nitroaniline], with selectivity for the major neuronal nAChR subtypes over muscle-type nAChRs. After systemic administration, UCI-30002 significantly reduces nicotine self-administration in rats on both fixed ratio and progressive ratio schedules of reinforcement. The minimum effective dose that significantly alters nicotine self-administration corresponds to brain concentrations of UCI-30002 that produce at least 30% inhibition of the major neuronal nAChR subtypes measured in vitro. UCI-30002 has no effect on responding for food reinforcement in rats on either type of schedule, indicating that there is no effect on general responding or natural reward. UCI-30002 represents validation of the concept that negative allosteric modulators may have significant benefits as a strategy for treating nicotine addiction and encourages the development of subtype-selective modulators.

  16. Platelet-activating factor: receptors and signal transduction.

    PubMed

    Chao, W; Olson, M S

    1993-06-15

    During the past two decades, studies describing the chemistry and biology of PAF have been extensive. This potent phosphoacylglycerol exhibits a wide variety of physiological and pathophysiological effects in various cells and tissues. PAF acts, through specific receptors and a variety of signal transduction systems, to elicit diverse biochemical responses. Several important future directions can be enumerated for the characterization of PAF receptors and their attendant signalling mechanisms. The recent cloning and sequence analysis of the gene for the PAF receptor will allow a number of important experimental approaches for characterizing the structure and analysing the function of the various domains of the receptor. Using molecular genetic and immunological technologies, questions relating to whether there is receptor heterogeneity, the precise mechanism(s) for the regulation of the PAF receptor, and the molecular details of the signalling mechanisms in which the PAF receptor is involved can be explored. Another area of major significance is the examination of the relationship between the signalling response(s) evoked by PAF binding to its receptor and signalling mechanisms activated by a myriad of other mediators, cytokines and growth factors. A very exciting recent development in which PAF receptors undoubtedly play a role is in the regulation of the function of various cellular adhesion molecules. Finally, there remain many incompletely characterized physiological and pathophysiological situations in which PAF and its receptor play a crucial signalling role. Our laboratory has been active in the elucidation of several tissue responses in which PAF exhibits major autocoid signalling responses, e.g. hepatic injury and inflammation, acute and chronic pancreatitis, and cerebral stimulation and/or trauma. As new experimental strategies are developed for characterizing the fine structure of the molecular mechanisms involved in tissue injury and inflammation, the

  17. Palbociclib in Combination With Tamoxifen as First Line Therapy for Metastatic Hormone Receptor Positive Breast Cancer

    ClinicalTrials.gov

    2017-03-28

    Hormone Receptor Positive Malignant Neoplasm of Breast; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Estrogen Receptor Positive Breast Cancer; Progesterone Receptor Positive Tumor; Metastatic Breast Cancer

  18. A Murine Fibroblast Growth Factor (FGF) Receptor Expressed in CHO Cells is Activated by Basic FGF and Kaposi FGF

    NASA Astrophysics Data System (ADS)

    Mansukhani, Alka; Moscatelli, David; Talarico, Daniela; Levytska, Vera; Basilico, Claudio

    1990-06-01

    We have cloned a murine cDNA encoding a tyrosine kinase receptor with about 90% similarity to the chicken fibroblast growth factor (FGF) receptor and the human fms-like gene (FLG) tyrosine kinase. This mouse receptor lacks 88 amino acids in the extracellular portion, leaving only two immunoglobulin-like domains compared to three in the chicken FGF receptor. The cDNA was cloned into an expression vector and transfected into receptor-negative CHO cells. We show that cells expressing the receptor can bind both basic FGF and Kaposi FGF. Although the receptor binds basic FGF with a 15- to 20-fold higher affinity, Kaposi FGF is able to induce down-regulation of the receptor to the same extent as basic FGF. The receptor is phosphorylated upon stimulation with both FGFs, DNA synthesis is stimulated, and a proliferative response is produced in cells expressing the receptor, whereas cells expressing the cDNA in the antisense orientation show none of these responses to basic FGF or Kaposi FGF. Thus this receptor can functionally interact with two growth factors of the FGF family.

  19. Tumor necrosis factor receptors support murine hematopoietic progenitor function in the early stages of engraftment.

    PubMed

    Pearl-Yafe, Michal; Mizrahi, Keren; Stein, Jerry; Yolcu, Esma S; Kaplan, Ofer; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir

    2010-07-01

    Tumor necrosis factor (TNF) family receptors/ligands are important participants in hematopoietic homeostasis, in particular as essential negative expansion regulators of differentiated clones. As a prominent injury cytokine, TNF-alpha has been traditionally considered to suppress donor hematopoietic stem and progenitor cell function after transplantation. We monitored the involvement of TNF receptors (TNF-R) 1 and 2 in murine hematopoietic cell engraftment and their inter-relationship with Fas. Transplantation of lineage-negative (lin(-)) bone marrow cells (BMC) from TNF receptor-deficient mice into wild-type recipients showed defective early engraftment and loss of durable hematopoietic contribution upon recovery of host hematopoiesis. Consistently, cells deficient in TNF receptors had reduced competitive capacity as compared to wild-type progenitors. The TNF receptors were acutely upregulated in bone marrow (BM)-homed donor cells (wild-type) early after transplantation, being expressed in 60%-75% of the donor cells after 6 days. Both TNF receptors were detected in fast cycling, early differentiating progenitors, and were ubiquitously expressed in the most primitive progenitors with long-term reconstituting potential (lin(-)c-kit(+) stem cell antigen (SCA)-1(+)). BM-homed donor cells were insensitive to apoptosis induced by TNF-alpha and Fas-ligand and their combination, despite reciprocal inductive cross talk between the TNF and Fas receptors. The engraftment supporting effect of TNF-alpha is attributed to stimulation of progenitors through TNF-R1, which involves activation of the caspase cascade. This stimulatory effect was not observed for TNF-R2, and this receptor did not assume redundant stimulatory function in TNFR1-deficient cells. It is concluded that TNF-alpha plays a tropic role early after transplantation, which is essential to successful progenitor engraftment.

  20. Cord blood natural killer cells expressing a dominant negative TGF-β receptor: Implications for adoptive immunotherapy for glioblastoma.

    PubMed

    Yvon, Eric S; Burga, Rachel; Powell, Allison; Cruz, Conrad R; Fernandes, Rohan; Barese, Cecilia; Nguyen, Tuongvan; Abdel-Baki, Mohamed S; Bollard, Catherine M

    2017-03-01

    Cord blood (CB) natural killer (NK) cells are promising effector cells for tumor immunotherapy but are currently limited by immune-suppressive cytokines in the tumor microenvironment, such as transforming growth factor (TGF-β). We observed that TGF-β inhibits expression of activating receptors such as NKG2D and DNAM1 and decreases killing activity against glioblastoma tumor cells through inhibition of perforin secretion. To overcome the detrimental effects of TGF-β, we engrafted a dominant negative TGF-β receptor II (DNRII) on CB-derived NK cells by retroviral transduction and evaluated their ability to kill glioblastoma cells in the presence of TGF-β. After manufacture using Good Manufacturing Practice-compliant methodologies and transduction with DNRII, CB-derived DNRII-transduced NK cells expanded to clinically relevant numbers and retained both their killing ability and their secretion of interferon-γ upon activation. More important, these cells maintained both perforin expression and NKG2D/DNMA1 expression in the presence of TGF-β allowing for recognition and killing of glioblastoma tumor cells. Hence, NK cells expressing a DNRII should have a functional advantage over unmodified NK cells in the presence of TGF-β-secreting tumors and may be an important therapeutic approach for patients with cancer.

  1. Downregulation of androgen receptor is strongly associated with diabetes in triple negative breast cancer patients

    PubMed Central

    Collina, Francesca; Cerrone, Margherita; Peluso, Valentina; Laurentiis, Michelino De; Caputo, Roberta; Cecio, Rossella De; Liguori, Giuseppina; Botti, Gerardo; Cantile, Monica; Bonito, Maurizio Di

    2016-01-01

    Developing of personalized therapies for Triple Negative Breast Cancer (TNBC) requires a more detailed knowledge of its biology and a correct stratification of molecular subtypes. Androgen Receptor (AR) is expressed in a large part of TNBCs but its prognostic role in this Breast Cancer (BC) subtype is highly debated. In this study, we analyzed AR expression in a series of 238 TNBCs and correlated its expression with clinical-pathological features, survival, and metabolic profile. We showed a consistent association between AR expression and a better prognosis of TNBC patients, while its downregulation appeared strongly associated with diabetic disease. Since a recent prospective study reported a lower BC risk in diabetic women treated with drugs able to reduce circulating levels of glucose compared with non-diabetic woman, and in vitro studies showed that AR level are regulated directly by hyperglycemia, we speculate on the perspective of new integrated therapies for TNBC. PMID:27648143

  2. Cell and molecular biology of epidermal growth factor receptor.

    PubMed

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  3. Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer

    PubMed Central

    Remenyi, Judit; Banerji, Christopher R.S.; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R.; Purdie, Colin A.; Jordan, Lee B.; Thompson, Alastair M.; Finn, Richard S.; Rueda, Oscar M.; Caldas, Carlos; Gil, Jesus; Coombes, R. Charles; Fuller-Pace, Frances V.; Teschendorff, Andrew E.; Buluwela, Laki; Ali, Simak

    2015-01-01

    The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells. PMID:26280373

  4. Androgen Receptor Expression in Early Triple-Negative Breast Cancer: Clinical Significance and Prognostic Associations

    PubMed Central

    Pistelli, Mirco; Caramanti, Miriam; Biscotti, Tommasina; Santinelli, Alfredo; Pagliacci, Alessandra; De Lisa, Mariagrazia; Ballatore, Zelmira; Ridolfi, Francesca; Maccaroni, Elena; Bracci, Raffaella; Berardi, Rossana; Battelli, Nicola; Cascinu, Stefano

    2014-01-01

    Background: Triple-negative breast cancers (TNBC) are characterized by aggressive tumour biology resulting in a poor prognosis. Androgen receptor (AR) is one of newly emerging biomarker in TNBC. In recent years, ARs have been demonstrated to play an important role in the genesis and in the development of breast cancer, although their prognostic role is still debated. In the present study, we explored the correlation of AR expression with clinical, pathological and molecular features and its impact on prognosis in early TNBC. Patients and Methods: ARs were considered positive in case of tumors with >10% nuclear-stained. Survival distribution was estimated by the Kaplan Meier method. The univariate and multivariate analyses were performed. The difference among variables were calculated by chi-square test. Results: 81 TNBC patients diagnosed between January 2006 and December 2011 were included in the analysis. Slides were stained immunohistochemically for estrogen and progesterone receptors, HER-2, Ki-67, ALDH1, e-cadherin and AR. Of the 81 TNBC samples, 18.8% showed positive immunostaining for AR, 23.5% and 44.4% of patients were negative for e-cadherin and ALDH1, respectively. Positive AR immunostaining was inversely correlated with a higher Ki-67 (p < 0.0001) and a lympho-vascular invasion (p = 0.01), but no other variables. Univariate survival analysis revealed that AR expression was not associated with disease-free survival (p = 0.72) or overall survival (p = 0.93). Conclusions: The expression of AR is associated with some biological features of TNBC, such as Ki-67 and lympho-vascular invasion; nevertheless the prognostic significance of AR was not documented in our analysis. However, since ARs are expressed in a significant number of TNBC, prospective studies in order to determine the biological mechanisms and their potential role as novel treatment target. PMID:24978437

  5. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    SciTech Connect

    Mayi, Therese Hervee; Rigamonti, Elena; Pattou, Francois; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  6. CCAAT/enhancer binding protein β negatively regulates progesterone receptor expression in human glioblastoma cells.

    PubMed

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Camacho-Arroyo, Ignacio

    2017-01-05

    Many progesterone (P4) actions are mediated by its intracellular receptor (PR), which has two isoforms (PR-A and PR-B) differentially transcribed from separate promoters of a single gene. In glioblastomas, the most frequent and aggressive brain tumors, PR-B is the predominant isoform. In an in silico analysis we showed putative CCAAT/Enhancer Binding Protein (C/EBP) binding sites at PR-B promoter. We evaluated the role of C/EBPβ in PR-B expression regulation in glioblastoma cell lines, which expressed different ratios of PR and C/EBPβ isoforms (LAP1, LAP2, and LIP). ChIP assays showed a significant basal binding of C/EBPβ, specific protein 1 (Sp1) and estrogen receptor alpha (ERα) to PR-B promoter. C/EBPβ knockdown increased PR-B expression and treatment with estradiol (E2) reduced C/EBPβ binding to the promoter and up-regulated PR-B expression. P4 induced genes were differently regulated when CEBP/β was silenced. These data show that C/EBPβ negatively regulates PR-B expression in glioblastoma cells.

  7. Role of the Androgen Receptor in Triple-Negative Breast Cancer

    PubMed Central

    Rampurwala, Murtuza; Wisinski, Kari B.; O’Regan, Ruth

    2017-01-01

    Triple-negative breast cancer (TNBC) is an aggressive disease with outcomes inferior to those of other breast cancer subtypes. No targeted therapies are currently approved for TNBC, and newer treatment approaches are critically needed. It is increasingly recognized that TNBC is a heterogeneous disease, and the role of androgen signaling in a subset of TNBC is emerging. Although the degree of androgen receptor (AR) expression in TNBC varies widely depending on the assay methodology, cutoff for positivity, and patient population, existing evidence suggests an association between a higher level of AR expression and improved outcomes. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-dependent TNBCs have a better prognosis than those with TNBCs that are not AR-dependent. Furthermore, gene expression profiling has been used to identify a luminal androgen receptor subtype of TNBC that is dependent on AR signaling. Early clinical studies investigating agents targeting AR in advanced TNBC have produced promising results. We review herein the literature on the biology of AR in breast cancer and its prognostic and predictive role in TNBC, and we describe the results of early clinical trials with antiandrogens in this population. We also present our vision of the future development of newer therapeutic strategies in AR-dependent TNBC. PMID:27058032

  8. Case Report: Hormone Receptor Positive, HER2/neu Negative Inflammatory Breast Cancer in a Male Patient.

    PubMed

    Loewen, Anthony H; Schilling, Spencer D; Milroy, Mary; Villanueva, Mary Lee

    2015-10-01

    Inflammatory breast cancer is a rare and aggressive disease found almost exclusively in women. We present a case of a 51-year-old male with inflammatory breast carcinoma. The patient presented with a mass measuring roughly 7 cm with overlying erythema, peau d'orange appearance, and prominent nipple retraction. Core biopsy analysis demonstrated estrogen and progesterone receptor positive, HER2/neu receptor negative invasive ductal carcinoma. A PET scan revealed contralateral supraclavicular lymph node metastasis. The patient refused chemotherapy and radiation and was not a surgical candidate. Ultimately he opted for therapy with strictly an aromatase inhibitor. Most recent follow-up at 12 months demonstrated improvement of metastatic lesions on PET scan. Local progression of disease was noted on physical exam and the patient decided to add everolimus and radiation therapy while continuing an aromatase inhibitor. Retrospective studies have demonstrated increased survival of inflammatory breast cancer diagnosed in women with the utilization of neoadjuvant chemotherapy, surgical excision, and radiation therapy. Unfortunately, due to the rarity of the disease, no specific optimal treatment guidelines have been established for men diagnosed with this disease.

  9. Probabilistic non-negative matrix factorization: theory and application to microarray data analysis.

    PubMed

    Bayar, Belhassen; Bouaynaya, Nidhal; Shterenberg, Roman

    2014-02-01

    Non-negative matrix factorization (NMF) has proven to be a useful decomposition technique for multivariate data, where the non-negativity constraint is necessary to have a meaningful physical interpretation. NMF reduces the dimensionality of non-negative data by decomposing it into two smaller non-negative factors with physical interpretation for class discovery. The NMF algorithm, however, assumes a deterministic framework. In particular, the effect of the data noise on the stability of the factorization and the convergence of the algorithm are unknown. Collected data, on the other hand, is stochastic in nature due to measurement noise and sometimes inherent variability in the physical process. This paper presents new theoretical and applied developments to the problem of non-negative matrix factorization (NMF). First, we generalize the deterministic NMF algorithm to include a general class of update rules that converges towards an optimal non-negative factorization. Second, we extend the NMF framework to the probabilistic case (PNMF). We show that the Maximum a posteriori (MAP) estimate of the non-negative factors is the solution to a weighted regularized non-negative matrix factorization problem. We subsequently derive update rules that converge towards an optimal solution. Third, we apply the PNMF to cluster and classify DNA microarrays data. The proposed PNMF is shown to outperform the deterministic NMF and the sparse NMF algorithms in clustering stability and classification accuracy.

  10. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas.

    PubMed Central

    Hatva, E.; Böhling, T.; Jääskeläinen, J.; Persico, M. G.; Haltia, M.; Alitalo, K.

    1996-01-01

    Capillary hemangioblastomas and hemangiopericytomas are highly vascular central nervous system tumors of controversial origin. Of interest in their pathogenesis are mechanisms regulating endothelial cell growth. The endothelial cell mitogen vascular endothelial growth factor (VEGF) stimulates angiogenesis, and together with its two receptor tyrosine kinases VEGFR-1(FLT1) and VEGFR-2(KDR), is up-regulated during the malignant progression of gliomas. We have analyzed the expression of VEGF and its receptors, the related placental growth factor (PlGF) and the endothelial receptors FLT4 and Tie by in situ hybridization in capillary hemangioblastomas and hemangiopericytomas. VEGF mRNA was up-regulated in all of the hemangiopericytomas studied and highly expressed in the stromal cells of hemangioblastomas. In addition, some hemangioblastoma tumor cells expressed high levels of PlGF. Significantly elevated levels of Tie mRNA, Tie protein, VEGFR-1, and VEGFR-2 but not FLT4 mRNAs were observed in the endothelia of both tumor types. In hemangioblastomas, however, the receptors were also highly expressed by a subpopulation of stromal cells. Consistent results were obtained for a human hemangioblastoma cell line in culture. Up-regulation of the endothelial growth factors and receptors may result in autocrine or paracrine stimulation of endothelial cells and their precursors involved in the genesis of these two vascular tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8774132

  11. Growth factor control of epidermal growth factor receptor kinase activity via an intramolecular mechanism.

    PubMed

    Koland, J G; Cerione, R A

    1988-02-15

    The mechanism by which the protein kinase activity of the epidermal growth factor (EGF) receptor is activated by binding of growth factor was investigated. Detergent-solubilized receptor in monomeric form was isolated by sucrose density gradient centrifugation and both its kinase and autophosphorylation activities monitored. In a low ionic strength medium and with MnCl2 as an activator, the activity of the monomeric receptor was EGF-independent. However, with 0.25 M ammonium sulfate present, the MnCl2-stimulated kinase activity was strikingly EGF-dependent. In contrast, the kinase activity expressed in the presence of MgCl2 showed growth factor control in the absence of added salt. Under the conditions of these experiments there was apparently little tendency for growth factor to induce aggregation of the receptor, indicating that the allosteric activation of the receptor kinase by EGF occurred via an intramolecular mechanism. Whereas detergent-solubilized receptor was the subject of these studies, the kinase activity of cell surface receptors might also be controlled by an intramolecular mechanism. These results indicate that an individual receptor molecule has the potential to function as a transmembrane signal transducer.

  12. Non-negative matrix factorization and term structure of interest rates

    NASA Astrophysics Data System (ADS)

    Takada, Hellinton H.; Stern, Julio M.

    2015-01-01

    Non-Negative Matrix Factorization (NNMF) is a technique for dimensionality reduction with a wide variety of applications from text mining to identification of concentrations in chemistry. NNMF deals with non-negative data and results in non-negative factors and factor loadings. Consequently, it is a natural choice when studying the term structure of interest rates. In this paper, NNMF is applied to obtain factors from the term structure of interest rates and the procedure is compared with other very popular techniques: principal component analysis and Nelson-Siegel model. The NNMF approximation for the term structure of interest rates is better in terms of fitting. From a practitioner point of view, the NNMF factors and factor loadings obtained possess straightforward financial interpretations due to their non-negativeness.

  13. Disabled-2 is a negative immune regulator of lipopolysaccharide-stimulated Toll-like receptor 4 internalization and signaling

    PubMed Central

    Hung, Wei-Shan; Ling, Pin; Cheng, Ju-Chien; Chang, Shy-Shin; Tseng, Ching-Ping

    2016-01-01

    Toll-like receptor 4 (TLR4) plays a pivotal role in the host response to lipopolysaccharide (LPS), a major cell wall component of Gram-negative bacteria. Here, we elucidated whether the endocytic adaptor protein Disabled-2 (Dab2), which is abundantly expressed in macrophages, plays a role in LPS-stimulated TLR4 signaling and trafficking. Molecular analysis and transcriptome profiling of RAW264.7 macrophage-like cells expressing short-hairpin RNA of Dab2 revealed that Dab2 regulated the TLR4/TRIF pathway upon LPS stimulation. Knockdown of Dab2 augmented TRIF-dependent interferon regulatory factor 3 activation and the expression of subsets of inflammatory cytokines and interferon-inducible genes. Dab2 acted as a clathrin sponge and sequestered clathrin from TLR4 in the resting stage of macrophages. Upon LPS stimulation, clathrin was released from Dab2 to facilitate endocytosis of TLR4 for triggering the TRIF-mediated pathway. Dab2 functions as a negative immune regulator of TLR4 endocytosis and signaling, supporting a novel role for a Dab2-associated regulatory circuit in controlling the inflammatory response of macrophages to endotoxin. PMID:27748405

  14. Expression and Clinical Significance of Androgen Receptor in Triple-Negative Breast Cancer

    PubMed Central

    Asano, Yuka; Kashiwagi, Shinichiro; Goto, Wataru; Tanaka, Sayaka; Morisaki, Tamami; Takashima, Tsutomu; Noda, Satoru; Onoda, Naoyoshi; Ohsawa, Masahiko; Hirakawa, Kosei; Ohira, Masaichi

    2017-01-01

    Background: Triple-negative breast cancer (TNBC) has a poor prognosis because of frequent recurrence. Androgen receptor (AR) is involved in the pathogenesis of breast cancer, but its role is not clearly defined. The aim of this study was to explore the expression of AR and its relationship with clinicopathologic features in TNBC. Methods: This study investigated 1036 cases of sporadic invasive breast carcinoma. Immunohistochemical assays were performed to determine the expression of AR in 190 TNBC samples. The relationships between AR expression and clinicopathologic data and prognosis were analyzed. Results: In 190 TNBC cases, the prognosis of AR-positive patients was significantly better (p = 0.019, log-rank) than AR-negative patients, and in multivariate analysis, AR expression was an independent indicator of good prognosis (p = 0.039, hazard ratio = 0.36). In patients with disease relapse, AR positivity was significantly correlated with better prognosis (p = 0.034, log-rank). Conclusions: AR expression may be useful as a subclassification marker for prognosis in TNBC. PMID:28067809

  15. Cardioselective Dominant-negative Thyroid Hormone Receptor (Δ337T) Modulates Myocardial Metabolism and Contractile Dfficiency

    SciTech Connect

    Hyyti, Outi M.; Olson, Aaron; Ge, Ming; Ning, Xue-Han; Buroker, Norman E.; Chung, Youngran; Jue, Thomas; Portman, Michael A.

    2008-06-03

    Dominant- negative thyroid hormone receptors (TRs) show elevated expression relative to ligand-binding TRs during cardiac hypertrophy. We tested the hypothesis that overexpression of a dominant-negative TR alters cardiac metabolism and contractile efficiency (CE). We used mice expressing the cardioselective dominant-negative TRβ1 mutation Δ337T. Isolated working Δ337T hearts and nontransgenic control (Con) hearts were perfused with 13C-labeled free fatty acids (FFA), acetoacetate (ACAC), lactate, and glucose at physiological concentrations for 30 min. 13C NMR spectroscopy and isotopomer analyses were used to determine substrate flux and fractional contributions (Fc) of acetyl-CoA to the citric acid cycle (CAC). Δ337T hearts exhibited rate depression but higher developed pressure and CE, defined as work per oxygen consumption (MV˙ O2). Unlabeled substrate Fc from endogenous sources was higher in Δ337T, but ACAC Fc was lower. Fluxes through CAC, lactate, ACAC, and FFA were reduced in Δ337T. CE and Fc differences were reversed by pacing Δ337T to Con rates, accompanied by an increase in FFA Fc. Δ337T hearts lacked the ability to increase MV˙ O2. Decreases in protein expression for glucose transporter-4 and hexokinase-2 and increases in pyruvate dehydrogenase kinase-2 and -4 suggest that these hearts are unable to increase carbohydrate oxidation in response to stress. These data show that Δ337T alters the metabolic phenotype in murine heart by reducing substrate flux for multiple pathways. Some of these changes are heart rate dependent, indicating that the substrate shift may represent an accommodation to altered contractile protein kinetics, which can be disrupted by pacing stress.

  16. The ontogeny of epidermal growth factor receptors during mouse development

    SciTech Connect

    Adamson, E.D.; Meek, J.

    1984-05-01

    In an attempt to understand the role(s) of epidermal growth factor (EGF) in vivo during murine development, we have examined the /sup 125/I-EGF binding characteristics of EGF-receptors in membrane preparations of tissues from the 12th day of gestation to parturition. Using autoradiography, the earliest time that we could detect EGF-receptors was on trophoblast cells cultured for 3 days as blastocyst outgrowths. Trophoblast eventually forms a large portion of the placenta, where EGF-receptors have long been recognized. We measured the number and affinity of EGF-receptors on tissues dissected from conceptuses from the 12th day of gestation in order to identify a stage when tissues may be most sensitive to EGF. Whereas the number of EGF receptors increases during gestation for all tissues examined, the affinity of the receptors declines for carcass and placenta and remains relatively unchanged for brain and liver. This suggests that EGF may function differently throughout development. Our hypothesis is that EGF (or its embryonic equivalent) initially stimulates proliferation in embryonic cells and then stimulates differentiation as the tissues mature. In the adult, its main role could be to stimulate tissue repair after damage.

  17. Biochemical and biological properties of the nerve growth factor receptor

    SciTech Connect

    Taniuchi, M.

    1988-01-01

    We have utilized a monoclonal antibody (192-IgG) to study the rat nerve growth factor receptor. After intraocular injection, {sup 125}I-192-IgG was retrogradely transported in sympathetic neuronal axons to the superior cervical ganglion. When the sciatic nerve was ligated to induce the accumulation of axonally transported materials, 192-IgG immunostaining was observed on both sides of the ligature, indicating that NGF receptors are transported in both orthograde and retrograde directions. By using {sup 125}I-NGF crosslinking and 192-IgG immunoprecipitation, we detected receptor molecules throughout the rat brain, thereby supporting the hypothesis that NGF is active in the central nervous system. We also discovered that sciatic nerve transection leads to a dramatic increase in the amount of NGF receptor found in the distal portion of the nerve. Immunostaining revealed that all Schwann cells in the distal axotomized nerve were expressing NGF receptors. We examined phosphorylation of NGF receptor in cultured sympathetic neurons and PC12 cells. We also examined pharmacological effects of 192-IgG. Systemic injection of 192-IgG into neonatal rats caused a permanent partial sympathectomy in a dose-dependent manner; a maximum of 50% of the cells were killed.

  18. Therapeutic Targeting of Fibroblast Growth Factor Receptors in Gastric Cancer

    PubMed Central

    Fujimori, Yoshitaka; Otsuki, Sho; Sato, Yuya; Nakagawa, Masatoshi

    2015-01-01

    Chemotherapy has become the global standard treatment for patients with metastatic or unresectable gastric cancer (GC), although outcomes remain unfavorable. Many molecular-targeted therapies inhibiting signaling pathways of various tyrosine kinase receptors have been developed, and monoclonal antibodies targeting human epidermal growth factor receptor 2 (HER2) have become standard therapy for HER2-positive GC. An inhibitor of vascular endothelial growth factor receptor 2 or MET has also produced promising results in patients with GC. Fibroblast growth factor receptors (FGFR) play key roles in tumor growth via activated signaling pathways in GC. Genomic amplification of FGFR2 leads to the aberrant activation found in GC tumors and is related to survival in patients with GC. This review discusses the clinical relevance of FGFR in GC and examines FGFR as a potential therapeutic target in patients with GC. Preclinical studies in animal models suggest that multitargeted tyrosine kinase inhibitors (TKIs), including FGFR inhibitor, suppress tumor cell proliferation and delay tumor progression. Several TKIs are now being evaluated in clinical trials as treatment for metastatic or unresectable GC harboring FGFR2 amplification. PMID:26000013

  19. Insulin-Like Growth Factor 1 Receptor Is a Prognostic Factor in Classical Hodgkin Lymphoma

    PubMed Central

    Liang, Zheng; Diepstra, Arjan; Xu, Chuanhui; van Imhoff, Gustaaf; Plattel, Wouter; Van Den Berg, Anke; Visser, Lydia

    2014-01-01

    The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines. PMID:24489919

  20. Insulin-like growth factor 1 receptor is a prognostic factor in classical Hodgkin lymphoma.

    PubMed

    Liang, Zheng; Diepstra, Arjan; Xu, Chuanhui; van Imhoff, Gustaaf; Plattel, Wouter; Van Den Berg, Anke; Visser, Lydia

    2014-01-01

    The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines.

  1. G protein-coupled receptor signaling through Gq and JNK negatively regulates neural progenitor cell migration

    PubMed Central

    Mizuno, Norikazu; Kokubu, Hiroshi; Sato, Maiko; Nishimura, Akiyuki; Yamauchi, Junji; Kurose, Hitoshi; Itoh, Hiroshi

    2005-01-01

    In the early development of the central nervous system, neural progenitor cells divide in an asymmetric manner and migrate along the radial glia cells. The radial migration is an important process for the proper lamination of the cerebral cortex. Recently, a new mode of the radial migration was found at the intermediate zone where the neural progenitor cells become multipolar and reduce the migration rate. However, the regulatory signals for the radial migration are unknown. Using the migration assay in vitro, we examined how neural progenitor cell migration is regulated. Neural progenitor cells derived from embryonic mouse telencephalon migrated on laminin-coated dishes. Endothelin (ET)-1 inhibited the neural progenitor cell migration. This ET-1 effect was blocked by BQ788, a specific inhibitor of the ETB receptor, and by the expression of a carboxyl-terminal peptide of Gαq but not Gαi. The expression of constitutively active mutant of Gαq, GαqR183C, inhibited the migration of neural progenitor cells. Moreover, the inhibitory effect of ET-1 was suppressed by the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the expression of the JNK-binding domain of JNK-interacting protein-1, a specific inhibitor of the JNK pathway. Using the slice culture system of embryonic brain, we demonstrated that ET-1 and the constitutively active mutant of Gαq caused the retention of the neural progenitor cells in the intermediate zone and JNK-binding domain of JNK-interacting protein-1 abrogated the effect of ET-1. These results indicated that G protein-coupled receptor signaling negatively regulates neural progenitor cell migration through Gq and JNK. PMID:16116085

  2. Estrogen/Progesterone Receptor Negativity and HER2 Positivity Predict Locoregional Recurrence in Patients With T1a,bN0 Breast Cancer

    SciTech Connect

    Albert, Jeffrey M.; Gonzalez-Angulo, Ana M.; Guray, Merih; Sahin, Aysegul

    2010-08-01

    Purpose: Data have suggested that the molecular features of breast cancer are important determinants of outcome; however, few studies have correlated these features with locoregional recurrence (LRR). In the present study, we evaluated estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) as predictors of LRR in patients with lymph node-negative disease and tumors {<=}1 cm, because these patients often do not receive adjuvant chemotherapy or trastuzumab. Methods and Materials: The data from 911 patients with stage T1a,bN0 breast cancer who had received definitive treatment at our institution between 1997 and 2002 were retrospectively reviewed. We prospectively analyzed ER/PR/HER2 expression from the archival tissue blocks of 756 patients. These 756 patients represented the cohort for the present study. Results: With a median follow-up of 6.0 years, the 5- and 8-year Kaplan-Meier LRR rate was 1.6% and 5.9%, respectively, with no difference noted in those who underwent breast conservation therapy vs. mastectomy (p = .347). The 8-year LRR rates were greater in the patients with ER-negative (10.6% vs. 4.2%, p = .016), PR-negative (9.0% vs. 4.2%, p = .009), or HER2-positive (17.5% vs. 3.9%, p = 0.009) tumors. On multivariate analysis, ER-negative and PR-negative disease (hazard ratio, 2.37; p = .046) and HER2-positive disease (hazard ratio, 3.13, p = .016) independently predicted for LRR. Conclusion: Patients with ER/PR-negative or HER2-positive T1a,bN0 breast cancer had a greater risk of LRR. Therapeutic strategies, such as the use of chemotherapy and/or anti-HER2 therapies, should be considered for future clinical trials for these patients.

  3. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells

    PubMed Central

    Piasecka, Dominika; Kitowska, Kamila; Czaplinska, Dominika; Mieczkowski, Kamil; Mieszkowska, Magdalena; Turczyk, Lukasz; Skladanowski, Andrzej C.; Zaczek, Anna J.; Biernat, Wojciech; Kordek, Radzislaw; Romanska, Hanna M.; Sadej, Rafal

    2016-01-01

    We have recently demonstrated that, fibroblast growth factor 2 (FGFR2), signalling via ribosomal S6 kinase 2 (RSK2), promotes progression of breast cancer (BCa). Loss of progesterone receptor (PR), whose activity in BCa cells can be stimulated by growth factor receptors (GFRs), is associated with poor patient outcome. Here we showed that FGF7/FGFR2 triggered phosphorylation of PR at Ser294, PR ubiquitination and subsequent receptor`s degradation via the 26S proteasome pathway in BCa cells. We further demonstrated that RSK2 mediated FGF7/FGFR2-induced PR downregulation. In addition, a strong synergistic effect of FGF7 and progesterone (Pg), reflected in the enhanced anchorage-independent growth and cell migration, was observed. Analysis of clinical material demonstrated that expression of PR inversely correlated with activated RSK (RSK-P) (p = 0.016). Patients with RSK-P(+)/PR(–) tumours had 3.629-fold higher risk of recurrence (p = 0.002), when compared with the rest of the cohort. Moreover, RSK-P(+)/PR(–) phenotype was shown as an independent prognostic factor (p = 0.006). These results indicate that the FGF7/FGFR2-RSK2 axis promotes PR turnover and activity, which may sensitize BCa cells to stromal stimuli and contribute to the progression toward steroid hormone negative BCa. PMID:27852068

  4. Receptor subtype-dependent positive and negative modulation of GABA(A) receptor function by niflumic acid, a nonsteroidal anti-inflammatory drug.

    PubMed

    Sinkkonen, Saku T; Mansikkamäki, Salla; Möykkynen, Tommi; Lüddens, Hartmut; Uusi-Oukari, Mikko; Korpi, Esa R

    2003-09-01

    In addition to blocking cyclooxygenases, members of the fenamate group of nonsteroidal anti-inflammatory drugs have been proposed to affect brain GABAA receptors. Using quantitative autoradiography with GABAA receptor-associated ionophore ligand [35S]t-butylbicyclophosphorothionate (TBPS) on rat brain sections, one of the fenamates, niflumate, at micromolar concentration was found to potentiate GABA actions in most brain areas, whereas being in the cerebellar granule cell layer an efficient antagonist similar to furosemide. With recombinant GABAA receptors expressed in Xenopus laevis oocytes, we found that niflumate potentiated 3 microM GABA responses up to 160% and shifted the GABA concentration-response curve to the left in alpha1beta2gamma2 receptors, the predominant GABAA receptor subtype in the brain. This effect needed the gamma2 subunit, because on alpha1beta2 receptors, niflumate exhibited solely an antagonistic effect at high concentrations. The potentiation was not abolished by the specific benzodiazepine site antagonist flumazenil. Niflumate acted as a potent antagonist of alpha6beta2 receptors (with or without gamma2 subunit) and of alphaXbeta2gamma2 receptors containing a chimeric alpha1 to alpha6 subunit, which suggests that niflumate antagonism is dependent on the same transmembrane domain 1- and 2-including fragment of the alpha6 subunit as furosemide antagonism. This antagonism was noncompetitive because the maximal GABA response, but not the potency, was reduced by niflumate. These data show receptor subtype-dependent positive and negative modulatory actions of niflumate on GABAA receptors at clinically relevant concentrations, and they suggest the existence of a novel positive modulatory site on alpha1beta2gamma2 receptors that is dependent on the gamma2 subunit but not associated with the benzodiazepine binding site.

  5. CrkII signals from epidermal growth factor receptor to Ras.

    PubMed Central

    Kizaka-Kondoh, S; Matsuda, M; Okayama, H

    1996-01-01

    A rat fibroblast mutant defective in oncogenic transformation and signaling from epidermal growth factor receptor to Ras has been isolated. The mutant contains dominant negative-type point mutations in the C-terminal SH3 domain of one crkII gene. Among the adapters tested, the mutant is complemented only by crkII cDNA. Expression of the mutated crkII in parent cells generates the phenotype indistinguishable from the mutant cell. Yet overexpression or reduced expression of Grb2 in the mutant before and after complementation with crkII have little effect on its phenotype. We conclude that adapter molecules are highly specific and that the oncogenic growth signal from epidermal growth factor receptor to Ras is predominantly mediated by CrkII in rat fibroblast. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8901553

  6. Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice.

    PubMed

    Ishii, S; Shimizu, T

    2000-01-01

    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active phospholipid mediator. Although PAF was initially recognized for its potential to induce platelet aggregation and secretion, intense investigations have elucidated potent biological actions of PAF in a broad range of cell types and tissues, many of which also produce the molecule. PAF acts by binding to a unique G-protein-coupled seven transmembrane receptor. PAF receptor is linked to intracellular signal transduction pathways, including turnover of phosphatidylinositol, elevation in intracellular calcium concentration, and activation of kinases, resulting in versatile bioactions. On the basis of numerous pharmacological reports, PAF is thought to have many pathophysiological and physiological functions. Recently advanced molecular technics enable us not only to clone PAF receptor cDNAs and genes, but also generate PAF receptor mutant animals, i.e., PAF receptor-overexpressing mouse and PAF receptor-deficient mouse. These mutant mice gave us a novel and specific approach for identifying the pathophysiological and physiological functions of PAF. This review also describes the phenotypes of these mutant mice and discusses them by referring to previously reported pharmacological and genetical data.

  7. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.

    PubMed

    Wiedemann, Agnès; Mijouin, Lily; Ayoub, Mohammed Akli; Barilleau, Emilie; Canepa, Sylvie; Teixeira-Gomes, Ana Paula; Le Vern, Yves; Rosselin, Manon; Reiter, Eric; Velge, Philippe

    2016-12-01

    The Salmonella Rck outer membrane protein binds to the cell surface, which leads to bacterial internalization via a Zipper mechanism. This invasion process requires induction of cellular signals, including phosphorylation of tyrosine proteins, and activation of c-Src and PI3K, which arises as a result of an interaction with a host cell surface receptor. In this study, epidermal growth factor receptor (EGFR) was identified as the cell signaling receptor required for Rck-mediated adhesion and internalization. First, Rck-mediated adhesion and internalization were shown to be altered when EGFR expression and activity were modulated. Then, immunoprecipitations were performed to demonstrate the Rck-EGFR interaction. Furthermore, surface plasmon resonance biosensor and homogeneous time-resolved fluorescence technologies were used to demonstrate the direct interaction of Rck with the extracellular domain of human EGFR. Finally, our study strongly suggests a noncompetitive binding of Rck and EGF to EGFR. Overall, these results demonstrate that Rck is able to bind to EGFR and thereby establish a tight adherence to provide a signaling cascade, which leads to internalization of Rck-expressing bacteria.-Wiedemann, A., Mijouin, L., Ayoub, M. A., Barilleau, E., Canepa, S., Teixeira-Gomes, A. P., Le Vern, Y., Rosselin, M., Reiter, E., Velge, P. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.

  8. Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors.

    PubMed

    Segatto, Oreste; Anastasi, Sergio; Alemà, Stefano

    2011-06-01

    Signalling by the epidermal growth factor receptor (EGFR) controls morphogenesis and/or homeostasis of several tissues from worms to mammals. The correct execution of these programmes requires the generation of EGFR signals of appropriate strength and duration. This is obtained through a complex circuitry of positive and negative feedback regulation. Feedback inhibitory mechanisms restrain EGFR activity in time and space, which is key to ensuring that receptor outputs are commensurate to the cell and tissue needs. Here, we focus on the emerging field of inducible negative feedback regulation of the EGFR in mammals. In mammalian cells, four EGFR inducible feedback inhibitors (IFIs), namely LRIG1, RALT (also known as MIG6 and ERRFI1), SOCS4 and SOCS5, have been discovered recently. EGFR IFIs are expressed de novo in the context of early or delayed transcriptional responses triggered by EGFR activation. They all bind to the EGFR and suppress receptor signalling through several mechanisms, including catalytic inhibition and receptor downregulation. Here, we review the mechanistic basis of IFI signalling and rationalise the function of IFIs in light of gene-knockout studies that assign LRIG1 and RALT an essential role in restricting cell proliferation. Finally, we discuss how IFIs might participate in system control of EGFR signalling and highlight the emerging roles for IFIs in the suppression of EGFR-driven tumorigenesis.

  9. Topoisomerase IIβ Negatively Modulates Retinoic Acid Receptor α Function: a Novel Mechanism of Retinoic Acid Resistance▿

    PubMed Central

    McNamara, Suzan; Wang, Hongling; Hanna, Nessrine; Miller, Wilson H.

    2008-01-01

    Interactions between retinoic acid (RA) receptor α (RARα) and coregulators play a key role in coordinating gene transcription and myeloid differentiation. In patients with acute promyelocytic leukemia (APL), the RARα gene is fused with the promyelocytic leukemia (PML) gene via the t(15;17) translocation, resulting in the expression of a PML/RARα fusion protein. Here, we report that topoisomerase II beta (TopoIIβ) associates with and negatively modulates RARα transcriptional activity and that increased levels of and association with TopoIIβ cause resistance to RA in APL cell lines. Knockdown of TopoIIβ was able to overcome resistance by permitting RA-induced differentiation and increased RA gene expression. Overexpression of TopoIIβ in clones from an RA-sensitive cell line conferred resistance by a reduction in RA-induced expression of target genes and differentiation. Chromatin immunoprecipitation assays indicated that TopoIIβ is bound to an RA response element and that inhibition of TopoIIβ causes hyperacetylation of histone 3 at lysine 9 and activation of transcription. Our results identify a novel mechanism of resistance in APL and provide further insight to the role of TopoIIβ in gene regulation and differentiation. PMID:18212063

  10. A negative allosteric modulator demonstrates biased antagonism of the follicle stimulating hormone receptor

    PubMed Central

    Dias, James A.; Bonnet, Béatrice; Weaver, Barbara A.; Watts, Julie; Kluetzman, Kerri; Thomas, Richard M.; Poli, Sonia; Mutel, Vincent; Campo, Brice

    2015-01-01

    High quality gamete production in males and females requires the pituitary gonadotropin follicle stimulating hormone (FSH). In this report a novel chemical class of small molecule inhibitors of FSH receptor (FSHR) is described. ADX61623, a negative allosteric modulator (NAM), increased the affinity of interaction between 125I-hFSH and human FSHR (hFSHR) five fold. This form of FSHR occupied simultaneously by FSH and ADX61623 was inactive for cAMP and progesterone production in primary cultures of rat granulosa cells. In contrast, ADX61623 did not block estrogen production. This demonstrates for the first time, biased antagonism at the FSHR. To determine if ADX61623 blocked FSH induction of follicle development in vivo, a bioassay to measure follicular development and oocyte production in immature female rats was validated. ADX61623 was not completely effective in blocking FSH induced follicular development in vivo at doses up to 100 mg/kg as oocyte production and ovarian weight gain were only moderately reduced. These data illustrate that FSHR couples to multiple signaling pathways in vivo. Suppression of one pool of FSHR uncouples Gαs and cAMP production, and decreases progesterone production. Occupancy of another pool of FSHR sensitizes granulosa cells to FSH induced estradiol production. Therefore, ADX61623 is a useful tool to investigate further the mechanism of the FSHR signaling dichotomy. This may lead to a greater understanding of the signaling infrastructure which enables estrogen biosynthesis and may prove useful in treating estrogen dependent disease. PMID:21184806

  11. Both clathrin-positive and -negative coats are involved in endosomal sorting of the EGF receptor

    SciTech Connect

    Myromslien, Froydis D.; Grovdal, Lene Melsaether; Raiborg, Camilla; Stenmark, Harald; Madshus, Inger Helene; Stang, Espen . E-mail: espen.stang@medisin.uio.no

    2006-10-01

    Sorting of endocytosed EGF receptor (EGFR) to internal vesicles of multivesicular bodies (MVBs) depends on sustained activation and ubiquitination of the EGFR. Ubiquitination of EGFR is mediated by the ubiquitin ligase Cbl, being recruited to the EGFR both directly and indirectly through association with Grb2. Endosomal sorting of ubiquitinated proteins further depends on interaction with ubiquitin binding adaptors like Hrs. Hrs localizes to flat, clathrin-coated domains on the limiting membrane of endosomes. In the present study, we have investigated the localization of EGFR, Cbl and Grb2 with respect to coated and non-coated domains of the endosomal membrane and to vesicles within MVBs. Both EGFR, Grb2, and Cbl were concentrated in coated domains of the limiting membrane before translocation to inner vesicles of MVBs. While almost all Hrs was in clathrin-positive coats, EGFR and Grb2 in coated domains only partially colocalized with Hrs and clathrin. The extent of colocalization of EGFR and Grb2 with Hrs and clathrin varied with time of incubation with EGF. These results demonstrate that both clathrin-positive and clathrin-negative electron dense coats exist on endosomes and are involved in endosomal sorting of the EGFR.

  12. Ligand-dependent genomic function of glucocorticoid receptor in triple-negative breast cancer.

    PubMed

    Chen, Zhong; Lan, Xun; Wu, Dayong; Sunkel, Benjamin; Ye, Zhenqing; Huang, Jiaoti; Liu, Zhihua; Clinton, Steven K; Jin, Victor X; Wang, Qianben

    2015-09-16

    Glucocorticoids (GCs) have been widely used as coadjuvants in the treatment of solid tumours, but GC treatment may be associated with poor pharmacotherapeutic response or prognosis. The genomic action of GC in these tumours is largely unknown. Here we find that dexamethasone (Dex, a synthetic GC)-regulated genes in triple-negative breast cancer (TNBC) cells are associated with drug resistance. Importantly, these GC-regulated genes are aberrantly expressed in TNBC patients and are associated with unfavourable clinical outcomes. Interestingly, in TNBC cells, Compound A (CpdA, a selective GR modulator) only regulates a small number of genes not involved in carcinogenesis and therapy resistance. Mechanistic studies using a ChIP-exo approach reveal that Dex- but not CpdA-liganded glucocorticoid receptor (GR) binds to a single glucocorticoid response element (GRE), which drives the expression of pro-tumorigenic genes. Our data suggest that development of safe coadjuvant therapy should consider the distinct genomic function between Dex- and CpdA-liganded GR.

  13. Fibroblast growth factor receptor levels decrease during chick embryogenesis

    PubMed Central

    1990-01-01

    Two putative receptors for fibroblast growth factor (FGF) of approximately 150 and 200 kD were identified in membrane preparations from chick embryos. Specific binding (femtomoles/milligram) of 125I- aFGF to whole chick embryonic membranes was relatively constant from day 2 to 7, then decreased fivefold between days 7 and 13. Day-19 chick embryos retained 125I-aFGF binding at low levels to brain, eye, and liver tissues but not to skeletal muscle or cardiac tissues. The 200-kD FGF receptor began to decline between day 4.5 and 7 and was barely detectable by day 9, whereas the 150-kD FGF receptor began to decline by day 7 but was still detectable in day-9 embryonic membranes. It is not known whether the two FGF-binding proteins represent altered forms of one polypeptide, but it is clear that their levels undergo differential changes during development. Because endogenous chick FGF may remain bound to FGF receptor in membrane preparations, membranes were treated with acidic (pH 4.0) buffers to release bound FGF; such treatment did not affect 125I-aFGF binding and moderately increased the number of binding sites in day-7 and -19 embryos. Consequently, the observed loss of high affinity 125I-aFGF binding sites and FGF-binding polypeptides most likely represents a loss of FGF receptor protein. These experiments provide in vivo evidence to support the hypothesis that regulation of FGF receptor levels may function as a mechanism for controlling FGF-dependent processes during embryonic development. PMID:2153684

  14. Negative regulation of transcription in vitro by a glucocorticoid response element is mediated by a trans-acting factor.

    PubMed Central

    Langer, S J; Ostrowski, M C

    1988-01-01

    In vitro experiments with cell extracts prepared from a mouse mammary epithelial cell line demonstrated that a cis-acting glucocorticoid response element (GRE) of the mouse mammary tumor virus represses transcription from its homologous promoter. Competition transcription experiments, in which a molar excess of a restriction fragment that contains the GRE is added to the cell-free assay, revealed that a nuclear factor mediates in trans the negative regulation of mammary tumor virus transcription in vitro. Gel retention assays indicated that a factor in the extracts specifically recognizes the GRE. One unusual result of the gel retention studies was that heating the GRE probe to 65 degrees C before addition to a binding assay increases the formation of the specific protein-DNA complex 20-fold. Exonuclease III footprinting demonstrated that the sequences recognized by the factor are identical for either untreated or heat-treated probe. The footprinting also demonstrated that this factor recognizes sequences that are distinct from those recognized by the glucocorticoid receptor. A synthetic oligonucleotide based on the sequences identified by the footprinting experiments repressed the activity of a heterologous enhancer-promoter in vivo, as assayed by transient expression assays. We propose that this negative transcription element may control the basal level of expression of some glucocorticoid-modulated genes and may explain the insensitivity of certain tumor cells to steroid hormone action. Images PMID:2851730

  15. Accumulation of the advanced glycation end product carboxymethyl lysine in breast cancer is positively associated with estrogen receptor expression and unfavorable prognosis in estrogen receptor-negative cases.

    PubMed

    Nass, Norbert; Ignatov, Atanas; Andreas, Ludwig; Weißenborn, Christine; Kalinski, Thomas; Sel, Saadettin

    2016-12-23

    Advanced glycation end products (AGEs) accumulate as a result of high concentrations of reactive aldehydes, oxidative stress, and insufficient degradation of glycated proteins. AGEs are therefore accepted biomarkers for aging, diabetes, and several degenerative diseases. Due to the Warburg effect and increased oxidative stress, cancer cells frequently accumulate significant amounts of AGEs. As the accumulation of AGEs may reflect the metabolic state and receptor signaling, we evaluated the potential prognostic and predictive value of this biomarker. We used immunohistochemistry to determine the AGE Nε-carboxymethyl lysine (CML) in 213 mammary carcinoma samples and Western blotting to detect AGEs in cell cultures. Whereas no significant correlation between hormone receptor status and CML was observed in cell lines, CML accumulation in tumors was positively correlated with the presence of estrogen receptor alpha, the postmenopausal state, and age. A negative correlation was found for grade III carcinomas and triple-negative cases. In a retrospective Kaplan-Meier survival analysis, there was a statistical trend that high CML accumulation correlated with a more favorable prognosis (relapse-free survival, RFS) under tamoxifen treatment (p = 0.1). In estrogen receptor-negative cases, the high CML content was significantly correlated with an unfavorable outcome (RFS) of chemotherapy (p = 0.046). CML is a therefore a potentially predictive marker for the treatment of breast cancer patients with tamoxifen or chemotherapy.

  16. Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles.

    PubMed

    Read, Jolene; Ingram, Alistair; Al Saleh, Hassan A; Platko, Khrystyna; Gabriel, Kathleen; Kapoor, Anil; Pinthus, Jehonathan; Majeed, Fadwa; Qureshi, Talha; Al-Nedawi, Khalid

    2017-01-01

    Epidermal growth factor receptor (EGFR) plays a central role in the progression of several human malignancies. Although EGFR is a membrane receptor, it undergoes nuclear translocation, where it has a distinct signalling pathway. Herein, we report a novel mechanism by which cancer cells can directly transport EGFR to the nucleus of other cells via extracellular vesicles (EVs). The transported receptor is active and stimulates the nuclear EGFR pathways. Interestingly, the translocation of EGFR via EVs occurs independently of the nuclear localisation sequence that is required for nuclear translocation of endogenous EGFR. Also, we found that the mutant receptor EGFRvIII could be transported to the nucleus of other cells via EVs. To assess the role of EVs in the regulation of an actual nuclear receptor, we studied the regulation of androgen receptor (AR). We found that full-length AR and mutant variant ARv7 are secreted in EVs derived from prostate cancer cell lines and could be transported to the nucleus of AR-null cells. The EV-derived AR was able to bind the androgen-responsive promoter region of prostate specific antigen, and recruit RNA Pol II, an indication of active transcription. The nuclear-translocated AR via EVs enhanced the proliferation of acceptor cells in the absence of androgen. Finally, we provide evidence that nuclear localisation of AR could occur in vivo via orthotopically-injected EVs in male SCID mice prostate glands. To our knowledge, this is the first study showing the nuclear translocation of nuclear receptors via EVs, which significantly extends the role of EVs as paracrine transcriptional regulators.

  17. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists.

    PubMed Central

    Di Marco, A; Gloaguen, I; Graziani, R; Paonessa, G; Saggio, I; Hudson, K R; Laufer, R

    1996-01-01

    Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by alanine mutagenesis. Substitution of either F152 or K155 with alanine was found to specifically inhibit cytokine interaction with LIFR without affecting binding to CNTFR alpha or gp130. The resulting variants behaved as partial agonists with varying degrees of residual bioactivity in different cell-based assays. Simultaneous alanine substitution of both F152 and K155 totally abolished biological activity. Combining these mutations with amino acid substitutions in the D-helix, which enhance binding affinity for the CNTFR alpha, gave rise to a potent competitive CNTF receptor antagonist. This protein constitutes a new tool for studies of CNTF function in normal physiology and disease. Images Fig. 1 Fig. 6 PMID:8799186

  18. Computational analysis of negative and positive allosteric modulator binding and function in metabotropic glutamate receptor 5 (in)activation.

    PubMed

    Dalton, James A R; Gómez-Santacana, Xavier; Llebaria, Amadeu; Giraldo, Jesús

    2014-05-27

    Metabotropic glutamate receptors (mGluRs) are high-profile G-protein coupled receptors drug targets because of their involvement in several neurological disease states, and mGluR5 in particular is a subtype whose controlled allosteric modulation, both positive and negative, can potentially be useful for the treatment of schizophrenia and relief of chronic pain, respectively. Here we model mGluR5 with a collection of positive and negative allosteric modulators (PAMs and NAMs) in both active and inactive receptor states, in a manner that is consistent with experimental information, using a specialized protocol that includes homology to increase docking accuracy, and receptor relaxation to generate an individual induced fit with each allosteric modulator. Results implicate two residues in particular for NAM and PAM function: NAM interaction with W785 for receptor inactivation, and NAM/PAM H-bonding with S809 for receptor (in)activation. Models suggest the orientation of the H-bond between allosteric modulator and S809, controlled by PAM/NAM chemistry, influences the position of TM7, which in turn influences the shape of the allosteric site, and potentially the receptor state. NAM-bound and PAM-bound mGluR5 models also reveal that although PAMs and NAMs bind in the same pocket and share similar binding modes, they have distinct effects on the conformation of the receptor. Our models, together with the identification of a possible activation mechanism, may be useful in the rational design of new allosteric modulators for mGluR5.

  19. Methods for studying the platelet-derived growth factor receptor

    SciTech Connect

    Bowen-Pope, D.F.; Ross, R.

    1985-01-01

    Platelet-derived growth factor (PDGF) is a basic 30,000-dalton protein circulating in normal blood sequestered within the platelet alpha granule. Radioiodinated PDGF shows saturable (e.g., 60,000-120,000 receptors per diploid human fibroblast) high affinity binding to culture PDGF-responsive cells. The apparent dissociation constant reported for this binding interaction has varied widely. This paper focuses on factors which affect (/sup 125/I)PGDF binding and on the development of a radioreceptor assay for PDGF.

  20. A negative feedback loop controls NMDA receptor function in cortical interneurons via neuregulin 2/ErbB4 signalling

    PubMed Central

    Vullhorst, Detlef; Mitchell, Robert M.; Keating, Carolyn; Roychowdhury, Swagata; Karavanova, Irina; Tao-Cheng, Jung-Hwa; Buonanno, Andres

    2015-01-01

    The neuregulin receptor ErbB4 is an important modulator of GABAergic interneurons and neural network synchronization. However, little is known about the endogenous ligands that engage ErbB4, the neural processes that activate them or their direct downstream targets. Here we demonstrate, in cultured neurons and in acute slices, that the NMDA receptor is both effector and target of neuregulin 2 (NRG2)/ErbB4 signalling in cortical interneurons. Interneurons co-express ErbB4 and NRG2, and pro-NRG2 accumulates on cell bodies atop subsurface cisternae. NMDA receptor activation rapidly triggers shedding of the signalling-competent NRG2 extracellular domain. In turn, NRG2 promotes ErbB4 association with GluN2B-containing NMDA receptors, followed by rapid internalization of surface receptors and potent downregulation of NMDA but not AMPA receptor currents. These effects occur selectively in ErbB4-positive interneurons and not in ErbB4-negative pyramidal neurons. Our findings reveal an intimate reciprocal relationship between ErbB4 and NMDA receptors with possible implications for the modulation of cortical microcircuits associated with cognitive deficits in psychiatric disorders. PMID:26027736

  1. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer

    PubMed Central

    Ha, Ngoc-Han; Long, Jirong; Cai, Qiuyin; Shu, Xiao Ou

    2016-01-01

    Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs) could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ) and low metastatic (MOLF/EiJ) mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL) SNPs with disease-free survival, consistent with the mouse studies. PMID:27656887

  2. The Internal Structure of Positive and Negative Affect: A Confirmatory Factor Analysis of the PANAS

    ERIC Educational Resources Information Center

    Tuccitto, Daniel E.; Giacobbi, Peter R., Jr.; Leite, Walter L.

    2010-01-01

    This study tested five confirmatory factor analytic (CFA) models of the Positive Affect Negative Affect Schedule (PANAS) to provide validity evidence based on its internal structure. A sample of 223 club sport athletes indicated their emotions during the past week. Results revealed that an orthogonal two-factor CFA model, specifying error…

  3. Vascular Endothelial Growth Factor Receptor -2 in Breast Cancer

    PubMed Central

    Guo, Shanchun; Colbert, Laronna S.; Fuller, Miles; Zhang, Yuanyuan; Gonzalez-Perez, Ruben R.

    2010-01-01

    Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR were structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival. PMID:20462514

  4. Conformational thermostabilisation of corticotropin releasing factor receptor 1

    PubMed Central

    Kean, James; Bortolato, Andrea; Hollenstein, Kaspar; Marshall, Fiona H.; Jazayeri, Ali

    2015-01-01

    Recent technical advances have greatly facilitated G-protein coupled receptors crystallography as evidenced by the number of successful x-ray structures that have been reported recently. These technical advances include novel detergents, specialised crystallography techniques as well as protein engineering solutions such as fusions and conformational thermostabilisation. Using conformational thermostabilisation, it is possible to generate variants of GPCRs that exhibit significantly increased stability in detergent micelles whilst preferentially occupying a single conformation. In this paper we describe for the first time the application of this technique to a member of a class B GPCR, the corticotropin releasing factor receptor 1 (CRF1R). Mutational screening in the presence of the inverse agonist, CP-376395, resulted in the identification of a construct with twelve point mutations that exhibited significantly increased thermal stability in a range of detergents. We further describe the subsequent construct engineering steps that eventually yielded a crystallisation-ready construct which recently led to the solution of the first x-ray structure of a class B receptor. Finally, we have used molecular dynamic simulation to provide structural insight into CRF1R instability as well as the stabilising effects of the mutants, which may be extended to other class B receptors considering the high degree of structural conservation. PMID:26159865

  5. Non-negative factor analysis supporting the interpretation of elemental distribution images acquired by XRF

    NASA Astrophysics Data System (ADS)

    Alfeld, Matthias; Wahabzada, Mirwaes; Bauckhage, Christian; Kersting, Kristian; Wellenreuther, Gerd; Falkenberg, Gerald

    2014-04-01

    Stacks of elemental distribution images acquired by XRF can be difficult to interpret, if they contain high degrees of redundancy and components differing in their quantitative but not qualitative elemental composition. Factor analysis, mainly in the form of Principal Component Analysis (PCA), has been used to reduce the level of redundancy and highlight correlations. PCA, however, does not yield physically meaningful representations as they often contain negative values. This limitation can be overcome, by employing factor analysis that is restricted to non-negativity. In this paper we present the first application of the Python Matrix Factorization Module (pymf) on XRF data. This is done in a case study on the painting Saul and David from the studio of Rembrandt van Rijn. We show how the discrimination between two different Co containing compounds with minimum user intervention and a priori knowledge is supported by Non-Negative Matrix Factorization (NMF).

  6. Epidermal growth factor receptor activity is necessary for mouse basal cell proliferation

    PubMed Central

    Brechbuhl, Heather M.; Li, Bilan; Smith, Russell W.

    2014-01-01

    ERB family receptors (EGFR, ERB-B2, ERB-B3, and ERB-B4) regulate epithelial cell function in many tissue types. In the human airway epithelium, changes in ERB receptor expression are associated with epithelial repair defects. However, the specific role(s) played by ERB receptors in repair have not been determined. We aimed to determine whether ERB receptors regulate proliferation of the tracheobronchial progenitor, the basal cell. Receptor tyrosine kinase arrays were used to evaluate ERB activity in normal and naphthalene (NA)-injured mouse trachea and in air-liquid interface cultures. Roles for epidermal growth factor (EGF), EGFR, and ERB-B2 in basal cell proliferation were evaluated in vitro. NA injury and transgenic expression of an EGFR-dominant negative (DN) receptor were used to evaluate roles for EGFR signaling in vivo. EGFR and ERB-B2 were active in normal and NA-injured trachea and were the only active ERB receptors detected in proliferating basal cells in vitro. EGF was necessary for basal cell proliferation in vitro. The EGFR inhibitor, AG1478, decreased proliferation by 99, and the Erb-B2 inhibitor, AG825, decreased proliferation by ∼66%. In vivo, EGFR-DN expression in basal cells significantly decreased basal cell proliferation after NA injury. EGF and EGFR are necessary for basal cell proliferation. The EGFR/EGFR homo- and the EGFR/ERB-B2 heterodimer account for ∼34 and 66%, respectively, of basal cell proliferation in vitro. Active EGFR is necessary for basal cell proliferation after NA injury. We conclude that EGFR activation is necessary for mouse basal cell proliferation and normal epithelial repair. PMID:25217659

  7. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    SciTech Connect

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  8. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells.

    PubMed

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA1-LPA6) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA1 and LPA5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA1.

  9. Phosphodiesterase 4B negatively regulates endotoxin-activated interleukin-1 receptor antagonist responses in macrophages

    PubMed Central

    Yang, Jing-Xing; Hsieh, Kou-Chou; Chen, Yi-Ling; Lee, Chien-Kuo; Conti, Marco; Chuang, Tsung-Hsien; Wu, Chin-Pyng; Jin, S.-L. Catherine

    2017-01-01

    Activation of TLR4 by lipopolysaccharide (LPS) induces both pro-inflammatory and anti-inflammatory cytokine production in macrophages. Type 4 phosphodiesterases (PDE4) are key cAMP-hydrolyzing enzymes, and PDE4 inhibitors are considered as immunosuppressors to various inflammatory responses. We demonstrate here that PDE4 inhibitors enhance the anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1Ra) secretion in LPS-activated mouse peritoneal macrophages, and this response was regulated at the transcriptional level rather than an increased IL-1Ra mRNA stability. Studies with PDE4-deficient macrophages revealed that the IL-1Ra upregulation elicited by LPS alone is PKA-independent, whereas the rolipram-enhanced response was mediated by inhibition of only PDE4B, one of the three PDE4 isoforms expressed in macrophages, and it requires PKA but not Epac activity. However, both pathways activate CREB to induce IL-1Ra expression. PDE4B ablation also promoted STAT3 phosphorylation (Tyr705) to LPS stimulation, but this STAT3 activation is not entirely responsible for the IL-1Ra upregulation in PDE4B-deficient macrophages. In a model of LPS-induced sepsis, only PDE4B-deficient mice displayed an increased circulating IL-1Ra, suggesting a protective role of PDE4B inactivation in vivo. These findings demonstrate that PDE4B negatively modulates anti-inflammatory cytokine expression in innate immune cells, and selectively targeting PDE4B should retain the therapeutic benefits of nonselective PDE4 inhibitors. PMID:28383060

  10. Negative Allosteric Modulators of Metabotropic Glutamate Receptors Subtype 5 in Addiction: a Therapeutic Window

    PubMed Central

    2016-01-01

    Background: Abundant evidence at the anatomical, electrophysiological, and molecular levels implicates metabotropic glutamate receptor subtype 5 (mGluR5) in addiction. Consistently, the effects of a wide range of doses of different mGluR5 negative allosteric modulators (NAMs) have been tested in various animal models of addiction. Here, these studies were subjected to a systematic review to find out if mGluR5 NAMs have a therapeutic potential that can be translated to the clinic. Methods: Literature on consumption/self-administration and reinstatement of drug seeking as outcomes of interest published up to April 2015 was retrieved via PubMed. The review focused on the effects of systemic (i.p., i.v., s.c.) administration of the mGluR5 NAMs 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) and 2-Methyl-6-(phenylethynyl)pyridine (MPEP) on paradigms with cocaine, ethanol, nicotine, and food in rats. Results: MTEP and MPEP were found to reduce self-administration of cocaine, ethanol, and nicotine at doses ≥1mg/kg and 2.5mg/kg, respectively. Dose-response relationship resembled a sigmoidal curve, with low doses not reaching statistical significance and high doses reliably inhibiting self-administration of drugs of abuse. Importantly, self-administration of cocaine, ethanol, and nicotine, but not food, was reduced by MTEP and MPEP in the dose range of 1 to 2mg/kg and 2.5 to 3.2mg/kg, respectively. This dose range corresponds to approximately 50% to 80% mGluR5 occupancy. Interestingly, the limited data found in mice and monkeys showed a similar therapeutic window. Conclusion: Altogether, this review suggests a therapeutic window for mGluR5 NAMs that can be translated to the treatment of substance-related and addictive disorders. PMID:26802568

  11. Probing the existence of G protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding.

    PubMed

    Albizu, Laura; Balestre, Marie-Noëlle; Breton, Christophe; Pin, Jean-Philippe; Manning, Maurice; Mouillac, Bernard; Barberis, Claude; Durroux, Thierry

    2006-11-01

    An increasing amount of ligand binding data on G protein-coupled receptors (GPCRs) is not compatible with the prediction of the simple mass action law. This may be related to the propensity of most GPCRs, if not all, to oligomerize. Indeed, one of the consequences of receptor oligomerization could be a possible cross-talk between the protomers, which in turn could lead to negative or positive cooperative ligand binding. We prove here that this can be demonstrated experimentally. Saturation, dissociation, and competition binding experiments were performed on vasopressin and oxytocin receptors expressed in Chinese hamster ovary or COS-7 cells. Linear, concave, and convex Scatchard plots were then obtained, depending on the ligand used. Moreover, some competition curves exhibited an increase of the radiotracer binding for low concentrations of competitors, suggesting a cooperative binding process. These data demonstrate that various vasopressin analogs display either positive or negative cooperative binding. Because positive cooperative binding cannot be explained without considering receptor as multivalent, these binding data support the concept of GPCR dimerization process. The results, which are in good accordance with the predictions of previous mathematical models, suggest that binding experiments can be used to probe the existence of receptor dimers.

  12. Expression of melatonin receptors in triple negative breast cancer (TNBC) in African American and Caucasian women: relation to survival.

    PubMed

    Oprea-Ilies, Gabriela; Haus, Erhard; Sackett-Lundeen, Linda; Liu, Yuan; McLendon, Lauren; Busch, Robert; Adams, Amy; Cohen, Cynthia

    2013-02-01

    In the normal rodent breast, the pineal hormone melatonin controls the development of ductal and alveolar tissue. Melatonin counteracts tumor occurrence and tumor cell progression in vivo and in vitro in animal and human breast cancer cell cultures. It acts predominantly through its melatonin MT1 receptor. Our aim was to investigate the presence or absence of the MT1 melatonin receptor in the aggressive triple negative group of human breast carcinoma (TNBC) and its possible relationship to the course of the disease. A total of 167 patients with a ER-, PR-, Her-2/neu- phenotype in which tissue for receptor studies was available were examined. The MT1 receptor immunostain was evaluated semiquantitatively as staining intensity (0, 1, 2, 3), percentage of stained cells and the weighted index (WI) (staining intensity times percentage of stained cells). A score of WI < 60 was regarded as "negative". There was a striking difference in incidence of MT1 positivity and staining intensity between carcinomas in African American (AA) and Caucasian (C) women. The AA showed a higher incidence of MT1 negative tumors (41/84 = 48.8 % in AA, 6/51 = 11.8 % in C) and a lower average WI. MT1 positivity in TNBC was associated with a lower stage and a smaller tumor size at time of diagnosis. In multivariable survival analysis, MT1 negative TNBC in all cases regardless of race showed a significantly higher hazard ratio for disease progression, shorter progression free survival, and disease-related death, and shorter OS. This was especially pronounced in the AA group but did not reach statistical significance in the smaller group of C alone. These results suggest that melatonin or a melatonin receptor agonist may be useful biologic additions in the treatment of some forms of TNBC, especially in AA who generally show a more aggressive course of their disease.

  13. Upregulation of epidermal growth factor receptor 4 in oral leukoplakia

    PubMed Central

    Kobayashi, Hiroshi; Kumagai, Kenichi; Gotoh, Akito; Eguchi, Takanori; Yamada, Hiroyuki; Hamada, Yoshiki; Suzuki, Satsuki; Suzuki, Ryuji

    2013-01-01

    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP). The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP. PMID:23492901

  14. Signal Transduction by Vascular Endothelial Growth Factor Receptors

    PubMed Central

    Koch, Sina; Claesson-Welsh, Lena

    2012-01-01

    Vascular endothelial growth factors (VEGFs) are master regulators of vascular development and of blood and lymphatic vessel function during health and disease in the adult. It is therefore important to understand the mechanism of action of this family of five mammalian ligands, which act through three receptor tyrosine kinases (RTKs). In addition, coreceptors like neuropilins (NRPs) and integrins associate with the ligand/receptor signaling complex and modulate the output. Therapeutics to block several of the VEGF signaling components have been developed with the aim to halt blood vessel formation, angiogenesis, in diseases that involve tissue growth and inflammation, such as cancer. In this review, we outline the current information on VEGF signal transduction in relation to blood and lymphatic vessel biology. PMID:22762016

  15. SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex

    PubMed Central

    Park, Yoon; Jin, Hyung-seung; Lopez, Justine; Lee, Jeeho; Liao, Lujian; Elly, Chris; Liu, Yun-Cai

    2016-01-01

    SHARPIN forms a linear-ubiquitin-chain-assembly complex that promotes signaling via the transcription factor NF-κB. SHARPIN deficiency leads to progressive multi-organ inflammation and immune system malfunction, but how SHARPIN regulates T cell responses is unclear. Here we found that SHARPIN deficiency resulted in a substantial reduction in the number of and defective function of regulatory T cells (Treg cells). Transfer of SHARPIN-sufficient Treg cells into SHARPIN-deficient mice considerably alleviated their systemic inflammation. SHARPIN-deficient T cells displayed enhanced proximal signaling via the T cell antigen receptor (TCR) without an effect on the activation of NF-κB. SHARPIN conjugated with Lys63 (K63)-linked ubiquitin chains, which led to inhibition of the association of TCRζ with the signaling kinase Zap70; this affected the generation of Treg cells. Our study therefore identifies a role for SHARPIN in TCR signaling whereby it maintains immunological homeostasis and tolerance by regulating Treg cells. PMID:26829767

  16. Concordance between core needle biopsy and surgical specimen for oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status in breast cancer

    PubMed Central

    Asogan, Aravind Barathi; Hong, Ga Sze; Prabhakaran, Subash Kumar Arni

    2017-01-01

    INTRODUCTION This study aimed to analyse the concordance rate, sensitivity, specificity, positive predictive value (PPV) and negative predictive value of core needle biopsy (CNB) and subsequent surgical specimen (SS) in assessing levels of oestrogen receptor (ER), progesterone receptor (PgR) and human epidermal growth factor receptor 2 (HER2/neu). It also evaluated the revised American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) guidelines for ER/PgR positivity. METHODS We analysed the breast cancer database of KK Women’s and Children’s Hospital, Singapore, from 1 June 2005 to 30 December 2012. Invasive breast cancer patients who had CNB and subsequent SS were included. RESULTS A total of 560 patients were included. The concordance of ER, PgR and HER2/neu positivity between CNB and SS was 96.1%, 89.1% and 96.8%, respectively. When the ‘ER ≥ 10% positive’ group was compared with the ‘ER ≥ 1% positive’ group, specificity increased from 79.7% to 92.5% and PPV increased from 93.9% to 97.5%. When the ‘PgR ≥ 10% positive’ group was compared with the ‘PgR ≥ 1% positive’ group, specificity increased from 84.2% to 89.3% and PPV improved from 89.7% to 92.9%. The revised ASCO/CAP guidelines decreased discordant results by > 50% for ER and by 18.2% for PgR. CONCLUSION CNB has high concordance with SS in the evaluation of the molecular profile of invasive breast cancer. Thus, molecular evaluation does not need to be repeated with SS except for ER-, PgR- and HER2/neu-negative CNB results. The revised ASCO/CAP guidelines resulted in more precise ER and PgR status on CNB. PMID:27029805

  17. Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine.

    PubMed

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I; Ferré, Sergi; McCormick, Peter J

    2015-04-29

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking.

  18. Trastuzumab Emtansine in Treating Older Patients With Human Epidermal Growth Factor Receptor 2-Positive Stage I-III Breast Cancer

    ClinicalTrials.gov

    2017-02-03

    Estrogen Receptor Negative; HER2 Positive Breast Carcinoma; Progesterone Receptor Negative; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIC Breast Cancer

  19. Cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala prevent the stress-induced enhancement of a negative learning experience.

    PubMed

    Ramot, Assaf; Akirav, Irit

    2012-05-01

    The enhancement of emotional memory is clearly important as emotional stimuli are generally more significant than neutral stimuli for surviving and reproduction purposes. Yet, the enhancement of a negative emotional memory following exposure to stress may result in dysfunctional or intrusive memory that underlies several psychiatric disorders. Here we examined the effects of stress exposure on a negative emotional learning experience as measured by a decrease in the magnitude of the expected quantity of reinforcements in an alley maze. In contrast to other fear-related negative experiences, reward reduction is more associated with frustration and is assessed by measuring the latency to run the length of the alley to consume the reduced quantity of reward. We also examined whether the cannabinoid receptors agonist WIN55,212-2 (5 μg/side) and the glucocorticoid receptors (GRs) antagonist RU-486 (10 ng/side) administered into the rat basolateral amygdala (BLA) could prevent the stress-induced enhancement. We found that intra-BLA RU-486 or WIN55,212 before stress exposure prevented the stress-induced enhancement of memory consolidation for reduction in reward magnitude. These findings suggest that cannabinoid receptors and GRs in the BLA are important modulators of stress-induced enhancement of emotional memory.

  20. The Src homology 2 domain-containing inositol 5-phosphatase negatively regulates Fcgamma receptor-mediated phagocytosis through immunoreceptor tyrosine-based activation motif-bearing phagocytic receptors.

    PubMed

    Nakamura, Koji; Malykhin, Alexander; Coggeshall, K Mark

    2002-11-01

    Molecular mechanisms by which the Src homology 2 domain-containing inositol 5-phosphatase (SHIP) negatively regulates phagocytosis in macrophages are unclear. We addressed the issue using bone marrow-derived macrophages from FcgammaR- or SHIP-deficient mice. Phagocytic activities of macrophages from FcgammaRII(b)(-/-) and SHIP(-/-) mice were enhanced to a similar extent, relative to those from wild type. However, calcium influx was only marginally affected in FcgammaRII(b)(-/-), but greatly enhanced in SHIP(-/-) macrophages. Furthermore, SHIP was phosphorylated on tyrosine residues upon FcgammaR aggregation even in macrophages from FcgammaRII(b)(-/-) mice or upon clustering of a chimeric receptor containing CD8 and the immunoreceptor tyrosine-based activation motif (ITAM)-bearing gamma-chain or human-restricted FcgammaRIIa. These findings indicate that, unlike B cells, SHIP is efficiently phosphorylated in the absence of an immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptor. We further demonstrate that SHIP directly bound to phosphorylated peptides derived from FcgammaRIIa with a high affinity, comparable to that of FcgammaRII(b). Lastly, FcgammaRIIa-mediated phagocytosis was significantly enhanced in THP-1 cells overexpressing dominant-negative form of SHIP in the absence of FcgammaRII(b). These results indicate that SHIP negatively regulates FcgammaR-mediated phagocytosis through all ITAM-containing IgG receptors using a molecular mechanism distinct from that in B cells.

  1. Expression of sarcosine metabolism-related proteins in estrogen receptor negative breast cancer according to the androgen receptor and HER-2 status

    PubMed Central

    Kim, Min Ju; Jung, Woo Hee; Koo, Ja Seung

    2015-01-01

    The aim of this study is to investigate the expression of sarcosine metabolism related proteins according to androgen receptor (AR) and HER-2 status in estrogen receptor (ER) negative breast cancer and to analyze its clinical implications. Tissue microarray was constructed for a total of 334 cases of ER negative breast cancer. Immunohistochemical stain was conducted for sarcosine metabolism related proteins such as glycine N-methyltransferase (GNMT), sarcosine dehydrogenase (SARDH), and l-pipecolic acid oxidase (PIPOX). There were 131 AR positive, 205 AR negative cases and 143 HER-2 positive, 193 HER-2 negative cases. When subdividing into four groups according to AR and HER-2 status, there were 55 AR(+)/HER-2(-) cases, 76 AR(+)/HER-2(+) cases, 67 AR(-)/HER-2(+) cases and 138 AR(-)/HER-2(-) cases. GNMT and PIPOX expression was highest in the AR(+)/HER-2(-) group while expressed lowest in the AR(-)/HER-2(-) group (P<0.001). Stromal PIPOX expression was highest in the AR(-)/HER-2(+) group and lowest in the AR(-)/HER-2(-) group (P=0.010). GNMT and PIPOX expression was higher in the AR positive group compared with those of AR negative group (P=0.001, and P<0.001, respectively), while tumoral and stromal PIPOX expression showed a significant association with HER-2 positivity (P=0.006, and P=0.005, respectively). AR positive group had the highest ratio of low sarcosine type while the AR negative group had the highest ratio of null type (P<0.001). In conclusion, ER negative breast cancer showed different expression of sarcosine metabolism related proteins according to AR and HER-2 status. GNMT and PIPOX expression was high in the AR positive group while tumoral and stromal PIPOX expression was high in the HER-2 positive group. PMID:26339363

  2. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis.

    PubMed

    Speer, Allison L; Al Alam, Denise; Sala, Frederic G; Ford, Henri R; Bellusci, Saverio; Grikscheit, Tracy C

    2012-01-01

    The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10) and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b), in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22) except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.

  3. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors.

    PubMed

    Kang, Xunlei; Kim, Jaehyup; Deng, Mi; John, Samuel; Chen, Heyu; Wu, Guojin; Phan, Hiep; Zhang, Cheng Cheng

    2016-01-01

    Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology - as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.

  4. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors

    PubMed Central

    Kang, Xunlei; Kim, Jaehyup; Deng, Mi; John, Samuel; Chen, Heyu; Wu, Guojin; Phan, Hiep; Zhang, Cheng Cheng

    2016-01-01

    ABSTRACT Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology – as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development. PMID:26636629

  5. GWAS in the SIGNAL/PHARE clinical cohort restricts the association between the FGFR2 locus and estrogen receptor status to HER2-negative breast cancer patients.

    PubMed

    Cox, David G; Curtit, Elsa; Romieu, Gilles; Fumoleau, Pierre; Rios, Maria; Bonnefoi, Hervé; Bachelot, Thomas; Soulié, Patrick; Jouannaud, Christelle; Bourgeois, Hugues; Petit, Thierry; Tennevet, Isabelle; Assouline, David; Mathieu, Marie-Christine; Jacquin, Jean-Philippe; Lavau-Denes, Sandrine; Darut-Jouve, Ariane; Ferrero, Jean-Marc; Tarpin, Carole; Lévy, Christelle; Delecroix, Valérie; Trillet-Lenoir, Véronique; Cojocarasu, Oana; Meunier, Jérôme; Pierga, Jean-Yves; Faure-Mercier, Céline; Blanché, Hélène; Sahbatou, Mourad; Boland, Anne; Bacq, Delphine; Besse, Céline; Deleuze, Jean-François; Pauporté, Iris; Thomas, Gilles; Pivot, Xavier

    2016-11-22

    Genetic polymorphisms are associated with breast cancer risk. Clinical and epidemiological observations suggest that clinical characteristics of breast cancer, such as estrogen receptor or HER2 status, are also influenced by hereditary factors. To identify genetic variants associated with pathological characteristics of breast cancer patients, a Genome Wide Association Study was performed in a cohort of 9365 women from the French nationwide SIGNAL/PHARE studies (NCT00381901/RECF1098). Strong association between the FGFR2 locus and ER status of breast cancer patients was observed (ER-positive n=6211, ER-negative n=2516; rs3135718 OR=1.34 p=5.46×10-12). This association was limited to patients with HER2-negative tumors (ER-positive n=4267, ER-negative n=1185; rs3135724 OR=1.85 p=1.16×10-11). The FGFR2 locus is known to be associated with breast cancer risk. This study provides sound evidence for an association between variants in the FGFR2 locus and ER status among breast cancer patients, particularly among patients with HER2-negative disease. This refinement of the association between FGFR2 variants and ER-status to HER2-negative disease provides novel insight to potential biological and clinical influence of genetic polymorphisms on breast tumors.

  6. GWAS in the SIGNAL/PHARE clinical cohort restricts the association between the FGFR2 locus and estrogen receptor status to HER2-negative breast cancer patients

    PubMed Central

    Cox, David G.; Curtit, Elsa; Romieu, Gilles; Fumoleau, Pierre; Rios, Maria; Bonnefoi, Hervé; Bachelot, Thomas; Soulié, Patrick; Jouannaud, Christelle; Bourgeois, Hugues; Petit, Thierry; Tennevet, Isabelle; Assouline, David; Mathieu, Marie-Christine; Jacquin, Jean-Philippe; Lavau-Denes, Sandrine; Darut-Jouve, Ariane; Ferrero, Jean-Marc; Tarpin, Carole; Lévy, Christelle; Delecroix, Valérie; Trillet-Lenoir, Véronique; Cojocarasu, Oana; Meunier, Jérôme; Pierga, Jean-Yves; Faure-Mercier, Céline; Blanché, Hélène; Sahbatou, Mourad; Boland, Anne; Bacq, Delphine; Besse, Céline; Deleuze, Jean-François; Pauporté, Iris; Thomas, Gilles; Pivot, Xavier

    2016-01-01

    Genetic polymorphisms are associated with breast cancer risk. Clinical and epidemiological observations suggest that clinical characteristics of breast cancer, such as estrogen receptor or HER2 status, are also influenced by hereditary factors. To identify genetic variants associated with pathological characteristics of breast cancer patients, a Genome Wide Association Study was performed in a cohort of 9365 women from the French nationwide SIGNAL/PHARE studies (NCT00381901/RECF1098). Strong association between the FGFR2 locus and ER status of breast cancer patients was observed (ER-positive n=6211, ER-negative n=2516; rs3135718 OR=1.34 p=5.46×10−12). This association was limited to patients with HER2-negative tumors (ER-positive n=4267, ER-negative n=1185; rs3135724 OR=1.85 p=1.16×10−11). The FGFR2 locus is known to be associated with breast cancer risk. This study provides sound evidence for an association between variants in the FGFR2 locus and ER status among breast cancer patients, particularly among patients with HER2-negative disease. This refinement of the association between FGFR2 variants and ER-status to HER2-negative disease provides novel insight to potential biological and clinical influence of genetic polymorphisms on breast tumors. PMID:27764800

  7. Epidermal growth factor and its receptors in human pancreatic carcinoma

    SciTech Connect

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N. )

    1990-05-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells.

  8. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions.

    PubMed

    Morabito, Alessandro; Piccirillo, Maria Carmela; Falasconi, Fabiano; De Feo, Gianfranco; Del Giudice, Antonia; Bryce, Jane; Di Maio, Massimo; De Maio, Ermelinda; Normanno, Nicola; Perrone, Francesco

    2009-04-01

    Vandetanib is a novel, orally available inhibitor of different intracellular signaling pathways involved in tumor growth, progression, and angiogenesis: vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and REarranged during Transfection tyrosine kinase activity. Phase I clinical trials have shown that vandetanib is well tolerated as a single agent at daily doses < or =300 mg. In the phase II setting, negative results were observed with vandetanib in small cell lung cancer, metastatic breast cancer, and multiple myeloma. In contrast, three randomized phase II studies showed that vandetanib prolonged the progression-free survival (PFS) time of patients with non-small cell lung cancer (NSCLC) as a single agent when compared with gefitinib or when added to chemotherapy. Rash, diarrhea, hypertension, fatigue, and asymptomatic QTc prolongation were the most common adverse events. Antitumor activity was also observed in medullary thyroid cancer. Four randomized phase III clinical trials in NSCLC are exploring the efficacy of vandetanib in combination with docetaxel, the Zactima in cOmbination with Docetaxel In non-small cell lung Cancer (ZODIAC) trial, or with pemetrexed, the Zactima Efficacy with Alimta in Lung cancer (ZEAL) trial, or as a single agent, the Zactima Efficacy when Studied versus Tarceva (ZEST) and the Zactima Efficacy trial for NSCLC Patients with History of EGFR-TKI chemo-Resistance (ZEPHYR) trials. Based on a press release by the sponsor of these trials, the PFS time was longer with vandetanib in the ZODIAC and ZEAL trials; the ZEST trial was negative for its primary superiority analysis, but was successful according to a preplanned noninferiority analysis of PFS. Ongoing phase II and III clinical trials will better define the appropriate schedule, the optimal setting of evaluation, and the safety of long-term use of vandetanib.

  9. Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator.

    PubMed

    Font, Joan; López-Cano, Marc; Notartomaso, Serena; Scarselli, Pamela; Di Pietro, Paola; Bresolí-Obach, Roger; Battaglia, Giuseppe; Malhaire, Fanny; Rovira, Xavier; Catena, Juanlo; Giraldo, Jesús; Pin, Jean-Philippe; Fernández-Dueñas, Víctor; Goudet, Cyril; Nonell, Santi; Nicoletti, Ferdinando; Llebaria, Amadeu; Ciruela, Francisco

    2017-04-11

    Light-operated drugs constitute a major target in drug discovery, since they may provide spatiotemporal resolution for the treatment of complex diseases (i.e. chronic pain). JF-NP-26 is an inactive photocaged derivative of the metabotropic glutamate type 5 (mGlu5) receptor negative allosteric modulator raseglurant. Violet light illumination of JF-NP-26 induces a photochemical reaction prompting the active-drug's release, which effectively controls mGlu5 receptor activity both in ectopic expressing systems and in striatal primary neurons. Systemic administration in mice followed by local light-emitting diode (LED)-based illumination, either of the thalamus or the peripheral tissues, induced JF-NP-26-mediated light-dependent analgesia both in neuropathic and in acute/tonic inflammatory pain models. These data offer the first example of optical control of analgesia in vivo using a photocaged mGlu5 receptor negative allosteric modulator. This approach shows potential for precisely targeting, in time and space, endogenous receptors, which may allow a better management of difficult-to-treat disorders.

  10. Common genetic influences on negative emotionality and a general psychopathology factor in childhood and adolescence.

    PubMed

    Tackett, Jennifer L; Lahey, Benjamin B; van Hulle, Carol; Waldman, Irwin; Krueger, Robert F; Rathouz, Paul J

    2013-11-01

    Previous research using confirmatory factor analysis to model psychopathology comorbidity has supported the hypothesis of a broad general factor (i.e., a "bifactor"; Holzinger & Swineford, 1937) of psychopathology in children, adolescents, and adults, with more specific higher order internalizing and externalizing factors reflecting additional shared variance in symptoms (Lahey et al., 2012; Lahey, van Hulle, Singh, Waldman, & Rathouz, 2011). The psychological nature of this general factor has not been explored, however. The current study tested a prediction, derived from the spectrum hypothesis of personality and psychopathology, that variance in a general psychopathology bifactor overlaps substantially-at both phenotypic and genetic levels-with the dispositional trait of negative emotionality. Data on psychopathology symptoms and dispositional traits were collected from both parents and youth in a representative sample of 1,569 twin pairs (ages 9-17 years) from Tennessee. Predictions based on the spectrum hypothesis were supported, with variance in negative emotionality and the general factor overlapping substantially at both phenotypic and etiologic levels. Furthermore, stronger correlations were found between negative emotionality and the general psychopathology factor than among other dispositions and other psychopathology factors.

  11. Different Use of Cell Surface Glycosaminoglycans As Adherence Receptors to Corneal Cells by Gram Positive and Gram Negative Pathogens

    PubMed Central

    García, Beatriz; Merayo-Lloves, Jesús; Rodríguez, David; Alcalde, Ignacio; García-Suárez, Olivia; Alfonso, José F.; Baamonde, Begoña; Fernández-Vega, Andrés; Vazquez, Fernando; Quirós, Luis M.

    2016-01-01

    The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive, and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies. PMID:27965938

  12. The coexpression and prognostic significance of c-MET, fibroblast growth factor receptor 2, and human epidermal growth factor receptor 2 in resected gastric cancer: a retrospective study

    PubMed Central

    Jia, Yong-Xu; Li, Teng-Fei; Zhang, Dan-Dan; Fan, Zong-Min; Fan, Hui-Jie; Yan, Jie; Chen, Li-Juan; Tang, Hong; Qin, Yan-Ru; Li, Xing-Ya

    2016-01-01

    Molecular-targeted therapy against tyrosine kinase receptors (RTKs) plays an important role in gastric cancer (GC) treatment. Understanding the correlation between RTK coexpression could better guide clinical drug use. In the present study, the coexpression status of c-MET, fibroblast growth factor receptor 2 (FGFR2), and human epidermal growth factor receptor 2 (HER2) in human GC and their clinical significance in clinical therapy were explored. Immunohistochemical (IHC) staining, quantitative real-time polymerase chain reaction and fluorescent in situ hybridization were performed in 143 cases of GC who had undergone gastrectomy without preoperative chemoradiotherapy. Their association with clinicopathological features and clinical prognosis was analyzed. The frequencies of c-MET, FGFR2, and HER2 overexpression were 47.6% (68/143), 34.3% (49/143), and 10.5% (15/143), respectively. In the RTK coexpression study, 30.1% of patients (43/143) were positive for only one RTK, 25.8% (37/143) were positive for two RTKs, 3.5% (5/143) had triple-positive status, and 40.6% (58/143) had triple-negative status. In survival analysis, the overexpression of c-MET, FGFR2, and HER2 were significantly associated with overall survival (OS) (P=0.018, 0.004, and 0.049, respectively). In coexpression analysis, patients with triple-positive GC had the poorest OS (P=0.013). In conclusion, RTK coexpression is significantly associated with poor clinical outcome in GC. PMID:27729801

  13. Generation of monoclonal antibody targeting fibroblast growth factor receptor 3.

    PubMed

    Gorbenko, Olena; Ovcharenko, Galyna; Klymenko, Tetyana; Zhyvoloup, Olexandr; Gaman, Nadia; Volkova, Darija; Gout, Ivan; Filonenko, Valeriy

    2009-08-01

    Fibroblast growth factor receptor 3 (FGFR3) is a member of the FGFR family of receptor tyrosine kinases, whose function has been implicated in diverse biological processes, including cell proliferation, differentiation, survival, and tumorigenesis. Deregulation of FGFR3 signaling has been implicated with human pathologies, including cancer. Activating mutations in FGFR3 gene are frequently detected in bladder cancer, multiple myeloma, and noninvasive papillary urothelial cell carcinomas, while the overexpression of the receptor is observed in thyroid lymphoma and bladder cancer. The main aim of this study was to generate hybridoma clones producing antibody that could specifically recognize FGFR3/S249C mutant, but not the wild-type FGFR. To achieve this, we used for immunization bacterially expressed fragment of FGFR3 corresponding to loops II-III of the extracellular domain (GST-His/FGFR3/S249C-LII-III), which possesses oncogenic mutation at Ser249 detected in at least 50% of bladder cancers. Primary ELISA screening allowed us to isolate several hybridoma clones that showed specificity towards FGFR3/S249C, but not FGFR3wt protein. Unfortunately, these clones were not stable during single-cell cloning and expansion and lost the ability to recognize specifically FGFR3/S249C. However, this study allowed us to generate several monoclonal antibodies specific towards both FGFR3wt and FGFR3/S249C recombinant proteins. Produced hybridomas secreted MAbs that were specific in Western blotting towards bacterially expressed FGFR3wt and FGFR3/S249C, as well as the full-length receptors ectopically expressed in Sf21 and HEK293 cells. Moreover, transiently expressed wild-type and oncogenic forms of FGFR were efficiently immunoprecipitated with selected antibodies from the lysates of infected Sf21 and transiently transfected HEK293. In summary, generated antibodies should be useful as tools for examining the expression pattern and biological functions of FGFR3 in normal and

  14. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions.

    PubMed Central

    Pinkas-Kramarski, R; Soussan, L; Waterman, H; Levkowitz, G; Alroy, I; Klapper, L; Lavi, S; Seger, R; Ratzkin, B J; Sela, M; Yarden, Y

    1996-01-01

    The ErbB family includes two receptors, ErbB-1 and ErbB-3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB-2. Unlike ErbB-1 and ErbB-2, the intrinsic tyrosine kinase of ErbB-3 is catalytically impaired. By using interleukin-3-dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB-3 is devoid of any biological activity but both ErbB-1 and ErbB-2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB-3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter-receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB-3-containing complexes, especially the ErbB-2/ErbB-3 heterodimer, are more active than ErbB-1 complexes. Nevertheless, ErbB-1 signaling displays dominance over ErbB-3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen-activated protein kinases ERK and c-Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase-defective ErbB-3. Images PMID:8665853

  15. Coregulation of Epidermal Growth Factor Receptor/Human Epidermal Growth Factor Receptor 2 (HER2) Levels and Locations: Quantitative Analysis of HER2 Overexpression Effects

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee; Wiley, H. S.; Lauffenburger, Douglas A.

    2003-03-01

    Elevated expression of human epidermal growth factor receptor 2 (HER2) is know to alter cell signalilng and behavioral responses implicated in tumor progression. However, multiple diverse mechanisms may be involved in these overall effects, including signaling by HER2 itself, modulation of signalilng by epidermal growth factor receptor (EGFR) and modification of trafficking dynamics for both EGFR and HER2. Continued....

  16. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1.

    PubMed

    Meza-Carmen, Victor; Pacheco-Rodriguez, Gustavo; Kang, Gi Soo; Kato, Jiro; Donati, Chiara; Zhang, Chun-Yi; Vichi, Alessandro; Payne, D Michael; El-Chemaly, Souheil; Stylianou, Mario; Moss, Joel; Vaughan, Martha

    2011-06-28

    ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis, we used mouse embryo fibroblasts (MEFs) from ARD1-/- mice stably transfected with plasmids for inducible expression of wild-type ARD1 protein (KO-WT), or ARD1 protein with inactivating mutations in E3 ligase domain (KO-E3), or containing persistently active GTP-bound (KO-GTP), or inactive GDP-bound (KO-GDP) GTPase domains. Inhibition of proteasomal proteases in mifepristone-induced KO-WT, KO-GDP, or KO-GTP MEFs resulted in accumulation of these ARD1 proteins, whereas KO-E3 accumulated without inhibitors. All data were consistent with the conclusion that ARD1 regulates its own steady-state levels in cells by autoubiquitination. Based on reported growth factor receptor-cytohesin interactions, EGF receptor (EGFR) was investigated in induced MEFs. Amounts of cell-surface and total EGFR were higher in KO-GDP and lower in KO-GTP than in KO-WT MEFs, with levels in both mutants greater (p = 0.001) after proteasomal inhibition. Significant differences among MEF lines in content of TGF-β receptor III were similar to those in EGFR, albeit not as large. Differences in amounts of insulin receptor mirrored those in EGFR, but did not reach statistical significance. Overall, the capacity of ARD1 GTPase to cycle between active and inactive forms and its autoubiquitination both appear to be necessary for the appropriate turnover of EGFR and perhaps additional growth factor receptors.

  17. Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential

    SciTech Connect

    Patterson, Timothy J.; Rice, Robert H. . E-mail: rhrice@ucdavis.edu

    2007-05-15

    Previous work has suggested that arsenic exposure contributes to skin carcinogenesis by preserving the proliferative potential of human epidermal keratinocytes, thereby slowing the exit of putative target stem cells into the differentiation pathway. To find a molecular basis for this action, present work has explored the influence of arsenite on keratinocyte responses to epidermal growth factor (EGF). The ability of cultured keratinocytes to found colonies upon passaging several days after confluence was preserved by arsenite and EGF in an additive fashion, but neither was effective when the receptor tyrosine kinase activity was inhibited. Arsenite prevented the loss of EGF receptor protein and phosphorylation of tyrosine 1173, preserving its capability to signal. The level of nuclear {beta}-catenin was higher in cells treated with arsenite and EGF in parallel to elevated colony forming ability, and expression of a dominant negative {beta}-catenin suppressed the increase in both colony forming ability and yield of putative stem cells induced by arsenite and EGF. As judged by expression of three genes regulated by {beta}-catenin, this transcription factor had substantially higher activity in the arsenite/EGF-treated cells. Trivalent antimony exhibited the same effects as arsenite. A novel finding is that insulin in the medium induced the loss of EGF receptor protein, which was largely prevented by arsenite exposure.

  18. Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function.

    PubMed

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-03-17

    Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes by upregulating CD62L expression and inhibited late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21(+/-) mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions.

  19. Polychlorinated Biphenyls Disrupt Hepatic Epidermal Growth Factor Receptor Signaling.

    PubMed

    Hardesty, Josiah E; Wahlang, Banrida; Falkner, K Cameron; Clair, Heather B; Clark, Barbara J; Ceresa, Brian P; Prough, Russell A; Cave, Matthew C

    2016-07-26

    1. Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that disrupt hepatic xenobiotic and intermediary metabolism, leading to metabolic syndrome and nonalcoholic steatohepatitis (NASH). 2. Since phenobarbital indirectly activates Constitutive Androstane Receptor (CAR) by antagonizing growth factor binding to the epidermal growth factor receptor (EGFR), we hypothesised that PCBs may also diminish EGFR signaling. 3. The effects of the PCB mixture Aroclor 1260 on the protein phosphorylation cascade triggered by EGFR activation were determined in murine (in vitro and in vivo) and human models (in vitro). EGFR tyrosine residue phosphorylation was decreased by PCBs in all models tested. 4. The IC50 values for Aroclor 1260 concentrations that decreased Y1173 phosphorylation of EGFR were similar in murine AML-12 and human HepG2 cells (∼2-4 μg/mL). Both dioxin and non-dioxin-like PCB congeners decreased EGFR phosphorylation in cell culture. 5. PCB treatment reduced phosphorylation of downstream EGFR effectors including Akt and mTOR, as well as other phosphoprotein targets including STAT3 and c-RAF in vivo. 6. PCBs diminish EGFR signaling in human and murine hepatocyte models and may dysregulate critical phosphoprotein regulators of energy metabolism and nutrition, providing a new mechanism of action in environmental diseases.

  20. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-08-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  1. Factors Influencing Pronunciation Accuracy: L1 Negative Transfer, Task Variables and Individual Aptitude

    ERIC Educational Resources Information Center

    Liu, Qian

    2011-01-01

    This paper investigates the influence of three factors on pronunciation accuracy of Chinese adult foreign language learners. Ten target sounds including phonemes and syllables are included in the pre-test, an analysis of which shows that the mispronunciation of the randomly chosen target sounds mainly results from L1 negative transfer. It is…

  2. Negative Intrusive Thoughts and Dissociation as Risk Factors for Self-Harm

    ERIC Educational Resources Information Center

    Batey, Helen; May, Jon; Andrade, Jackie

    2010-01-01

    Relationships between self-harm and vulnerability factors were studied in a general population of 432 participants, of whom 30% reported some experience of self-harm. This group scored higher on dissociation and childhood trauma, had lower self-worth, and reported more negative intrusive thoughts. Among the non-harming group, 10% scored similarly…

  3. Negative School Factors and Their Influence on Math and Science Achievement in TIMSS 2003

    ERIC Educational Resources Information Center

    Perse, Tina Vrsnik; Kozina, Ana; Leban, Tina Rutar

    2011-01-01

    The aim of the present study was to conduct an analysis of TIMSS (Trends in International Mathematics and Science Study) 2003 database and to determine how negative school factors, such as aggression, are associated to the mathematical and science achievement of students. The analyses were conducted separately for national and international data.…

  4. Factors Negatively Affect Speaking Skills at Saudi Colleges for Girls in the South

    ERIC Educational Resources Information Center

    Hamad, Mona M.

    2013-01-01

    This study investigated factors negatively affect English language speaking skills in Saudi colleges for girls in the South in terms of: a) Instructors. b) Students. c) Curriculum and textbook. d) English Language teaching methods and exercises. e) Teaching and learning environment. To collect data for the study, a questionnaire papers were…

  5. A Prospective Study Investigating the Impact of School Belonging Factors on Negative Affect in Adolescents

    ERIC Educational Resources Information Center

    Shochet, Ian M.; Smith, Coral L.; Furlong, Michael J.; Homel, Ross

    2011-01-01

    School belonging, measured as a unidimensional construct, is an important predictor of negative affective problems in adolescents, including depression and anxiety symptoms. A recent study found that one such measure, the Psychological Sense of School Membership scale, actually comprises three factors: Caring Relations, Acceptance, and Rejection.…

  6. Individual differences in positivity offset and negativity bias: Gender-specific associations with two serotonin receptor genes.

    PubMed

    Ashare, Rebecca L; Norris, Catherine J; Wileyto, E Paul; Cacioppo, John T; Strasser, Andrew A

    2013-09-01

    Individual differences in the evaluation of affective stimuli, such as the positivity offset and negativity bias may have a biological basis. We tested whether two SNPs (HTR2A; 102T>C and HTR1A; 1019C>G) related to serotonin receptor function, a biological pathway associated with affective regulation, were differentially related to positivity offset and negativity bias for males and females. Participants were 109 cigarette smokers who rated a series of affective stimuli to assess reactions to positive and negative pictures. Gender × genotype interactions were found for both SNPs. Males with the 102T allele showed a greater positivity offset than males with the 102C allele. For females, in contrast, the 1019C allele was associated with a greater positivity offset than the 1019G allele, whereas the 102T allele was associated with a greater negativity bias than the 102C allele. Identifying how gender differences may moderate the effect of serotonin receptor genes on affective information processing may provide insight into their role in guiding behavior and regulating affect.

  7. The σ1 Receptor Engages the Redox-Regulated HINT1 Protein to Bring Opioid Analgesia Under NMDA Receptor Negative Control

    PubMed Central

    Rodríguez-Muñoz, María; Sánchez-Blázquez, Pilar; Herrero-Labrador, Raquel; Martínez-Murillo, Ricardo; Merlos, Manuel; Vela, José Miguel

    2015-01-01

    Abstract Aims: The in vivo pharmacology of the sigma 1 receptor (σ1R) is certainly complex; however, σ1R antagonists are of therapeutic interest, because they enhance mu-opioid receptor (MOR)-mediated antinociception and reduce neuropathic pain. Thus, we investigated whether the σ1R is involved in the negative control that glutamate N-methyl-d-aspartate acid receptors (NMDARs) exert on opioid antinociception. Results: The MOR C terminus carries the histidine triad nucleotide-binding protein 1 (HINT1) coupled to the regulator of G-protein signaling RGSZ2-neural nitric oxide synthase assembly. Activated MORs stimulate the production of nitric oxide (NO), and the redox zinc switch RGSZ2 converts this signal into free zinc ions that are required to recruit the redox sensor PKCγ to HINT1 proteins. Then, PKCγ impairs HINT1-RGSZ2 association and enables σ1R-NR1 interaction with MOR-HINT1 complexes to restrain opioid signaling. The inhibition of NOS or the absence of σ1Rs prevents HINT1-PKCγ interaction, and MOR-NMDAR cross-regulation fails. The σ1R antagonists transitorily remove the binding of σ1Rs to NR1 subunits, facilitate the entrance of negative regulators of NMDARs, likely Ca2+-CaM, and prevent NR1 interaction with HINT1, thereby impairing the negative feedback of glutamate on opioid analgesia. Innovation: A redox-regulated process situates MOR signaling under NMDAR control, and in this context, the σ1R binds to the cytosolic C terminal region of the NMDAR NR1 subunit. Conclusion: The σ1R antagonists enhance opioid analgesia in naïve mice by releasing MORs from the negative influence of NMDARs, and they also reset antinociception in morphine tolerant animals. Moreover, σ1R antagonists alleviate neuropathic pain, probably by driving the inhibition of up-regulated NMDARs. Antioxid. Redox Signal. 22, 799–818. PMID:25557043

  8. The TRAIL Receptor Agonist Drozitumab Targets Basal B Triple Negative Breast Cancer Cells that Express Vimentin and Axl

    PubMed Central

    Dine, Jennifer L.; O’Sullivan, Ciara C.; Voeller, Donna; Greer, Yoshimi E.; Chavez, Kathryn J.; Conway, Catherine M.; Sinclair, Sarah; Stone, Brandon; Amiri-Kordestani, Laleh; Merchant, Anand S.; Hewitt, Stephen M.; Steinberg, Seth M.; Swain, Sandra M.; Lipkowitz, Stanley

    2016-01-01

    Purpose Previously, we found that GST-tagged tumor necrosis factor-related apoptosis inducing ligand (TRAIL) preferentially killed triple negative breast cancer (TNBC) cells with a mesenchymal phenotype by activating death receptor 5 (DR5). The purpose of this study was to explore the sensitivity of breast cancer cell lines to drozitumab, a clinically tested DR5 specific agonist; identify potential biomarkers of drozitumab-sensitive breast cancer cells; and determine if those biomarkers were present in tumors from patients with TNBC. Methods We evaluated viability, caspase activity, and sub-G1 DNA content in drozitumab-treated breast cancer cell lines and we characterized expression of potential biomarkers by immunoblot. Expression levels of vimentin and Axl were then explored in 177 TNBC samples from a publically available cDNA microarray dataset and by immunohistochemistry (IHC) in tumor tissue samples obtained from 53 African American women with TNBC. Results and Conclusions Drozitumab induced apoptosis in mesenchymal TNBC cell lines but not in cell lines from other breast cancer subtypes. The drozitumab-sensitive TNBC cell lines expressed the mesenchymal markers vimentin and Axl. Vimentin and Axl mRNA and protein were expressed in a subset of human TNBC tumors. By IHC, ~15% of TNBC tumors had vimentin and Axl expression in the top quartile for both. These findings indicate that drozitumab-sensitive mesenchymal TNBC cells express vimentin and Axl, which can be identified in a subset of human TNBC tumors. Thus, vimentin and Axl may be useful to identify TNBC patients who would be most likely to benefit from a DR5 agonist. PMID:26759246

  9. Aromatase overexpression induces malignant changes in estrogen receptor α negative MCF-10A cells.

    PubMed

    Wang, J; Gildea, J J; Yue, W

    2013-10-31

    Estrogen is a risk factor of breast cancer. Elevated expression of aromatase (estrogen synthase) in breast tissues increases local estradiol concentrations and is associated with breast cancer development, but the causal relationship between aromatase and breast cancer has not been identified. Accumulating data suggest that both estrogen receptor (ER)-dependent and -independent effects are involved in estrogen carcinogenesis. We established a model by expressing aromatase in ERα- MCF-10A human breast epithelial cells to investigate ERα-independent effects of estrogen in the process of malignant transformation. Overexpression of aromatase significantly increased anchorage-independent growth. Parental- or vector-expressing MCF-10A cells did not form colonies under the same conditions. The anchorage-independent growth of MCF-10A(arom) cells can be completely abolished by pre-treatment with the aromatase inhibitor, letrozole. Neither MCF-10A(arom) nor MCF-10A(vector) cells grown in monolayer were affected by short-term exposure to estradiol. Enhanced motility is another characteristic of cellular transformation. Motility of MCF-10A(arom) cells was increased, which could be inhibited by letrozole. Increases in stem cell population in breast cancer tissues are associated with tumor recurrence and metastasis. CD44(high)/CD24(low) is a stem cell marker. We found that CD24 mRNA levels were reduced in MCF-10A(arom) cells compared with those in parental- and vector-transfected cells. By examining individual clones of MCF-10A(arom) with various aromatase activities, we found that the CD24 mRNA levels were inversely correlated with aromatase activity. The ability of MCF-10A(arom) cells to form mammospheres in the absence of serum was increased. Our results suggest that overexpression of aromatase in MCF-10A cells causes malignant transformation. Estrogen metabolite-mediated genotoxicity and induction of a stem cell/progenitor cell population are possible mechanisms. These

  10. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    PubMed

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  11. Dynamic regulation of platelet-derived growth factor receptor α expression in alveolar fibroblasts during realveolarization.

    PubMed

    Chen, Leiling; Acciani, Thomas; Le Cras, Tim; Lutzko, Carolyn; Perl, Anne-Karina T

    2012-10-01

    Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α-expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α-positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α-green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α-GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α-GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α-positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial-mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable epithelial

  12. Mammary tumorigenesis induced by fibroblast growth factor receptor 1 requires activation of the epidermal growth factor receptor.

    PubMed

    Bade, Lindsey K; Goldberg, Jodi E; Dehut, Hazel A; Hall, Majken K; Schwertfeger, Kathryn L

    2011-09-15

    Fibroblast growth factor receptor 1 (FGFR1) is an oncoprotein with known involvement in mammary tumorigenesis. To understand how FGFR1 signaling promotes mammary tumorigenesis, an inducible FGFR1 (iFGFR1) system was created previously. Previous studies have demonstrated that upon iFGFR1 activation in vivo, the epidermal growth factor (EGF) ligands amphiregulin (AREG) and epiregulin (EREG) are upregulated. Both AREG and EREG interact with the EGF receptor (EGFR). Here, we investigated whether the FGFR1-induced increase in AREG and EREG expression might coordinately increase EGFR signaling to promote mammary tumorigenesis. Treatment of mouse mammary epithelial cells with either AREG or EREG conferred a greater migratory potential, increased cellular proliferation and increased extracellular regulated kinase 1/2 (ERK1/2) activation. These effects could be blocked with the EGFR-specific inhibitor erlotinib, suggesting that they are EGFR-dependent. In transgenic mice with iFGFR1 under the control of the mouse mammary tumor virus (MMTV) promoter, iFGFR1 activation also led to increased mammary epithelial cell proliferation that was inhibited with erlotinib. Taken together, these data suggest that AREG and EREG mediate tumorigenic phenotypes by activating EGFR signaling, and that the oncogenic potential of FGFR1 requires EGFR activation to promote mammary tumorigenesis.

  13. Recombinant pigment epithelium-derived factor PEDF binds vascular endothelial growth factor receptors 1 and 2.

    PubMed

    Johnston, Erin K; Francis, Mary K; Knepper, Janice E

    2015-08-01

    Angiogenesis, or the formation of new blood vessels, is stimulated by angiogenic factors such as vascular endothelial growth factor (VEGF). Pigment epithelium-derived factor (PEDF) is a potent inhibitor of angiogenesis. To explore the mechanism by which PEDF acts, recombinant PEDF was expressed with a 6x-His tag (for purification) and a green fluorescent protein (GFP) tag. The PEDF fusion protein was confirmed to be active in inhibition of endothelial cell proliferation and migration. Direct binding of PEDF to both vascular endothelial growth factor receptor-1 (VEGFR-1) and VEGFR-2 was demonstrated in an in vitro assay similar to an enzyme-linked immunosorbent assay (ELISA). PEDF was shown by immune-confocal microscopy to be localized within treated endothelial cells. When VEGF-stimulated endothelial cells were incubated with PEDF the VEGF receptors showed intracellular localization. These data suggest that the interaction between PEDF and VEGFR-1 or VEGFR-2 may be a possible mechanism for inhibiting angiogenesis. PEDF may be binding to the VEGF receptors to promote their internalization and/or degradation to limit VEGF responses in treated cells.

  14. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer?

    PubMed

    Wu, Victoria Shang; Kanaya, Noriko; Lo, Chiao; Mortimer, Joanne; Chen, Shiuan

    2015-09-01

    Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e., estrogen receptor [ER] and progesterone receptor [PgR]) and human epidermal growth factor receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2-) breast cancer and HR-negative (HR-) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease.

  15. Anti-oncogenic activity of signalling-defective epidermal growth factor receptor mutants.

    PubMed Central

    Redemann, N; Holzmann, B; von Rüden, T; Wagner, E F; Schlessinger, J; Ullrich, A

    1992-01-01

    Overexpression and autocrine activation of the epidermal growth factor receptor (EGF-R) cause transformation of cultured cells and correlate with tumor progression in cancer patients. Dimerization and transphosphorylation are crucial events in the process by which receptors with tyrosine kinase activity generate normal and transforming cellular signals. Interruption of this process by inactive receptor mutants offers the potential to inhibit ligand-induced cellular responses. Using recombinant retroviruses, we have examined the effects of signalling-incompetent EGF-R mutants on the growth-promoting and transforming potential of ligand-activated, overexpressed wild-type EGF-R and the v-erbB oncogene product. Expression of a soluble extracellular EGF-R domain had little if any effect on the growth and transformation of NIH 3T3 cells by either tyrosine kinase. However, both a kinase-negative EGF-R point mutant (HERK721A) and an EGF-R lacking 533 C-terminal amino acids efficiently inhibited wild-type EGF-R-mediated, de novo DNA synthesis and cell transformation in a dose-dependent manner. Furthermore, coexpression with the v-erbBES4 oncogene product in NIH 3T3 cells resulted in transphosphorylation of the HERK721A mutant receptor and reduced soft-agar colony growth but had no effect in a focus formation assay. These results demonstrate that signalling-defective receptor tyrosine kinase mutants differentially interfere with oncogenic signals generated by either overexpressed EGF-R or the retroviral v-erbBES4 oncogene product. Images PMID:1346334

  16. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes

    PubMed Central

    Kharmate, Geetanjali; Hosseini-Beheshti, Elham; Caradec, Josselin; Chin, Mei Yieng; Tomlinson Guns, Emma S.

    2016-01-01

    Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight™ analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa. PMID:27152724

  17. Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis

    PubMed Central

    Crook, Matt; Upadhyay, Awani; Ido, Liyana J.; Hanna-Rose, Wendy

    2016-01-01

    Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR) has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions. PMID:27605519

  18. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration.

    PubMed

    Klein, Daryl E; Nappi, Valerie M; Reeves, Gregory T; Shvartsman, Stanislav Y; Lemmon, Mark A

    2004-08-26

    The epidermal growth factor receptor (EGFR) has critical functions in development and in many human cancers. During development, the spatial extent of EGFR signalling is regulated by feedback loops comprising both well-understood activators and less well-characterized inhibitors. In Drosophila melanogaster the secreted protein Argos functions as the only known extracellular inhibitor of EGFR, with clearly identified roles in multiple stages of development. Argos is only expressed when the Drosophila EGFR (DER) is activated at high levels, and downregulates further DER signalling. Although there is ample genetic evidence that Argos inhibits DER activation, the biochemical mechanism has not been established. Here we show that Argos inhibits DER signalling without interacting directly with the receptor, but instead by sequestering the DER-activating ligand Spitz. Argos binds tightly to the EGF motif of Spitz and forms a 1:1 (Spitz:Argos) complex that does not bind DER in vitro or at the cell surface. Our results provide an insight into the mechanism of Argos function, and suggest new strategies for EGFR inhibitor design.

  19. Nuclear receptors, nuclear-receptor factors, and nuclear-receptor-like orphans form a large paralog cluster in Homo sapiens.

    PubMed

    Garcia-Vallvé, S; Palau, J

    1998-06-01

    We studied a human protein paralog cluster formed by 38 nonredundant sequences taken from the Swiss-Prot database and its supplement, TrEMBL. These sequences include nuclear receptors, nuclear-receptor factors and nuclear-receptor-like orphans. Working separately with both the central cysteine-rich DNA-binding domain and the carboxy-terminal ligand-binding domain, we performed multialignment analyses that included drawings of paralog trees. Our results show that the cluster is highly multibranched, with considerable differences in the amino acid sequence in the ligand-binding domain (LBD), and 17 proximal subbranches which are identifiable and fully coincident when independent trees from both domains are compared. We identified the six recently proposed subfamilies as groups of neighboring clusters in the LBD paralog tree. We found similarities of 80%-100% for the N-terminal transactivation domain among mammalian ortholog receptors, as well as some paralog resemblances within diverse subbranches. Our studies suggest that during the evolutionary process, the three domains were assembled in a modular fashion with a nonshuffled modular fusion of the LBD. We used the EMBL server PredictProtein to make secondary-structure predictions for all 38 LBD subsequences. Amino acid residues in the multialigned homologous domains--taking the beginning of helix H3 of the human retinoic acid receptor-gamma as the initial point of reference--were substituted with H or E, which identify residues predicted to be helical or extended, respectively. The result was a secondary structure multialignment with the surprising feature that the prediction follows a canonical pattern of alignable alpha-helices with some short extended elements in between, despite the fact that a number of subsequences resemble each other by less than 25% in terms of the similarity index. We also identified the presence of a binary patterning in all of the predicted helices that were conserved throughout the 38

  20. Negative regulation of opioid receptor-G protein-Ca2+ channel pathway by the nootropic nefiracetam.

    PubMed

    Yoshii, Mitsunobu; Furukawa, Taiji; Ogihara, Yoshiyasu; Watabe, Shigeo; Shiotani, Tadashi; Ishikawa, Yasuro; Nishimura, Masao; Nukada, Toshihide

    2004-10-01

    It has recently been reported that nefiracetam, a nootropic agent, is capable of attenuating the development of morphine dependence and tolerance in mice. The mechanism of this antimorphine action is not clear. The present study was designed to address this issue using Xenopus oocytes expressing delta-opioid receptors, G proteins (G(i3alpha) or G(o1alpha)), and N-type (alpha1B) Ca2+ channels. Membrane currents through Ca2+ channels were recorded from the oocytes under voltage-clamp conditions. The Ca2+ channel currents were reduced reversibly by 40-60% in the presence of 1 microM leucine-enkephalin (Leu-Enk). The Leu-Enk-induced current inhibition was recovered promptly by nefiracetam (1 microM), while control currents in the absence of Leu-Enk were not influenced by nefiracetam. A binding assay revealed that 3H-nefiracetam preferentially bound to the membrane fraction of oocytes expressing G(i3alpha). When delta-opioid receptors were coexpressed, the binding was significantly increased. However, an additional expression of alpha1B Ca2+ channels decreased the binding. The results suggest that nefiracetam preferentially binds to G(i3alpha) associated with delta-opioid receptors, thereby inhibiting the association of G proteins with Ca2+ channels. In conclusion, nefiracetam negatively regulates the inhibitory pathway of opioid receptor-G protein-Ca2+ channel.

  1. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor expression by acute myeloid leukemia cells.

    PubMed

    Vinante, F; Rigo, A; Papini, E; Cassatella, M A; Pizzolo, G

    1999-03-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an EGF family member expressed by numerous cell types that binds to EGF receptor 1 (HER-1) or 4 (HER-4) inducing mitogenic and/or chemotactic activities. Membrane-bound HB-EGF retains growth activity and adhesion capabilities and the unique property of being the receptor for diphtheria toxin (DT). The interest in studying HB-EGF in acute leukemia stems from these mitogenic, chemotactic, and receptor functions. We analyzed the expression of HB-EGF in L428, Raji, Jurkat, Karpas 299, L540, 2C8, HL-60, U937, THP-1, ML-3, and K562 cell lines and in primary blasts from 12 acute myeloid leukemia (AML) cases, by reverse-transcriptase polymerase chain reaction (RT-PCR) and Northern blot and by the evaluation of sensitivity to DT. The release of functional HB-EGF was assessed by evaluation of its proliferative effects on the HB-EGF-sensitive Balb/c 3T3 cell line. HB-EGF was expressed by all myeloid and T, but not B (L428, Raji), lymphoid cell lines tested, as well as by the majority (8 of 12) of ex vivo AML blasts. Cell lines (except for the K562 cell line) and AML blasts expressing HB-EGF mRNA underwent apoptotic death following exposure to DT, thus demonstrating the presence of the HB-EGF molecule on their membrane. Leukemic cells also released a fully functional HB-EGF molecule that was mitogenic for the Balb/c 3T3 cell line. Factors relevant to the biology of leukemic growth, such as tumor necrosis factor-alpha (TNF-alpha), 1alpha,25-(OH)2D3, and especially all-trans retinoic acid (ATRA), upregulated HB-EGF mRNA in HL-60 or ML-3 cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induced HB-EGF mRNA and acquisition of sensitivity to DT in one previously HB-EGF-negative leukemia case. Moreover, the U937 and Karpas 299 cell lines expressed HER-4 mRNA. This work shows that HB-EGF is a growth factor produced by primary leukemic cells and regulated by ATRA, 1alpha, 25-(OH)2D3, and GM-CSF.

  2. Platelet Derived Growth Factor-B and Human Epidermal Growth Factor Receptor-2 Polymorphisms in Gall Bladder Cancer.

    PubMed

    Mishra, Kumudesh; Behari, Anu; Kapoor, Vinay Kumar; Khan, M Salman; Prakash, Swayam; Agrawal, Suraksha

    2015-01-01

    Gall bladder cancer (GBC) is a gastro-intestinal cancer with high prevalence among north Indian women. Platelet derived growth factor-B (PDGFB) and human epidermal growth factor receptor-2 (HER2) may play roles in the etiology of GBC through the inflammation-hyperplasia-dysplasia-carcinoma pathway. To study the association of PDGFB and HER2 polymorphisms with risk of GBC, 200 cases and 300 controls were considered. PDGFB +286A>G and +1135A>C polymorphisms were investigated with an amplification refractory mutation system and the HER2 Ile655Val polymorphism by restriction fragment length polymorphism. Significant risk associations for PDGFB +286 GG (OR=5.25) and PDGFB +1135 CC (OR=3.19) genotypes were observed for GBC. Gender wise stratification revealed susceptibility for recessive models of PDGFB +1135A>C (OR=3.00) and HER2 Ile655Val (OR=2.52) polymorphisms among female GBC cases. GBC cases with gall stones were predisposed to homozygous +286 GG and +1135 CC genotypes. Significant risk associations were found for ACIle (OR=1.48), GAVal (OR=1.70), GAIle (OR=2.00) haplotypes with GBC cases and GCIle haplotype with female GBC cases (OR=10.37, P=<0.0001). Pair-wise linkage disequilibrium revealed negative associations among variant alleles. On multi-dimensional reduction analysis, a three factor model revealed significant gene-gene interaction for PDGFB +286A>G, PDGFB +1135A>C and HER2 Ile165Val SNPs with GBC. Protein-protein interaction showed significant association of PDGFB and HER2 with the epidermal growth factor receptor signaling pathway.

  3. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor–Resistant Disease

    PubMed Central

    Ohashi, Kadoaki; Maruvka, Yosef E.; Michor, Franziska; Pao, William

    2013-01-01

    Purpose EGFR-mutant lung cancer was first described as a new clinical entity in 2004. Here, we present an update on new controversies and conclusions regarding the disease. Methods This article reviews the clinical implications of EGFR mutations in lung cancer with a focus on epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results The discovery of EGFR mutations has altered the ways in which we consider and treat non–small-cell lung cancer (NSCLC). Patients whose metastatic tumors harbor EGFR mutations are expected to live longer than 2 years, more than double the previous survival rates for lung cancer. Conclusion The information presented in this review can guide practitioners and help them inform their patients about EGFR mutations and their impact on the treatment of NSCLC. Efforts should now concentrate on making EGFR-mutant lung cancer a chronic rather than fatal disease. PMID:23401451

  4. Targeting fibroblast growth factor receptor signaling in hepatocellular carcinoma.

    PubMed

    Cheng, Ann-Lii; Shen, Ying-Chun; Zhu, Andrew X

    2011-01-01

    Hepatocellular carcinoma (HCC) is the primary type of liver cancer, and both the age-adjusted incidence and mortality of HCC have steadily increased in recent years. Advanced HCC is associated with a very poor survival rate. Despite accumulating data regarding the risk factors for HCC, the mechanisms that contribute to HCC tumorigenesis remain poorly understood. Signaling through the fibroblast growth factor (FGF) family is involved in fibrosis and its progression to cirrhosis of the liver, which is a risk factor for the development of HCC. Furthermore, several alterations in FGF/FGF receptor (FGFR) signaling correlate with the outcomes of HCC patients, suggesting that signaling through this family of proteins contributes to the development or progression of HCC tumors. Currently, there are no established systemic treatments for patients with advanced HCC in whom sorafenib treatment has failed or who were unable to tolerate it. Recently, several multikinase inhibitors that target FGFRs have demonstrated some early evidence of antitumor activity in phase I/II trials. Therefore, this review discusses the molecular implications of FGFR-mediated signaling in HCC and summarizes the clinical evidence for novel FGFR-targeted therapies for HCC currently being studied in clinical trials.

  5. Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis

    PubMed Central

    Kerr, Thomas A.; Saeki, Shigeru; Schneider, Manfred; Schaefer, Karen; Berdy, Sara; Redder, Thadd; Shan, Bei; Russell, David W.; Schwarz, Margrit

    2014-01-01

    Summary The in vivo role of the nuclear receptor SHP in feedback regulation of bile acid synthesis was examined. Loss of SHP in mice caused abnormal accumulation and increased synthesis of bile acids due to derepression of rate-limiting CYP7A1 and CYP8B1 hydroxylase enzymes in the biosynthetic pathway. Dietary bile acids induced liver damage and restored feedback regulation. A synthetic agonist of the nuclear receptor FXR was not hepatotoxic and had no regulatory effects. Reduction of the bile acid pool with cholestyramine enhanced CYP7A1 and CYP8B1 expression. We conclude that input from three negative regulatory pathways controls bile acid synthesis. One is mediated by SHP, and two are SHP independent and invoked by liver damage and changes in bile acid pool size. PMID:12062084

  6. Generalized approach for using unbiased symmetric metrics with negative values: normalized mean bias factor and normalized mean absolute error factor

    SciTech Connect

    Gustafson, William I.; Yu, Shaocai

    2012-10-23

    Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations of these metrics are only valid for datasets with positive means. This paper presents a methodology to use and interpret the metrics with datasets that have negative means. The updated formulations give identical results compared to the original formulations for the case of positive means, so researchers are encouraged to use the updated formulations going forward without introducing ambiguity.

  7. Receptors for luteinizing hormone-releasing hormone (GnRH) as therapeutic targets in triple negative breast cancers (TNBC).

    PubMed

    Kwok, C W; Treeck, O; Buchholz, S; Seitz, S; Ortmann, O; Engel, J B

    2015-09-01

    Triple negative breast cancers express receptors for gonadotropin-releasing hormone (GnRH) in more than 50% of the cases, which can be targeted with peptidic analogs of GnRH, such as triptorelin. The current study investigates cytotoxic activity of triptorelin as a monotherapy and in treatment combinations with chemotherapeutic agents and inhibitors of the PI3K and the ERK pathways in in vitro models of triple negative breast cancers (TNBC). GnRH receptor expression of TNBC cell lines MDA-MB-231 and HCC1806 was investigated. Cells were treated with triptorelin, chemotherapeutic agents (cisplatin, docetaxel, AEZS-112), PI3K/AKT inhibitors (perifosine, AEZS-129), an ERK inhibitor (AEZS-134), and dual PI3K/ERK inhibitor AEZS-136 applied as single agent therapies and in combinations. MDA-MB-231 and HCC1806 TNBC cells both expressed receptors for GnRH on messenger (m)RNA and protein level and were found sensitive to triptorelin with a respective median effective concentration (EC50) of 31.21 ± 0.21 and 58.50 ± 19.50. Synergistic effects occurred when triptorelin was combined with cisplatin. In HCC1806 cells, synergy occurred when triptorelin was applied with PI3K/AKT inhibitors perifosine and AEZS-129. In MDA-MB-231 cells, synergy was observed after co-treatment with triptorelin and ERK inhibitor AEZS-134 and dual PI3K/ERK inhibitor AEZS-136. GnRH receptors on TNBC cells can be used for targeted therapy of these cancers with GnRH agonist triptorelin. Treatment combinations based on triptorelin and PI3K and ERK inhibitors and chemotherapeutic agent cisplatin have synergistic effects in in vitro models of TNBC. If confirmed in vivo, clinical trials based on triptorelin and cisplatin could be quickly carried out, as triptorelin is FDA approved for other indications and known to be well tolerated.

  8. Location of triple-negative breast cancers: comparison with estrogen receptor-positive breast cancers on MR imaging.

    PubMed

    Kim, Won Hwa; Han, Wonshik; Chang, Jung Min; Cho, Nariya; Park, In Ae; Moon, Woo Kyung

    2015-01-01

    There has been a major need to better understand the biological characteristics of triple-negative breast cancers. Compared with estrogen receptor (ER)-positive cancers, several magnetic resonance (MR) imaging findings have been reported as characteristic findings. However, information regarding their location has not been described. Our study was to compare the location of triple-negative breast cancers with that of ER-positive breast cancers using magnetic resonance (MR) imaging. The locations of 1102 primary breast cancers (256 triple-negative and 846 ER-positive) in 1090 women (mean, 52.1 years) were reviewed using three-dimensional (3D) coordinates. The x-axis measurement was recorded as the transverse distance from the posterior nipple line; y-axis measurement as the anteroposterior distance from the chest wall; z-axis measurement as the superoinferior distance from the posterior nipple line. The association between breast cancer subtype and tumor location was evaluated using multiple linear regression analysis. Triple-negative breast cancers were significantly closer to the chest wall than ER-positive breast cancers in absolute (1.8 cm vs. 2.3 cm, P < .0001) and normalized (0.21 vs. 0.25, P < .0001) y-axis distances. The x- and z-axes distances were not significantly different between triple-negative and ER-positive breast cancers. Multiple linear regression analysis revealed that age, mammographic density, axillary nodal status, and triple-negative subtype were significantly associated with absolute and normalized distances from the chest wall (all P < .05). Our results show that triple-negative breast cancers have a tendency toward a posterior or prepectoral location compared with ER-positive breast cancers.

  9. Targeting extracellular domains D4 and D7 of vascular endothelial growth factor receptor 2 reveals allosteric receptor regulatory sites.

    PubMed

    Hyde, Caroline A C; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H Kaspar; Ballmer-Hofer, Kurt

    2012-10-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory "designed ankyrin repeat proteins" (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies.

  10. Targeting Extracellular Domains D4 and D7 of Vascular Endothelial Growth Factor Receptor 2 Reveals Allosteric Receptor Regulatory Sites

    PubMed Central

    Hyde, Caroline A. C.; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H. Kaspar

    2012-01-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory “designed ankyrin repeat proteins” (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies. PMID:22801374

  11. Tamoxifen Citrate or Z-Endoxifen Hydrochloride in Treating Patients With Locally Advanced or Metastatic, Estrogen Receptor-Positive, HER2-Negative Breast Cancer

    ClinicalTrials.gov

    2017-04-12

    Estrogen Receptor Positive; HER2/Neu Negative; Recurrent Breast Carcinoma; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer

  12. FLT PET in Measuring Treatment Response in Patients With Newly Diagnosed Estrogen Receptor-Positive, HER2-Negative Stage I-III Breast Cancer

    ClinicalTrials.gov

    2016-06-02

    Estrogen Receptor Positive; HER2/Neu Negative; Male Breast Carcinoma; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  13. Unsupervised Learning from Multiple Information Sources Based on Non-negative Matrix Factorization (NMF)

    DTIC Science & Technology

    2015-01-20

    Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Information fusion, image, text , non-negative matrix factorization REPORT DOCUMENTATION...Honggang Zhang, Lei Li, Jun Guo. Exploring Interaction Between Images and Texts for Web Image Categorization, The 24th Florida Artificial Intelligence...popularly used in text analysis. These results established the theoretical foundation for NMF to solve unsupervised learning problems. The

  14. Supervised non-negative matrix factorization based latent semantic image indexing

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Yang, Jie; Chang, Yuchou

    2006-05-01

    A novel latent semantic indexing (LSI) approach for content-based image retrieval is presented in this paper. Firstly, an extension of non-negative matrix factorization (NMF) to supervised initialization is discussed. Then, supervised NMF is used in LSI to find the relationships between low-level features and high-level semantics. The retrieved results are compared with other approaches and a good performance is obtained.

  15. Transition probabilities and Franck-Condon factors for the second negative band system of O2(+)

    NASA Technical Reports Server (NTRS)

    Fox, J. L.; Dalgarno, A.

    1990-01-01

    Transition probabilities for the second negative band system of O2(+) are computed using the dipole transition moment presented by Wetmore et al. (1984). Vibrational levels v double prime = 0 - 54 of the X2Pi(g) ground state and v prime = - 33 of the excited A2Pi(u) state are included. Franck-Condon factors for ionization-excitation of O2 to O2(+) are also presented.

  16. Positive and negative regulation of antigen receptor signaling by the Shc family of protein adapters.

    PubMed

    Finetti, Francesca; Savino, Maria Teresa; Baldari, Cosima T

    2009-11-01

    The Shc adapter family includes four members that are expressed as multiple isoforms and participate in signaling by a variety of cell-surface receptors. The biological relevance of Shc proteins as well as their variegated function, which relies on their highly conserved modular structure, is underscored by the distinct and dramatic phenotypic alterations resulting from deletion of individual Shc isoforms both in the mouse and in two model organisms, Drosophila melanogaster and Caenorhabditis elegans. The p52 isoform of ShcA couples antigen and cytokine receptors to Ras activation in both lymphoid and myeloid cells. However, the recognition of the spectrum of activities of p52ShcA in the immune system has been steadily expanding in recent years to other fundamental processes both at the cell and organism levels. Two other Shc family members, p66ShcA and p52ShcC/Rai, have been identified recently in T and B lymphocytes, where they antagonize survival and attenuate antigen receptor signaling. These developments reveal an unexpected and complex interplay of multiple Shc proteins in lymphocytes.

  17. Gene expression profiles of estrogen receptor positive and estrogen receptor negative breast cancers are detectable in histologically normal breast epithelium

    PubMed Central

    Graham, Kelly; Ge, Xijin; de las Morenas, Antonio; Tripathi, Anusri; Rosenberg, Carol L.

    2010-01-01

    Purpose Previously, we found that gene expression in histologically normal breast epithelium (NlEpi) from women at high breast cancer risk can resemble gene expression in NlEpi from cancer-containing breasts. Therefore, we hypothesized that gene expression characteristic of a cancer subtype might be seen in NlEpi of breasts containing that subtype. Experimental Design We examined gene expression in 46 cases of microdissected NlEpi from untreated women undergoing breast cancer surgery. From 30 age-matched cases (15 estrogen receptor (ER)+, 15 ER-) we used Affymetryix U133A arrays. From 16 independent cases (9 ER+, 7 ER-), we validated selected genes using qPCR. We then compared gene expression between NlEpi and invasive breast cancer using 4 publicly available datasets. Results We identified 198 genes that are differentially expressed between NlEpi from breasts with ER+ (NlEpiER+) compared to ER- cancers (NlEpiER-). These include genes characteristic of ER+ and ER- cancers (e.g., ESR1, GATA3, and CX3CL1, FABP7). QPCR validated the microarray results in both the 30 original cases and the 16 independent cases. Gene expression in NlEpiER+ and NlEpiER- resembled gene expression in ER+ and ER- cancers, respectively: 25-53% of the genes or probes examined in 4 external datasets overlapped between NlEpi and the corresponding cancer subtype. Conclusions Gene expression differs in NlEpi of breasts containing ER+ compared to ER- breast cancers. These differences echo differences in ER+ and ER- invasive cancers. NlEpi gene expression may help elucidate subtype-specific risk signatures, identify early genomic events in cancer development and locate targets for prevention and therapy. PMID:21059815

  18. Inverse relationship between estrogen receptor and epidermal growth factor receptor mRNA levels in human breast cancer cell lines.

    PubMed

    Lee, C S; Hall, R E; Alexander, I E; Koga, M; Shine, J; Sutherland, R L

    1990-01-01

    Epidermal growth factor receptors (EGF-R) are present in a number of human breast cancer cell lines and tumor biopsies. Furthermore, it has been suggested that EGF-R levels are higher in estrogen receptor negative (ER-) than in ER+ human breast tumors and that EGF-R status may be a prognostic indicator in breast cancer. The present study was undertaken to establish whether there is a quantitative relationship between EGF-R and ER mRNA concentrations in a series of 10 well-characterized human breast cancer cell lines. All cell lines expressed detectable quantities of EGF-R mRNA by Northern analysis but the relative abundance of EGF-R mRNA varied more than 50-fold. Two transcripts corresponding to the 10.5- and 5.8-kb mRNAs described in other cell types were present but in different relative proportions in different cell lines. When these lines were divided into an ER+ and an ER- group based on their ability to bind estradiol, ER- cell lines were shown to express significantly higher concentrations of EGF-R mRNA than did ER+ cell lines (p less than 0.005). Furthermore, linear-regression analysis revealed a significant inverse relationship between ER and EGF-R mRNA concentrations both within the group of 10 human breast cancer cell lines as a whole (r = 0.66) and within the 6 functionally ER + lines (r = 0.77). This demonstration of a significant (p less than 0.005) inverse relationship between the concentrations of ER and EGF-R mRNAs in ER + cell lines raises the possibility of reciprocal regulation of the expression of these genes in human breast cancer.

  19. Simultaneous Non-Negative Matrix Factorization for Multiple Large Scale Gene Expression Datasets in Toxicology

    PubMed Central

    Lee, Clare M.; Mudaliar, Manikhandan A. V.; Haggart, D. R.; Wolf, C. Roland; Miele, Gino; Vass, J. Keith; Higham, Desmond J.; Crowther, Daniel

    2012-01-01

    Non-negative matrix factorization is a useful tool for reducing the dimension of large datasets. This work considers simultaneous non-negative matrix factorization of multiple sources of data. In particular, we perform the first study that involves more than two datasets. We discuss the algorithmic issues required to convert the approach into a practical computational tool and apply the technique to new gene expression data quantifying the molecular changes in four tissue types due to different dosages of an experimental panPPAR agonist in mouse. This study is of interest in toxicology because, whilst PPARs form potential therapeutic targets for diabetes, it is known that they can induce serious side-effects. Our results show that the practical simultaneous non-negative matrix factorization developed here can add value to the data analysis. In particular, we find that factorizing the data as a single object allows us to distinguish between the four tissue types, but does not correctly reproduce the known dosage level groups. Applying our new approach, which treats the four tissue types as providing distinct, but related, datasets, we find that the dosage level groups are respected. The new algorithm then provides separate gene list orderings that can be studied for each tissue type, and compared with the ordering arising from the single factorization. We find that many of our conclusions can be corroborated with known biological behaviour, and others offer new insights into the toxicological effects. Overall, the algorithm shows promise for early detection of toxicity in the drug discovery process. PMID:23272042

  20. A patient with Graves’ disease showing only psychiatric symptoms and negativity for both TSH receptor autoantibody and thyroid stimulating antibody

    PubMed Central

    2012-01-01

    Background Both thyroid stimulating hormone (TSH) and thyroid stimulating antibody (TSAb) negative Graves’s disease (GD) is extremely rare. Here we present such a patient. Case presentation The patient was a 76-year-old woman who was diagnosed as having schizophrenia forty years ago. She did not show characteristic symptoms for hyperthyroidism, such as swelling of thyroid, exophthalmos, tachycardia and tremor, however, she showed only psychomotor agitation. Serum free triiodothyronine and free thyroxine levels were elevated and TSH level was suppressed, suggesting the existence of hyperthyroidism. However, both the first generation TSH receptor autoantibody (TRAb1) and the thyroid stimulating autoantibody (TSAb) were negative. Slightly increased blood flow and swelling was detected by thyroid echography. Thyroid scintigraphy demonstrated diffuse and remarkably elevated uptake of 123I uptake. Finally, we diagnosed her as having GD. She was treated by using methimazole, and hyperthyroidism and her psychiatric symptoms were promptly ameliorated. Discussion We experienced a patient with GD who did not show characteristic symptoms except for psychiatric symptoms, and also showed negativity for both TRAb1 and TSAb. Thyroid autoantibody-negative GD is extremely rare. Thyroid scintigraphy was useful to diagnose such a patient. PMID:23206540

  1. Positive and Negative Thinking in Tinnitus: Factor Structure of the Tinnitus Cognitions Questionnaire

    PubMed Central

    Hall, Deborah A.; Shorter, Gillian W.; Hoare, Derek J.

    2017-01-01

    Objectives: Researchers and clinicians consider thinking to be important in the development and maintenance of tinnitus distress, and altering thoughts or thinking style is an object of many forms of psychological therapy for tinnitus. Those working with people with tinnitus require a reliable, psychometrically robust means of measuring both positive and negative thinking related to it. The Tinnitus Cognitions Questionnaire (TCQ) was designed as such a measure and its authors showed it to be reliable, with good psychometric properties. However, no research teams have yet carried out independent validation. This study aimed to use the TCQ to investigate thinking amongst members of the general population with both bothersome and nonbothersome tinnitus and also to verify its factor structure. Design: Three hundred forty-two members of the public with tinnitus completed the TCQ online or on paper. They also rated their tinnitus on a scale as “not a problem,” “a small problem,” “a moderate problem,” “a big problem,” or a “very big problem.” The authors tested the original factor structure of the TCQ using confirmatory factor analysis and then calculated the mean scores for each item, comparing mean total scores across “problem categories” for the full questionnaire and for the positive and negative subscales. Results: The original two-factor structure of the TCQ was a good fit to the data when the correlation between positive and negative factors was fixed at zero (root mean square error of approximation = 0.064, 90% confidence interval = 0.058 to 0.070). Items pertaining to wishing the tinnitus would go away and despairing that it would ever get better had the highest mean scores. The mean total score for the “no problem” group (M = 31.17, SD = 16.03) was not significantly different from the mean total score for the “small problem” group (M = 34.00, SD = 12.44, p = 0.99). Differences between mean scores for all other groups were

  2. Development of the epidermal growth factor receptor inhibitor OSI-774.

    PubMed

    Grünwald, Viktor; Hidalgo, Manuel

    2003-06-01

    The epidermal growth factor receptor (EGFR) is a transmembrane receptor involved in the regulation of a complex array of essential biological processes such as cell proliferation and survival. Dysregulation of the EGFR signaling network has been frequently reported in multiple human cancers and has been associated with the processes of tumor development, growth, proliferation, metastasis, and angiogenesis. Inhibition of the EGFR was associated with antitumor effects in preclinical models. On the basis of these data, therapeutics targeting the EGFR were explored in clinical trials. OSI-774 is a small-molecule selective inhibitor of the EGFR tyrosine kinase. In preclinical studies, OSI-774 inhibited the phosphorylation of the EGFR in a dose-dependent and concentration-dependent manner resulting in cell cycle arrest and induction of apoptosis. In in vivo studies, this agent caused tumor growth inhibition and showed synergistic effects when combined with conventional chemotherapy. Subsequent single-agent phase I studies and phase I studies in combination with chemotherapy showed that the agent has a good safety profile and induced tumor growth inhibition in a substantial number of patients with a variety of different solid tumors. Preliminary reports from phase II studies confirmed the excellent tolerability of OSI-774 and showed encouraging preliminary activity. Phase III studies have either been completed or are ongoing in several tumor types such as lung cancer and pancreatic cancer. In summary, OSI-774 is a novel inhibitor of the EGFR tyrosine kinase that has shown promising activity in initial studies and is currently undergoing full development as an anticancer drug.

  3. Developmental regulation of human truncated nerve growth factor receptor

    SciTech Connect

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. )

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  4. Targeted expression of RALT in mouse skin inhibits epidermal growth factor receptor signalling and generates a Waved-like phenotype.

    PubMed

    Ballarò, Costanza; Ceccarelli, Sara; Tiveron, Cecilia; Tatangelo, Laura; Salvatore, Anna Maria; Segatto, Oreste; Alemà, Stefano

    2005-08-01

    Although it has been clearly established that negative feedback loops have a fundamental role in the regulation of epidermal growth factor receptor (EGFR) signalling in flies, their role in the regulation of mammalian EGFR has been inferred only recently from in vitro studies. Here, we report on the forced expression of RALT/MIG-6, a negative feedback regulator of ErbB receptors, in mouse skin. A RALT transgene driven by the K14 promoter generated a dose-dependent phenotype resembling that caused by hypomorphic and antimorphic Egfr alleles-that is, wavy coat, curly whiskers and open eyes at birth. Ex vivo keratinocytes from K14-RALT mice showed reduced biochemical and biological responses when stimulated by ErbB ligands. Conversely, knockdown of RALT by RNA interference enhanced ErbB mitogenic signalling. Thus, RALT behaves as a suppressor of EGFR signalling in mouse skin.

  5. Targeted expression of RALT in mouse skin inhibits epidermal growth factor receptor signalling and generates a Waved-like phenotype

    PubMed Central

    Ballarò, Costanza; Ceccarelli, Sara; Tiveron, Cecilia; Tatangelo, Laura; Salvatore, Anna Maria; Segatto, Oreste; Alemà, Stefano

    2005-01-01

    Although it has been clearly established that negative feedback loops have a fundamental role in the regulation of epidermal growth factor receptor (EGFR) signalling in flies, their role in the regulation of mammalian EGFR has been inferred only recently from in vitro studies. Here, we report on the forced expression of RALT/MIG-6, a negative feedback regulator of ErbB receptors, in mouse skin. A RALT transgene driven by the K14 promoter generated a dose-dependent phenotype resembling that caused by hypomorphic and antimorphic Egfr alleles—that is, wavy coat, curly whiskers and open eyes at birth. Ex vivo keratinocytes from K14-RALT mice showed reduced biochemical and biological responses when stimulated by ErbB ligands. Conversely, knockdown of RALT by RNA interference enhanced ErbB mitogenic signalling. Thus, RALT behaves as a suppressor of EGFR signalling in mouse skin. PMID:16007071

  6. Incidence of brain metastases as a first site of recurrence among women with triple receptor-negative breast cancer

    PubMed Central

    Dawood, Shaheenah; Lei, Xiudong; Litton, Jennifer K.; Buchholz, Thomas A.; Hortobagyi, Gabriel N.; Gonzalez-Angulo, Ana M.

    2014-01-01

    Background The aim of this retrospective study was to define the incidence of brain metastases as a first site of recurrence among women with triple receptor-negative breast cancer (TNBC). Methods 2448 patients with stage I–III TNBC diagnosed between 1990 and 2010 were identified. We computed the cumulative incidence of developing brain metastases as a first site of recurrence at 2 and 5 years. Cox proportional hazards models were fitted to determine factors that could predict for the development of brain metastases as a first site of recurrence. Kaplan-Meier product limit method was used to compute survival following a diagnosis of brain metastases. Results At a median follow up of 39 months 115 (4.7%) patients had developed brain metastases as a first site of recurrence. The cumulative incidence at 2 and 5 years was 3.7% (95% CI 2.9%–4.5%) and 5.4% (95% CI 4.4%–6.5%), respectively. Among patients with stage I, II and III disease, the 2-year cumulative incidence of brain metastases was 0.8%, 3.1% and 8%, respectively (p<0.0001). 5-year cumulative incidence was 2.8%, 4.6% and 9.6% among patients with stage I, II and III disease, respectively (p<0.0001). In the multivariable model, patients with stage III disease had a significant increase in the risk of developing brain metastases as a first site of recurrence (HR = 3.51; 95% CI 1.85 – 6.67; p = .0001) compared to patients with stage I disease. Those with stage II disease had a non significant increased risk of developing brain metastases as a first site of recurrence (HR = 1.61; 95% CI 0.92 – 2.81; p = .10) compared to patients with stage I disease. Median survival following a diagnosis of brain metastases was 7.2 months (range 5.7 to 9.4 months). Conclusion Patients with non metastatic TNBC have a high early incidence of developing brain metastases as a first site of recurrence, which is associated with subsequent poor survival. Patients with stage III TNBC in particular would be an ideal cohort to

  7. The CYP1B1_1358_GG genotype is associated with estrogen receptor-negative breast cancer.

    PubMed

    Justenhoven, Christina; Pierl, Christiane B; Haas, Susanne; Fischer, Hans-Peter; Baisch, Christian; Hamann, Ute; Harth, Volker; Pesch, Beate; Brüning, Thomas; Vollmert, Caren; Illig, Thomas; Dippon, Jürgen; Ko, Yon-Dschun; Brauch, Hiltrud

    2008-09-01

    Cytochrome P450 1B1 (CYP1B1) is a major enzyme in the initial catabolic step of estradiol (E2) metabolism and belongs to the multitude of genes regulated by the estrogen receptor alpha (ERalpha). The common non-synonymous polymorphisms CYP1B1_1358_A>G and CYP1B1_1294_C>G increase CYP1B1 enzymatic activity. Given a relationship between CYP1B1 and breast tumor E2 level as well as E2 level and breast tumor ERalpha expression it is of interest to know whether CYP1B1 polymorphisms have an impact on the ERalpha status of breast cancer. We genotyped the GENICA population-based breast cancer case-control collection (1,021 cases, 1,015 controls) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and investigated in cases the association between genotypes and tumor ERalpha status (739 ERalpha positive cases; 212 ERalpha negative cases) by logistic regression. We observed a significant association between the homozygous variant CYP1B1_1358_GG genotype and negative ERalpha status (P = 0.005; OR 2.82, 95% CI: 1.37-5.82) with a highly significant Ptrend for CYP1B1_1358_A>G and negative ERalpha status (P = 0.003). We also observed an association of CYP1B1_1358_GG and negative PR status (P = 0.015; OR 2.36, 95% CI: 1.18-4.70) and a Ptrend of 0.111 for CYP1B1_1358_A>G and negative progesterone receptor (PR) status. We conclude that the CYP1B1_1358_A>G polymorphism has an impact on ERalpha status in breast cancer in that the CYP1B1_1358_GG genotype known to encode higher CYP1B1 activity is associated with ERalpha negativity.

  8. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium

    PubMed Central

    Pruitt, Rory N.; Schwessinger, Benjamin; Joe, Anna; Thomas, Nicholas; Liu, Furong; Albert, Markus; Robinson, Michelle R.; Chan, Leanne Jade G.; Luu, Dee Dee; Chen, Huamin; Bahar, Ofir; Daudi, Arsalan; De Vleesschauwer, David; Caddell, Daniel; Zhang, Weiguo; Zhao, Xiuxiang; Li, Xiang; Heazlewood, Joshua L.; Ruan, Deling; Majumder, Dipali; Chern, Mawsheng; Kalbacher, Hubert; Midha, Samriti; Patil, Prabhu B.; Sonti, Ramesh V.; Petzold, Christopher J.; Liu, Chang C.; Brodbelt, Jennifer S.; Felix, Georg; Ronald, Pamela C.

    2015-01-01

    Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21–amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals. PMID:26601222

  9. Oropharyngeal cancers: relationship between epidermal growth factor receptor alterations and human papillomavirus status.

    PubMed

    Mirghani, H; Amen, F; Moreau, F; Guigay, J; Hartl, D M; Lacau St Guily, J

    2014-04-01

    High-risk human papillomavirus (HR-HPV), particularly type 16, is now recognised as a causative agent in a subset of oropharyngeal squamous cell carcinomas (OPSCCs). These tumours are on the increase and generally have a better prognosis than their HPV negative counterparts. This raises the question of de escalation therapy to reduce long term consequences in a younger cohort of patients with a long life expectancy. Several clinical trials with anti-epidermal growth factor receptor (EGFR) therapies, particularly cetuximab, are ongoing. Few data exist on the relationship between EGFR and HPV induced oropharyngeal cancers. We summarise the main studies in relation to EGFR alterations (gene copy number, protein expression and mutations) and the impact on prognosis of HPV positive tumours that express high levels of EGFR. We also discuss the opportunity of targeting this pathway in light of recent studies.

  10. Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats

    PubMed Central

    Russell, Shayla E.; Puttick, Daniel J.; Sawyer, Allison M.; Potter, David N.; Mague, Stephen; Carlezon, William A.

    2016-01-01

    Dependence is a hallmark feature of opiate addiction and is defined by the emergence of somatic and affective withdrawal signs. The nucleus accumbens (NAc) integrates dopaminergic and glutamatergic inputs to mediate rewarding and aversive properties of opiates. Evidence suggests that AMPA glutamate-receptor-dependent synaptic plasticity within the NAc underlies aspects of addiction. However, the degree to which NAc AMPA receptors (AMPARs) contribute to somatic and affective signs of opiate withdrawal is not fully understood. Here, we show that microinjection of the AMPAR antagonist NBQX into the NAc shell of morphine-dependent rats prevented naloxone-induced conditioned place aversions and decreases in sensitivity to brain stimulation reward, but had no effect on somatic withdrawal signs. Using a protein cross-linking approach, we found that the surface/intracellular ratio of NAc GluA1, but not GluA2, increased with morphine treatment, suggesting postsynaptic insertion of GluA2-lacking AMPARs. Consistent with this, 1-naphthylacetyl spermine trihydrochloride (NASPM), an antagonist of GluA2-lacking AMPARs, attenuated naloxone-induced decreases in sensitivity to brain stimulation reward. Naloxone decreased the surface/intracellular ratio and synaptosomal membrane levels of NAc GluA1 in morphine-dependent rats, suggesting a compensatory removal of AMPARs from synaptic zones. Together, these findings indicate that chronic morphine increases synaptic availability of GluA1-containing AMPARs in the NAc, which is necessary for triggering negative-affective states in response to naloxone. This is broadly consistent with the hypothesis that activation of NAc neurons produces acute aversive states and raises the possibility that inhibiting AMPA transmission selectively in the NAc may have therapeutic value in the treatment of addiction. SIGNIFICANCE STATEMENT Morphine dependence and withdrawal result in profound negative-affective states that play a major role in the

  11. Tumour Necrosis Factor-α Gene Polymorphism Is Associated with Metastasis in Patients with Triple Negative Breast Cancer

    PubMed Central

    Li, Hui-Hui; Zhu, Hui; Liu, Li-Sheng; Huang, Yong; Guo, Jun; Li, Jie; Sun, Xin-Ping; Chang, Chun-Xiao; Wang, Zhe-Hai; Zhai, Kan

    2015-01-01

    Tumour necrosis factor-α (TNF-α) is critical in the regulation of inflammation and tumour progression. TNF-α-308G > A is associated with constitutively elevated TNF-α expression. The purpose of this study was to assess the association between TNF-α-308G > A and breast cancer (BC) risk by subtype and the connection between genotypes and clinical features of BC. A total of 768 patients and 565 controls were enrolled in this study, and genotypes were detected using the TaqMan assay. No effect on susceptibility for any BC subtype was found for the TNF-α-308 polymorphism in our study or in the pooled meta-analysis. This polymorphism was shown to be associated with age at menarche in all BC and in progesterone receptor-negative BC. Interestingly, triple negative breast cancer (TNBC) patients with TNF-α-308A had an increased risk of distant tumour metastasis (OR = 3.80, 95% CI: 1.31–11.02, P = 0.009). Multi-regression analysis showed that TNF-α-308A was also a risk factor for distant tumour metastasis after adjustment for tumour size and lymph node metastasis status (OR = 6.26, 95% CI: 1.88–20.87, P = 0.003). These findings indicate that TNF-α might play a distinct role in the progression of TNBC, especially in distant tumour metastasis of TNBC. PMID:26165253

  12. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes.

    PubMed

    Uhlenhaut, N Henriette; Barish, Grant D; Yu, Ruth T; Downes, Michael; Karunasiri, Malith; Liddle, Christopher; Schwalie, Petra; Hübner, Norbert; Evans, Ronald M

    2013-01-10

    How the glucocorticoid receptor (GR) activates some genes while potently repressing others remains an open question. There are three current models for suppression: transrepression via GR tethering to AP-1/NF-κB sites, direct GR association with inhibitory elements (nGREs), and GR recruitment of the corepressor GRIP1. To gain insights into GR suppression, we used genomic analyses and genome-wide profiling of GR, p65, and c-Jun in LPS-stimulated macrophages. We show that GR mediates both activation and repression at tethered sites, GREs, and GRIP1-bound elements, indicating that motif classification is insufficient to predict regulatory polarity of GR binding. Interestingly, sites of GR repression utilize GRIP1's corepressor function and display reduced histone acetylation. Together, these findings suggest that while GR occupancy confers hormone responsiveness, the receptor itself may not participate in the regulatory effects. Furthermore, transcriptional outcome is not established by sequence but is influenced by epigenetic regulators, context, and other unrecognized regulatory determinants.

  13. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation

    PubMed Central

    Cui, Guoliang; Qin, Xia; Wu, Lili; Zhang, Yuebo; Sheng, Xiaoyan; Yu, Qiwen; Sheng, Hongguang; Xi, Beili; Zhang, Jingwu Z.; Zang, Ying Qin

    2011-01-01

    Th17 cells are a subset of CD4+ T cells with an important role in clearing certain bacterial and fungal pathogens. However, they have also been implicated in autoimmune diseases such as multiple sclerosis. Exposure of naive CD4+ T cells to IL-6 and TGF-β leads to Th17 cell differentiation through a process in which many proteins have been implicated. We report here that ectopic expression of liver X receptor (LXR) inhibits Th17 polarization of mouse CD4+ T cells, while LXR deficiency promotes Th17 differentiation in vitro. LXR activation in mice ameliorated disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, whereas LXR deficiency exacerbated disease. Further analysis revealed that Srebp-1, which is encoded by an LXR target gene, mediated the suppression of Th17 differentiation by binding to the E-box element on the Il17 promoter, physically interacting with aryl hydrocarbon receptor (Ahr) and inhibiting Ahr-controlled Il17 transcription. The putative active site (PAS) domain of Ahr and the N-terminal acidic region of Srebp-1 were essential for this interaction. Additional analyses suggested that similar LXR-dependent mechanisms were operational during human Th17 differentiation in vitro. This study reports what we believe to be a novel signaling pathway underlying LXR-mediated regulation of Th17 cell differentiation and autoimmunity. PMID:21266776

  14. A transcription factor active on the epidermal growth factor receptor gene.

    PubMed Central

    Kageyama, R; Merlino, G T; Pastan, I

    1988-01-01

    We have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. We found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO4/polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I "footprinting" and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR. Images PMID:3393529

  15. The F-BAR Protein PACSIN2 Regulates Epidermal Growth Factor Receptor Internalization

    PubMed Central

    de Kreuk, Bart-Jan; Anthony, Eloise C.; Geerts, Dirk; Hordijk, Peter L.

    2012-01-01

    Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling. PMID:23129763

  16. Interferon Regulatory Factor 7 Functions as a Novel Negative Regulator of Pathological Cardiac Hypertrophy

    PubMed Central

    Jiang, Ding-Sheng; Liu, Yu; Zhou, Heng; Zhang, Yan; Zhang, Xiao-Dong; Zhang, Xiao-Fei; Chen, Ke; Gao, Lu; Peng, Juan; Gong, Hui; Chen, Yingjie; Yang, Qinglin; Liu, Peter P.; Fan, Guo-Chang; Zou, Yunzeng; Li, Hongliang

    2017-01-01

    Cardiac hypertrophy is a complex pathological process that involves multiple factors including inflammation and apoptosis. Interferon regulatory factor 7 (IRF7) is a multifunctional regulator that participates in immune regulation, cell differentiation, apoptosis, and oncogenesis. However, the role of IRF7 in cardiac hypertrophy remains unclear. We performed aortic banding in cardiac-specific IRF7 transgenic mice, IRF7 knockout mice, and the wild-type littermates of these mice. Our results demonstrated that IRF7 was downregulated in aortic banding–induced animal hearts and cardiomyocytes that had been treated with angiotensin II or phenylephrine for 48 hours. Accordingly, heart-specific overexpression of IRF7 significantly attenuated pressure overload–induced cardiac hypertrophy, fibrosis, and dysfunction, whereas loss of IRF7 led to opposite effects. Moreover, IRF7 protected against angiotensin II–induced cardiomyocyte hypertrophy in vitro. Mechanistically, we identified that IRF7-dependent cardioprotection was mediated through IRF7 binding to inhibitor of κB kinase-β, and subsequent nuclear factor-κB inactivation. In fact, blocking nuclear factor-κB signaling with cardiac-specific inhibitors of κBαS32A/S36A super-repressor transgene counteracted the adverse effect of IRF7 deficiency. Conversely, activation of nuclear factor-κB signaling via a cardiac-specific conditional inhibitor of κB kinase-βS177E/S181E (constitutively active) transgene negated the antihypertrophic effect of IRF7 overexpression. Our data demonstrate that IRF7 acts as a novel negative regulator of pathological cardiac hypertrophy by inhibiting nuclear factor-κB signaling and may constitute a potential therapeutic target for pathological cardiac hypertrophy. PMID:24396025

  17. Regularized Non-negative Matrix Factorization for Identifying Differential Genes and Clustering Samples: a Survey.

    PubMed

    Liu, Jin-Xing; Wang, Dong; Gao, Ying-Lian; Zheng, Chun-Hou; Xu, Yong; Yu, Jiguo

    2017-02-07

    Non-negative Matrix Factorization (NMF), a classical method for dimensionality reduction, has been applied in many fields. It is based on the idea that negative numbers are physically meaningless in various data-processing tasks. Apart from its contribution to conventional data analysis, the recent overwhelming interest in NMF is due to its newly discovered ability to solve challenging data mining and machine learning problems, especially in relation to gene expression data. This survey paper mainly focuses on research examining the application of NMF to identify differentially expressed genes and to cluster samples, and the main NMF models, properties, principles, and algorithms with its various generalizations, extensions, and modifications are summarized. The experimental results demonstrate the performance of the various NMF algorithms in identifying differentially expressed genes and clustering samples.

  18. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation.

    PubMed

    De Meyts, Pierre

    2015-04-01

    Progress in solving the structure of insulin bound to its receptor has been slow and stepwise, but a milestone has now been reached with a refined structure of a complex of insulin with a "microreceptor" that contains the primary binding site. The insulin receptor is a dimeric allosteric enzyme that belongs to the family of receptor tyrosine kinases. The insulin binding process is complex and exhibits negative cooperativity. Biochemical evidence suggested that insulin, through two distinct binding sites, crosslinks two receptor sites located on each α subunit. The structure of the unliganded receptor ectodomain showed a symmetrical folded-over conformation with an antiparallel disposition. Further work resolved the detailed structure of receptor site 1, both without and with insulin. Recently, a missing piece in the puzzle was added: the C-terminal portion of insulin's B-chain known to be critical for binding and negative cooperativity. Here I discuss these findings and their implications.

  19. Impact of suppression of tumorigenicity 14 (ST14)/serine protease 14 (Prss14) expression analysis on the prognosis and management of estrogen receptor negative breast cancer

    PubMed Central

    Kim, Sauryang; Yang, Jae Woong; Kim, Chungho; Kim, Moon Gyo

    2016-01-01

    To elucidate the role of a type II transmembrane serine protease, ST14/Prss14, during breast cancer progression, we utilized publically accessible databases including TCGA, GEO, NCI-60, and CCLE. Survival of breast cancer patients with high ST14/Prss14 expression is significantly poor in estrogen receptor (ER) negative populations regardless of the ratios of ST14/Prss14 to its inhibitors, SPINT1 or SPINT2. In a clustering of 1085 selected EMT signature genes, ST14/Prss14 is located in the same cluster with CDH3, and closer to post-EMT markers, CDH2, VIM, and FN1 than to the pre-EMT marker, CDH1. Coexpression analyses of known ST14/Prss14 substrates and transcription factors revealed context dependent action. In cell lines, paradoxically, ST14/Prss14 expression is higher in the ER positive group and located closer to CDH1 in clustering. This apparent contradiction is not likely due to ST14/Prss14 expression in a cancer microenvironment, nor due to negative regulation by ER. Genes consistently coexpressed with ST14/Prss14 include transcription factors, ELF5, GRHL1, VGLL1, suggesting currently unknown mechanisms for regulation. Here, we report that ST14/Prss14 is an emerging therapeutic target for breast cancer where HER2 is not applicable. In addition we suggest that careful conclusions should be drawn not exclusively from the cell line studies for target development. PMID:27167193

  20. The Ascaris suum nicotinic receptor, ACR-16, as a drug target: Four novel negative allosteric modulators from virtual screening

    PubMed Central

    Zheng, Fudan; Robertson, Alan P.; Abongwa, Melanie; Yu, Edward W.; Martin, Richard J.

    2016-01-01

    Soil-transmitted helminth infections in humans and livestock cause significant debility, reduced productivity and economic losses globally. There are a limited number of effective anthelmintic drugs available for treating helminths infections, and their frequent use has led to the development of resistance in many parasite species. There is an urgent need for novel therapeutic drugs for treating these parasites. We have chosen the ACR-16 nicotinic acetylcholine receptor of Ascaris suum (Asu-ACR-16), as a drug target and have developed three-dimensional models of this transmembrane protein receptor to facilitate the search for new bioactive compounds. Using the human α7 nAChR chimeras and Torpedo marmorata nAChR for homology modeling, we defined orthosteric and allosteric binding sites on the Asu-ACR-16 receptor for virtual screening. We identified four ligands that bind to sites on Asu-ACR-16 and tested their activity using electrophysiological recording from Asu-ACR-16 receptors expressed in Xenopus oocytes. The four ligands were acetylcholine inhibitors (SB-277011-A, IC50, 3.12 ± 1.29 μM; (+)-butaclamol Cl, IC50, 9.85 ± 2.37 μM; fmoc-1, IC50, 10.00 ± 1.38 μM; fmoc-2, IC50, 16.67 ± 1.95 μM) that behaved like negative allosteric modulators. Our work illustrates a structure-based in silico screening method for seeking anthelmintic hits, which can then be tested electrophysiologically for further characterization. PMID:27054065

  1. The Ascaris suum nicotinic receptor, ACR-16, as a drug target: Four novel negative allosteric modulators from virtual screening.

    PubMed

    Zheng, Fudan; Robertson, Alan P; Abongwa, Melanie; Yu, Edward W; Martin, Richard J

    2016-04-01

    Soil-transmitted helminth infections in humans and livestock cause significant debility, reduced productivity and economic losses globally. There are a limited number of effective anthelmintic drugs available for treating helminths infections, and their frequent use has led to the development of resistance in many parasite species. There is an urgent need for novel therapeutic drugs for treating these parasites. We have chosen the ACR-16 nicotinic acetylcholine receptor of Ascaris suum (Asu-ACR-16), as a drug target and have developed three-dimensional models of this transmembrane protein receptor to facilitate the search for new bioactive compounds. Using the human α7 nAChR chimeras and Torpedo marmorata nAChR for homology modeling, we defined orthosteric and allosteric binding sites on the Asu-ACR-16 receptor for virtual screening. We identified four ligands that bind to sites on Asu-ACR-16 and tested their activity using electrophysiological recording from Asu-ACR-16 receptors expressed in Xenopus oocytes. The four ligands were acetylcholine inhibitors (SB-277011-A, IC50, 3.12 ± 1.29 μM; (+)-butaclamol Cl, IC50, 9.85 ± 2.37 μM; fmoc-1, IC50, 10.00 ± 1.38 μM; fmoc-2, IC50, 16.67 ± 1.95 μM) that behaved like negative allosteric modulators. Our work illustrates a structure-based in silico screening method for seeking anthelmintic hits, which can then be tested electrophysiologically for further characterization.

  2. Modeling the epidermal growth factor -- epidermal growth factor receptor l2 domain interaction: implications for the ligand binding process.

    PubMed

    Jorissen, Robert N; Treutlein, Herbert R; Epa, V Chandana; Burgess, Antony W

    2002-06-01

    Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.

  3. Expression of metabolic sensing receptors in adipose tissues of periparturient dairy cows with differing extent of negative energy balance.

    PubMed

    Friedrichs, P; Sauerwein, H; Huber, K; Locher, L F; Rehage, J; Meyer, U; Dänicke, S; Kuhla, B; Mielenz, M

    2016-04-01

    inverse mRNA abundance as induced by different portions of concentrate. Thus, indicating divergent nutrient sensing of both receptors in AT during the transition period. We propose that the different manifestation of negative EB in both groups at day 21 after parturition affect at least FFAR2 expression in RPAT.

  4. Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses.

    PubMed

    Coton, Monika; Delbés-Paus, Céline; Irlinger, Françoise; Desmasures, Nathalie; Le Fleche, Anne; Stahl, Valérie; Montel, Marie-Christine; Coton, Emmanuel

    2012-02-01

    The goal of this study was to identify at the species level a large collection of Gram-negative dairy bacteria isolated from milks or semi-hard and soft, smear-ripened cheeses (cheese core or surface samples) from different regions of France. The isolates were then assessed for two risk factors, antibiotic resistance and volatile and non-volatile biogenic amine production in vitro. In total, 173 Gram-negative isolates were identified by rrs and/or rpoB gene sequencing. A large biodiversity was observed with nearly half of all Gram-negative isolates belonging to the Enterobacteriaceae family. Overall, 26 different genera represented by 68 species including potential new species were identified among the studied Gram-negative isolates for both surface and milk or cheese core samples. The most frequently isolated genera corresponded to Pseudomonas, Proteus, Psychrobacter, Halomonas and Serratia and represented almost 54% of the dairy collection. After Pseudomonas, Chryseobacterium, Enterobacter and Stenotrophomonas were the most frequently isolated genera found in cheese core and milk samples while Proteus, Psychrobacter, Halomonas and Serratia were the most frequently isolated genera among surface samples. Antibiotic resistance profiles indicated that resistances to the aminosid, imipemen and quinolon were relatively low while more than half of all tested isolates were resistant to antibiotics belonging to the monobactam, cephem, fosfomycin, colistin, phenicol, sulfamid and some from the penam families. Thirty-six% of isolates were negative for in vitro biogenic amine production. Among biogenic amine-producers, cadaverine was the most frequently produced followed by isoamylamine, histamine and putrescine. Only low levels (<75 mg/l) of tyramine were detected in vitro.

  5. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination

    PubMed Central

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes. PMID:26961174

  6. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity.

    PubMed

    Chan, Pamela Y; Carrera Silva, Eugenio A; De Kouchkovsky, Dimitri; Joannas, Leonel D; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S; Herbert, De'Broski R; Craft, Joseph E; Flavell, Richard A; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G; Torgerson, Dara G; Ghosh, Sourav; Rothlin, Carla V

    2016-04-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded byTyro3in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell-specificPros1knockouts phenocopied the loss ofTyro3 Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses.

  7. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity

    PubMed Central

    Chan, Pamela Y.; Carrera Silva, Eugenio A.; De Kouchkovsky, Dimitri; Joannas, Leonel D.; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S.; Herbert, De’Broski R.; Craft, Joseph E.; Flavell, Richard A.; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G.; Torgerson, Dara G.; Ghosh, Sourav; Rothlin, Carla V.

    2016-01-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded by Tyro3 in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell–specific Pros1 knockouts phenocopied the loss of Tyro3. Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses. PMID:27034374

  8. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  9. Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration.

    PubMed

    Mori, Ryoichi; Kondo, Toshikazu; Ohshima, Tohru; Ishida, Yuko; Mukaida, Naofumi

    2002-07-01

    To clarify biological roles of tumor necrosis factor receptor p55 (TNF-Rp55) -mediated signals in wound healing, skin excisions were prepared in BALB/c (WT) and TNF-Rp55-deficient (KO) mice. In WT mice, the wound area was reduced to 50% of the original area 6 days after injury, with angiogenesis and collagen accumulation. Histopathologically, reepithelialization rate was approximately 80% 6 days. Myeloperoxidase activity and macrophage recruitment were the most evident 1 and 6 days after injury, respectively. Gene expression of adhesion molecules, interleukin 1alpha (IL-1alpha), IL-1beta, monocyte chemoattractant protein 1, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-2, transforming growth factor beta1 (TGF-beta1) connective tissue growth factor (CTGF), vascular endothelial growth factor (VEGF), Flt-1, and Flk-1 was enhanced at the wound site. In KO mice, an enhancement in angiogenesis, collagen content, and reepithelialization was accelerated with the increased gene expression of TGF-beta1, CTGF, VEGF, Flt-1, and Flk-1 at the wound sites, resulting in accelerated wound healing compared with WT mice. In contrast, leukocyte infiltration, mRNA expression of adhesion molecules, and cytokines were significantly reduced in KO mice. These observations suggest that TNF-Rp55-mediated signals have some role in promoting leukocyte infiltration at the wound site and negatively affect wound healing, probably by reducing angiogenesis and collagen accumulation.

  10. Tetratricopeptide Repeat Domain 9A Negatively Regulates Estrogen Receptor Alpha Activity

    PubMed Central

    Shrestha, Smeeta; Sun, Yang; Lufkin, Thomas; Kraus, Petra; Or, Yuzuan; Garcia, Yenni A.; Guy, Naihsuan; Ramos, Paola; Cox, Marc B.; Tay, Fiona; Lin, Valerie CL

    2015-01-01

    Tetratricopeptide repeat domain 9A (TTC9A) is a target gene of estrogen and progesterone. It is over-expressed in breast cancer. However, little is known about the physiological function of TTC9A. The objectives of this study were to establish a Ttc9a knockout mouse model and to study the consequence of Ttc9a gene inactivation. The Ttc9a targeting vector was generated by replacing the Ttc9a exon 1 with a neomycin cassette. The mice homozygous for Ttc9a exon 1 deletion appear to grow normally and are fertile. However, further characterization of the female mice revealed that Ttc9a deficiency is associated with greater body weight, bigger thymus and better mammary development in post-pubertal mice. Furthermore, Ttc9a deficient mammary gland was more responsive to estrogen treatment with greater mammary ductal lengthening, ductal branching and estrogen target gene induction. Since Ttc9a is induced by estrogen in estrogen target tissues, these results suggest that Ttc9a is a negative regulator of estrogen function through a negative feedback mechanism. This is supported by in vitro evidence that TTC9A over-expression attenuated ERα activity in MCF-7 cells. Although TTC9A does not bind to ERα or its chaperone protein Hsp90 directly, TTC9A strongly interacts with FKBP38 and FKBP51, both of which interact with ERα and Hsp90 and modulate ERα activity. It is plausible therefore that TTC9A negatively regulates ERα activity through interacting with co-chaperone proteins such as FKBP38 and FKBP51. PMID:25798063

  11. Tetratricopeptide repeat domain 9A negatively regulates estrogen receptor alpha activity.

    PubMed

    Shrestha, Smeeta; Sun, Yang; Lufkin, Thomas; Kraus, Petra; Or, Yuzuan; Garcia, Yenni A; Guy, Naihsuan; Ramos, Paola; Cox, Marc B; Tay, Fiona; Lin, Valerie C L

    2015-01-01

    Tetratricopeptide repeat domain 9A (TTC9A) is a target gene of estrogen and progesterone. It is over-expressed in breast cancer. However, little is known about the physiological function of TTC9A. The objectives of this study were to establish a Ttc9a knockout mouse model and to study the consequence of Ttc9a gene inactivation. The Ttc9a targeting vector was generated by replacing the Ttc9a exon 1 with a neomycin cassette. The mice homozygous for Ttc9a exon 1 deletion appear to grow normally and are fertile. However, further characterization of the female mice revealed that Ttc9a deficiency is associated with greater body weight, bigger thymus and better mammary development in post-pubertal mice. Furthermore, Ttc9a deficient mammary gland was more responsive to estrogen treatment with greater mammary ductal lengthening, ductal branching and estrogen target gene induction. Since Ttc9a is induced by estrogen in estrogen target tissues, these results suggest that Ttc9a is a negative regulator of estrogen function through a negative feedback mechanism. This is supported by in vitro evidence that TTC9A over-expression attenuated ERα activity in MCF-7 cells. Although TTC9A does not bind to ERα or its chaperone protein Hsp90 directly, TTC9A strongly interacts with FKBP38 and FKBP51, both of which interact with ERα and Hsp90 and modulate ERα activity. It is plausible therefore that TTC9A negatively regulates ERα activity through interacting with co-chaperone proteins such as FKBP38 and FKBP51.

  12. Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis

    PubMed Central

    Hofer, Erhard; Schweighofer, Bernhard

    2010-01-01

    Summary New vessel formation during development and in the adult is triggered by concerted signals of largely endothelial-specific receptors for ligands of the VEGF, angiopoietin and ephrin families. The signals and genes induced by these receptors operate in the context of additional signals transduced by non-endothelial specific growth factor receptors, inflammatory cytokine receptors as well as adhesion molecules. We summarize here available data on characteristic signaling of the VEGF receptor-2 and the current state of knowledge regarding the additional different receptor tyrosine kinases of the VEGF, Tie and Ephrin receptor families. Furthermore, the potential cross-talk with signals induced by other growth factors and inflammatory cytokines as well as the modulation by VE-cadherin is discussed. PMID:17334501

  13. Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text

    PubMed Central

    Xin, Yu; Hochberg, Ephraim; Joshi, Rohit; Uzuner, Ozlem; Szolovits, Peter

    2015-01-01

    Objective Extracting medical knowledge from electronic medical records requires automated approaches to combat scalability limitations and selection biases. However, existing machine learning approaches are often regarded by clinicians as black boxes. Moreover, training data for these automated approaches at often sparsely annotated at best. The authors target unsupervised learning for modeling clinical narrative text, aiming at improving both accuracy and interpretability. Methods The authors introduce a novel framework named subgraph augmented non-negative tensor factorization (SANTF). In addition to relying on atomic features (e.g., words in clinical narrative text), SANTF automatically mines higher-order features (e.g., relations of lymphoid cells expressing antigens) from clinical narrative text by converting sentences into a graph representation and identifying important subgraphs. The authors compose a tensor using patients, higher-order features, and atomic features as its respective modes. We then apply non-negative tensor factorization to cluster patients, and simultaneously identify latent groups of higher-order features that link to patient clusters, as in clinical guidelines where a panel of immunophenotypic features and laboratory results are used to specify diagnostic criteria. Results and Conclusion SANTF demonstrated over 10% improvement in averaged F-measure on patient clustering compared to widely used non-negative matrix factorization (NMF) and k-means clustering methods. Multiple baselines were established by modeling patient data using patient-by-features matrices with different feature configurations and then performing NMF or k-means to cluster patients. Feature analysis identified latent groups of higher-order features that lead to medical insights. We also found that the latent groups of atomic features help to better correlate the latent groups of higher-order features. PMID:25862765

  14. Factor Structure and Psychometric Properties of the Children's Negative Cognitive Error Questionnaire with a Clinically Depressed Adolescent Sample

    ERIC Educational Resources Information Center

    Kingery, Julie Newman; Kepley, Hayden O.; Ginsburg, Golda S.; Walkup, John T.; Silva, Susan G.; Hoyle, Rick H.; Reinecke, Mark A.; March, John S.

    2009-01-01

    The factor structure and psychometric properties of the Children's Negative Cognitive Error Questionnaire (CNCEQ) were examined with 427 adolescents ages 12 to 18 (193 boys) with current major depressive disorder. Results of confirmatory factor analysis supported a four-factor model comprised of three content area factors (i.e., social, academic,…

  15. Examining the Factor Structure of the Positive and Negative Affect Schedule (PANAS) in a Multiethnic Sample of Adolescents

    ERIC Educational Resources Information Center

    Villodas, Feion; Villodas, Miguel T.; Roesch, Scott

    2011-01-01

    The psychometric properties of the Positive and Negative Affect Schedule were examined in a multiethnic sample of adolescents. Results from confirmatory factor analyses indicated that the original two-factor model did not adequately fit the data. Exploratory factor analyses revealed that four items were not pure markers of the factors. (Contains 1…

  16. Euphol from Euphorbia tirucalli Negatively Modulates TGF-β Responsiveness via TGF-β Receptor Segregation inside Membrane Rafts

    PubMed Central

    Chen, Chun-Lin; Chen, Ying-Pin; Lin, Ming-Wei; Huang, Yaw-Bin; Chang, Fang-Rong; Duh, Tsai-Hui; Wu, Deng-Chyang; Wu, Wei-Chiang; Kao, Yu-Chen; Yang, Pei-Hua

    2015-01-01

    Transforming growth factor-β (TGF-β) responsiveness in cultured cells can be modulated by TGF-β partitioning between lipid raft/caveolae- and clathrin-mediated endocytosis pathways. Lipid rafts are plasma membrane microdomains with an important role in cell survival signaling, and cholesterol is necessary for the lipid rafts’ structure and function. Euphol is a euphane-type triterpene alcohol that is structurally similar to cholesterol and has a wide range of pharmacological properties, including anti-inflammatory and anti-cancer effects. In the present study, euphol suppressed TGF-β signaling by inducing TGF-β receptor movement into lipid-raft microdomains and degrading TGF-β receptors. PMID:26448474

  17. A robust endmember constrained non-negative matrix factorization method for hyperspectral unmixing

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun

    2016-03-01

    This paper presents a new method based non-negative matrix factorization (NMF) for hyperspectral unmixing, termed robust endmember constrained NMF (RECNMF). The objective function of RECNMF can not only reduce the effect of noise and outliers but also can reduce the size of convex formed by the endmembers and the correlation between the endmembers. The algorithm is solved by the projected gradient method. The effectiveness of RECNMF is illustrated by comparing its performance with the state-of-the-art algorithms in simulated data.

  18. Negative ulnar variance is not a risk factor for Kienböck's disease.

    PubMed

    D'Hoore, K; De Smet, L; Verellen, K; Vral, J; Fabry, G

    1994-03-01

    Ulnar variance was measured in standardized conditions in 125 normal wrists and in 52 patients with Kienböck's disease. No significant difference in ulnar variance between a sex/age-matched control group and a group of patients affected with Kienböck's disease was found. A positive correlation was found between age and ulnar variance. No significant difference was found between men and women. Based on these results, negative ulnar variance does not seem to be an important factor in the etiology of Kienböck's disease.

  19. Factors Involved in the Negative Transfer from Isolated Learning to Simultaneous Learning.

    DTIC Science & Technology

    1980-07-01

    r A-AO? 942 NORTHWESTERN UNIV EVANSTON ILL DEPT OF PSYCHOLOGY F/G 5/10 FACTORS INVOLVED IN THE NEGATIVE TRANSFER FROM ISOLATED LEARNIN -ETC(U JUL 80 B...Transfer Technical ,ept i from Isolated Learning to Simultaneous Learning. 41---- . PERFORMING ORG. REPORT NUMUER T. 2UTHo (. .. CONTRACTOR GRANT M4MU@ E ...findings of SI, ION, 1473 EDITION OP I NOV 1 ,s OBSOLETE 9/14 0102o-04- 6601 1 ItN𔃻.ATQ A T T r SECURITY CLASIICATIONOPTI E (eDaemiq or

  20. Dynamic tracing for epidermal growth factor receptor mutations in urinary circulating DNA in gastric cancer patients.

    PubMed

    Shi, Xiu-Qin; Xue, Wen-Hua; Zhao, Song-Feng; Zhang, Xiao-Jian; Sun, Wukong

    2017-02-01

    The mutations of epidermal growth factor receptor are detected in gastric cancer, indicating its suitability as a target for receptor tyrosine kinase inhibitors, as well as a marker for clinical outcome of chemotherapeutic treatments. However, extraction of quality tumor tissue for molecular processes remains challenging. Here, we aimed to examine the clinical relevance of urinary cell-free DNA as an alternative tumor material source used specifically for monitoring epidermal growth factor receptor mutations. Therefore, 120 gastric cancer patients with epidermal growth factor receptor mutations and 100 healthy controls were recruited for the study. The gastric patients also received epidermal growth factor receptor inhibitor treatment for a serial monitoring study. Paired primary tumor specimens were obtained with blood and urine samples, which were taken at a 1-month interval for a duration of 12 months. We found that urinary cell-free DNA yielded a close agreement of 92% on epidermal growth factor receptor mutation status when compared to primary tissue at baseline, and of 99% epidermal growth factor receptor mutation status when compared to plasma samples at different time points. Thus, our data suggest that urinary cell-free DNA may be a reliable source for screening and monitoring epidermal growth factor receptor mutations in the primary gastric cancer.

  1. Epidermal Platelet-activating Factor Receptor Activation and Ultraviolet B Radiation Result in Synergistic Tumor Necrosis Factor-alpha Production

    PubMed Central

    Wolverton, Jay E.; Al-Hassani, Mohammed; Yao, Yongxue; Zhang, Qiwei; Travers, Jeffrey B.

    2010-01-01

    Ultraviolet B radiation (UVB) is a potent stimulator of epidermal cytokine production which has been implicated in photoaggravated dermatoses. In addition to cytokines such as tumor necrosis factor-α (TNF-α), UVB generates bioactive lipids including platelet-activating factor (PAF). Our previous studies have demonstrated that UVB-mediated production of keratinocyte TNF-α is in part due to PAF. The current studies use a human PAF-receptor (PAF-R) negative epithelial cell line transduced with PAF-Rs and PAF–R-deficient mice to demonstrate that activation of the epidermal PAF-R along with UVB irradiation results in a synergistic production of TNF-α. It should be noted that PAF-R effects are mimicked by the protein kinase C (PKC) agonist phorbol myristic acetate, and are inhibited by pharmacological antagonists of the PKC gamma isoenzyme. These studies suggest that concomitant PAF-R activation and UVB irradiation results in a synergistic production of the cytokine TNF-α which is mediated in part via PKC. These studies provide a novel potential mechanism for photosensitivity responses. PMID:19769579

  2. Teaching resources. Growth factor and receptor tyrosine kinases.

    PubMed

    Aaronson, Stuart

    2005-02-22

    This Teaching Resource provides lecture notes and slides for a graduate-level class on ligand regulation of signaling by receptor tyrosine kinases and receptors involved in the Wnt canonical pathway. It is part of a series of lectures that constitute the Cell Signaling Systems course. A description of the lecture, along with a set of slides used to present this information, is provided.

  3. [Psychosocial risk factors in adolescent tobacco use: negative mood-states, peer group and parenting styles].

    PubMed

    Julià Cano, Albert; Escapa Solanas, Sandra; Marí-Klose, Marga; Marí-Klose, Pau

    2012-01-01

    There are multiple factors that can affect the risk of tobacco use in adolescence. By analyzing these factors together we can disentangle the specific relevance of each of them in shaping teenagers' individual behavior. The goal of this research study is to deepen our understanding of the relationship between tobacco use in adolescence and socio-demographic and socio-emotional variables. We worked with a representative sample of 2,289 Catalan teenagers (aged 15-18) who responded to a questionnaire drawn up by the Families and Children Panel. Regression models were developed to assess the statistical associations of different mood states (sadness, nervousness and loneliness), peer-group characteristics and parenting styles, with tobacco use. The results indicate that addictive behavior is more likely when teenagers show negative mood states, controlling for socio-demographic variables and other risk factors. Among these additional factors, authoritative parenting styles reduce the risk of tobacco use, compared to authoritarian, permissive and neglectful parenting. Extensive tobacco use within the peer group is the risk factor most strongly associated with teenagers' individual behavior.

  4. The role of complement receptor positive and complement receptor negative B cells in the primary and secondary immune response to thymus independent type 2 and thymus dependent antigens.

    PubMed

    Lindsten, T; Yaffe, L J; Thompson, C B; Guelde, G; Berning, A; Scher, I; Kenny, J J

    1985-05-01

    Both complement receptor positive (CR+) and complement receptor negative (CR-) B cells have been shown to be involved in the primary immune response to PC-Hy (phosphocholine conjugated hemocyanin), a thymus dependent (TD) antigen which preferentially induces antibody secretion in Lyb-5+ B cells during a primary adoptive transfer assay. CR+ and CR- B cells also responded in a primary adoptive transfer assay to TNP-Ficoll, a thymus independent type 2 (TI-2) antigen which activates only Lyb-5+ B cells. When the secondary immune response to PC-Hy and TNP-Ficoll were analyzed, it was found that most of the immune memory to both antigens was present in the CR- B cell subset. The CR- B cell subset also dominated the secondary immune response to PC-Hy in immune defective (CBA/N X DBA/2N)F1 male mice. These data indicate that CR- B cells dominate the memory response in both the Lyb-5+ and Lyb-5- B cell subsets of normal and xid immune defective mice and suggest that Lyb-5+ and Lyb-5- B cells can be subdivided into CR+ and CR- subsets.

  5. Transient receptor potential melastatin 7 is involved in oestrogen receptor-negative metastatic breast cancer cells migration through its kinase domain.

    PubMed

    Guilbert, A; Gautier, M; Dhennin-Duthille, I; Rybarczyk, P; Sahni, J; Sevestre, H; Scharenberg, A M; Ouadid-Ahidouch, H

    2013-11-01

    Oestrogen receptor negative (ER(-)) invasive ductal carcinoma (IDC) represents a significant clinical challenge and therefore prompts the discovery of novel biomarkers. Transient receptor potential melastatin 7 (TRPM7), a channel protein that also contains a regulatory kinase domain, is overexpressed in IDC and regulates migration. However, the molecular mechanism remains poorly defined. Here, we examined whether TRPM7 regulates migration by its channel function or by its kinase domain. A Magnesium Inhibited Cation current was recorded in two ER(-) highly metastatic breast cancer cell lines. Down-regulation of TRPM7 neither affected Ca(2+)-, nor Mg(2+)-homoeostasis but significantly reduced cell migration via a Ca(2+)-independent pathway. Notably, the overexpression of the truncated kinase domain form of TRPM7 decreased cell migration, while the overexpression of the wild-type form strongly increased it. Concomitantly, TRPM7 silencing reduced the myosin IIA heavy chain phosphorylation. Furthermore, we found higher TRPM7 expression in ER(-) IDC tissues and lymph nodes than in the non-invasive tumoural samples. In conclusion, TRPM7 plays a critical role in breast cancer cell migration through its kinase domain, and our data support the consideration of using TRPM7 as a novel biomarker and a potential therapeutic target in the treatment of human ER(-) IDC.

  6. Rare SNPs in receptor tyrosine kinases are negative outcome predictors in multiple myeloma

    PubMed Central

    Langer, Christian; Knop, Stefan; Pischimarov, Jordan; Kull, Miriam; Stühmer, Thorsten; Steinbrunn, Torsten; Bargou, Ralf; Einsele, Hermann; Rosenwald, Andreas; Leich, Ellen

    2016-01-01

    Multiple myeloma (MM) is a plasma cell disorder that is characterized by a great genetic heterogeneity. Recent next generation sequencing studies revealed an accumulation of tumor-associated mutations in receptor tyrosine kinases (RTKs) which may also contribute to the activation of survival pathways in MM. To investigate the clinical role of RTK-mutations in MM, we deep-sequenced the coding DNA-sequence of EGFR, EPHA2, ERBB3, IGF1R, NTRK1 and NTRK2 which were previously found to be mutated in MM, in 75 uniformly treated MM patients of the “Deutsche Studiengruppe Multiples Myelom”. Subsequently, we correlated the detected mutations with common cytogenetic alterations and clinical parameters. We identified 11 novel non-synonymous SNVs or rare patient-specific SNPs, not listed in the SNP databases 1000 genomes and dbSNP, in 10 primary MM cases. The mutations predominantly affected the tyrosine-kinase and ligand-binding domains and no correlation with cytogenetic parameters was found. Interestingly, however, patients with RTK-mutations, specifically those with rare patient-specific SNPs, showed a significantly lower overall, event-free and progression-free survival. This indicates that RTK SNVs and rare patient-specific RTK SNPs are of prognostic relevance and suggests that MM patients with RTK-mutations could potentially profit from treatment with RTK-inhibitors. PMID:27246973

  7. The nicotinic acetylcholine receptor α7 subunit is an essential negative regulator of bone mass.

    PubMed

    Mito, Kazuaki; Sato, Yuiko; Kobayashi, Tami; Miyamoto, Kana; Nitta, Eriko; Iwama, Atsushi; Matsumoto, Morio; Nakamura, Masaya; Sato, Kazuki; Miyamoto, Takeshi

    2017-03-28

    The nicotinic receptor α7nAchR reportedly regulates vagal nerve targets in brain and cardiac tissue. Here we show that nAchR7(-/-) mice exhibit increased bone mass due to decreased osteoclast formation, accompanied by elevated osteoprotegerin/RANKL ratios in serum. Vagotomy in wild-type mice also significantly increased the serum osteoprotegerin/RANKL ratio, and elevated bone mass seen in nAchR7(-/-) mice was reversed in α7nAchR/osteoprotegerin-doubly-deficient mice. α7nAchR loss significantly increased TNFα expression in Mac1-positive macrophages, and TNFα increased the osteoprotegerin/RANKL ratio in osteoblasts. Targeting TNFα in nAchR7(-/-) mice normalized both serum osteoprotegerin/RANKL ratios and bone mass. Administration of nicotine, an α7nAchR ligand, to wild-type mice increased serum RANKL levels. Thus, vagal nerve stimulation of macrophages via α7nAchR regulates bone mass by modulating osteoclast formation.

  8. The nicotinic acetylcholine receptor α7 subunit is an essential negative regulator of bone mass

    PubMed Central

    Mito, Kazuaki; Sato, Yuiko; Kobayashi, Tami; Miyamoto, Kana; Nitta, Eriko; Iwama, Atsushi; Matsumoto, Morio; Nakamura, Masaya; Sato, Kazuki; Miyamoto, Takeshi

    2017-01-01

    The nicotinic receptor α7nAchR reportedly regulates vagal nerve targets in brain and cardiac tissue. Here we show that nAchR7−/− mice exhibit increased bone mass due to decreased osteoclast formation, accompanied by elevated osteoprotegerin/RANKL ratios in serum. Vagotomy in wild-type mice also significantly increased the serum osteoprotegerin/RANKL ratio, and elevated bone mass seen in nAchR7−/− mice was reversed in α7nAchR/osteoprotegerin-doubly-deficient mice. α7nAchR loss significantly increased TNFα expression in Mac1-positive macrophages, and TNFα increased the osteoprotegerin/RANKL ratio in osteoblasts. Targeting TNFα in nAchR7−/− mice normalized both serum osteoprotegerin/RANKL ratios and bone mass. Administration of nicotine, an α7nAchR ligand, to wild-type mice increased serum RANKL levels. Thus, vagal nerve stimulation of macrophages via α7nAchR regulates bone mass by modulating osteoclast formation. PMID:28349965

  9. Androgen receptor functions as a negative transcriptional regulator of DEPTOR, mTOR inhibitor.

    PubMed

    Kanno, Yuichiro; Zhao, Shuai; Yamashita, Naoya; Yanai, Kazuyuki; Nemoto, Kiyomitsu; Inouye, Yoshio

    2015-12-01

    It has been noticed that crosstalk between androgen receptor (AR) and mammalian target of rapamycin (mTOR) signaling pathways plays a crucial role in the proliferation of prostate cancer cells. To clarify this mechanism, we focused on DEPTOR, a naturally occurring inhibitor of mTOR. The treatment of a human AR-positive prostate cancer cell line, LNCaP, with the AR-agonist dihydrotestosterone (DHT) repressed DEPTOR mRNA expression in a time-dependent manner. This repression was abrogated by treatment with the AR-antagonist bicalutamide. Knockdown of DEPTOR mRNA by siRNA resulted in the increased phosphorylation of 70 kDa ribosomal protein S6 kinase 1 (S6K), a substrate of mTORC1, accompanied by the elevated expression of cyclin D1, a positive regulator of cell proliferation. Furthermore, the ChIP assay demonstrated that AR could bind to AR-responsible element-like region within the 4th intron of the DEPTOR gene. The amount of acetylated histone H3 (Lys9, Lys14) was reduced by the DHT treatment in this region. Taken together, these results propose that AR-dependent prostate cancer cell proliferation requires decreased DEPTOR transcription directly controlled by AR.

  10. Dormancy Signatures and Metastasis in Estrogen Receptor Positive and Negative Breast Cancer

    PubMed Central

    Kim, Ryung S.; Avivar-Valderas, Alvaro; Estrada, Yeriel; Bragado, Paloma; Sosa, Maria Soledad; Aguirre-Ghiso, Julio A.; Segall, Jeffrey E.

    2012-01-01

    Breast cancers can recur after removal of the primary tumor and treatment to eliminate remaining tumor cells. Recurrence may occur after long periods of time during which there are no clinical symptoms. Tumor cell dormancy may explain these prolonged periods of asymptomatic residual disease and treatment resistance. We generated a dormancy gene signature from published experimental models and applied it to both breast cancer cell line expression data as well as four published clinical studies of primary breast cancers. We found that estrogen receptor (ER) positive breast cell lines and primary tumors have significantly higher dormancy signature scores (P<0.0000001) than ER- cell lines and tumors. In addition, a stratified analysis combining all ER+ tumors in four studies indicated 2.1 times higher hazard of recurrence among patients whose tumors had low dormancy scores (LDS) compared to those whose tumors had high dormancy scores (HDS) (p<0.000005). The trend was shown in all four individual studies. Suppression of two dormancy genes, BHLHE41 and NR2F1, resulted in increased in vivo growth of ER positive MCF7 cells. The patient data analysis suggests that disseminated ER positive tumor cells carrying a dormancy signature are more likely to undergo prolonged dormancy before resuming metastatic growth. Furthermore, genes identified with this approach might provide insight into the mechanisms of dormancy onset and maintenance as well as dormancy models using human breast cancer cell lines. PMID:22530051

  11. Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.

    PubMed

    Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J

    2014-09-01

    Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity.

  12. HR+HER2- breast cancers with growth factor receptor-mediated EMT have a poor prognosis and lapatinib downregulates EMT in MCF-7 cells.

    PubMed

    Desai, Krisha; Aiyappa, Radhika; Prabhu, Jyothi S; Nair, Madhumathy G; Lawrence, Patrick Varun; Korlimarla, Aruna; Ce, Anupama; Alexander, Annie; Kaluve, Rohini S; Manjunath, Suraj; Correa, Marjorrie; Srinath, B S; Patil, Shekhar; Kalamdani, Anjali; Prasad, Msn; Sridhar, T S

    2017-03-01

    Despite an overall good prognosis, a significant proportion of patients with hormone receptor positive human epidermal growth factor receptor 2 negative breast cancers develop distant metastases. The metastatic potential of epithelial cells is known to be regulated by tumor-stromal interaction and mediated by epithelial-to-mesenchymal transition. Hormone receptor positive human epidermal growth factor receptor 2 negative tumors were used to estimate markers of epithelial-to-mesenchymal transition, and the luminal breast cancer cell line MCF-7 was used to examine the interactions between integrins and growth factor receptors in causation of epithelial-to-mesenchymal transition. A total of 140 primary tumors were sub-divided into groups enriched for the markers of epithelial-to-mesenchymal transition (snail family transcriptional repressor 2 and integrin β6) versus those with low levels. Within the epithelial-to-mesenchymal transition+ tumors, there was a positive correlation between the transcripts of integrin β6 and growth factor receptors-human epidermal growth factor receptor 2 and epidermal growth factor receptor. In tumors enriched for epithelial-to-mesenchymal transition markers, patients with tumors with the highest quartile of growth factor receptor transcripts had a shorter disease-free survival compared to patients with low growth factor receptor expression by Kaplan-Meier analysis (log rank, p = 0.03). Epithelial-to-mesenchymal transition was induced in MCF-7 cells by treatment with transforming growth factor beta 1 and confirmed by upregulation of SNAI1 and SNAI2 transcripts, increase of vimentin and integrin β6 protein, and repression of E-cadherin. Treatment of these cells with the dual-specificity tyrosine-kinase inhibitor lapatinib led to downregulation of epithelial-to-mesenchymal transition as indicated by lower levels of SNAI1 and SNAI2 transcripts, integrin αvβ6, and matrix metalloproteinase 9 protein. The results suggest that

  13. The CaM Kinase CMK-1 Mediates a Negative Feedback Mechanism Coupling the C. elegans Glutamate Receptor GLR-1 with Its Own Transcription.

    PubMed

    Moss, Benjamin J; Park, Lidia; Dahlberg, Caroline L; Juo, Peter

    2016-07-01

    Regulation of synaptic AMPA receptor levels is a major mechanism underlying homeostatic synaptic scaling. While in vitro studies have implicated several molecules in synaptic scaling, the in vivo mechanisms linking chronic changes in synaptic activity to alterations in AMPA receptor expression are not well understood. Here we use a genetic approach in C. elegans to dissect a negative feedback pathway coupling levels of the AMPA receptor GLR-1 with its own transcription. GLR-1 trafficking mutants with decreased synaptic receptors in the ventral nerve cord (VNC) exhibit compensatory increases in glr-1 mRNA, which can be attributed to increased glr-1 transcription. Glutamatergic transmission mutants lacking presynaptic eat-4/VGLUT or postsynaptic glr-1, exhibit compensatory increases in glr-1 transcription, suggesting that loss of GLR-1 activity is sufficient to trigger the feedback pathway. Direct and specific inhibition of GLR-1-expressing neurons using a chemical genetic silencing approach also results in increased glr-1 transcription. Conversely, expression of a constitutively active version of GLR-1 results in decreased glr-1 transcription, suggesting that bidirectional changes in GLR-1 signaling results in reciprocal alterations in glr-1 transcription. We identify the CMK-1/CaMK signaling axis as a mediator of the glr-1 transcriptional feedback mechanism. Loss-of-function mutations in the upstream kinase ckk-1/CaMKK, the CaM kinase cmk-1/CaMK, or a downstream transcription factor crh-1/CREB, result in increased glr-1 transcription, suggesting that the CMK-1 signaling pathway functions to repress glr-1 transcription. Genetic double mutant analyses suggest that CMK-1 signaling is required for the glr-1 transcriptional feedback pathway. Furthermore, alterations in GLR-1 signaling that trigger the feedback mechanism also regulate the nucleocytoplasmic distribution of CMK-1, and activated, nuclear-localized CMK-1 blocks the feedback pathway. We propose a model in

  14. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer

    PubMed Central

    Sobani, Zain A; Sawant, Ashwin; Jafri, Mikram; Correa, Amit Keith; Sahin, Ibrahim Halil

    2016-01-01

    Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade. PMID:27777877

  15. The low-density lipoprotein receptor-related protein 10 is a negative regulator of the canonical Wnt/{beta}-catenin signaling pathway

    SciTech Connect

    Jeong, Young-Hee; Sekiya, Manami; Hirata, Michiko; Ye, Mingjuan; Yamagishi, Azumi; Lee, Sang-Mi; Kang, Man-Jong; Hosoda, Akemi; Fukumura, Tomoe; Kim, Dong-Ho; Saeki, Shigeru

    2010-02-19

    Wnt signaling pathways play fundamental roles in the differentiation, proliferation and functions of many cells as well as developmental, growth, and homeostatic processes in animals. Low-density lipoprotein receptor (LDLR)-related protein (LRP) 5 and LRP6 serve as coreceptors of Wnt proteins together with Frizzled receptors, triggering activation of canonical Wnt/{beta}-catenin signaling. Here, we found that LRP10, a new member of the LDLR gene family, inhibits the canonical Wnt/{beta}-catenin signaling pathway. The {beta}-catenin/T cell factor (TCF) transcriptional activity in HEK293 cells was activated by transfection with Wnt3a or LRP6, which was then inhibited by co-transfection with LRP10. Deletion of the extracellular domain of LRP10 negated its inhibitory effect. The inhibitory effect of LRP10 was consistently conserved in HEK293 cells even when GSK3{beta} phosphorylation was inhibited by incubation with lithium chloride and co-transfection with constitutively active S33Y-mutated {beta}-catenin. Nuclear {beta}-catenin accumulation was unaffected by LRP10. The present studies suggest that LRP10 may interfere with the formation of the {beta}-catenin/TCF complex and/or its binding to target DNA in the nucleus, and that the extracellular domain of LRP10 is critical for inhibition of the canonical Wnt/{beta}-catenin signaling pathway.

  16. Breast Tumor Kinase (Brk/PTK6) is Induced by HIF, Glucocorticoid Receptor and PELP1 Mediated Stress Signaling in Triple-Negative Breast Cancer

    PubMed Central

    Anderson, Tarah M Regan; Ma, Shihong; Raj, Ganesh V; Cidlowski, John A; Helle, Taylor M; Knutson, Todd P; Krutilina, Raisa I; Seagroves, Tiffany N; Lange, Carol A

    2016-01-01

    Cancer cells use stress response pathways to sustain their pathogenic behavior. In breast cancer, stress response-associated phenotypes are mediated by the breast tumor kinase, Brk (PTK6), via the hypoxia-inducible factors HIF-1α and HIF-2α. Given that glucocorticoid receptor (GR) is highly expressed in triple negative breast cancer (TNBC), we investigated crosstalk between stress hormone-driven GR signaling and HIF-regulated physiologic stress. Primary TNBC tumor explants or cell lines treated with the GR ligand dexamethasone (dex) exhibited robust induction of Brk mRNA and protein that was HIF1/2-dependent. HIF and GR co-assembled on the BRK promoter in response to either hypoxia or dex, indicating that Brk is a direct GR/HIF target. Notably, HIF-2α, not HIF-1α, expression was induced by GR signaling and the important steroid receptor coactivator PELP1 was also found to be induced in a HIF-dependent manner. Mechanistic investigations showed how PELP1 interacted with GR to activate Brk expression and demonstrated that physiologic cell stress, including hypoxia, promoted phosphorylation of GR serine 134, initiating a feed-forward signaling loop that contributed significantly to Brk upregulation. Collectively, our findings linked cellular stress (HIF) and stress hormone (cortisol) signaling in TNBC, identifying the phospho-GR/HIF/PELP1 complex as a potential therapeutic target to limit Brk-driven progression and metastasis in TNBC patients. PMID:26825173

  17. The new and recurrent FLT3 juxtamembrane deletion mutation shows a dominant negative effect on the wild-type FLT3 receptor

    PubMed Central

    Sandhöfer, Nadine; Bauer, Julia; Reiter, Katrin; Dufour, Annika; Rothenberg, Maja; Konstandin, Nikola P.; Zellmeier, Evelyn; Tizazu, Belay; Greif, Philipp A.; Metzeler, Klaus H.; Hiddemann, Wolfgang; Polzer, Harald; Spiekermann, Karsten

    2016-01-01

    In acute myeloid leukemia (AML), the Fms-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes. Recently, a new and recurrent juxtamembrane deletion mutation (p.Q569Vfs*2) resulting in a truncated receptor was identified. The mutated receptor is expressed on the cell surface and still binds its ligand but loses the ability to activate ERK signaling. FLT3 p.Q569fs-expressing Ba/F3 cells show no proliferation after ligand stimulation. Furthermore, coexpressed with the FLT3 wild-type (WT) receptor, the truncated receptor suppresses stimulation and activation of the WT receptor. Thus, FLT3 p.Q569Vfs*2, to our knowledge, is the first FLT3 mutation with a dominant negative effect on the WT receptor. PMID:27346558

  18. Control of the negative IRES trans-acting factor KHSRP by ubiquitination

    PubMed Central

    Kung, Yu-An; Hung, Chuan-Tien; Chien, Kun-Yi; Shih, Shin-Ru

    2017-01-01

    Cells and viruses can utilize internal ribosome entry sites (IRES) to drive translation when cap-dependent translation is inhibited by stress or viral factors. IRES trans-acting factors (ITAFs) are known to participate in such cap-independent translation, but there are gaps in the understanding as to how ITAFs, particularly negative ITAFs, regulate IRES-driven translation. This study found that Lys109, Lys121 and Lys122 represent critical ubiquitination sites for far upstream element-binding protein 2 (KHSRP, also known as KH-type splicing regulatory protein or FBP2), a negative ITAF. Mutations at these sites subsequently reduced KHSRP ubiquitination and abolished its inhibitory effect on IRES-driven translation. We further found that interaction between the Kelch domain of Kelch-like protein 12 (KLHL12) and the C-terminal domain of KHSRP contributed to KHSRP ubiquitination, leading to downregulation of enterovirus IRES-mediated translation in infected cells and increased competition against other positive ITAFs. Together, these results show that ubiquitination can exert control over IRES-driven translation via modification of ITAFs, and to the best of our knowledge, this is the first description of such a regulatory mechanism for IRES-dependent translation. PMID:27899653

  19. [Effect of GABA receptor agonist phenibut on behavior and respiration of rabbits in the negative emotional situation].

    PubMed

    Ziablitseva, E A; Pavlova, I V

    2007-01-01

    The influence of systemic injection of GABA-receptor agonist--phenibut (40 mg/kg, s/c) on open field behavior, behavioral reactivity and changes in respiratory parameters after exposure of negative emotional stimuli was studied in three rabbit groups differentiated by locomotor activity in open field (active, passive and medium-active animals). The injection of phenibut results in decrease of rabbits horizontal locomotor activity and some components of research behavior in open field and also decrease of behavioral reactivity on emotional stimuli. At the same time the probability of both an active orienting exploratory or defensive reactions and passive reactions (freezing) were decreased. The influence of phenibut depended on typological features of rabbits: the most potent effect occurred upon behavior of active rabbits, less on passive animals and practically none on medium-active rabbits. The phenibut injection results in increase of duration of inhalation during exposure to emotional stimuli, whereas it decreased in normal.

  20. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  1. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3

    SciTech Connect

    Keegan, K.; Hayman, M.J. ); Johnson, D.E.; Williams, L.T. )

    1991-02-15

    The fibroblast growth factors are a family of polypeptide growth factors involved in a variety of activities including mitogenesis, angiogenesis, and wound healing. Fibroblast growth factor receptors (FGFRs) have previously been identified in chicken, mouse, and human and have been shown to contain an extracellular domain with either two or three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain. The authors have isolated a human cDNA for another tyrosine kinase receptor that is highly homologous to the previously described FGFR. Expression of this receptor cDNA in COS cells directs the expression of a 125-kDa glycoprotein. They demonstrate that this cDNA encodes a biologically active receptor by showing that human acidic and basic fibroblast growth factors activate this receptor as measured by {sup 45}Ca{sup 2+} efflux assays. These data establish the existence of an additional member of the FGFR family that they have named FGFR-3.

  2. Characterization of a comparative model of the extracellular domain of the epidermal growth factor receptor.

    PubMed

    Jorissen, R N; Epa, V C; Treutlein, H R; Garrett, T P; Ward, C W; Burgess, A W

    2000-02-01

    The Epidermal Growth Factor (EGF) receptor is a tyrosine kinase that mediates the biological effects of ligands such as EGF and transforming growth factor alpha. An understanding of the molecular basis of its action has been hindered by a lack of structural and mutational data on the receptor. We have constructed comparative models of the four extracellular domains of the EGF receptor that are based on the structure of the first three domains of the insulin-like growth factor-1 (IGF-1) receptor. The first and third domains of the EGF receptor, L1 and L2, are right-handed beta helices. The second and fourth domains of the EGF receptor, S1 and S2, consist of the modules held together by disulfide bonds, which, except for the first module of the S1 domain, form rod-like structures. The arrangement of the L1 and S1 domains of the model are similar to that of the first two domains of the IGF-1 receptor, whereas that of the L2 and S2 domains appear to be significantly different. Using the EGF receptor model and limited information from the literature, we have proposed a number of regions that may be involved in the functioning of the receptor. In particular, the faces containing the large beta sheets in the L1 and L2 domains have been suggested to be involved with ligand binding of EGF to its receptor.

  3. Characterization of a comparative model of the extracellular domain of the epidermal growth factor receptor.

    PubMed Central

    Jorissen, R. N.; Epa, V. C.; Treutlein, H. R.; Garrett, T. P.; Ward, C. W.; Burgess, A. W.

    2000-01-01

    The Epidermal Growth Factor (EGF) receptor is a tyrosine kinase that mediates the biological effects of ligands such as EGF and transforming growth factor alpha. An understanding of the molecular basis of its action has been hindered by a lack of structural and mutational data on the receptor. We have constructed comparative models of the four extracellular domains of the EGF receptor that are based on the structure of the first three domains of the insulin-like growth factor-1 (IGF-1) receptor. The first and third domains of the EGF receptor, L1 and L2, are right-handed beta helices. The second and fourth domains of the EGF receptor, S1 and S2, consist of the modules held together by disulfide bonds, which, except for the first module of the S1 domain, form rod-like structures. The arrangement of the L1 and S1 domains of the model are similar to that of the first two domains of the IGF-1 receptor, whereas that of the L2 and S2 domains appear to be significantly different. Using the EGF receptor model and limited information from the literature, we have proposed a number of regions that may be involved in the functioning of the receptor. In particular, the faces containing the large beta sheets in the L1 and L2 domains have been suggested to be involved with ligand binding of EGF to its receptor. PMID:10716183

  4. Tyrosine kinase discoidin domain receptors DDR1 and DDR2 are coordinately deregulated in triple-negative breast cancer.

    PubMed

    Toy, Kathy A; Valiathan, Rajeshwari R; Núñez, Fernando; Kidwell, Kelley M; Gonzalez, Maria E; Fridman, Rafael; Kleer, Celina G

    2015-02-01

    Receptor kinases Discoidin Domain Receptors (DDRs) 1 and 2 are emerging as new therapeutic targets in breast cancer (BC). However, the expression of DDR proteins during BC progression and their association with BC subtypes remain poorly defined. Herein we report the first comprehensive immunohistochemical analyses of DDR protein expression in a wide range of breast tissues. DDR1 and DDR2 expression was investigated by immunohistochemistry in 218 samples of normal breast (n = 10), ductal carcinoma in situ (DCIS, n = 10), and invasive carcinomas (n = 198), arrayed in tissue microarrays with comprehensive clinical and follow-up information. Staining was evaluated for cell type, subcellular localization, percentage and intensity (scores 1-4), and association with disease subtype and outcome. In normal epithelium and DCIS, DDR1 was highly expressed, while DDR2 was negative in normal epithelium, and in DCIS it localized to cells at the epithelial-stromal interface. Of the 198 invasive carcinomas, DDR1 was high in 87 (44 %) and low in 103 (52 %), and DDR2 was high in 110 (56 %) and low in 87 (44 %). High DDR2 was associated with high tumor grade (P = 0.002), triple-negative subtype (TNBC) (P < 0.0001), and worse survival (P = 0.037). We discovered a novel concordant deregulation of DDR expression, with a DDR1(Low)/DDR2(High) profile significantly associated with TNBC, compared to luminal tumors (P = 0.012), and with worse overall survival. In conclusion, DDR2 upregulation occurs in DCIS, before stromal invasion, and may reflect epithelial-stromal cross-talk. A DDR1(Low)/DDR2(High) protein profile is associated with TNBC and may identify invasive carcinomas with worse prognosis.

  5. Aryl Hydrocarbon Receptors in Osteoclast Lineage Cells Are a Negative Regulator of Bone Mass

    PubMed Central

    Yu, Tai-yong; Pang, Wei-jun; Yang, Gong-she

    2015-01-01

    Aryl hydrocarbon receptors (AhRs) play a critical role in various pathological and physiological processes. Although recent research has identified AhRs as a key contributor to bone metabolism following studies in systemic AhR knockout (KO) or transgenic mice, the cellular and molecular mechanism(s) in this process remain unclear. In this study, we explored the function of AhR in bone metabolism using AhRRANKΔOc/ΔOc (RANKCre/+;AhRflox/flox) mice. We observed enhanced bone mass together with decreased resorption in both male and female 12 and 24-week-old AhRRANKΔOc/ΔOc mice. Control mice treated with 3-methylcholanthrene (3MC), an AhR agonist, exhibited decreased bone mass and increased bone resorption, whereas AhRCtskΔOc/ΔOc (CtskCre/+;AhRflox/flox) mice injected with 3MC appeared to have a normal bone phenotype. In vitro, bone marrow-derived macrophages (BMDMs) from AhRRANKΔOc/ΔOc mice exhibited impaired osteoclastogenesis and repressed differentiation with downregulated expression of B lymphocyte-induced maturation protein 1 (Blimp1), and cytochrome P450 genes Cyp1b1 and Cyp1a2. Collectively, our results not only demonstrated that AhR in osteoclast lineage cells is a physiologically relevant regulator of bone resorption, but also highlighted the need for further studies on the skeletal actions of AhR inhibitors in osteoclast lineage cells commonly associated with bone diseases, especially diseases linked to environmental pollutants known to induce bone loss. PMID:25615839

  6. Aryl hydrocarbon receptors in osteoclast lineage cells are a negative regulator of bone mass.

    PubMed

    Yu, Tai-yong; Pang, Wei-jun; Yang, Gong-she

    2015-01-01

    Aryl hydrocarbon receptors (AhRs) play a critical role in various pathological and physiological processes. Although recent research has identified AhRs as a key contributor to bone metabolism following studies in systemic AhR knockout (KO) or transgenic mice, the cellular and molecular mechanism(s) in this process remain unclear. In this study, we explored the function of AhR in bone metabolism using AhR(RANKΔOc/ΔOc) (RANK(Cre/+);AhR(flox/flox)) mice. We observed enhanced bone mass together with decreased resorption in both male and female 12 and 24-week-old AhR(RANKΔOc/ΔOc) mice. Control mice treated with 3-methylcholanthrene (3MC), an AhR agonist, exhibited decreased bone mass and increased bone resorption, whereas AhR(CtskΔOc/ΔOc) (Ctsk(Cre/+);AhR(flox/flox)) mice injected with 3MC appeared to have a normal bone phenotype. In vitro, bone marrow-derived macrophages (BMDMs) from AhR(RANKΔOc/ΔOc) mice exhibited impaired osteoclastogenesis and repressed differentiation with downregulated expression of B lymphocyte-induced maturation protein 1 (Blimp1), and cytochrome P450 genes Cyp1b1 and Cyp1a2. Collectively, our results not only demonstrated that AhR in osteoclast lineage cells is a physiologically relevant regulator of bone resorption, but also highlighted the need for further studies on the skeletal actions of AhR inhibitors in osteoclast lineage cells commonly associated with bone diseases, especially diseases linked to environmental pollutants known to induce bone loss.

  7. A third distinct tumor necrosis factor receptor of orthopoxviruses

    PubMed Central

    Loparev, Vladimir N.; Parsons, Joseph M.; Knight, Janice C.; Panus, Joanne Fanelli; Ray, Caroline A.; Buller, R. Mark L.; Pickup, David J.; Esposito, Joseph J.

    1998-01-01

    Cowpox virus Brighton red strain (CPV) contains a gene, crmD, which encodes a 320-aa tumor necrosis factor receptor (TNFR) of 44% and 22% identity, respectively, to the CPV TNFR-like proteins, cytokine response modifiers (crm) CrmB and CrmC. The crmD gene was interrupted in three other cowpox strains examined and absent in various other orthopoxviruses; however, four strains of ectromelia virus (ECT) examined contained an intact crmD (97% identity to CPV crmD) and lacked cognates of crmB and crmC. The protein, CrmD, contains a transport signal; a 151-aa cysteine-rich region with 21 cysteines that align with human TNFRII ligand-binding region cysteines; and C-terminal region sequences that are highly diverged from cellular TNFR C-terminal region sequences involved in signal transduction. Bacterial maltose-binding proteins containing the CPV or ECT CrmD cysteine-rich region bound TNF and lymphotoxin-α (LTα) and blocked their in vitro cytolytic activity. Secreted viral CrmD bound TNF and LTα and was detectable after the early stage of replication, using nonreducing conditions, as 60- to 70-kDa predominant and 90- to 250-kDa minor disulfide-linked complexes that were able to be reduced to a 46-kDa form and deglycosylated to a 38-kDa protein. Cells infected with CPV produced extremely low amounts of CrmD compared with ECT. Possessing up to three TNFRs, including CrmD, which is secreted as disulfide-linked complexes in varied amounts by CPV and ECT, likely enhances the dynamics of the immune modulating mechanisms of orthopoxviruses. PMID:9520445

  8. MICAL-like1 mediates epidermal growth factor receptor endocytosis

    PubMed Central

    Abou-Zeid, Nancy; Pandjaitan, Rudy; Sengmanivong, Lucie; David, Violaine; Le Pavec, Gwenaelle; Salamero, Jean; Zahraoui, Ahmed

    2011-01-01

    Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein–Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways. PMID:21795389

  9. Estrogen-related receptor alpha induces the expression of vascular endothelial growth factor in breast cancer cells

    PubMed Central

    Stein, Rebecca A.; Gaillard, Stéphanie; McDonnell, Donald P.

    2009-01-01

    Estrogen-related receptor alpha (ERRα) is an orphan member of the nuclear receptor family of transcription factors. In addition to its function as a metabolic regulator, ERRα has been implicated in the growth and progression of several malignancies. In the setting of breast cancer, not only is ERRα a putative negative prognostic factor, but we have recently found that knockdown of its expression retards tumor growth in a xenograft model of this disease. The specific aspects of ERRα function that are responsible for its actions in breast cancer, however, remain unclear. Using the coactivator PGC-1α as a protein ligand to regulate ERRα activity, we analyzed the effects of this receptor on gene expression in the ERα-positive MCF-7 cell line. This analysis led to the identification of a large number of potential ERRα target genes, many of which were subsequently validated in other breast cancer cell lines. Importantly, we demonstrate in this study that activation of ERRα in several different breast cancer cell lines leads to a significant increase in VEGF mRNA expression, an activity that translates into an increase in VEGF protein secretion. The induction of VEGF results from the interaction of ERRα with specific ERR-responsive elements within the VEGF promoter. These findings suggest that ERRα-dependent induction of VEGF may contribute to the overall negative phenotype observed in tumors in which ERRα is expressed and provide validation for its use as a therapeutic target in cancer. PMID:19429439

  10. Negative Effects of Psychological Treatments: An Exploratory Factor Analysis of the Negative Effects Questionnaire for Monitoring and Reporting Adverse and Unwanted Events

    PubMed Central

    Kottorp, Anders; Boettcher, Johanna; Andersson, Gerhard; Carlbring, Per

    2016-01-01

    Research conducted during the last decades has provided increasing evidence for the use of psychological treatments for a number of psychiatric disorders and somatic complaints. However, by focusing only on the positive outcomes, less attention has been given to the potential of negative effects. Despite indications of deterioration and other adverse and unwanted events during treatment, little is known about their occurrence and characteristics. Hence, in order to facilitate research of negative effects, a new instrument for monitoring and reporting their incidence and impact was developed using a consensus among researchers, self-reports by patients, and a literature review: the Negative Effects Questionnaire. Participants were recruited via a smartphone-delivered self-help treatment for social anxiety disorder and through the media (N = 653). An exploratory factor analysis was performed, resulting in a six-factor solution with 32 items, accounting for 57.64% of the variance. The derived factors were: symptoms, quality, dependency, stigma, hopelessness, and failure. Items related to unpleasant memories, stress, and anxiety were experienced by more than one-third of the participants. Further, increased or novel symptoms, as well as lack of quality in the treatment and therapeutic relationship rendered the highest self-reported negative impact. In addition, the findings were discussed in relation to prior research and other similar instruments of adverse and unwanted events, giving credence to the items that are included. The instrument is presently available in eleven different languages and can be freely downloaded and used from www.neqscale.com. PMID:27331907

  11. Negative Effects of Psychological Treatments: An Exploratory Factor Analysis of the Negative Effects Questionnaire for Monitoring and Reporting Adverse and Unwanted Events.

    PubMed

    Rozental, Alexander; Kottorp, Anders; Boettcher, Johanna; Andersson, Gerhard; Carlbring, Per

    2016-01-01

    Research conducted during the last decades has provided increasing evidence for the use of psychological treatments for a number of psychiatric disorders and somatic complaints. However, by focusing only on the positive outcomes, less attention has been given to the potential of negative effects. Despite indications of deterioration and other adverse and unwanted events during treatment, little is known about their occurrence and characteristics. Hence, in order to facilitate research of negative effects, a new instrument for monitoring and reporting their incidence and impact was developed using a consensus among researchers, self-reports by patients, and a literature review: the Negative Effects Questionnaire. Participants were recruited via a smartphone-delivered self-help treatment for social anxiety disorder and through the media (N = 653). An exploratory factor analysis was performed, resulting in a six-factor solution with 32 items, accounting for 57.64% of the variance. The derived factors were: symptoms, quality, dependency, stigma, hopelessness, and failure. Items related to unpleasant memories, stress, and anxiety were experienced by more than one-third of the participants. Further, increased or novel symptoms, as well as lack of quality in the treatment and therapeutic relationship rendered the highest self-reported negative impact. In addition, the findings were discussed in relation to prior research and other similar instruments of adverse and unwanted events, giving credence to the items that are included. The instrument is presently available in eleven different languages and can be freely downloaded and used from www.neqscale.com.

  12. Folate Receptor Targeted Polymeric Micellar Nanocarriers for Delivery of Orlistat as a Repurposed Drug against Triple Negative Breast Cancer

    PubMed Central

    Paulmurugan, Ramasamy; Bhethanabotla, Rohith; Mishra, Kaushik; Devulapally, Rammohan; Foygel, Kira; Sekar, Thillai V; Ananta, Jeyarama S; Massoud, Tarik F; Joy, Abraham

    2015-01-01

    Triple negative breast cancer (TNBC) is a recalcitrant malignancy with no available targeted therapy. Off target effects and poor bioavailability of the FDA approved anti-obesity drug orlistat hinder its clinical translation as a repurposed new drug against TNBC. Here we demonstrate a newly engineered drug formulation for packaging orlistat tailored to TNBC treatment. We synthesized TNBC-specific folate receptor targeted micellar nanoparticles (NPs) carrying orlistat, which improved the solubility (70-80 μg/ml) of this water insoluble drug. The targeted NPs also improved the delivery and bioavailability of orlistat to MDA-MB-231 cells in culture and to tumor xenografts in nude mouse model. We prepared HEA-EHA copolymer micellar NPs by copolymerization of 2-hydroxyethylacrylate (HEA) and 2-ethylhexylacrylate (EHA), and functionalized them with folic acid and an imaging dye. Fluorescence activated cell sorting (FACS) analysis of TNBC cells indicated a dose dependent increase in apoptotic populations in cells treated with free orlistat, orlistat NPs, and folate-receptor targeted Fol-HEA-EHA-orlistat NPs in which Fol-HEA-EHA-orlistat NPs showed significantly higher cytotoxicity than free orlistat. In vitro analysis data demonstrated significant apoptosis at nanomolar concentrations in cells activated through caspase 3 and PARP inhibition. In vivo analysis demonstrated significant antitumor effects in living mice after targeted treatment of tumors, and confirmed by fluorescence imaging. Moreover, Folate receptor targeted Fol-DyLight747-orlistat NPs treated mice exhibited significantly higher reduction in tumor volume compared to control group. Taken together, these results indicate that orlistat packaged in HEA-b-EHA micellar NPs is a highly promising new drug formulation for TNBC therapy. PMID:26553061

  13. NDRG2 phosphorylation provides negative feedback for SGK1-dependent regulation of a kainate receptor in astrocytes

    PubMed Central

    Matschke, Veronika; Theiss, Carsten; Hollmann, Michael; Schulze-Bahr, Eric; Lang, Florian; Seebohm, Guiscard; Strutz-Seebohm, Nathalie

    2015-01-01

    Glutamate receptors play an important role in the function of astrocytes. Among their tasks is the regulation of gliotransmission, gene expression and exocytosis of the tissue-type plasminogen activator (tPA), which has an enhancing effect on N-methyl-D-aspartate (NMDA) receptors and thus prevent over-excitation of neighboring neurons. The kainate receptor GluK2, which is expressed in neurons and astrocytes, is under tight regulation of the PI3-kinase SGK pathway as shown in neurons. SGK1 targets include N-myc downstream-regulated genes (NDRGs) 1 and 2 (NDRG1, NDRG2), proteins with elusive function. In the present study, we analyzed the effects of SGK1, NDRG1, and NDRG2 on GluK2 current amplitude and plasma membrane localization in astrocytes and heterologous expression. We demonstrate that NDRG1 and NDRG2 themselves have no effect on GluK2 current amplitudes in heterologous expressed ion channels. However, when NDRG2 is coexpressed with GluK2 and SGK1, the stimulating effect of SGK1 on GluK2 is suppressed both in heterologous expression and in astrocytes. Here, we reveal a new negative feedback mechanism, whereby GluK2 stimulation by SGK1 is regulated by parallel phosphorylation of NDRG2. This regulation of GluK2 by SGK1 and NDRG2 in astrocytes may play an important role in gliotransmission, modulation of gene expression and regulation of exocytosis of tPA. PMID:26500492

  14. Role of Wnt Co-receptor LRP6 in Triple Negative Breast Cancer Cell Migration and Invasion.

    PubMed

    Ma, Jinlu; Lu, Wenyan; Chen, Dongquan; Xu, Bo; Li, Yonghe

    2017-03-01

    The low-density lipoprotein receptor-related protein 6 (LRP6) is an essential Wnt co-receptor of the Wnt/β-catenin signaling pathway. Although studies have shown an increased expression of LRP6 in several types of cancer, its function in tumor development and progression remains to be elucidated. We herein demonstrated that LRP6 expression is up-regulated in human triple negative breast cancer (TNBC) patients and human TNBC cell lines, and that knockdown of LRP6 expression and treatment of recombinant Mesd protein (a specific inhibitor of LRP6) significantly decreased cell migration and invasion of TNBC MDA-MB-231 and BT549 cells. Interestingly, the effects of LRP6 knockdown and Mesd treatment on TNBC cell migration and invasion were more prominent than on TNBC cell proliferation/viability. Mechanistically, LRP6 knockdown and Mesd treatment inhibited Wnt/β-catenin signaling and decreased the expression of S100A4, a mediator of cancer metastasis and a specific target of Wnt/β-catenin signaling, in TNBC cells. Together, our data suggest that LRP6 promotes TNBC cell migration and invasion by regulating the expression and function of S100A4 via the Wnt/β-catenin signaling pathway. This article is protected by copyright. All rights reserved.

  15. Ligand-biased and probe-dependent modulation of chemokine receptor CXCR3 signaling by negative allosteric modulators.

    PubMed

    Bernat, Viachaslau; Brox, Regine; Heinrich, Markus R; Auberson, Yves P; Tschammer, Nuska

    2015-03-01

    Over the last decade, functional selectivity (or ligand bias) has evolved from being a peculiar phenomenon to being recognized as an essential feature of synthetic ligands that target G protein-coupled receptors (GPCRs). The CXC chemokine receptor 3 (CXCR3) is an outstanding platform to study various aspects of biased signaling, because nature itself uses functional selectivity to manipulate receptor signaling. At the same time, CXCR3 is an attractive therapeutic target in the treatment of autoimmune diseases and cancer. Herein we report the discovery of an 8-azaquinazolinone derivative (N-{1-[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl]ethyl}-4-(4-fluorobutoxy)-N-[(1-methylpiperidin-4-yl)methyl]butanamide, 1 b) that can inhibit CXC chemokine 11 (CXCL11)-dependent G protein activation over β-arrestin recruitment with 187-fold selectivity. This compound also demonstrates probe-dependent activity, that is, it inhibits CXCL11- over CXCL10-mediated G protein activation with 12-fold selectivity. Together with a previously reported biased negative allosteric modulator from our group, the present study provides additional information on the molecular requirements for allosteric modulation of CXCR3.

  16. Noncontiguous domains of the alpha-factor receptor of yeasts confer ligand specificity.

    PubMed

    Sen, M; Marsh, L

    1994-01-14

    The Saccharomyces cerevisiae alpha-factor receptor has a 3400-fold higher affinity for the S. cerevisiae alpha-factor peptide (c-alpha-f) than for the Saccharomyces kluyveri alpha-factor peptide (k-alpha-f) as determined by competition for [3H] c-alpha-f binding. The S. kluyveri alpha-factor receptor has an approximately 2-fold higher affinity for k-alpha-f than for c-alpha-f. The S. kluyveri receptor gene (k-STE2) is incompletely regulated by S. cerevisiae mating type and poorly expressed on the surface of an S. cerevisiae mating type a strain. A chimeric receptor (c/k1) with amino acid residues 1-45 derived from S. cerevisiae and amino acid residues 46-427 from S. kluyveri exhibits the binding specificity of the S. kluyveri receptor. However, chimeric receptors containing residues 1-168 (c/k2) or 1-250 (c/k3) from S. cerevisiae and the remainder from the S. kluyveri receptor exhibit specificities similar to one another, but intermediate between the parent S. cerevisiae and S. kluyveri receptors. The relative ability of c-alpha-f and k-alpha-f to induce growth arrest in strains expressing chimeric receptors parallels relative affinity. Thus, two noncontiguous domains that include putative extracellular loops 1 and 3 and associated transmembrane segments, but exclude the extracellular NH2 terminus and loop 2, appear to contribute to alpha-factor receptor ligand specificity. COOH-terminal regions of the S. kluyveri receptor appear to confer a desensitization defect when expressed in S. cerevisiae. The S. cerevisiae receptor truncated at residue 296 retains ligand specificity for growth arrest.

  17. Sperm Epidermal Growth Factor Receptor (EGFR) Mediates α7 Acetylcholine Receptor (AChR) Activation to Promote Fertilization

    PubMed Central

    Jaldety, Yael; Glick, Yair; Orr-Urtreger, Avi; Ickowicz, Debby; Gerber, Doron; Breitbart, Haim

    2012-01-01

    To attain fertilization the spermatozoon binds to the egg zona pellucida (ZP) via sperm receptor(s) and undergoes an acrosome reaction (AR). Several sperm receptors have been described in the literature; however, the identity of this receptor is not yet certain. In this study, we suggest that the α7 nicotinic acetylcholine receptor (α7nAChR) might be a sperm receptor activated by ZP to induce epidermal growth factor receptor (EGFR)-mediated AR. We found that isolated ZP or α7 agonists induced the AR in sperm from WT but not α7-null spermatozoa, and the induced AR was inhibited by α7 or EGFR antagonists. Moreover, α7-null sperm showed very little binding to the egg, and microfluidic affinity in vitro assay clearly showed that α7nAChR, as well as EGFR, interacted with ZP3. Induction of EGFR activation and the AR by an α7 agonist was inhibited by a Src family kinase (SFK) inhibitor. In conclusion we suggest that activation of α7 by ZP leads to SFK-dependent EGFR activation, Ca2+ influx, and the acrosome reaction. PMID:22577141

  18. Dysfunctional Transforming Growth FactorReceptor II Accelerates Prostate Tumorigenesis in the TRAMP Mouse Model

    PubMed Central

    Pu, Hong; Collazo, Joanne; Jones, Elisabeth; Gayheart, Dustin; Sakamoto, Shinichi; Vogt, Adam; Mitchell, Bonnie; Kyprianou, Natasha

    2009-01-01

    The contribution of a dysfunctional TGF-β type II receptor (TGFβRII) to prostate cancer initiation and progression was investigated in an in vivo mouse model. Transgenic mice harboring the dominant-negative mutant TGF-β type II receptor (DNTGFβRII) in mouse epithelial cell were crossed with the TRAMP prostate cancer transgenic mouse to characterize the in vivo consequences of inactivated TGF-β signaling on prostate tumor initiation and progression. Histopathological diagnosis of prostate specimens from the TRAMP+/DNTGFβRII double transgenic mice, revealed the appearance of early malignant changes and subsequently highly aggressive prostate tumors at a younger age, compared to littermates TRAMP+/Wt TGFβRII mice. Immunohistochemical and western blotting analysis revealed significantly increased proliferative and apoptotic activities, as well as vascularity and macrophage infiltration that correlated with an elevated VEGF and MCP-1 protein levels in prostates from TRAMP+/DNTGFβRII+ mice. An epithelial-mesenchymal transition (EMT)-effect was also detected in prostates of TRAMP+/DNTGFβRII mice, as documented by the loss of epithelial markers (E-cadherin and β-catenin) and upregulation of mesenchymal markers (N-cadherin) and EMT-transcription factor Snail. A significant increase in the androgen receptor (AR) mRNA and protein levels was associated with the early onset of prostate tumorigenesis in TRAMP+/DNTGFβRII mice. Our results indicate that in vivo disruption of TGF-β signaling accelerates the pathological malignant changes in the prostate by altering the kinetics of prostate growth and inducing EMT. The study also suggests that a dysfunctional TGFβRII augments AR expression and promotes inflammation in early stage tumor growth thus conferring a significant contribution by TGF-β to prostate cancer progression. PMID:19738062

  19. Inhibition of the production of endothelium-derived hyperpolarizing factor by cannabinoid receptor agonists

    PubMed Central

    Fleming, I; Schermer, B; Popp, R; Busse, R

    1999-01-01

    The endogenous cannabinoid, anandamide, has been reported to induce an 'endothelium-derived hyperpolarizing factor (EDHF)-like' relaxation in vitro. We therefore investigated the effects of cannabinoid CB1 receptor agonists; HU 210, Δ9-tetrahydrocannabinol (Δ9-THC) and anandamide, and a CB1 antagonist/inverse agonist, SR 141716A, on nitric oxide (NO) and EDHF-mediated relaxation in precontracted rings of porcine coronary, rabbit carotid and mesenteric arteries. In rings of mesenteric artery HU 210 and Δ9-THC induced endothelium- and cyclo-oxygenase-independent relaxations which were sensitive to SR 141716A. Anandamide (0.03–30 μM) induced a slowly developing, endothelium-independent relaxation which was abolished by diclofenac and was therefore mediated by cyclo-oxygenase product(s). None of the CB1 agonists tested affected the tone of precontracted rings of rabbit carotid or porcine coronary artery. In endothelium-intact segments, HU 210, Δ9-THC and anandamide did not affect NO-mediated responses but under conditions of continuous NO synthase/cyclo-oxygenase blockade, significantly inhibited acetylcholine and bradykinin-induced relaxations which are attributed to the production of EDHF. The effects of HU 210 and Δ9-THC were not observed when experiments were performed in the presence of SR 141716A suggesting the involvement of the CB1 receptor. In a patch clamp bioassay of EDHF production, HU 210 decreased the EDHF-mediated hyperpolarization of detector smooth muscle cells when applied to the donor segment but was without effect on the membrane potential of detector cells. The inhibition of EDHF production was unrelated to alterations in Ca2+-signalling or cytochrome P450 activity. These results suggest that the activation of endothelial CB1 receptors appears to be negatively coupled to the production of EDHF. PMID:10193775

  20. Immunobiotic Lactobacillus jensenii modulates the Toll-like receptor 4-induced inflammatory response via negative regulation in porcine antigen-presenting cells.

    PubMed

    Villena, Julio; Suzuki, Rie; Fujie, Hitomi; Chiba, Eriko; Takahashi, Takuya; Tomosada, Yohsuke; Shimazu, Tomoyuki; Aso, Hisashi; Ohwada, Shyuichi; Suda, Yoshihito; Ikegami, Shuji; Itoh, Hiroyuki; Alvarez, Susana; Saito, Tadao; Kitazawa, Haruki

    2012-07-01

    Previously, we demonstrated that Lactobacillus jensenii TL2937 attenuates the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial cells. In view of the critical importance of antigen-presenting cell (APC) polarization in immunoregulation, the objective of the present study was to examine the effect of strain TL2937 on the activation patterns of APCs from swine Peyer's patches (PPs). We demonstrated that direct exposure of porcine APCs to L. jensenii in the absence of inflammatory signals increased expression of interleukin-10 (IL-10) and transforming growth factor β in CD172a(+) APCs and caused them to display tolerogenic properties. In addition, pretreatment of CD172a(+) APCs with L. jensenii resulted in differential modulation of the production of pro- and anti-inflammatory cytokines in response to TLR4 activation. The immunomodulatory effect of strain TL2937 was not related to a downregulation of TLR4 but was related to an upregulation of the expression of three negative regulators of TLRs: single immunoglobulin IL-1-related receptor (SIGIRR), A20, and interleukin-1 receptor-associated kinase M (IRAK-M). Our results also indicated that TLR2 has an important role in the anti-inflammatory activity of L. jensenii TL2937, since anti-TLR2 antibodies blocked the upregulation of SIGIRR and IRAK-M in CD172a(+) APCs and the production of IL-10 in response to TLR4 activation. We performed, for the first time, a precise functional characterization of porcine APCs from PPs, and we demonstrated that CD172a(+) cells were tolerogenic. Our findings demonstrate that adherent cells and isolated CD172a(+) cells harvested from swine PPs were useful for in vitro study of the inflammatory responses in the porcine gut and the immunomodulatory effects of immunobiotic microorganisms.

  1. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  2. Heregulin-Induced Growth Factor Receptor Signaling and Breast Carcinogenesis

    DTIC Science & Technology

    1995-07-17

    and/or signaling of erbB family receptors plays a significant role in tumors of mammary or neuroectodermal origin [Reviewed in Hynes and Stern, 1994...MDA- MB-231 human mammary tumor cell line [Holmes, et al., 1992], suggesting that NRGs establish or maintain the growth-transformed phenotype. NRG also...et al., 1992] the in vitro proliferation of human mammary tumor cells, which frequently overexpress erbB 5 family receptors [Reviewed in Hynes and

  3. Functional Whole-genome Analysis Identifies Polo-like Kinase 2 and Poliovirus Receptor as Essential for Neuronal Differentiation Upstream of the Negative Regulator αB-crystallin

    PubMed Central

    Draghetti, Cristina; Salvat, Catherine; Zanoguera, Francisca; Curchod, Marie-Laure; Vignaud, Chloé; Peixoto, Helene; Di Cara, Alessandro; Fischer, David; Dhanabal, Mohanraj; Andreas, Goutopoulos; Abderrahim, Hadi; Rommel, Christian; Camps, Montserrat

    2009-01-01

    This study aimed at identifying transcriptional changes associated to neuronal differentiation induced by six distinct stimuli using whole-genome microarray hybridization analysis. Bioinformatics analyses revealed the clustering of these six stimuli into two categories, suggesting separate gene/pathway dependence. Treatment with specific inhibitors demonstrated the requirement of both Janus kinase and microtubule-associated protein kinase activation to trigger differentiation with nerve growth factor (NGF) and dibutyryl cAMP. Conversely, activation of protein kinase A, phosphatidylinositol-3-kinase α, and mammalian target of rapamycin, although required for dibutyryl cAMP-induced differentiation, exerted a negative feedback on NGF-induced differentiation. We identified Polo-like kinase 2 (Plk2) and poliovirus receptor (PVR) as indispensable for NGF-driven neuronal differentiation and αB-crystallin (Cryab) as an inhibitor of this process. Silencing of Plk2 or PVR blocked NGF-triggered differentiation and Cryab down-regulation, while silencing of Cryab enhanced NGF-induced differentiation. Our results position both Plk2 and PVR upstream of the negative regulator Cryab in the pathway(s) leading to neuronal differentiation triggered by NGF. PMID:19700763

  4. Co-receptor choice by Vα14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection

    PubMed Central

    Engel, Isaac; Hammond, Kirsten; Sullivan, Barbara A.; He, Xi; Taniuchi, Ichiro; Kappes, Dietmar

    2010-01-01

    Mouse natural killer T (NKT) cells with an invariant Vα14-Jα18 rearrangement (Vα14 invariant [Vα14i] NKT cells) are either CD4+CD8− or CD4−CD8−. Because transgenic mice with forced CD8 expression in all T cells exhibited a profound NKT cell deficit, the absence of CD8 has been attributed to negative selection. We now present evidence that CD8 does not serve as a coreceptor for CD1d recognition and that the defect in development in CD8 transgene homozygous mice is the result of a reduction in secondary T cell receptor α rearrangements. Thymocytes from mice hemizygous for the CD8 transgene have a less severe rearrangement defect and have functional CD8+ Vα14i NKT cells. Furthermore, we demonstrate that the transcription factor Th, Poxviruses and Zinc finger, and Krüppel family (Th-POK) is expressed by Vα14i NKT cells throughout their differentiation and is necessary both to silence CD8 expression and for the functional maturity of Vα14i NKT cells. We therefore suggest that Th-POK expression is required for the normal development of Vα14i NKT cells and that the absence of CD8 expression by these cells is a by-product of such expression, as opposed to the result of negative selection of CD8-expressing Vα14i NKT cells. PMID:20404101

  5. Co-receptor choice by V alpha14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection.

    PubMed

    Engel, Isaac; Hammond, Kirsten; Sullivan, Barbara A; He, Xi; Taniuchi, Ichiro; Kappes, Dietmar; Kronenberg, Mitchell

    2010-05-10

    Mouse natural killer T (NKT) cells with an invariant V alpha14-J alpha18 rearrangement (V alpha14 invariant [V alpha14i] NKT cells) are either CD4(+)CD8(-) or CD4(-)CD8(-). Because transgenic mice with forced CD8 expression in all T cells exhibited a profound NKT cell deficit, the absence of CD8 has been attributed to negative selection. We now present evidence that CD8 does not serve as a coreceptor for CD1d recognition and that the defect in development in CD8 transgene homozygous mice is the result of a reduction in secondary T cell receptor alpha rearrangements. Thymocytes from mice hemizygous for the CD8 transgene have a less severe rearrangement defect and have functional CD8(+) V alpha14i NKT cells. Furthermore, we demonstrate that the transcription factor Th, Poxviruses and Zinc finger, and Krüppel family (Th-POK) is expressed by V alpha14i NKT cells throughout their differentiation and is necessary both to silence CD8 expression and for the functional maturity of V alpha14i NKT cells. We therefore suggest that Th-POK expression is required for the normal development of V alpha14i NKT cells and that the absence of CD8 expression by these cells is a by-product of such expression, as opposed to the result of negative selection of CD8-expressing V alpha14i NKT cells.

  6. Immunobiotic Lactobacillus jensenii elicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the Toll-like receptor signaling pathway.

    PubMed

    Shimazu, Tomoyuki; Villena, Julio; Tohno, Masanori; Fujie, Hitomi; Hosoya, Shoichi; Shimosato, Takeshi; Aso, Hisashi; Suda, Yoshihito; Kawai, Yasushi; Saito, Tadao; Makino, Seiya; Ikegami, Shuji; Itoh, Hiroyuki; Kitazawa, Haruki

    2012-01-01

    The effect of Lactobacillus jensenii TL2937 on the inflammatory immune response triggered by enterotoxigenic Escherichia coli (ETEC) and lipopolysaccharide (LPS) in a porcine intestinal epitheliocyte cell line (PIE cells) was evaluated. Challenges with ETEC or LPS elicited Toll-like receptor 4 (TLR4)-mediated inflammatory responses in cultured PIE cells, indicating that our cell line may be useful for studying inflammation in the guts of weaning piglets. In addition, we demonstrated that L. jensenii TL2937 attenuated the expression of proinflammatory cytokines and chemokines caused by ETEC or LPS challenge by downregulating TLR4-dependent nuclear factorκB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we demonstrated that L. jensenii TL2937 stimulation of PIE cells upregulated three negative regulators of TLRs: A20, Bcl-3, and MKP-1, deepening the understanding of an immunobiotic mechanism of action. L. jensenii TL2937-mediated induction of negative regulators of TLRs would have a substantial physiological impact on homeostasis in PIE cells, because excessive TLR inflammatory signaling would be downregulated. These results indicated that PIE cells can be used to study the mechanisms involved in the protective activity of immunobiotics against intestinal inflammatory damage and may provide useful information for the development of new immunologically functional feeds that help to prevent inflammatory intestinal disorders, including weaning-associated intestinal inflammation.

  7. Epidermal growth factor receptor and KRAS mutations in Brazilian lung cancer patients

    PubMed Central

    Bacchi, Carlos E.; Ciol, Heloísa; Queiroga, Eduardo M.; Benine, Lucimara C.; Silva, Luciana H.; Ojopi, Elida B.

    2012-01-01

    OBJECTIVE: Epidermal growth factor receptor is involved in the pathogenesis of non-small cell lung cancer and has recently emerged as an important target for molecular therapeutics. The KRAS oncogene also plays an important role in the development of lung cancer. The aim of this study was to evaluate the frequency of epidermal growth factor receptor and KRAS mutations in a population of Brazilian patients with non-small cell lung cancer. METHODS: A total of 207 specimens from Brazilian patients with non-small cell lung cancer were analyzed for activating epidermal growth factor receptor and KRAS somatic mutations, and their associations with clinicopathological characteristics (including age, gender, ethnicity, smoking habits, and histological subtype) were examined. RESULTS: We identified 63 cases (30.4%) with epidermal growth factor receptor mutations and 30 cases (14.6%) with KRAS mutations. The most frequent epidermal growth factor receptor mutation we detected was a deletion in exon 19 (60.3%, 38 patients), followed by an L858R amino acid substitution in exon 21 (27%, 17 patients). The most common types of KRAS mutations were found in codon 12. There were no significant differences in epidermal growth factor receptor or KRAS mutations by gender or primary versus metastatic lung cancer. There was a higher prevalence of KRAS mutations in the non-Asian patients. Epidermal growth factor receptor mutations were more prevalent in adenocarcinomas than in non-adenocarcinoma histological types. Being a non-smoker was significantly associated with the prevalence of epidermal growth factor receptor mutations, but the prevalence of KRAS mutations was significantly associated with smoking. CONCLUSIONS: This study is the first to examine the prevalence of epidermal growth factor receptor and KRAS mutations in a Brazilian population sample with non-small cell lung cancer. PMID:22666783

  8. Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor

    PubMed Central

    Choi, Bom-Ie; Harvey, Alexandra J.; Green, Mark P.

    2016-01-01

    Increasing evidence supports an association between exposure to endocrine disruptors, such as the xenoestrogen bisphenol A (BPA), a commonly used plasticiser, and the developmental programming of offspring health. To date however animal studies to investigate a direct causal have mainly focussed on supra-environmental BPA concentrations, without investigating the effect on the early embryo. In this study we investigated the effect of acute BPA exposure (days 3.5 to 7.5 post-fertilisation) at environmentally relevant concentrations (1 and 10 ng/mL) on in vitro bovine embryo development, quality and metabolism. We then examined whether culturing embryos in the presence of the oestrogen receptor inhibitor fulvestrant could negate effects of BPA and 17β-oestradiol (E2). Exposure to BPA or E2 (10 ng/mL) decreased blastocyst rate and the percentage of transferrable quality embryos, without affecting cell number, lineage allocation or metabolic gene expression compared to untreated embryos. Notably, blastocysts exposed to BPA and E2 (10 ng/mL) displayed an increase in glucose consumption. The presence of fulvestrant however negated the adverse developmental and metabolic effects, suggesting BPA elicits its effects via oestrogen-mediated pathways. This study demonstrates that even acute exposure to an environmentally relevant BPA concentration can affect early embryo development and metabolism. These may have long-term health consequences on an individual. PMID:27384909

  9. Challenges in the treatment of hormone receptor-positive, HER2-negative metastatic breast cancer with brain metastases.

    PubMed

    Liu, Minetta C; Cortés, Javier; O'Shaughnessy, Joyce

    2016-06-01

    Brain metastases are a major cause of morbidity and mortality for women with hormone receptor (HR)-positive breast cancer, yet little is known about the optimal treatment of brain disease in this group of patients. Although these patients are at lower risk for brain metastases relative to those with HER2-positive and triple-negative disease, they comprise the majority of women diagnosed with breast cancer. Surgery and radiation continue to have a role in the treatment of brain metastases, but there is a dearth of effective systemic therapies due to the poor penetrability of many systemic drugs across the blood-brain barrier (BBB). Additionally, patients with brain metastases have long been excluded from clinical trials, and few studies have been conducted to evaluate the safety and effectiveness of systemic therapies specifically for the treatment of HER2-negative breast cancer brain metastases. New approaches are on the horizon, such as nanoparticle-based cytotoxic drugs that have the potential to cross the BBB and provide clinically meaningful benefits to patients with this life-threatening consequence of HR-positive breast cancer.

  10. Lysophosphatidic Acid Triggers Apoptosis in HeLa Cells through the Upregulation of Tumor Necrosis Factor Receptor Superfamily Member 21

    PubMed Central

    2017-01-01

    Lysophosphatidic acid (LPA), a naturally occurring bioactive phospholipid, activates G protein-coupled receptors (GPCRs), leading to regulation of diverse cellular events including cell survival and apoptosis. Despite extensive studies of the signaling pathways that mediate LPA-regulated cell growth and survival, the mechanisms underlying the apoptotic effect of LPA remain largely unclear. In this study, we investigated this issue in HeLa cells. Our data demonstrate that LPA induces apoptosis in HeLa cells at pathologic concentrations with a concomitant upregulation of the expression of TNFRSF21 (tumor necrosis factor receptor superfamily member 21), also known as death receptor number 6 (DR6) involved in inflammation. Moreover, treatment of cells with LPA receptor (LPAR) antagonist abolished the DR6 upregulation by LPA. LPA-induced DR6 expression was also abrogated by pertussis toxin (PTX), an inhibitor of GPCRs, and by inhibitors of PI3K, PKC, MEK, and ERK. Intriguingly, LPA-induced DR6 expression was specifically blocked by dominant-negative form of PKCδ (PKCδ-DN). LPA-induced DR6 expression was also dramatically inhibited by knockdown of ERK or CREB. These results suggest that activation of the MEK/ERK pathway and the transcription factor CREB mediate LPA-induced DR6 expression. More interestingly, knockdown of DR6 using siRNA approach remarkably attenuated LPA-induced apoptosis. In conclusion, our results suggest that LPA-induced apoptosis in HeLa cells is mediated by the upregulation of DR6 expression. PMID:28348459

  11. Transmembrane signalling at the epidermal growth factor receptor. Positive regulation by the C-terminal phosphotyrosine residues.

    PubMed Central

    Magni, M; Pandiella, A; Helin, K; Meldolesi, J; Beguinot, L

    1991-01-01

    Mutant epidermal growth factor (EGF) receptors (obtained by substitution of one, two or three C-terminal autophosphorylable tyrosine residues with phenylalanine residues or by deletion of the C-terminal 19 amino acids, including the distal tyrosine) were expressed in mouse NIH-3T3 fibroblast clones at densities comparable (less than 25% difference) with those in control clones expressing the wild-type receptor. Total EGF-induced phosphorylation of the mutated receptors was not appreciably changed with respect to controls, whereas autophosphorylation at tyrosine residues was decreased, especially in the double and the triple mutants. In the latter mutant, expression of the EGF-receptor-activated lipolytic enzyme phospholipase C gamma was unchanged, whereas its tyrosine phosphorylation induced by the growth factor was lowered to approx. 25% of that in the controls. In all of the cell clones employed, the accumulation of inositol phosphates induced by treatment with fetal calf serum varied only slightly, whereas the same effect induced by EGF was consistently lowered in those lines expressing mutated receptors. This decrease was moderate for those receptors missing only the distal tyrosine (point and deletion mutants), intermediate in the dual mutants and almost complete in the triple mutants. Likewise, increases in intracellular Ca2+ concentrations [( Ca2+]i) induced by fibroblast growth factor were approximately the same in all of the clones, whereas those induced by EGF were decreased in the mutants, again in proportion to the loss of the phosphorylable C-terminal tyrosine residues. The same trend occurred with membrane hyperpolarization, an effect secondary to the increase in [Ca2+]i via the activation of Ca2(+)-dependent K+ channels. We conclude that C-terminal autophosphorylable tyrosine residues play a positive role in the regulation of transmembrane signalling at the EGF receptor. The stepwise decrease in signal generation observed in single, double and triple

  12. Desensitization of ETA endothelin receptor-mediated negative chronotropic response in right atria–species difference and intracellular mechanisms

    PubMed Central

    Ono, Kageyoshi; Sakamoto, Aiji; Masaki, Tomoh; Satake, Motoyoshi

    1998-01-01

    Desensitization of ETA endothelin receptor (ETAR) was compared between the rat and guinea-pig with regard to negative chronotropic response (NC) in the right atria (RA).ET-1 (100 nM) produced distinct NC in the presence of BQ788 (300 nM), and positive chronotropic response (PC) in the presence of BQ123 (1 μM) in both species, showing that ETAR and ETB endothelin receptor (ETBR) mediate NC and PC, respectively.Repetitive applications of ET-1 (50 nM) desensitized PC, and the second application only induced a strong NC in both species. Later applications of ET-1 produced virtually no response in the rat RA, whereas they produced BQ123-sensitive NCs repetitively in guinea-pig RA, exhibiting marked species difference in desensitization of ETAR-mediated NC.Pretreatment with staurosporine (100 nM) prevented desensitization of ETAR in the rat RA altogether. However, phorbol 12-myristate 13-acetate (PMA, 300 nM) failed to induce, but rather hampered, desensitization of ETAR.Partial amino acid sequencing of ETARs, spanning from the 2nd through the 4th intracellular loops, revealed that all the potential Ser/Thr phosphorylation sites, including a protein kinase C (PKC) site, are conserved among guinea-pigs, rats, rabbits, bovines and humans.In guinea pig RA, pretreatment with okadaic acid (1 μg ml−1) and PMA did not facilitate desensitization of ETAR whereas these agents successfully desensitized ETAR during combined stimulation of β-adrenoceptor and ETAR by isoproterenol (300 nM) and ET-1 (100 nM).These results suggest that species differences in desensitization of ETAR are not caused by differences in the site(s) of, but caused by differences in the environment for phosphorylation of the receptor. Desensitization of ETAR appears to require phosphorylation of the receptor by PKC as well as a kinase stimulated by β-adrenoceptor activation. PMID:9831916

  13. A novel curcumin derivative increases the cytotoxicity of raloxifene in estrogen receptor-negative breast cancer cell lines.

    PubMed

    Taurin, Sebastien; Nimick, Mhairi; Larsen, Lesley; Rosengren, Rhonda J

    2016-01-01

    There is a need for new, safe and efficacious drug therapies for the treatment of estrogen receptor (ER)-negative breast cancers. Raloxifene and the 2nd generation curcumin derivative 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91) have been shown to inhibit the growth of ER-negative breast cancer cells in vitro and in vivo. We investigated whether RL91 could enhance the growth-suppressive effects mediated by raloxifene in MDA-MB-231, MDA-MB-468, Hs578t and SkBr3 human breast cancer cell lines. The cytotoxicity was consistent across the cell lines but RL91 was more potent. EC50 values for RL91 were 1.2-2 µM while EC50 values for raloxifene were 9.6-11.2 µM. When the cells were treated with raloxifene (15 µM), RL91 (1 µM) or a combination of the two for 6-72 h, the combination treatment consistently elicited significantly greater cytotoxicity compared to all other treatments. In SkBr3 cells the combination treatment caused significantly more cells to undergo G1 arrest compared to raloxifene. In all cell lines apoptosis was synergistically induced by the combination treatment, as shown by both flow cytometery and cleaved caspase-3. Furthermore, the stress kinase p38 was increased and EFGR isoforms were decreased by both raloxifene and raloxifene + RL91. The anti-angiogenic anti-metastatic potential of raloxifene was not increased by RL91, as MDA-MB-231 cell migration and invasion as well as endothelial tube formation by HUVEC cells was not different between raloxifene (10 µM) and the combination of raloxifene + RL91. Thus, our findings provide evidence that RL91 increases the ability of raloxifene to suppress ER-negative cancer cell growth by increasing the number of apoptotic cells. The broad effect of this drug combination across a range of ER-negative breast cancer cell lines indicates that this drug combination should be explored further in order to find a safe and efficacious therapy for ER-negative breast cancer.

  14. Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors.

    PubMed

    Fliegmann, Judith; Bono, Jean-Jacques

    2015-10-01

    Lipo-chitooligosaccharides produced by nitrogen-fixing rhizobia are signaling molecules involved in the establishment of an important agronomical and ecological symbiosis with plants. These compounds, known as Nod factors, are biologically active on plant roots at very low concentrations indicating that they are perceived by specific receptors. This article summarizes the main strategies developed for the syntheses of bioactive Nod factors and their derivatives in order to better understand their mode of perception. Different Nod factor receptors and LCO-binding proteins identified by genetic or biochemical approaches are also presented, indicating perception mechanisms that seem to be more complicated than expected, probably involving multi-component receptor complexes.

  15. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy.

    PubMed

    MacLennan, A J; Devlin, B K; Neitzel, K L; McLaurin, D L; Anderson, K J; Lee, N

    1999-01-01

    Spinal motor neurons are one of the few classes of neurons capable of regenerating axons following axotomy. Injury-induced expression of neurotrophic factors and corresponding receptors may play an important role in this rare ability. A wide variety of indirect data suggests that ciliary neurotrophic factor receptor alpha may critically contribute to the regeneration of injured spinal motor neurons. We used immunohistochemistry, in situ hybridization and retrograde tracing techniques to study the regulation of ciliary neurotrophic factor receptor alpha in axotomized sciatic motor neurons. Ciliary neurotrophic factor receptor alpha immunoreactivity, detected with two independent antisera, is increased in a subpopulation of caudal sciatic motor neuron soma one, two and six weeks after sciatic nerve transection and reattachment, while no changes are detected at one day and 15 weeks post-lesion. Ciliary neurotrophic factor receptor alpha messenger RNA levels are augmented in the same classes of neurons following an identical lesion, suggesting that increased synthesis contributes, at least in part, to the additional ciliary neurotrophic factor receptor alpha protein. Separating the proximal and distal nerve stumps with a plastic barrier does not noticeably affect the injury-induced change in ciliary neurotrophic factor receptor alpha regulation, thereby indicating that this injury response is not dependent on signals distal to the lesion traveling retrogradely through the nerve or signals generated by axonal growth through the distal nerve. The prolonged increases in ciliary neurotrophic factor receptor alpha protein and messenger RNA found in regenerating sciatic motor neurons contrast with the responses of non-regenerating central neurons, which are reported to display, at most, a short-lived increase in ciliary neurotrophic factor receptor alpha messenger RNA expression following injury. The present data are the first to demonstrate, in vivo, neuronal regulation of

  16. Factors associated with CD4 lymphocyte counts in HIV-negative Senegalese individuals

    PubMed Central

    Mair, C; Hawes, S E; Agne, H D; Sow, P S; N'doye, I; Manhart, L E; Fu, P L; Gottlieb, G S; Kiviat, N B

    2008-01-01

    CD4+ lymphocytes are a primary target of the human immunodeficiency virus (HIV), and CD4 counts are one of the factors used to measure disease progression in HIV-positive individuals. CD4 counts vary in uninfected individuals and across populations due to a variety of demographic, environmental, immunological and genetic factors that probably persist throughout the course of HIV infection. This study sought to determine reference levels and identify factors that influence lymphocyte counts in 681 HIV-uninfected adults in Senegal, where residents are exposed to a variety of infectious diseases and other conditions that may affect CD4 counts. Lymphocyte counts were assessed in commercial sex workers, symptomatic men and women presenting to the University of Dakar infectious disease clinic for out-patient care and women seeking family planning services. CD4 and CD3 lymphocyte counts differed between the four study groups (P < 0·01). Men had the lowest mean CD4 count (711·6 cells/μl), while commercial sex workers had the highest levels (966·0 cells/μl). After adjustment for age and other behavioural and clinical factors, the difference in CD4 counts between the three groups of women did not remain. However, both gender and smoking were associated independently with CD4 counts, as men maintained lower mean CD4 counts (β = −156·4 cells/μl, P < 0·01) and smokers had higher mean CD4 counts (β = 124·0 cells/μl, P < 0·01) than non-smokers in multivariable analyses. This study is the first to explore factors that may influence CD4 levels in Senegal and to estimate baseline CD4 levels among HIV-negatives, information that may guide clinicians in interpreting CD4 counts. PMID:18190600

  17. Mechanisms for the activity of heterocyclic cyclohexanone curcumin derivatives in estrogen receptor negative human breast cancer cell lines.

    PubMed

    Somers-Edgar, Tiffany J; Taurin, Sebastien; Larsen, Lesley; Chandramouli, Anupama; Nelson, Mark A; Rosengren, Rhonda J

    2011-02-01

    Estrogen receptor (ER)-negative breast cancer is an aggressive form that currently requires more drug treatment options. Thus, we have further modified cyclohexanone derivatives of curcumin and examined them for cytotoxicity towards ER-negative human breast cancer cells. Two of the analogs screened elicited increased cytotoxic potency compared to curcumin and other previously studied derivatives. Specifically, 2,6-bis(pyridin-3-ylmethylene)-cyclohexanone (RL90) and 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91) elicited EC(50) values of 1.54 and 1.10 µM, respectively, in MDA-MB-231 cells and EC(50) values of 0.51 and 0.23 in SKBr3 cells. All other new compounds examined were less potent than curcumin, which elicited EC(50) values of 7.6 and 2.4 µM in MDA-MB-231 and SKBr3 cells, respectively. Mechanistic analyses demonstrated that RL90 and RL91 significantly induced G(2)/M-phase cell cycle arrest and apoptosis. RL90 and RL91 also modulated the expression of key cell signaling proteins, specifically, in SKBr3 cells, protein levels of Her-2, Akt, and NFκB were decreased in a time-dependent manner, while activity of stress kinases JNK1/2 and P38 MAPK were increased. Signaling events in MDA-MB-231 cells were differently implicated, as EGFR protein levels were decreased and activity of GSK-3β transiently decreased, while β-catenin protein level and activity of P38 MAPK, Akt, and JNK1/2 were transiently increased. In conclusion replacement of the phenyl group of cyclohexanone derived curcumin derivatives with heterocyclic rings forms a class of second-generation analogs that are more potent than both curcumin and other derivatives. These new derivatives provide a platform for the further development of drugs for the treatment of ER-negative breast cancer.

  18. The role of 5-HT1A receptors in mediating acute negative effects of antidepressants: implications in pediatric depression.

    PubMed

    Rahn, K A; Cao, Y-J; Hendrix, C W; Kaplin, A I

    2015-05-05

    Acute antidepressant exposure elevates the frequency of impulsive behavior and suicidal thoughts in children and adolescents with major depressive disorder (MDD). Long-term antidepressant treatment, however, is beneficial for pediatric MDD, so it is necessary to explore novel treatments that prevent the potentially dangerous consequences of acute antidepressant initiation. In the present study, a treatment strategy designed to reverse the acute negative behavioral effects of antidepressants was tested in rodents. Co-administration of the 5-HT1A receptor (5-HT1AR) antagonist WAY-100635 reversed the negative effects of acute fluoxetine, a serotonin reuptake inhibitor, but not reboxetine, a norepinephrine reuptake inhibitor, supporting the involvement of 5-HT1AR in mediating the negative consequences of acute selective serotonin reuptake inhibitor (SSRI) treatment. No 5-HT1AR antagonists are currently approved for use in pediatric populations, so alternative strategies should be explored. One such strategy was suggested based on the hypothesis that the rate of 5-HT1AR activation and the subsequent inhibition of serotonergic neuron activity caused by acute SSRI administration is proportional to the loading rate of an antidepressant. Existing pharmacological data were examined, and significant correlations were observed between the half-life of antidepressants and the rate of suicide-related events (SREs). Specifically, antidepressants with longer half-lives have lower rates of SREs. On the basis of these data, novel dosing strategies were developed for five antidepressants to mimic the pharmacological profile of the antidepressant with the longest half-life, fluoxetine. These dosing strategies could be used to decrease the rate of SREs associated with acute antidepressant treatment in pediatric MDD until an improved pharmacological treatment is developed.

  19. Integral role of transcription factor 8 in the negative regulation of tumor angiogenesis.

    PubMed

    Inuzuka, Takayuki; Tsuda, Masumi; Tanaka, Shinya; Kawaguchi, Hideaki; Higashi, Yujiro; Ohba, Yusuke

    2009-02-15

    Angiogenesis is involved in various physiologic and pathological conditions, including tumor growth, and is tightly regulated by the orchestration of proangiogenic and antiangiogenic factors. Inhibition of vascular endothelial growth factor (VEGF), the best-established antiangiogenic treatment in cancer, has shown some effectiveness; however, the identification of novel regulators, whose function is independent of VEGF, is required to achieve better outcomes. Here, we show that transcription factor 8 (TCF8) is up-regulated in endothelial cells during angiogenesis, acting as a negative regulator. Furthermore, TCF8 is specifically expressed in the endothelium of tumor vessels. Tcf8-heterozygous knockout mice are more permissive than wild-type mice to the formation of tumor blood vessels in s.c. implanted melanoma, which seems to contribute to the more aggressive growth and the lung metastases of the tumor in mutant mice. Suppression of TCF8 facilitates angiogenesis in both in vitro and ex vivo models, and displays comprehensive cellular phenotypes, including enhanced cell invasion, impaired cell adhesion, and increased cell monolayer permeability due to, at least partly, MMP1 overexpression, attenuation of focal adhesion formation, and insufficient VE-cadherin recruitment, respectively. Taken together, our findings define a novel, integral role for TCF8 in the regulation of pathologic angiogenesis, and propose TCF8 as a target for therapeutic intervention in cancer.

  20. Determination of Trends in Ozone in the Mid-Atlantic Using Non-Negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Brown, S. G.; Russell-Graham, A.; Xiao, P.; Balzano, L.

    2014-12-01

    Air pollution data are routinely collected at high time resolution at many sites in the United States, but such data are often assessed singularly or in small jurisdictional groups rather than on a large-scale, regional basis. Examining air pollution data, such as for ambient ozone, in a regional context may be advantageous given that air pollution is influenced by a combination of micro, local, and regional sources. Non-negative matrix factorization (NMF) algorithms have been widely used by the environmental research community to identify factors governing pollutant concentrations. NMF can also be useful for identifying and interpreting outlier data, particularly for large data sets. We applied NMF algorithms to ozone data collected at over 100 monitoring sites in the Mid-Atlantic states during the summer of 2013 to examine their utility for identifying outlier data and outlier monitoring sites in the ozone monitoring network. We compared results from five different NMF algorithms with various strengths (such as being robust to missing data or outliers) to assess differences in their ability to identify outliers and to determine underlying factors influencing ambient ozone concentrations. In the future, these NMF methods can be applied to any large data matrix, such as those from networks of small, low-cost air pollution sensors and large-scale environmental monitoring networks.

  1. A delayed, gonadotropin-dependent and growth-factor mediated activation of the ERK1/2 cascade negatively regulates aromatase expression in granulosa cells*

    PubMed Central

    Andric, Nebojsa; Ascoli, Mario

    2006-01-01

    Human CG and hFSH elicit a transient increase in ERK1/2 phosphorylation lasting less than 60 min in immature granulosa cells expressing a low density of gonadotropin receptors. In cells expressing a high density of receptors hCG and hFSH elicit this fast transient increase in ERK1/2 phosphorylation and also a delayed and more sustained increase that is detectable after 6–9 h. Both, the early and delayed increases in ERK1/2 phosphorylation can be blocked with inhibitors of PKA, the epidermal growth factor receptor (EGFR) kinase, metalloproteases and MEK. The delayed effect, but not the early effect, can also be blocked with an inhibitor of protein kinase C (PKC). Since the delayed increase in ERK1/2 phosphorylation correlates with low aromatase expression in response to gonadotropins we tested the effects of the inhibitors mentioned on aromatase expression. These inhibitors had little or no effect on gonadotropin-induced aromatase expression in cells expressing a low density of receptors but they enhanced gonadotropin-induced aromatase expression in cells expressing a high density of receptors. Phorbol esters also induced a prolonged increase in ERK1/2 phosphorylation and when added together with hFSH, blocked the induction of aromatase expression by hFSH in cells expressing a low density of hFSHR. A MEK inhibitor reversed the inhibitory effect of the phorbol ester on aromatase induction. We conclude that the effects of gonadotropins on ERK1/2 phosphorylation are mediated by EGF-like growth factors and that the delayed effect is partially mediated by PKC and acts as a negative regulator of aromatase expression. PMID:16973759

  2. Accounting for Negative Automaintenance in Pigeons: A Dual Learning Systems Approach and Factored Representations

    PubMed Central

    Lesaint, Florian; Sigaud, Olivier; Khamassi, Mehdi

    2014-01-01

    Animals, including Humans, are prone to develop persistent maladaptive and suboptimal behaviours. Some of these behaviours have been suggested to arise from interactions between brain systems of Pavlovian conditioning, the acquisition of responses to initially neutral stimuli previously paired with rewards, and instrumental conditioning, the acquisition of active behaviours leading to rewards. However the mechanics of these systems and their interactions are still unclear. While extensively studied independently, few models have been developed to account for these interactions. On some experiment, pigeons have been observed to display a maladaptive behaviour that some suggest to involve conflicts between Pavlovian and instrumental conditioning. In a procedure referred as negative automaintenance, a key light is paired with the subsequent delivery of food, however any peck towards the key light results in the omission of the reward. Studies showed that in such procedure some pigeons persisted in pecking to a substantial level despite its negative consequence, while others learned to refrain from pecking and maximized their cumulative rewards. Furthermore, the pigeons that were unable to refrain from pecking could nevertheless shift their pecks towards a harmless alternative key light. We confronted a computational model that combines dual-learning systems and factored representations, recently developed to account for sign-tracking and goal-tracking behaviours in rats, to these negative automaintenance experimental data. We show that it can explain the variability of the observed behaviours and the capacity of alternative key lights to distract pigeons from their detrimental behaviours. These results confirm the proposed model as an interesting tool to reproduce experiments that could involve interactions between Pavlovian and instrumental conditioning. The model allows us to draw predictions that may be experimentally verified, which could help further investigate

  3. Accounting for negative automaintenance in pigeons: a dual learning systems approach and factored representations.

    PubMed

    Lesaint, Florian; Sigaud, Olivier; Khamassi, Mehdi

    2014-01-01

    Animals, including Humans, are prone to develop persistent maladaptive and suboptimal behaviours. Some of these behaviours have been suggested to arise from interactions between brain systems of Pavlovian conditioning, the acquisition of responses to initially neutral stimuli previously paired with rewards, and instrumental conditioning, the acquisition of active behaviours leading to rewards. However the mechanics of these systems and their interactions are still unclear. While extensively studied independently, few models have been developed to account for these interactions. On some experiment, pigeons have been observed to display a maladaptive behaviour that some suggest to involve conflicts between Pavlovian and instrumental conditioning. In a procedure referred as negative automaintenance, a key light is paired with the subsequent delivery of food, however any peck towards the key light results in the omission of the reward. Studies showed that in such procedure some pigeons persisted in pecking to a substantial level despite its negative consequence, while others learned to refrain from pecking and maximized their cumulative rewards. Furthermore, the pigeons that were unable to refrain from pecking could nevertheless shift their pecks towards a harmless alternative key light. We confronted a computational model that combines dual-learning systems and factored representations, recently developed to account for sign-tracking and goal-tracking behaviours in rats, to these negative automaintenance experimental data. We show that it can explain the variability of the observed behaviours and the capacity of alternative key lights to distract pigeons from their detrimental behaviours. These results confirm the proposed model as an interesting tool to reproduce experiments that could involve interactions between Pavlovian and instrumental conditioning. The model allows us to draw predictions that may be experimentally verified, which could help further investigate

  4. The atypical Guanine-nucleotide exchange factor, dock7, negatively regulates schwann cell differentiation and myelination.

    PubMed

    Yamauchi, Junji; Miyamoto, Yuki; Hamasaki, Hajime; Sanbe, Atsushi; Kusakawa, Shinji; Nakamura, Akane; Tsumura, Hideki; Maeda, Masahiro; Nemoto, Noriko; Kawahara, Katsumasa; Torii, Tomohiro; Tanoue, Akito

    2011-08-31

    In development of the peripheral nervous system, Schwann cells proliferate, migrate, and ultimately differentiate to form myelin sheath. In all of the myelination stages, Schwann cells continuously undergo morphological changes; however, little is known about their underlying molecular mechanisms. We previously cloned the dock7 gene encoding the atypical Rho family guanine-nucleotide exchange factor (GEF) and reported the positive role of Dock7, the target Rho GTPases Rac/Cdc42, and the downstream c-Jun N-terminal kinase in Schwann cell migration (Yamauchi et al., 2008). We investigated the role of Dock7 in Schwann cell differentiation and myelination. Knockdown of Dock7 by the specific small interfering (si)RNA in primary Schwann cells promotes dibutyryl cAMP-induced morphological differentiation, indicating the negative role of Dock7 in Schwann cell differentiation. It also results in a shorter duration of activation of Rac/Cdc42 and JNK, which is the negative regulator of myelination, and the earlier activation of Rho and Rho-kinase, which is the positive regulator of myelination. To obtain the in vivo evidence, we generated Dock7 short hairpin (sh)RNA transgenic mice. They exhibited a decreased expression of Dock7 in the sciatic nerves and enhanced myelin thickness, consistent with in vitro observation. The effects of the in vivo knockdown on the signals to Rho GTPases are similar to those of the in vitro knockdown. Collectively, the signaling through Dock7 negatively regulates Schwann cell differentiation and the onset of myelination, demonstrating the unexpected role of Dock7 in the interplay between Schwann cell migration and myelination.

  5. Prognostic Factors for Node-Negative Advanced Gastric Cancer after Curative Gastrectomy

    PubMed Central

    Lee, Eun Woo; Koo, Ho-Seok

    2016-01-01

    Purpose Lymph node (LN) metastasis is the best prognostic indicator in non-distant metastatic advanced gastric cancer. This study aimed to assess the prognostic value of various clinicopathologic factors in node-negative advanced gastric cancer. Materials and Methods We retrospectively analyzed the clinical records of 254 patients with primary node-negative stage T2~4 gastric cancer. These patients were selected from a pool of 1,890 patients who underwent radical resection at Memorial Jin-Pok Kim Korea Gastric Cancer Center, Inje University Seoul Paik Hospital between 1998 and 2008. Results Of the 254 patients, 128 patients (50.4%), 88 patients (34.6%), 37 patients (14.6%), and 1 patient (0.4%) had T2, T3, T4a, and T4b tumors, respectively. In a univariate analysis, operation type, T-stage, venous invasion, tumor size, and less than 15 LNs significantly correlated with tumor recurrence and cumulative overall survival. In a multivariate logistic regression analysis, tumor size, venous invasion, and less than 15 LNs significantly and independently correlated with recurrence. In a multivariate Cox proportional hazards analysis, tumor size (hazard ratio [HR]: 2.926; 95% confidence interval [CI]: 1.173~7.300; P=0.021), venous invasion (HR: 3.985; 95% CI: 1.401~11.338; P=0.010), and less than 15 LNs (HR: 0.092; 95% CI: 0.029~0.290; P<0.001) significantly correlated with overall survival. Conclusions Node-negative gastric cancers recurred in 8.3% of the patients in our study. Tumor size, venous invasion, and less than 15 LNs reliably predicted recurrence as well as survival. Aggressive postoperative treatments and timely follow-ups should be considered in cases with these characteristics. PMID:27752393

  6. Evidence that the modulator of the glucocorticoid-receptor complex is the endogenous molybdate factor.

    PubMed Central

    Bodine, P V; Litwack, G

    1988-01-01

    We have recently purified the modulator of the glucocorticoid-receptor complex from rat liver. Purified modulator inhibits glucocorticoid-receptor complex activation and stabilizes the steroid-binding ability of the unoccupied glucocorticoid receptor. Since these activities are shared by exogenous sodium molybdate, modulator appears to be the endogenous factor that sodium molybdate mimics. In this report, we present additional evidence for the mechanism of action of purified modulator. (i) Molybdate and modulator inhibit receptor activation as measured by DNA-cellulose binding, DEAE-cellulose chromatography, and Sepharose 4B gel filtration. (ii) The ability of molybdate and modulator to inhibit receptor activation and stabilize the unoccupied receptor appears to be additive. (iii) Scatchard analysis of heat-destabilized unoccupied receptors indicates that the number of steroid-binding sites is reduced during destabilization, whereas the steroid dissociation constant remains unchanged. Molybdate and modulator stabilize the receptor by maintaining the number of steroid-binding sites. (iv) Molybdate and modulator do not inhibit alkaline phosphatase-induced destabilization of the unoccupied receptor. However, alkaline phosphatase-induced destabilization is reversed by the addition of dithiothreitol in the presence, but not in the absence, of molybdate or modulator. These results suggest that the mechanism of action for modulator is identical to that of sodium molybdate, and we propose that modulator is the endogenous molybdate factor for the glucocorticoid receptor. PMID:3422744

  7. Mechanism of kinase activation in the receptor for colony-stimulating factor 1.

    PubMed Central

    Lee, A W; Nienhuis, A W

    1990-01-01

    Receptor tyrosine kinases remain dormant until activated by ligand binding to the extracellular domain. Two mechanisms have been proposed for kinase activation: (i) ligand binding to the external domain of a receptor monomer may induce a conformational change that is transmitted across the cell membrane (intramolecular model) or (ii) the ligand may facilitate oligomerization, thereby allowing interactions between the juxtaposed kinase domains (intermolecular model). The receptor for colony-stimulating factor 1 was used to test these models. Large insertions at the junction between the external and transmembrane domains of the receptor, introduced by site-directed mutagenesis of the cDNA, were positioned to isolate the external domain and prevent transmembrane conformational propagation while allowing for receptor oligomerization. Such mutant receptors were expressed on the cell surface, bound ligand with high affinity, exhibited ligand-stimulated autophosphorylation, and signaled mitogenesis and cellular proliferation in the presence of ligand. A second experimental strategy directly tested the intermolecular model of ligand activation. A hybrid receptor composed of the external domain of human glycophorin A and the transmembrane and cytoplasmic domains of the colony-stimulating factor 1 receptor exhibited anti-glycophorin antibody-induced kinase activity that supported mitogenesis. Our data strongly support a mechanism of receptor activation based on ligand-induced receptor oligomerization. Images PMID:2169623

  8. Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex

    SciTech Connect

    Shim, Ann Hye-Ryong; Liu, Heli; Focia, Pamela J.; Chen, Xiaoyan; Lin, P. Charles; He, Xiaolin

    2010-07-13

    Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are prototypic growth factors and receptor tyrosine kinases which have critical functions in development. We show that PDGFs share a conserved region in their prodomain sequences which can remain noncovalently associated with the mature cystine-knot growth factor domain after processing. The structure of the PDGF-A/propeptide complex reveals this conserved, hydrophobic association mode. We also present the structure of the complex between PDGF-B and the first three Ig domains of PDGFR{beta}, showing that two PDGF-B protomers clamp PDGFR{beta} at their dimerization seam. The PDGF-B:PDGFR{beta} interface is predominantly hydrophobic, and PDGFRs and the PDGF propeptides occupy overlapping positions on mature PDGFs, rationalizing the need of propeptides by PDGFs to cover functionally important hydrophobic surfaces during secretion. A large-scale structural organization and rearrangement is observed for PDGF-B upon receptor binding, in which the PDGF-B L1 loop, disordered in the structure of the free form, adopts a highly specific conformation to form hydrophobic interactions with the third Ig domain of PDGFR{beta}. Calorimetric data also shows that the membrane-proximal homotypic PDGFR{alpha} interaction, albeit required for activation, contributes negatively to ligand binding. The structural and biochemical data together offer insights into PDGF-PDGFR signaling, as well as strategies for PDGF-antagonism.

  9. Elevated Appraisals of the Negative Impact of Naturally Occurring Life Events: A Risk Factor for Depressive and Anxiety Disorders

    ERIC Educational Resources Information Center

    Espejo, Emmanuel Peter; Hammen, Constance; Brennan, Patricia A.

    2012-01-01

    The tendency to appraise naturally occurring life events (LEs) as having high negative impact may be a predisposing factor for the development of depression and anxiety disorders. In the current study, appraisals of the negative impact of recent LEs were examined in relationship to depressive and anxiety disorders in a sample of 653 adolescents…

  10. Non-negative matrix factorization by maximizing correntropy for cancer clustering

    PubMed Central

    2013-01-01

    Background Non-negative matrix factorization (NMF) has been shown to be a powerful tool for clustering gene expression data, which are widely used to classify cancers. NMF aims to find two non-negative matrices whose product closely approximates the original matrix. Traditional NMF methods minimize either the l2 norm or the Kullback-Leibler distance between the product of the two matrices and the original matrix. Correntropy was recently shown to be an effective similarity measurement due to its stability to outliers or noise. Results We propose a maximum correntropy criterion (MCC)-based NMF method (NMF-MCC) for gene expression data-based cancer clustering. Instead of minimizing the l2 norm or the Kullback-Leibler distance, NMF-MCC maximizes the correntropy between the product of the two matrices and the original matrix. The optimization problem can be solved by an expectation conditional maximization algorithm. Conclusions Extensive experiments on six cancer benchmark sets demonstrate that the proposed method is significantly more accurate than the state-of-the-art methods in cancer clustering. PMID:23522344

  11. A unified statistical approach to non-negative matrix factorization and probabilistic latent semantic indexing.

    PubMed

    Devarajan, Karthik; Wang, Guoli; Ebrahimi, Nader

    2015-04-01

    Non-negative matrix factorization (NMF) is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into the product of two nonnegative matrices, W and H, such that V ∼ W H. It has been shown to have a parts-based, sparse representation of the data. NMF has been successfully applied in a variety of areas such as natural language processing, neuroscience, information retrieval, image processing, speech recognition and computational biology for the analysis and interpretation of large-scale data. There has also been simultaneous development of a related statistical latent class modeling approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpreting co-occurrence count data arising in natural language processing. In this paper, we present a generalized statistical approach to NMF and PLSI based on Renyi's divergence between two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies various competing models and provides a unique theoretical framework for these methods. We propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multiplicative updates for W and H. In addition, we generalize the relationship between NMF and PLSI within this framework. We demonstrate the applicability and utility of our approach as well as its superior performance relative to existing methods using real-life and simulated document clustering data.

  12. Decomposing time series data by a non-negative matrix factorization algorithm with temporally constrained coefficients.

    PubMed

    Cheung, Vincent C K; Devarajan, Karthik; Severini, Giacomo; Turolla, Andrea; Bonato, Paolo

    2015-08-01

    The non-negative matrix factorization algorithm (NMF) decomposes a data matrix into a set of non-negative basis vectors, each scaled by a coefficient. In its original formulation, the NMF assumes the data samples and dimensions to be independently distributed, making it a less-than-ideal algorithm for the analysis of time series data with temporal correlations. Here, we seek to derive an NMF that accounts for temporal dependencies in the data by explicitly incorporating a very simple temporal constraint for the coefficients into the NMF update rules. We applied the modified algorithm to 2 multi-dimensional electromyographic data sets collected from the human upper-limb to identify muscle synergies. We found that because it reduced the number of free parameters in the model, our modified NMF made it possible to use the Akaike Information Criterion to objectively identify a model order (i.e., the number of muscle synergies composing the data) that is more functionally interpretable, and closer to the numbers previously determined using ad hoc measures.

  13. Human immunodeficiency virus type 1 negative factor is a transcriptional silencer.

    PubMed

    Niederman, T M; Thielan, B J; Ratner, L

    1989-02-01

    The negative factor (nef) of human immunodeficiency virus (HIV) type 1 acts to down-regulate virus replication. To decipher the step in the virus life cycle affected by nef, functional proviral clones with (pHIV F-) or without (pHIV F+) a deletion mutation in the nef gene were constructed. In CD4+ cells, 30- to 50-fold more virus was produced over the course of 18-20 days with cultures infected with F- compared to F+ virus. In CD4- cell lines, 2- to 10-fold greater virus production was found from cultures transfected with pHIV F- than those transfected with pHIV F+. The negative regulatory effects of nef on pHIV F- could be supplied in trans with a plasmid expressing only the nef gene product. Virus produced by COS-1 cells transfected with pHIV F- or pHIV F+ showed similar binding, uptake, uncoating, and reverse transcription. Analysis of HIV-1 RNA and structural protein levels and rates of viral RNA synthesis in CD4- cells also showed 2- to 10-fold higher levels in cells transfected with pHIV F- compared to pHIV F+. The activity of a HIV-1-chloramphenicol acetyltransferase (CAT) plasmid was also suppressed by nef, whereas other CAT plasmids were unaffected. These findings demonstrate that nef acts as a specific silencer of HIV-1 transcription. This activity may be critical for maintenance of HIV-1 latency in vivo.

  14. Radiosensitizing effect of lapatinib in human epidermal growth factor receptor 2-positive breast cancer cells

    PubMed Central

    Park, Ji Min; Kim, Dan Hyo; Kim, In Ah

    2016-01-01

    Trastuzumab has been widely used for the treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer, however, it cannot easily cross the blood-brain barrier (BBB) and is known to increase the incidence of brain metastases. In contrast, lapatinib has a low molecular weight and can cross the BBB and it could be useful to treat brain metastases in patients with HER2-positive breast cancer. To explore the impact of lapatinib on radiation response, we conducted an in vitro experiment using SKBR3 and BT474 breast carcinoma cells exhibiting HER2/neu amplification. Lapatinib down-regulated phosphorylated (p)-HER2, p-epidermal growth factor receptor, p-AKT, and p-extracellular signal-regulated kinase. Pretreatment of lapatinib increased the radiosensitivity of SKBR3 (sensitizer enhancement ratio [SER]: 1.21 at a surviving fraction of 0.5) and BT474 (SER: 1.26 at a surviving fraction of 0.5) cells and hindered the repair of DNA damage, as suggested by the prolongation of radiation-induced γH2AX foci and the down-regulation of phosphorylated DNA-dependent protein kinase, catalytic subunit (p-DNAPKcs). Increases in radiation-induced apoptosis and senescence were suggested to be the major modes of cell death induced by the combination of lapatinib and radiation. Furthermore, lapatinib did not radiosensitize a HER2- negative breast cancer cell line or normal human astrocytes. These findings suggest that lapatinib can potentiate radiation-induced cell death in HER2-overexpressing breast cancer cells and may increase the efficacy of radiotherapy. A phase II clinical trial using lapatinib concurrently with whole-brain radiation therapy (WBRT) is currently being conducted. PMID:27738326

  15. Clustering Algorithm for Unsupervised Monaural Musical Sound Separation Based on Non-negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Park, Sang Ha; Lee, Seokjin; Sung, Koeng-Mo

    Non-negative matrix factorization (NMF) is widely used for monaural musical sound source separation because of its efficiency and good performance. However, an additional clustering process is required because the musical sound mixture is separated into more signals than the number of musical tracks during NMF separation. In the conventional method, manual clustering or training-based clustering is performed with an additional learning process. Recently, a clustering algorithm based on the mel-frequency cepstrum coefficient (MFCC) was proposed for unsupervised clustering. However, MFCC clustering supplies limited information for clustering. In this paper, we propose various timbre features for unsupervised clustering and a clustering algorithm with these features. Simulation experiments are carried out using various musical sound mixtures. The results indicate that the proposed method improves clustering performance, as compared to conventional MFCC-based clustering.

  16. Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization

    SciTech Connect

    Chennubhotla, Chakra; Castro, Jason

    2013-01-01

    In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain un- clear. Here, we use non-negative matrix factorization (NMF) - a dimensionality reduction technique - to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor di- mensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures.

  17. Categorical Dimensions of Human Odor Descriptor Space Revealed by Non-Negative Matrix Factorization

    PubMed Central

    Castro, Jason B.; Ramanathan, Arvind; Chennubhotla, Chakra S.

    2013-01-01

    In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain unclear. Here, we use non-negative matrix factorization (NMF) – a dimensionality reduction technique – to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor dimensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures. PMID:24058466

  18. Feature enhancement of reverberant speech by distribution matching and non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Keronen, Sami; Kallasjoki, Heikki; Palomäki, Kalle J.; Brown, Guy J.; Gemmeke, Jort F.

    2015-12-01

    This paper describes a novel two-stage dereverberation feature enhancement method for noise-robust automatic speech recognition. In the first stage, an estimate of the dereverberated speech is generated by matching the distribution of the observed reverberant speech to that of clean speech, in a decorrelated transformation domain that has a long temporal context in order to address the effects of reverberation. The second stage uses this dereverberated signal as an initial estimate within a non-negative matrix factorization framework, which jointly estimates a sparse representation of the clean speech signal and an estimate of the convolutional distortion. The proposed feature enhancement method, when used in conjunction with automatic speech recognizer back-end processing, is shown to improve the recognition performance compared to three other state-of-the-art techniques.

  19. Detecting cells using non-negative matrix factorization on calcium imaging data.

    PubMed

    Maruyama, Ryuichi; Maeda, Kazuma; Moroda, Hajime; Kato, Ichiro; Inoue, Masashi; Miyakawa, Hiroyoshi; Aonishi, Toru

    2014-07-01

    We propose a cell detection algorithm using non-negative matrix factorization (NMF) on Ca2+ imaging data. To apply NMF to Ca2+ imaging data, we use the bleaching line of the background fluorescence intensity as an a priori background constraint to make the NMF uniquely dissociate the background component from the image data. This constraint helps us to incorporate the effect of dye-bleaching and reduce the non-uniqueness of the solution. We demonstrate that in the case of noisy data, the NMF algorithm can detect cells more accurately than Mukamel's independent component analysis algorithm, a state-of-art method. We then apply the NMF algorithm to Ca2+ imaging data recorded on the local activities of subcellular structures of multiple cells in a wide area. We show that our method can decompose rapid transient components corresponding to somas and dendrites of many neurons, and furthermore, that it can decompose slow transient components probably corresponding to glial cells.

  20. Non-Negative Matrix Factorization of Partial Track Data for Motion

    SciTech Connect

    Cheriyadat, Anil M

    2009-01-01

    This paper addresses the problem of segmenting low level partial feature point tracks belonging to multiple motions. We show that the local velocity vectors at each instant of the trajectory are an effective basis for motion segmentation. We decompose the velocity profiles of point tracks into different motion components and corresponding nonnegative weights using non-negative matrix factorization (NNMF). We then segment the different motions using spectral clustering on the derived weights. We test our algorithm on the Hopkins 155 benchmarking database and several new sequences, demonstrating that the proposed algorithm can accurately segment multiple motions at a speed of a few seconds per frame. We show that our algorithm is particularly successful on low-level tracks from real-world video that are fragmented, noisy and inaccurate

  1. Shedding of tumor necrosis factor receptors by activated human neutrophils

    PubMed Central

    1990-01-01

    The capacity of human neutrophils (PMN) to bind tumor necrosis factor (TNF) was rapidly lost when the cells were incubated in suspension with agents that can stimulate their migratory and secretory responses. Both physiological (poly)peptides (FMLP, C5a, CSF-GM) and pharmacologic agonists (PMN, calcium ionophore A23187) induced the loss of TNF receptors (TNF-R) from the cell surface. Half-maximal loss in TNF-R ensued after only approximately 2 min with 10(-7) M FMLP at 37 degrees C, and required only 10(-9) M FMLP during a 30-min exposure. However, there were no such changes even with prolonged exposure of PMN to FMLP at 4 degrees or 16 degrees C. Scatchard analysis revealed loss of TNF- binding sites without change in their affinity (Kd approximately 0.4 nM) as measured at incompletely modulating concentrations of FMLP, C5a, PMA, or A23187. The binding of anti-TNF-R mAbs to PMN decreased in parallel, providing independent evidence for the loss of TNF-R from the cell surface. At the same time, soluble TNF-R appeared in the medium of stimulated PMN. This inference was based on the PMN- and FMLP-dependent generation of a nonsedimentable activity that could inhibit the binding of TNF to fresh human PMN or to mouse macrophages, and the ability of mAbs specific for human TNF-R to abolish inhibition by PMN-conditioned medium of binding of TNF to mouse macrophages. Soluble TNF-R activity was associated with a protein of Mr approximately 28,000 by ligand blot analysis of cell-free supernatants of FMLP-treated PMN. Thus, some portion of the FMLP-induced loss of TNF-R from human PMN is due to shedding of TNF-R. Shedding was unaffected by inhibitors of serine and thiol proteases and could not be induced with phosphatidylinositol- specific phospholipase C. Loss of TNF-R from PMN first stimulated by other agents may decrease their responsiveness to TNF. TNF-R shed by PMN may be one source of the TNF-binding proteins found in body fluids, and may blunt the actions of the

  2. Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization.

    PubMed

    Sotiras, Aristeidis; Resnick, Susan M; Davatzikos, Christos

    2015-03-01

    In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA.

  3. TAF1, From a General Transcription Factor to Modulator of Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2008-02-01

    Factor to Modulator of Androgen Receptor in Prostate Cancer PRINCIPAL INVESTIGATOR: Peyman Tavassoli M.D...Receptor in Prostate Cancer 5b. GRANT NUMBER W81XWH-07-1-0131 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Peyman Tavassoli M.D., Paul Rennie...9 Tavassoli Peyman , Annual Summary Page - 3 - Feb 2008 Tavassoli Peyman , Annual Summary

  4. Negative protein 1, which is required for function of the chicken lysozyme gene silencer in conjunction with hormone receptors, is identical to the multivalent zinc finger repressor CTCF.

    PubMed Central

    Burcin, M; Arnold, R; Lutz, M; Kaiser, B; Runge, D; Lottspeich, F; Filippova, G N; Lobanenkov, V V; Renkawitz, R

    1997-01-01

    The transcriptional repressor negative protein 1 (NeP1) binds specifically to the F1 element of the chicken lysozyme gene silencer and mediates synergistic repression by v-ERBA, thyroid hormone receptor, or retinoic acid receptor. Another protein, CCCTC-binding factor (CTCF), specifically binds to 50-bp-long sequences that contain repetitive CCCTC elements in the vicinity of vertebrate c-myc genes. Previously cloned chicken, mouse, and human CTCF cDNAs encode a highly conserved 11-Zn-finger protein. Here, NeP1 was purified and DNA bases critical for NeP1-F1 interaction were determined. NeP1 is found to bind a 50-bp stretch of nucleotides without any obvious sequence similarity to known CTCF binding sequences. Despite this remarkable difference, these two proteins are identical. They have the same molecular weight, and NeP1 contains peptide sequences which are identical to sequences in CTCF. Moreover, NeP1 and CTCF specifically recognize each other's binding DNA sequence and induce identical conformational alterations in the F1 DNA. Therefore, we propose to replace the name NeP1 with CTCF. To analyze the puzzling sequence divergence in CTCF binding sites, we studied the DNA binding of 12 CTCF deletions with serially truncated Zn fingers. While fingers 4 to 11 are indispensable for CTCF binding to the human c-myc P2 promoter site A, a completely different combination of fingers, namely, 1 to 8 or 5 to 11, was sufficient to bind the lysozyme silencer site F1. Thus, CTCF is a true multivalent factor with multiple repressive functions and multiple sequence specificities. PMID:9032255

  5. Tumor necrosis factor receptor-associated factor 3 is a positive regulator of pathological cardiac hypertrophy.

    PubMed

    Jiang, Xi; Deng, Ke-Qiong; Luo, Yuxuan; Jiang, Ding-Sheng; Gao, Lu; Zhang, Xiao-Fei; Zhang, Peng; Zhao, Guang-Nian; Zhu, Xueyong; Li, Hongliang

    2015-08-01

    Cardiac hypertrophy, a common early symptom of heart failure, is regulated by numerous signaling pathways. Here, we identified tumor necrosis factor receptor-associated factor 3 (TRAF3), an adaptor protein in tumor necrosis factor-related signaling cascades, as a key regulator of cardiac hypertrophy in response to pressure overload. TRAF3 expression was upregulated in hypertrophied mice hearts and failing human hearts. Four weeks after aortic banding, cardiac-specific conditional TRAF3-knockout mice exhibited significantly reduced cardiac hypertrophy, fibrosis, and dysfunction. Conversely, transgenic mice overexpressing TRAF3 in the heart developed exaggerated cardiac hypertrophy in response to pressure overload. TRAF3 also promoted an angiotensin II- or phenylephrine-induced hypertrophic response in isolated cardiomyocytes. Mechanistically, TRAF3 directly bound to TANK-binding kinase 1 (TBK1), causing increased TBK1 phosphorylation in response to hypertrophic stimuli. This interaction between TRAF3 and TBK1 further activated AKT signaling, which ultimately promoted the development of cardiac hypertrophy. Our findings not only reveal a key role of TRAF3 in regulating the hypertrophic response but also uncover TRAF3-TBK1-AKT as a novel signaling pathway in the development of cardiac hypertrophy and heart failure. This pathway may represent a potential therapeutic target for this pathological process.

  6. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  7. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  8. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system.

    PubMed

    Walsh, Matthew C; Lee, JangEun; Choi, Yongwon

    2015-07-01

    Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an adapter protein that mediates a wide array of protein-protein interactions via its TRAF domain and a RING finger domain that possesses non-conventional E3 ubiquitin ligase activity. First identified nearly two decades ago as a mediator of interleukin-1 receptor (IL-1R)-mediated activation of NFκB, TRAF6 has since been identified as an actor downstream of multiple receptor families with immunoregulatory functions, including members of the TNFR superfamily, the Toll-like receptor (TLR) family, tumor growth factorreceptors (TGFβR), and T-cell receptor (TCR). In addition to NFκB, TRAF6 may also direct activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and interferon regulatory factor pathways. In the context of the immune system, TRAF6-mediated signals have proven critical for the development, homeostasis, and/or activation of B cells, T cells, and myeloid cells, including macrophages, dendritic cells, and osteoclasts, as well as for organogenesis of thymic and secondary lymphoid tissues. In multiple cellular contexts, TRAF6 function is essential not only for proper activation of the immune system but also for maintaining immune tolerance, and more recent work has begun to identify mechanisms of contextual specificity for TRAF6, involving both regulatory protein interactions, and messenger RNA regulation by microRNAs.

  9. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor.

    PubMed Central

    Mellon, J. K.; Cook, S.; Chambers, P.; Neal, D. E.

    1996-01-01

    We have examined levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) in neoplastic and non-neoplastic bladder tissue using a standard radioimmunoassay technique. Tumour samples had much higher TGF-alpha levels compared with EGF and TGF-alpha levels in malignant tissue were significantly higher than in benign bladder samples. There was, in addition, a difference in mean EGF levels from 'normal' bladder samples from non-tumour bearing areas of bladder in patients with bladder cancer compared with 'normal' bladder tissue obtained at the time of organ retrieval surgery. Levels of EGF and TGF-alpha did not correlate with levels of EGF receptor (EGFR) as determined by a radioligand binding method but levels of TGF-alpha > 10 ng gm-1 of tumour tissue did correlate with EGFR positivity defined using immunohistochemistry. These data suggest that TGF-alpha is the likely ligand for EGFR in bladder tumours. PMID:8605103

  10. Platelet-derived growth factor receptor: Studies examining synthesis, phosphorylation and degradation of the receptor using an anti-receptor monoclonal antibody

    SciTech Connect

    Hart, C.E.

    1987-01-01

    A monoclonal antibody, designated PR7212 (IgG1), has been developed with specifically recognizes a cell-surface receptor for platelet-derived growth factor (PDGF). The antibody recognizes an extracellular epitope of the receptor, demonstrated by its ability to bind to intact cells. Using this antibody I have detected three forms of the receptor of 180, 164, and 130 kDa. All three forms were detected by Western blot analysis of human dermal fiberblasts. Immunoprecipitates of {sup 32}P-labeled membrane extracts of human dermal fibroblasts demonstrate that phosphorylation of all three forms of the receptor is stimulated by PDGF. In addition, several smaller molecules were detected, ranging in size from 113 to 49 kDa, which are also phosphorylated in response to PDGF addition. These smaller molecules may be either PDGF receptor kinase substrates or partially degraded receptor. Only the 180 and the 164 kDa forms of the receptor are detectable from immunoprecipitates of soluble extracts of {sup 35}S-metabolically labeled cells. Pulse-chase experiments demonstrate that the 164 kDa form is a precursor of the 180 kDa molecule.

  11. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization

    PubMed Central

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R.; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher’s discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes’ weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher’s criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data. PMID:26348772

  12. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization.

    PubMed

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher's discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes' weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher's criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data.

  13. Discoidin domain receptor 2-microRNA 196a-mediated negative feedback against excess type I collagen expression is impaired in scleroderma dermal fibroblasts.

    PubMed

    Makino, Katsunari; Jinnin, Masatoshi; Aoi, Jun; Hirano, Ayaka; Kajihara, Ikko; Makino, Takamitsu; Sakai, Keisuke; Fukushima, Satoshi; Inoue, Yuji; Ihn, Hironobu

    2013-01-01

    Systemic sclerosis (SSc) is characterized by excess collagen deposition in the skin, due to intrinsic transforming growth factor-β (TGF-β) activation. We tried to determine the expression and the role of discoidin domain receptor 2 (DDR2) in SSc. The expression of DDR2 mRNA and protein was significantly decreased in SSc dermal fibroblasts, which was recovered by knocking down TGF-β. The knockdown of DDR2 in normal fibroblasts induced microRNA-196a expression, which led to type I collagen downregulation, indicating that DDR2 itself has a negative effect on microRNA-196a expression and inducible effect on collagen expression. In SSc fibroblasts, however, the DDR2 knockdown did not affect TGF-β signaling and microRNA-196a expression. The microRNA-196a levels were significantly decreased in normal fibroblasts treated with TGF-β and in SSc fibroblasts. Taken together our data indicate that, in SSc fibroblasts, intrinsic TGF-β stimulation induces type I collagen expression, and also downregulates DDR2 expression. This probably acts as a negative feedback mechanism against excess collagen expression, as a decreased DDR2 expression is supposed to stimulate the microRNA-196a expression and further change the collagen expression. However, in SSc fibroblasts the microRNA-196a expression was downregulated by TGF-β signaling. DDR2-microRNA-196a pathway may be a previously unreported negative feedback system, and its impairment may be involved in the pathogenesis of SSc.

  14. Glucocorticoid--receptor interactions. Studies of the negative co-operativity induced by steroid interactions with a secondary, hydrophobic, binding site.

    PubMed Central

    Jones, T R; Bell, P A

    1980-01-01

    The effects of steroids on the binding of [1,2-3H]dexamethasone and [1,2-3H]progesterone to the glucocorticoid receptor of rat thymus cytosol were studied. Although both glucocorticoid agonists and antagonists competed with [1,2-3H]dexamethasone for binding to the receptor under equilibrium conditions, only glucocorticoid antagonists of partial agonists, at micromolar concentrations, were capable of accelerating the rate of dissociation of previously bound [1,2-3H]dexamethasone from the receptor. Antagonists or partial agonists also enhanced the rate of dissociation of [1,2-3H]progesterone from the glucocorticoid receptor, with identical specificity and concentration--response characteristics. These effects are attributed to the presence on the receptor of a secondary, low-affinity, binding site for glucocorticoid antagonists, the occupancy of which produces negatively co-operative interactions with the primary glucocorticoid-binding site. In contrast with the interactions with the primary site, the interactions of steroids with the negatively co-operative site appear to be primarily hydrophobic in nature, and the site resembles the steroid-binding site of progestin-binding proteins in its specificity, though not its affinity. The results also suggest that the initial interactions of both glucocorticoid agonists and antagonists with the receptor under equilibrium conditions are with one primary site on a receptor existing in one conformation only. PMID:7406882

  15. The First Negative Allosteric Modulator for Dopamine D2 and D3 Receptors SB269652 May Lead to a New Generation of Antipsychotic Drugs.

    PubMed

    Rossi, Mario; Fasciani, Irene; Marampon, Francesco; Maggio, Roberto; Scarselli, Marco

    2017-03-06

    D2 and D3 dopamine receptors belong to the largest family of cell surface proteins in eukaryotes, the G protein-coupled receptors (GPCRs). Considering their crucial physiological functions and their relatively accessible cellular locations, GPCRs represent one of the most important classes of therapeutic targets. Until recently, the only strategy to develop drugs regulating GPCR activity was through the identification of compounds that directly acted on the orthosteric sites for endogenous ligands. However, many efforts have recently been made in order to identify small molecules that are able to interact with allosteric sites. These sites are less well-conserved; therefore, allosteric ligands have greater selectivity on the specific receptor. Strikingly, the use of allosteric modulators can provide specific advantages, such as an increased selectivity for GPCR subunits and the ability to introduce specific beneficial therapeutic effects without disrupting the integrity of complex physiologically-regulated networks. In 2010, our group unexpectedly found that SB269652, a compound supposed to interact with the orthosteric binding site of dopamine receptors, was actually a negative allosteric modulator of D2 and D3 receptor dimers, thus identifying the first allosteric small molecule acting on these important therapeutic targets. This review addresses the progresses in the understanding of the molecular mechanisms of interaction between the negative modulator SB269652 and D2 and D3 dopamine receptor monomers and dimers, and also the perspectives of developing new dopamine receptor allosteric drugs based on SB269652 as the leading compound.

  16. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development.

    PubMed

    Walker, Kenneth A; Sims-Lucas, Sunder; Bates, Carlton M

    2016-06-01

    Fibroblast growth factor receptors (FGFRs) and FGF ligands are highly expressed in the developing kidney and lower urinary tract. Several classic studies showed many effects of exogenous FGF ligands on embryonic renal tissues in vitro and in vivo. Another older landmark publication showed that mice with a dominant negative Fgfr fragment had severe renal dysplasia. Together, these studies revealed the importance of FGFR signaling in kidney and lower urinary tract development. With the advent of modern gene targeting techniques, including conditional knockout approaches, several publications have revealed critical roles for FGFR signaling in many lineages of the kidney and lower urinary tract at different stages of development. FGFR signaling has been shown to be critical for early metanephric mesenchymal patterning, Wolffian duct patterning including induction of the ureteric bud, ureteric bud branching morphogenesis, nephron progenitor survival and nephrogenesis, and bladder mesenchyme patterning. FGFRs pattern these tissues by interacting with many other growth factor signaling pathways. Moreover, the many genetic Fgfr and Fgf animal models have structural defects mimicking numerous congenital anomalies of the kidney and urinary tract seen in humans. Finally, many studies have shown how FGFR signaling is critical for kidney and lower urinary tract patterning in humans.

  17. Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection

    PubMed Central

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    G protein coupled receptors and tropomyosin-related kinase (Trk) receptors have distinct structure and transducing mechanisms; therefore, cross-talk among them was unexpected. Evidence has, however, accumulated showing that tonic adenosine A2A receptor activity is a required step to allow synaptic actions of neurotrophic factors, namely upon synaptic transmission at both pre- and post-synaptic level as well as upon synaptic plasticity. An enhancement of A2A receptor tonus upon ageing may partially compensate the loss of TrkB receptors, rescuing to certain degree the facilitatory action of brain derived neurotrophic factor in aged animals, which might prove particularly relevant in the prevention of neurodegeneration upon ageing. A2A receptors also trigger synaptic actions of other neurotrophic factors, such as glial derived neurotrophic factor at dopaminergic striatal nerve endings. The growing evidence that tonic adenosine A2A receptor activity is a crucial step to allow actions of neurotrophic factors in neurones will be reviewed and discussed in the light of therapeutic strategies for neurodegenerative diseases. PMID:19508402

  18. Translational downregulation of the noncatalytic growth factor receptor TrkB.T1 by ischemic preconditioning of primary neurons.

    PubMed

    Steinbeck, Julius A; Methner, Axel

    2005-01-01

    Short episodes of ischemia can protect neuronal cells and tissue against a subsequent lethal ischemia by a phenomenon called ischemic preconditioning. The development of this tolerance depends on protein synthesis and takes at least 1 day. It therefore seems reasonable that preconditioning leads to upregulation and translation of protective genes or posttranslational modification of pro- or antiapoptotic proteins. We recently used suppression subtractive hybridization to identify transcripts upregulated in rat primary neuronal cultures preconditioned by oxygen glucose deprivation. In this contribution, we describe the previously unknown 7-kb full-length sequence of an upregulated expressed sequence tag and show that it constitutes the 3' end of the large untranslated region of the noncatalytic "truncated" growth factor receptor TrkB.T1. TrkB.T1 is expressed most prominently in the adult brain and its mRNA was found to be 2.1-fold upregulated by ischemic preconditioning. At the protein level, however, TrkB.T1 was clearly downregulated, possibly by increased degradation in preconditioned cultures. TrKB.T1 can act as a dominant-negative inhibitor of its catalytic counterpart TrkB, which is the receptor for brain-derived neurotrophic factor (BDNF), a factor induced by ischemia that can protect from ischemia-induced neuron loss. We hypothesize that the downregulation of TrkB.T1 at the protein level can prolong BDNF-mediated protective signaling via the catalytic receptor and thus participates in the development of ischemic preconditioning.

  19. Intratumoral Heterogeneity for Expression of Tyrosine Kinase Growth Factor Receptors in Human Colon Cancer Surgical Specimens and Orthotopic Tumors

    PubMed Central

    Kuwai, Toshio; Nakamura, Toru; Kim, Sun-Jin; Sasaki, Takamitsu; Kitadai, Yasuhiko; Langley, Robert R.; Fan, Dominic; Hamilton, Stanley R.; Fidler, Isaiah J.

    2008-01-01

    The design of targeted therapy, particularly patient-specific targeted therapy, requires knowledge of the presence and intratumoral distribution of tyrosine kinase receptors. To determine whether the expression of such receptors is constant or varies between and within individual colon cancer neoplasms, we examined the pattern of expression of the ligands, epidermal growth factor, vascular endothelial growth factor, and platelet-derived growth factor-B as well as their respective receptors in human colon cancer surgical specimens and orthotopic human colon cancers growing in the cecal wall of nude mice. The expression of the epidermal growth factor receptor and the vascular endothelial growth factor receptor on tumor cells and stromal cells, including tumor-associated endothelial cells, was heterogeneous in surgical specimens and orthotopic tumors. In some tumors, the receptor was expressed on both tumor cells and stromal cells, and in other tumors the receptor was expressed only on tumor cells or only on stromal cells. In contrast, the platelet-derived growth factor receptor was expressed only on stromal cells in both surgical specimens and orthotopic tumors. Examination of receptor expression in both individual surgical specimens and orthotopic tumors revealed that the platelet-derived growth factor receptor was expressed only on stromal cells and that the patterns of epidermal growth factor receptor and vascular endothelial growth factor receptor 2 expression differed between tumor cells. This heterogeneity in receptor expression among different tumor cells suggests that targeting a single tyrosine kinase may not yield eradication of the disease. PMID:18202197

  20. Genetics Home Reference: tumor necrosis factor receptor-associated periodic syndrome

    MedlinePlus

    ... 1 link) University College London: National Amyloidosis Center (UK) General Information from MedlinePlus (5 links) Diagnostic Tests ... of Hereditary Periodic Fever Syndromes NHS Foundation Trust (UK) Orphanet: Tumor necrosis factor receptor 1 associated periodic ...

  1. Induction of proapoptotic antibodies to triple-negative breast cancer by vaccination with TRAIL death receptor DR5 DNA.

    PubMed

    Piechocki, Marie P; Wu, Gen Sheng; Jones, Richard F; Jacob, Jennifer B; Gibson, Heather; Ethier, Stephen P; Abrams, Judith; Yagita, Hideo; Venuprasad, K; Wei, Wei-Zen

    2012-12-01

    TNF-related apoptosis-inducing ligand receptor 2 [TRAIL-R2 or death receptor 5 (DR5)] is expressed at elevated levels in a broad range of solid tumors to mediate apoptotic signals from TRAIL or agonist antibodies. We tested the hypothesis that DR5 DNA vaccination will induce proapoptotic antibody to trigger apoptosis of tumor cells. BALB/c mice were electrovaccinated with DNA-encoding wild-type human DR5 (phDR5) or its derivatives. Resulting immune serum or purified immune IgG induced apoptosis in triple-negative breast cancer (TNBC) cells, which were also TRAIL sensitive. The proapoptotic activity of immune serum at dilutions of 0.5-2% was comparable to that of 1-2 μg/ml of TRAIL. Apoptotic activity of immune serum was enhanced by antibody crosslinking. Apoptotic cell death induced by anti-DR5 antibody was shown by the cleavage of PARP and caspase-3. In contrast, immune serum had no effect on the proliferation of activated human T cells, which expressed low levels of DR5. In vivo, hDR5 reactive immune serum prevented growth of SUM159 TNBC cells in severe combined immune-deficient mice. DR5-specific IFN-γ-secreting T cells were also induced by DNA vaccination. Furthermore, the feasibility to overcome immune tolerance to self DR5 was shown by the induction of mouse DR5-binding antibody after electrovaccination of BALB/c mice with pmDR5ectm-Td1 encoding a fusion protein of mouse DR5 and an immunogenic fragment of tetanus toxin. These findings support DR5 as a promising vaccine target for controlling TNBC and other DR5-positive cancers.

  2. [Spatiotemporal distribution of negative air ion concentration in urban area and related affecting factors: a review].

    PubMed

    Huang, Xiang-Hua; Wang, Jian; Zeng, Hong-Da; Chen, Guang-Shui; Zhong, Xian-Fang

    2013-06-01

    Negative air ion (NAI) concentration is an important indicator comprehensively reflecting air quality, and has significance to human beings living environment. This paper summarized the spatiotemporal distribution features of urban NAI concentration, and discussed the causes of these features based on the characteristics of the environmental factors in urban area and their effects on the physical and chemical processes of NAI. The temporal distribution of NAI concentration is mainly controlled by the periodic variation of solar radiation, while the spatial distribution of NAI concentration along the urban-rural gradient is mainly affected by the urban aerosol distribution, underlying surface characters, and urban heat island effect. The high NAI concentration in urban green area is related to the vegetation life activities and soil radiation, while the higher NAI concentration near the water environment is attributed to the water molecules that participate in the generation of NAI through a variety of ways. The other environmental factors can also affect the generation, life span, component, translocation, and distribution of NAI to some extent. To increase the urban green space and atmospheric humidity and to maintain the soil natural attributes of underlying surface could be the effective ways to increase the urban NAI concentration and improve the urban air quality.

  3. Anatomical Parts-Based Regression Using Non-Negative Matrix Factorization

    PubMed Central

    Joshi, Swapna; Karthikeyan, S.; Manjunath, B.S.; Grafton, Scott; Kiehl, Kent A.

    2014-01-01

    Non-negative matrix factorization (NMF) is an excellent tool for unsupervised parts-based learning, but proves to be ineffective when parts of a whole follow a specific pattern. Analyzing such local changes is particularly important when studying anatomical transformations. We propose a supervised method that incorporates a regression constraint into the NMF framework and learns maximally changing parts in the basis images, called Regression based NMF (RNMF). The algorithm is made robust against outliers by learning the distribution of the input manifold space, where the data resides. One of our main goals is to achieve good region localization. By incorporating a gradient smoothing and independence constraint into the factorized bases, contiguous local regions are captured. We apply our technique to a synthetic dataset and structural MRI brain images of subjects with varying ages. RNMF finds the localized regions which are expected to be highly changing over age to be manifested in its significant basis and it also achieves the best performance compared to other statistical regression and dimensionality reduction techniques. PMID:24943130

  4. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    SciTech Connect

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  5. Nonlinear hyperspectral unmixing based on sparse non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Li, Jing; Li, Xiaorun; Zhao, Liaoying

    2016-01-01

    Hyperspectral unmixing aims at extracting pure material spectra, accompanied by their corresponding proportions, from a mixed pixel. Owing to modeling more accurate distribution of real material, nonlinear mixing models (non-LMM) are usually considered to hold better performance than LMMs in complicated scenarios. In the past years, numerous nonlinear models have been successfully applied to hyperspectral unmixing. However, most non-LMMs only think of sum-to-one constraint or positivity constraint while the widespread sparsity among real materials mixing is the very factor that cannot be ignored. That is, for non-LMMs, a pixel is usually composed of a few spectral signatures of different materials from all the pure pixel set. Thus, in this paper, a smooth sparsity constraint is incorporated into the state-of-the-art Fan nonlinear model to exploit the sparsity feature in nonlinear model and use it to enhance the unmixing performance. This sparsity-constrained Fan model is solved with the non-negative matrix factorization. The algorithm was implemented on synthetic and real hyperspectral data and presented its advantage over those competing algorithms in the experiments.

  6. The transforming growth factor beta type II receptor can replace the activin type II receptor in inducing mesoderm.

    PubMed Central

    Bhushan, A; Lin, H Y; Lodish, H F; Kintner, C R

    1994-01-01

    The type II receptors for the polypeptide growth factors transforming growth factor beta (TGF-beta) and activin belong to a new family of predicted serine/threonine protein kinases. In Xenopus embryos, the biological effects of activin and TGF-beta 1 are strikingly different; activin induces a full range of mesodermal cell types in the animal cap assay, while TGF-beta 1 has no effects, presumably because of the lack of functional TGF-beta receptors. In order to assess the biological activities of exogenously added TGF-beta 1, RNA encoding the TGF-beta type II receptor was introduced into Xenopus embryos. In animal caps from these embryos, TGF-beta 1 and activin show similar potencies for induction of mesoderm-specific mRNAs, and both elicit the same types of mesodermal tissues. In addition, the response of animal caps to TGF-beta 1, as well as to activin, is blocked by a dominant inhibitory ras mutant, p21(Asn-17)Ha-ras. These results indicate that the activin and TGF-beta type II receptors can couple to similar signalling pathways and that the biological specificities of these growth factors lie in their different ligand-binding domains and in different competences of the responding cells. Images PMID:8196664

  7. Negative and Positive Factors Associated With the Well-Being of Lesbian, Gay, Bisexual, Transgender, Queer, and Questioning (LGBTQ) Youth.

    PubMed

    Higa, Darrel; Hoppe, Marilyn J; Lindhorst, Taryn; Mincer, Shawn; Beadnell, Blair; Morrison, Diane M; Wells, Elizabeth A; Todd, Avry; Mountz, Sarah

    2014-09-01

    Factors associated with the well-being of lesbian, gay, bisexual, transgender, queer, and questioning (LGBTQ) youth were qualitatively examined to better understand how these factors are experienced from the youths' perspectives. Largely recruited from LGBTQ youth groups, 68 youth participated in focus groups (n = 63) or individual interviews (n = 5). The sample included 50% male, 47% female, and 3% transgender participants. Researchers used a consensual methods approach to identify negative and positive factors across 8 domains. Negative factors were associated with families, schools, religious institutions, and community or neighborhood; positive factors were associated with the youth's own identity development, peer networks, and involvement in the LGBTQ community. These findings suggest a pervasiveness of negative experiences in multiple contexts, and the importance of fostering a positive LGBTQ identity and supportive peer/community networks. Efforts should work towards reducing and eliminating the prejudicial sentiments often present in the institutions and situations that LGBTQ youth encounter.

  8. Negative and Positive Factors Associated With the Well-Being of Lesbian, Gay, Bisexual, Transgender, Queer, and Questioning (LGBTQ) Youth

    PubMed Central

    Higa, Darrel; Hoppe, Marilyn J.; Lindhorst, Taryn; Mincer, Shawn; Beadnell, Blair; Morrison, Diane M.; Wells, Elizabeth A.; Todd, Avry; Mountz, Sarah

    2015-01-01

    Factors associated with the well-being of lesbian, gay, bisexual, transgender, queer, and questioning (LGBTQ) youth were qualitatively examined to better understand how these factors are experienced from the youths’ perspectives. Largely recruited from LGBTQ youth groups, 68 youth participated in focus groups (n = 63) or individual interviews (n = 5). The sample included 50% male, 47% female, and 3% transgender participants. Researchers used a consensual methods approach to identify negative and positive factors across 8 domains. Negative factors were associated with families, schools, religious institutions, and community or neighborhood; positive factors were associated with the youth's own identity development, peer networks, and involvement in the LGBTQ community. These findings suggest a pervasiveness of negative experiences in multiple contexts, and the importance of fostering a positive LGBTQ identity and supportive peer/community networks. Efforts should work towards reducing and eliminating the prejudicial sentiments often present in the institutions and situations that LGBTQ youth encounter. PMID:25722502

  9. Corticotropin Releasing Factor (CRF) Receptor Signaling in the Central Nervous System: New Molecular Targets

    PubMed Central

    Hauger, Richard L.; Risbrough, Victoria; Brauns, Olaf; Dautzenberg, Frank M.

    2007-01-01

    Corticotropin-releasing factor (CRF) and the related urocortin peptides mediate behavioral, cognitive, autonomic, neuroendocrine and immunologic responses to aversive stimuli by activating CRF1 or CRF2 receptors in the central nervous system and anterior pituitary. Markers of hyperactive central CRF systems, including CRF hypersecretion and abnormal hypothalamic-pituitary-adrenal axis functioning, have been identified in subpopulations of patients with anxiety, stress and depressive disorders. Because CRF receptors are rapidly desensitized in the presence of high agonist concentrations, CRF hypersecretion alone may be insufficient to account for the enhanced CRF neurotransmission observed in these patients. Concomitant dysregulation of mechanisms stringently controlling magnitude and duration of CRF receptor signaling also may contribute to this phenomenon. While it is well established that the CRF1 receptor mediates many anxiety- and depression-like behaviors as well as HPA axis stress responses, CRF2 receptor functions are not well understood at present. One hypothesis holds that CRF1 receptor activation initiates fear and anxiety-like responses, while CRF2 receptor activation re-establishes homeostasis by counteracting the aversive effects of CRF1 receptor signaling. An alternative hypothesis posits that CRF1 and CRF2 receptors contribute to opposite defensive modes, with CRF1 receptors mediating active defensive responses triggered by escapable stressors, and CRF2 receptors mediating anxiety- and depression-like responses induced by inescapable, uncontrollable stressors. CRF1 receptor antagonists are being developed as novel treatments for affective and stress disorders. If it is confirmed that the CRF2 receptor contributes importantly to anxiety and depression, the development of small molecule CRF2 receptor antagonists would be therapeutically useful. PMID:16918397

  10. Factors That Effect Signal Transduction by the Estrogen Receptor.

    DTIC Science & Technology

    1997-10-01

    Vivat , H. Gronemeyer, R. Losson, and P. Chambon. 1996. Ligand-dependent interaction of nuclear receptors with potential transcriptional... Academy of Sciences 0027-8424/97/9410132-6S2.00/0 PNAS is available online at http://www.pnas.org. inhibitors or CDIs), kinase function (5-8). Because

  11. Genome-wide association studies in women of African ancestry identified 3q26.21 as a novel susceptibility locus for oestrogen receptor negative breast cancer.

    PubMed

    Huo, Dezheng; Feng, Ye; Haddad, Stephen; Zheng, Yonglan; Yao, Song; Han, Yoo-Jeong; Ogundiran, Temidayo O; Adebamowo, Clement; Ojengbede, Oladosu; Falusi, Adeyinka G; Zheng, Wei; Blot, William; Cai, Qiuyin; Signorello, Lisa; John, Esther M; Bernstein, Leslie; Hu, Jennifer J; Ziegler, Regina G; Nyante, Sarah; Bandera, Elisa V; Ingles, Sue A; Press, Michael F; Deming, Sandra L; Rodriguez-Gil, Jorge L; Nathanson, Katherine L; Domchek, Susan M; Rebbeck, Timothy R; Ruiz-Narváez, Edward A; Sucheston-Campbell, Lara E; Bensen, Jeannette T; Simon, Michael S; Hennis, Anselm; Nemesure, Barbara; Leske, M Cristina; Ambs, Stefan; Chen, Lin S; Qian, Frank; Gamazon, Eric R; Lunetta, Kathryn L; Cox, Nancy J; Chanock, Stephen J; Kolonel, Laurence N; Olshan, Andrew F; Ambrosone, Christine B; Olopade, Olufunmilayo I; Palmer, Julie R; Haiman, Christopher A

    2016-09-04

    Multiple breast cancer loci have been identified in previous genome-wide association studies, but they were mainly conducted in populations of European ancestry. Women of African ancestry are more likely to have young-onset and oestrogen receptor (ER) negative breast cancer for reasons that are unknown and understudied. To identify genetic risk factors for breast cancer in women of African descent, we conducted a meta-analysis of two genome-wide association studies of breast cancer; one study consists of 1,657 cases and 2,029 controls genotyped with Illumina's HumanOmni2.5 BeadChip and the other study included 3,016 cases and 2,745 controls genotyped using Illumina Human1M-Duo BeadChip. The top 18,376 single nucleotide polymorphisms (SNP) from the meta-analysis were replicated in the third study that consists of 1,984 African Americans cases and 2,939 controls. We found that SNP rs13074711, 26.5 Kb upstream of TNFSF10 at 3q26.21, was significantly associated with risk of oestrogen receptor (ER)-negative breast cancer (odds ratio [OR]=1.29, 95% CI: 1.18-1.40; P = 1.8 × 10 (-)  (8)). Functional annotations suggest that the TNFSF10 gene may be involved in breast cancer aetiology, but further functional experiments are needed. In addition, we confirmed SNP rs10069690 was the best indicator for ER-negative breast cancer at 5p15.33 (OR = 1.30; P = 2.4 × 10 (-)  (10)) and identified rs12998806 as the best indicator for ER-positive breast cancer at 2q35 (OR = 1.34; P = 2.2 × 10 (-)  (8)) for women of African ancestry. These findings demonstrated additional susceptibility alleles for breast cancer can be revealed in diverse populations and have important public health implications in building race/ethnicity-specific risk prediction model for breast cancer.

  12. Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection

    PubMed Central

    Drifka, Cole R.; Loeffler, Agnes G.; Mathewson, Kara; Keikhosravi, Adib; Eickhoff, Jens C.; Liu, Yuming; Weber, Sharon M.

    2016-01-01

    Risk factors for pancreatic ductal adenocarcinoma (PDAC) progression after surgery are unclear, and additional prognostic factors are needed to inform treatment regimens and therapeutic targets. PDAC is characterized by advanced sclerosis of the extracellular matrix, and interactions between cancer cells, fibrillar collagen, and other stromal components play an integral role in progression. Changes in stromal collagen alignment have been shown to modulate cancer cell behavior and have important clinical value in other cancer types, but little is known about its role in PDAC and prognostic value. We hypothesized that the alignment of collagen is associated with PDAC patient survival. To address this, pathology-confirmed tissues from 114 PDAC patients that underwent curative-intent surgery were retrospectively imaged with Second Harmonic Generation (SHG) microscopy, quantified with fiber segmentation algorithms, and correlated to patient survival. The same tissue regions were analyzed for epithelial-to-mesenchymal (EMT), α-SMA, and syndecan-1 using complimentary immunohistostaining and visualization techniques. Significant inter-tumoral variation in collagen alignment was found, and notably high collagen alignment was observed in 12% of the patient cohort. Stratification of patients according to collagen alignment revealed that high alignment is an independent negative factor following PDAC resection (p = 0.0153, multivariate). We also found that epithelial expression of EMT and the stromal expression of α-SMA and syndecan-1 were positively correlated with collagen alignment. In summary, stromal collagen alignment may provide additional, clinically-relevant information about PDAC tumors and underscores the importance of stroma-cancer interactions. PMID:27776346

  13. Afr1p regulates the Saccharomyces cerevisiae alpha-factor receptor by a mechanism that is distinct from receptor phosphorylation and endocytosis.

    PubMed Central

    Davis, C; Dube, P; Konopka, J B

    1998-01-01

    The alpha-factor pheromone receptor activates a G protein signaling pathway that induces the conjugation of the yeast Saccharomyces cerevisiae. Our previous studies identified AFR1 as a gene that regulates this signaling pathway because overexpression of AFR1 promoted resistance to alpha-factor. AFR1 also showed an interesting genetic relationship with the alpha-factor receptor gene, STE2, suggesting that the receptor is regulated by Afr1p. To investigate the mechanism of this regulation, we tested AFR1 for a role in the two processes that are known to regulate receptor signaling: phosphorylation and down-regulation of ligand-bound receptors by endocytosis. AFR1 overexpression diminished signaling in a strain that lacks the C-terminal phosphorylation sites of the receptor, indicating that AFR1 acts independently of phosphorylation. The effects of AFR1 overexpression were weaker in strains that were defective in receptor endocytosis. However, AFR1 overexpression did not detectably influence receptor endocytosis or the stability of the receptor protein. Instead, gene dosage studies showed that the effects of AFR1 overexpression on signaling were inversely proportional to the number of receptors. These results indicate that AFR1 acts independently of endocytosis, and that the weaker effects of AFR1 in strains that are defective in receptor endocytosis were probably an indirect consequence of their increased receptor number caused by the failure of receptors to undergo ligand-stimulated endocytosis. Analysis of the ligand binding properties of the receptor showed that AFR1 overexpression did not alter the number of cell-surface receptors or the affinity for alpha-factor. Thus, Afr1p prevents alpha-factor receptors from activating G protein signaling by a mechanism that is distinct from other known pathways. PMID:9504911

  14. Epidermal growth factor receptor mutation enhances expression of vascular endothelial growth factor in lung cancer.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lin, Paul-Yann; Lung, Jr-Hau; Li, Ya-Chin; Lin, Yu-Ching; Yang, Cheng-Ta; Tsai, Ying-Huang

    2016-12-01

    Epidermal growth factor receptor (EGFR) activation has been demonstrated to have a critical role in tumor angiogenesis. In the present study, the correlation between EGFR mutations and vascular endothelial growth factor (VEGF) was investigated in lung cancer cell lines and non-small-cell lung cancer (NSCLC) tumor tissues. VEGF levels were significantly increased in culture medium of lung cancer cells and NSCLC tissues with EGFR mutations (H1650 vs. A549, P=0.0399; H1975 vs. A549, P<0.0001). Stable lung cancer cell lines expressing mutant (exon 19 deletion, E746-A750; exon 21 missense mutation, L858R) and wild-type EGFR genes were established. Significantly increased expression of VEGF and stronger inhibitory effects of gefitinib to VEGF expression were observed in exon 19 deletion stable lung cancer cells (exon 19 deletion vs. wild-type EGFR, P=0.0005). The results of the present study may provide an insight into the association of mutant EGFR and VEGF expression in lung cancer, and may assist with further development of targeted therapy for NSCLC in the future.

  15. The catalytic activity of the kinase ZAP-70 mediates basal signaling and negative feedback of the T cell receptor pathway

    PubMed Central

    Cheng, Debra A; Kadlecek, Theresa A.; Cantor, Aaron J.; Kuriyan, John

    2015-01-01

    T cell activation must be properly regulated to ensure normal T cell development and effective immune responses to pathogens and transformed cells while avoiding autoimmunity. The mechanisms controlling the fine-tuning of T cell receptor (TCR) signaling and T cell activation are unclear. The Syk family kinase ζ chain–associated protein kinase of 70 kD (ZAP-70) is a critical component of the TCR signaling machinery that leads to T cell activation. To elucidate potential feedback targets that are dependent on the kinase activity of ZAP-70, we performed a mass spectrometry–based, phosphoproteomic study to quantify temporal changes in phosphorylation patterns after inhibition of ZAP-70 catalytic activity. Our results provide insights into the fine-tuning of the T cell signaling network before and after TCR engagement. The data indicate that the kinase activity of ZAP-70 stimulates negative feedback pathways that target the Src family kinase Lck and modulate the phosphorylation patterns of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 and ζ-chain components of the TCR, and of downstream signaling molecules, including ZAP-70. We developed a computational model that provides a unified mechanistic explanation for the experimental findings on ITAM phosphorylation in wild-type cells, ZAP-70–deficient cells, and cells with inhibited ZAP-70 catalytic activity. This model incorporates negative feedback regulation of Lck activity by the kinase activity of ZAP-70 and makes unanticipated specific predictions for the order in which tyrosines in the ITAMs of TCR ζ-chains must be phosphorylated to be consistent with the experimental data. PMID:25990959

  16. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    PubMed

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  17. Tumor necrosis factor receptor superfamily costimulation couples T cell receptor signal strength to thymic regulatory T cell differentiation

    PubMed Central

    Mahmud, Shawn A.; Manlove, Luke S.; Schmitz, Heather M.; Xing, Yan; Wang, Yanyan; Owen, David L.; Schenkel, Jason M.; Boomer, Jonathan S.; Green, Jonathan M.; Yagita, Hideo; Chi, Hongbo; Hogquist, Kristin A.; Farrar, Michael A.

    2014-01-01

    Regulatory T (Treg) cells express tumor necrosis factor receptor superfamily (TNFRSF) members, but their role in thymic Treg development is undefined. We demonstrate that Treg progenitors highly express the TNFRSF members GITR, OX40, and TNFR2. Expression of these receptors correlates directly with T cell receptor (TCR) signal strength, and requires CD28 and the kinase TAK1. Neutralizing TNFSF ligands markedly reduced Treg development. Conversely, TNFRSF agonists enhanced Treg differentiation by augmenting IL-2R/STAT5 responsiveness. GITR-ligand costimulation elicited a dose-dependent enrichment of lower-affinity cells within the Treg repertoire. In vivo, combined inhibition of GITR, OX40 and TNFR2 abrogated Treg development. Thus TNFRSF expression on Treg progenitors translates strong TCR signals into molecular parameters that specifically promote Treg differentiation and shape the Treg repertoire. PMID:24633226

  18. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research

    PubMed Central

    Wang, Zhixiang

    2016-01-01

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges. PMID:26771606

  19. Receptor-purified, Bolton-Hunter radioiodinated, recombinant, human epidermal growth factor: An improved radioligand for receptor studies

    SciTech Connect

    Kermode, J.C.; Tritton, T.R. )

    1990-01-01

    We report an assessment of the applicability of the Bolton-Hunter method to the radioiodination of epidermal growth factor (EGF). Recombinant human EGF (hEGF) could be radioiodinated successfully by this method, whereas murine EGF could not. Bolton-Hunter {sup 125}I-labeled hEGF was compared with commercial 125I-labeled hEGF prepared by the chloramine-T radioiodination method. Neither radioligand was sufficiently pure for a detailed characterization of the purportedly heterogeneous pattern of binding of EGF to its receptors. A procedure based on receptor adsorption was thus developed for repurification of the Bolton-Hunter 125I-labeled hEGF. This provided a much purer radioligand suitable for detailed studies of receptor-binding heterogeneity.

  20. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research.

    PubMed

    Wang, Zhixiang

    2016-01-12

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges.

  1. Leptin-induced increase in leukemia inhibitory factor and its receptor by human endometrium is partially mediated by interleukin 1 receptor signaling.

    PubMed

    Gonzalez, R R; Rueda, B R; Ramos, M P; Littell, R D; Glasser, S; Leavis, P C

    2004-08-01

    Leptin and leukemia inhibitory factor (LIF) have been implicated as important mediators of implantation. The present study was designed to investigate whether leptin can directly regulate the expression of LIF and its receptor (LIF-R) in human endometrial cells and/or whether leptin-induced effects are linked to, or regulated in part by IL-1 signaling. Primary endometrial cells and endometrial epithelial cell lines (HES and Ishikawa cells) were cultured for 24-48 h in a medium containing insulin (5 microg/ml) and leptin (3, 10, and 62 nm) or IL-1beta (0.6, 3, and 10 nm) in the presence or absence of cytokines and/or receptor antagonists. The endpoints included phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the relative levels of LIF, LIF-R, IL-1beta, IL-1 receptor antagonist (IL-1Ra) and IL-1 receptor type I (IL-1R tI) as determined by ELISA or Western blotting techniques. Leptin treatment increases the level of phosphorylated STAT3, LIF-R, and LIF. Leptin also increases the levels of IL-1 ligand, receptor, and antagonist as was previously reported. Blockade of OB-R with antibodies or with a specific OB-R inhibitor (leptin peptide antagonist-2) abrogated leptin-induced effects, suggesting that leptin binding to its receptor activates Janus kinase 2/STAT3 signaling. Treatment of endometrial cells with IL-1beta also results in elevated levels of LIF-R. Interestingly, the inhibition of IL-1R tI with a specific antibody or with IL-1Ra negatively affects both leptin-induced and IL-1-induced effects on LIF-R levels. Abnormal endometrial LIF expression has been associated with human infertility and leptin has profound effects on the levels of LIF, IL-1, and their cognate receptors in vitro. Thus, it is tempting to speculate that leptin's role in vivo could include the regulation of other key cytokines to be fundamental to endometrial receptivity during implantation (i.e. LIF and IL-1).

  2. Convex Non-Negative Matrix Factorization for Brain Tumor Delimitation from MRSI Data

    PubMed Central

    Ortega-Martorell, Sandra; Lisboa, Paulo J. G.; Vellido, Alfredo; Simões, Rui V.; Pumarola, Martí; Julià-Sapé, Margarida; Arús, Carles

    2012-01-01

    Background Pattern Recognition techniques can provide invaluable insights in the field of neuro-oncology. This is because the clinical analysis of brain tumors requires the use of non-invasive methods that generate complex data in electronic format. Magnetic Resonance (MR), in the modalities of spectroscopy (MRS) and spectroscopic imaging (MRSI), has been widely applied to this purpose. The heterogeneity of the tissue in the brain volumes analyzed by MR remains a challenge in terms of pathological area delimitation. Methodology/Principal Findings A pre-clinical study was carried out using seven brain tumor-bearing mice. Imaging and spectroscopy information was acquired from the brain tissue. A methodology is proposed to extract tissue type-specific sources from these signals by applying Convex Non-negative Matrix Factorization (Convex-NMF). Its suitability for the delimitation of pathological brain area from MRSI is experimentally confirmed by comparing the images obtained with its application to selected target regions, and to the gold standard of registered histopathology data. The former showed good accuracy for the solid tumor region (proliferation index (PI)>30%). The latter yielded (i) high sensitivity and specificity in most cases, (ii) acquisition conditions for safe thresholds in tumor and non-tumor regions (PI>30% for solid tumoral region; ≤5% for non-tumor), and (iii) fairly good results when borderline pixels were considered. Conclusions/Significance The unsupervised nature of Convex-NMF, which does not use prior information regarding the tumor area for its delimitation, places this approach one step ahead of classical label-requiring supervised methods for discrimination between tissue types, minimizing the negative effect of using mislabeled voxels. Convex-NMF also relaxes the non-negativity constraints on the observed data, which allows for a natural representation of the MRSI signal. This should help radiologists to accurately tackle one of the

  3. Negative regulation of germination-arrest factor production in Pseudomonas fluorescens WH6 by a putative extracytoplasmic function sigma factor.

    PubMed

    Okrent, Rachel A; Halgren, Anne B; Azevedo, Mark D; Chang, Jeff H; Mills, Dallice I; Maselko, Maciej; Armstrong, Donald J; Banowetz, Gary M; Trippe, Kristin M

    2014-11-01

    Pseudomonas fluorescens WH6 secretes a germination-arrest factor (GAF) that we have identified previously as 4-formylaminooxyvinylglycine. GAF irreversibly inhibits germination of the seeds of numerous grassy weeds and selectively inhibits growth of the bacterial plant pathogen Erwinia amylovora. WH6-3, a mutant that has lost the ability to produce GAF, contains a Tn5 insertion in prtR, a gene that has been described previously in some strains of P. fluorescens as encoding a transmembrane regulator. As in these other pseudomonads, in WH6, prtR occurs immediately downstream of prtI, which encodes a protein homologous to extracytoplasmic function (ECF) sigma factors. These two genes have been proposed to function as a dicistronic operon. In this study, we demonstrated that deletion of prtI in WT WH6 had no effect on GAF production. However, deletion of prtI in the WH6-3 mutant overcame the effects of the Tn5 insertion in prtR and restored GAF production in the resulting double mutant. Complementation of the double prtIR mutant with prtI suppressed GAF production. This overall pattern of prtIR regulation was also observed for the activity of an AprX protease. Furthermore, reverse transcription quantitative real-time PCR analysis demonstrated that alterations in GAF production were mirrored by changes in the transcription of two putative GAF biosynthetic genes. Thus, we concluded that PrtI exerted a negative regulatory effect on GAF production, although the mechanism has not yet been determined. In addition, evidence was obtained that the transcription of prtI and prtR in WH6 may be more complex than predicted by existing models.

  4. The CXC Chemokine Receptor 4 Ligands Ubiquitin and Stromal Cell-derived Factor-1α Function through Distinct Receptor Interactions*

    PubMed Central

    Saini, Vikas; Staren, Daniel M.; Ziarek, Joshua J.; Nashaat, Zayd N.; Campbell, Edward M.; Volkman, Brian F.; Marchese, Adriano; Majetschak, Matthias

    2011-01-01

    Recently, we identified extracellular ubiquitin as an endogenous CXC chemokine receptor (CXCR) 4 agonist. However, the receptor selectivity and molecular basis of the CXCR4 agonist activity of ubiquitin are unknown, and functional consequences of CXCR4 activation with ubiquitin are poorly defined. Here, we provide evidence that ubiquitin and the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α do not share CXCR7 as a receptor. We further demonstrate that ubiquitin does not utilize the typical two-site binding mechanism of chemokine-receptor interactions, in which the receptor N terminus is important for ligand binding. CXCR4 activation with ubiquitin and SDF-1α lead to similar Gαi-responses and to a comparable magnitude of phosphorylation of ERK-1/2, p90 ribosomal S6 kinase-l and Akt, although phosphorylations occur more transiently after activation with ubiquitin. Despite the similarity of signal transduction events after activation of CXCR4 with both ligands, ubiquitin possesses weaker chemotactic activity than SDF-lα in cell migration assays and does not interfere with productive entry of HIV-1 into P4.R5 multinuclear activation of galactosidase indicator cells. Unlike SDF-1α, ubiquitin lacks interactions with an N-terminal CXCR4 peptide in NMR spectroscopy experiments. Binding and signaling studies in the presence of antibodies against the N terminus and extracellular loops 2/3 of CXCR4 confirm that the ubiquitin CXCR4 interaction is independent of the N-terminal receptor domain, whereas blockade of extracellular loops 2/3 prevents receptor binding and activation. Our findings define ubiquitin as a CXCR4 agonist, which does not interfere with productive cellular entry of HIV-1, and provide new mechanistic insights into interactions between CXCR4 and its natural ligands. PMID:21757744

  5. The human neuroendocrine thyrotropin-releasing hormone receptor promoter is activated by the haematopoietic transcription factor c-Myb.

    PubMed Central

    Matre, Vilborg; Høvring, Per I; Fjeldheim, Ase-Karine; Helgeland, Lars; Orvain, Christophe; Andersson, Kristin B; Gautvik, Kaare M; Gabrielsen, Odd S

    2003-01-01

    Thyrotropin-releasing hormone (TRH) receptor (TRHR) is a G-protein-coupled receptor playing a crucial role in the anterior pituitary where it controls the synthesis and secretion of thyroid-stimulating hormone and prolactin. Its widespread presence not only in the central nervous system, but also in peripheral tissues, including thymus, indicates other important, but unknown, functions. One hypothesis is that the neuropeptide TRH could play a role in the immune system. We report here that the human TRHR promoter contains 11 putative response elements for the haematopoietic transcription factor c-Myb and is highly Myb-responsive in transfection assays. Analysis of Myb binding to putative response elements revealed one preferred binding site in intron 1 of the receptor gene. Transfection studies of promoter deletions confirmed that this high-affinity element is necessary for efficient Myb-dependent transactivation of reporter plasmids in CV-1 cells. The Myb-dependent activation of the TRHR promoter was strongly suppressed by expression of a dominant negative Myb-Engrailed fusion. In line with these observations, reverse transcriptase PCR analysis of rat tissues showed that the TRHR gene is expressed both in thymocytes and bone marrow. Furthermore, specific, high-affinity TRH agonist binding to cell-surface receptors was demonstrated in thymocytes and a haematopoietic cell line. Our findings imply a novel functional link between the neuroendocrine and the immune systems at the level of promoter regulation. PMID:12628004

  6. Social appearance anxiety, perfectionism, and fear of negative evaluation: distinct or shared risk factors for social anxiety and eating disorders?

    PubMed

    Levinson, Cheri A; Rodebaugh, Thomas L; White, Emily K; Menatti, Andrew R; Weeks, Justin W; Iacovino, Juliette M; Warren, Cortney S

    2013-08-01

    Social anxiety and eating disorders are highly comorbid. Social appearance anxiety (i.e., fear of negative evaluation of one's appearance), general fear of negative evaluation, and perfectionism have each been proposed as risk factors for both social anxiety disorder and the eating disorders. However, no research to date has examined all three factors simultaneously. Using structural equation modeling in two diverse samples (N=236; N=136) we tested a model in which each of these risk factors were uniquely associated with social anxiety and eating disorder symptoms. We found support for social appearance anxiety as a shared risk factor between social anxiety and eating disorder symptoms, whereas fear of negative evaluation was a risk factor only for social anxiety symptoms. Despite significant zero-order relationships, two facets of perfectionism (high standards and maladaptive perfectionism) did not emerge as a risk factor for either disorder when all constructs were considered. These results were maintained when gender, body mass index, trait negative affect, and depression were included in the model. It is possible that treating negative appearance evaluation fears may reduce both eating disorder and social anxiety symptoms.

  7. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro.

    PubMed Central

    Grandis, J R; Drenning, S D; Chakraborty, A; Zhou, M Y; Zeng, Q; Pitt, A S; Tweardy, D J

    1998-01-01

    Stimulation of epidermal growth factor receptor (EGFR) by ligand(s) leads to activation of signaling molecules including Stat1 and Stat3, two members of the signal transducers and activators of transcription (STAT) protein family. Activation of Stat1 and Stat3 was constitutive in transformed squamous epithelial cells, which produce elevated levels of TGF-alpha, and was enhanced by the addition of exogenous TGF-alpha. Targeting of Stat3 using antisense oligonucleotides directed against the translation initiation site, resulted in significant growth inhibition. In addition, cells stably transfected with dominant negative mutant Stat3 constructs failed to proliferate in vitro. In contrast, targeting of Stat1 using either antisense or dominant-negative strategies had no effect on cell growth. Thus, TGF-alpha/EGFR-mediated autocrine growth of transformed epithelial cells is dependent on activation of Stat3 but not Stat1. PMID:9769331

  8. Receptor dimerization is not a factor in the signalling activity of a transforming variant epidermal growth factor receptor (EGFRvIII).

    PubMed Central

    Chu, C T; Everiss, K D; Wikstrand, C J; Batra, S K; Kung, H J; Bigner, D D

    1997-01-01

    The type-III deletion variant of the epidermal growth factor receptor (EGFRvIII) is frequently found in glioblastomas and other malignant human tumours. Although EGFRvIII confers ligand-independent oncogenic transformation of cell lines, the mechanism by which it promotes aberrant cellular proliferation is unknown. Using cell lines expressing comparable numbers of either wild-type receptor (EGFRwt) or EGFRvIII, we compared several parameters of receptor activation: dimerization, tyrosine phosphorylation and activation of intracellular signalling proteins. Like activated EGFRwt, EGFRvIII was phosphorylated and bound constitutively to the Shc adapter protein. Indeed, EGFRvIII-associated Shc had a higher phosphotyrosine content than Shc associated with stimulated EGFRwt. EGFRwt dimerized in response to either EGF or transforming growth factor alpha. Higher cross-linker concentrations and incubation at higher temperatures (37 degrees C) allowed detection of EGFRwt dimers even in the absence of exogenous ligand. In contrast, EGFRvIII failed to dimerize under any conditions studied. Moreover, neither mitogen-activated protein kinase nor phospholipase Cgamma were phosphorylated in EGFRvIII-expressing cells. We conclude that the deletion of 267 amino acids from the 621-amino-acid N-terminal domain of EGFR does not result simply in a constitutively activated receptor, but alters the spectrum of signalling cascades utilized. Furthermore the ligand-independent transforming activity of EGFRvIII is independent of receptor dimerization. PMID:9210410

  9. 2q36.3 is associated with prognosis for oestrogen receptor-negative breast cancer patients treated with chemotherapy

    PubMed Central

    Li, Jingmei; Lindström, Linda S.; Foo, Jia N.; Rafiq, Sajjad; Schmidt, Marjanka K.; Pharoah, Paul D. P.; Michailidou, Kyriaki; Dennis, Joe; Bolla, Manjeet K.; Wang, Qin; Van ‘t Veer, Laura J.; Cornelissen, Sten; Rutgers, Emiel; Southey, Melissa C.; Apicella, Carmel; Dite, Gillian S.; Hopper, John L.; Fasching, Peter A.; Haeberle, Lothar; Ekici, Arif B.; Beckmann, Matthias W.; Blomqvist, Carl; Muranen, Taru A.; Aittomäki, Kristiina; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Hartikainen, Jaana M.; Kataja, Vesa; Chenevix-Trench, Georgia; Investigators, kConFab; Phillips, Kelly-Anne; McLachlan, Sue-Anne; Lambrechts, Diether; Thienpont, Bernard; Smeets, Ann; Wildiers, Hans; Chang-Claude, Jenny; Flesch-Janys, Dieter; Seibold, Petra; Rudolph, Anja; Giles, Graham G.; Baglietto, Laura; Severi, Gianluca; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Kristensen, Vessela; Alnæs, Grethe I. Grenaker; Borresen-Dale, Anne-Lise; Nord, Silje; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robert; Seynaeve, Caroline; Hooning, Maartje; Kriege, Mieke; Hollestelle, Antoinette; van den Ouweland, Ans; Li, Yi; Hamann, Ute; Torres, Diana; Ulmer, Hans U.; Rüdiger, Thomas; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Chen, Shou-Tung; Teo, Soo Hwang; Taib, Nur Aishah Mohd; Har Yip, Cheng; Fuang Ho, Gwo; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Maishman, Tom; Tapper, William J.; Dunning, Alison; Shah, Mitul; Luben, Robert; Brown, Judith; Chuen Khor, Chiea; Eccles, Diana M.; Nevanlinna, Heli; Easton, Douglas; Humphreys, Keith; Liu, Jianjun; Hall, Per; Czene, Kamila

    2014-01-01

    Large population-based registry studies have shown that breast cancer prognosis is inherited. Here we analyse single-nucleotide polymorphisms (SNPs) of genes implicated in human immunology and inflammation as candidates for prognostic markers of breast cancer survival involving 1,804 oestrogen receptor (ER)-negative patients treated with chemotherapy (279 events) from 14 European studies in a prior large-scale genotyping experiment, which is part of the Collaborative Oncological Gene-environment Study (COGS) initiative. We carry out replication using Asian COGS samples (n=522, 53 events) and the Prospective Study of Outcomes in Sporadic versus Hereditary breast cancer (POSH) study (n=315, 108 events). Rs4458204_A near CCL20 (2q36.3) is found to be associated with breast cancer-specific death at a genome-wide significant level (n=2,641, 440 events, combined allelic hazard ratio (HR)=1.81 (1.49–2.19); P for trend=1.90 × 10−9). Such survival-associated variants can represent ideal targets for tailored therapeutics, and may also enhance our current prognostic prediction capabilities. PMID:24937182

  10. Effects of the GABA receptor agonist phenibut on behavior and respiration in rabbits in emotionally negative situations.

    PubMed

    Zyablitseva, E A; Pavlova, I V

    2008-07-01

    Three groups of rabbits differing in terms of movement activity in an open field (active, passive, and intermediate animals) were used to study the effects of systemic administration of the GABA receptor agonist phenibut (40 mg/kg, s.c.) on behavior in the open field, behavioral reactivity, and changes in measures of respiration during exposure to emotionally negative stimuli. Phenibut administration led to decreases in horizontal movement activity and some elements of investigative behavior in rabbits in the open field, along with decreases in the reactivity of the animals to emotionally significant stimuli. There were reductions in the probabilities of both active (orientational-investigative, active defensive) and passive defensive (freezing) reactions. The effects of phenibut depended on the typological characteristics of the rabbits: its actions on behavior were most marked in active rabbits and were less marked in passive animals; phenibut had virtually no effect on the behavior of intermediate rabbits. The duration of inhalation by the rabbits on exposure to emotionally significant stimuli increased after phenibut, which contrasted with a reduction seen in normal animals; this is evidence for changes in the autonomic reactivity of the animals.

  11. 2q36.3 is associated with prognosis for oestrogen receptor-negative breast cancer patients treated with chemotherapy.

    PubMed

    Li, Jingmei; Lindström, Linda S; Foo, Jia N; Rafiq, Sajjad; Schmidt, Marjanka K; Pharoah, Paul D P; Michailidou, Kyriaki; Dennis, Joe; Bolla, Manjeet K; Wang, Qin; Van 't Veer, Laura J; Cornelissen, Sten; Rutgers, Emiel; Southey, Melissa C; Apicella, Carmel; Dite, Gillian S; Hopper, John L; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Blomqvist, Carl; Muranen, Taru A; Aittomäki, Kristiina; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Hartikainen, Jaana M; Kataja, Vesa; Chenevix-Trench, Georgia; Phillips, Kelly-Anne; McLachlan, Sue-Anne; Lambrechts, Diether; Thienpont, Bernard; Smeets, Ann; Wildiers, Hans; Chang-Claude, Jenny; Flesch-Janys, Dieter; Seibold, Petra; Rudolph, Anja; Giles, Graham G; Baglietto, Laura; Severi, Gianluca; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Kristensen, Vessela; Alnæs, Grethe I Grenaker; Borresen-Dale, Anne-Lise; Nord, Silje; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robert; Seynaeve, Caroline; Hooning, Maartje; Kriege, Mieke; Hollestelle, Antoinette; van den Ouweland, Ans; Li, Yi; Hamann, Ute; Torres, Diana; Ulmer, Hans U; Rüdiger, Thomas; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Chen, Shou-Tung; Teo, Soo Hwang; Taib, Nur Aishah Mohd; Har Yip, Cheng; Fuang Ho, Gwo; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Maishman, Tom; Tapper, William J; Dunning, Alison; Shah, Mitul; Luben, Robert; Brown, Judith; Khor, Chiea Chuen; Eccles, Diana M; Nevanlinna, Heli; Easton, Douglas; Humphreys, Keith; Liu, Jianjun; Hall, Per; Czene, Kamila

    2014-06-17

    Large population-based registry studies have shown that breast cancer prognosis is inherited. Here we analyse single-nucleotide polymorphisms (SNPs) of genes implicated in human immunology and inflammation as candidates for prognostic markers of breast cancer survival involving 1,804 oestrogen receptor (ER)-negative patients treated with chemotherapy (279 events) from 14 European studies in a prior large-scale genotyping experiment, which is part of the Collaborative Oncological Gene-environment Study (COGS) initiative. We carry out replication using Asian COGS samples (n=522, 53 events) and the Prospective Study of Outcomes in Sporadic versus Hereditary breast cancer (POSH) study (n=315, 108 events). Rs4458204_A near CCL20 (2q36.3) is found to be associated with breast cancer-specific death at a genome-wide significant level (n=2,641, 440 events, combined allelic hazard ratio (HR)=1.81 (1.49-2.19); P for trend=1.90 × 10(-9)). Such survival-associated variants can represent ideal targets for tailored therapeutics, and may also enhance our current prognostic prediction capabilities.

  12. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains.

    PubMed

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains.

  13. [Study on effect of total matrines and extracts from Periplaneta americana on negative endometrial cancer cell JEC of progesterone receptors].

    PubMed

    Zhang, Xiao-wei; Zhu, Yan

    2015-06-01

    To study the effect of total matrines and extracts from Periplaneta americana on negative endometrial cancer cell JEC of progesterone receptors. After detecting the effect of total matrine, extracts from P. americana and their combination on JEC cells' growth inhibition, cell cycle, P53 and c-erbB-2 gene protein expressions through MTT, flow cytometry instrument and Western blot method, the author found that, (1) MTT: total matrines and extracts from P. americana could inhibit the growth of JEC cell, with significant increase in the inhibitory effect in the combination group. (2) Flow cytometry instrument: the cell cycle at G0/G1 increased after the treatment with total matrines, the cell cycle at G2/M increased after the treatment with extracts from periplaneta americana, and the ratio of G0/G1 cell cycle in the combination group was significantly higher than the other groups, with inhibition in cell growth and statistical difference in inter-group comparison (P < 0.05). (3) Western blot: the expression level of P53 increased and c-erbB-2 decreased after the treatment with total matrines, extracts from P. americana and their combination on JEC cell, with statistical difference in inter-group comparison (P < 0.05). The above results suggested that total matrines, extracts from P. americana and their combination could induce cell cycle arrest and inhibit the growth of JEC cell by up-regulating P53 and down-regulating the c-erbB-2 level.

  14. Negative regulatory elements upstream of a novel exon of the neuronal nicotinic acetylcholine receptor alpha 2 subunit gene.

    PubMed Central

    Bessis, A; Savatier, N; Devillers-Thiéry, A; Bejanin, S; Changeux, J P

    1993-01-01

    The expression of the nicotinic acetylcholine receptor alpha 2 subunit gene is highly restricted to the Spiriform lateralis nucleus of the Chick diencephalon. As a first step toward understanding the molecular mechanism underlying this regulation, we have investigated the structural and regulatory properties of the 5' sequence of this gene. A strategy based on the ligation of an oligonucleotide to the first strand of the cDNA (SLIC) followed by PCR amplification was used. A new exon was found approximately 3kb upstream from the first coding exon, and multiple transcription start sites of the gene were mapped. Analysis of the flanking region shows many consensus sequences for the binding of nuclear proteins, suggesting that the 1 kb flanking region contains at least a portion of the promoter of the gene. We have analysed the negative regulatory elements present within this region and found that a silencer region located between nucleotide -144 and +76 is active in fibroblasts as well as in neurons. This silencer is composed of six tandem repeat Oct-like motifs (CCCCATGCAAT), but does not bind any member of the Oct family. Moreover these motifs were found to act as a silencer only when they were tandemly repeated. When two, four or five motifs were deleted, the silencer activity of the motifs unexpectedly became an enhancer activity in all cells we have tested. Images PMID:8502560

  15. Vascular endothelial (VEGF) and epithelial growth factor (EGF) as well as platelet-activating factor (PAF) and receptors are expressed in the early pregnant canine uterus.

    PubMed

    Schäfer-Somi, S; Sabitzer, S; Klein, D; Reinbacher, E; Kanca, H; Beceriklisoy, H B; Aksoy, O A; Kucukaslan, I; Macun, H C; Aslan, S

    2013-02-01

    The aim of this study was to investigate the course of expression of platelet-activating factor (PAF), PAF-receptor (PAF-R), epidermal growth factor (EGF), EGF-R, vascular endothelial growth factor (VEGF), VEGF-R1 and VEGF-R2 in uterine tissue during canine pregnancy. For this purpose, 20 bitches were ovariohysterectomized at days 10-12 (n = 10), 18-25 (n = 5) and 28-45 (n = 5) days after mating, respectively. The pre-implantation group was proven pregnant by embryo flushing of the uterus after the operation, the others by sonography. Five embryo negative, that is, non-pregnant, bitches in diestrus (day 10-12) served as controls. Tissue samples from the uterus (placentation sites and horn width, respectively) were excised and snap-frozen in liquid nitrogen after embedding in Tissue Tec(®). Extraction of mRNA for RT-PCR was performed with Tri-Reagent. In the embryos, mRNA from all factors except VEGF was detected. In the course of pregnancy, significantly higher expression of PAF and PAFR as well as VEGF and VEGFR2 during the pre-implantation stage than in all other stages and a strong upregulation of EGF during implantation were characteristic. The course of EGF was in diametrical opposition to the course of the receptor. These results point towards an increased demand for VEGF, EGF and PAF during the earliest stages of canine pregnancy.

  16. Correlates of Chilean Adolescents’ Negative Attitudes Toward Cigarettes: The Role of Gender, Peer, Parental, and Environmental Factors

    PubMed Central

    Bares, Cristina; Delva, Jorge

    2012-01-01

    Introduction: We examined the association of peer, parental, and environmental factors with negative attitudes toward cigarettes among youth from Santiago, Chile. Methods: A total of 860 youth from Santiago, Chile, completed questions regarding their lifetime use of cigarettes, intentions to smoke, attitudes toward cigarettes, and questions that assessed peer, parental, and environmental factors. Results: For both boys and girls, peer disapproval of smoking was associated with more negative attitudes toward cigarettes and peer smoking was associated with less negative attitudes toward cigarettes. Peer pressure was significantly associated with more negative attitudes toward cigarettes for girls only. Parental smoking was associated with less negative attitudes and parental control with more negative attitudes, but these associations were significant in the overall sample only. School prevention efforts and exposure to cigarette ads were not associated with cigarette attitudes. Difficulty in accessing cigarettes was positively associated with negative attitudes for boys and girls. Conclusion: Smoking prevention efforts focus on attitude change, but scant information is available about the experiences that influence Chilean youth’s attitudes toward cigarettes. Results from the current study suggest that prevention efforts could benefit from gender-specific strategies. Girls’ but not boys’ attitudes were influenced by peer pressure. Moreover, negative attitudes toward cigarettes were associated with lower current smoking in girls only. Parental smoking was an important influence on youth’s attitudes toward cigarettes. Efforts to reduce smoking among Chilean youth may benefit from concurrently reducing parental smoking. PMID:22157230

  17. Identification of PLXDC1 and PLXDC2 as the transmembrane receptors for the multifunctional factor PEDF

    PubMed Central

    Cheng, Guo; Zhong, Ming; Kawaguchi, Riki; Kassai, Miki; Al-Ubaidi, Muayyad; Deng, Jun; Ter-Stepanian, Mariam; Sun, Hui

    2014-01-01

    Pigment Epithelium Derived Factor (PEDF) is a secreted factor that has broad biological activities. It was first identified as a neurotrophic factor and later as the most potent natural antiangiogenic factor, a stem cell niche factor, and an inhibitor of cancer cell growth. Numerous animal models demonstrated its therapeutic value in treating blinding diseases and diverse cancer types. A long-standing challenge is to reveal how PEDF acts on its target cells and the identities of the cell-surface receptors responsible for its activities. Here we report the identification of transmembrane proteins PLXDC1 and PLXDC2 as cell-surface receptors for PEDF. Using distinct cellular models, we demonstrate their cell type-specific receptor activities through loss of function and gain of function studies. Our experiments suggest that PEDF receptors form homooligomers under basal conditions, and PEDF dissociates the homooligomer to activate the receptors. Mutations in the intracellular domain can have profound effects on receptor activities. DOI: http://dx.doi.org/10.7554/eLife.05401.001 PMID:25535841

  18. Postnatal expression of nerve growth factor receptors in the rat testis.

    PubMed

    Djakiew, D; Pflug, B; Dionne, C; Onoda, M

    1994-08-01

    Because nerve growth factor beta (NGF beta) and its corresponding receptors have been implicated in the paracrine regulation of spermatogenesis, we examined the postnatal developmental expression of the low- and high-affinity NGF receptors in the rat testis, and localized their expression to specific testicular cell types. The neurotropin receptors consist of a low-affinity p75 nerve growth factor receptor (LNGFR) and a family of high-affinity tyrosine receptor kinases (trk). Both the p75 LNGFR gene product and the trk receptor gene product were detected in immature rat testes, with maximal expression in 10- and 20-day-old rats. Expression of the testicular p75 LNGFR and the trk receptor progressively declined in older animals so that they were barely detectable in 90-day-old adult rats. The 75-kDa LNGFR was detected in membrane fractions of Sertoli cells, whereas the p75 LNGFR was not detected by Western blot in membrane fractions of round spermatids and primary spermatocytes. Interestingly, microsomal fractions of peritubular myoid cells were immunoreactive for a 65-kDa band on Western blots with the p75 LNGFR monoclonal antibody. Immunoblot analysis of the trk receptor in cell lysates of isolated cell types was inconclusive. Excess NGF beta and round spermatid protein, which is known to contain a NGF-like protein, were both capable of displacing the binding of 125I-NGF beta from the surface of Sertoli cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    SciTech Connect

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers