Sample records for factor receptor paf-r-dependent

  1. Platelet-activating factor receptor (PAF-R)-dependent pathways control tumour growth and tumour response to chemotherapy

    PubMed Central

    2010-01-01

    Background Phagocytosis of apoptotic cells by macrophages induces a suppressor phenotype. Previous data from our group suggested that this occurs via Platelet-activating factor receptor (PAF-R)-mediated pathways. In the present study, we investigated the impact of apoptotic cell inoculation or induction by a chemotherapeutic agent (dacarbazine, DTIC) on tumour growth, microenvironmental parameters and survival, and the effect of treatment with a PAF-R antagonist (WEB2170). These studies were performed in murine tumours: Ehrlich Ascitis Tumour (EAT) and B16F10 melanoma. Methods Tumour growth was assessed by direct counting of EAT cells in the ascitis or by measuring the volume of the solid tumour. Parameters of the tumour microenvironment, such as the frequency of cells expressing cyclo-oxygenase-2 (COX-2), caspase-3 and galectin-3, and microvascular density, were determined by immunohistochemistry. Levels of vascular endothelium growth factor (VEGF) and prostaglandin E2 (PGE2) were determined by ELISA, and levels of nitric oxide (NO) by Griess reaction. PAF-R expression was analysed by immunohistochemistry and flow cytometry. Results Inoculation of apoptotic cells before EAT implantation stimulated tumour growth. This effect was reversed by in vivo pre-treatment with WEB2170. This treatment also reduced tumour growth and modified the microenvironment by reducing PGE2, VEGF and NO production. In B16F10 melanoma, WEB2170 alone or in association with DTIC significantly reduced tumour volume. Survival of the tumour-bearing mice was not affected by WEB2170 treatment but was significantly improved by the combination of DTIC with WEB2170. Tumour microenvironment elements were among the targets of the combination therapy since the relative frequency of COX-2 and galectin-3 positive cells and the microvascular density within the tumour mass were significantly reduced by treatment with WEB2170 or DTIC alone or in combination. Antibodies to PAF-R stained the cells from inside

  2. A platelet-activating factor (PAF) receptor deficiency exacerbates diet-induced obesity but PAF/PAF receptor signaling does not contribute to the development of obesity-induced chronic inflammation.

    PubMed

    Yamaguchi, Masahiko; Matsui, Masakazu; Higa, Ryoko; Yamazaki, Yasuhiro; Ikari, Akira; Miyake, Masaki; Miwa, Masao; Ishii, Satoshi; Sugatani, Junko; Shimizu, Takao

    2015-02-15

    Platelet-activating factor (PAF) is a well-known phospholipid that mediates acute inflammatory responses. In the present study, we investigated whether PAF/PAF receptor signaling contributed to chronic inflammation in the white adipose tissue (WAT) of PAF receptor-knockout (PAFR-KO) mice. Body and epididymal WAT weights were higher in PAFR-KO mice fed a high-fat diet (HFD) than in wild-type (WT) mice. TNF-α mRNA expression levels in epididymal WAT and the infiltration of CD11c-positive macrophages into epididymal WAT, which led to chronic inflammation, were also elevated in HFD-fed PAFR-KO mice. HFD-fed PAFR-KO mice had higher levels of fasting serum glucose than HFD-fed WT mice as well as impaired glucose tolerance. Although PAF receptor signaling up-regulated the expression of TNF-α and lipopolysaccharide induced the expression of acyl-CoA:lysophosphatidylcholine acyltransferase 2 (LPCAT2) mRNA in bone marrow-derived macrophages, no significant differences were observed in the expression of LPCAT2 mRNA and PAF levels in epididymal WAT between HFD-fed mice and normal diet-fed mice. In addition to our previous finding in which energy expenditure in PAF receptor (PAFR)-deficient mice was low due to impaired brown adipose tissue function, the present study demonstrated that PAF/PAF receptor signaling up-regulated the expression of Ucp1 mRNA, which is essential for cellular thermogenesis, in 3T3-L1 adipocytes. We concluded that the marked accumulation of abdominal fat due to HFD feeding led to more severe chronic inflammation in WAT, which is associated with glucose metabolism disorders, in PAFR-KO mice than in WT mice, and PAF/PAF receptor signaling may regulate energy expenditure and adiposity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Platelet-Activating Factor (PAF) Receptor Antagonism Modulates Inflammatory Signaling in Experimental Uveitis.

    PubMed

    Elison, Jasmine R; Weinstein, Jessica E; Sheets, Kristopher G; Regan, Cornelius E; Lentz, Jennifer J; Reinoso, Maria; Gordon, William C; Bazan, Nicolas G

    2018-04-11

    The phospholipid mediator platelet-activating factor (PAF) activates an inflammatory response that includes arachidonic acid release and prostaglandin production in the eye, increasing vascular permeability and inflammation. The purpose of this study is to investigate the action of LAU-0901, a novel PAF receptor antagonist, on experimental uveitis. Uveitis was induced in Lewis rats by lipopolysaccharide treatment. LAU-0901 was then delivered systemically in different concentrations at plus 4 and 16 hours, or vehicle injected as controls. Additional animals were used for histological analyses of untreated, uveitis, and uveitis-plus-LAU-0901 retinas. Conventional histological and immunohistochemical methods were employed. A slit lamp and Spectral Domain-Ocular Coherence Tomography (SD-OCT) retinal imager was used for anterior segment photography and posterior pole OCT. Rats were euthanized 4 hours after the second LAU-0901 injection in this 24-hour model. Aqueous humor was collected and quantified, and also analyzed for tumor necrosis factor alpha (TNF-α). Uveitic eyes demonstrated hypopyon formation, leukocyte infiltration, and an increase in aqueous protein and TNF-α levels. LAU-0901 treatment resulted in a dose-dependent reduction in inflammation, reflected by reduced total protein levels (up to a 64% reduction). Moreover, hypopyon was prevented, leukocytes were absent in vitreous and aqueous humor, and TNF-α levels were reduced by 91%. The PAF receptor antagonist LAU-0901 decreases ocular inflammation in a rat model of anterior uveitis in a dose-dependent manner, suggesting that use of this molecule may provide a means to attenuate inflammation onset and offer a future alternative or adjunctive treatment for ocular inflammation.

  4. Paf receptor expression in the marsupial embryo and endometrium during embryonic diapause.

    PubMed

    Fenelon, Jane C; Shaw, Geoff; O'Neill, Chris; Frankenberg, Stephen; Renfree, Marilyn B

    2014-01-01

    The control of reactivation from embryonic diapause in the tammar wallaby (Macropus eugenii) involves sequential activation of the corpus luteum, secretion of progesterone that stimulates endometrial secretion and subsequent changes in the uterine environment that activate the embryo. However, the precise signals between the endometrium and the blastocyst are currently unknown. In eutherians, both the phospholipid Paf and its receptor, platelet-activating factor receptor (PTAFR), are present in the embryo and the endometrium. In the tammar, endometrial Paf release in vitro increases around the time of the early progesterone pulse that occurs around the time of reactivation, but whether Paf can reactivate the blastocyst is unknown. We cloned and characterised the expression of PTAFR in the tammar embryo and endometrium at entry into embryonic diapause, during its maintenance and after reactivation. Tammar PTAFR sequence and protein were highly conserved with mammalian orthologues. In the endometrium, PTAFR was expressed at a constant level in the glandular epithelium across all stages and in the luminal epithelium during both diapause and reactivation. Thus, the presence of the receptor appears not to be a limiting factor for Paf actions in the endometrium. However, the low levels of PTAFR in the embryo during diapause, together with its up-regulation and subsequent internalisation at reactivation, supports earlier results suggesting that endometrial Paf could be involved in reactivation of the tammar blastocyst from embryonic diapause.

  5. A Novel Platelet-Activating Factor Receptor Antagonist Inhibits Choroidal Neovascularization and Subretinal Fibrosis

    PubMed Central

    Zhang, Han; Yang, Yang; Takeda, Atsunobu; Yoshimura, Takeru; Oshima, Yuji; Sonoda, Koh-Hei; Ishibashi, Tatsuro

    2013-01-01

    Choroidal neovascularization (CNV) is a critical pathogenesis in age-related macular degeneration (AMD), the most common cause of blindness in developed countries. To date, the precise molecular and cellular mechanisms underlying CNV have not been elucidated. Platelet-activating factor (PAF) has been previously implicated in angiogenesis; however, the roles of PAF and its receptor (PAF-R) in CNV have not been addressed. The present study reveals several important findings concerning the relationship of the PAF-R signaling with CNV. PAF-R was detected in a mouse model of laser-induced CNV and was upregulated during CNV development. Experimental CNV was suppressed by administering WEB2086, a novel PAF-R antagonist. WEB2086-dependent suppression of CNV occurred via the inhibition of macrophage infiltration and the expression of proangiogenic (vascular endothelial growth factor) and proinflammatory molecules (monocyte chemotactic protein-1 and IL-6) in the retinal pigment epithelium–choroid complex. Additionally, WEB2086-induced PAF-R blockage suppresses experimentally induced subretinal fibrosis, which resembles the fibrotic subretinal scarring observed in neovascular AMD. As optimal treatment modalities for neovascular AMD would target the multiple mechanisms of AMD-associated vision loss, including neovascularization, inflammation and fibrosis, our results suggest PAF-R as an attractive molecular target in the treatment of AMD. PMID:23826375

  6. Effect of BN 52021, a specific antagonist of platelet activating factor (PAF-acether), on calcium movements and phosphatidic acid production induced by PAF-acether in human platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, M.F.; Chap, H.; Braquet, P.

    1987-02-15

    /sup 32/P-labelled human platelets loaded with quin 2 and pretreated with aspirin were stimulated with 1-100 nM platelet activating factor (PAF-acether or 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in a medium containing the ADP-scavenging system creatine phosphate/creatine phosphokinase. Under these conditions, PAF-acether evoked a characteristic fluorescence change allowing to quantify elevations in cytoplasmic free Ca/sup 2 +/ from internal stores (Ca/sup 2 +/ mobilization) or from external medium (Ca/sup 2 +/ influx), as well as an increased production of phosphatidic acid, reflecting phospholipase C activation. These effects, which can be attributed to PAF-acether only and not to released products such as ADP or thromboxane A2,more » were strongly inhibited in a dose-dependent manner by BN 52021, a specific antagonist of PAF-acether isolated from Ginkgo biloba. As the drug remained inactive against the same effects elicited by thrombin, it is concluded that BN 52021 does not interfere directly with the mechanism of transmembrane signalling involving inositol-phospholipids or (and) some putative receptor-operated channels, but rather acts on the binding of PAF-acether to its presumed membrane receptor.« less

  7. Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants.

    PubMed

    Jantan, I; Rafi, I A A; Jalil, J

    2005-01-01

    Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).

  8. PAF levels and PAF-AH activities in placentas from normal and preeclamptic pregnancies.

    PubMed

    Gu, Y; Burlison, S A; Wang, Y

    2006-01-01

    The aim of this study was to determine: (1) platelet-activating factor (PAF) levels and PAF-acetylhydrolase (PAF-AH) activities in normal and preeclamptic placentas; (2) lipid peroxide production by placental tissues stimulated with PAF. Placentas were obtained immediately after delivery from normal and preeclamptic pregnancies. Tissue pieces were snap frozen in liquid nitrogen and stored at -70 degrees C. One gram of tissue from each placenta was used for PAF extraction and for total RNA isolation. PAF was measured by PAF [3H] scintillation proximity assay (SPA) system. Trophoblast PAF-AH activity was determined by enzyme-linked immunosorbent assay (ELISA). mRNA expression for PAF receptor was assessed by RNase protection assay (RPA). Normal placental explants were incubated with PAF at concentrations of 1 and 10 microg/ml for 48 h. Lipid peroxide productions of 8-isoprostane and malondialdehyde (MDA) were measured by ELISA and thiobarbituric acid reaction, respectively. Data were presented as mean+/-SE and analyzed by nonparametric Mann-Whitney U test and ANOVA. A p level less than 0.05 was considered statistically significant. (1) The mean tissue level for PAF was elevated, but not statistically different, in preeclamptic (n=7) than in normal (n=8) placentas, 6.45+/-1.05 versus 4.47+/-0.60 ng/g, p=0.42. (2) PAF-AH activity was higher in trophoblasts from preeclamptic (n=7) placentas than that in trophoblasts from normal (n=8) placentas, 0.69+/-0.16 versus 0.38+/-0.03 micromol/min/microg protein, p<0.05. (3) The relative mRNA expression for PAF receptor was not different between normal (0.70+/-0.08) and preeclamptic (0.76+/-0.13) placental tissues, p=0.60. (4) Productions of 8-isoprostane and MDA were not increased in tissues with PAF in culture, 8-isoprostane: 0.37+/-0.09 ng/mg (control) versus 0.32+/-0.09 ng/mg (1 microg/ml) and 0.37+/-0.07 ng/mg (10 microg/ml), p>0.5; MDA: 0.62+/-0.05 nmol/mg (control) versus 0.68+/-0.04 nmol/mg (1 microg/ml) and 0

  9. Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity.

    PubMed

    Yao, Yongxue; Harrison, Kathleen A; Al-Hassani, Mohammed; Murphy, Robert C; Rezania, Samin; Konger, Raymond L; Travers, Jeffrey B

    2012-03-16

    To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.

  10. Yangambin, a lignan obtained from Ocotea duckei, differentiates putative PAF receptor subtypes in the gastrointestinal tract of rats.

    PubMed

    Jesus-Morais, C M; Assis, E F; Cordeiro, R S; Barbosa-Filho, J M; Lima, W T; Silva, Z L; Bozza, P T; Castro-Faria-Neto, H C

    2000-04-01

    We investigated the presence of PAF receptor subtypes in the tissues of the gastrointestinal tract, airways, blood vessels and in murine macrophages. For this purpose we have used a competitive PAF receptor antagonist, yangambin (YAN), extracted from the Brazilian plant "louro de cheiro" (Ocotea duckei Vattimo). Rat duodenum, jejunum, ileum, colon, stomach fundus, trachea and bronchia were removed and 1.5-2 cm muscle segments from those regions were mounted in a 10 ml organ bath with aerated physiological solution at 37 degrees C. PAF evoked a contraction of the rat jejunum, ileum, colon and stomach fundus. The contraction was slow and resistant to wash and was followed by desensitization to further doses of PAF. Contractions induced by PAF (10(-6) M) were inhibited by YAN (10(-7) to M-2 x 10(-5) M) and WEB 2086 (10(-6) m to M-5 M) in rat jejunum, ileum and colon but not in the stomach fundus. In the rat stomach fundus only WEB 2086 (5 x 10(-6) M) was able to block PAF-induced contraction. The contractions induced by acetylcholine, histamine, 5-hydroxytryptamine and vasopressin were not inhibited by prior administration of YAN. Yangambin also significantly inhibited PAF-induced vascular permeability in rat duodenum, jejunum, ileum, colon, and mesentery. Yangambin significantly inhibited PAF-induced lipid body formation in mice peritoneal macrophages. We suggest that YAN is a selective PAF antagonist which is able to discriminate putative PAF receptors subtypes present in the stomach fundus.

  11. PAF53 is essential in mammalian cells: CRISPR/Cas9 fails to eliminate PAF53 expression.

    PubMed

    Rothblum, Lawrence I; Rothblum, Katrina; Chang, Eugenie

    2017-05-15

    When mammalian cells are nutrient and/or growth factor deprived, exposed to inhibitors of protein synthesis, stressed by heat shock or grown to confluence, rDNA transcription is essentially shut off. Various mechanisms are available to accomplish this downshift in ribosome biogenesis. Muramatsu's laboratory (Hanada et al., 1996) first demonstrated that mammalian PAF53 was essential for specific rDNA transcription and that PAF53 levels were regulated in response to growth factors. While S. cerevisae A49, the homologue of vertebrate PAF53, is not essential for viability (Liljelund et al., 1992), deletion of yA49 results in colonies that grow at 6% of the wild type rate at 25°C. Experiments described by Wang et al. (2015) identified PAF53 as a gene "essential for optimal proliferation". However, they did not discriminate genes essential for viability. Hence, in order to resolve this question, we designed a series of experiments to determine if PAF53 was essential for cell survival. We set out to delete the gene product from mammalian cells using CRISPR/CAS9 technology. Human 293 cells were transfected with lentiCRISPR v2 carrying genes for various sgRNA that targeted PAF53. In some experiments, the cells were cotransfected in parallel with plasmids encoding FLAG-tagged mouse PAF53. After treating the transfected cells with puromycin (to select for the lentiCRISPR backbone), cells were cloned and analyzed by western blots for PAF53 expression. Genomic DNA was amplified across the "CRISPRd" exon, cloned and sequenced to identify mutated PAF53 genes. We obtained cell lines in which the endogenous PAF53 gene was "knocked out" only when we rescued with FLAG-PAF53. DNA sequencing demonstrated that in the absence of ectopic PAF53 expression, cells demonstrated unique means of surviving; including recombination or the utilization of alternative reading frames. We never observed a clone in which one PAF53 gene is expressed, unless there was also ectopic expression In the

  12. Bacterial clearance is improved in septic mice by platelet-activating factor-acetylhydrolase (PAF-AH) administration.

    PubMed

    Teixeira-da-Cunha, Mariana G A; Gomes, Rachel N; Roehrs, Nathassia; Bozza, Fernando A; Prescott, Stephen M; Stafforini, Diana; Zimmerman, Guy A; Bozza, Patricia T; Castro-Faria-Neto, Hugo C

    2013-01-01

    Current evidence indicates that dysregulation of the host inflammatory response to infectious agents is central to the mortality of patients with sepsis. Strategies to block inflammatory mediators such as PAF have been investigated as adjuvant therapies for sepsis. PAF-AH, the enzyme responsible for PAF degradation, showed positive results in pre-clinical studies and phase II clinical trials, but the results of a phase III study were disappointing. In this study, we investigated the potential protective mechanism of PAF-AH in sepsis using the murine model of cecal ligation and puncture (CLP). Treatment with rPAF-AH increased peritoneal fluid levels of the anti-inflammatory mediators MCP-1/CCL2 after CLP. The numbers of bacteria (CFU) in the peritoneal cavity were decreased in the rPAF-AH-treated group, indicating more efficient bacterial clearance after rPAF-AH treatment. Interestingly, we observed increased levels of nitric oxide (NO) after PAF-AH administration, and rPAF-AH treatment did not decrease CFU numbers either in iNOS-deficient mice or in CCR2-deficient mice. We concluded that administration of exogenous rPAF-AH reduced inflammatory injury, altered cytokine levels and favored bacterial clearance with a clear impact on mortality through modulation of MCP-1/CCL2 and NO levels in a clinically relevant sepsis model.

  13. Platelet Activating Factor (PAF) Receptor Deletion or Antagonism Attenuates Severe HSV-1 Meningoencephalitis.

    PubMed

    Vilela, Márcia Carvalho; Lima, Graciela Kunrath; Rodrigues, David Henrique; Lacerda-Queiroz, Norinne; Pedroso, Vinicius Sousa Pietra; de Miranda, Aline Silva; Rachid, Milene Alvarenga; Kroon, Erna Geessien; Campos, Marco Antônio; Teixeira, Mauro Martins; Teixeira, Antonio Lucio

    2016-12-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen that may cause severe encephalitis. The exacerbated immune response against the virus contributes to the disease severity and death. Platelet activating factor (PAF) is a mediator capable of inducing increase in vascular permeability, production of cytokines on endothelial cells and leukocytes. We aimed to investigate the activation of PAF receptor (PAFR) and its contribution to the severity of the inflammatory response in the brain following HSV-1 infection. C57BL/6 wild-type (WT) and PAFR deficient (PAFR -/- ) mice were inoculated intracranially with 10 4 plaque-forming units (PFU) of HSV-1. Visualization of leukocyte recruitment was performed using intravital microscopy. Cells infiltration in the brain tissue were analyzed by flow cytometry. Brain was removed for chemokine assessment by ELISA and for histopathological analysis. The pharmacological inhibition by the PAFR antagonist UK-74,505 was also analyzed. In PAFR -/- mice, there was delayed lethality but no difference in viral load. Histopathological analysis of infected PAFR -/- mice showed that brain lesions were less severe when compared to their WT counterparts. Moreover, PAFR -/- mice showed less TCD4 + , TCD8 + and macrophages in brain tissue. This reduction of the presence of leukocytes in parenchyma may be mechanistically explained by a decrease in leukocytes rolling and adhesion. PAFR -/- mice also presented a reduction of the chemokine CXCL9 in the brain. In addition, by antagonizing PAFR, survival of C57BL/6 infected mice increased. Altogether, our data suggest that PAFR plays a role in the pathogenesis of experimental HSV-1 meningoencephalitis, and its blockade prevents severe disease manifestation.

  14. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression.

    PubMed

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X; Walterscheid, Jeffrey P; Ullrich, Stephen E

    2004-03-15

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependent manner. The release of biological response modifiers, particularly prostaglandin E2 (PGE2), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE2 secretion. Jet fuel-induced PGE2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin.

  15. Possible involvement of endothelium-derived hyperpolarizing factor (EDHF) in the depressor responses to platelet activating factor (PAF) in rats

    PubMed Central

    Tanaka, Yoshio; Hayakawa, Sachiko; Imai, Toshiyasu; Akutsu, Aya; Hirano, Haruko; Tanaka, Hikaru; Nakahara, Tsutomu; Ishii, Kunio; Shigenobu, Koki

    2000-01-01

    In anaesthetized rats, platelet activating factor (PAF; 1 μg kg−1) decreased mean arterial blood pressure by around 60 mmHg (n=18). This depressor response was completely blocked by the PAF antagonist, CV-6209 (1 mg kg−1), indicating the role of PAF-specific receptor in the response.NG-nitro-L-arginine methyl ester (L-NAME; 50 mg kg−1), an NO synthase inhibitor, profoundly elevated systemic blood pressure (n=19), indicating an important role of NO in the basal blood pressure regulation. The depressor response to PAF (1 μg kg−1) normalized against that to sodium nitroprusside (SNP) (10 μg kg−1) was not substantially different between rats treated without and with L-NAME (n=4). In contrast, the depressor effect of acetylcholine (0.03–1.0 μg kg−1) normalized against that of SNP (10 μg kg−1) was significantly attenuated by L-NAME (n=5).Charybdotoxin (0.4 mg kg−1) plus apamin (0.2 mg kg−1) significantly attenuated the depressor response to PAF (1 μg kg−1) (n=5) without affecting the blood pressure change due to SNP (1 mg kg−1) (n=3). Charybdotoxin (0.4 mg kg−1) (n=4) or apamin (0.2 mg kg−1) (n=4) alone did not affect the PAF-induced depressor response.These findings suggest that EDHF may make a significant contribution to the depressor response to PAF in rats. Although NO plays the determinant role in the basal blood pressure regulation, its contribution to PAF-produced depressor response seems to be less as compared with that to the depressor response to acetylcholine. PMID:11082118

  16. Cigarette smoke exposure inhibits contact hypersensitivity via the generation of platelet activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Petrache, Irina; Van Demark, Mary J; Rashid, Badri M.; Ocana, Jesus A.; Tang, Yuxuan; Yi, Qiaofang; Turner, Matthew J.; Konger, Raymond L.; Travers, Jeffrey B.

    2013-01-01

    Previous studies have established that pro-oxidative stressors suppress host immunity due to their ability to generate oxidized lipids with PAF-receptor (PAF-R) agonist activity. Although exposure to the pro-oxidative stressor cigarette smoke (CS) is known to exert immunomodulatory effects, little is known regarding the role of platelet-activating factor (PAF) in these events. The current studies sought to determine the role of PAF-R signaling in CS-mediated immunomodulatory effects. We demonstrate that CS exposure induces the generation of a transient PAF-R agonistic activity in the blood of mice. CS exposure inhibits contact hypersensitivity in a PAF-R-dependent manner as PAF-R-deficient mice were resistant to these effects. Blocking PAF-R agonist production either by systemic antioxidants or treatment with serum PAF-acetyl hydrolase enzyme blocked both the CS-mediated generation of PAF-R-agonists and PAF-R dependent inhibition of CHS reactions, indicating a role for oxidized glycerophosphocholines with PAF-R agonistic activity in this process. In addition, cyclooxygenase-2 (COX-2) inhibition did not block PAF-R agonist production but prevented CS-induced inhibition of CHS. This suggests that COX-2 acts downstream of the PAF-R in mediating CS-induced systemic immunosuppression. Moreover, CS-exposure induced a significant increase in the expression of the regulatory T cell reporter gene in FoxP3EGFP mice but not in FoxP3EGFP mice on a PAF-R-deficient background. Finally, Treg depletion via anti-CD25 antibodies blocked CS-mediated inhibition of CHS, indicating the potential involvement of Tregs in CS-mediated systemic immunosuppression. These studies provide the first evidence that the pro-oxidative stressor CS can modulate cutaneous immunity via the generation of PAF-R agonists produced through lipid oxidation. PMID:23355733

  17. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF ormore » thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).« less

  18. Platelet-activating factor acether (PAF-acether) involvement in acute inflammatory and pain processes.

    PubMed

    Bonnet, J; Loiseau, A M; Orvoen, M; Bessin, P

    1981-12-01

    PAF-acether is a potent aggregating agent released by various cells involved in acute inflammatory process. In this paper, exogenous PAF-acether has been investigated for its ability to generate signs of inflammation (edema measured by plethysmometry) and hyperalgesia (Randall-Sellito test) by standard subplantar injection in the rat paw. From 0.005 microgram. PAF-acether induced significant edema of the paw, maximal 1 hour after injection; it was dose-dependent from 0.1 to 5 microgram. Significant dose-dependent hyperalgesia occurred from 1.25 microgram; it reached a plateau from 2 to 4 hours after injection. Both phenomena were long-lasting (greater than 6 h). PAF-acether was 1.5 to 10 times stronger than PGI2 and PGE2 in inducing edema, pain, and in increasing vascular permeability. We investigated the interaction of miscellaneous drugs with the edema and the hyperalgesia caused by 2.5 microgram of PAF-acether. Non-steroidal anti-inflammatory (NSAI) drugs exerted only moderate effects on the edema without affecting hyperalgesia. Edema was highly reduced by various agents: prednisolone, L-cysteine, anti-calcic drugs, theophylline, PGI2, salbutamol, clonidine. All of them, except clonidine, and in contrast to NSAI drugs, were more potent on PAF-acether edema than on kaolin edema; a possible link between these agents is their ability to increase cyclic AMP levels in the cells and consequently to reduce lysosomal enzyme release. PAF-acether itself, injected intra-peritoneally, inhibited PAF-acether edema without preventing pain, at doses inactive on arterial pressure and hematocrit, but inducing marked gastric mucosal damage. Among the drugs tested, including analgesics, only PGI2 and imidazole improved PAF-induced hyperalgesia, showing a dissociation between edema and hyperalgesia not only in their induction (doses of PAF required, time course of the phenomena), but in the drugs able to antagonize their development too.

  19. Activation of PAF-synthesizing enzymes in rat brain stem slices after LTP induction in the medial vestibular nuclei.

    PubMed

    Francescangeli, Ermelinda; Grassi, Silvarosa; Pettorossi, Vito E; Goracci, Gianfrancesco

    2002-11-01

    LysoPAF acetyltransferase (lysoPAF-AT) and PAF-synthesizing phosphocholinetransferase (PAF-PCT) are the two enzymes which catalyze the final reactions for the synthesis of PAF. Their activities, assayed in the homogenate of rat brain stem slices and under their optimal conditions, increased 5 min after high frequency stimulation of vestibular afferents, inducing LTP in the medial vestibular nuclei. The activity of phosphatidylcholine-synthesizing phosphocholinetransferase, was not affected. Sixty minutes from the induction of LTP, PAF-PCT activity, but not that of lysoPAF-AT, was still significantly higher with respect to 5 min test stimulated control. We used AP-5 to verify whether this increase was strictly dependent upon LTP induction, which requires NMDA receptor activation. In AP-5 treated slices, lysoPAF-acetyltransferase and PAF-synthesizing phosphocholinetransferase activities increased, but they were reduced after high frequency stimulation under AP-5. In conclusion, we have demonstrated that the activities of PAF-synthesizing enzymes are activated soon after the induction of LTP and that this effect is linked to the activation of NMDA-receptors. We suggest that the enzyme activation by AP-5, preventing LTP, might be due to glutamate enhancement but, in neurons showing LTP and under normal conditions, the activation of potentiation mechanisms is critical for the enhancement of enzyme activities.

  20. Activation and desensitization of platelets by platelet-activating factor (PAF) derived from IgE-sensitized basophils. I. Characteristics of the secretory response

    PubMed Central

    1976-01-01

    The secretion of vasoactive amines from rabbit platelets induced by the platelet-activating factor (PAF) derived from IgE-sensitized rabbit basophils, was examined. The secretion required calcium has previously been shown to be noncytotoxic and was optimal in both rate and extent at 37 degrees C and pH 7.2. Different temperature-sensitive steps were rate limiting for secretion above or below 20 degrees C. The rate of secretion was dependent upon the concentration of PAF and also of platelets. Maximal rates were observed with relatively low concentrations of platelets (2.5 X 10(8)/ml), sharply contrasting with other platelet stimuli such as C3 or thrombin. The extent of secretion was dependent upon PAF concentration until a maximum of 50 or 60% of the serotonin was released and then declined with increasing amounts of PAF. This was interpreted to result from the platelets becoming desensitized to the PAF, a process that shuts off the secretion. Such a desensitization was demonstrated and was shown to be stimulus specific, i.e., other stimuli could still induce secretion from PAF-desensitized platelets. PAF extracted with ethanol from the albumin to which it is usually bound during preparation, exhibited similar characteristics, except that secretion of up to 90% of the serotonin was induced. The extracted PAF thus seemed less able to induce the desensitization. Its use did provide important evidence that populations of rabbit platelets are relatively homogenous in their ability to respond to PAF. PMID:3618

  1. Structural basis for signal recognition and transduction by platelet-activating-factor receptor.

    PubMed

    Cao, Can; Tan, Qiuxiang; Xu, Chanjuan; He, Lingli; Yang, Linlin; Zhou, Ye; Zhou, Yiwei; Qiao, Anna; Lu, Minmin; Yi, Cuiying; Han, Gye Won; Wang, Xianping; Li, Xuemei; Yang, Huaiyu; Rao, Zihe; Jiang, Hualiang; Zhao, Yongfang; Liu, Jianfeng; Stevens, Raymond C; Zhao, Qiang; Zhang, Xuejun C; Wu, Beili

    2018-06-01

    Platelet-activating-factor receptor (PAFR) responds to platelet-activating factor (PAF), a phospholipid mediator of cell-to-cell communication that exhibits diverse physiological effects. PAFR is considered an important drug target for treating asthma, inflammation and cardiovascular diseases. Here we report crystal structures of human PAFR in complex with the antagonist SR 27417 and the inverse agonist ABT-491 at 2.8-Å and 2.9-Å resolution, respectively. The structures, supported by molecular docking of PAF, provide insights into the signal-recognition mechanisms of PAFR. The PAFR-SR 27417 structure reveals an unusual conformation showing that the intracellular tips of helices II and IV shift outward by 13 Å and 4 Å, respectively, and helix VIII adopts an inward conformation. The PAFR structures, combined with single-molecule FRET and cell-based functional assays, suggest that the conformational change in the helical bundle is ligand dependent and plays a critical role in PAFR activation, thus greatly extending knowledge about signaling by G-protein-coupled receptors.

  2. Opposing Effects of Platelet-Activating Factor and Lyso-Platelet-Activating Factor on Neutrophil and Platelet ActivationS⃞

    PubMed Central

    Welch, Emily J.; Naikawadi, Ram P.; Li, Zhenyu; Lin, Phoebe; Ishii, Satoshi; Shimizu, Takao; Tiruppathi, Chinnaswamy; Du, Xiaoping; Subbaiah, Papasani V.; Ye, Richard D.

    2009-01-01

    Platelet-activating factor (PAF) is a potent, bioactive phospholipid that acts on multiple cells and tissues through its G protein-coupled receptor (GPCR). PAF is not stored but is rapidly generated via enzymatic acetylation of the precursor 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). The bioactivity of PAF is effectively and tightly regulated by PAF acetylhydrolases, which convert PAF back to lysoPAF. Previous studies report that lysoPAF is an inactive precursor and metabolite of PAF. However, lysoPAF has not been carefully studied in its own context. Here we report that lysoPAF has an opposing effect of PAF in the activation of neutrophils and platelets. Whereas PAF potentiates neutrophil NADPH oxidase activation, lysoPAF dose-dependently inhibits this function. Inhibition by lysoPAF is not affected by the use of a PAF receptor antagonist or genetic deletion of the PAF receptor gene. The mechanism of lysoPAF-mediated inhibition of neutrophils involves an elevation in the intracellular cAMP level, and pharmacological blockade of adenylyl cyclase completely reverses the inhibitory effect of lysoPAF. In addition, lysoPAF increases intracellular cAMP levels in platelets and inhibits thrombin-induced platelet aggregation, which can be reversed by inhibition of protein kinase A. These findings identify lysoPAF as a bioactive lipid with opposing functions of PAF and suggest a novel and intrinsic regulatory mechanism for balance of the potent activity of PAF. PMID:18931035

  3. The burden of cancer attributable to modifiable risk factors: the Australian cancer-PAF cohort consortium.

    PubMed

    Arriaga, Maria E; Vajdic, Claire M; Canfell, Karen; MacInnis, Robert; Hull, Peter; Magliano, Dianna J; Banks, Emily; Giles, Graham G; Cumming, Robert G; Byles, Julie E; Taylor, Anne W; Shaw, Jonathan E; Price, Kay; Hirani, Vasant; Mitchell, Paul; Adelstein, Barbara-Ann; Laaksonen, Maarit A

    2017-06-14

    To estimate the Australian cancer burden attributable to lifestyle-related risk factors and their combinations using a novel population attributable fraction (PAF) method that accounts for competing risk of death, risk factor interdependence and statistical uncertainty. 365 173 adults from seven Australian cohort studies. We linked pooled harmonised individual participant cohort data with population-based cancer and death registries to estimate exposure-cancer and exposure-death associations. Current Australian exposure prevalence was estimated from representative external sources. To illustrate the utility of the new PAF method, we calculated fractions of cancers causally related to body fatness or both tobacco and alcohol consumption avoidable in the next 10 years by risk factor modifications, comparing them with fractions produced by traditional PAF methods. Over 10 years of follow-up, we observed 27 483 incident cancers and 22 078 deaths. Of cancers related to body fatness (n=9258), 13% (95% CI 11% to 16%) could be avoided if those currently overweight or obese had body mass index of 18.5-24.9 kg/m 2 . Of cancers causally related to both tobacco and alcohol (n=4283), current or former smoking explains 13% (11% to 16%) and consuming more than two alcoholic drinks per day explains 6% (5% to 8%). The two factors combined explain 16% (13% to 19%): 26% (21% to 30%) in men and 8% (4% to 11%) in women. Corresponding estimates using the traditional PAF method were 20%, 31% and 10%. Our PAF estimates translate to 74 000 avoidable body fatness-related cancers and 40 000 avoidable tobacco- and alcohol-related cancers in Australia over the next 10 years (2017-2026). Traditional PAF methods not accounting for competing risk of death and interdependence of risk factors may overestimate PAFs and avoidable cancers. We will rank the most important causal factors and their combinations for a spectrum of cancers and inform cancer control activities. © Article

  4. Biological Role of Trichoderma harzianum-Derived Platelet-Activating Factor Acetylhydrolase (PAF-AH) on Stress Response and Antagonism

    PubMed Central

    Yu, Chuanjin; Fan, Lili; Wu, Qiong; Fu, Kehe; Gao, Shigang; Wang, Meng; Gao, Jinxin; Li, Yaqian; Chen, Jie

    2014-01-01

    We investigated the properties of platelet-activating factor acetylhydrolase (PAF-AH) derived from Trichoderma harzianum. The enzyme, comprised of 572 amino acids, shares high homology with PAF-AH proteins from T. koningii and other microbial species. The optimum enzymatic activity of PAF-AH occurred at pH 6 in the absence of Ca2+ and it localized in the cytoplasm, and we observed the upregulation of PAF-AH expression in response to carbon starvation and strong heat shock. Furthermore, PAF-AH knockout transformant growth occurred more slowly than wild type cells and over-expression strains grown in SM medium at 37°C and 42°C. In addition, PAF-AH expression significantly increased under a series of maize root induction assay. Eicosanoic acid and ergosterol levels decreased in the PAF-AH knockouts compared to wild type cells, as revealed by GC/MS analysis. We also determined stress responses mediated by PAF-AH were related to proteins HEX1, Cu/Zn superoxide dismutase, and cytochrome c. Finally, PAF-AH exhibited antagonistic activity against Rhizoctonia solani in plate confrontation assays. Our results indicate PAF-AH may play an important role in T. harzianum stress response and antagonism under diverse environmental conditions. PMID:24964161

  5. Biological role of Trichoderma harzianum-derived platelet-activating factor acetylhydrolase (PAF-AH) on stress response and antagonism.

    PubMed

    Yu, Chuanjin; Fan, Lili; Wu, Qiong; Fu, Kehe; Gao, Shigang; Wang, Meng; Gao, Jinxin; Li, Yaqian; Chen, Jie

    2014-01-01

    We investigated the properties of platelet-activating factor acetylhydrolase (PAF-AH) derived from Trichoderma harzianum. The enzyme, comprised of 572 amino acids, shares high homology with PAF-AH proteins from T. koningii and other microbial species. The optimum enzymatic activity of PAF-AH occurred at pH 6 in the absence of Ca2+ and it localized in the cytoplasm, and we observed the upregulation of PAF-AH expression in response to carbon starvation and strong heat shock. Furthermore, PAF-AH knockout transformant growth occurred more slowly than wild type cells and over-expression strains grown in SM medium at 37°C and 42°C. In addition, PAF-AH expression significantly increased under a series of maize root induction assay. Eicosanoic acid and ergosterol levels decreased in the PAF-AH knockouts compared to wild type cells, as revealed by GC/MS analysis. We also determined stress responses mediated by PAF-AH were related to proteins HEX1, Cu/Zn superoxide dismutase, and cytochrome c. Finally, PAF-AH exhibited antagonistic activity against Rhizoctonia solani in plate confrontation assays. Our results indicate PAF-AH may play an important role in T. harzianum stress response and antagonism under diverse environmental conditions.

  6. Antibronchospastic activity of MEN10,627, a novel tachykinin NK2 receptor antagonist, in guinea-pig airways.

    PubMed

    Perretti, F; Ballati, L; Manzini, S; Maggi, C A; Evangelista, S

    1995-01-24

    The antibronchospastic activity against acetylcholine, antigen, histamine plus platelet-activating factor (PAF) or the selective tachykinin neurokinin (NK)1 and NK2 receptor agonists of the novel tachykinin NK2 receptor antagonist, MEN10,627 (cyclo(Met-Asp-Trp-Phe-Dap-Leu)cyclo(2 beta-5 beta)), was studied in anesthetized guinea-pigs. MEN10,627 (30-100 nmol/kg i.v.) reduced in a dose-dependent manner the bronchospasm induced by the tachykinin NK2 receptor agonist [beta Ala8]neurokinin A-(4-10) and the effect of the highest dose lasted up to 5 h from its administration. Conversely, airway constriction induced by the NK1 receptor agonist [Sar9]substance P sulfone or acetylcholine was unaffected by MEN10,627 up to a dose of 3 mumol/kg i.v. In animals sensitized with ovalbumin and pretreated with the endopeptidase inhibitor phosphoramidon, the aerosolized antigen produced a bronchospasm which was inhibited by MEN10,627 (30-100 nmol/kg i.v.) but not by the tachykinin NK1 receptor antagonist, (+/-)-CP96,345 ([2R,3R-cis- and [2S,3S)-cis-2-(diphenylmethyl)-N-[(2-methoxyphenyl)-methyl]-1- azabicyclo[2.2.2]octan-3-amine]) (3 mumol/kg i.v.). Both MEN10,627 (30-100 nmol/kg i.v.) and (+/-)-CP96,345 (30-300 nmol/kg i.v.) reduced the PAF-induced hyperresponsiveness to histamine, without affecting the hypotension induced by PAF or the bronchospasm induced by histamine in guinea-pigs not exposed to PAF, showing the involvement of both tachykinin NK1 and NK2 receptors in this model. In summary, MEN10,627 behaves as a potent, selective and long-lasting tachykinin NK2 receptor antagonist in vivo. Further, tachykinin NK2 receptors could be activated during allergic responses and in the development of airway hyperresponsiveness.

  7. Cigarette Smoke Induces Stem Cell Features of Pancreatic Cancer Cells via PAF1.

    PubMed

    Nimmakayala, Rama Krishna; Seshacharyulu, Parthasarathy; Lakshmanan, Imayavaramban; Rachagani, Satyanarayana; Chugh, Seema; Karmakar, Saswati; Rauth, Sanchita; Vengoji, Raghupathy; Atri, Pranita; Talmon, Geoffrey A; Lele, Subodh M; Smith, Lynette M; Thapa, Ishwor; Bastola, Dhundy; Ouellette, Michel M; Batra, Surinder K; Ponnusamy, Moorthy P

    2018-06-01

    Cigarette smoking is a major risk factor for pancreatic cancer. Aggressive pancreatic tumors contain cancer cells with stem cell features. We investigated whether cigarette smoke induces stem cell features in pancreatic cancer cells. Kras G12D ; Pdx1-Cre (KC) mice were exposed to cigarette smoke or clean air (controls) for up to 20 weeks; pancreata were collected and analyzed by histology, quantitative reverse transcription PCR, and confocal immunofluorescence microscopy. HPNE and Capan1 cells were exposed to cigarette smoke extract (CSE), nicotine and nicotine-derived carcinogens (NNN or NNK), or clean air (controls) for 80 days and evaluated for stem cell markers and features using flow cytometry-based autofluorescence, sphere formation, and immunoblot assays. Proteins were knocked down in cells with small interfering RNAs. We performed RNA sequencing analyses of CSE-exposed cells. We used chromatin immunoprecipitation assays to confirm the binding of FOS like 1, AP-1 transcription factor subunit (FOSL1) to RNA polymerase II-associated factor (PAF1) promoter. We obtained pancreatic ductal adenocarcinoma (PDAC) and matched non-tumor tissues (n=15) and performed immunohistochemical analyses. Chronic exposure of HPNE and Capan1 cells to CSE caused them to increase markers of stem cells, including autofluorescence and sphere formation, compared to control cells. These cells increased expression of ABCG2, SOX9 and PAF1, via cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) signaling to mitogen-activated protein kinase 1 and FOSL1. Pancreatic cell lines with knockdown of PAF1 did not develop features of stem cells upon exposure to CSE. Exposure of cells to NNN and NNK led to increased expression of CHRNA7, FOSL1, and PAF1 along with stem cell features. Pancreata from KC mice exposed to cigarette smoke had increased levels of PAF1 mRNA and protein, compared with control mice, as well as increased expression of SOX9. Levels of PAF1 and FOSL1 were increased in PDAC

  8. Drosophila PAF1 Modulates PIWI/piRNA Silencing Capacity.

    PubMed

    Clark, Josef P; Rahman, Reazur; Yang, Nachen; Yang, Linda H; Lau, Nelson C

    2017-09-11

    To test the directness of factors in initiating PIWI-directed gene silencing, we employed a Piwi-interacting RNA (piRNA)-targeted reporter assay in Drosophila ovary somatic sheet (OSS) cells [1]. This assay confirmed direct silencing roles for piRNA biogenesis factors and PIWI-associated factors [2-12] but suggested that chromatin-modifying proteins may act downstream of the initial silencing event. Our data also revealed that RNA-polymerase-II-associated proteins like PAF1 and RTF1 antagonize PIWI-directed silencing. PAF1 knockdown enhances PIWI silencing of reporters when piRNAs target the transcript region proximal to the promoter. Loss of PAF1 suppresses endogenous transposable element (TE) transcript maturation, whereas a subset of gene transcripts and long-non-coding RNAs adjacent to TE insertions are affected by PAF1 knockdown in a similar fashion to piRNA-targeted reporters. Additionally, transcription activation at specific TEs and TE-adjacent loci during PIWI knockdown is suppressed when PIWI and PAF1 levels are both reduced. Our study suggests a mechanistic conservation between fission yeast PAF1 repressing AGO1/small interfering RNA (siRNA)-directed silencing [13, 14] and Drosophila PAF1 opposing PIWI/piRNA-directed silencing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Platelet Activating Factor Receptor Activation Improves siRNA Uptake and RNAi Responses in Well-differentiated Airway Epithelia.

    PubMed

    Krishnamurthy, Sateesh; Behlke, Mark A; Apicella, Michael A; McCray, Paul B; Davidson, Beverly L

    2014-07-15

    Well-differentiated human airway epithelia present formidable barriers to efficient siRNA delivery. We previously reported that treatment of airway epithelia with specific small molecules improves oligonucleotide uptake and facilitates RNAi responses. Here, we exploited the platelet activating factor receptor (PAFR) pathway, utilized by specific bacteria to transcytose into epithelia, as a trigger for internalization of Dicer-substrate siRNAs (DsiRNA). PAFR is a G-protein coupled receptor which can be engaged and activated by phosphorylcholine residues on the lipooligosaccharide (LOS) of nontypeable Haemophilus influenzae and the teichoic acid of Streptococcus pneumoniae as well as by its natural ligand, platelet activating factor (PAF). When well-differentiated airway epithelia were simultaneously treated with either nontypeable Haemophilus influenzae LOS or PAF and transduced with DsiRNA formulated with the peptide transductin, we observed silencing of both endogenous and exogenous targets. PAF receptor antagonists prevented LOS or PAF-assisted DsiRNA silencing, demonstrating that ligand engagement of PAFR is essential for this process. Additionally, PAF-assisted DsiRNA transfection decreased CFTR protein expression and function and reduced exogenous viral protein levels and titer in human airway epithelia. Treatment with spiperone, a small molecule identified using the Connectivity map database to correlate gene expression changes in response to drug treatment with those associated with PAFR stimulation, also induced silencing. These results suggest that the signaling pathway activated by PAFR binding can be manipulated to facilitate siRNA entry and function in difficult to transfect well-differentiated airway epithelial cells.

  10. Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities.

    PubMed

    Castro, D P; Figueiredo, M B; Genta, F A; Ribeiro, I M; Tomassini, T C B; Azambuja, P; Garcia, E S

    2009-06-01

    The effects of physalin B (a natural secosteroidal chemical from Physalis angulata, Solanaceae) on phagocytosis and microaggregation by hemocytes of 5th-instar larvae of Rhodnius prolixus were investigated. In this insect, hemocyte phagocytosis and microaggregation are known to be induced by the platelet-activating factor (PAF) or arachidonic acid (AA) and regulated by phospholipase A(2) (PLA(2)) and PAF-acetyl hydrolase (PAF-AH) activities. Phagocytic activity and formation of hemocyte microaggregates by Rhodnius hemocytes were strongly blocked by oral treatment of this insect with physalin B (1mug/mL of blood meal). The inhibition induced by physalin B was reversed for both phagocytosis and microaggregation by exogenous arachidonic acid (10microg/insect) or PAF (1microg/insect) applied by hemocelic injection. Following treatment with physalin B there were no significant alterations in PLA(2) activities, but a significant enhancement of PAF-AH was observed. These results show that physalin B inhibits hemocytic activity by depressing insect PAF analogous (iPAF) levels in hemolymph and confirm the role of PAF-AH in the cellular immune reactions in R. prolixus.

  11. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  12. Platelet Activating Factor Receptor Activation Improves siRNA Uptake and RNAi Responses in Well-differentiated Airway Epithelia

    PubMed Central

    Krishnamurthy, Sateesh; Behlke, Mark A; Apicella, Michael A; McCray, Paul B; Davidson, Beverly L

    2014-01-01

    Well-differentiated human airway epithelia present formidable barriers to efficient siRNA delivery. We previously reported that treatment of airway epithelia with specific small molecules improves oligonucleotide uptake and facilitates RNAi responses. Here, we exploited the platelet activating factor receptor (PAFR) pathway, utilized by specific bacteria to transcytose into epithelia, as a trigger for internalization of Dicer-substrate siRNAs (DsiRNA). PAFR is a G-protein coupled receptor which can be engaged and activated by phosphorylcholine residues on the lipooligosaccharide (LOS) of nontypeable Haemophilus influenzae and the teichoic acid of Streptococcus pneumoniae as well as by its natural ligand, platelet activating factor (PAF). When well-differentiated airway epithelia were simultaneously treated with either nontypeable Haemophilus influenzae LOS or PAF and transduced with DsiRNA formulated with the peptide transductin, we observed silencing of both endogenous and exogenous targets. PAF receptor antagonists prevented LOS or PAF-assisted DsiRNA silencing, demonstrating that ligand engagement of PAFR is essential for this process. Additionally, PAF-assisted DsiRNA transfection decreased CFTR protein expression and function and reduced exogenous viral protein levels and titer in human airway epithelia. Treatment with spiperone, a small molecule identified using the Connectivity map database to correlate gene expression changes in response to drug treatment with those associated with PAFR stimulation, also induced silencing. These results suggest that the signaling pathway activated by PAFR binding can be manipulated to facilitate siRNA entry and function in difficult to transfect well-differentiated airway epithelial cells. PMID:25025465

  13. Angiotensin peptides attenuate platelet-activating factor-induced inflammatory activity in rats.

    PubMed

    Sato, Akira; Yokoyama, Izumi; Ebina, Keiichi

    2015-11-01

    Angiotensin (Ang)--a peptide that is part of the renin-angiotensin system-induces vasoconstriction and a subsequent increase in blood pressure; Ang peptides, especially AngII, can also act as potent pro-inflammatory mediators. Platelet-activating factor (PAF) is a potent phospholipid mediator that is implicated in many inflammatory diseases. In this study, we investigated the effects of Ang peptides (AngII, AngIII, and AngIV) on PAF-induced inflammatory activity. In experiments using a rat hind-paw oedema model, AngII markedly and dose-dependently attenuated the paw oedema induced by PAF. The inhibitory effects of AngIII and AngIV on PAF-induced paw oedema were lower than that of AngII. Two Ang receptors, the AT1 and AT2 receptors, did not affect the AngII-mediated attenuation of PAF-induced paw oedema. Moreover, intrinsic tyrosine fluorescence studies demonstrated that AngII, AngIII, and AngIV interact with PAF, and that their affinities were closely correlated with their inhibitory effects on PAF-induced rat paw oedema. Also, AngII interacted with metabolite/precursor of PAF (lyso-PAF), and an oxidized phospholipid, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), which bears a marked structural resemblance to PAF. Furthermore, POVPC dose-dependently inhibited AngII-mediated attenuation of PAF-induced paw oedema. These results suggest that Ang peptides can attenuate PAF-induced inflammatory activity through binding to PAF and lyso-PAF in rats. Therefore, Ang peptides may be closely involved in the regulation of many inflammatory diseases caused by PAF. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Role of platelet-activating factor in long-term potentiation of the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1998-06-01

    In rat brain stem slices, we investigated the role of platelet activating factor (PAF) in long-term potentiation (LTP) induced in the ventral part of the medial vestibular nuclei (MVN) by high-frequency stimulation (HFS) of the primary vestibular afferent. The synaptosomal PAF receptor antagonist, BN-52021 was administered before and after HFS. BN-52021 did not modify the vestibular potentials under basal conditions, but it reduced the magnitude of potentiation induced by HFS, which completely developed after the drug wash-out. The same effect was obtained by using CV-62091, a more potent PAF antagonist at microsomal binding sites, but with concentrations higher than those of BN-52021. By contrast both BN-52021 and CV-6209 had no effect on the potentiation once induced. This demonstrates that PAF is involved in the induction but not in the maintenance of vestibular long-term effect through activation of synaptosomal PAF receptors. In addition, we analyzed the effect of the PAF analogue, 1-O-hexadecyl-2-O- (methylcarbamyl)-sn-glycero-3-phosphocoline (MC-PAF) and the inactive PAF metabolite, 1-O-hexadecyl-sn-glycero-3-phosphocoline (Lyso-PAF) on vestibular responses. Our results show that MC-PAF, but not Lyso-PAF induced potentiation. This potentiation was prevented by D,L-2-amino 5-phosphonopentanoic acid, suggesting an involvement of N-methyl-D-aspartate receptors. Furthermore, under BN-52021 and CV-6209, the MC-PAF potentiation was reduced or abolished. The dose-effect curve of MC-PAF showed a shift to the right greater under BN-52021 than under CV-6209, confirming the main dependence of MC-PAF potentiation on the activation of synaptosomal PAF receptors. Our results suggest that PAF can be released in the MVN after the activation of postsynaptic mechanisms triggering LTP, and it may act as a retrograde messenger which activates the presynaptic mechanisms facilitating synaptic plasticity.

  15. Inhibition of rabbit platelet activation in vitro by antagonists of platelet-activating factor (PAF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, C.P.; Wood, K.L.

    1986-03-05

    The authors used washed, (/sup 3/H)serotonin-labeled rabbit platelets to study the in vitro aggregation and secretion responses induced by graded doses of PAF in the presence or absence of specific antagonists of PAF. These antagonists included CV-3988, L-652,731, triazolam and alprazolam. Platelets were pretreated with either an antagonist or the appropriate diluent for 60 sec prior to the addition of PAF (2 x 10/sup -10/ to 2 x 10/sup -7/ M). Aggregation was monitored continuously and recorded as the height of the aggregation tracing at 60 sec post-PAF. Secretion of (/sup 3/H)-serotonin was measured in a sample of the plateletsmore » removed at 60 sec post-PAF. When 2 x 10/sup -10/ M PAF was used as the stimulus, the concentration of antagonist needed for 50% inhibition (IC/sub 50/) of secretion was obtained at 0.05 ..mu..M, 0.15 ..mu..M, 0.6 ..mu..M and 2.5 ..mu..M, respectively, for L-652,731, CV-3988, triazolam and alprazolam. The corresponding IC/sub 50/ for aggregation was obtained at 0.2 ..mu..M, 0.1 ..mu..M, 1.5 ..mu..M and 6.5 ..mu..M, respectively. The inhibitory effects of these antagonists could be overcome by increasing the dose of PAF used. Although all of the antagonists were capable of completely inhibiting platelet aggregation and secretion, L-652,731 was the most potent PAF antagonist on a molar basis.« less

  16. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    PubMed Central

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  17. Antibody production of wild-type and enzyme V279F variants of PAF-AH as a risk factor for Cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Ramadhani, Anggia N.; Puspitarini, Sapti; Sari, Anissa N.; Widodo

    2017-11-01

    Coronary artery disease (CAD) has emerged as a leading cause of death in Indonesia nowadays. WHO data in 2012 revealed that 37% of the Indonesian population died from this disease. CAD occurs because of endothelial dysfunction in the arteries. Lipoprotein-associated phospholipase A2 (Lp-PLA2), also known as platelet-activating factor acetylhydrolase (PAF-AH), is a phospholipase A2 enzyme, encoded by the PLA2G7 gene. This protein is predicted to be involved in inflammatory phospholipid metabolism so it can be used as a biomarker of CAD in the early phase. Thus, the purpose of this research is to discover the difference in antibody production between wild-type and mutant V279F. The PAF-AH enzyme was isolated from mice lymphocyte cells in order to develop this enzyme as a biomarker of cardiovascular disease. PAF-AH migrates at 55kDa according to SDS-PAGE analysis. Flow cytometry analysis showed that mutant PAF-AH (V279F) is more antigenic than wild-type PAF-AH. The missense mutation of V279F PAF-AH means this enzyme cannot catabolize the acetyl group at the sn-2 position of PAF.

  18. Intravenous infusion of PAF affects ovulation, fertilization and preimplantation embryonic development in NZB x NZW F1 hybrid mice.

    PubMed

    Sakellariou, Maria; Drakakis, Peter; Antonopoulou, Smaragdi; Anagnostou, Elli; Loutradis, Dimitris; Patargias, Theoxaris

    2008-03-01

    Platelet Activating Factor (PAF) is a bioactive phospholipid, which exhibits a variety of biological activities and plays a significant role in all aspects of reproduction. In this work, a single intravenous injection of various concentrations of PAF shortly after Human Chorionic Gonadotropin (HCG) administration as well as 24 and 48 h before HCG administration was studied in NZB x NZW F1 hybrid mice. Optimum results were observed when PAF was injected just after the administration of HCG. In this protocol, the concentrations of PAF exhibited bell-shaped response to every stage of development. Any concentration of PAF between 5.5 x 10(-11) and 5.5 x 10(-15)g/g b.w., caused an improved ovulation rate, an increased fertilization rate, an increased rate of cell cycle and an enhanced hatching blastocyst rate (P<0.05 for all stages). Injection of lyso-PAF had no effect in any stage. Our data show that the effect of PAF on early stages of embryo development in vitro is dependent on its way of administration, on the concentrations used as well as on the time PAF is injected.

  19. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis.

    PubMed

    Kim, Moon Jong; Xia, Bo; Suh, Han Na; Lee, Sung Ho; Jun, Sohee; Lien, Esther M; Zhang, Jie; Chen, Kaifu; Park, Jae-Il

    2018-03-12

    The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Effect of platelet activating factor with and without receptor antagonist (WEB2170) on morphology of isolated cochlear outer hair cells.

    PubMed

    Jung, Timothy T K; John, Earnest O; Park, Seong Kook; Park, Yong Soo; Rhee, Chong-Ku

    2004-02-01

    Platelet activating factor (PAF), generated from biologically active phospholipids, has been implicated as a potent inflammatory mediator and has been shown to be involved in many pathological processes, especially in inflammation and allergy. It has been suspected that PAF may be one of the inflammatory mediators in middle ear effusion that can induce sensorineural hearing loss, as observed in chronic otitis media. The PAF receptor antagonist WEB2170 has been studied extensively, and its inhibitory effects against various PAF actions are well proven in otologic systems. The purpose of our study was to determine the effect of superfusion of PAF and WEB2170 on morphological changes in isolated cochlear outer hair cells (OHCs). Isolated OHCs from adult chinchilla cochleas were exposed to albumin-phosphate-buffered saline solution (1 mg/mL), WEB2170 (5 mg/30 mL), PAF (1 micromol/L), or both PAF (I micromol/L) and WEB2170 (5 mg/30 mL). All experiments were performed at an osmolality of 305 +/- 5 mOsm at room temperature for 30 minutes. The cells were observed with an inverted microscope; the images were stored and analyzed on the Image Pro-Plus program. The OHCs exposed to control albumin-phosphate-buffered saline solution or to WEB2170 did not show any significant change in cell shape or length. The cells exposed to 1 micromol/L of PAF showed ballooning and significant shortening of the mean cell length in 15 to 20 minutes. These morphological changes in OHCs can be prevented by pretreating OHCs with WEB2170. This study demonstrated that exposure to PAF causes morphological changes in isolated OHCs that can be prevented by the PAF receptor antagonist WEB2170.

  1. Platelet Activating Factor-Induced Ceramide Micro-Domains Drive Endothelial NOS Activation and Contribute to Barrier Dysfunction

    PubMed Central

    Predescu, Sanda; Knezevic, Ivana; Bardita, Cristina; Neamu, Radu Florin; Brovcovych, Viktor; Predescu, Dan

    2013-01-01

    The spatial and functional relationship between platelet activating factor-receptor (PAF-R) and nitric oxide synthase (eNOS) in the lateral plane of the endothelial plasma membrane is poorly characterized. In this study, we used intact mouse pulmonary endothelial cells (ECs) as well as endothelial plasma membrane patches and subcellular fractions to define a new microdomain of plasmalemma proper where the two proteins colocalize and to demonstrate how PAF-mediated nitric oxide (NO) production fine-tunes ECs function as gatekeepers of vascular permeability. Using fluorescence microscopy and immunogold labeling electron microscopy (EM) on membrane patches we demonstrate that PAF-R is organized as clusters and colocalizes with a subcellular pool of eNOS, outside recognizable vesicular profiles. Moreover, PAF-induced acid sphingomyelinase activation generates a ceramide-based microdomain on the external leaflet of plasma membrane, inside of which a signalosome containing eNOS shapes PAF-stimulated NO production. Real-time measurements of NO after PAF-R ligation indicated a rapid (5 to 15 min) increase in NO production followed by a > 45 min period of reduction to basal levels. Moreover, at the level of this new microdomain, PAF induces a dynamic phosphorylation/dephosphorylation of Ser, Thr and Tyr residues of eNOS that correlates with NO production. Altogether, our findings establish the existence of a functional partnership PAF-R/eNOS on EC plasma membrane, at the level of PAF-induced ceramide plasma membrane microdomains, outside recognized vesicular profiles. PMID:24086643

  2. /sup 3/H-PAF-acether displacement and inhibition of binding in intact human platelets by BN 52021

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korth, R.; Le Couedic, J.P.; Benveniste, J.

    1986-03-05

    Intact washed human platelets incubated at 20/sup 0/C in Tyrode's buffer containing 0.25% (w/v) bovine serum albumin bound /sup 3/H paf-acether in a concentration (0-6.5 nM) and time (0-60 min) dependent manner (n=3). BN 52021 (60 ..mu..M) a chemically defined extract from Ginkgo biloba inhibited the binding of increasing concentrations of /sup 3/H paf-acether. Calculated differences between /sup 3/H paf-acether binding in the presence or absence of BN 52021 (60 ..mu..M) reached nearly a plateau in concentrations higher than 0.65 nM /sup 3/H paf-acether. Increasing concentrations of BN 52021 (0-60 ..mu..M) as well as of unlabelled paf-acether (0-50 nM) preventedmore » within 15 min /sup 3/H paf-acether binding (0.65 nM) to platelets in a concentration-dependent way. Increasing BN 52021 concentrations (0-60 ..mu..M) also displaced platelet-bound /sup 3/H paf-acether (0.65 nM) in a concentration-dependent way. Displacement increased with the time length of platelet incubation with BN 52021 and reached a plateau at 15 min. Platelet-bound /sup 3/H paf-acether displacement of 28.3 +/- 6.3%, 31.1 +/- 4.0% and 26.7 +/- 5.6% was observed using 50 nM unlabelled paf-acether, 60 ..mu..M BN 52021 or both substances together (vs 4.3 +/- 7.2% for vehicle alone). No degradation of /sup 3/H paf-acether occurred as assessed by high pressure liquid chromatography. These results demonstrate that BN 52021 competes directly with paf-acether binding sites on human platelets.« less

  3. Amino Acid Residues Critical for Endoplasmic Reticulum Export and Trafficking of Platelet-activating Factor Receptor*

    PubMed Central

    Hirota, Nobuaki; Yasuda, Daisuke; Hashidate, Tomomi; Yamamoto, Teruyasu; Yamaguchi, Satoshi; Nagamune, Teruyuki; Nagase, Takahide; Shimizu, Takao; Nakamura, Motonao

    2010-01-01

    Several residues are conserved in the transmembrane domains (TMs) of G-protein coupled receptors. Here we demonstrate that a conserved proline, Pro247, in TM6 of platelet-activating factor receptor (PAFR) is required for endoplasmic reticulum (ER) export and trafficking after agonist-induced internalization. Alanine-substituted mutants of the conserved residues of PAFRs, including P247A, were retained in the ER. Because a PAFR antagonist, Y-24180, acted as a pharmacological chaperone to rescue ER retention, this retention is due to misfolding of PAFR. Methylcarbamyl (mc)-PAF, a PAFR agonist, did not increase the cell surface expression of P247A, even though another ER-retained mutant, D63A, was effectively trafficked. Signaling and accumulation of the receptors in the early endosomes were observed in the mc-PAF-treated P247A-expressing cells, suggesting that P247A was trafficked to the cell surface by mc-PAF, and thereafter disappeared from the surface due to aberrant trafficking, e.g. enhanced internalization, deficiency in recycling, and/or accelerated degradation. The aberrant trafficking was confirmed with a sortase-A-mediated method for labeling cell surface proteins. These results demonstrate that the conserved proline in TM6 is crucial for intracellular trafficking of PAFR. PMID:20007715

  4. CryoPAF4: a cryogenic phased array feed design

    NASA Astrophysics Data System (ADS)

    Locke, Lisa; Garcia, Dominic; Halman, Mark; Henke, Doug; Hovey, Gary; Jiang, Nianhua; Knee, Lewis; Lacy, Gordon; Loop, David; Rupen, Michael; Veidt, Bruce; Wierzbicki, Ramunas

    2016-07-01

    Phased array feed (PAF) receivers used on radio astronomy telescopes offer the promise of increased fields of view while maintaining the superlative performance attained with traditional single pixel feeds (SPFs). However, the much higher noise temperatures of room temperature PAFs compared to cryogenically-cooled SPFs have prevented their general adoption. Here we describe a conceptual design for a cryogenically cooled 2.8 - 5.18 GHz dual linear polarization PAF with estimated receiver temperature of 11 K. The cryogenic PAF receiver will comprise a 140 element Vivaldi antenna array and low-noise amplifiers housed in a 480 mm diameter cylindrical dewar covered with a RF transparent radome. A broadband two-section coaxial feed is integrated within each metal antenna element to withstand the cryogenic environment and to provide a 50 ohm impedance for connection to the rest of the receiver. The planned digital beamformer performs digitization, frequency band selection, beam forming and array covariance matrix calibration. Coupling to a 15 m offset Gregorian dual-reflector telescope, cryoPAF4 can expect to form 18 overlapping beams increasing the field of view by a factor of 8x compared to a single pixel receiver of equal system temperature.

  5. Mutants of the Paf1 Complex Alter Phenotypic Expression of the Yeast Prion [PSI+

    PubMed Central

    Strawn, Lisa A.; Lin, Changyi A.; Tank, Elizabeth M.H.; Osman, Morwan M.; Simpson, Sarah A.

    2009-01-01

    The yeast [PSI+] prion is an epigenetic modifier of translation termination fidelity that causes nonsense suppression. The prion [PSI+] forms when the translation termination factor Sup35p adopts a self-propagating conformation. The presence of the [PSI+] prion modulates survivability in a variety of growth conditions. Nonsense suppression is essential for many [PSI+]-mediated phenotypes, but many do not appear to be due to read-through of a single stop codon, but instead are multigenic traits. We hypothesized that other global mechanisms act in concert with [PSI+] to influence [PSI+]-mediated phenotypes. We have identified one such global regulator, the Paf1 complex (Paf1C). Paf1C is conserved in eukaryotes and has been implicated in several aspects of transcriptional and posttranscriptional regulation. Mutations in Ctr9p and other Paf1C components reduced [PSI+]-mediated nonsense suppression. The CTR9 deletion also alters nonsense suppression afforded by other genetic mutations but not always to the same extent as the effects on [PSI+]-mediated read-through. Our data suggest that the Paf1 complex influences mRNA translatability but not solely through changes in transcript stability or abundance. Finally, we demonstrate that the CTR9 deletion alters several [PSI+]-dependent phenotypes. This provides one example of how [PSI+] and genetic modifiers can interact to uncover and regulate phenotypic variability. PMID:19225160

  6. Platelet-activating factor drives eotaxin production in an allergic pleurisy in mice

    PubMed Central

    Klein, André; Pinho, Vanessa; Alessandrini, Ana Letícia; Shimizu, Takao; Ishii, Satoshi; Teixeira, Mauro M

    2002-01-01

    The activation of eosinophils via G-protein-coupled seven transmembran receptors play a necessary role in the recruitment of these cells into tissue. The present study investigates a role for PAF in driving eotaxin production and eosinophil recruitment in an allergic pleurisy model in mice. The intrapleural injection of increasing doses of PAF (10−11 to 10−9 moles per cavity) induced a dose- and PAF receptor-dependent recruitment of eosinophils 48 h after stimulation. Intrapleural injection of PAF induced the rapid (within 1 h) release of eotaxin into the pleural cavity of mice and an anti-eotaxin antibody effectively inhibited PAF-induced recruitment of eosinophils. Eosinophil recruitment in the allergic pleurisy was markedly inhibited by the PAF receptor antagonist UK-74,505 (modipafant, 1 mg kg−1). Moreover, recruitment of eosinophils in sensitized and challenged PAF receptor-deficient animals was lower than that observed in wild-type animals. Blockade of PAF receptors with UK-74,505 suppressed by 85% the release of eotaxin in the allergic pleurisy. Finally, the injection of a sub-threshold dose of PAF and eotaxin cooperated to induce eosinophil recruitment in vivo. In conclusion, the production of PAF in an allergic reaction could function in multiple ways to facilitate the recruitment of eosinophils  –  by facilitating eotaxin release and by cooperating with eotaxin to induce greater recruitment of eosinophils. PMID:11877329

  7. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Lin; Hu, Kuan; Wang, Tong

    Here, the human pathogen Mycobacterium tuberculosis ( Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly,more » the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.« less

  8. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis

    DOE PAGES

    Bai, Lin; Hu, Kuan; Wang, Tong; ...

    2016-03-21

    Here, the human pathogen Mycobacterium tuberculosis ( Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly,more » the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.« less

  9. Significance of platelet-activating factor acetylhydrolase in patients with non-insulin-dependent (type 2) diabetes mellitus.

    PubMed

    Serban, M; Tanaseanu, Cristina; Kosaka, T; Vidulescu, Cristina; Stoian, Irina; Marta, Daciana S; Tanaseanu, S; Moldoveanu, Elena

    2002-01-01

    Non-insulin dependent diabetes mellitus (NIDDM) represents an independent risk factor for cardiovascular diseases (CVD), being characterized by a continuous low-grade inflammation and endothelial activation state. Plasma platelet - activating factor - acetylhydrolases (PAF-AHs) are a subgroup of Ca(2+)-independent phospholipase A(2) family (also known as lipoprotein-associated phospholipases A(2)) that hydrolyze and inactivate the lipid mediator platelet-activating factor (PAF) and/or oxidized phospholipids. This enzyme is considered to play an important role in inflammatory diseases and atherosclerosis. The present study aims to investigate the relations between the levels of PAF-AH activity and LDL-cholesterol / HDL-cholesterol (LDL-ch / HDL-ch) ratio in NIDDM patients as compared to controls. serum PAF-AH activity was measured in 50 patients with dyslipidemia, in 50 NIDDM patients and in 50 controls (normal lipid and glucose levels). Total cholesterol, LDL-ch, HDL-ch, triglyceride and blood glucose were determined in all subjects. All NIDDM patients display hiperlipidemia, with increased LDL-ch and triglyceride levels. There is a significant correlation between LDL-ch levels (especially LDL-ch / HDL-ch ratio) and PAF-AH activity in dyslipidemic and NIDDM patients. Diabetic and dyslipidemic patients have an increased plasma PAF-AH activity correlated with their LDL-ch levels and mainly with LDL-ch / HDL-ch ratio. Plasma PAF-AH high levels appear to be important as a risk marker for endothelial dysfunction in patients with NIDDM.

  10. Dietary supplementation with soybean lecithin increases pulmonary PAF bioactivity in asthmatic rats.

    PubMed

    Muehlmann, Luis A; Zanatta, Ana L; Farias, Carolina L A; Bieberbach, Eloyse W; Mazzonetto, Ana C; Michellotto, Pedro V; Fernandes, Luiz C; Nishiyama, Anita

    2010-06-01

    The prevalence of asthma has risen over the last few decades, and some studies correlate this with the greater consumption of polyunsaturated fatty acids (PUFAs). Dietary PUFAs are known to increase the susceptibility of biological structures to lipid peroxidation, a process by which platelet-activating factor (PAF)-like lipids can be generated. These lipids functionally mimic the bioactivity of PAF, a potent proinflammatory mediator that exerts several deleterious effects on asthma. Thus, this work aimed to investigate if dietary supplementation with soybean lecithin (SL), a source of PUFAs, increases lipid peroxidation and PAF bioactivity in lungs of asthmatic Wistar rats. Animals were separated into groups: control, supplemented, asthmatic, asthmatic supplemented with SL (2 g/kg body weight), asthmatic supplemented with SL (2 g/kg body weight) and DL-alpha-tocopheryl acetate (100 mg/kg body weight). Asthmatic inflammation increased pulmonary lipid peroxidation, PAF bioactivity, alveolar-capillary barrier permeability and production of nitric oxide. In asthmatics, dietary supplementation with SL promoted an increase in pulmonary lipid peroxidation and PAF bioactivity, and an increase in the permeability of the alveolar-capillary barrier. Moreover, the treatment of asthmatic rats with DL-alpha-tocopheryl acetate inhibited the lipid peroxidation and decreased the PAF bioactivity. Therefore, the increase in pulmonary PAF bioactivity in asthmatic individuals elicited by the dietary supplementation with SL probably involves the generation of PAF-like lipids. This finding suggests that PAF-like lipids may account for the deleterious effects of dietary PUFAs on asthma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. PAF involvement in dermal extravasation in the reverse passive Arthus reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deacon, R.W.; Melden, M.K.; Saunders, R.N.

    The reverse passive erthus reaction (RPAR) is characterized by PMN infiltration, increased vascular permeability leading to plasma extravasation and vessel damage. In the skin RPAR is an inflammatory response initiated by deposition of immune complexes and attributed to complement activation. As PAF can elicit similar dermal reactions, they examined the PAF antagonist SRI 63-072 in the RPAR. Guinea pigs were given an i.v. injection of /sup 125/I-BSA (Ag-20 mg/kg with 20 mg/kg Evan's blue as a permeability tracer), followed by intradermal (i.d.) injections (0.1 ml/site) of anti-BSA antibodies (Ab). After 30 min, dermal sites (2 cm diam.) were removed, countedmore » and the ..mu..l plasma/site (over background counts) calculated from plasma radioactivity measurements. The plasma leakage (..mu..l plasma/site) was dose-dependent upon Ab dose (6-200 ..mu..g/site). At the ultrastructural level, the presence of neutrophils and eosinophils were observed in the extravascular spaces. The luminal endothelium exhibited cytotoxic characteristics and loss of junctional integrity. SRI 63-072 exhibited 50% maximal inhibition when given i.d. with the Ab (0.1 ..mu..g/site) but only 5-10% when given at 3.0 mg/kg i.v. with Ag. No further inhibition of dermal extravasation was observed using SRI 63-441, a competitive receptor antagonist with 3-30 fold the in vivo potency of SRI 63-072. As dermal extravasation in RPAR is only partially inhibited by a PAF antagonist, it appears that other vasoactive mediators, possibly histamine, may be influencing vessel permeability as well.« less

  12. Characterization of the Phospholipid Platelet-Activating Factor As a Mediator of Inflammation in Chickens

    PubMed Central

    Garrido, Damien; Chanteloup, Nathalie K.; Trotereau, Angélina; Lion, Adrien; Bailleul, Geoffrey; Esnault, Evelyne; Trapp, Sascha; Quéré, Pascale; Schouler, Catherine; Guabiraba, Rodrigo

    2017-01-01

    Lipid mediators are known to play important roles in the onset and resolution phases of the inflammatory response in mammals. The phospholipid platelet-activating factor (PAF) is a pro-inflammatory lipid mediator which participates in vascular- and innate immunity-associated processes by increasing vascular permeability, by facilitating leukocyte adhesion to the endothelium, and by contributing to phagocyte activation. PAF exerts its function upon binding to its specific receptor, PAF receptor (PAFR), which is abundantly expressed in leukocytes and endothelial cells (ECs). In chickens, lipid mediators and their functions are still poorly characterized, and the role of PAF as an inflammatory mediator has not yet been investigated. In the present study we demonstrate that primary chicken macrophages express PAFR and lysophosphatidylcholine acyltransferase 2 (LPCAT2), the latter being essential to PAF biosynthesis during inflammation. Also, exogenous PAF treatment induces intracellular calcium increase, reactive oxygen species release, and increased phagocytosis by primary chicken macrophages in a PAFR-dependent manner. We also show that PAF contributes to the Escherichia coli lipopolysaccharide (LPS)-induced pro-inflammatory response and boosts the macrophage response to E. coli LPS via phosphatidylinositol 3-kinase/Akt- and calmodulin kinase II-mediated intracellular signaling pathways. Exogenous PAF treatment also increases avian pathogenic E. coli intracellular killing by chicken macrophages, and PAFR and LPCAT2 are upregulated in chicken lungs and liver during experimental pulmonary colibacillosis. Finally, exogenous PAF treatment increases cell permeability and upregulates the expression of genes coding for proteins involved in leukocyte adhesion to the endothelium in primary chicken endothelial cells (chAEC). In addition to these vascular phenomena, PAF boosts the chAEC inflammatory response to bacteria-associated molecular patterns in a PAFR-dependent manner

  13. GPER-1 agonist G1 induces vasorelaxation through activation of epidermal growth factor receptor-dependent signalling pathway.

    PubMed

    Jang, Eun Jin; Seok, Young Mi; Arterburn, Jeffrey B; Olatunji, Lawrence A; Kim, In Kyeom

    2013-10-01

    The G protein-coupled oestrogen receptor-1 (GPER-1) agonist G1 induces endothelium-dependent relaxation. Activation of the epidermal growth factor (EGF) receptor leads to transduction of signals from the plasma membrane for the release of nitric oxide. We tested the hypothesis that G1 induces endothelium-dependent vasorelaxation through activation of the EGF receptor. Rat aortic rings were mounted in organ baths. After pretreatment with various inhibitors, aortic rings contracted with 11,9-epoxymethano-prostaglandin F2α or KCl were subjected to relaxation by G1. G1 induced endothelium-dependent vasorelaxation, which was attenuated by pretreatment with either L -N(ω) -nitroarginine methyl ester (L -NAME), an inhibitor of nitric oxide synthase, or (3aS,4R,9bR)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline HB-EGF, heparin-binding EGF-like growth factor, a GPER-1 antagonist. Neither a general oestrogen receptor antagonist, ICI 182 780, nor a selective oestrogen receptor-α antagonist, methyl-piperidino-pyrazole dihydrochloride (MPP), had an effect on G1-induced vasorelaxation. However, pretreatment with EGF receptor blockers, AG1478 or DAPH, resulted in attenuated G1-induced vasorelaxation. In addition, pretreatment with Src inhibitor 4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or Akt inhibitor VIII also resulted in attenuated vascular relaxation induced by the cumulative addition of G1. However, neither phosphatidylinositol-3 kinase inhibitors LY294002 and wortmannin nor an extracellular signal-regulated kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto) butadiene monoethanolate had effect on vascular relaxation induced by the cumulative addition of G1. G1 induces endothelium-dependent vasorelaxation through Src-mediated activation of the EGF receptor and the Akt pathway in rat aorta. © 2013 Royal Pharmaceutical Society.

  14. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Li-Juan; Liao, Lan; Yang, Li

    MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and blockmore » of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis.« less

  15. The Environmental Neurotoxicant PCB 95 Promotes Synaptogenesis via Ryanodine Receptor-Dependent miR132 Upregulation

    PubMed Central

    Lesiak, Adam; Zhu, Mingyan; Chen, Hao; Appleyard, Suzanne M.; Impey, Soren; Wayman, Gary A.

    2014-01-01

    Non–dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca2+ oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders. PMID:24431430

  16. Effect of the R92H and A379V genotypes of platelet-activating factor acetylhydrolase on its enzyme activity, oxidative stress and metabolic profile in Chinese women with polycystic ovary syndrome.

    PubMed

    Zhang, Renjiao; Song, Qi; Liu, Hongwei; Bai, Huai; Zhang, Yujin; Liu, Qingqing; Guan, Linbo; Fan, Ping

    2017-03-20

    The G994T polymorphism in platelet-activating factor acetylhydrolase (PAF-AH) gene is associated with the risk of polycystic ovary syndrome (PCOS). The aim of this study was to investigate the relationship between R92H and A379V variants of the PAF-AH gene and the risk of PCOS and to evaluate the effects of the genotypes on PAF-AH activities and clinical, metabolic and oxidative stress indexes in Chinese women. A total of 862 patients with PCOS based on the Rotterdam consensus criteria and 750 control women from a population of Chinese Han nationality in the Chengdu area were studied from 2006-2015. PAF-AH genotypes were determined by PCR and restriction fragment length polymorphism analysis. Plasma PAF-AH, high-density lipoprotein (HDL)-associated PAF-AH (H-PAF-AH) and apolipoprotein (apo) B-containing lipoprotein-associated PAF-AH (apoB-PAF-AH) activities were measured using the trichloroacetic acid precipitation procedure with PAF C-16 as a substrate. Circulating markers of oxidative stress, including serum total oxidant status, total antioxidant capacity, oxidative stress index and malondialdehyde levels, and clinical and metabolic parameters were also analyzed. No significant differences were observed in the frequencies of R92H and A379V genotypes and alleles of the PAF-AH gene between PCOS and control groups (P > 0.05). Compared with patients with the 92RR genotype, patients with H allele of R92H (RH + HH genotype) had significantly higher plasma PAF-AH and apoB-PAF-AH activities (P < 0.05) and tended to exhibit increased H-PAF-AH activity (P = 0.063) after adjusted for age and BMI. However, when serum LDL-C, HDL-C, TG and HOMA index were added as covariates, the comparisons no longer remained statistical significance (P > 0.05). There were no significant differences in clinical, hormonal, metabolic and circulating oxidative stress parameters and the frequencies of PAF-AH G449T genotype according to PAF-AH R92H or A379V genotyping in

  17. Development of a seaweed derived platelet activating factor acetylhydrolase (PAF-AH) inhibitory hydrolysate, synthesis of inhibitory peptides and assessment of their toxicity using the Zebrafish larvae assay.

    PubMed

    Fitzgerald, Ciarán; Gallagher, Eimear; O'Connor, Paula; Prieto, José; Mora-Soler, Leticia; Grealy, Maura; Hayes, Maria

    2013-12-01

    The vascular inflammatory role of platelet activating factor acetylhydrolase (PAF-AH) is thought to be due to the formation of lysophosphatidyl choline and oxidized non-esterified fatty acids. This enzyme is considered a promising therapeutic target for the prevention of atherosclerosis and there is a need to expand the available chemical templates of PAF-AH inhibitors. This study demonstrated how natural PAF-AH inhibitory peptides were isolated and characterized from the red macroalga Palmaria palmata. The dried powdered alga was hydrolyzed using the food grade enzyme papain, and the resultant peptide containing fraction generated using RP-HPLC. Several oligopeptides were identified as potential PAF-AH inhibitors following bio-guided fractionation, and the amino acid sequences of these oligopeptides were confirmed by Q-TOF-MS and microwave-assisted solid phase de novo synthesis. The most promising PAF-AH inhibitory peptide had the amino acid sequence NIGK and a PAF-AH IC50 value of 2.32 mM. This peptide may constitute a valid drug template for PAF-AH inhibitors. Furthermore the P. palmata hydrolysate was nontoxic when assayed using the Zebrafish toxicity model at a concentration of 1mg/ml. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Novel action and mechanism of auranofin in inhibition of vascular endothelial growth factor receptor-3-dependent lymphangiogenesis.

    PubMed

    Chen, Xiaodong; Zhou, Huanjiao Jenny; Huang, Qunhua; Lu, Lin; Min, Wang

    2014-01-01

    Auranofin is a gold compound initially developed for the treatment of rheumatoid arthritis. Recent data suggest that auranofin has promise in the treatment of other inflammatory and proliferative diseases. However, the mechanisms of action of auranofin have not been well defined. In the present study, we identify vascular endothelial growth factor receptor-3 (VEGFR3), an endothelial cell (EC) surface receptor essential for angiogiogenesis and lymphangiogenesis, as a novel target of auranofin. In both primary EC and EC cell lines, auranofin induces downregulation of VEGFR3 in a dose-dependent manner. Auranofin at high doses (≥1 µM) decreases cellular survival protein thioredoxin reductase (TrxR2), TrxR2-dependent Trx2 and transcription factor NF-κB whereas increases stress signaling p38MAPK, leading to EC apoptosis. However, auranofin at low doses (≤0.5 µM) specifically induces downregulation of VEGFR3 and VEGFR3-mediated EC proliferation and migration, two critical steps required for in vivo lymphangiogenesis. Mechanistically, we show that auranofin-induced VEGFR3 downregulation is blocked by antioxidant N-acetyl-L-cysteine (NAC) and lysosome inhibitor chloroquine, but is promoted by proteasomal inhibitor MG132. These results suggest that auranofin induces VEGFR3 degradation through a lysosome-dependent pathway. Auranofin may be a potent therapeutic agent for the treatment of lymphangiogenesis-dependent diseases such as lymphedema and cancer metastasis.

  19. Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation.

    PubMed

    Girnita, Leonard; Worrall, Claire; Takahashi, Shin-Ichiro; Seregard, Stefan; Girnita, Ada

    2014-07-01

    The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R "borrows" components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.

  20. Arrestin-dependent but G-protein coupled receptor kinase-independent uncoupling of D2-dopamine receptors.

    PubMed

    Celver, Jeremy; Sharma, Meenakshi; Thanawala, Vaidehi; Christopher Octeau, J; Kovoor, Abraham

    2013-10-01

    We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (K(ir)3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-K(ir)3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor. © 2013 International Society for Neurochemistry.

  1. Redox-dependent regulation of epidermal growth factor receptor signaling.

    PubMed

    Heppner, David E; van der Vliet, Albert

    2016-08-01

    Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs) that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR), a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Induction of Shock After Intravenous Injection of Adenovirus Vectors: A Critical Role for Platelet-activating Factor

    PubMed Central

    Xu, Zhili; Smith, Jeffrey S.; Tian, Jie; Byrnes, Andrew P.

    2009-01-01

    Innate immune responses are a major barrier to safe systemic gene therapy with adenovirus (Ad) vectors. We show that intravenous (IV) injection of rats with Ad5 vectors causes a novel rapid shock reaction that involves hypotension, hemoconcentration, tissue edema, and vasocongestion, with notable pathology in the pancreas and the gastrointestinal system. We show for the first time that this reaction is dependent on platelet-activating factor (PAF), a lipid signaling molecule that is a known shock inducer. Ad upregulated PAF within 5 minutes in vivo, and antagonists of the PAF receptor were able to prevent Ad-induced shock. Ad upregulated PAF via the reticuloendothelial system (RES), because splenectomy or depletion of phagocytes blocked the ability of Ad to induce both PAF and shock. Rats were considerably more sensitive to Ad-induced shock than were mice, but PAF mediated shock in both species. Other Ad-induced innate immune responses such as cytokine induction and thrombocytopenia were not mediated by PAF. In summary, systemic IV injection of Ad stimulates the RES to upregulate PAF within a matter of minutes, which results in shock. The identification of this novel pathway suggests strategies to improve the safety of systemic gene therapy with Ad vectors. PMID:19953082

  3. Agonist-induced internalization of the platelet-activating factor receptor is dependent on arrestins but independent of G-protein activation. Role of the C terminus and the (D/N)PXXY motif.

    PubMed

    Chen, Zhangguo; Dupré, Denis J; Le Gouill, Christian; Rola-Pleszczynski, Marek; Stanková, Jana

    2002-03-01

    As with most G-protein-coupled receptors, repeated agonist stimulation of the platelet-activating factor receptor (PAFR) results in its desensitization, sequestration, and internalization. In this report, we show that agonist-induced PAFR internalization is independent of G-protein activation but is dependent on arrestins and involves the interaction of arrestins with a limited region of the PAFR C terminus. In cotransfected COS-7 cells, both arrestin-2 and arrestin-3 could be coimmunoprecipitated with PAFR, and agonist stimulation of PAFR induced the translocation of both arrestin-2 and arrestin-3. Furthermore, coexpression of arrestin-2 with PAFR potentiated receptor internalization, whereas agonist-induced PAFR internalization was inhibited by a dominant negative mutant of arrestin-2. The coexpression of a minigene encoding the C-terminal segment of the receptor abolished PAF-induced arrestin translocation and inhibited PAFR internalization. Using C terminus deletion mutants, we determined that the association of arrestin-2 with the receptor was dependent on the region between threonine 305 and valine 330 because arrestin-2 could be immunoprecipitated with the mutant PAFRstop330 but not PAFRstop305. Consistently, stop330 could mediate agonist-induced arrestin-2 translocation, whereas stop305 could not. Two other deletion mutants with slightly longer regions of the C terminus, PAFRstop311 and PAFRstop317, also failed to induce arrestin-2 translocation. Finally, the PAFR mutant Y293A, containing a single substitution in the putative internalization motif DPXXY in the seventh transmembrane domain (which we had shown to be able to internalize but not to couple to G-proteins) could efficiently induce arrestin translocation. Taken together, our results indicate that ligand-induced PAFR internalization is dependent on arrestins, that PAFR can associate with both arrestin-2 and -3, and that their translocation involves interaction with the region of residues 318-330 in

  4. Arrestin–dependent but G–protein coupled receptor kinase–independent uncoupling of D2–dopamine receptors

    PubMed Central

    Celver, Jeremy; Sharma, Meenakshi; Thanawala, Vaidehi; Octeau, J. Christopher; Kovoor, Abraham

    2016-01-01

    We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (Kir3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-Kir3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor. PMID:23815307

  5. SUMO-modified insulin-like growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation.

    PubMed

    Lin, Yingbo; Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg-Wiklund, Helena; Warsito, Dudi; Larsson, Olle

    2017-10-01

    Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF-1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulation G1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  6. Decoy Receptor DcR1 Is Induced in a p50/Bcl3-Dependent Manner and Attenuates the Efficacy of Temozolomide.

    PubMed

    Mansour, Nassir M; Bernal, Giovanna M; Wu, Longtao; Crawley, Clayton D; Cahill, Kirk E; Voce, David J; Balyasnikova, Irina V; Zhang, Wei; Spretz, Ruben; Nunez, Luis; Larsen, Gustavo F; Weichselbaum, Ralph R; Yamini, Bakhtiar

    2015-05-15

    Temozolomide is used widely to treat malignant glioma, but the overall response to this agent is generally poor. Resistance to DNA-damaging drugs such as temozolomide has been related to the induction of antiapoptotic proteins. Specifically, the transcription factor NF-κB has been suggested to participate in promoting the survival of cells exposed to chemotherapy. To identify factors that modulate cytotoxicity in the setting of DNA damage, we used an unbiased strategy to examine the NF-κB-dependent expression profile induced by temozolomide. By this route, we defined the decoy receptor DcR1 as a temozolomide response gene induced by a mechanism relying upon p50/NF-κB1. A conserved NF-κB-binding sequence (κB-site) was identified in the proximal promoter and was demonstrated to be required for DcR1 induction by temozolomide. Loss-of-function and gain-of-function studies reveal that the atypical IκB protein, Bcl3, is also required for induction of DcR1 by temozolomide. Mechanistically, DcR1 attenuates temozolomide efficacy by blunting activation of the Fas receptor pathway in p53(+/+) glioma cells. Intracranial xenograft studies show that DcR1 depletion in glioma cells enhances the efficacy of temozolomide. Taken together, our results show how DcR1 upregulation mediates temozolomide resistance and provide a rationale for DcR1 targeting as a strategy to sensitize gliomas to this widely used chemotherapy. ©2015 American Association for Cancer Research.

  7. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate.

    PubMed

    Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J

    2011-06-14

    The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.

  8. Purification and growth of melanocortin 1 receptor (Mc1r)-defective primary murine melanocytes is dependent on stem cell factor from keratinocyte-conditioned media

    PubMed Central

    Scott, Timothy L.; Wakamatsu, Kazumasa; Ito, Shosuke; D’Orazio, John A.

    2015-01-01

    Summary The melanocortin 1 receptor (MC1R) is a transmembrane Gs-coupled surface protein found on melanocytes that binds melanocyte stimulating hormone (MSH) and mediates activation of adenylyl cyclase and generation of the second messenger cAMP. MC1R regulates growth and differentiation of melanocytes and protects against carcinogenesis. Persons with loss-of-function polymorphisms of MC1R tend to be UV-sensitive (fair-skinned and with a poor tanning response) and are at high risk for melanoma. Mechanistic studies of the role of MC1R in melanocytic UV responses, however, have been hindered in part because Mc1r-defective primary murine melanocytes have been difficult to culture in vitro. Until now, effective growth of murine melanocytes has depended on cAMP stimulation with adenylyl cyclase activating or phosphodiesterase inhibiting agents. However, rescuing cAMP in the setting of defective MC1R signaling would be expected to confound experiments directly testing MC1R function on melanocytic UV responses. Here we report a novel method of culturing primary murine melanocytes in the absence of pharmacologic cAMP stimulation by incorporating conditioned supernatants containing stem cell factor (SCF) derived from primary keratinocytes. Importantly, this method seems to permit similar pigment expression by cultured melanocytes as that found in the skin of their parental murine strains. This novel approach will allow mechanistic investigation into MC1R’s role in protection against UV-mediated carcinogenesis and determination of the role of melanin pigment subtypes on UV-mediated melanocyte responses. PMID:19633898

  9. PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation

    PubMed Central

    Yang, Yan; Li, Wencheng; Hoque, Mainul; Hou, Liming; Shen, Steven; Tian, Bin; Dynlacht, Brian D.

    2016-01-01

    The PAF complex (Paf1C) has been shown to regulate chromatin modifications, gene transcription, and RNA polymerase II (PolII) elongation. Here, we provide the first genome-wide profiles for the distribution of the entire complex in mammalian cells using chromatin immunoprecipitation and high throughput sequencing. We show that Paf1C is recruited not only to promoters and gene bodies, but also to regions downstream of cleavage/polyadenylation (pA) sites at 3’ ends, a profile that sharply contrasted with the yeast complex. Remarkably, we identified novel, subunit-specific links between Paf1C and regulation of alternative cleavage and polyadenylation (APA) and upstream antisense transcription using RNAi coupled with deep sequencing of the 3’ ends of transcripts. Moreover, we found that depletion of Paf1C subunits resulted in the accumulation of PolII over gene bodies, which coincided with APA. Depletion of specific Paf1C subunits led to global loss of histone H2B ubiquitylation, although there was little impact of Paf1C depletion on other histone modifications, including tri-methylation of histone H3 on lysines 4 and 36 (H3K4me3 and H3K36me3), previously associated with this complex. Our results provide surprising differences with yeast, while unifying observations that link Paf1C with PolII elongation and RNA processing, and indicate that Paf1C subunits could play roles in controlling transcript length through suppression of PolII accumulation at transcription start site (TSS)-proximal pA sites and regulating pA site choice in 3’UTRs. PMID:26765774

  10. IL-1β-specific recruitment of GCN5 histone acetyltransferase induces the release of PAF1 from chromatin for the de-repression of inflammatory response genes.

    PubMed

    Kim, Nari; Sun, Hwa-Young; Youn, Min-Young; Yoo, Joo-Yeon

    2013-04-01

    To determine the functional specificity of inflammation, it is critical to orchestrate the timely activation and repression of inflammatory responses. Here, we explored the PAF1 (RNA polymerase II associated factor)-mediated signal- and locus-specific repression of genes induced through the pro-inflammatory cytokine interleukin (IL)-1β. Using microarray analysis, we identified the PAF1 target genes whose expression was further enhanced by PAF1 knockdown in IL-1β-stimulated HepG2 hepatocarcinomas. PAF1 bound near the transcription start sites of target genes and dissociated on stimulation. In PAF1-deficient cells, more elongating RNA polymerase II and acetylated histones were observed, although IL-1β-mediated activation and recruitment of nuclear factor κB (NF-κB) were not altered. Under basal conditions, PAF1 blocked histone acetyltransferase general control non-depressible 5 (GCN5)-mediated acetylation on H3K9 and H4K5 residues. On IL-1β stimulation, activated GCN5 discharged PAF1 from chromatin, allowing productive transcription to occur. PAF1 bound to histones but not to acetylated histones, and the chromatin-binding domain of PAF1 was essential for target gene repression. Moreover, IL-1β-induced cell migration was similarly controlled through counteraction between PAF1 and GCN5. These results suggest that the IL-1β signal-specific exchange of PAF1 and GCN5 on the target locus limits inappropriate gene induction and facilitates the timely activation of inflammatory responses.

  11. A role for the RNA pol II–associated PAF complex in AID-induced immune diversification

    PubMed Central

    Willmann, Katharina L.; Milosevic, Sara; Pauklin, Siim; Schmitz, Kerstin-Maike; Rangam, Gopinath; Simon, Maria T.; Maslen, Sarah; Skehel, Mark; Robert, Isabelle; Heyer, Vincent; Schiavo, Ebe; Reina-San-Martin, Bernardo

    2012-01-01

    Antibody diversification requires the DNA deaminase AID to induce DNA instability at immunoglobulin (Ig) loci upon B cell stimulation. For efficient cytosine deamination, AID requires single-stranded DNA and needs to gain access to Ig loci, with RNA pol II transcription possibly providing both aspects. To understand these mechanisms, we isolated and characterized endogenous AID-containing protein complexes from the chromatin of diversifying B cells. The majority of proteins associated with AID belonged to RNA polymerase II elongation and chromatin modification complexes. Besides the two core polymerase subunits, members of the PAF complex, SUPT5H, SUPT6H, and FACT complex associated with AID. We show that AID associates with RNA polymerase-associated factor 1 (PAF1) through its N-terminal domain, that depletion of PAF complex members inhibits AID-induced immune diversification, and that the PAF complex can serve as a binding platform for AID on chromatin. A model is emerging of how RNA polymerase II elongation and pausing induce and resolve AID lesions. PMID:23008333

  12. Platelet Activating Factor: A Growth Factor for Breast Cancer

    DTIC Science & Technology

    2006-09-01

    synthase (ADS) increases ether lipid content, growth and PAF synthesis in MCF-7 cells. 4. Eicosapentaenoic acid (EPA) inhibits the synthesis of PAF...Schmitt, J. D., Bullock, B. C. Wykle, R. L. Reacylation of platelet activating factor with eicosapentaenoic acid in fish-oil-enriched monkey...breast cancer. Recent studies have shown that the ratio of two families of essential fatty acids is important in regulating many cellular processes

  13. Brain-derived neurotrophic factor (BDNF) in the rostral anterior cingulate cortex (rACC) contributes to neuropathic spontaneous pain-related aversion via NR2B receptors.

    PubMed

    Zhang, Le; Wang, Gongming; Ma, Jinben; Liu, Chengxiao; Liu, Xijiang; Zhan, Yufeng; Zhang, Mengyuan

    2016-10-01

    The rostral anterior cingulate cortex (rACC) plays an important role in pain affect. Previous investigations have reported that the rACC mediates the negative affective component of inflammatory pain and contributed to the aversive state of nerve injury-induced neuropathic pain. Brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator in the adult brain, is believed to play a role in the development and maintenance of inflammatory and neuropathic pain in the spinal cord. However, whether and how BDNF in the rACC regulates pain-related aversion due to peripheral nerve injury is largely unknown. Behaviorally, using conditioned place preference (CPP) training in rats, which is thought to reveal spontaneous pain-related aversion, we found that CPP was acquired following spinal clonidine in rats with partial sciatic nerve transection. Importantly, BDNF was upregulated within the rACC in of rats with nerve injury and enhanced the CPP acquisition, while a local injection of a BDNF-tropomyosin receptor kinase B (TrkB) antagonist into the rACC completely blocked this process. Finally, we demonstrated that the BDNF/TrkB pathway exerted its function by activating the NR2B receptor, which is widely accepted to be a crucial factor contributing to pain affect. In conclusion, our results demonstrate that the BDNF/TrkB-mediated signaling pathway in the rACC is involved in the development of neuropathic spontaneous pain-related aversion and that this process is dependent upon activation of NR2B receptors. These findings suggest that suppression of the BDNF-related signaling pathway in the rACC may provide a novel strategy to overcome pain-related aversion. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. R-268712, an orally active transforming growth factor-β type I receptor inhibitor, prevents glomerular sclerosis in a Thy1 nephritis model.

    PubMed

    Terashima, Hideki; Kato, Mikio; Ebisawa, Masayuki; Kobayashi, Hideki; Suzuki, Kanae; Nezu, Yoshikazu; Sada, Toshio

    2014-07-05

    R-268712 is a novel and specific inhibitor of activin receptor-like kinase 5 (ALK5), a transforming growth factor β (TGF-β) type I receptor. Evaluation of in vitro inhibition indicated that R-268712 is a potent and selective inhibitor of ALK5 with an IC50 of 2.5nM, an approximately 5000-fold more selectivity for ALK5 than p38 mitogen-activated protein kinase (MAPK). Oral administration of R-268712 at doses of 1, 3 and 10mg/kg also inhibited the development of renal fibrosis in a dose-dependent manner in a unilateral ureteral obstruction (UUO) model. Additionally, we evaluated the efficacy of R-268712 in a heminephrectomized anti-Thy1 glomerulonephritis model at doses of 0.3 and 1mg/kg. R-268712 reduced proteinuria and glomerulosclerosis significantly with improvement of renal function. Collectively, these results suggested that R-268712 and other ALK5 inhibitors could suppress glomerulonephritis as well as glomerulosclerosis by an inhibitory mechanism that involves suppression of TGF-β signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors.

    PubMed

    El-Gamal, Mohammed I; Al-Ameen, Shahad K; Al-Koumi, Dania M; Hamad, Mawadda G; Jalal, Nouran A; Oh, Chang-Hyun

    2018-01-17

    Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.

  16. Characterization of the Sweet Taste Receptor Tas1r2 from an Old World Monkey Species Rhesus Monkey and Species-Dependent Activation of the Monomeric Receptor by an Intense Sweetener Perillartine

    PubMed Central

    Cai, Chenggu; Jiang, Hua; Li, Lei; Liu, Tianming; Song, Xuejie; Liu, Bo

    2016-01-01

    Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2) and Tas1r3 (taste receptor type 1 member 3). Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species. PMID:27479072

  17. Characterization of the Sweet Taste Receptor Tas1r2 from an Old World Monkey Species Rhesus Monkey and Species-Dependent Activation of the Monomeric Receptor by an Intense Sweetener Perillartine.

    PubMed

    Cai, Chenggu; Jiang, Hua; Li, Lei; Liu, Tianming; Song, Xuejie; Liu, Bo

    2016-01-01

    Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2) and Tas1r3 (taste receptor type 1 member 3). Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species.

  18. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palicz, Zoltán; Jenes, Ágnes; Gáll, Tamás

    2013-05-15

    The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg{sup −1} daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due tomore » the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation.« less

  19. Intra-plaque production of platelet-activating factor correlates with neoangiogenesis in human carotid atherosclerotic lesions.

    PubMed

    Lupia, Enrico; Pucci, Angela; Peasso, Paolo; Merlo, Maurizio; Baron, Paolo; Zanini, Cristina; Del Sorbo, Lorenzo; Rizea-Savu, Simona; Silvestro, Luigi; Forni, Marco; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe

    2003-09-01

    Platelet-activating factor (PAF) is a phospholipid mediator synthesized by activated inflammatory and endothelial cells. Recently PAF has been shown to contribute to neoangiogenesis in several experimental models. Here we evaluated the presence of PAF and its potential role in neovascularization within human atherosclerotic plaques. The amount of PAF extracted from 18 carotid plaques (266.65+/-40.07 pg/100 mg dry tissue; mean +/- SE) was significantly higher than that extracted from 18 normal arterial specimens (6 from carotid artery and 12 from aorta) (4.72+/-2.31 pg/100 mg dry tissue; mean +/- SE). The levels of PAF significantly correlated with the infiltration of CD68-positive monocytes and the extent of neovascularization, detected as von Willebrand Factor-positive cells. The amount of PAF also correlated with the area occupied by TNF-alpha-expressing cells. The absence of enhanced level of PAF in the circulation of atherosclerotic patients suggests a local production of this mediator within the plaque. The lipid extracts of atherosclerotic plaques containing high levels of PAF-bioactivity, but not those of control arteries, were angiogenic in a murine Matrigel model. WEB 2170, a specific PAF receptor antagonist, significantly prevented angiogenesis induced by the lipid extracts of atherosclerotic plaques. Our results indicate a local production of PAF within the atherosclerotic plaques and suggest that it may contribute to intra-plaque neoangiogenesis.

  20. The Aryl Hydrocarbon Receptor (AhR) as a Drug Target for Cancer Chemotherapy.

    PubMed

    Safe, Stephen; Cheng, Yating; Jin, Un-Ho

    2017-02-01

    The aryl hydrocarbon receptor (AhR) is overexpressed in some patients with different tumor types, and the receptor can be a negative or positive prognostic factor. There is also evidence from both in vivo and in vitro cell culture models that the AhR can exhibit tumor-specific pro-oncogenic and tumor suppressor-like functions and therefore can be treated with AhR antagonists or agonists, respectively. Successful clinical applications of AhR ligands will require the synthesis and development of selective AhR modulators (SAhRMs) with tumor-specific AhR agonist or antagonist activity, and some currently available compounds such as indole-3-carbinol and diindolylmethane-(DIM) and synthetic AhR antagonists are potential drug candidates. There is also evidence that some AhR-active pharmaceuticals, including tranilast, flutamide, hydroxytamoxifen and omeprazole or their derivatives, may be effective AhR-dependent anticancer agents for single or combination cancer chemotherapies for treatment of breast and pancreatic cancers.

  1. Binding Mode and Structure-Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist.

    PubMed

    Dolciami, Daniela; Gargaro, Marco; Cerra, Bruno; Scalisi, Giulia; Bagnoli, Luana; Servillo, Giuseppe; Fazia, Maria Agnese Della; Puccetti, Paolo; Quintana, Francisco J; Fallarino, Francesca; Macchiarulo, Antonio

    2018-02-06

    Discovered as a modulator of the toxic response to environmental pollutants, aryl hydrocarbon receptor (AhR) has recently gained attention for its involvement in various physiological and pathological pathways. AhR is a ligand-dependent transcription factor activated by a large array of chemical compounds, which include metabolites of l-tryptophan (l-Trp) catabolism as endogenous ligands of the receptor. Among these, 2-(1'H-indole-3'-carbonyl)thiazole-4-carboxylic acid methyl ester (ITE) has attracted interest in the scientific community, being endowed with nontoxic, immunomodulatory, and anticancer AhR-mediated functions. So far, no information about the binding mode and interactions of ITE with AhR is available. In this study, we used docking and molecular dynamics to propose a putative binding mode of ITE into the ligand binding pocket of AhR. Mutagenesis studies were then instrumental in validating the proposed binding mode, identifying His 285 and Tyr 316 as important key residues for ligand-dependent receptor activation. Finally, a set of ITE analogues was synthesized and tested to further probe molecular interactions of ITE to AhR and characterize the relevance of specific functional groups in the chemical structure for receptor activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain.

    PubMed

    Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman

    2014-03-01

    The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into

  3. Smoking-associated lung cancer prevention by blockade of the beta-adrenergic receptor-mediated insulin-like growth factor receptor activation.

    PubMed

    Min, Hye-Young; Boo, Hye-Jin; Lee, Ho Jin; Jang, Hyun-Ji; Yun, Hye Jeong; Hwang, Su Jung; Smith, John Kendal; Lee, Hyo-Jong; Lee, Ho-Young

    2016-10-25

    Activation of receptor tyrosine kinases (RTKs) is associated with carcinogenesis, but its contribution to smoking-associated lung carcinogenesis is poorly understood. Here we show that a tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced insulin-like growth factor 1 receptor (IGF-1R) activation via β-adrenergic receptor (β-AR) is crucial for smoking-associated lung carcinogenesis. Treatment with NNK stimulated the IGF-1R signaling pathway in a time- and dose-dependent manner, which was suppressed by pharmacological or genomic blockade of β-AR and the downstream signaling including a Gβγ subunit of β-AR and phospholipase C (PLC). Consistently, β-AR agonists led to increased IGF-1R phosphorylation. The increase in IGF2 transcription via β-AR, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-kappa B (NF-κB) was associated with NNK-induced IGF-1R activation. Finally, treatment with β-AR antagonists suppressed the acquisition of transformed phenotypes in lung epithelial cells and lung tumor formation in mice. These results suggest that blocking β-AR-mediated IGF-1R activation can be an effective strategy for lung cancer prevention in smokers.

  4. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer.

    PubMed

    Buck, Elizabeth; Gokhale, Prafulla C; Koujak, Susan; Brown, Eric; Eyzaguirre, Alexandra; Tao, Nianjun; Rosenfeld-Franklin, Maryland; Lerner, Lorena; Chiu, M Isabel; Wild, Robert; Epstein, David; Pachter, Jonathan A; Miglarese, Mark R

    2010-10-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase-AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti-IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti-IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone.

  5. PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage.

    PubMed

    Xiang, Zhonghua; Wang, Dan; Xue, Yuhua; Dai, Liming; Chen, Jian-Feng; Cao, Dapeng

    2015-06-05

    Owing to the shortage of the traditional fossil fuels caused by fast consumption, it is an urgent task to develop the renewable and clean energy sources. Thus, advanced technologies for both energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) are being studied extensively. In this work, we use porous aromatic framework (PAF) as precursor to produce nitrogen-doped 3D carbon materials, i.e., N-PAF-Carbon, by exposing NH3 media. The "graphitic" and "pyridinic" N species, large surface area, and similar pore size as electrolyte ions endow the nitrogen-doped PAF-Carbon with outstanding electronic performance. Our results suggest the N-doping enhance not only the ORR electronic catalysis but also the supercapacitive performance. Actually, the N-PAF-Carbon obtains ~70 mV half-wave potential enhancement and 80% increase as to the limiting current after N doping. Moreover, the N-PAF-Carbon displays free from the CO and methanol crossover effect and better long-term durability compared with the commercial Pt/C benchmark. Moreover, N-PAF-Carbon also possesses large capacitance (385 F g(-1)) and excellent performance stability without any loss in capacitance after 9000 charge-discharge cycles. These results clearly suggest that PAF-derived N-doped carbon material is promising metal-free ORR catalyst for fuel cells and capacitor electrode materials.

  6. TAS2R bitter taste receptors regulate thyroid function

    PubMed Central

    Clark, Adam A.; Dotson, Cedrick D.; Elson, Amanda E. T.; Voigt, Anja; Boehm, Ulrich; Meyerhof, Wolfgang; Steinle, Nanette I.; Munger, Steven D.

    2015-01-01

    Dysregulation of thyroid hormones triiodothyronine and thyroxine (T3/T4) can impact metabolism, body composition, and development. Thus, it is critical to identify novel mechanisms that impact T3/T4 production. We found that type 2 taste receptors (TAS2Rs), which are activated by bitter-tasting compounds such as those found in many foods and pharmaceuticals, negatively regulate thyroid-stimulating hormone (TSH)-dependent Ca2+ increases and TSH-dependent iodide efflux in thyrocytes. Immunohistochemical Tas2r-dependent reporter expression and real-time PCR analyses reveal that human and mouse thyrocytes and the Nthy-Ori 3-1 human thyrocyte line express several TAS2Rs. Five different agonists for thyrocyte-expressed TAS2Rs reduced TSH-dependent Ca2+ release in Nthy-Ori 3-1 cells, but not basal Ca2+ levels, in a dose-dependent manner. Ca2+ responses were unaffected by 6-n-propylthiouracil, consistent with the expression of an unresponsive variant of its cognate receptor, TAS2R38, in these cells. TAS2R agonists also inhibited basal and TSH-dependent iodide efflux. Furthermore, a common TAS2R42 polymorphism is associated with increased serum T4 levels in a human cohort. Our findings indicate that TAS2Rs couple the detection of bitter-tasting compounds to changes in thyrocyte function and T3/T4 production. Thus, TAS2Rs may mediate a protective response to overingestion of toxic materials and could serve as new druggable targets for therapeutic treatment of hypo- or hyperthyroidism.—Clark, A. A., Dotson, C. D., Elson, A. E. T., Voigt, A., Boehm, U., Meyerhof, W., Steinle, N. I., Munger, S. D. TAS2R bitter taste receptors regulate thyroid function. PMID:25342133

  7. 25 CFR 170.221 - What funding is available for distribution using the PAF?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false What funding is available for distribution using the PAF? 170.221 Section 170.221 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Funding Population Adjustment Factor...

  8. 25 CFR 170.221 - What funding is available for distribution using the PAF?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What funding is available for distribution using the PAF? 170.221 Section 170.221 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Funding Population Adjustment Factor...

  9. 25 CFR 170.221 - What funding is available for distribution using the PAF?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What funding is available for distribution using the PAF? 170.221 Section 170.221 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Funding Population Adjustment Factor...

  10. 25 CFR 170.221 - What funding is available for distribution using the PAF?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false What funding is available for distribution using the PAF? 170.221 Section 170.221 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Funding Population Adjustment Factor...

  11. 25 CFR 170.221 - What funding is available for distribution using the PAF?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true What funding is available for distribution using the PAF? 170.221 Section 170.221 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Funding Population Adjustment Factor...

  12. Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R).

    PubMed

    Sokolowska, Izabela; Woods, Alisa G; Gawinowicz, Mary Ann; Roy, Urmi; Darie, Costel C

    2013-08-01

    Tumor differentiation factor (TDF) is an under-investigated protein produced by the pituitary with no definitive function. TDF is secreted into the bloodstream and targets the breast and prostate, suggesting that it has an endocrine function. Initially, TDF was indirectly discovered based on the differentiation effect of alkaline pituitary extracts of the mammosomatotropic tumor MtTWlO on MTW9/PI rat mammary tumor cells. Years later, the cDNA clone responsible for this differentiation activity was isolated from a human pituitary cDNA library using expression cloning. The cDNA encoded a 108-amino-acid polypeptide that had differentiation activity on MCF7 breast cancer cells and on DU145 prostate cancer cells in vitro and in vivo. Recently, our group focused on identification of the TDF receptor (TDF-R). As potential TDF-R candidates, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cells fibroblasts or fibroblast-like cells. Here we review the current advances on TDF, with particular focus on the structural investigation of its receptor and on its functional effects on breast and prostate cells.

  13. Role of tumor necrosis factor-alpha and platelet-activating factor in neoangiogenesis induced by synovial fluids of patients with rheumatoid arthritis.

    PubMed

    Lupia, E; Montrucchio, G; Battaglia, E; Modena, V; Camussi, G

    1996-08-01

    The aim of the present study was to investigate in vivo in a mouse model the stimulation of neoangiogenesis by synovial fluids of patients with rheumatoid arthritis (RA) and to determine the role of tumor necrosis factor (TNF)-alpha and platelet-activating factor (PAF) in the formation of new vessels. Angiogenesis was studied in a mouse model in which Matrigel, injected subcutaneously, was used as a vehicle for the delivery of potential angiogenic stimuli. Synovial fluids of patients with RA but not with osteoarthritis (OA) were shown to induce neoangiogenesis. Since synovial fluid of patients with RA contained significantly higher levels of TNF-alpha-like bioactivity and of PAF than that of patients with OA, the role of these mediators was evaluated by using an anti-TNF-alpha neutralizing monoclonal antibody (mAb) and a PAF receptor antagonist, WEB 2170. When added to Matrigel, anti-TNF-alpha mAb and particularly WEB 2170 significantly reduced neoangiogenesis induced by synovial fluids of RA patients. Moreover, PAF extracted and purified from synovial fluid induced angiogenesis. These results suggest that the neoangiogenesis observed in rheumatoid synovitis may be due, at least in part, to the angiogenic effect of locally produced TNF-alpha and PAF.

  14. Potential Angiogenic Role of Platelet-Activating Factor in Human Breast Cancer

    PubMed Central

    Montrucchio, Giuseppe; Sapino, Anna; Bussolati, Benedetta; Ghisolfi, Gianpiero; Rizea-Savu, Simona; Silvestro, Luigi; Lupia, Enrico; Camussi, Giovanni

    1998-01-01

    This study investigated the presence of platelet-activating factor (PAF) in the lipid extracts of 18 primary breast carcinomas and 20 control breast tissues. The amount of PAF detected in breast carcinomas was significantly higher than in controls. The mass spectrometric analysis of PAF-bioactive lipid extract from breast carcinomas showed the presence of several molecular species of PAF, including C16-alkylPAF, C18-lysophosphatidylcholine (LPC), C16-LPC, lyso-PAF, and C16-acylPAF. The amount of bioactive PAF extracted from breast specimens significantly correlated with tumor vascularization revealed by the number of CD34- and CD31-positive cells. As C16-alkylPAF was previously shown to induce angiogenesis in vivo, we evaluated whether the thin layer chromatography-purified lipid extracts of breast specimens elicited neoangiogenesis in a murine model of subcutaneous Matrigel injection. The lipid extracts from specimens of breast carcinoma containing high levels of PAF bioactivity, but not from breast carcinomas containing low levels of PAF bioactivity or from normal breast tissue, induced a significant angiogenic response. This angiogenic response was significantly inhibited by the PAF receptor antagonist WEB 2170. T47D and MCF7 breast cancer cell lines, but not an immortalized nontumor breast cell line (MCF10), released PAF in the culture medium. A significant in vivo neoangiogenic response, inhibited by WEB 2170, was elicited by T47D and MCF7 but not by MCF10 culture medium. These results indicate that an increased concentration of PAF is present in tumors with high microvessel density and that PAF may account for the neoangiogenic activity induced in mice by the lipid extracts obtained from breast cancer. A contribution of PAF in the neovascularization of human breast cancer is suggested. PMID:9811351

  15. Divergent β-Arrestin-dependent Signaling Events Are Dependent upon Sequences within G-protein-coupled Receptor C Termini*

    PubMed Central

    Pal, Kasturi; Mathur, Maneesh; Kumar, Puneet; DeFea, Kathryn

    2013-01-01

    β-Arrestins are multifunctional adaptor proteins that, upon recruitment to an activated G-protein-coupled receptor, can promote desensitization of G-protein signaling and receptor internalization while simultaneously eliciting an independent signal. The result of β-arrestin signaling depends upon the activating receptor. For example, activation of two Gαq-coupled receptors, protease-activated receptor-2 (PAR2) and neurokinin-1 receptor (NK1R), results in drastically different signaling events. PAR2 promotes β-arrestin-dependent membrane-sequestered extracellular signal-regulated kinase (ERK1/2) activation, cofilin activation, and cell migration, whereas NK1R promotes nuclear ERK1/2 activation and proliferation. Using bioluminescence resonance energy transfer to monitor receptor/β-arrestin interactions in real time, we observe that PAR2 has a higher apparent affinity for both β-arrestins than does NK1R, recruits them at a faster rate, and exhibits more rapid desensitization of the G-protein signal. Furthermore, recruitment of β-arrestins to PAR2 does not require prior Gαq signaling events, whereas inhibition of Gαq signaling intermediates inhibits recruitment of β-arrestins to NK1R. Using chimeric receptors in which the C terminus of PAR2 is fused to the N terminus of NK1R and vice versa and a critical Ser/Thr mutant of PAR2, we demonstrate that interactions between β-arrestins and specific phosphoresidues in the C termini of each receptor are crucial for determining the rate and magnitude of β-arrestin recruitment as well as the ultimate signaling outcome. PMID:23235155

  16. Platelet Activating Factor Contributes to Vascular Leak in Acute Dengue Infection

    PubMed Central

    Jeewandara, Chandima; Gomes, Laksiri; Wickramasinghe, N.; Gutowska-Owsiak, Danuta; Waithe, Dominic; Paranavitane, S. A.; Shyamali, N. L. A.; Ogg, Graham S.; Malavige, Gathsaurie Neelika

    2015-01-01

    Background Although plasma leakage is the hallmark of severe dengue infections, the factors that cause increased vascular permeability have not been identified. As platelet activating factor (PAF) is associated with an increase in vascular permeability in other diseases, we set out to investigate its role in acute dengue infection. Materials and Methods PAF levels were initially assessed in 25 patients with acute dengue infection to determine if they were increased in acute dengue. For investigation of the kinetics of PAF, serial PAF values were assessed in 36 patients. The effect of dengue serum on tight junction protein ZO-1 was determined by using human endothelial cell lines (HUVECs). The effect of dengue serum on and trans-endothelial resistance (TEER) was also measured on HUVECs. Results PAF levels were significantly higher in patients with acute dengue (n = 25; p = 0.001) when compared to healthy individuals (n = 12). In further investigation of the kinetics of PAF in serial blood samples of patients (n = 36), PAF levels rose just before the onset of the critical phase. PAF levels were significantly higher in patients with evidence of vascular leak throughout the course of the illness when compared to those with milder disease. Serum from patients with dengue significantly down-regulated expression of tight junction protein, ZO-1 (p = 0.004), HUVECs. This was significantly inhibited (p = 0.004) by use of a PAF receptor (PAFR) blocker. Serum from dengue patients also significantly reduced TEER and this reduction was also significantly (p = 0.02) inhibited by prior incubation with the PAFR blocker. Conclusion Our results suggest the PAF is likely to be playing a significant role in inducing vascular leak in acute dengue infection which offers a potential target for therapeutic intervention. PMID:25646838

  17. The AMPA receptor subunit GluR1 regulates dendritic architecture of motor neurons

    NASA Technical Reports Server (NTRS)

    Inglis, Fiona M.; Crockett, Richard; Korada, Sailaja; Abraham, Wickliffe C.; Hollmann, Michael; Kalb, Robert G.

    2002-01-01

    The morphology of the mature motor neuron dendritic arbor is determined by activity-dependent processes occurring during a critical period in early postnatal life. The abundance of the AMPA receptor subunit GluR1 in motor neurons is very high during this period and subsequently falls to a negligible level. To test the role of GluR1 in dendrite morphogenesis, we reintroduced GluR1 into rat motor neurons at the end of the critical period and quantitatively studied the effects on dendrite architecture. Two versions of GluR1 were studied that differed by the amino acid in the "Q/R" editing site. The amino acid occupying this site determines single-channel conductance, ionic permeability, and other essential electrophysiologic properties of the resulting receptor channels. We found large-scale remodeling of dendritic architectures in a manner depending on the amino acid occupying the Q/R editing site. Alterations in the distribution of dendritic arbor were not prevented by blocking NMDA receptors. These observations suggest that the expression of GluR1 in motor neurons modulates a component of the molecular substrate of activity-dependent dendrite morphogenesis. The control of these events relies on subunit-specific properties of AMPA receptors.

  18. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors.

    PubMed

    Annenkov, Alexander; Rigby, Anne; Amor, Sandra; Zhou, Dun; Yousaf, Nasim; Hemmer, Bernhard; Chernajovsky, Yuti

    2011-08-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 ‎‎(IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single ‎chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional. 2011 Elsevier B.V. All rights reserved.

  19. Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55

    PubMed Central

    1993-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine triggering cell responses through two distinct membrane receptors. Stimulation of leukocyte adhesion to the endothelium is one of the many TNF-alpha activities and is explained by the upregulation of adhesion molecules on the endothelial cell surface. Human umbilical vein endothelial cells (HUVEC) were isolated, cultured, and demonstrated to express both TNF receptor types, TNF-R55 and TNF-R75. Cell adhesion to HUVEC was studied using the HL60, U937, and MOLT-4 cell lines. HUVEC were activated by either TNF-alpha, binding to both TNF-R55 and TNF- R75, and by receptor type-specific agonists, binding exclusively to TNF- R55 or to TNF-R75. The TNF-alpha-induced cell adhesion to HUVEC was found to be controlled almost exclusively by TNF-R55. This finding correlated with the exclusive activity of TNF-R55 in the TNF-alpha- dependent regulation of the expression of the intercellular adhesion molecule type 1 (ICAM-1), E-selectin, and vascular cell adhesion molecule type 1 (VCAM-1). The CD44 adhesion molecule in HUVEC was also found to be upregulated through TNF-R55. However, both TNF-R55 and TNF- R75 upregulate alpha 2 integrin expression in HUVEC. The predominant role of TNF-R55 in TNF-alpha-induced adhesion in HUVEC may correlate with its specific control of NF-kappa B activation, since kappa B elements are known to be present in ICAM-1, E-selectin, and VCAM-1 gene regulatory sequences. PMID:8386742

  20. The Histone Modification Domain of Paf1 Complex Subunit Rtf1 Directly Stimulates H2B Ubiquitylation through an Interaction with Rad6

    DOE PAGES

    Van Oss, S. Branden; Shirra, Margaret K.; Bataille, Alain R.; ...

    2016-11-10

    The five-subunit yeast Paf1 Complex (Paf1C) regulates all stages of transcription and is critical for the monoubiquitylation of histone H2B (H2Bub), a modification that broadly influences chromatin structure and eukaryotic transcription. Here we show that the histone modification domain (HMD) of Paf1C subunit Rtf1 directly interacts with the ubiquitin conjugase Rad6 and stimulates H2Bub independently of transcription. We present the crystal structure of the Rtf1 HMD and use site-specific, in vivo crosslinking to identify a conserved Rad6 interaction surface. Utilizing ChIP-exo analysis, we define the localization patterns of the H2Bub machinery at high resolution and demonstrate the importance of Paf1Cmore » in targeting the Rtf1 HMD, and thereby H2Bub, to its appropriate genomic locations. Finally, we observe HMD-dependent stimulation of H2Bub in a transcription-free, reconstituted in vitro system. Taken together, our results argue for an active role for Paf1C in promoting H2Bub and ensuring its proper localization in vivo.« less

  1. Multiple receptors mobilize calcium through a pertussis toxin (PT) sensitive GTP-binding protein in human neutrophils (PMN's)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lad, P.M.; Olson, C.V.; Grewal, I.S.

    1986-03-05

    Treatment of PMN's with PT causes an abolition of chemotaxis, enzyme release, superoxide generation and aggregation caused by f-met-leu-phe (FMLP),C5a and platelet activating factor (PAF). Lectin (Con-A) induced capping and receptor induced shape change are abolished, but phagocytosis is unaltered. In whole cells, calcium mobilization induced by FMLP, PAF and Con-A inhibited by PT although the FMLP-mediated effect is more susceptible to PT's effects. Treatment of PMN's with phorbol 12-myristate 13 acetate (PMA) causes an abolition of calcium mobilization by all agents in a range which also inhibits cap formation. Investigation of calcium uptake reveals PT sensitive and insensitive components.more » Reciprocal interactions between Ns and Ni proteins are also observed since pretreatment with FMLP and PAF causes a stimulation of Ns-mediated cyclic AMP enhancement while pretreatment with Ns linked receptors (PGE/sub 1/ and beta receptor agonists) inhibits calcium mobilization. Comparative peptide mapping studies indicate substantial similarity between Ni proteins in PMN's, platelets and human erythrocytes. The authors results suggest that the Ni linked calcium mobilization sensitive to PMA is important to the regulation of the human neutrophil.« less

  2. Lipid Raft-dependent Glucagon-like Peptide-2 Receptor Trafficking Occurs Independently of Agonist-induced Desensitization

    PubMed Central

    Estall, Jennifer L.; Yusta, Bernardo; Drucker, Daniel J.

    2004-01-01

    The intestinotrophic and cytoprotective actions of glucagon-like peptide-2 (GLP-2) are mediated by the GLP-2 receptor (GLP-2R), a member of the class II glucagon-secretin G protein-coupled receptor superfamily. Although native GLP-2 exhibits a short circulating half-life, long-acting degradation-resistant GLP-2 analogues are being evaluated for therapeutic use in human subjects. Accordingly, we examined the mechanisms regulating signaling, internalization, and trafficking of the GLP-2R to identify determinants of receptor activation and desensitization. Heterologous cells expressing the transfected rat or human GLP-2R exhibited a rapid, dose-dependent, and prolonged desensitization of the GLP-2–stimulated cAMP response and a sustained GLP-2–induced decrease in levels of cell surface receptor. Surprisingly, inhibitors of clathrin-dependent endocytosis failed to significantly decrease GLP-2R internalization, whereas cholesterol sequestration inhibited ligand-induced receptor internalization and potentiated homologous desensitization. The hGLP-2R localized to both Triton X-100–soluble and –insoluble (lipid raft) cellular fractions and colocalized transiently with the lipid raft marker caveolin-1. Although GLP-2R endocytosis was dependent on lipid raft integrity, the receptor transiently associated with green fluorescent protein tagged-early endosome antigen 1–positive vesicles and inhibitors of endosomal acidification attenuated the reappearance of the GLP-2R on the cell surface. Our data demonstrate that GLP-2R desensitization and raft-dependent trafficking represent distinct and independent cellular mechanisms and provide new evidence implicating the importance of a clathrin- and dynamin-independent, lipid raft-dependent pathway for homologous G protein-coupled receptor internalization. PMID:15169869

  3. Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent.

    PubMed

    Kren, Nancy P; Zagon, Ian S; McLaughlin, Patricia J

    2016-02-01

    Opioid growth factor receptor (OGFr) facilitates growth inhibition in the presence of its specific ligand opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin. The function of the OGF-OGFr axis requires the receptor to translocate to the nucleus. However, the mechanism of nuclear export of OGFr is unknown. In this study, endogenous OGFr, as well as exogenously expressed OGFr-EGFP, demonstrated significant nuclear accumulation in response to leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export, suggesting that OGFr is exported in a CRM1-dependent manner. One consensus sequence for a nuclear export signal (NES) was identified. Mutation of the associated leucines, L217 L220 L223 and L225, to alanine resulted in decreased nuclear accumulation. NES-EGFP responded to LMB, indicating that this sequence is capable of functioning as an export signal in isolation. To determine why the sequence functions differently in isolation than as a full length protein, the localization of subNES was evaluated in the presence and absence of MG132, a potent inhibitor of proteosomal degradation. MG132 had no effect of subNES localization. The role of tandem repeats located at the C-terminus of OGFr was examined for their role in nuclear trafficking. Six of seven tandem repeats were removed to form deltaTR. DeltaTR localized exclusively to the nucleus indicating that the tandem repeats may contribute to the localization of the receptor. Similar to the loss of cellular proliferation activity (i.e. inhibition) recorded with subNES, deltaTR also demonstrated a significant loss of inhibitory activity indicating that the repeats may be integral to receptor function. These experiments reveal that OGFr contains one functional NES, L217 L220 L223 and L225 and can be exported from the nucleus in a CRM1-dependent manner. © 2015 by the Society for Experimental Biology and Medicine.

  4. Paraoxonase lactonase activity (PON-HTLase), asymmetric dimethylarginine (ADMA) and platelet activating factor-acetylhydrolase (PAF-AH) activity in non-obese women with PCOS.

    PubMed

    Bayrak, Tulin; Dursun, Polat; Bayrak, Ahmet; Gültekin, Murat; Kolusarı, Ali; Cakır, Erdinç; Ozyurt, Merve; Zeyneloğlu, Hulusi B

    2012-11-01

    Paraoxonase1 (PON1), exhibits both esterase activity (PON1-AREase) and homocysteine thiolactonase activity (PON1-HTLase) which respectively prevent LDL oxidation and detoxify homocysteine thiolactone (HTL). Platelet-activating factor-acetylhydrolase (PAF-AH) is an antioxidant enzyme preventing LDL oxidation by hydrolysis of oxidized phospholipids. Both of these enzymes exhibit a proatherogenic role. ADMA is an endogenous inhibitor of nitric oxide (NO) synthesis causing endothelial dysfunction. The aim was to compare non-obese PCOS patients with a BMI matched control group using the following characteristics: serum PON1-HTLase, ADMA, PAF-AH, and lipid and hormonal parameters. 77 women with PCOS and 25 healthy subject were recruited for this study, The controls were non-obese BMI and age matched with the patients. There were no significant differences with respect to age, BMI, FSH, free testosterone, DHEA, androstenadion, total cholesterol, triglycerides, HDL, LDL, VLDL, fasting glucose/insulin ratio and HOMA-IR among the groups (p > 0.05). However, total testosterone and fasting glucose levels were significantly higher in the PCOS group (p < 0.05). On the other hand, PON1-HTLase levels (39.6 ± 5.77 vs. 33.8 ± 8.2, p = 0.02) were significantly lower in the PCOS group while ADMA levels (1.14 ± 0.6 vs. 3.37 ± 6.4, p = 0.004) were significantly higher in the PCOS group. However, there was no significant difference in PAF-AH activity among the groups. Decreased PON1-HTLase and increased ADMA levels might be a relevant marker for the development of future atherosclerotic heart disease (AHD) in non-obese PCOS patients. Further studies are needed to confirm our results.

  5. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, Emelia; Zago, Michela; Sarill, Miles

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{supmore » +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates

  6. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer

    PubMed Central

    Damiani, Elisabetta; Ullrich, Stephen E.

    2016-01-01

    Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome. PMID:27073146

  7. Different contributions of platelet-activating factor and nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    PubMed

    Pettorossi, V E; Grassi, S

    2001-01-01

    In rat brainstem slices, we investigated the differential role of nitric oxide (NO) and platelet-activating factor (PAF) in long-term potentiation (LTP) induced in the ventral portion of the medial vestibular nuclei (MVN) by high-frequency stimulation (HFS) of the primary vestibular afferents. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO) and the PAF receptor antagonist ginkgolide B (BN-52021) were administered before and after induction of potentiation. The effect of carboxy-PTIO was to completely prevent LTP. By contrast, BN-52021 only reduced the amplitude of HFS potentiation, which could develop fully at the drug washout or decline to zero, becoming a short-term phenomenon, in the case of long-lasting PAF receptor block. Both drugs, when given after HFS, had no effect on the already established potentiation, but whilst BN-52021 showed an influence within 5 min of the LTP induction, carboxy-PTIO did not affect the response once HFS was delivered. Moreover, we showed that the NO donor, sodium nitroprusside, and methylcarbamyl PAF (mc-PAF) induced LTP which was associated with an increase in glutamate release as shown by reduction in the paired-pulse facilitation ratio. The mc-PAF LTP was prevented by the NO scavenger, while NO LTP was only reduced by BN-52021. We suggest that NO and PAF are implicated as retrograde messengers in two different phases of vestibular LTP: NO in the induction phase; and PAF in the full expression phase.

  8. A role for inflammatory mediators in heterologous desensitization of CysLT1 receptor in human monocytes

    PubMed Central

    Capra, Valérie; Accomazzo, Maria Rosa; Gardoni, Fabrizio; Barbieri, Silvia; Rovati, G. Enrico

    2010-01-01

    Cysteinyl-leukotrienes (cysteinyl-LT) are rapidly generated at sites of inflammation and, in addition to their role in asthma, rhinitis, and other immune disorders, are increasingly regarded as significant inflammatory factors in cancer, gastrointestinal, cardiovascular diseases. We recently demonstrated that in monocyte/macrophage–like U937 cells, extracellular nucleotides heterologously desensitize CysLT1 receptor (CysLT1R)-induced Ca2+ transients. Given that monocytes express a number of other inflammatory and chemoattractant receptors, this study was aimed at characterizing transregulation between these different stimuli. We demonstrate that in U937 cells and in primary human monocytes, a series of inflammatory mediators activating Gi-coupled receptor (FPR1, BLT1) desensitize CysLT1R-induced Ca2+ response unidirectionally through activation of PKC. Conversely, PAF-R, exclusively coupled to Gq, cross-desensitizes CysLT1R without the apparent involvement of any kinase. Interestingly, Gs-coupled receptors (β2AR, H1/2R, EP2/4R) are also able to desensitize CysLT1R response through activation of PKA. Heterologous desensitization seems to affect mostly the Gi-mediated signaling of the CysLT1R. The hierarchy of desensitization among agonists may be important for leukocyte signal processing at the site of inflammation. Considering that monocytes/macrophages are likely to be the major source of cysteinyl-LT in many immunological and inflammatory processes, shedding light on how their receptors are regulated will certainly help to better understand the role of these cells in orchestrating this complex network of integrated signals. PMID:19965602

  9. Consequences of ChemR23 Heteromerization with the Chemokine Receptors CXCR4 and CCR7

    PubMed Central

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed. PMID:23469143

  10. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    PubMed

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  11. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.

    PubMed

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven

    2011-08-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.

  12. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor.

    PubMed

    Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2013-12-01

    Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin.

    PubMed

    Hidaka, Takanori; Ogawa, Eisaku; Kobayashi, Eri H; Suzuki, Takafumi; Funayama, Ryo; Nagashima, Takeshi; Fujimura, Taku; Aiba, Setsuya; Nakayama, Keiko; Okuyama, Ryuhei; Yamamoto, Masayuki

    2017-01-01

    Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified Artn as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and ARTN expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.

  14. Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine.

    PubMed

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I; Ferré, Sergi; McCormick, Peter J

    2015-04-29

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. Copyright © 2015 the authors 0270-6474/15/356639-15$15.00/0.

  15. KF19514, a phosphodieterase 4 and 1 inhibitor, inhibits PAF-induced lung inflammatory responses by inhaled administration in guinea pigs.

    PubMed

    Manabe, H; Akuta, K; Okamura, K; Ohmori, K

    1997-12-01

    Phosphodiesterase (PDE) 4 inhibitors are well known for their inhibitory effect on bronchoconstriction and inflammation and may be promising anti-asthma drugs. Platelet-activating factor (PAF) has been proposed as an inflammatory mediator to be relevant to asthma. It causes bronchoconstriction, airway microvascular leakage, inflammatory cell accumulation in the lung and hyperresponsiveness. In this study, we therefore have investigated the anti-asthmatic effects of the inhaled KF19514 [5-phenyl-3'-(3-pyridyl)methyl-3H-imidazo(4,5-c)(1,8) naphthyridin-4(5H)-one], a PDE 4 and 1 inhibitor, on PAF-induced lung inflammatory responses in guinea pigs. The inhaled KF19514 (0.0001-0.01%) significantly inhibited PAF-induced eosinophil and neutrophil accumulation into the airway and hyperresponsiveness in guinea pigs. The IC50 value of KF19514 against eosinophil accumulation was 14.8 microM (0.00063%). Moreover, the effect of KF19514 on the electrical field stimulation-induced bronchial contraction was examined using the main bronchi of guinea pigs in vitro. KF19514 inhibited both cholinergic and tachykininergic contraction and, in particular, produced a potent inhibitory effect on tachykininergic contraction (IC50 = 0.49 microM). The mechanism by which KF19514 inhibited the PAF-induced hyperresponsiveness may in part be the suppression of the tachykinin release. Based on these results, it was demonstrated that the inhaled KF19514 might have a significant potential effect on the inflammatory cell accumulation and hyperresponsiveness induced by PAF.

  16. dbPAF: an integrative database of protein phosphorylation in animals and fungi.

    PubMed

    Ullah, Shahid; Lin, Shaofeng; Xu, Yang; Deng, Wankun; Ma, Lili; Zhang, Ying; Liu, Zexian; Xue, Yu

    2016-03-24

    Protein phosphorylation is one of the most important post-translational modifications (PTMs) and regulates a broad spectrum of biological processes. Recent progresses in phosphoproteomic identifications have generated a flood of phosphorylation sites, while the integration of these sites is an urgent need. In this work, we developed a curated database of dbPAF, containing known phosphorylation sites in H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. pombe and S. cerevisiae. From the scientific literature and public databases, we totally collected and integrated 54,148 phosphoproteins with 483,001 phosphorylation sites. Multiple options were provided for accessing the data, while original references and other annotations were also present for each phosphoprotein. Based on the new data set, we computationally detected significantly over-represented sequence motifs around phosphorylation sites, predicted potential kinases that are responsible for the modification of collected phospho-sites, and evolutionarily analyzed phosphorylation conservation states across different species. Besides to be largely consistent with previous reports, our results also proposed new features of phospho-regulation. Taken together, our database can be useful for further analyses of protein phosphorylation in human and other model organisms. The dbPAF database was implemented in PHP + MySQL and freely available at http://dbpaf.biocuckoo.org.

  17. Neutrophil adherence to isolated adult canine myocytes. Evidence for a CD18-dependent mechanism.

    PubMed

    Entman, M L; Youker, K; Shappell, S B; Siegel, C; Rothlein, R; Dreyer, W J; Schmalstieg, F C; Smith, C W

    1990-05-01

    Cardiac myocytes were isolated from adult dogs and incubated with isolated canine neutrophils (PMN). Intercellular adhesion was low and unchanged by stimulation of the PMN with zymosan activated serum or platelet activating factor (PAF) at concentrations that significantly enhance PMN adhesion to protein-coated glass and canine endothelial cell monolayers. Intercellular adhesion was significantly increased only when both myocytes and PMN were stimulated (e.g., myocytes incubated with IL-1, tumor necrosis factor, or phorbol myristate acetate, and PMN were chemotactically stimulated). Inhibitors of protein synthesis diminished the IL-1 beta-induced effect by greater than 80%. The IL-1 beta, PAF-stimulated PMN-myocyte adhesion was associated with substantial H2O2 production. Under conditions with low PMN-myocyte adhesion (i.e., IL-1 beta alone, PAF alone, or no stimulus) H2O2 production was generally less than 5% of that occurring with high adhesion. An anti-CD18 monoclonal antibody (R15.7) inhibited stimulated PMN-myocyte adhesion by greater than 95% and reduced H2O2 production by greater than 90%. Control isotype-matched, binding, and nonbinding antibodies were without effect on adherence or H2O2 production. The results indicate that cytokine stimulation of adult myocytes induces expression of a ligand involved in CD18-dependent adherence of canine neutrophils.

  18. Age–dependent regulation of synaptic connections by dopamine D2 receptors

    PubMed Central

    Jia, Jie–Min; Zhao, Jun; Hu, Zhonghua; Lindberg, Daniel; Li, Zheng

    2013-01-01

    Dopamine D2 receptors (D2R) are G protein–coupled receptors that modulate synaptic transmission and play an important role in various brain functions including affect learning and working memory. Abnormal D2R signaling has been implicated in psychiatric disorders such as schizophrenia. Here we report a new function of D2R in dendritic spine morphogenesis. Activation of D2R reduces spine number via GluN2B– and cAMP–dependent mechanisms in mice. Notably, this regulation takes place only during adolescence. During this period, D2R overactivation caused by mutations in the schizophrenia–risk–gene dysbindin leads to spine deficiency, dysconnectivity within the entorhinal–hippocampal circuit and impairment of spatial working memory. Notably, these defects can be ameliorated by D2R blockers administered during adolescence. These findings uncover a novel age–dependent function of D2R in spine development, provide evidence that D2R dysfunction during adolescence impairs neuronal circuits and working memory, and suggest that adolescent interventions of aberrant D2R activity protect against cognitive impairment. PMID:24121738

  19. The microRNA miR-1 regulates a MEF-2 dependent retrograde signal at neuromuscular junctions

    PubMed Central

    Simon, David J.; Madison, Jon M.; Conery, Annie L.; Thompson-Peer, Katherine L.; Soskis, Michael; Ruvkun, Gary B.; Kaplan, Joshua M.; Kim, John K.

    2008-01-01

    Summary We show that miR-1, a conserved muscle specific microRNA, regulates aspects of both pre- and post-synaptic function at C. elegans neuromuscular junctions. miR-1 regulates the expression level of two nicotinic acetylcholine receptor (nAChR) subunits (UNC-29 and UNC-63), thereby altering muscle sensitivity to acetylcholine (ACh). miR-1 also regulates the muscle transcription factor MEF-2, which results in altered pre-synaptic ACh secretion, suggesting that MEF-2 activity in muscles controls a retrograde signal. The effect of the MEF-2-dependent retrograde signal on secretion is mediated by the synaptic vesicle protein RAB-3. Finally, acute activation of levamisole-sensitive nAChRs stimulates MEF-2-dependent transcriptional responses, and induces the MEF-2-dependent retrograde signal. We propose that miR-1 refines synaptic function by coupling changes in muscle activity to changes in pre-synaptic function. PMID:18510933

  20. Kruppel-like Factor 9 is a Negative Regulator of Ligand-dependent Estrogen Receptor Alpha Signaling in Ishikawa Endometrial Adenocarcinoma Cells

    USDA-ARS?s Scientific Manuscript database

    Estrogen (E) and progesterone (P), acting through their respective receptors and other nuclear proteins, exhibit opposing activities in target cells. We previously reported that Krüppel-like factor 9 (KLF9) cooperates with progesterone receptor (PR) to facilitate P-dependent gene transcription in ut...

  1. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer.

    PubMed

    Damiani, Elisabetta; Ullrich, Stephen E

    2016-07-01

    Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of platelet activating factor on endothelial permeability to plasma macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handley, D.A.; Arbeeny, C.M.; Lee, M.L.

    The effect of intrajugular administration of platelet activating factor (PAF-C16) on vascular permeability was examined in the guinea pig. To examine the loss of selective endothelial permeability, the extravasative effect of PAF was assessed by monitoring hemoconcentration and the plasma loss of /sup 125/I-albumin (6.7 nm), /sup 125/I-low density lipoproteins (22.0 nm) or /sup 125/I-very low density lipoproteins (62.1 nm). Extravasation was dose-dependent and began 1 min after PAF administration, continuing for 5-7 min. During extravasation, there was no evidence for selective plasma retention of any of the labeled plasma tracers, as measured by plasma radioactivity. These results suggest thatmore » PAF-induced extravasation is dose-dependent, with increases in vascular permeability sufficient to permit similar plasma efflux rates of albumin, low density lipoproteins and very low density lipoproteins.« less

  3. Cocaine Effects on Dopaminergic Transmission Depend on a Balance between Sigma-1 and Sigma-2 Receptor Expression.

    PubMed

    Aguinaga, David; Medrano, Mireia; Vega-Quiroga, Ignacio; Gysling, Katia; Canela, Enric I; Navarro, Gemma; Franco, Rafael

    2018-01-01

    Sigma σ 1 and σ 2 receptors are targets of cocaine. Despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is unknown. Cocaine increases the level of dopamine, a key neurotransmitter in CNS motor control and reward areas. While the drug also affects dopaminergic signaling by allosteric modulations exerted by σ 1 R interacting with dopamine D 1 and D 2 receptors, the potential regulation of dopaminergic transmission by σ 2 R is also unknown. We here demonstrate that σ 2 R may form heteroreceptor complexes with D 1 but not with D 2 receptors. Remarkably σ 1 , σ 2 , and D 1 receptors may form heterotrimers with particular signaling properties. Determination of cAMP levels, MAP kinase activation and label-free assays demonstrate allosteric interactions within the trimer. Importantly, the presence of σ 2 R induces bias in signal transduction as σ 2 R ligands increase cAMP signaling whereas reduce MAP kinase activation. These effects, which are opposite to those exerted via σ 1 R, suggest that the D 1 receptor-mediated signaling depends on the degree of trimer formation and the differential balance of sigma receptor and heteroreceptor expression in acute versus chronic cocaine consumption. Although the physiological role is unknown, the heteroreceptor complex formed by σ 1 , σ 2 , and D 1 receptors arise as relevant to convey the cocaine actions on motor control and reward circuits and as a key factor in acquisition of the addictive habit.

  4. Cocaine Effects on Dopaminergic Transmission Depend on a Balance between Sigma-1 and Sigma-2 Receptor Expression

    PubMed Central

    Aguinaga, David; Medrano, Mireia; Vega-Quiroga, Ignacio; Gysling, Katia; Canela, Enric I.; Navarro, Gemma; Franco, Rafael

    2018-01-01

    Sigma σ1 and σ2 receptors are targets of cocaine. Despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is unknown. Cocaine increases the level of dopamine, a key neurotransmitter in CNS motor control and reward areas. While the drug also affects dopaminergic signaling by allosteric modulations exerted by σ1R interacting with dopamine D1 and D2 receptors, the potential regulation of dopaminergic transmission by σ2R is also unknown. We here demonstrate that σ2R may form heteroreceptor complexes with D1 but not with D2 receptors. Remarkably σ1, σ2, and D1 receptors may form heterotrimers with particular signaling properties. Determination of cAMP levels, MAP kinase activation and label-free assays demonstrate allosteric interactions within the trimer. Importantly, the presence of σ2R induces bias in signal transduction as σ2R ligands increase cAMP signaling whereas reduce MAP kinase activation. These effects, which are opposite to those exerted via σ1R, suggest that the D1 receptor-mediated signaling depends on the degree of trimer formation and the differential balance of sigma receptor and heteroreceptor expression in acute versus chronic cocaine consumption. Although the physiological role is unknown, the heteroreceptor complex formed by σ1, σ2, and D1 receptors arise as relevant to convey the cocaine actions on motor control and reward circuits and as a key factor in acquisition of the addictive habit. PMID:29483862

  5. Existence of muscarinic acetylcholine receptor (mAChR) and fibroblast growth factor receptor (FGFR) heteroreceptor complexes and their enhancement of neurite outgrowth in neural hippocampal cultures.

    PubMed

    Di Liberto, V; Borroto-Escuela, D O; Frinchi, M; Verdi, V; Fuxe, K; Belluardo, N; Mudò, G

    2017-02-01

    Recently, it was demonstrated that G-protein-coupled receptors (GPCRs) can transactivate tyrosine kinase receptors in absence of their ligands. In this work, driven by the observation that mAChRs and fibroblast growth factor receptors (FGFRs) share signalling pathways and regulation of brain functions, it was decided to explore whether mAChRs activation may transactivate FGFRs and, if so, to characterize the related trophic effects in cultured hippocampal neurons. Oxotremorine-M transactivation of FGFRs and related trophic effects were tested in primary hippocampal neurons. Western blotting and in situ proximity ligation assay (PLA) were used to detect FGFR phosphorylation (pFGFR) levels and M 1 R-FGFR1 heteroreceptor complexes, respectively. Oxotremorine-M, a non-selective mAChRs agonist, was able to transactivate FGFR and this transactivation was blocked by Src inhibitors. Oxotremorine-M treatment produced a significant increase in the primary neurite outgrowth that was blocked by pre-treatment with the pFGFR inhibitor SU5402 and Src inhibitors. This trophic effect was almost similar to that induced by fibroblast growth factor-2 (FGF-2). By using atropine as nonselective mAChRs or pirenzepine as selective antagonist for M 1 receptor (M 1 R) we could show that mAChRs are involved in modulating the pFGFRs. Using PLA, M 1 R-FGFR1 heteroreceptor complexes were identified in the hippocampus and cerebral cortex. The current findings, by showing functional mAChR-FGFR interactions, will contribute to advance the understanding of the mechanisms involved in the actions of cholinergic drugs on neuronal plasticity. Data may help to develop novel therapeutic strategies not only for neurodegenerative diseases but also for depression-induced atrophy of hippocampal neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Aryl hydrocarbon receptor (AhR)-dependent regulation of pulmonary miRNA by chronic cigarette smoke exposure.

    PubMed

    Rogers, Sarah; de Souza, Angela Rico; Zago, Michela; Iu, Matthew; Guerrina, Necola; Gomez, Alvin; Matthews, Jason; Baglole, Carolyn J

    2017-01-12

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically known for its toxic responses to man-made pollutants such as dioxin. More recently, the AhR has emerged as a suppressor of inflammation, oxidative stress and apoptosis from cigarette smoke by mechanisms that may involve the regulation of microRNA. However, little is known about the AhR regulation of miRNA expression in the lung in response to inhaled toxicants. Therefore, we exposed Ahr -/- and Ahr +/- mice to cigarette smoke for 4 weeks and evaluated lung miRNA expression by PCR array. There was a dramatic regulation of lung miRNA by the AhR in the absence of exogenous ligand. In response to cigarette smoke, there were more up-regulated miRNA in Ahr -/- mice compared to Ahr +/- mice, including the cancer-associated miRNA miR-96. There was no significant change in the expression of the AhR regulated proteins HuR and cyclooxygenase-2 (COX-2). There were significant increases in the anti-oxidant gene sulfiredoxin 1 (Srxn1) and FOXO3a- predicted targets of miR-96. Collectively, these data support a prominent role for the AhR in regulating lung miRNA expression. Further studies to elucidate a role for these miRNA may further uncover novel biological function for the AhR in respiratory health and disease.

  7. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.

    PubMed

    Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-05-21

    Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Transformation-specific interaction of the bovine papillomavirus E5 oncoprotein with the platelet-derived growth factor receptor transmembrane domain and the epidermal growth factor receptor cytoplasmic domain.

    PubMed Central

    Cohen, B D; Goldstein, D J; Rutledge, L; Vass, W C; Lowy, D R; Schlegel, R; Schiller, J T

    1993-01-01

    The bovine papillomavirus E5 transforming protein appears to activate both the epidermal growth factor receptor (EGF-R) and the platelet-derived growth factor receptor (PDGF-R) by a ligand-independent mechanism. To further investigate the ability of E5 to activate receptors of different classes and to determine whether this stimulation occurs through the extracellular domain required for ligand activation, we constructed chimeric genes encoding PDGF-R and EGF-R by interchanging the extracellular, membrane, and cytoplasmic coding domains. Chimeras were transfected into NIH 3T3 and CHO(LR73) cells. All chimeras expressed stable protein which, upon addition of the appropriate ligand, could be activated as assayed by tyrosine autophosphorylation and biological transformation. Cotransfection of E5 with the wild-type and chimeric receptors resulted in the ligand-independent activation of receptors, provided that a receptor contained either the transmembrane domain of the PDGF-R or the cytoplasmic domain of the EGF-R. Chimeric receptors that contained both of these domains exhibited the highest level of E5-induced biochemical and biological stimulation. These results imply that E5 activates the PDGF-R and EGR-R by two distinct mechanisms, neither of which specifically involves the extracellular domain of the receptor. Consistent with the biochemical and biological activation data, coimmunoprecipitation studies demonstrated that E5 formed a complex with any chimera that contained a PDGF-R transmembrane domain or an EGF-R cytoplasmic domain, with those chimeras containing both domains demonstrating the greatest efficiency of complex formation. These results suggest that although different domains of the PDGF-R and EGF-R are required for E5 activation, both receptors are activated directly by formation of an E5-containing complex. Images PMID:8394451

  9. Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms

    PubMed Central

    Zamykal, Martin; Martens, Tobias; Matschke, Jakob; Günther, Hauke S.; Kathagen, Annegret; Schulte, Alexander; Peters, Regina; Westphal, Manfred; Lamszus, Katrin

    2015-01-01

    Background Signaling by insulin-like growth factor 1 receptor (IGF-1R) can contribute to the formation and progression of many diverse tumor types, including glioblastoma. We investigated the effect of the IGF-1R blocking antibody IMC-A12 on glioblastoma growth in different in vivo models. Methods U87 cells were chosen to establish rapidly growing, angiogenesis-dependent tumors in the brains of nude mice, and the GS-12 cell line was used to generate highly invasive tumors. IMC-A12 was administered using convection-enhanced local delivery. Tumor parameters were quantified histologically, and the functional relevance of IGF-1R activation was analyzed in vitro. Results IMC-A12 treatment inhibited the growth of U87 and GS-12 tumors by 75% and 50%, respectively. In GS-12 tumors, the invasive tumor extension and proliferation rate were significantly reduced by IMC-A12 treatment, while apoptosis was increased. In IMC-A12–treated U87 tumors, intratumoral vascularization was markedly decreased, and tumor cell proliferation was moderately reduced. Flow cytometry showed that <2% of U87 cells but >85% of GS-12 cells expressed IGF-1R. Activation of IGF-1R by IGF-1 and IGF-2 in GS-12 cells was blocked by IMC-A12. Both ligands stimulated GS-12 cell proliferation, and IGF-2 also stimulated migration. IMC-A12 inhibited these stimulatory effects and increased apoptosis. In U87 cells, stimulation with either ligand had no functional effect. Conclusions IGF-1R blockade can inhibit glioblastoma growth by different mechanisms, including direct effects on the tumor cells as well as indirect anti-angiogenic effects. Hence, blocking IGF-1R may be useful to target both the highly proliferative, angiogenesis-dependent glioblastoma core component as well as the infiltrative periphery. PMID:25543125

  10. Orexin–Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine

    PubMed Central

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A.; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I.

    2015-01-01

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R–OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R–OX1R heteromer. Cocaine binding to the σ1R–CRF1R–OX1R complex promotes a long-term disruption of the orexin-A–CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. PMID:25926444

  11. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    PubMed

    Uhlig, S; Nüsing, R; von Bethmann, A; Featherstone, R L; Klein, T; Brasch, F; Müller, K M; Ullrich, V; Wendel, A

    1996-05-01

    Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. LPS induced the release of TX and caused increased airway resistance after about 30 min. Both TX formation and LPS-induced bronchoconstriction were prevented by treatment with the unspecific COX inhibitor acetyl salicylic acid, the specific COX-2 inhibitor CGP-28238, dexamethasone, actinomycin D, or cycloheximide. LPS-induced bronchoconstriction was also inhibited by the TX receptor antagonist BM-13177. The TX-mimetic compound, U-46619, increased airway resistance predominantly by constricting terminal bronchioles. COX-2-specific mRNA in lung tissue was elevated after LPS exposure, and this increase was attenuated by addition of dexamethasone or of actinomycin D. In contrast to LPS, platelet-activating factor (PAF) induced immediate TX release and bronchoconstriction that was prevented by acetyl salicylic acid, but not by CGP-28238. LPS elicits the following biochemical and functional changes in rat lungs: (i) induction of COX-2; (ii) formation of prostaglandins and TX; (iii) activation of the TX receptor on airway smooth muscle cells; (iv) constriction of terminal bronchioles; and (v) increased airway resistance. In contrast to LPS, the PAF-induced TX release is likely to depend on COX-1.

  12. Aryl hydrocarbon receptor (AhR)-dependent regulation of pulmonary miRNA by chronic cigarette smoke exposure

    PubMed Central

    Rogers, Sarah; de Souza, Angela Rico; Zago, Michela; Iu, Matthew; Guerrina, Necola; Gomez, Alvin; Matthews, Jason; Baglole, Carolyn J.

    2017-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically known for its toxic responses to man-made pollutants such as dioxin. More recently, the AhR has emerged as a suppressor of inflammation, oxidative stress and apoptosis from cigarette smoke by mechanisms that may involve the regulation of microRNA. However, little is known about the AhR regulation of miRNA expression in the lung in response to inhaled toxicants. Therefore, we exposed Ahr−/− and Ahr+/− mice to cigarette smoke for 4 weeks and evaluated lung miRNA expression by PCR array. There was a dramatic regulation of lung miRNA by the AhR in the absence of exogenous ligand. In response to cigarette smoke, there were more up-regulated miRNA in Ahr−/− mice compared to Ahr+/− mice, including the cancer-associated miRNA miR-96. There was no significant change in the expression of the AhR regulated proteins HuR and cyclooxygenase-2 (COX-2). There were significant increases in the anti-oxidant gene sulfiredoxin 1 (Srxn1) and FOXO3a- predicted targets of miR-96. Collectively, these data support a prominent role for the AhR in regulating lung miRNA expression. Further studies to elucidate a role for these miRNA may further uncover novel biological function for the AhR in respiratory health and disease. PMID:28079158

  13. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition

    PubMed Central

    Gao, Lu; Rabbitt, Elizabeth H.; Condon, Jennifer C.; Renthal, Nora E.; Johnston, John M.; Mitsche, Matthew A.; Chambon, Pierre; Xu, Jianming; O’Malley, Bert W.; Mendelson, Carole R.

    2015-01-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A–deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2–deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2–deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2–deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2–dependent production of SP-A and PAF is crucial for this process. PMID:26098214

  14. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition.

    PubMed

    Gao, Lu; Rabbitt, Elizabeth H; Condon, Jennifer C; Renthal, Nora E; Johnston, John M; Mitsche, Matthew A; Chambon, Pierre; Xu, Jianming; O'Malley, Bert W; Mendelson, Carole R

    2015-07-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A-deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2-deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2-deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2-deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2-dependent production of SP-A and PAF is crucial for this process.

  15. Protective effects of papaverine salicylate in mouse ear dermatitis and PAF-induced rat paw oedema.

    PubMed

    de Bernardis, E; Leonardi, G; Caruso, A; Cutuli, V M; Amico-Roxas, M

    1994-08-01

    Papaverine salicylate (MR-800) has been tested as a topical antiinflammatory agent in several models of skin inflammation in rodents, such as mouse ear dermatitis induced by croton oil, cantharidin or zymosan, and rat paw oedema induced by PAF. MR-800 exerted a dose-dependent inhibitory activity in all assays, when equimolar doses of sodium salicylate or papaverine were less effective, suggesting the existence of a favourable synergism between salicylate and papaverine.

  16. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    PubMed

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  17. Agonist-Activated Bombyx Corazonin Receptor Is Internalized via an Arrestin-Dependent and Clathrin-Independent Pathway.

    PubMed

    Yang, Jingwen; Shen, Zhangfei; Jiang, Xue; Yang, Huipeng; Huang, Haishan; Jin, Lili; Chen, Yajie; Shi, Liangen; Zhou, Naiming

    2016-07-19

    Agonist-induced internalization plays a key role in the tight regulation of the extent and duration of G protein-coupled receptor signaling. Previously, we have shown that the Bombyx corazonin receptor (BmCrzR) activates both Gαq- and Gαs-dependent signaling cascades. However, the molecular mechanisms involved in the regulation of the internalization and desensitization of BmCrzR remain to be elucidated. Here, vectors for expressing BmCrzR fused with enhanced green fluorescent protein (EGFP) at the C-terminal end were used to further characterize BmCrzR internalization. We found that the BmCrzR heterologously expressed in HEK-293 and BmN cells was rapidly internalized from the plasma membrane into the cytoplasm in a concentration- and time-dependent manner via a β-arrestin (Kurtz)-dependent and clathrin-independent pathway in response to agonist challenge. While most of the internalized receptors were recycled to the cell surface via early endosomes, some others were transported to lysosomes for degradation. Assays using RNA interference revealed that both GRK2 and GRK5 were essentially involved in the regulation of BmCrzR phosphorylation and internalization. Further investigations indicated that the identified cluster of Ser/Thr residues ((411)TSS(413)) was responsible for GRK-mediated phosphorylation and internalization. This is the first detailed investigation of the internalization and trafficking of Bombyx corazonin receptors.

  18. D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function

    PubMed Central

    Burtscher, Laura; Hajdu, Dorottya; Muñoz, Alberto; Gáspári, Zoltán; Read, Nick D.; Batta, Gyula; Marx, Florentine

    2017-01-01

    The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF. PMID:28072824

  19. Platelet-activating factor mediates monocyte chemoattractant protein-1 expression in glomerular immune injury.

    PubMed

    Jocks, T; Freudenberg, J; Zahner, G; Stahl, R A

    1998-01-01

    These studies were designed to determine the possible role of platelet-activating factor (PAF) in the production of monocyte chemoattractant protein-1 (MCP-1) in glomerular immune injury. The glomerular lesion was induced in isolated perfused rat kidneys by a rabbit anti-rat-thymocyte serum (ATS) and rat serum (RS) as a complement source. Perfusion of kidneys with ATS and RS results in the selective binding of the antiserum to the glomerular mesangium with consecutive intraglomerular activation of complement. Antibody binding and complement activation induced a significant increase in glomerular MCP-1 mRNA levels when assessed by Northern blotting or RT-PCR. Decomplemented RS or non antibody rabbit IgG had only moderate effects on glomerular MCP-1 mRNA levels. The PAF receptor antagonist WEB 2170 almost completely blocked the ATS and RS induced MCP-1 mRNA levels. Perfusion of control kidneys with PAF increased MCP-1 mRNA expression, an effect which was blocked by WEB 2170. Glomerular MCP-1 protein formation, assessed by Western blotting, was stimulated following ATS and RS and PAF, respectively, was blocked by WEB 2170. These data show that PAF, derived from glomerular resident cells following antibody and complement induced injury, stimulates MCP-1 expression. In addition to the direct effects on leukocyte adhesion and activation PAF may mediate inflammatory cell influx in glomerular injuries due to the release of MCP-1.

  20. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions.

    PubMed

    Sehgal, Poonam; Kong, Xinyu; Wu, Jun; Sunyer, Raimon; Trepat, Xavier; Leckband, Deborah

    2018-03-20

    This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  1. Substance P - Neurokinin-1 Receptor Interaction Upregulates Monocyte Tissue Factor

    PubMed Central

    Khan, Mohammad M; Douglas, Steven D; Benton, Tami D

    2011-01-01

    Monocytes play an important role in hemostasis. In this study, the prothrombotic effects of the neuropeptide substance P (SP) on human monocytes through neurokinin-1 receptor (NK1-R) were characterized. SP upregulated monocyte tissue factor (TF), the major coagulation cascade stimulator, in a concentration and time dependent manner. Specific inhibition of NK1-R completely blocked TF expression. Monocytes stimulated by SP released cytokines and chemokines. When monocytes were stimulated with cytokines or chemokines, TF was expressed by the cytokines (GM-CSF, IFN-γ and TNF-α). Cytokines may play a major role in the mechanism of SP induced monocyte TF expression. NK1-R antagonists (NK1-RA) may have a role in developing novel therapeutic approaches to patients vulnerable to vaso-occlusive disorders. PMID:22115773

  2. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  3. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  4. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notcovich, Cintia; Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires; Diez, Federico

    2010-02-01

    It is well established that histamine modulates cell proliferation through the activation of the histamine H1 receptor (H1R), a G protein-coupled receptor (GPCR) that is known to couple to phospholipase C (PLC) activation via Gq. In the present study, we aimed to determine whether H1R activation modulates Rho GTPases, well-known effectors of Gq/G{sub 11}-coupled receptors, and whether such modulation influences cell proliferation. Experiments were carried out in CHO cells stably expressing H1R (CHO-H1R). By using pull-down assays, we found that both histamine and a selective H1R agonist activated Rac and RhoA in a time- and dose-dependent manner without significant changesmore » in the activation of Cdc42. Histamine response was abolished by the H1R antagonist mepyramine, RGS2 and the PLC inhibitor U73122, suggesting that Rac and RhoA activation is mediated by H1R via Gq coupling to PLC stimulation. Histamine caused a marked activation of serum response factor activity via the H1R, as determined with a serum-responsive element (SRE) luciferase reporter, and this response was inhibited by RhoA inactivation with C3 toxin. Histamine also caused a significant activation of JNK which was inhibited by expression of the Rac-GAP {beta}2-chimaerin. On the other hand, H1R-induced ERK1/2 activation was inhibited by U73122 but not affected by C3 or {beta}2-chimaerin, suggesting that ERK1/2 activation was dependent on PLC and independent of RhoA or Rac. [{sup 3}H]-Thymidine incorporation assays showed that both histamine and the H1R agonist inhibited cell proliferation in a dose-dependent manner and that the effect was independent of RhoA but partially dependent on JNK and Rac. Our results reveal that functional coupling of the H1R to Gq-PLC leads to the activation of RhoA and Rac small GTPases and suggest distinct roles for Rho GTPases in the control of cell proliferation by histamine.« less

  5. Gastric cancer: the role of insulin-like growth factor 2 (IGF 2) and its receptors (IGF 1R and M6-P/IGF 2R).

    PubMed

    Pavelić, Kresimir; Kolak, Toni; Kapitanović, Sanja; Radosević, Senka; Spaventi, Sime; Kruslin, Bozo; Pavelić, Jasminka

    2003-11-01

    Insulin-like growth factor 2 (IGF 2) appears to be involved in the progression of many tumours. It binds to at least two different types of receptor: IGF type 1 (IGF 1R) and mannose 6-phosphate/IGF type 2 (M6-P/IGF 2R). Ligand binding to IGF 1R provokes mitogenic and anti-apoptotic effects. M6-P/IGF 2R has a tumour suppressor function--it mediates IGF 2 degradation. Mutation of M6-P/IGF 2R causes both diminished growth suppression and augmented growth stimulation. The aim of this study was to investigate the role of IGF 2 and its receptors (IGF 1R and IGF 2R) in human gastric cancer. The expression of IGF 2 and its receptors was measured in order to analyse the possible correlation between the activity of these genes and cell proliferation in two different gastric tumour types: diffuse and intestinal. The effect of IGF 1 receptor blockage on cell proliferation and anchorage-independent cell growth was also examined. Increased expression of IGF 2 and IGF 1R genes (at the mRNA and protein level) was found in gastric cancer when compared with non-tumour tissue. Furthermore, there was a significant difference between IGF 2 expression in the more aggressive diffuse type and that in the intestinal type of gastric cancer. Moreover, the IGF 2 peptide level in the culture media obtained from the diffuse type of cancer cells was significantly higher when compared with the intestinal type. The level of IGF 2 peptide in the conditioned media strongly correlated with [3H]thymidine incorporation and cell proliferation. On the contrary, IGF 2R mRNA expression was much higher in the intestinal type of cancer than in the diffuse type. In addition, IGF 2R protein expression was substantially lower with progression of the diffuse cancer type to a higher stage. The alphaIR3 monoclonal antibody strongly inhibited [3H]thymidine incorporation and decreased the number of colonies in soft agar of cells overexpressing IGF 2. These findings suggest that members of the IGF family are involved

  6. In vivo Interactions between α7 Nicotinic Acetylcholine Receptor and Nuclear Peroxisome Proliferator-Activated Receptor-α: Implication for Nicotine Dependence

    PubMed Central

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P.; Lichtman, Aron H.; Carroll, F. Ivy; Greenwald, Mark; Miles, Michael F.; Damaj, M. Imad

    2017-01-01

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. PMID:28279662

  7. InsR/IGF1R pathway mediates resistance to EGFR inhibitors in glioblastoma

    PubMed Central

    Ma, Yufang; Tang, Nan; Thompson, Reid; Mobley, Bret C.; Clark, Steven W.; Sarkaria, Jann N.; Wang, Jialiang

    2015-01-01

    Purpose Aberrant activation of epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. However, EGFR inhibitors exhibit at best modest efficacy in glioblastoma. This is in sharp contrast to the observations in EGFR-mutant lung cancer. We examined whether activation of functionally redundant receptor tyrosine kinases (RTKs) conferred resistance to EGFR inhibitors in glioblastoma. Experimental Design We collected a panel of patient-derived glioblastoma xenograft (PDX) lines that maintained expression of wild type or mutant EGFR in serial xenotransplantation and tissue cultures. Using this physiologically relevant platform, we tested the abilities of several RTK ligands to protect glioblastoma cells against an EGFR inhibitor, gefitinib. Based on the screening results, we further developed a combination therapy co-targeting EGFR and insulin receptor (InsR)/insulin-like growth factor 1 receptor (IGF1R). Results Insulin and IGF1 induced significant protection against gefitinib in the majority of EGFR-dependent PDX lines with one exception that did not expression InsR or IGF1R. Blockade of the InsR/IGF1R pathway synergistically improved sensitivity to gefitinib or dacomitinib. Gefitinib alone effectively attenuated EGFR activities and the downstream MEK/ERK pathway. However, repression of AKT and induction of apoptosis required concurrent inhibition of both EGFR and InsR/IGF1R. A combination of gefitinib and OSI-906, a dual InsR/IGF1R inhibitor, was more effective than either agent alone to treat subcutaneous glioblastoma xenograft tumors. Conclusions Our results suggest that activation of the InsR/IGF1R pathway confers resistance to EGFR inhibitors in EGFR-dependent glioblastoma through AKT regulation. Concurrent blockade of these two pathways holds promise to treat EGFR-dependent glioblastoma. PMID:26561558

  8. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a.

    PubMed

    Casanueva, Felipe F; Camiña, Jesus P; Carreira, Marcos C; Pazos, Yolanda; Varga, Jozsef L; Schally, Andrew V

    2008-12-23

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1-29)NH(2) (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of (125)I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1-42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control.

  9. Correlation between VEGFR-2 receptor kinase domain-containing receptor (KDR) mRNA and angiotensin II receptor type 1 (AT1-R) mRNA in endometrial cancer.

    PubMed

    Piastowska-Ciesielska, Agnieszka W; Płuciennik, Elżbieta; Wójcik-Krowiranda, Katarzyna; Bieńkiewicz, Andrzej; Nowakowska, Magdalena; Pospiech, Karolina; Bednarek, Andrzej K; Domińska, Kamila; Ochędalski, Tomasz

    2013-02-01

    Angiogenesis, a multistep process that results in new blood vessel formation from preexisting vasculature is essential for both the growth of solid tumour and for metastasis. Stimulation of vascular endothelial growth factor receptor (VEGFR), a transmembrane glycoprotein, results in mitogenesis. Within this family of receptors, VEGFR 2/kinase-insert-domain containing receptor appears to be principally upregulated during tumorigenesis. The aim of this study was to determine the expression of VEGFR-2/kinase-insert-domain containing receptor (KDR) and its correlation with angiotensin receptor type 1 (AT1-R) and clinical factors in endometrial carcinoma. The expression of KDR and AT1-R was studied in endometrial carcinoma and normal endometrium by Real-time RT-PCR and Western blot analysis in 136 samples. The expression profile was correlated with the clinicopathological characteristics of endometrial adenocarcinoma. We noted a significant correlation between the expression of KDR and AT1-R in tumour grade G1, G2 and G3 (R(s)=0.50; p=0.002, R(s)=0.69; p=0.0001, R(s)=0.52; p=0.005, respectively). In stage I and stage II carcinoma, a significant correlation was also found between the expression of KDR and AT1-R (R(s)=0.70, p=0.0001, R(s)=0.67; p=0.001, respectively). Moreover significant correlation was observed between both KDR and AT1-R in tissue with different myometrial invasion (R(s)=0.54, p=0.0001, R(s)=0.68; p=0.0001; respectively for tumours with invasion into the inner half and invasion into the outer half). Basing on received correlation between AT1-R and KDR expression and previous results we speculate that angiotensin through AT1-R modulates KDR expression and thus have influence on local VEGF level. However, further studies are required to clarify the biological interaction between KDR, AT1-R and other hormonal regulators in endometrial carcinoma. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The N-CoR complex enables chromatin remodeler SNF2H to enhance repression by thyroid hormone receptor

    PubMed Central

    Alenghat, Theresa; Yu, Jiujiu; Lazar, Mitchell A

    2006-01-01

    Unliganded thyroid hormone receptor (TR) actively represses transcription via the nuclear receptor corepressor (N-CoR)/histone deacetylase 3 (HDAC3) complex. Although transcriptional activation by liganded receptors involves chromatin remodeling, the role of ATP-dependent remodeling in receptor-mediated repression is unknown. Here we report that SNF2H, the mammalian ISWI chromatin remodeling ATPase, is critical for repression of a genomically integrated, TR-regulated reporter gene. N-CoR and HDAC3 are both required for recruitment of SNF2H to the repressed gene. SNF2H does not interact directly with the N-CoR/HDAC3 complex, but binds to unacetylated histone H4 tails, suggesting that deacetylase activity of the corepressor complex is critical to SNF2H function. Indeed, HDAC3 as well as SNF2H are required for nucleosomal organization on the TR target gene. Consistent with these findings, reduction of SNF2H induces expression of an endogenous TR-regulated gene, dio1, in liver cells. Thus, although not apparent from studies of transiently transfected reporter genes, gene repression by TR involves the targeting of chromatin remodeling factors to repressed genes by the HDAC activity of nuclear receptor corepressors. PMID:16917504

  11. Endocytosis and recycling of AMPA receptors lacking GluR2/3.

    PubMed

    Biou, Virginie; Bhattacharyya, Samarjit; Malenka, Robert C

    2008-01-22

    Excitatory synapses in the mammalian brain contain two types of ligand-gated ion channels: AMPA receptors (AMPARs) and NMDA receptors (NMDARs). AMPARs are responsible for generating excitatory synaptic responses, whereas NMDAR activation triggers long-lasting changes in these responses by modulating the trafficking of AMPARs toward and away from synapses. AMPARs are tetramers composed of four subunits (GluR1-GluR4), which current models suggest govern distinct AMPAR trafficking behavior during synaptic plasticity. Here, we address the roles of GluR2 and GluR3 in controlling the recycling- and activity-dependent endocytosis of AMPARs by using cultured hippocampal neurons prepared from knockout (KO) mice lacking these subunits. We find that synapses and dendritic spines form normally in cells lacking GluR2/3 and that upon NMDAR activation, GluR2/3-lacking AMPARs are endocytosed in a manner indistinguishable from GluR2-containing AMPARs in wild-type (WT) neurons. AMPARs lacking GluR2/3 also recycle to the plasma membrane identically to WT AMPARs. However, because of their permeability to calcium, GluR2-lacking but not WT AMPARs exhibited robust internalization throughout the dendritic tree in response to AMPA application. Dendritic endocytosis of AMPARs also was observed in GABAergic neurons, which express a high proportion of GluR2-lacking AMPARs. These results demonstrate that GluR2 and GluR3 are not required for activity-dependent endocytosis of AMPARs and suggest that the most important property of GluR2 in the context of AMPAR trafficking may be its influence on calcium permeability.

  12. Dose- and time-dependent expression of aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) in PCB-, B[a]P-, and TBT-exposed intertidal copepod Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Rhee, Jae-Sung; Hwang, Un-Ki; Seo, Jung Soo; Shin, Kyung-Hoon; Lee, Jae-Seong

    2015-02-01

    The aryl hydrocarbon receptor (AhR) and aryl hydrocarbon nuclear translocator (ARNT) genes from the copepod Tigriopus japonicus (Tj) were cloned to examine their potential functions in the invertebrate putative AhR-CYP signaling pathway. The amino acid sequences encoded by the Tj-AhR and Tj-ARNT genes showed high similarity to homologs of Daphnia and Drosophila, ranging from 68% and 70% similarity for the AhR genes to 56% for the ARNT genes. To determine whether Tj-AhR and Tj-ARNT are modulated by environmental pollutants, transcriptional expression of Tj-AhR and Tj-ARNT was analyzed in response to exposure to five concentrations of polychlorinated biphenyl (PCB 126) (control, 10, 50, 100, 500 μg L(-1)), benzo[a]pyrene (B[a]P) (control, 5, 10, 50, 100 μg L(-1)), and tributyltin (TBT) (control, 1, 5, 10, 20 μg L(-1)) 24h after exposure. A time-course experiment (0, 3, 6, 12, 24h) was performed to analyze mRNA expression patterns after exposure to PCB, B[a]P, and TBT. T. japonicus exhibited dose-dependent and time-dependent upregulation of Tj-AhR and Tj-ARNT in response to pollutant exposure, and the degree of expression was dependent on the pollutant, suggesting that pollutants such as PCB, B[a]P, and TBT modulate expression of Tj-AhR and Tj-ARNT genes in the putative AhR-CYP signaling pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. SNARE-dependent upregulation of KCC2 activity following metabotropic zinc receptor (mZnR/GPR39) activation in rat cortical neurons in vitro

    PubMed Central

    Saadi, Robert A.; He, Kai; Hartnett, Karen A.; Kandler, Karl; Hershfinkel, Michal; Aizenman, Elias

    2012-01-01

    The major outward chloride transporter in neurons is the potassium chloride co-transporter 2 (KCC2), critical for maintaining an inhibitory reversal potential for GABAA receptor channels. In a recent study, we showed that Zn2+ regulates GABAA reversal potentials in the hippocampus by enhancing the activity of KCC2 via an increase in its surface expression. Zn2+ initiates this process by activating the Gq-coupled metabotropic Zn2+ receptor mZnR/GPR39. Here, we first demonstrated that mZnR/GPR39 is functional in cortical neurons in culture and then tested the hypothesis that the increase in KCC2 activity is mediated through a SNARE-dependent process. We established the presence of functional mZnR in rat cultured cortical neurons by loading cells with a Ca2+ indicator and exposing cells to Zn2+, which triggered consistent Ca2+ responses that were blocked by the Gq antagonist YM-254890, but not by the metabotropic glutamate receptor antagonist MCPG. Importantly, Zn2+ treatment under these conditions did not increase the intracellular concentrations of Zn2+ itself. We then measured KCC2 activity by monitoring both the rate and relative amount of furosemide-sensitive NH4+ influx via the co-transporter using an intracellular pH sensitive fluorescent indicator. We observed that Zn2+ pretreatment induced a Ca2+-dependent increase in KCC2 activity. The effects of Zn2+ on KCC2 activity were also observed in wild-type mouse cortical neurons in culture, but not in neurons obtained from mZnR/GPR39−/− mice, suggesting that Zn2+ acts via mZnR/GPR39 activation to upregulate KCC2 activity. We next transfected rat cortical neurons with a plasmid encoding botulinum toxin C1 (Botox C1), which cleaves the SNARE proteins syntaxin 1 and SNAP-25. Basal KCC2 activity was similar in both transfected and non-transfected neurons. Non-transfected cells, or cells transfected with marker vector alone, showed a Zn2+-dependent increase in KCC2 activity. In contrast, KCC2 activity in neurons

  14. Harnessing tumor necrosis factor receptors to enhance antitumor activities of drugs.

    PubMed

    Muntané, Jordi

    2011-10-17

    Cancer is the second-leading cause of death in the U.S. behind heart disease and over stroke. The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The inhibition of cell death pathways is one of these tumor characteristics which also include sustained proliferative signaling, evading growth suppressor signaling, replicative immortality, angiogenesis, and promotion of invasion and metastasis. Cell death is mediated through death receptor (DR) stimulation initiated by specific ligands that transmit signaling to the cell death machinery or through the participation of mitochondria. Cell death involving DR is mediated by the superfamily of tumor necrosis factor receptor (TNF-R) which includes TNF-R type I, CD95, DR3, TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 (TRAIL-R1) and -2 (TRAIL-R2), DR6, ectodysplasin A (EDA) receptor (EDAR), and the nerve growth factor (NGF) receptor (NGFR). The expression of these receptors in healthy and tumor cells induces treatment side effects that limit the systemic administration of cell death-inducing therapies. The present review is focused on the different therapeutic strategies such as targeted antibodies or small molecules addressed to selective stimulated DR-mediated apoptosis or reduce cell proliferation in cancer cells.

  15. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34

    PubMed Central

    Gow, Deborah J.; Garceau, Valerie; Kapetanovic, Ronan; Sester, David P.; Fici, Greg J.; Shelly, John A.; Wilson, Thomas L.; Hume, David A.

    2012-01-01

    Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been described, but its physiological role is not yet known. The domestic pig provides an alternative to traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antagonists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demonstrating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we discuss the molecular basis for the species specificity. PMID:22974529

  16. Quantitative phosphoproteomics analysis reveals a key role of insulin growth factor 1 receptor (IGF1R) tyrosine kinase in human sperm capacitation.

    PubMed

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-04-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a

    PubMed Central

    Casanueva, Felipe F.; Camiña, Jesus P.; Carreira, Marcos C.; Pazos, Yolanda; Varga, Jozsef L.; Schally, Andrew V.

    2008-01-01

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1–29)NH2 (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of 125I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1–42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control. PMID:19088192

  18. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    PubMed

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-05-15

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. G2013 modulates TLR4 signaling pathway in IRAK-1 and TARF-6 dependent and miR-146a independent manner.

    PubMed

    Hajivalili, M; Pourgholi, F; Majidi, J; Aghebati-Maleki, L; Movassaghpour, A A; Samadi Kafil, H; Mirshafiey, A; Yousefi, M

    2016-04-30

    Inflammation is inseparable part of different diseases especially cancer and autoimmunity. During inflammation process toll like receptor 4(TLR4) responds to lipopolysaccharide (LPS), one of the bacterial components, and TLR4 signaling leads to interleukine-1 receptor associated kinase-1 (IRAK1) and tumor necrosis factor (TNF) receptor associated factor6 (TRAF6) activation which ultimately results in nuclear factor- ĸB (NF-ĸB) activation as the main transcription factor of inflammatory cytokines. Conversely, NF-ĸB over activation induces miR-146a in innate immune cells which can consequently reduce TRAF6, IRAK1, and NF-ĸB activation in a negative feedback. G2013 is a novel designed non-steroidal anti-inflammatory drug (NSAID) which was recently shown to be effective in experimental autoimmune encephalomyelitis (EAE) mouse model. The aim of this study was to evaluate G2013 effects on inflammatory (IRAK1 and TRAF6) and anti-inflammatory (miR-146a) factors of TLR4 signaling pathway. For this purpose, cytotoxicity of G2013 has been evaluated by MTT assay. Expression level of miR-146a in PBMCs and IRAK1 along with TRAF6 in HEK-293 TLR4 cells have been determined using real time PCR. Our results showed that IC50 of G2013 was 25μg/ml, thus 5 and 25 μg/ml concentrations used for further treatments as low dose and high dose concentrations. Our results showed that IRAK1 expression reduced between 5 to 8 fold after treatment by G2013 in a dose dependent manner (p<0.001). In parallel TRAF6 expression declined between 3 to 10 fold dose dependently (p<0.05). However, miR-146a expression was not affected after treatment with low dose and high dose of G2013. In conclusion our data showed that G2013 can regulate TLR4 signaling pathway during inflammation by reducing downstream signaling molecules, IRAK1 and TRAF6 without altering miR-146a expression.

  20. Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Angelis Campos, Ana Carolina; Rodrigues, Michele Angela; Andrade, Carolina de

    2011-08-26

    Highlights: {yields} EGF and its receptor translocates to the nucleus in liver cells. {yields} Real time imaging shows that EGF moves to the nucleus. {yields} EGF moves with its receptor to the nucleus. {yields} Dynamin and clathrin are necessary for EGFR nuclear translocation. -- Abstract: The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and realmore » time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.« less

  1. Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins

    PubMed Central

    Liu, Bo; Ha, Matthew; Meng, Xuan-Yu; Khaleduzzaman, Mohammed; Zhang, Zhe; Li, Xia; Cui, Meng

    2012-01-01

    The family C G protein-coupled receptor (GPCR) T1R2 and T1R3 heterodimer functions as a broadly acting sweet taste receptor. Perception of sweet taste is a species-dependent physiological process. It has been widely reported that New World monkeys and rodents can not perceive some of the artificial sweeteners and sweet-tasting proteins that can be perceived by humans, apes, and Old World monkeys. Until now, only the sweet receptors of humans, mice and rats have been functionally characterized. Here we report characterization of the sweet taste receptor (T1R2/T1R3) from a species of New World squirrel monkey. Our results show that the heterodimeric receptor of squirrel monkey does not respond to artificial sweeteners aspartame, neotame, cyclamate, saccharin and sweet-tasting protein monellin, but surprisingly, it does respond to thaumatin at high concentrations (>18 μM). This is the first report that New World monkey species can perceive some specific sweet-tasting proteins. Furthermore, the receptor responses to the sweeteners cannot be inhibited by the sweet inhibitor lactisole. We compared the response differences of the squirrel monkey and human receptors and found that the residues in T1R2 determine species-dependent sweet taste toward saccharin, while the residues in either T1R2 or T1R3 are responsible for the sweet taste difference between humans and squirrel monkeys toward monellin. Molecular models indicated that electrostatic properties of the receptors probably mediate the species-dependent response to sweet-tasting proteins. PMID:23000410

  2. Aryl hydrocarbon receptor-dependent retention of nuclear HuR suppresses cigarette smoke-induced cyclooxygenase-2 expression independent of DNA-binding.

    PubMed

    Zago, Michela; Sheridan, Jared A; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR(-/-) ) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR(-/-) mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR(-/-) mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.

  3. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues.

    PubMed

    Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J

    2016-09-01

    Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ

  4. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    PubMed Central

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  5. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons

    PubMed Central

    Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Hirata, Hiromi; Moorhouse, Andrew J.; Ishibashi, Hitoshi

    2017-01-01

    Abstract Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system. PMID:28197549

  6. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons.

    PubMed

    Nakahata, Yoshihisa; Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Kuriu, Toshihiko; Hirata, Hiromi; Moorhouse, Andrew J; Ishibashi, Hitoshi; Nabekura, Junichi

    2017-01-01

    Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo . While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca 2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system.

  7. SRC-DEPENDENT PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR ON TYROSINE 845 IS REQUIRED FOR ZINC-INDUCED RAS ACTIVATION

    EPA Science Inventory

    Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation
    Weidong Wu 1 , Lee M. Graves 2 , Gordon N. Gill 3 , Sarah J. Parsons 4 , and James M. Samet 5
    1 Center for Environmental Medicine and Lung Biolo...

  8. Tissue Factor-Factor VIIa Complex Triggers Protease Activated Receptor 2-Dependent Growth Factor Release and Migration in Ovarian Cancer

    PubMed Central

    Chanakira, Alice; Westmark, Pamela R.; Ong, Irene M.; Sheehan, John P.

    2017-01-01

    Objective Enhanced tissue factor (TF) expression in epithelial ovarian cancer (EOC) is associated with aggressive disease. Our objective was to evaluate the role of the TF-factor VIIa-protease-activated receptor-2 (PAR-2) pathway in human EOC. Methods TCGA RNAseq data from EOC databases were analyzed for PAR expression. Cell and microparticle (MP) associated TF protein expression (Western blot) and MP-associated coagulant activity were determined in human EOC (SKOV-3, OVCAR-3 and CaOV-3) and control cell lines. PAR-1 and PAR-2 protein expression were similarly examined. The PAR dependence of VEGF-A release (ELISA) and chemotactic migration in response to FVIIa and cellular proliferation in response to thrombin was evaluated with small molecule antagonists. Results Relative mRNA expression consistently demonstrated PAR-2>PAR-1≫PAR-3/4 in multiple EOC datasets. Human EOC cell line lysates confirmed expression of TF, PAR-1 and PAR-2 proteins. MPs isolated from EOC cell lines demonstrated markedly enhanced (4–10 fold) TF coagulant activity relative to control cell lines. FVIIa induced a dose-dependent increase in VEGF-A release (2.5-3 fold) from EOC cell lines that was abrogated by the PAR-2 antagonist ENMD-1068. FVIIa treatment of CaOV-3 and OVCAR-3 cells resulted in increased chemotactic migration that was abolished by ENMD-1068. Thrombin induced dose-dependent EOC cell line proliferation was completely reversed by the PAR-1 antagonist vorapaxar. Small molecule antagonists had no effect on these phenotypes without protease present. Conclusions Enhanced activity of the TF-FVIIa-PAR-2 axis may contribute to the EOC progression via PAR-2 dependent signaling that supports an angiogenic and invasive phenotype and local thrombin generation supporting PAR-1 dependent proliferation. PMID:28148395

  9. Enhanced Sensitivity to Attenuation of Conditioned Reinstatement by the mGluR2/3 Agonist LY379268 and Increased Functional Activity of mGluR2/3 in Rats with a History of Ethanol Dependence

    PubMed Central

    Kufahl, Peter R; Martin-Fardon, Rémi; Weiss, Friedbert

    2011-01-01

    Recent findings implicate group II metabotropic glutamate receptors (mGluR2/3) in the reinforcing and dependence-inducing actions of ethanol and identify these receptors as treatment targets for alcoholism. Here, we investigated the effects of mGLuR2/3 activation on conditioned reinstatement in rats with different ethanol-dependence histories and examined dependence-associated changes in the functional activity of mGluR2/3. Following ethanol self-administration training and conditioning procedures, rats were made ethanol dependent, using ethanol vapor inhalation, under three conditions: a single intoxication and withdrawal episode (SW), repeated cycles of intoxication and withdrawal (RW), or no intoxication (CTRL). At 1 week after removal from ethanol vapor, self-administration resumed until stable baseline performance was reached, followed by extinction of operant responding and reinstatement tests. Post-withdrawal self-administration was increased in the RW group, but all groups showed conditioned reinstatement. The mGluR2/3 agonist LY379268 dose -dependently reduced reinstatement in all groups, but was more effective at low doses in the SW and RW groups. The highest dose of LY379268 tested reduced spontaneous locomotor activity and operant responding maintained by a non-drug reinforcer, without differences among groups. The heightened sensitivity to the effects of LY379268 in rats with an ethanol-dependence history was therefore specific to behavior motivated by ethanol-related stimuli. Both the SW and RW groups showed elevated [35S]GTPγS binding in the central nucleus of the amygdala (CeA) and bed nucleus of stria terminalis (BNST), relative to the CTRL group. The findings implicate changes in mGluR2/3 functional activity as a factor in ethanol dependence and support treatment target potential of mGlu2/3 receptors for craving and relapse prevention. PMID:21881571

  10. Budesonide Inhibits Intracellular Infection with Non-Typeable Haemophilus influenzae Despite Its Anti-Inflammatory Effects in Respiratory Cells and Human Lung Tissue: A Role for p38 MAP Kinase.

    PubMed

    Wagner, Christopher; Goldmann, Torsten; Rohmann, Kristina; Rupp, Jan; Marwitz, Sebastian; Rotta Detto Loria, Johannes; Limmer, Stefan; Zabel, Peter; Dalhoff, Klaus; Drömann, Daniel

    2015-01-01

    Inhaled corticosteroids (ICS) are widely used in the treatment of obstructive lung diseases. Recent data suggest a higher pneumonia risk in chronic obstructive pulmonary disease (COPD) patients treated with ICS. Since non-typeable Haemophilus influenzae (NTHi) is the most common pathogen associated with acute exacerbations of COPD, we investigated the effects of budesonide (BUD) on NTHi-induced inflammation and invasive infection. The alveolar epithelial cell line A549 and specimens of human lung tissue (HLT) were used in our experiments. Intracellular infection was determined by a lysis/culture assay of infected cells. Activated p38 mitogen-associated protein kinase (MAPK) was assessed using Western blotting and immunohistochemistry, expression of toll-like receptor 2 (TLR2) was determined by PCR, and CXCL-8 levels were measured using ELISA. Immunohistochemistry was used for detection of CXCL-8, platelet-activating factor receptor (PAF-R) and NTHi. BUD significantly reduced CXCL-8 secretion in A549 cells and lung tissue infected with NTHi. Furthermore, BUD decreased the expression of PAF-R in HLT and A549 cells. In A549 cells and HLT, BUD inhibited intracellular infection and - synergistically with NTHi - increased the expression of TLR2 (in A549 cells). TLR2 stimulation did not influence the intracellular infection of A549 cells, but p38 MAPK inhibition resulted in a significant reduction of infection. The present study adds new insights into the effects of glucocorticoids on pulmonary host defence after NTHi infection. Although the inflammatory response to infection is suppressed by BUD, interestingly, the intracellular infection is also inhibited. This effect seems to depend on the inhibition of p38 MAPK - a key enzyme in many pro-inflammatory pathways - as well as of PAF-R expression. © 2015 S. Karger AG, Basel.

  11. Aryl Hydrocarbon Receptor-Dependent Retention of Nuclear HuR Suppresses Cigarette Smoke-Induced Cyclooxygenase-2 Expression Independent of DNA-Binding

    PubMed Central

    Zago, Michela; Sheridan, Jared A.; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR−/−) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR−/− mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR−/− mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target. PMID:24086407

  12. The Nuclear Receptor AhR Controls Bone Homeostasis by Regulating Osteoclast Differentiation via the RANK/c-Fos Signaling Axis

    PubMed Central

    Izawa, Takashi; Arakaki, Rieko; Mori, Hiroki; Tsunematsu, Takaaki; Kudo, Yasusei; Tanaka, Eiji

    2016-01-01

    The aryl hydrocarbon receptor (AhR) pathway plays a key role in receptor activator of NF-κB ligand (RANKL)–mediated osteoclastogenesis. However, the mechanism underlying the regulation of AhR expression in osteoclasts and the signaling pathway through which AhR controls osteoclastogenesis remain unclear. We found that the expression of AhR in bone marrow–derived osteoclasts was upregulated by RANKL at an earlier stage than was the expression of signature osteoclast genes such as those encoding cathepsin K and NFAT, cytoplasmic, calcineurin-dependent 1. In response to RANKL, bone marrow macrophages isolated from AhR−/− mice exhibited impaired phosphorylation of Akt and MAPK as well as NF-κB, whereas their response to M-CSF remained unchanged. Osteoclast differentiation mediated by the AhR signaling pathway was also regulated in an RANKL/c-Fos–dependent manner. Furthermore, ligand activation of AhR by the smoke toxin benzo[a]pyrene accelerated osteoclast differentiation in a receptor-dependent manner, and AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was observed. Moreover, AhR−/− mice exhibited impaired bone healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL/AhR/c-Fos signaling axis plays a critical role in osteoclastogenesis, thereby identifying the potential of AhR in treating pathological, inflammatory, or metabolic disorders of the bone. PMID:27849171

  13. Dynamin and Rab5a-dependent trafficking and signaling of the neurokinin 1 receptor.

    PubMed

    Schmidlin, F; Dery, O; DeFea, K O; Slice, L; Patierno, S; Sternini, C; Grady, E F; Bunnett, N W

    2001-07-06

    Understanding the molecular mechanisms of agonist-induced trafficking of G-protein-coupled receptors is important because of the essential role of trafficking in signal transduction. We examined the role of the GTPases dynamin 1 and Rab5a in substance P (SP)-induced trafficking and signaling of the neurokinin 1 receptor (NK1R), an important mediator of pain, depression, and inflammation, by studying transfected cells and enteric neurons that naturally express the NK1R. In unstimulated cells, the NK1R colocalized with dynamin at the plasma membrane, and Rab5a was detected in endosomes. SP induced translocation of the receptor into endosomes containing Rab5a immediately beneath the plasma membrane and then in a perinuclear location. Expression of the dominant negative mutants dynamin 1 K44E and Rab5aS34N inhibited endocytosis of SP by 45 and 32%, respectively. Dynamin K44E caused membrane retention of the NK1R, whereas Rab5aS34N also impeded the translocation of the receptor from superficially located to perinuclear endosomes. Both dynamin K44E and Rab5aS34N strongly inhibited resensitization of SP-induced Ca(2+) mobilization by 60 and 85%, respectively, but had no effect on NK1R desensitization. Dynamin K44E but not Rab5aS34N markedly reduced SP-induced phosphorylation of extracellular signal regulated kinases 1 and 2. Thus, dynamin mediates the formation of endosomes containing the NK1R, and Rab5a mediates both endosomal formation and their translocation from a superficial to a perinuclear location. Dynamin and Rab5a-dependent trafficking is essential for NK1R resensitization but is not necessary for desensitization of signaling. Dynamin-dependent but not Rab5a-dependent trafficking is required for coupling of the NK1R to the mitogen-activated protein kinase cascade. These processes may regulate the nociceptive, depressive, and proinflammatory effects of SP.

  14. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    PubMed

    Murovets, Vladimir O; Bachmanov, Alexander A; Zolotarev, Vasiliy A

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  15. The Nuclear Receptor AhR Controls Bone Homeostasis by Regulating Osteoclast Differentiation via the RANK/c-Fos Signaling Axis.

    PubMed

    Izawa, Takashi; Arakaki, Rieko; Mori, Hiroki; Tsunematsu, Takaaki; Kudo, Yasusei; Tanaka, Eiji; Ishimaru, Naozumi

    2016-12-15

    The aryl hydrocarbon receptor (AhR) pathway plays a key role in receptor activator of NF-κB ligand (RANKL)-mediated osteoclastogenesis. However, the mechanism underlying the regulation of AhR expression in osteoclasts and the signaling pathway through which AhR controls osteoclastogenesis remain unclear. We found that the expression of AhR in bone marrow-derived osteoclasts was upregulated by RANKL at an earlier stage than was the expression of signature osteoclast genes such as those encoding cathepsin K and NFAT, cytoplasmic, calcineurin-dependent 1. In response to RANKL, bone marrow macrophages isolated from AhR -/- mice exhibited impaired phosphorylation of Akt and MAPK as well as NF-κB, whereas their response to M-CSF remained unchanged. Osteoclast differentiation mediated by the AhR signaling pathway was also regulated in an RANKL/c-Fos-dependent manner. Furthermore, ligand activation of AhR by the smoke toxin benzo[a]pyrene accelerated osteoclast differentiation in a receptor-dependent manner, and AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was observed. Moreover, AhR -/- mice exhibited impaired bone healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL/AhR/c-Fos signaling axis plays a critical role in osteoclastogenesis, thereby identifying the potential of AhR in treating pathological, inflammatory, or metabolic disorders of the bone. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Disentangling polydispersity in the PCNA−p15PAF complex, a disordered, transient and multivalent macromolecular assembly

    PubMed Central

    Cordeiro, Tiago N.; Chen, Po-chia; De Biasio, Alfredo; Sibille, Nathalie; Blanco, Francisco J.; Hub, Jochen S.; Crehuet, Ramon

    2017-01-01

    Abstract The intrinsically disordered p15PAF regulates DNA replication and repair when interacting with the Proliferating Cell Nuclear Antigen (PCNA) sliding clamp. As many interactions between disordered proteins and globular partners involved in signaling and regulation, the complex between p15PAF and trimeric PCNA is of low affinity, forming a transient complex that is difficult to characterize at a structural level due to its inherent polydispersity. We have determined the structure, conformational fluctuations, and relative population of the five species that coexist in solution by combining small-angle X-ray scattering (SAXS) with molecular modelling. By using explicit ensemble descriptions for the individual species, built using integrative approaches and molecular dynamics (MD) simulations, we collectively interpreted multiple SAXS profiles as population-weighted thermodynamic mixtures. The analysis demonstrates that the N-terminus of p15PAF penetrates the PCNA ring and emerges on the back face. This observation substantiates the role of p15PAF as a drag regulating PCNA processivity during DNA repair. Our study reveals the power of ensemble-based approaches to decode structural, dynamic, and thermodynamic information from SAXS data. This strategy paves the way for deciphering the structural bases of flexible, transient and multivalent macromolecular assemblies involved in pivotal biological processes. PMID:28180305

  17. The carboxy-terminal tail or the intracellular loop 3 is required for β-arrestin-dependent internalization of a mammalian type II GnRH receptor.

    PubMed

    Madziva, Michael T; Mkhize, Nonhlanhla N; Flanagan, Colleen A; Katz, Arieh A

    2015-08-15

    The type II GnRH receptor (GnRH-R2) in contrast to mammalian type I GnRH receptor (GnRH-R1) has a cytosolic carboxy-terminal tail. We investigated the role of β-arrestin 1 in GnRH-R2-mediated signalling and mapped the regions in GnRH-R2 required for recruitment of β-arrestin, employing internalization assays. We show that GnRH-R2 activation of ERK is dependent on β-arrestin and protein kinase C. Appending the tail of GnRH-R2 to GnRH-R1 enabled GRK- and β-arrestin-dependent internalization of the chimaeric receptor. Surprisingly, carboxy-terminally truncated GnRH-R2 retained β-arrestin and GRK-dependent internalization, suggesting that β-arrestin interacts with additional elements of GnRH-R2. Mutating serine and threonine or basic residues of intracellular loop 3 did not abolish β-arrestin 1-dependent internalization but a receptor lacking these basic residues and the carboxy-terminus showed no β-arrestin 1-dependent internalization. Our results suggest that basic residues at the amino-terminal end of intracellular loop 3 or the carboxy-terminal tail are required for β-arrestin dependent internalization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Psychotropic and nonpsychotropic cannabis derivatives inhibit human 5-HT(3A) receptors through a receptor desensitization-dependent mechanism.

    PubMed

    Xiong, W; Koo, B-N; Morton, R; Zhang, L

    2011-06-16

    Δ⁹ tetrahydrocannabinol (THC) and cannabidiol (CBD) are the principal psychoactive and nonpsychoactive components of cannabis. While most THC-induced behavioral effects are thought to depend on endogenous cannabinoid 1 (CB1) receptors, the molecular targets for CBD remain unclear. Here, we report that CBD and THC inhibited the function of human 5-HT(3A) receptors (h5-HT(3A)Rs) expressed in HEK 293 cells. The magnitude of THC and CBD inhibition was maximal 5 min after a continuous incubation with cannabinoids. The EC₅₀ values for CBD and THC-induced inhibition were 110 nM and 322 nM, respectively in HEK 293 cells expressing h5-HT(3A)Rs. In these cells, CBD and THC did not stimulate specific [³⁵S]-GTP-γs binding in membranes, suggesting that the inhibition by cannabinoids is unlikely mediated by a G-protein dependent mechanism. On the other hand, both CBD and THC accelerated receptor desensitization kinetics without significantly changing activation time. The extent of cannabinoid inhibition appeared to depend on receptor desensitization. Reducing receptor desensitization by nocodazole, 5-hydroxyindole and a point-mutation in the large cytoplasmic domain of the receptor significantly decreased CBD-induced inhibition. Similarly, the magnitude of THC and CBD-induced inhibition varied with the apparent desensitization rate of h5-HT(3A)Rs expressed in Xenopus oocytes. For instance, with increasing amount of h5-HT(3A)R cRNA injected into the oocytes, the receptor desensitization rate at steady state decreased. THC and CBD-induced inhibition was correlated with the change in the receptor desensitization rate. Thus, CBD and THC inhibit h5-HT(3A) receptors through a mechanism that is dependent on receptor desensitization. Published by Elsevier Ltd.

  19. The soluble Decoy Receptor 3 is regulated by a PI3K-dependent mechanism and promotes migration and invasion in renal cell carcinoma.

    PubMed

    Weissinger, Daniel; Tagscherer, Katrin E; Macher-Göppinger, Stephan; Haferkamp, Axel; Wagener, Nina; Roth, Wilfried

    2013-10-10

    Overexpression of Decoy Receptor 3 (DcR3), a soluble member of the tumor necrosis factor receptor superfamily, is a common event in several types of cancer. In renal cell carcinoma (RCC), DcR3 overexpression is associated with lymph node and distant metastasis as well as a poor prognosis. However, the functional role and regulation of DcR3 expression in RCC is so far unknown. Modulation of DcR3 expression by siRNA and ectopic gene expression, respectively, was performed in ACHN and 769-P RCC cell lines. Functional effects of a modulated DcR3 expression were analyzed with regard to migration, invasion, adhesion, clonogenicity, and proliferation. Furthermore, quantitative RT-PCR and immunoblot analyses were performed to evaluate the expression of downstream mediators of DcR3. In further experiments, luciferase assays, quantitative RT-PCR and immunoblot analyses were applied to study the regulation of DcR3 expression in RCC. Additionally, an ex vivo tissue slice culture technique combined with immunohistochemistry was used to study the regulation of DcR3 expression in human RCC specimens. Here, we show that DcR3 promotes adhesion, migration and invasiveness of RCC cells. The DcR3-dependent increase in cellular invasiveness is accompanied with an up-regulation of integrin alpha 4, matrixmetalloproteinase 7 and urokinase plasminogen activator (uPA). Further, we identified a signaling pathway regulating DcR3 expression in RCC. Using in vitro experiments as well as an ex vivo RCC tissue slice culture model, we demonstrate that expression of DcR3 is regulated in a PI3K/AKT-dependent manner involving the transcription factor nuclear factor of activated T-cells (NFAT). Taken together, our results identify DcR3 as a key driver of tumor cell dissemination and suggest DcR3 as a promising target for rational therapy of RCC.

  20. Analysis of Activated Platelet-Derived Growth Factor β Receptor and Ras-MAP Kinase Pathway in Equine Sarcoid Fibroblasts

    PubMed Central

    Altamura, Gennaro; Corteggio, Annunziata; Nasir, Lubna; Yuan, Zheng Qiang; Roperto, Franco; Borzacchiello, Giuseppe

    2013-01-01

    Equine sarcoids are skin tumours of fibroblastic origin affecting equids worldwide. Bovine papillomavirus type-1 (BPV-1) and, less commonly, type-2 are recognized as etiological factors of sarcoids. The transforming activity of BPV is related to the functions of its major oncoprotein E5 which binds to the platelet-derived growth factor β receptor (PDGFβR) causing its phosphorylation and activation. In this study, we demonstrate, by coimmunoprecipitation and immunoblotting, that in equine sarcoid derived cell lines PDGFβR is phosphorylated and binds downstream molecules related to Ras-mitogen-activated protein kinase-ERK pathway thus resulting in Ras activation. Imatinib mesylate is a tyrosine kinase receptors inhibitor which selectively inhibits the activation of PDGFβR in the treatment of several human and animal cancers. Here we show that imatinib inhibits receptor phosphorylation, and cell viability assays demonstrate that this drug decreases sarcoid fibroblasts viability in a dose-dependent manner. This study contributes to a better understanding of the molecular mechanisms involved in the pathology of sarcoids and paves the way to a new therapeutic approach for the treatment of this common equine skin neoplasm. PMID:23936786

  1. Agonist- and subunit-dependent potentiation of glutamate receptors by a nootropic drug aniracetam.

    PubMed

    Tsuzuki, K; Takeuchi, T; Ozawa, S

    1992-11-01

    GluR1 and GluR2 cDNAs encoding non-NMDA subtypes of glutamate receptor were isolated from a rat brain cDNA library by Boulter et al. (Science, 249 (1990) 1033-1037). Functional receptors activated by kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and glutamate were expressed in Xenopus oocytes injected with GluR1, GluR2 or a mixture of GluR1 and GluR2 RNAs. In GluR1-expressed oocytes, 1 mM aniracetam potentiated AMPA-induced currents by 99 +/- 10% (mean +/- S.E.M., n = 5) and glutamate-induced currents by 140 +/- 8% (n = 4), but little affected kainate-induced currents. Aniracetam was effective from a concentration of 0.1 mM, and it exhibited more conspicuous effects with the increase of the dose. In oocytes injected with GluR1 plus GluR2 RNAs, aniracetam more markedly potentiated current responses to AMPA and glutamate than those in oocytes injected with GluR1 RNA alone. For example, 1 mM aniracetam potentiated AMPA-induced currents by 396 +/- 76% (n = 4) and glutamate-induced currents by 970 +/- 65% (n = 5) in oocytes injected with 10% GluR1 and 90% GluR2 RNAs. In these oocytes, however, the potentiation of kainate-induced currents by 1 mM aniracetam was only 8 +/- 5% (n = 4). Thus, we conclude that the potentiation of the AMPA/kainate receptor by aniracetam depends on both species of agonists and subunit composition of the receptor.

  2. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF.

    PubMed

    Leon-Velarde, Carlos G; Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P; Odumeru, Joseph A; Griffiths, Mansel W; Skurnik, Mikael

    2016-09-01

    Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in detail, with the aim of

  3. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF

    PubMed Central

    Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M.; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P.; Odumeru, Joseph A.; Griffiths, Mansel W.

    2016-01-01

    ABSTRACT Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica. To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. IMPORTANCE Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in

  4. Epidermal Growth Factor-Dependent Transformation by a Human EGF Receptor Proto-Oncogene

    NASA Astrophysics Data System (ADS)

    Velu, Thierry J.; Beguinot, Laura; Vass, William C.; Willingham, Mark C.; Merlino, Glenn T.; Pastan, Ira; Lowy, Douglas R.

    1987-12-01

    The epidermal growth factor (EGF) receptor gene EGFR has been placed in a retrovirus vector to examine the growth properties of cells that experimentally overproduce a full-length EGF receptor. NIH 3T3 cells transfected with the viral DNA or infected with the corresponding rescued retrovirus developed a fully transformed phenotype in vitro that required both functional EGFR expression and the presence of EGF in the growth medium. Cells expressing 4 × 105 EGF receptors formed tumors in nude mice, while control cells did not. Therefore, the EGFR retrovirus, which had a titer on NIH 3T3 cells that was greater than 107 focus-forming units per milliliter, can efficiently transfer and express this gene, and increased numbers of EGF receptors can contribute to the transformed phenotype.

  5. Decoding Corticotropin-Releasing Factor Receptor Type 1 Crystal 
Structures

    PubMed Central

    Doré, Andrew S.; Bortolato, Andrea; Hollenstein, Kaspar; Cheng, Robert K.Y.; Read, Randy J.; Marshall, Fiona H.

    2017-01-01

    The structural analysis of class B G protein-coupled receptors (GPCR), cell surface proteins responding to peptide hormones, has until recently been restricted to the extracellular domain (ECD). Cor-ticotropin-releasing factor receptor type 1 (CRF1R) is a class B receptor mediating stress response and also considered a drug target for depression and anxiety. Here we report the crystal structure of the trans-membrane domain of human CRF1R in complex with the small-molecule antagonist CP-376395 in a hex-agonal setting with translational non-crystallographic symmetry. Molecular dynamics and metadynamics simulations on this novel structure and the existing TMD structure for CRF1R provides insight as to how the small molecule ligand gains access to the induced-fit allosteric binding site with implications for the observed selectivity against CRF2R. Furthermore, molecular dynamics simulations performed using a full-length receptor model point to key interactions between the ECD and extracellular loop 3 of the TMD providing insight into the full inactive state of multidomain class B GPCRs. PMID:28183242

  6. Phosphatidylserine Sensing by TAM Receptors Regulates AKT-Dependent Chemoresistance and PD-L1 Expression.

    PubMed

    Kasikara, Canan; Kumar, Sushil; Kimani, Stanley; Tsou, Wen-I; Geng, Ke; Davra, Viralkumar; Sriram, Ganapathy; Devoe, Connor; Nguyen, Khanh-Quynh N; Antes, Anita; Krantz, Allen; Rymarczyk, Grzegorz; Wilczynski, Andrzej; Empig, Cyril; Freimark, Bruce; Gray, Michael; Schlunegger, Kyle; Hutchins, Jeff; Kotenko, Sergei V; Birge, Raymond B

    2017-06-01

    Tyro3, Axl, and Mertk (collectively TAM receptors) are three homologous receptor tyrosine kinases that bind vitamin K-dependent endogenous ligands, Protein S (ProS), and growth arrest-specific factor 6 (Gas6), and act as bridging molecules to promote phosphatidylserine (PS)-mediated clearance of apoptotic cells (efferocytosis). TAM receptors are overexpressed in a vast array of tumor types, whereby the level of expression correlates with the tumor grade and the emergence of chemo- and radioresistance to targeted therapeutics, but also have been implicated as inhibitory receptors on infiltrating myeloid-derived cells in the tumor microenvironment that can suppress host antitumor immunity. In the present study, we utilized TAM-IFNγR1 reporter lines and expressed TAM receptors in a variety of epithelial cell model systems to show that each TAM receptor has a unique pattern of activation by Gas6 or ProS, as well as unique dependency for PS on apoptotic cells and PS liposomes for activity. In addition, we leveraged this system to engineer epithelial cells that express wild-type TAM receptors and show that although each receptor can promote PS-mediated efferocytosis, AKT-mediated chemoresistance, as well as upregulate the immune checkpoint molecule PD-L1 on tumor cells, Mertk is most dominant in the aforementioned pathways. Functionally, TAM receptor-mediated efferocytosis could be partially blocked by PS-targeting antibody 11.31 and Annexin V, demonstrating the existence of a PS/PS receptor (i.e., TAM receptor)/PD-L1 axis that operates in epithelial cells to foster immune escape. These data provide a rationale that PS-targeting, anti-TAM receptor, and anti-PD-L1-based therapeutics will have merit as combinatorial checkpoint inhibitors. Implications: Many tumor cells are known to upregulate the immune checkpoint inhibitor PD-L1. This study demonstrates a role for PS and TAM receptors in the regulation of PD-L1 on cancer cells. Mol Cancer Res; 15(6); 753-64. ©2017 AACR

  7. Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis.

    PubMed

    Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine I

    2017-01-03

    The Gram-positive bacterial cell wall (CW) peptidoglycan-teichoic acid complex is released into the host environment during bacterial metabolism or death. It is a highly inflammatory Toll-like receptor 2 (TLR2) ligand, and previous in vivo studies have demonstrated its ability to recapitulate pathological features of pneumonia and meningitis. We report that an actin-dependent pathway is involved in the internalization of the CW by epithelial and endothelial cells, in addition to the previously described platelet-activating factor receptor (PAFr)-dependent uptake pathway. Unlike the PAFr-dependent pathway, which is mediated by clathrin and dynamin and does not lead to signaling, the alternative pathway is sensitive to 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and engenders Rac1, Cdc42, and phosphatidylinositol 3-kinase (PI3K) signaling. Upon internalization by this macropinocytosis-like pathway, CW is trafficked to lysosomes. Intracellular CW trafficking is more complex than previously recognized and suggests multiple points of interaction with and without innate immune signaling. Streptococcus pneumoniae is a major human pathogen infecting the respiratory tract and brain. It is an established model organism for understanding how infection injures the host. During infection or bacterial growth, bacteria shed their cell wall (CW) into the host environment and trigger inflammation. A previous study has shown that CW enters and crosses cell barriers by interacting with a receptor on the surfaces of host cells, termed platelet-activating factor receptor (PAFr). In the present study, by using cells that are depleted of PAFr, we identified a second pathway with features of macropinocytosis, which is a receptor-independent fluid uptake mechanism by cells. Each pathway contributes approximately the same amount of cell wall trafficking, but the PAFr pathway is silent, while the new pathway appears to contribute to the host inflammatory response to CW insult. Copyright © 2017

  8. Decoy receptor 3 is a prognostic factor in renal cell cancer.

    PubMed

    Macher-Goeppinger, Stephan; Aulmann, Sebastian; Wagener, Nina; Funke, Benjamin; Tagscherer, Katrin E; Haferkamp, Axel; Hohenfellner, Markus; Kim, Sunghee; Autschbach, Frank; Schirmacher, Peter; Roth, Wilfried

    2008-10-01

    Decoy receptor 3 (DcR3) is a soluble protein that binds to and inactivates the death ligand CD95L. Here, we studied a possible association between DcR3 expression and prognosis in patients with renal cell carcinomas (RCCs). A tissue microarray containing RCC tumor tissue samples and corresponding normal tissue samples was generated. Decoy receptor 3 expression in tumors of 560 patients was examined by immunohistochemistry. The effect of DcR3 expression on disease-specific survival and progression-free survival was assessed using univariate analysis and multivariate Cox regression analysis. Decoy receptor 3 serum levels were determined by ELISA. High DcR3 expression was associated with high-grade (P = .005) and high-stage (P = .048) RCCs. The incidence of distant metastasis (P = .03) and lymph node metastasis (P = .002) was significantly higher in the group with high DcR3 expression. Decoy receptor 3 expression correlated negatively with disease-specific survival (P < .001) and progression-free survival (P < .001) in univariate analyses. A multivariate Cox regression analysis retained DcR3 expression as an independent prognostic factor that outperformed the Karnofsky performance status. In patients with high-stage RCCs expressing DcR3, the 2-year survival probability was 25%, whereas in patients with DcR3-negative tumors, the survival probability was 65% (P < .001). Moreover, DcR3 serum levels were significantly higher in patients with high-stage localized disease (P = .007) and metastatic disease (P = .001). DcR3 expression is an independent prognostic factor of RCC progression and mortality. Therefore, the assessment of DcR3 expression levels offers valuable prognostic information that could be used to select patients for adjuvant therapy studies.

  9. Effect of acute and continuous morphine treatment on transcription factor expression in subregions of the rat caudate putamen. Marked modulation by D4 receptor activation.

    PubMed

    Gago, Belén; Suárez-Boomgaard, Diana; Fuxe, Kjell; Brené, Stefan; Reina-Sánchez, María Dolores; Rodríguez-Pérez, Luis M; Agnati, Luigi F; de la Calle, Adelaida; Rivera, Alicia

    2011-08-17

    Acute administration of the dopamine D(4) receptor (D(4)R) agonist PD168,077 induces a down-regulation of the μ opioid receptor (MOR) in the striosomal compartment of the rat caudate putamen (CPu), suggesting a striosomal D(4)R/MOR receptor interaction in line with their high co-distribution in this brain subregion. The present work was designed to explore if a D(4)R/MOR receptor interaction also occurs in the modulation of the expression pattern of several transcription factors in striatal subregions that play a central role in drug addiction. Thus, c-Fos, FosB/ΔFosB and P-CREB immunoreactive profiles were quantified in the rat CPu after either acute or continuous (6-day) administration of morphine and/or PD168,077. Acute and continuous administration of morphine induced different patterns of expression of these transcription factors, effects that were time-course and region dependent and fully blocked by PD168,077 co-administration. Moreover, this effect of the D(4)R agonist was counteracted by the D(4)R antagonist L745,870. Interestingly, at some time-points, combined treatment with morphine and PD168,077 substantially increased c-Fos, FosB/ΔFosB and P-CREB expression. The results of this study give indications for a general antagonistic D(4)R/MOR receptor interaction at the level of transcription factors. The change in the transcription factor expression by D(4)R/MOR interactions in turn suggests a modulation of neuronal activity in the CPu that could be of relevance for drug addiction. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Inositol-C2-PAF down-regulates components of the antigen presentation machinery in a 2D-model of epidermal inflammation.

    PubMed

    Semini, Geo; Hildmann, Annette; Klein, Andreas; Lucka, Lothar; Schön, Margarete; Schön, Michael P; Shmanai, Vadim; Danker, Kerstin

    2014-02-01

    In cutaneous inflammatory diseases, such as psoriasis, atopic dermatitis and allergic contact dermatitis, skin-infiltrating T lymphocytes and dendritic cells modulate keratinocyte function via the secretion of pro-inflammatory cytokines. Keratinocytes then produce mediators that recruit and activate immune cells and amplify the inflammatory response. These pathophysiological tissue changes are caused by altered gene expression and the proliferation and maturation of dermal and epidermal cells. We recently demonstrated that the glycosidated phospholipid Ino-C2-PAF down-regulates a plethora of gene products associated with innate and acquired immune responses and inflammation in the HaCaT keratinocyte cell line. To further evaluate the influence of Ino-C2-PAF we established an in vitro 2D-model of epidermal inflammation. The induction of inflammation and the impact of Ino-C2-PAF were assessed in this system using a genome-wide microarray analysis. In addition, the expression of selected genes was validated using qRT-PCR and flow cytometry. Treatment of the keratinocytes with a mix of proinflammatory cytokines resulted in transcriptional effects on a variety of genes involved in cutaneous inflammation and immunity, while additional treatment with Ino-C2-PAF counteracted the induction of many of these genes. Remarkably, Ino-C2-PAF suppressed the expression of a group of targets that are implicated in antigen processing and presentation, including MHC molecules. Thus, it is conceivable that Ino-C2-PAF possess therapeutic potential for inflammatory skin disorders, such as psoriasis and allergic contact dermatitis. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption

    PubMed Central

    Latchoumycandane, Calivarathan; Hanouneh, Mohamad; Nagy, Laura E.; McIntyre, Thomas M.

    2015-01-01

    Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR) for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh) and Indian hedgehog (Ihh) expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO) is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo -/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not commonly

  12. Endocannabinoid receptor deficiency affects maternal care and alters the dam's hippocampal oxytocin receptor and brain-derived neurotrophic factor expression.

    PubMed

    Schechter, M; Weller, A; Pittel, Z; Gross, M; Zimmer, A; Pinhasov, A

    2013-10-01

    Maternal care is the newborn's first experience of social interaction, and this influences infant survival, development and social competences throughout life. We recently found that postpartum blocking of the endocannabinoid receptor-1 (CB1R) altered maternal behaviour. In the present study, maternal care was assessed by the time taken to retrieve pups, pups' ultrasonic vocalisations (USVs) and pup body weight, comparing CB1R deleted (CB1R KO) versus wild-type (WT) mice. After culling on postpartum day 8, hippocampal expression of oxytocin receptor (OXTR), brain-derived neurotrophic factor (BDNF) and stress-mediating factors were evaluated in CB1R KO and WT dams. Comparisons were also performed with nulliparous (NP) CB1R KO and WT mice. Compared to WT, CB1R KO dams were slower to retrieve their pups. Although the body weight of the KO pups did not differ from the weight of WT pups, they emitted fewer USVs. This impairment of the dam-pup relationship correlated with a significant reduction of OXTR mRNA and protein levels among CB1R KO dams compared to WT dams. Furthermore, WT dams exhibited elevated OXTR mRNA expression, as well as increased levels of mineralocorticoid and glucocorticoid receptors, compared to WT NP mice. By contrast, CB1R KO dams showed no such elevation of OXTR expression, alongside lower BDNF and mineralocorticoid receptors, as well as elevated corticotrophin-releasing hormone mRNA levels, when compared to CB1R KO NP. Thus, it appears that the disruption of endocannabinoid signalling by CB1R deletion alters expression of the OXTR, apparently leading to deleterious effects upon maternal behaviour. © 2013 British Society for Neuroendocrinology.

  13. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes

    PubMed Central

    Malki, Agne; Fiedler, Julia; Fricke, Kristina; Ballweg, Ines; Pfaffl, Michael W.; Krautwurst, Dietmar

    2015-01-01

    Our cellular immune system has to cope constantly with foodborne substances that enter the bloodstream postprandially. Here, they may activate leukocytes via specific but yet mostly unknown receptors. Ectopic RNA expression out of gene families of chemosensory receptors, i.e., the ∼400 ORs, ∼25 TAS2R bitter-taste receptors, and the TAS1R umami- and sweet-taste receptor dimers by which we typically detect foodborne substances, has been reported in a variety of peripheral tissues unrelated to olfaction or taste. In the present study, we have now discovered, by gene-specific RT-PCR experiments, the mRNA expression of most of the Class I ORs (TAS1R) and TAS2R in 5 different types of blood leukocytes. Surprisingly, we did not detect Class II OR mRNA. By RT-qPCR, we show the mRNA expression of human chemosensory receptors and their cow orthologs in PMN, thus suggesting an evolutionary concept. By immunocytochemistry, we demonstrate that some olfactory and taste receptors are expressed, on average, in 40–60% of PMN and T or B cells and largely coexpress in the same subpopulation of PMN. The mRNA expression and the size of subpopulations expressing certain chemosensory receptors varied largely among individual blood samples, suggesting a regulated expression of olfactory and taste receptors in these cells. Moreover, we show mRNA expression of their downstream signaling molecules and demonstrate that PTX abolishes saccharin- or 2-PEA-induced PMN chemotactic migration, indicating a role for Gi-type proteins. In summary, our data suggest "chemosensory"-type subpopulations of circulating leukocytes. PMID:25624459

  14. Transcytosis of F4 fimbriae by villous and dome epithelia in F4-receptor positive pigs supports importance of receptor-dependent endocytosis in oral immunization strategies.

    PubMed

    Snoeck, Veerle; Van den Broeck, Wim; De Colvenaer, Veerle; Verdonck, Frank; Goddeeris, Bruno; Cox, Eric

    2008-07-15

    Very few antigens have been described that induce an intestinal immunity when given orally. Our laboratory demonstrated that oral administration of isolated F4 (K88) fimbriae of Escherichia coli to F4-receptor positive (F4R(+)) pigs induces protective mucosal immunity against challenge infection. However, presence of F4-receptors (F4R) on villous enterocytes is a prerequisite for inducing the immune response, as no F4-specific antibody-secreting cells (ASC) can be induced in F4R(-) pigs. In this study, the in vivo binding of isolated F4 fimbriae (F4) to the gut epithelium was examined in F4R(+) and F4R(-) pigs. It was further investigated whether binding of F4 to the F4R results in endocytosis in and translocation across the gut epithelium using microscopy. F4 did not adhere to the intestinal epithelium of F4R(-) pigs, whereas it strongly adhered to the villous epithelium and the follicle-associated epithelium (FAE) of the jejunum and ileum of F4R(+) pigs. Following binding to F4R, F4 was endocytosed by villous enterocytes, follicle-associated enterocytes and M cells. Transcytosis of F4 across the epithelium resulted in the appearance of F4 in the lamina propria and dome region of the jejunal and ileal PP. This is the first study showing transcytosis of fimbriae across the gut epithelium. This receptor-dependent transcytosis can explain the success of F4 fimbriae as oral immunogen for inducing protective immunity in F4R(+) pigs strengthening the importance of receptor-dependent endocytosis and translocation in oral vaccine strategies. Further identification of the receptor responsible for this transport is in progress.

  15. Amifostine, a reactive oxigen species scavenger with radiation- and chemo-protective properties, inhibits in vitro platelet activation induced by ADP, collagen or PAF.

    PubMed

    Porta, C; Maiolo, A; Tua, A; Grignani, G

    2000-08-01

    Reactive oxygen species (ROS) generation has been suggested to represent an important regulatory mechanism of platelet reactivity in both physiologic and pathologic conditions; consistent with this hypothesis is the observation that free-radical scavengers may inhibit platelet activation, thus contributing to the regulation of their reactivity. The purpose of the present study is to study the in vitro effects of amifostine (WR-2721, ethyol ), a selective cytoprotective agent for normal tissues against the toxicities of chemotherapy and radiation, on platelet activation induced by the physiologic agonists ADP, collagen and PAF. The effect of amifostine, added to the experimental system at final concentrations ranging from 10(-7) M to 10(-5) M, was studied on platelet aggregation induced by the following physiologic agonists at the given concentrations: ADP (1 microM), collagen (2 microg/mL), and PAF (0.1 microg/mL). Platelet aggregation was investigated using a platelet ionized calcium aggregometer and was expressed as the percentage change in light transmission. Furthermore, thromboxane B((2)) (TxB((2))) levels and nitric oxide (NO) production were determined by radioimmunoassay and by evaluating the total nitrite/nitrate concentration using a commercially available colorimetric kit, respectively, both in the control system and after the addition of amifostine. Amifostine inhibited both platelet aggregation and TxB((2)) production induced by ADP, collagen and PAF, in a dose-dependent manner. Amifostine proved to be an effective inhibitor of platelet function and the effect was more pronounced if platelets were stimulated with ADP, intermediate when collagen was the chosen agonist, and less evident, though present, when PAF was used. Platelets stimulated with ADP, collagen or PAF produced significant amounts of NO over the baseline. When amifostine was added at a final concentration of 5 microM, it significantly increased ADP, collagen and PAF-induced NO production

  16. Regulation of mouse lung development by the extracellular calcium-sensing receptor, CaR

    PubMed Central

    Finney, Brenda A; del Moral, Pierre M; Wilkinson, William J; Cayzac, Sebastien; Cole, Martin; Warburton, David; Kemp, Paul J; Riccardi, Daniela

    2008-01-01

    Postnatal lung function is critically dependent upon optimal embryonic lung development. As the free ionized plasma calcium concentration ([Ca2+]o) of the fetus is higher than that of the adult, the process of lung development occurs in a hypercalcaemic environment. In the adult, [Ca2+]o is monitored by the G-protein coupled, extracellular calcium-sensing receptor (CaR), but neither its ontogeny nor its potential role in lung development are known. Here, we demonstrate that CaR is expressed in the mouse lung epithelium, and that its expression is developmentally regulated, with a peak of expression at embryonic day 12.5 (E12.5) and a subsequent decrease by E18, after which the receptor is absent. Experiments carried out using the lung explant culture model in vitro show that lung branching morphogenesis is sensitive to [Ca2+]o, being maximal at physiological adult [Ca2+]o (i.e. 1.0–1.3 mm) and lowest at the higher, fetal (i.e. 1.7 mm) [Ca2+]o. Administration of the specific CaR positive allosteric modulator, the calcimimetic R-568, mimics the suppressive effects of high [Ca2+]o on branching morphogenesis while both phospholipase C and PI3 kinase inhibition reverse these effects. CaR activation suppresses cell proliferation while it enhances intracellular calcium signalling, lung distension and fluid secretion. Conditions which are restrictive either to branching or to secretion can be rescued by manipulating [Ca2+]o in the culture medium. In conclusion, fetal Cao2+, acting through a developmentally regulated CaR, is an important extrinsic factor that modulates the intrinsic lung developmental programme. Our observations support a novel role for the CaR in preventing hyperplastic lung disease in utero. PMID:18955379

  17. Ligand-dependent interactions of the Ah receptor with coactivators in a mammalian two-hybrid assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Shu; Rowlands, Craig; Safe, Stephen

    2008-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a high affinity ligand for the aryl hydrocarbon receptor (AhR). In this study, we investigated structure-dependent differences in activation of the AhR by a series of halogenated aromatic hydrocarbons. TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 3,3',4,4',5-pentachlorobiphenyl (PCB126) induced CYP1A1-dependent activities in HEK293 human embryonic kidney, Panc1 pancreatic cancer, and Hepa1c1c7 mouse hepatoma cell lines. There was a structure-dependent difference in the efficacy of TCDF and PCB126 in HEK293 and Panc1 cells since induced CYP1A1 mRNA levels were lower than observed for the other congeners. A mammalian two-hybrid assay in cells transfected with GAL4-coactivator and AhR-VP16more » chimeras was used to investigate structure-dependent interactions of these chimeras in Panc1, HEK293, and Hepa1c1c7 cells. The reporter construct pGAL4-luc contains five tandem GAL4 response elements linked to the luciferase gene and the GAL4-coactivator chimeras express several coactivators including steroid receptor coactivator 1 (SRC-1), SRC-2 and SRC-3, the mediator coactivator TRAP220, coactivator associated arginine methyl transferase 1 (CARM-1), and peroxisome proliferator-activated receptor {gamma} coactivator 1 (PGC-1). Results of the mammalian two-hybrid studies clearly demonstrate that activation of pGAL4-luc in cells transfected with VP-AhR and GAL4-coactivator chimeras is dependent on the structure of the HAH congener, cell context, and coactivator, suggesting that the prototypical HAH congeners used in this study exhibit selective AhR modulator activity.« less

  18. The proangiogenic phenotype of tumor-derived endothelial cells is reverted by the overexpression of platelet-activating factor acetylhydrolase.

    PubMed

    Doublier, Sophie; Ceretto, Monica; Lupia, Enrico; Bravo, Stefania; Bussolati, Benedetta; Camussi, Giovanni

    2007-10-01

    We previously reported that human tumor-derived endothelial cells (TEC) have an angiogenic phenotype related to the autocrine production of several angiogenic factors. The purpose of the present study was to evaluate whether an enhanced synthesis of platelet-activating factor (PAF) might contribute to the proangiogenic characteristics of TEC and whether its inactivation might inhibit angiogenesis. To address the potential role of PAF in the proangiogenic characteristics of TEC, we engineered TEC to stably overexpress human plasma PAF-acetylhydrolase (PAF-AH), the major PAF-inactivating enzyme, and we evaluated in vitro and in vivo angiogenesis. TECs were able to synthesize a significantly enhanced amount of PAF compared with normal human microvascular endothelial cells when stimulated with thrombin, vascular endothelial growth factor, or soluble CD154. Transfection of TEC with PAF-AH (TEC-PAF-AH) significantly inhibited apoptosis resistance and spontaneous motility of TEC. In addition, PAF and vascular endothelial growth factor stimulation enhanced the motility and adhesion of TEC but not of TEC-PAF-AH. In vitro, TEC-PAF-AH lost the characteristic ability of TEC to form vessel-like structures when plated on Matrigel. Finally, when cells were injected s.c. within Matrigel in severe combined immunodeficiency mice or coimplanted with a renal carcinoma cell line, the overexpression of PAF-AH induced a significant reduction of functional vessel formation. These results suggest that inactivation of PAF, produced by TEC, by the overexpression of plasma PAF-AH affects survival, migration, and the angiogenic response of TEC both in vitro and in vivo.

  19. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A2A receptor.

    PubMed

    Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka

    2017-04-01

    Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A 2A receptor (A 2A R), has an exceptionally long intracellular C terminus (A 2A R-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A 2A R and the role of Ca 2+ in this process. First, we studied the A 2A R-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A 2A R-ct through its distal calmodulin-like domain in a Ca 2+ -independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A 2A R-calmodulin/Ca 2+ complex. Importantly, calmodulin displaced α-actinin 1 from the A 2A R-ct in a Ca 2+ -dependent fashion, disrupting the A 2A R-α-actinin 1 complex. Finally, we assessed the impact of Ca 2+ on A 2A R internalization in living cells, a function operated by the A 2A R-α-actinin 1 complex. Interestingly, while Ca 2+ influx did not affect constitutive A 2A R endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A 2A R/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A 2A R with calmodulin and α-actinin 1 is fine-tuned by Ca 2+ , a fact that might power agonist-mediated receptor internalization and function. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism

    PubMed Central

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K.; Lehtonen, Jukka Y.A.

    2016-01-01

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3′-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. PMID:26681690

  1. Erythropoietin Receptor Signaling Is Membrane Raft Dependent

    PubMed Central

    McGraw, Kathy L.; Fuhler, Gwenny M.; Johnson, Joseph O.; Clark, Justine A.; Caceres, Gisela C.; Sokol, Lubomir; List, Alan F.

    2012-01-01

    Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR) microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE) vs. 25.6±3.2 aggregates/cell; p≤0.001), accompanied by a >3-fold increase in cluster size (p≤0.001). Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units. PMID:22509308

  2. Delay of corneal epithelial wound healing and induction of keratocyte apoptosis by platelet-activating factor.

    PubMed

    Chandrasekher, Gudiseva; Ma, Xiang; Lallier, Thomas E; Bazan, Haydee E P

    2002-05-01

    To examine the role of the lipid mediator platelet-activating factor (PAF) in epithelial wound healing. A 7-mm central de-epithelializing wound was produced in rabbit corneas, and the tissue was incubated with 125 nM carbamyl PAF (cPAF), an analogue of PAF. Rabbit corneal epithelial and stromal cells were also cultured in the presence of cPAF. Cell adhesion, proliferation, and migration assays were conducted. Apoptosis was assayed by TUNEL staining on preparations of corneal tissue sections and in cells in culture. Twenty-four hours after injury, 50% of the wounded area was covered by new epithelium, whereas only 30% was covered in the presence of cPAF. At 48 hours, the epithelium completely closed the wound, but only 45% of the original wound was covered in corneas treated with cPAF. Similar inhibition of epithelial wound closure was found with human corneas incubated with PAF in organ culture. Moreover, addition of several growth factors involved in corneal wound healing, such as epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, could not overcome the inhibitory action of PAF in wound closure. Three PAF antagonists, BN50727, BN50730, and BN50739, abolished the effect of PAF. A significant increase in TUNEL-positive staining occurred in corneal stromal cells (keratocytes), which was inhibited by preincubating the corneas with PAF antagonists. However, no TUNEL-positive staining was found in epithelial cells. TUNEL-staining results in cultured stromal cells (keratocytes) and epithelial cells in first-passage cell culture were similar to those in organ-cultured corneas. In addition, PAF caused 35% to 56% inhibition of adhesion of epithelial cells to proteins of the extracellular matrix: collagen I and IV, fibronectin, and laminin. There were no significant changes in proliferation or migration of epithelial cells induced by the lipid mediator. The results suggest PAF plays an important role in preventing corneal wound healing by

  3. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes.

  4. Mecp2 Mediates Experience-Dependent Transcriptional Upregulation of Ryanodine Receptor Type-3

    PubMed Central

    Torres, Rodrigo F.; Hidalgo, Cecilia; Kerr, Bredford

    2017-01-01

    Mecp2 is a DNA methylation reader that plays a critical role in experience-dependent plasticity. Increasing evidence supports a role for epigenetic modifications in activity-induced gene expression. Hence, candidate genes related to such phenomena are of great interest. Ryanodine receptors are intracellular calcium channels that contribute to hippocampal synaptic plasticity, dendritic spine remodeling, and participate in learning and memory processes. Here we exposed mice to the enriched environment (EE) paradigm, which through increased stimulation induces experience dependent-plasticity, to explore a role for methyl-cytosines, and Mecp2 in directing Ryanodine receptor 3 (Ryr3) transcriptional activity. EE induced a hippocampal-specific increase in the methylation of discrete cytosines located at a Ryr3 isoform promoter; chromatin immunoprecipitation experiments revealed that EE increased Mecp2 binding to this Ryr3 isoform promoter. Interestingly, the experimental paradigm induced robust Ryr3 upregulation, accompanied by miR132-dependent suppression of p250GAP, a pathway driving synaptogenesis. In contrast to WT mice, Mecp2-null mice showed diminished levels of Ryr3 and displayed impaired EE-induced Ryr3 upregulation, compromising miR132 dependent suppression of p250GAP and experience-dependent structural plasticity. Based on these results, we propose that Mecp2 acts as a transcriptional activator of Ryr3, contributing to experience-dependent plasticity. PMID:28659760

  5. Mecp2 Mediates Experience-Dependent Transcriptional Upregulation of Ryanodine Receptor Type-3.

    PubMed

    Torres, Rodrigo F; Hidalgo, Cecilia; Kerr, Bredford

    2017-01-01

    Mecp2 is a DNA methylation reader that plays a critical role in experience-dependent plasticity. Increasing evidence supports a role for epigenetic modifications in activity-induced gene expression. Hence, candidate genes related to such phenomena are of great interest. Ryanodine receptors are intracellular calcium channels that contribute to hippocampal synaptic plasticity, dendritic spine remodeling, and participate in learning and memory processes. Here we exposed mice to the enriched environment (EE) paradigm, which through increased stimulation induces experience dependent-plasticity, to explore a role for methyl-cytosines, and Mecp2 in directing Ryanodine receptor 3 ( Ryr3 ) transcriptional activity. EE induced a hippocampal-specific increase in the methylation of discrete cytosines located at a Ryr3 isoform promoter; chromatin immunoprecipitation experiments revealed that EE increased Mecp2 binding to this Ryr3 isoform promoter. Interestingly, the experimental paradigm induced robust Ryr3 upregulation, accompanied by miR132 -dependent suppression of p250GAP , a pathway driving synaptogenesis. In contrast to WT mice, Mecp2-null mice showed diminished levels of Ryr3 and displayed impaired EE-induced Ryr3 upregulation, compromising miR132 dependent suppression of p250GAP and experience-dependent structural plasticity. Based on these results, we propose that Mecp2 acts as a transcriptional activator of Ryr3 , contributing to experience-dependent plasticity.

  6. Use of steroidal antiinflammatory drug provides further evidence for a potential role of PAF-acether in bronchial anaphylaxis.

    PubMed

    Chignard, M; Le Còuedic, J P; Andersson, P; Brange, C

    1986-01-01

    We presently demonstrate that PAF-acether (1-O-alkyl-2-O-acetyl-sn-glycerol-3-phosphoryl-choline) is formed by sensitized guinea pig lungs upon in vitro antigenic challenge. Pretreatment of the animals with a steroidal antiinflammatory drug, budesonide, almost totally suppresses this biosynthesis. Since budesonide inhibits the anaphylactic bronchoconstriction in actively sensitized guinea pigs, these data strongly support the assumption that PAF-acether is a mediator of bronchial anaphylaxis.

  7. Risk factors for stillbirth in developing countries: a systematic review of the literature.

    PubMed

    Di Mario, Simona; Say, Lale; Lincetto, Ornella

    2007-07-01

    To identify risk factors for stillbirth in developing countries and to measure their impact by calculating the population attributable fraction (PAF) for each risk factor. Systematic review of published studies on risk factors for stillbirth within 3 broadly defined categories: infections, other clinical conditions, and context-dependent conditions such as socioeconomic status, maternal literacy, and receipt of antenatal care. Where statistically significant associations were found between a risk factor and occurrence of stillbirth, the PAF (the proportion of cases occurring in the total population that would be avoided if the exposure was removed) was calculated. A total of 33 studies, conducted in 31 developing countries, were included in the review. The definition of stillbirth varied widely in these studies. Risk factors for stillbirth having a PAF higher than 50% were maternal syphilis, chorioamnionitis, maternal malnutrition, lack of antenatal care, and maternal socioeconomic disadvantage. Maternal syphilis prevention, screening and treatment together with other interventions targeting universal use of antenatal care (that includes screening for syphilis) and improving the socioeconomic conditions including nutritional status of the mother, could effectively contribute towards reducing the unacceptably high burden due to stillbirth in developing countries.

  8. Ghrelin receptor (GHS-R1A) agonists show potential as interventive agents during aging.

    PubMed

    Smith, Roy G; Sun, Yuxiang; Jiang, Hong; Albarran-Zeckler, Rosie; Timchenko, Nikolai

    2007-11-01

    Administration of an orally active agonist (MK-0677) of the growth hormone secretagogue receptor (GHS-R1a) to elderly subjects restored the amplitude of endogenous episodic growth hormone (GH) release to that of young adults. Functional benefits include increased lean mass and bone density and modest improvements in strength. In old mice, a similar agonist partially restored function to the thymus and reduced tumor cell growth and metastasis. Treatment of old mice with the endogenous GHS-R1a agonist ghrelin restored a young liver phenotype. The mechanism involves inhibition of cyclin D3:cdk4/cdk6 activity and increased protein phosphatase-2A (PP2A) activity in liver nuclei, which stabilizes the dephosphorylated form of the transcription factor C/EBPalpha preventing the age-dependent formation of the C/EBPalpha-Rb-E2F4-Brm nuclear complex. By inhibiting formation of this complex, repression of E2F target genes is de-repressed and C/EBPalpha regulated expression of Pepck, a regulator of gluconeogenesis, is normalized, thereby restoring a young liver phenotype. In the brain, aging is associated with decline in dopamine function. We investigated the potential neuromodulatory role of GHS-R1a on dopamine action. Neurons were identified in the hippocampus, cortex, substantia nigra, and ventral tegmental areas that coexpressed GHS-R1a and dopamine receptor subtype-1 (D1R). Cell culture studies showed that, in the presence of ghrelin and dopamine, GHS-R and D1R form heterodimers, which modified G-protein signal transduction resulting in amplification of dopamine signaling. We speculate that aging is associated with deficient endogenous ghrelin signaling that can be rescued by intervention with GHS-R1a agonists to improve quality of life and maintain independence.

  9. Estrogen receptor (ER) and progesterone receptor (PgR) in breast cancer of Indian women

    PubMed Central

    Patil, Amit V; Bhamre, Rahul S; Singhai, Rajeev; Tayade, Mukund B; Patil, Vinayak W

    2011-01-01

    Objective To determine the expressions and relationship between estrogen receptors (ERs) and progesterone receptors (PgRs) in breast cancer in Indian women. Participants Surgically removed breast cancer tissues were collected from Grant Medical College and Sir JJ Group of Hospitals, Mumbai, India, taking (n = 300) cases of infiltrating duct cancer of Indian women after radical mastectomy and lumpectomy; the age- and menopausal-related subgroups satisfied this requirement. Measurements Statistical significance was calculated by the likelihood ratio test; relative risk served to check for significant differences. Relapse-free interval probabilities were calculated according to Kaplan and Meier, with Cox–Mantel test comparing survival functions and P values. Results We observed that only in middle-aged postmenopausal patients bearing pT2 tumors were ER and PgR receptors shown to have a prognostic significance with the lowest tested cutoff value being 5 fmol/mg. Conclusion Immunohistochemistry analysis has been shown to be a prognostic factor for patients with breast cancer; the major aim of determining the ER receptor status is to assess predictive response to hormonal therapy. PMID:24367174

  10. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis.

    PubMed

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-Qing; Liu, Qing-Song

    2013-06-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.

  11. FGF receptors ubiquitylation: dependence on tyrosine kinase activity and role in downregulation.

    PubMed

    Monsonego-Ornan, E; Adar, R; Rom, E; Yayon, A

    2002-09-25

    A crucial aspect of ligand-mediated receptor activation and shut-down is receptor internalization and degradation. Here we compared the ubiquitylation of either wild type or a K508A 'kinase-dead' mutant of fibroblast growth factor receptor 3 (FGFR3) with that of its naturally occurring overactive mutants, G380R as in achondroplasia, or K650E involved in thanatophoric dysplasia. Fibroblast growth factor receptors ubiquitylation was found to be directly proportional to their intrinsic tyrosine kinase activity, both of which could be blocked using kinase inhibitors. Despite excessive ubiquitylation, both overactive mutants failed to be efficiently degraded, even when challenged with ligand or overexpression of c-Cbl, a putative E3 ligase. We conclude that phosphorylation is essential for FGFR3 ubiquitylation, but is not sufficient to induce downregulation of its internalization resistant mutants.

  12. Glucagon-receptor Signaling Regulates Energy Metabolism Via Hepatic Farnesoid X Receptor and Fibroblast Growth Factor 21.

    PubMed

    Kim, Teayoun; Nason, Shelly; Holleman, Cassie; Pepin, Mark; Wilson, Landon; Berryhill, Taylor F; Wende, Adam R; Steele, Chad; Young, Martin E; Barnes, Stephen; Drucker, Daniel J; Finan, Brian; DiMarchi, Richard; Perez-Tilve, Diego; Tschoep, Matthias; Habegger, Kirk M

    2018-06-20

    Glucagon, an essential regulator of glucose and lipid metabolism, also promotes weight loss, in part through potentiation of fibroblast-growth factor 21 (FGF21) secretion. However, FGF21 is only a partial mediator of metabolic actions ensuing from GcgR-activation, prompting us to search for additional pathways. Intriguingly, chronic GcgR agonism increases plasma bile acid levels. We hypothesized that GcgR agonism regulates energy metabolism, at least in part, through farnesoid X receptor (FXR). To test this hypothesis, we studied whole body and liver-specific FXR knockout ( Fxr ∆liver ) mice. Chronic GcgR agonist (IUB288) administration in diet-induced obese (DIO) Gcgr , Fgf21 and Fxr whole body or liver-specific knockout ( ∆liver ) mice failed to reduce body weight (BW) when compared to wildtype (WT) mice. IUB288 increased energy expenditure and respiration in DIO WT mice, but not FXR ∆liver mice. GcgR agonism increased [ 14 C]-palmitate oxidation in hepatocytes isolated from WT mice in a dose-dependent manner, an effect blunted in hepatocytes from Fxr ∆liver mice. Our data clearly demonstrate that control of whole body energy expenditure by GcgR agonism requires intact FXR signaling in the liver. This heretofore-unappreciated aspect of glucagon biology has implications for the use of GcgR agonism in the therapy of metabolic disorders. © 2018 by the American Diabetes Association.

  13. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR.

    PubMed

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.

  14. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR

    PubMed Central

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation. PMID:26584640

  15. The tertiary structures of porcine AhR and ARNT proteins and molecular interactions within the TCDD/AhR/ARNT complex.

    PubMed

    Orlowska, Karina; Molcan, Tomasz; Swigonska, Sylwia; Sadowska, Agnieszka; Jablonska, Monika; Nynca, Anna; Jastrzebski, Jan P; Ciereszko, Renata E

    2016-06-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse synthetic and natural chemicals, including toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In the present study, homology models of the porcine AhR-ligand binding domain (LBD) and the porcine aryl hydrocarbon receptor nuclear translocator-ligand binding domain (ARNT-LBD) were created on the basis of structures of closely related respective proteins i.e., human Hif-2α and ARNT. Molecular docking of TCDD to the porcine AhR-LBD model revealed high binding affinity (-8.8kcal/mol) between TCDD and the receptor. Moreover, formation of the TCDD/AhR-LBD complex was confirmed experimentally with the use of electrophoretic mobility shift assay (EMSA). It was found that TCDD (10nM, 2h of incubation) not only bound to the AhR in the porcine granulosa cells but also activated the receptor. The current study provides a framework for examining the key events involved in the ligand-dependent activation of the AhR. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ.

    PubMed

    Samaradivakara, Saroopa; Kankanamge, Dinesh; Senarath, Kanishka; Ratnayake, Kasun; Karunarathne, Ajith

    2018-06-11

    Interactions of cytosolic G protein coupled receptor kinase 2 (GRK2) with activated G protein coupled receptors (GPCRs) induce receptor phosphorylation and desensitization. GRK2 is recruited to active M3-muscarinic receptors (M3R) with the participation of the receptor, Gαq and Gβγ. Since we have shown that signaling efficacy of Gβγ is governed by its Gγ subtype identity, the present study examined whether recruitment of GRK2 to M3R is also Gγ subtype dependent. To capture the dynamics of GRK2-recruitment concurrently with GPCR-G protein activation, we employed live cell confocal imaging and a novel assay based on Gβγ translocation. Data show that M3R activation-induced GRK2 recruitment is Gγ subtype dependent in which Gβγ dimers with low PM-affinity Gγ9 exhibited a two-fold higher GRK2-recruitment compared to high PM affinity Gγ3 expressing cells. Since 12-mammalian Gγ types exhibit a cell and tissue specific expressions and the PM-affinity of a Gγ is linked to its subtype identity, our results indicate a mechanism by which Gγ profile of a cell controls GRK2 signaling and GPCR desensitization. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C-dependent pathway.

    PubMed

    Kalra, Dinesh; Sivasubramanian, Natarajan; Mann, Douglas L

    2002-05-07

    Previous studies suggest that angiotensin II (Ang II) upregulates the expression of tumor necrosis factor (TNF) in nonmyocyte cell types; however, the effect of Ang II on TNF expression in the adult mammalian heart is not known. To determine whether Ang II was sufficient to provoke TNF biosynthesis in the adult heart, we examined the effects of Ang II in isolated buffer-perfused Langendorff feline hearts. Ang II (10(-7) mol/L) treatment resulted in a time- and dose-dependent increase in myocardial TNF mRNA and protein biosynthesis in the heart as well as in cultured adult cardiac myocytes. The effects of Ang II on myocardial TNF mRNA and protein synthesis were mediated through the angiotensin type 1 receptor (AT1R), insofar as an AT1R antagonist (AT1a) blocked the effects of Ang II, whereas an angiotensin type 2 receptor (AT2R) antagonist (AT2a) had no effect. Stimulation with Ang II led to the activation of nuclear factor-kappaB and activator protein-1 (AP-1), two transcription factors that are important for TNF gene expression. Nuclear factor-kappaB activation was accompanied by phosphorylation of IkappaBalpha on serine 32 as well as degradation of IkappaBalpha, suggesting that the effects of Ang II were mediated through an IkappaBalpha-dependent pathway. The important role of protein kinase C (PKC) was suggested by studies in which a phorbol ester triggered TNF biosynthesis, and a PKC inhibitor abrogated Ang II-induced TNF biosynthesis. These studies suggest that Ang II provokes TNF biosynthesis in the adult mammalian heart through a PKC-dependent pathway.

  18. Growth of Murine Splenic Tissue Is Suppressed by Lymphotoxin β-Receptor Signaling (LTβR) Originating from Splenic and Non-Splenic Tissues.

    PubMed

    Milićević, Novica M; Nohroudi, Klaus; Schmidt, Friederike; Schmidt, Hendrik; Ringer, Cornelia; Sorensen, Grith Lykke; Milićević, Živana; Westermann, Jürgen

    2016-01-01

    Development and maintenance of secondary lymphoid organs such as lymph nodes and spleen essentially depend on lymphotoxin β-receptor (LTβR) signaling. It is unclear, however, by which molecular mechanism their size is limited. Here, we investigate whether the LTβR pathway is also growth suppressing. By using splenic tissue transplantation it is possible to analyze a potential contribution of LTβR signaling inside and outside of the implanted tissue. We show that LTβR signaling within the endogenous spleen and within non-splenic tissues both significantly suppressed the regeneration of implanted splenic tissue. The suppressive activity positively correlated with the total number of LTβR expressing cells in the animal (regenerate weights of 115 ± 8 mg in LTβR deficient recipients and of 12 ± 9 mg in wild-type recipients), affected also developed splenic tissue, and was induced but not executed via LTβR signaling. Two-dimensional differential gel electrophoresis and subsequent mass spectrometry of stromal splenic tissue was applied to screen for potential factors mediating the LTβR dependent suppressive activity. Thus, LTβR dependent growth suppression is involved in regulating the size of secondary lymphoid organs, and might be therapeutically used to eradicate tertiary lymphoid tissues during autoimmune diseases.

  19. Growth of Murine Splenic Tissue Is Suppressed by Lymphotoxin β-Receptor Signaling (LTβR) Originating from Splenic and Non-Splenic Tissues

    PubMed Central

    Schmidt, Friederike; Schmidt, Hendrik; Ringer, Cornelia; Sorensen, Grith Lykke; Milićević, Živana; Westermann, Jürgen

    2016-01-01

    Development and maintenance of secondary lymphoid organs such as lymph nodes and spleen essentially depend on lymphotoxin β-receptor (LTβR) signaling. It is unclear, however, by which molecular mechanism their size is limited. Here, we investigate whether the LTβR pathway is also growth suppressing. By using splenic tissue transplantation it is possible to analyze a potential contribution of LTβR signaling inside and outside of the implanted tissue. We show that LTβR signaling within the endogenous spleen and within non-splenic tissues both significantly suppressed the regeneration of implanted splenic tissue. The suppressive activity positively correlated with the total number of LTβR expressing cells in the animal (regenerate weights of 115 ± 8 mg in LTβR deficient recipients and of 12 ± 9 mg in wild-type recipients), affected also developed splenic tissue, and was induced but not executed via LTβR signaling. Two-dimensional differential gel electrophoresis and subsequent mass spectrometry of stromal splenic tissue was applied to screen for potential factors mediating the LTβR dependent suppressive activity. Thus, LTβR dependent growth suppression is involved in regulating the size of secondary lymphoid organs, and might be therapeutically used to eradicate tertiary lymphoid tissues during autoimmune diseases. PMID:27936003

  20. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.

    PubMed

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A

    2016-04-20

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Transforming growth factor-alpha short-circuits downregulation of the epidermal growth factor receptor.

    PubMed

    Ouyang, X; Gulliford, T; Huang, G; Epstein, R J

    1999-04-01

    Transforming growth factor-alpha (TGFalpha) is an epidermal growth factor receptor (EGFR) ligand which is distinguished from EGF by its acid-labile structure and potent transforming function. We recently reported that TGFalpha induces less efficient EGFR heterodimerization and downregulation than does EGF (Gulliford et al., 1997, Oncogene, 15:2219-2223). Here we use isoform-specific EGFR and ErbB2 antibodies to show that the duration of EGFR signalling induced by a single TGFalpha exposure is less than that induced by equimolar EGF. The protein trafficking inhibitor brefeldin A (BFA) reduces the duration of EGF signalling to an extent similar to that seen with TGFalpha alone; the effects of TGFalpha and BFA on EGFR degradation are opposite, however, with TGFalpha sparing EGFR from downregulation but BFA accelerating EGF-dependent receptor loss. This suggests that BFA blocks EGFR recycling and thus shortens EGF-dependent receptor signalling, whereas TGFalpha shortens receptor signalling and thus blocks EGFR downregulation. Consistent with this, repeated application of TGFalpha is accompanied by prolonged EGFR expression and signalling, whereas similar application of EGF causes receptor downregulation and signal termination. These findings indicate that constitutive secretion of pH-labile TGFalpha may perpetuate EGFR signalling by permitting early oligomer dissociation and dephosphorylation within acidic endosomes, thereby extinguishing a phosphotyrosine-based downregulation signal and creating an irreversible autocrine growth loop.

  2. Activation of NMDA receptors reduces metabotropic glutamate receptor-induced long-term depression in the nucleus accumbens via a CaMKII-dependent mechanism.

    PubMed

    Huang, Chiung-Chun; Hsu, Kuei-Sen

    2012-12-01

    Glutamate is the major excitatory neurotransmitter in the brain and exerts its actions through two distinct types of receptors, ionotropic and metabotropic glutamate receptors (mGluR). Although functional interplay between ionotropic N-methyl-d-aspartate receptors (NMDAR) and mGluR has been convincingly demonstrated in native and recombinant systems, the mechanism by which NMDAR activation leads to modulation of mGluR function has yet to be elucidated. Using whole-cell patch-clamp recordings in mouse nucleus accumbens (NAc) slices, we found that tetanic stimulation (TS) of excitatory afferents with a naturally occurring frequency (10 min at 13 Hz) reliably induces a mGluR1/5-dependent long-term depression (mGluR1/5-LTD) of excitatory synaptic transmission. Blockade of NMDAR during but not after TS showed enhanced mGluR1/5-LTD induction, which is associated with its antagonism of TS-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation. The ability of NMDAR antagonists to promote mGluR1/5-LTD induction was mimicked by a selective CaMKII inhibitor KN-62. However, the induction of mGluR1/5-LTD by bath-applied agonist (S)-3,5-dihydrophenylglycine was not affected by NMDAR blockade. We also observed that NMDAR or CaMKII blockade during TS significantly blunted TS-induced increased serine/threonine phosphorylation of the scaffold protein Homer1b/c and resulted in an increased interaction of mGluR5 with the Homer1b/c. These results indicate that synaptically released glutamate during TS of excitatory afferents can activate both NMDAR and mGluR1/5 in NAc neurons concomitantly and that activation of NMDAR may stimulate CaMKII-mediated phosphorylation of Homer1b/c and impair the interaction between mGluR5 and Homer1b/c, thereby attenuating mGluR1/5-LTD induction. This study provides a novel molecular mechanism by which NMDAR could regulate mGluR5 function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Characterization of mGluR5R, a novel, metabotropic glutamate receptor 5-related gene.

    PubMed

    Bates, Brian; Xie, Yuhong; Taylor, Noel; Johnson, Jeremy; Wu, Leeying; Kwak, Seung; Blatcher, Maria; Gulukota, Kamalakar; Paulsen, Janet E

    2002-12-30

    We report here the isolation of a novel gene termed mGluR5R (mGluR5-related). The N-terminus of mGluR5R is highly similar to the extracellular domain of metabotropic glutamate receptor 5 (mGluR5) whereas the C-terminus bears similarity to the testis-specific gene, RNF18. mGluR5R is expressed in the human CNS in a coordinate fashion with mGluR5. Although the sequence suggests that mGluR5R may be a secreted glutamate binding protein, we found that when expressed in HEK293 cells it was membrane associated and not secreted. Furthermore, mGluR5R was incapable of binding the metabotropic glutamate receptor class I selective agonist, quisqualate. Although mGluR5R could not form disulfide-mediated covalent homodimers, it was able to form a homomeric complex, presumably through noncovalent interactions. mGluR5R also formed noncovalent heteromeric associations with an engineered construct of the extracellular domain of mGluR5 as well as with full-length mGluR5 and mGluR1alpha. The ability of mGluR5R to associate with mGluR1alpha and mGluR5 suggests that it may be a modulator of class I metabotropic glutamate receptor function.

  4. MiR-132 regulates osteogenic differentiation via downregulating Sirtuin1 in a peroxisome proliferator-activated receptor β/δ–dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Kai; Qu, Bo; Liao, Dongfa

    MicroRNAs (miRNAs) play significant roles in multiple diseases by regulating the expression of their target genes. Type 2 diabetes mellitus (T2DM) is a chronic endocrine and metabolic disease with complex mechanisms. T2DM can result in diabetic osteoporosis (DO), which is characterized by bone loss, decreased bone mineral density and increased bone fractures. The promotion of osteogenic differentiation of osteoblasts is an effective way to treat osteoporosis. In the present study, high glucose (HG) and free fatty acids (FFA) were employed to mimic T2DM in MC3T3-E1 cells. To induce osteogenic differentiation, MC3T3-E1 cells were cultured in osteogenic medium. The results showedmore » that osteogenic differentiation was significantly suppressed by HG and FFA. We found that miR-132 expression was significantly upregulated and much higher in HG-FFA–induced cells than other selected miRNAs, indicating that miR-132 might play an important role in DO. Furthermore, overexpression of miR-132 markedly inhibited the expression of key markers of osteogenic differentiation and alkaline phosphatase (ALP) activity. Reciprocally, inhibition of miR-132 restored osteogenic differentiation, even under treatment with HG-FFA. We also showed that Sirtuin 1 (Sirt1) was one of the target genes of miR-132, whose expression was controlled by miR-132. Ectopic expression of Sirt1 reversed the decrease in osteogenic differentiation caused by miR-132 and HG-FFA. These results demonstrated the direct role of miR-132 in suppressing osteogenic differentiation through downregulating Sirt1. Moreover, we demonstrated that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) was a downstream molecule of Sirt1, and its knockout by PPARβ/δ siRNA significantly abolished the promotive effects of Sirt1 on osteogenic differentiation, indicating that Sirt1 functioned in a PPARβ/δ–dependent manner. Taken together, we provide crucial evidence that miR-132 plays a key role in regulating

  5. Increased tumor necrosis factor receptor 1 expression in human colorectal adenomas

    PubMed Central

    Hosono, Kunihiro; Yamada, Eiji; Endo, Hiroki; Takahashi, Hirokazu; Inamori, Masahiko; Hippo, Yoshitaka; Nakagama, Hitoshi; Nakajima, Atsushi

    2012-01-01

    AIM: To determine the expression statuses of tumor necrosis factor (TNF)-α, its receptors (TNF-R) and downstream effector molecules in human colorectal adenomas. METHODS: We measured the serum concentrations of TNF-α and its receptors in 62 colorectal adenoma patients and 34 healthy controls. The protein expression of TNF-α, TNF-R1, TNF-R2 and downstream signals of the TNF receptors, such as c-Jun N-terminal kinase (JNK), nuclear factor-κ B and caspase-3, were also investigated in human colorectal adenomas and in normal colorectal mucosal tissues by immunohistochemistry. Immunofluorescence confocal microscopy was used to investigate the consistency of expression of TNF-R1 and phospho-JNK (p-JNK). RESULTS: The serum levels of soluble TNF-R1 (sTNF-R1) in adenoma patients were significantly higher than in the control group (3.67 ± 0.86 ng/mL vs 1.57 ± 0.72 ng/mL, P < 0.001). Receiver operating characteristic analysis revealed the high diagnostic sensitivity of TNF-R1 measurements (AUC was 0.928) for the diagnosis of adenoma, and the best cut-off level of TNF-R1 was 2.08 ng/mL, with a sensitivity of 93.4% and a specificity of 82.4%. There were no significant differences in the serum levels of TNF-α or sTNF-R2 between the two groups. Immunohistochemistry showed high levels of TNF-R1 and p-JNK expression in the epithelial cells of adenomas. Furthermore, a high incidence of co-localization of TNF-R1 and p-JNK was identified in adenoma tissue. CONCLUSION: TNF-R1 may be a promising biomarker of colorectal adenoma, and it may also play an important role in the very early stages of colorectal carcinogenesis. PMID:23082052

  6. Ethanol produces corticotropin releasing factor receptor-dependent enhancement of spontaneous glutamatergic transmission in the mouse central amygdala

    PubMed Central

    Silberman, Yuval; Fetterly, Tracy L.; Awad, Elias K.; Milano, Elana J.; Usdin, Ted B.; Winder, Danny G.

    2015-01-01

    Background Ethanol modulation of Central Amygdala (CeA) neurocircuitry plays a key role in the development of alcoholism via activation of the corticotropin releasing factor (CRF) receptor system. Previous work has predominantly focused on ethanol/CRF interactions on the CeA GABA circuitry; however our lab recently showed that CRF enhances CeA glutamatergic transmission. Therefore, this study sought to determine if ethanol modulates CeA glutamate transmission via activation of CRF signaling. Methods The effects of ethanol on spontaneous excitatory postsynaptic currents (sEPSCs) and basal resting membrane potentials were examined via standard electrophysiology methods in adult male C57BL/6J mice. Local ablation of CeA CRF neurons (CRFCeAhDTR) was achieved by targeting the human diphtheria toxin receptor (hDTR) to CeA CRF neurons with an adeno-associated virus. Ablation was quantified post-hoc with confocal microscopy. Genetic targeting of the diphtheria toxin active subunit to CRF neurons (CRFDTA mice) ablated CRF neurons throughout the CNS, as assessed by qRT-PCR quantification of CRF mRNA. Results Acute bath application of ethanol significantly increased sEPSC frequency in a concentration dependent manner in CeA neurons, and this effect was blocked by pretreatment of co-applied CRF receptor 1 and CRF receptor 2 antagonists. In experiments utilizing a CRF-tomato reporter mouse, ethanol did not significantly alter the basal membrane potential of CeA CRF neurons. The ability of ethanol to enhance CeA sEPSC frequency was not altered in CRFCeAhDTR mice despite a ~78% reduction in CeA CRF cell counts. The ability of ethanol to enhance CeA sEPSC frequency was also not altered in the CRFDTA mice despite a three-fold reduction in CRF mRNA levels. Conclusion These findings demonstrate that ethanol enhances spontaneous glutamatergic transmission in the CeA via a CRF receptor dependent mechanism. Surprisingly, our data suggest that this action may not require endogenous CRF

  7. Dependence receptors: the dark side awakens.

    PubMed

    Negulescu, Ana-Maria; Mehlen, Patrick

    2018-05-18

    Transmembrane receptors are usually seen as on and off switch: when the specific ligand is bound, the receptor is on and transduces a downstream signal, while when the ligand is absent, the receptor is off. Over the last two decades several reports have argued from an alternative view where some receptors, depending on the context, will be active both in the presence and in the absence of ligand, being sort of on A and on B switch rather than on and off. These receptors have been named Dependence Receptors (DR) and they share the ability to actively trigger cell death when unbound by their respective ligands. DRs have been shown to be important guardians of tissue homeostasis. In pathological settings such as cancer, DRs are seen as tumor suppressors and a clinical trial is ongoing to assay whether these DRs can be used to provide clinical benefit by triggering cancer cell death. In this review we are reviewing this functional family of receptors and underlying their promising potential for targeted therapy against cancer. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Aryl Hydrocarbon Receptor (AhR) Deletion in Cerebellar Granule Neuron Precursors Impairs Neurogenesis

    PubMed Central

    Dever, Daniel P.; Adham, Zachariah O.; Thompson, Bryan; Genestine, Matthieu; Cherry, Jonathan; Olschowka, John A.; DiCicco-Bloom, Emanuel; Opanashuk, Lisa A.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated member of the basic-helix-loop-helix (bHLH)/PER-ARNT-SIM(PAS) transcription factor superfamily that also mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence suggests that AhR influences the development of many tissues, including the central nervous system. Our previous studies suggest that sustained AhR activation by TCDD and/or AhR deletion disrupts cerebellar granule neuron precursor (GNP) development. In the current study, to determine whether endogenous AhR controls GNP development in a cell autonomous manner, we created a GNP-specific AhR deletion mouse, AhRfx/fx/Math1CRE/+ (AhR CKO). Selective AhR deletion in GNPs produced abnormalities in proliferation and differentiation. Specifically, fewer GNPs were engaged in S-phase, as demonstrated by ~25% reductions in thymidine (in vitro) and BrdU (in vivo) incorporation. Furthermore, total granule neuron numbers in the IGL at PND21 and PND60 were diminished in AhR CKO mice compared to controls. On the other hand, differentiation was enhanced, including ~40% increase in neurite outgrowth and 50% increase in GABARα6 receptor expression in deletion mutants. Our results suggest that AhR activity plays a role in regulating granule neuron number and differentiation, possibly by coordinating this GNP developmental transition. These studies provide novel insights for understanding the normal roles of AhR signaling during cerebellar granule cell neurogenesis, and may have important implications for the effects of environmental factors in cerebellar dysgenesis. PMID:26243376

  9. Factor X/Xa elicits protective signaling responses in endothelial cells directly via PAR-2 and indirectly via endothelial protein C receptor-dependent recruitment of PAR-1.

    PubMed

    Bae, Jong-Sup; Yang, Likui; Rezaie, Alireza R

    2010-11-05

    We recently demonstrated that the Gla domain-dependent interaction of protein C with endothelial protein C receptor (EPCR) leads to dissociation of the receptor from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway. Thus, the activation of PAR-1 by either thrombin or PAR-1 agonist peptide elicited a barrier-protective response if endothelial cells were preincubated with protein C. In this study, we examined whether other vitamin K-dependent coagulation protease zymogens can modulate PAR-dependent signaling responses in endothelial cells. We discovered that the activation of both PAR-1 and PAR-2 in endothelial cells pretreated with factor FX (FX)-S195A, but not other procoagulant protease zymogens, also results in initiation of protective intracellular responses. Interestingly, similar to protein C, FX interaction with endothelial cells leads to dissociation of EPCR from caveolin-1 and recruitment of PAR-1 to a protective pathway. Further studies revealed that, FX activated by factor VIIa on tissue factor bearing endothelial cells also initiates protective signaling responses through the activation of PAR-2 independent of EPCR mobilization. All results could be recapitulated by the receptor agonist peptides to both PAR-1 and PAR-2. These results suggest that a cross-talk between EPCR and an unknown FX/FXa receptor, which does not require interaction with the Gla domain of FX, recruits PAR-1 to protective signaling pathways in endothelial cells.

  10. Alterations in GluR2 AMPA receptor phosphorylation at serine 880 following group I metabotropic glutamate receptor stimulation in the rat dorsal striatum.

    PubMed

    Ahn, Sung Min; Choe, Eun Sang

    2010-04-01

    Phosphorylation of ionotropic glutamate receptors in the brain plays a crucial role in the regulation of synaptic plasticity. In this study, we investigated the regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor phosphorylation by the stimulation of group I metabotropic glutamate receptors (mGluRs) in the dorsal striatum in vivo. The results showed that intrastriatal infusion of the group I mGluR agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG, 250 nmol), enhanced the sensitivity of GluR2 subunit in its phosphorylation at serine 880 (S880) in the dorsal striatum. This enhancement of the sensitivity of GluR2-S880 phosphorylation was reduced by blocking group I mGluRs and N-methyl-D-aspartate (NMDA) receptors. Similar reduction of the enhancement was also induced by inhibiting phospholipase C (PLC), calcium/calmodulin-dependent protein kinase (CaMK), c-Jun N-terminal kinase (JNK), and protein kinase C (PKC). Inhibition of protein phosphatase (PP) 1/2A and calcineurin (PP2B) alone enhanced GluR2-S880 phosphorylation in the dorsal striatum, whereas inhibition of these phosphatases did not further enhance the S880 phosphorylation by DHPG stimulation. In addition, inhibition of PP1/2A or PP2B also enhanced the phosphorylation of CaMKII, JNK and PKC. These data suggest that the phosphorylation of AMPA receptor GluR2 subunit at S880 is subject to the upregulation by the stimulation of group I mGluRs. Interactions among glutamate receptors, protein kinases, and PPs participate in this upregulation. (c) 2009 Wiley-Liss, Inc.

  11. Agonist-dependent phosphorylation of N-formylpeptide and activation peptide from the fifth component of C (C5a) chemoattractant receptors in differentiated HL60 cells.

    PubMed

    Tardif, M; Mery, L; Brouchon, L; Boulay, F

    1993-04-15

    Attenuation of signaling is a key step in controlling the cytotoxic potential of leukocyte responses to chemotactic factors. Antipeptide antibodies, directed against the N-formyl chemotactic peptide receptor (FPR) and the activation peptide from the fifth component of C (C5a) anaphylatoxin receptor (C5aR) of human neutrophils, were used to analyze the ability of these receptors to be phosphorylated. Our data show that, in granulocyte-like differentiated HL-60 cells, both FPR and C5aR undergo an agonist dose-dependent phosphorylation that reaches completion in less than 2 to 3 min, consistent with the rate and the dose-dependent attenuation of signaling in phagocytes. Therefore, phosphorylation might be one of the possible mechanisms involved in the desensitization process of FPR and C5aR. Addition of either C5a or the protein kinase C activator (PMA) did not appear to induce the phosphorylation of FPR in the absence of FMLP or to modulate the phosphorylation of the latter at low concentrations of agonist. In contrast, although FMLP at a saturating concentration barely stimulated the phosphorylation of unoccupied C5aR, it markedly potentiated C5aR phosphorylation in cells exposed to low concentrations of C5a. Moreover, PMA was able to induce C5aR phosphorylation in the absence of agonist, indicating that protein kinase C or protein kinase C-activated kinase(s) could be involved in the phosphorylation of C5aR. Pretreatment of cells with staurosporine, a potent but nonspecific inhibitor of protein kinase C, resulted in the partial inhibition of both FPR and C5aR phosphorylation induced by saturating concentrations of agonist, suggesting that a kinase different from protein kinase C might be mainly responsible for the phosphorylation of these chemotactic receptors.

  12. Permanent atrial fibrillation in heart failure patients as another condition with increased reverse triiodothyronine concentration.

    PubMed

    Jakowczuk, Maciej; Zalas, Dominika; Owecki, Maciej

    2016-09-01

    To fully investigate the thyroid hormonal function in patients with the most common arrhythmia - atrial fibrillation. 120 patients (aged 55-85 yrs) with symptoms of congestive heart failure exacerbation and no other concomitant disorders (inclusion criteria: normal cardiac troponin T at admission and 12 hours after, normal renal, hepatic and respiratory function; exclusion criteria: inflammatory state, history of myocardial infarction). Depending on the presence of permanent atrial fibrillation (PAF), patients were divided into two groups: PAF (34 females, 26 males) and regular sinus heart rhythm (43 females, 17 males), the groups did not differ in terms of heart rate, blood pressure, presence of overt/subclinical thyroid dysfunction, and medical therapy used. In all subjects thyroid stimulating hormone, free thyroxine, free triiodothyronine, reverse triiodothyronine were measured; echocardiography was performed. PAF group showed higher FT4 and rT3 (1.41 vs. 1.27 ng/dl, p=0.0007; 0.61 vs. 0.32 ng/ml, p<0.0001, respectively). With ROC curve analysis the biochemical thyroid related factor of the highest prognostic value for PAF occurrence (with the highest sensitivity and specificity: 77% and 72%, respectively) was rT3 with the cut-off of above 0.3 ng/ml. Also, a positive correlation between rT3 levels and left ventricular posterior wall diameter was observed (Spearman's correlation coefficient 0.33, p=0.0093). PAF is another condition where an increase in rT3 is observed. rT3 concentration above 0.3 ng/ml may be a novel biochemical sign associated with the presence of PAF in patients with chronic heart failure.

  13. Role of G protein-coupled receptors (GPCR), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), heparin-binding epidermal growth factor-like growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) in trenbolone acetate-stimulated bovine satellite cell proliferation.

    PubMed

    Thornton, K J; Kamange-Sollo, E; White, M E; Dayton, W R

    2015-09-01

    Implanting cattle with steroids significantly enhances feed efficiency, rate of gain, and muscle growth. However, the mechanisms responsible for these improvements in muscle growth have not been fully elucidated. Trenbolone acetate (TBA), a testosterone analog, has been shown to increase proliferation rate in bovine satellite cell (BSC) cultures. The classical genomic actions of testosterone have been well characterized; however, our results indicate that TBA may also initiate a quicker, nongenomic response that involves activation of G protein-coupled receptors (GPCR) resulting in activation of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) that release membrane-bound heparin-binding epidermal growth factor-like growth factor (hbEGF), which then binds to and activates the epidermal growth factor receptor (EGFR) and/or erbB2. Furthermore, the EGFR has been shown to regulate expression of the IGF-1 receptor (IGF-1R), which is well known for its role in modulating muscle growth. To determine whether this nongenomic pathway is potentially involved in TBA-stimulated BSC proliferation, we analyzed the effects of treating BSC with guanosine 5'-O-2-thiodiphosphate (GDPβS), an inhibitor of all GPCR; a MMP2 and MMP9 inhibitor (MMPI); CRM19, a specific inhibitor of hbEGF; AG1478, a specific EGFR tyrosine kinase inhibitor; AG879, a specific erbB2 kinase inhibitor; and AG1024, an IGF-1R tyrosine kinase inhibitor on TBA-stimulated proliferation rate (H-thymidine incorporation). Assays were replicated at least 9 times for each inhibitor experiment using BSC cultures obtained from at least 3 different animals. Bovine satellite cell cultures were obtained from yearling steers that had no previous exposure to androgenic or estrogenic compounds. As expected, BSC cultures treated with 10 n TBA showed ( < 0.05) increased proliferation rate when compared with control cultures. Additionally, treatment with 5 ng hbEGF/mL stimulated proliferation in BSC cultures ( < 0.05). Treatment

  14. R1507, an Anti-Insulin-Like Growth Factor-1 Receptor (IGF-1R) Antibody, and EWS/FLI-1 siRNA in Ewing's Sarcoma: Convergence at the IGF/IGFR/Akt Axis

    PubMed Central

    Rodon, Jordi; Sun, Michael; Kuenkele, Klaus-Peter; Parsons, Henrique A.; Trent, Jonathan C.; Kurzrock, Razelle

    2011-01-01

    A subset of patients with Ewing's sarcoma responds to anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies. Mechanisms of sensitivity and resistance are unknown. We investigated whether an anti-IGF-1R antibody acts via a pathway that could also be suppressed by small interfering (si) RNA against the EWS/FLI-1 fusion protein, the hallmark of Ewing's sarcoma. The growth of two Ewing's sarcoma cell lines (TC-32 and TC-71) was inhibited by the fully human anti-IGF-1R antibody, R1507 (clonogenic and MTT assays). TC-32 and TC-71 cells express high levels of IGF-2, while RD-ES and A4573 Ewing's cell lines, which were less responsive to R1507 in our assays, express low or undetectable IGF-2, respectively. TC-71 cells also expressed high levels of IGF-1R, and R1507 decreased steady-state levels of this receptor by internalization/degradation, an effect which was associated with a decrease in p-IGF-1R, p-IRS-1, and p-Akt. EWS/FLI-1 siRNA also decreased p-Akt, due to its ability to increase IGF-BP3 levels and subsequently decrease IGF-1 and IGF-2 levels, thus inhibiting signaling through p-IGF-1R. This inhibition correlated with growth suppression and apoptosis. The attenuation of Akt activation was confirmed in TC-71 and HEK-293 (human embryonic kidney) cells by transfecting them with IGF-1R siRNA. We conclude that antibodies and siRNA to IGF-1R, as well as siRNA to EWS/FLI-1, act via intersecting IGF/IGF-1R signals that suppress a common point in this pathway, namely the phosphorylation of Akt. PMID:22022506

  15. Adenosine A2A receptors are required for glutamate mGluR5- and dopamine D1 receptor-evoked ERK1/2 phosphorylation in rat hippocampus: involvement of NMDA receptor.

    PubMed

    Krania, Paraskevi; Dimou, Eleni; Bantouna, Maria; Kouvaros, Stylianos; Tsiamaki, Eirini; Papatheodoropoulos, Costas; Sarantis, Konstantinos; Angelatou, Fevronia

    2018-05-01

    Interaction between mGluR5 and NMDA receptors (NMDAR) is vital for synaptic plasticity and cognition. We recently demonstrated that stimulation of mGluR5 enhances NMDAR responses in hippocampus by phosphorylating NR2B(Tyr1472) subunit, and this reaction was enabled by adenosine A 2A receptors (A 2A R) (J Neurochem, 135, 2015, 714). In this study, by using in vitro phosphorylation and western blot analysis in hippocampal slices of male Wistar rats, we show that mGluR5 stimulation or mGluR5/NMDARs co-stimulation synergistically activate ERK1/2 signaling leading to c-Fos expression. Interestingly, both reactions are under the permissive control of endogenous adenosine acting through A 2A Rs. Moreover, mGluR5-mediated ERK1/2 phosphorylation depends on NMDAR, which however exhibits a metabotropic way of function, since no ion influx through its ion channel is required. Furthermore, our results demonstrate that mGluR5 and mGluR5/NMDAR-evoked ERK1/2 activation correlates well with the mGluR5/NMDAR-evoked NR2B(Tyr1472) phosphorylation, since both phenomena coincide temporally, are Src dependent, and are both enabled by A 2A Rs. This indicates a functional involvement of NR2B(Tyr1472) phosphorylation in the ERK1/2 activation. Our biochemical results are supported by electrophysiological data showing that in CA1 region of hippocampus, the theta burst stimulation (TBS)-induced long-term potentiation coincides temporally with an increase in ERK1/2 activation and both phenomena are dependent on the tripartite A 2A , mGlu5, and NMDARs. Furthermore, we show that the dopamine D1 receptors evoked ERK1/2 activation as well as the NR2B(Tyr1472) phosphorylation are also regulated by endogenous adenosine and A 2A Rs. In conclusion, our results highlight the A 2A Rs as a crucial regulator not only for NMDAR responses, but also for regulating ERK1/2 signaling and its downstream pathways, leading to gene expression, synaptic plasticity, and memory consolidation. © 2017 International

  16. PLANT HOMOLOGOUS TO PARAFIBROMIN is a component of the PAF1 complex and assists in regulating expression of genes within H3K27ME3-enriched chromatin.

    PubMed

    Park, Sunchung; Oh, Sookyung; Ek-Ramos, Julissa; van Nocker, Steven

    2010-06-01

    The human Paf1 complex (Paf1C) subunit Parafibromin assists in mediating output from the Wingless/Int signaling pathway, and dysfunction of the encoding gene HRPT2 conditions specific cancer-related disease phenotypes. Here, we characterize the organismal and molecular roles of PLANT HOMOLOGOUS TO PARAFIBROMIN (PHP), the Arabidopsis (Arabidopsis thaliana) homolog of Parafibromin. PHP resides in an approximately 670-kD protein complex in nuclear extracts, and physically interacts with other known Paf1C-related proteins in vivo. In striking contrast to the developmental pleiotropy conferred by mutation in other plant Paf1C component genes in Arabidopsis, loss of PHP specifically conditioned accelerated phase transition from vegetative growth to flowering and resulted in misregulation of a very limited subset of genes that included the flowering repressor FLOWERING LOCUS C. Those genes targeted by PHP were distinguished from the bulk of Arabidopsis genes and other plant Paf1C targets by strong enrichment for trimethylation of lysine-27 on histone H3 (H3K27me3) within chromatin. These findings suggest that PHP is a component of a plant Paf1C protein in Arabidopsis, but has a more specialized role in modulating expression of a subset of Paf1C targets.

  17. GABA receptors, alcohol dependence and criminal behavior.

    PubMed

    Terranova, Claudio; Tucci, Marianna; Sartore, Daniela; Cavarzeran, Fabiano; Di Pietra, Laura; Barzon, Luisa; Palù, Giorgio; Ferrara, Santo D

    2013-09-01

    The aim of this study was to analyze the connection between alcohol dependence and criminal behavior by an integrated genetic-environmental approach. The research, structured as a case-control study, examined 186 alcohol-dependent males; group 1 (N = 47 convicted subjects) was compared with group 2 (N = 139 no previous criminal records). Genetic results were innovative, highlighting differences in genotype distribution (p = 0.0067) in group 1 for single-nucleotide polymorphism rs 3780428, located in the intronic region of subunit 2 of the GABA B receptor gene (GABBR2). Some environmental factors (e.g., grade repetition) were associated with criminal behavior; others (e.g., attendance at Alcoholics Anonymous) were inversely related to convictions. The concomitant presence of the genetic and environmental factors found to be associated with the condition of alcohol-dependent inmate showed a 4-fold increase in the risk of antisocial behavior. The results need to be replicated on a larger population to develop new preventive and therapeutic proposals. © 2013 American Academy of Forensic Sciences.

  18. Co-Requirement of PICK1 Binding and PKC Phosphorylation for Stable Surface Expression of the Metabotropic Glutamate Receptor mGluR7

    PubMed Central

    Suh, Young Ho; Pelkey, Kenneth A.; Lavezzari, Gabriela; Roche, Paul A.; Huganir, Richard L.; McBain, Chris J.; Roche, Katherine W.

    2008-01-01

    SUMMARY The presynaptic metabotropic glutamate receptor (mGluR) mGluR7 modulates excitatory neurotransmission by regulating neurotransmitter release, and plays a critical role in certain forms of synaptic plasticity. Although the dynamic regulation of mGluR7 surface expression governs a novel form of metaplasticity in the hippocampus, little is known about the molecular mechanisms regulating mGluR7 trafficking. We now show that mGluR7 surface expression is stabilized by both PKC phosphorylation and by receptor binding to the PDZ domain-containing protein PICK1. Phosphorylation of mGluR7 on serine 862 (S862) inhibits CaM binding thereby increasing mGluR7 surface expression and receptor binding to PICK1. Furthermore, in mice lacking PICK1, PKC-dependent increases in mGluR7 phosphorylation and surface expression are diminished, and mGluR7-dependent plasticity at mossy fiber-interneuron hippocampal synapses is impaired. These data support a model in which PICK1 binding and PKC phosphorylation act together to stabilize mGluR7 on the cell surface in vivo. PMID:18549785

  19. Modulation of tumor necrosis factor (TNF) receptor expression during monocytic differentiation by glucocorticoids.

    PubMed

    Goppelt-Struebe, M; Reiser, C O; Schneider, N; Grell, M

    1996-10-01

    Regulation of tumor necrosis factor receptors by glucocorticoids was investigated during phorbol ester-induced monocytic differentiation. As model system the human monocytic cell lines U937 and THP-1, which express both types of TNF receptors (TNF-R60 and TNF-R80), were differentiated with tetradecanoyl phorbol-13-acetate (TPA, 5 x 10(-9) M) in the presence or absence of dexamethasone (10(-9) - 10(-6) M). Expression of TNF receptors was determined at the mRNA level by Northern blot analysis and at the protein level by FACS analysis. During differentiation, TNF-R60 mRNA was down-regulated, whereas TNF-R80 mRNA levels were increased. Dexamethasone had no effect on TNF-R60 mRNA expression but attenuated TNF-R80 mRNA expression in both cell lines. Cell surface expression of TNF-R60 protein remained essentially unchanged during differentiation of THP-1 cells, whereas a rapid down-regulation of TNF-R80 was observed that was followed by a slow recovery. Surface expression of TNF-R80 was not affected by dexamethasone, whereas TNF-R60 expression was reduced by about 25%. These results indicate differential regulation of the two types of TNF receptors at the mRNA and protein level during monocytic differentiation. Glucocorticoids interfered with mRNA expression of TNF-R80 and protein expression of TNF-R60, but the rather limited effect leaves the question of its functional relevance open. In contrast to other cytokine systems, TNF receptors do not appear to be major targets of glucocorticoid action.

  20. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  1. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes.

    PubMed

    Kotenko, S V; Izotova, L S; Mirochnitchenko, O V; Esterova, E; Dickensheets, H; Donnelly, R P; Pestka, S

    2001-01-26

    Interleukin-10 (IL-10)-related T cell-derived inducible factor (IL-TIF; provisionally designated IL-22) is a cytokine with limited homology to IL-10. We report here the identification of a functional IL-TIF receptor complex that consists of two receptor chains, the orphan CRF2-9 and IL-10R2, the second chain of the IL-10 receptor complex. Expression of the CRF2-9 chain in monkey COS cells renders them sensitive to IL-TIF. However, in hamster cells both chains, CRF2-9 and IL-10R2, must be expressed to assemble the functional IL-TIF receptor complex. The CRF2-9 chain (or the IL-TIF-R1 chain) is responsible for Stat recruitment. Substitution of the CRF2-9 intracellular domain with the IFN-gammaR1 intracellular domain changes the pattern of IL-TIF-induced Stat activation. The CRF2-9 gene is expressed in normal liver and kidney, suggesting a possible role for IL-TIF in regulating gene expression in these tissues. Each chain, CRF2-9 and IL-10R2, is capable of binding IL-TIF independently and can be cross-linked to the radiolabeled IL-TIF. However, binding of IL-TIF to the receptor complex is greater than binding to either receptor chain alone. Sharing of the common IL-10R2 chain between the IL-10 and IL-TIF receptor complexes is the first such case for receptor complexes with chains belonging to the class II cytokine receptor family, establishing a novel paradigm for IL-10-related ligands similar to the shared use of the gamma common chain (gamma(c)) by several cytokines, including IL-2, IL-4, IL-7, IL-9, and IL-15.

  2. Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice

    PubMed Central

    Inoue, Masashi; Glendinning, John I.; Theodorides, Maria L.; Harkness, Sarah; Li, Xia; Bosak, Natalia; Beauchamp, Gary K.; Bachmanov, Alexander A.

    2008-01-01

    The Tas1r3 gene encodes the T1R3 receptor protein, which is involved in sweet taste transduction. To characterize ligand specificity of the T1R3 receptor and the genetic architecture of sweet taste responsiveness, we analyzed taste responses of 129.B6-Tas1r3 congenic mice to a variety of chemically diverse sweeteners and glucose polymers with three different measures: consumption in 48-h two-bottle preference tests, initial licking responses, and responses of the chorda tympani nerve. The results were generally consistent across the three measures. Allelic variation of the Tas1r3 gene influenced taste responsiveness to nonnutritive sweeteners (saccharin, acesulfame-K, sucralose, SC-45647), sugars (sucrose, maltose, glucose, fructose), sugar alcohols (erythritol, sorbitol), and some amino acids (d-tryptophan, d-phenylalanine, l-proline). Tas1r3 genotype did not affect taste responses to several sweet-tasting amino acids (l-glutamine, l-threonine, l-alanine, glycine), glucose polymers (Polycose, maltooligosaccharide), and nonsweet NaCl, HCl, quinine, monosodium glutamate, and inosine 5′-monophosphate. Thus Tas1r3 polymorphisms affect taste responses to many nutritive and nonnutritive sweeteners (all of which must interact with a taste receptor involving T1R3), but not to all carbohydrates and amino acids. In addition, we found that the genetic architecture of sweet taste responsiveness changes depending on the measure of taste response and the intensity of the sweet taste stimulus. Variation in the T1R3 receptor influenced peripheral taste responsiveness over a wide range of sweetener concentrations, but behavioral responses to higher concentrations of some sweeteners increasingly depended on mechanisms that could override input from the peripheral taste system. PMID:17911381

  3. Dependence of purinergic P2X receptor activity on ectodomain structure.

    PubMed

    He, Mu-Lan; Zemkova, Hana; Stojilkovic, Stanko S

    2003-03-21

    Purinergic receptors (P2XRs) activate and desensitize in response to the binding of extracellular nucleotides in a receptor- and ligand-specific manner, but the structural bases of their ligand preferences and channel kinetics have been incompletely characterized. Here we tested the hypothesis that affinity of agonists for binding domain accounts for a ligand-specific desensitization pattern. We generated chimeras using receptors with variable sensitivity to ATP in order: P2X(4)R > P2X(2a)R = P2X(2b)R P2X(7)R. Chimeras having the ectodomain Ile(66)-Tyr(310) sequence of P2X(2)R and Val(61)-Phe(313) sequence of P2X(7)R in the backbone of P2X(4)R were expressed but were non-functioning channels. P2X(2a) + X(4)R and P2X(2b) + X(4)R chimeras having the Val(66)-Tyr(315) ectodomain sequence of P2X(4)R in the backbones of P2X(2a)R and P2X(2b)R were functional and exhibited increased sensitivity to ligands as compared with both parental receptors. These chimeras also desensitized faster than parental receptors and in a ligand-nonspecific manner. However, like parental P2X(2b)R and P2X(2a)R, chimeric P2X(2b) + X(4)R desensitized more rapidly than P2X(2a) + X(4)R, and the rate of desensitization of P2X(2a)+X(4)R increased by substituting its Arg(371)-Pro(376) intracellular C-terminal sequence with the Glu(376)-Gly(381) sequence of P2X(4)R. These results indicate the relevance of interaction between the ectodomain and flanking regions around the transmembrane domains on ligand potency and receptor activation. Furthermore, the ligand potency positively correlates with the rate of receptor desensitization but does not affect the C-terminal-specific pattern of desensitization.

  4. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    PubMed

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  5. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias

    PubMed Central

    Shochat, Chen; Tal, Noa; Bandapalli, Obul R.; Palmi, Chiara; Ganmore, Ithamar; te Kronnie, Geertruy; Cario, Gunnar; Cazzaniga, Giovanni; Kulozik, Andreas E.; Stanulla, Martin; Schrappe, Martin; Biondi, Andrea; Basso, Giuseppe; Bercovich, Dani; Muckenthaler, Martina U.

    2011-01-01

    Interleukin-7 receptor α (IL7R) is required for normal lymphoid development. Loss-of-function mutations in this gene cause autosomal recessive severe combined immune deficiency. Here, we describe somatic gain-of-function mutations in IL7R in pediatric B and T acute lymphoblastic leukemias. The mutations cause either a serine-to-cysteine substitution at amino acid 185 in the extracellular domain (4 patients) or in-frame insertions and deletions in the transmembrane domain (35 patients). In B cell precursor leukemias, the mutations were associated with the aberrant expression of cytokine receptor-like factor 2 (CRLF2), and the mutant IL-7R proteins formed a functional receptor with CRLF2 for thymic stromal lymphopoietin (TSLP). Biochemical and functional assays reveal that these IL7R mutations are activating mutations conferring cytokine-independent growth of progenitor lymphoid cells. A cysteine, included in all but three of the mutated IL-7R alleles, is essential for the constitutive activation of the receptor. This is the first demonstration of gain-of-function mutations of IL7R. Our current and recent observations of mutations in IL7R and CRLF2, respectively suggest that the addition of cysteine to the juxtamembranous domains is a general mechanism for mutational activation of type I cytokine receptors in leukemia. PMID:21536738

  6. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    PubMed

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  7. Mg2+ activates the ryanodine receptor type 2 (RyR2) at intermediate Ca2+ concentrations.

    PubMed

    Chugun, Akihito; Sato, Osamu; Takeshima, Hiroshi; Ogawa, Yasuo

    2007-01-01

    To clarify whether activity of the ryanodine receptor type 2 (RyR2) is reduced in the sarcoplasmic reticulum (SR) of cardiac muscle, as is the case with the ryanodine receptor type 1 (RyR1), Ca(2+)-dependent [(3)H]ryanodine binding, a biochemical measure of Ca(2+)-induced Ca(2+) release (CICR), was determined using SR vesicle fractions isolated from rabbit and rat cardiac muscles. In the absence of an adenine nucleotide or caffeine, the rat SR showed a complicated Ca(2+) dependence, instead of the well-documented biphasic dependence of the rabbit SR. In the rat SR, [(3)H]ryanodine binding initially increased as [Ca(2+)] increased, with a plateau in the range of 10-100 microM Ca(2+), and thereafter further increased to an apparent peak around 1 mM Ca(2+), followed by a decrease. In the presence of these modulators, this complicated dependence prevailed, irrespective of the source. Addition of 0.3-1 mM Mg(2+) unexpectedly increased the binding two- to threefold and enhanced the affinity for [(3)H]ryanodine at 10-100 microM Ca(2+), resulting in the well-known biphasic dependence. In other words, the partial suppression of RyR2 is relieved by Mg(2+). Ca(2+) could be a substitute for Mg(2+). Mg(2+) also amplifies the responses of RyR2 to inhibitory and stimulatory modulators. This stimulating effect of Mg(2+) on RyR2 is entirely new, and is referred to as the third effect, in addition to the well-known dual inhibitory effects. This effect is critical to describe the role of RyR2 in excitation-contraction coupling of cardiac muscle, in view of the intracellular Mg(2+) concentration.

  8. Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice.

    PubMed

    Li, Lijun; Byrd, Marcus; Doh, Kwame; Dixon, Patrice D; Lee, Hwal; Tiwari, Swasti; Ecelbarger, Carolyn M

    2016-12-01

    The major site of fructose metabolism in the kidney is the proximal tubule (PT). To test whether insulin and/or IGF1 signaling in the PT is involved in renal structural/functional responses to dietary fructose, we bred mice with dual knockout (KO) of the insulin receptor (IR) and the IGF1 receptor (IGF1R) in PT by Cre-lox recombination, using a γ-glutamyl transferase promoter. KO mice had slightly (~10%) reduced body and kidney weights, as well as, a reduction in mean protein-to-DNA ratio in kidney cortex suggesting smaller cell size. Under control diet, IR and IGF1R protein band densities were 30-50% (P < 0.05) lower than WT, and the relative difference was greater in male animals. Male, but not female KO, also had significantly reduced band densities for Akt (protein kinase B), phosphorylated Akt T308 and IR Y 1162/1163 A high-fructose diet (1-month) led to a significant increase in kidney weight in WT males (12%), but not in KO males or in either genotype of female mice. Kidney enlargement in the WT males was accompanied by a small, insignificant fall in protein-to-DNA ratio, supporting hyperplasia rather than hypertrophy. Fructose feeding of male WT mice led to significantly higher sodium bicarbonate exchanger (NBCe1), sodium hydrogen exchanger (NHE3), sodium phosphate co-transporter (NaPi-2), and transforming growth factor-β (TGF-β) abundances, as compared to male KO, suggesting elevated transport capacity and an early feature of fibrosis may have accompanied the renal enlargement. Overall, IR and/or IGF1R appear to have a role in PT cell size and enlargement in response to high-fructose diet. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Selective regulation of clathrin-mediated epidermal growth factor receptor signaling and endocytosis by phospholipase C and calcium

    PubMed Central

    Delos Santos, Ralph Christian; Bautista, Stephen; Lucarelli, Stefanie; Bone, Leslie N.; Dayam, Roya M.; Abousawan, John; Botelho, Roberto J.; Antonescu, Costin N.

    2017-01-01

    Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca2+, or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca2+- and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes. PMID:28814502

  10. Insulin-like Growth Factor (IGF) Signaling Requires αvβ3-IGF1-IGF Type 1 Receptor (IGF1R) Ternary Complex Formation in Anchorage Independence, and the Complex Formation Does Not Require IGF1R and Src Activation

    PubMed Central

    Fujita, Masaaki; Takada, Yoko K.; Takada, Yoshikazu

    2013-01-01

    Integrin αvβ3 plays a role in insulin-like growth factor 1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk) in non-transformed cells in anchorage-dependent conditions. We reported previously that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation in these conditions. The integrin-binding defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, whereas it still binds to IGF1R. We studied if IGF1 can induce signaling in anchorage-independent conditions in transformed Chinese hamster ovary cells that express αvβ3 (β3-CHO) cells. Here we describe that IGF1 signals were more clearly detectable in anchorage-independent conditions (polyHEMA-coated plates) than in anchorage-dependent conditions. This suggests that IGF signaling is masked by signals from cell-matrix interaction in anchorage-dependent conditions. IGF signaling required αvβ3 expression, and R36E/R37E was defective in inducing signals in polyHEMA-coated plates. These results suggest that αvβ3-IGF1 interaction, not αvβ3-extracellular matrix interaction, is essential for IGF signaling. Inhibitors of IGF1R, Src, AKT, and ERK1/2 did not suppress αvβ3-IGF-IGF1R ternary complex formation, suggesting that activation of these kinases are not required for ternary complex formation. Also, mutations of the β3 cytoplasmic tail (Y747F and Y759F) that block β3 tyrosine phosphorylation did not affect IGF1R phosphorylation or AKT activation. We propose a model in which IGF1 binding to IGF1R induces recruitment of integrin αvβ3 to the IGF-IGF1R complex and then β3 and IGF1R are phosphorylated. It is likely that αvβ3 should be together with the IGF1-IGF1R complex for triggering IGF signaling. PMID:23243309

  11. Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors.

    PubMed

    Nishida, K; Yoshida, Y; Itoh, M; Fukada, T; Ohtani, T; Shirogane, T; Atsumi, T; Takahashi-Tezuka, M; Ishihara, K; Hibi, M; Hirano, T

    1999-03-15

    We previously found that the adapter protein Gab1 (110 kD) is tyrosine-phosphorylated and forms a complex with SHP-2 and PI-3 kinase upon stimulation through either the interleukin-3 receptor (IL-3R) or gp130, the common receptor subunit of IL-6-family cytokines. In this report, we identified another adapter molecule (100 kD) interacting with SHP-2 and PI-3 kinase in response to various stimuli. The molecule displays striking homology to Gab1 at the amino acid level; thus, we named it Gab2. It contains a PH domain, proline-rich sequences, and tyrosine residues that bind to SH2 domains when they are phosphorylated. Gab1 is phosphorylated on tyrosine upon stimulation through the thrombopoietin receptor (TPOR), stem cell factor receptor (SCFR), and T-cell and B-cell antigen receptors (TCR and BCR, respectively), in addition to IL-3R and gp130. Tyrosine phosphorylation of Gab2 was induced by stimulation through gp130, IL-2R, IL-3R, TPOR, SCFR, and TCR. Gab1 and Gab2 were shown to be substrates for SHP-2 in vitro. Overexpression of Gab2 enhanced the gp130 or Src-related kinases-mediated ERK2 activation as that of Gab1 did. These data indicate that Gab-family molecules act as adapters for transmitting various signals.

  12. Role of the epidermal growth factor receptor in signaling strain-dependent activation of the brain natriuretic peptide gene.

    PubMed

    Anderson, Hope D I; Wang, Feng; Gardner, David G

    2004-03-05

    The epidermal growth factor receptor (EGFR) and ectoshedding of heparin-binding epidermal growth factor (HBEGF), an EGFR ligand, have been linked to the development of cardiac myocyte hypertrophy. However, the precise role that the liganded EGFR plays in the transcriptional activation of the gene program that accompanies hypertrophy remains undefined. Utilizing the human (h) BNP gene as a model of hypertrophy-dependent gene activation, we show that activation of the EGFR plays an important role in mediating mechanical strain-dependent stimulation of the hBNP promoter. Strain promotes endothelin (ET) generation through NAD(P)H oxidase-dependent production of reactive oxygen species. ET in turn induces metalloproteinase-mediated cleavage of pro-HBEGF and ectoshedding of HBEGF, which activates the EGFR and stimulates hBNP promoter activity. HBEGF also stimulates other phenotypic markers of hypertrophy including protein synthesis and sarcomeric assembly. The antioxidant N-acetylcysteine or the NAD(P)H oxidase inhibitor, apocynin, inhibited strain-dependent activation of the ET-1 promoter, HBEGF shedding, and hBNP promoter activation. The metalloproteinase inhibitor, GM-6001, prevented the induction of HBEGF ectoshedding and the hBNP promoter response to strain, suggesting a critical role for the metalloproteinase-dependent cleavage event in signaling the strain response. These findings suggest that metalloproteinase activity as an essential step in this pathway may prove to be a relevant therapeutic target in the management of cardiac hypertrophy.

  13. Lymphotoxin β receptor activation promotes bladder cancer in a nuclear factor-κB-dependent manner.

    PubMed

    Shen, Mo; Duan, Xiuzhi; Zhou, Ping; Zhou, Wu; Wu, Xiuling; Xu, Siqi; Chen, Yuhua; Tao, Zhihua

    2015-02-01

    Bladder cancer (BCa) is the most common tumor of the urinary system. Chronic inflammation in the papillary urothelial neoplasm of low malignant potential (PUNLMP)may contribute to carcinogenesis, including that of BCa, via poorly understood mechanisms. In this study, we show that the lymphotoxin β receptor (LTβR) is upregulated in BCa via activation of the canonical and non-canonical nuclear factor-κB (NF-κB) pathways. The mRNA expression of LTβR in 81 BCa, 10 chronic cystitis and 23 healthy bladder mucosa tissues was investigated by reverse transcription-fluorescent quantitative polymerase chain reaction (RT-FQ-PCR), and protein expression was studied in 73 BCa, 30 cystitis and 15 healthy paraffin-embedded tissue sections by immunohistochemistry. Both LTβR mRNA and protein were upregulated in BCa and cystitis compared to the healthy group (P<0.05). The mRNA level of the downstream NF-κB canonical pathway p65 gene and of the non-canonical pathway RelB gene were higher in the BCa and cystitis groups compared to the healthy one. The level of phosphorylated p65 (p-p65) protein of the canonical NF-κB pathway and that of p52, a protein of the non-canonical NF-κB pathway, were also higher in the BCa and cystitis group compared to the healthy group. The levels of these proteins significantly correlated to the pathological grade, clinical stage and lymph node metastasis of BCa patients (P<0.05). In addition, there was a positive correlation between LTβR and NF-κB pathway proteins. Thus, LTβR signaling may be involved in promoting BCa through the NF-κB pathway, and which may represent the molecular link between inflammation and BCa.

  14. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  15. The epidermal growth factor receptor (EGF-R) is present on the basolateral, but not the apical, surface of enterocytes in the human gastrointestinal tract.

    PubMed Central

    Playford, R J; Hanby, A M; Gschmeissner, S; Peiffer, L P; Wright, N A; McGarrity, T

    1996-01-01

    BACKGROUND: While it is clear that luminal epidermal growth factor (EGF) stimulates repair of the damaged bowel, its significance in maintaining normal gut growth remains uncertain. If EGF is important in maintaining normal gut growth, the EGF receptor (EGF-R) should be present on the apical (luminal) surface in addition to the basolateral surface. AIMS/SUBJECTS/METHODS: This study examined the distribution of the EGF-R in the epithelium throughout the human gastro-intestinal tract using immunohistochemistry, electron microscopy, and western blotting of brush border preparations. RESULTS: Immunostaining of the oesophagus showed circumferential EGF-R positivity in the cells of the basal portions of the stratified squamous epithelium but surface cells were EGF-R negative. In the normal stomach, small intestine, and colon, immunostaining localised the receptor to the basolateral surface with the apical membranes being consistently negative. EGF-R positivity within the small intestine appeared to be almost entirely restricted to the proliferative (crypt) region. Western blotting demonstrated a 170 kDa protein in whole tissue homogenates but not in the brush border vesicle preparations. CONCLUSIONS: As the EGF-R is located only on the basolateral surfaces in the normal adult gastrointestinal tract, the major role of luminal EGF is probably to stimulate repair rather than to maintain normal gut growth. Images Figure 1 Figure 2 Figure 3 PMID:8977341

  16. Mild Hyperthermia Downregulates Receptor-dependent Neutrophil Function

    PubMed Central

    Fröhlich, Dieter; Wittmann, Sigrid; Rothe, Gregor; Sessler, Daniel I.; Vogel, Peter; Taeger, Kai

    2005-01-01

    Mild hypothermia impairs resistance to infection and, reportedly, impairs phagocytosis and oxidative killing of un-opsonized bacteria. We evaluated various functions at 33 to 41°C in neutrophils taken from volunteers. Adhesion on endothelial cells was determined using light microscopy. Adhesion molecules expression and receptors, phagocytosis, and release of reactive oxidants were assessed using flow cytometric assays. Adhesion protein CD11b expression on resting neutrophils was temperature independent. However, upregulation of CD11b with TNF-α was increased by hypothermia and decreased with hyperthermia. Neutrophil adhesion to either resting or activated endothelial cells was not temperature dependent. Bacterial uptake was inversely related to temperature, more so with E. coli than S. aureus. Temperature dependence of phagocytosis occurred only with opsonized bacteria. Hypothermia slightly increased N-Formyl-L-methionyl-L-leucyl-phenylalanine (FMLP) receptors on neutrophils: hyperthermia decreased expression, especially with TNF-α. FMLP-induced H2O2 production was inversely related to temperature, especially in the presence of TNF-α. Conversely, phorbol-13-myristate-12-acetate, an activator of protein kinase C, induced an extreme and homogenous release of reactive oxidants that increased with temperature. In contrast to non-receptor dependent phagocytosis and oxidative killing, several crucial receptor-dependent neutrophil activities show temperature-dependent regulation, with hypothermia increasing function. The temperature dependence of neutrophil function is thus more complicated than previously appreciated. PMID:15281545

  17. Role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of Dr+ Escherichia coli receptor protein Decay Accelerating Factor (DAF or CD55) by Nitric oxide

    PubMed Central

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2012-01-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr+). The epithelial invasion of Dr+ E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by down-regulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5′-untranslated region and mapped NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5′-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3′-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. The NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. PMID:23176121

  18. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism

    PubMed Central

    Zhao-Shea, Rubing; Cohen, Bruce N.; Just, Herwig; McClure-Begley, Tristan; Whiteaker, Paul; Grady, Sharon R.; Salminen, Outi; Gardner, Paul D.; Lester, Henry A.; Tapper, Andrew R.

    2010-01-01

    Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9′Ala) rendering α4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D2-receptor agonist. When challenged with the D2R agonist, quinpirole (0.5–10 mg/kg), Leu9′Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9′Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D2R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism. PMID:19720621

  19. Synergistic apoptosis in head and neck squamous cell carcinoma cells by co-inhibition of insulin-like growth factor-1 receptor signaling and compensatory signaling pathways.

    PubMed

    Axelrod, Mark J; Mendez, Rolando E; Khalil, Ashraf; Leimgruber, Stephanie S; Sharlow, Elizabeth R; Capaldo, Brian; Conaway, Mark; Gioeli, Daniel G; Weber, Michael J; Jameson, Mark J

    2015-12-01

    In head and neck squamous cell carcinoma (HNSCC), resistance to single-agent targeted therapy may be overcome by co-targeting of compensatory signaling pathways. A targeted drug screen with 120 combinations was used on 9 HNSCC cell lines. Multiple novel drug combinations demonstrated synergistic growth inhibition. Combining the insulin-like growth factor-1 receptor (IGF-1R) inhibitor, BMS754807, with either the human epidermal growth factor receptor (HER)-family inhibitor, BMS599626, or the Src-family kinase inhibitor, dasatinib, resulted in substantial synergy and growth inhibition. Depending on the cell line, these combinations induced synergistic or additive apoptosis; when synergistic apoptosis was observed, AKT phosphorylation was inhibited to a greater extent than either drug alone. Conversely, when additive apoptosis occurred, AKT phosphorylation was not reduced by the drug combination. Combined IGF-1R/HER family and IGF-1R/Src family inhibition may have therapeutic potential in HNSCC. AKT may be a node of convergence between IGF-1R signaling and pathways that compensate for IGF-1R inhibition. © 2015 Wiley Periodicals, Inc.

  20. Glucose-Sensing Receptor T1R3: A New Signaling Receptor Activated by Glucose in Pancreatic β-Cells.

    PubMed

    Kojima, Itaru; Nakagawa, Yuko; Hamano, Kunihisa; Medina, Johan; Li, Longfei; Nagasawa, Masahiro

    2015-01-01

    Subunits of the sweet taste receptors T1R2 and T1R3 are expressed in pancreatic β-cells. Compared with T1R3, mRNA expression of T1R2 is considerably lower. At the protein level, expression of T1R2 is undetectable in β-cells. Accordingly, a major component of the sweet taste-sensing receptor in β-cells may be a homodimer of T1R3 rather than a heterodimer of T1R2/T1R3. Inhibition of this receptor by gurmarin or deletion of the T1R3 gene attenuates glucose-induced insulin secretion from β-cells. Hence the T1R3 homodimer functions as a glucose-sensing receptor (GSR) in pancreatic β-cells. When GSR is activated by the T1R3 agonist sucralose, elevation of intracellular ATP concentration ([ATP]i) is observed. Sucralose increases [ATP]i even in the absence of ambient glucose, indicating that sucralose increases [ATP]i not simply by activating glucokinase, a rate-limiting enzyme in the glycolytic pathway. In addition, sucralose augments elevation of [ATP]i induced by methylsuccinate, suggesting that sucralose activates mitochondrial metabolism. Nonmetabolizable 3-O-methylglucose also increases [ATP]i and knockdown of T1R3 attenuates elevation of [ATP]i induced by high concentration of glucose. Collectively, these results indicate that the T1R3 homodimer functions as a GSR; this receptor is involved in glucose-induced insulin secretion by activating glucose metabolism probably in mitochondria.

  1. Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing.

    PubMed

    Shirazi-Beechey, Soraya P; Daly, Kristian; Al-Rammahi, Miran; Moran, Andrew W; Bravo, David

    2014-06-01

    Luminal nutrient sensing by G-protein-coupled receptors (GPCR) expressed on the apical domain of enteroendocrine cells activates intracellular pathways leading to secretion of gut hormones that control vital physiological processes such as digestion, absorption, food intake and glucose homeostasis. The taste 1 receptor (T1R) family of GPCR consists of three members: T1R1; T1R2; T1R3. Expression of T1R1, T1R2 and T1R3 at mRNA and protein levels has been demonstrated in the intestinal tissue of various species. It has been shown that T1R2-T1R3, in association with G-protein gustducin, is expressed in intestinal K and L endocrine cells, where it acts as the intestinal glucose (sweet) sensor. A number of studies have demonstrated that activation of T1R2-T1R3 by natural sugars and artificial sweeteners leads to secretion of glucagon-like peptides 1&2 (GLP-1 and GLP-2) and glucose dependent insulinotropic peptide (GIP). GLP-1 and GIP enhance insulin secretion; GLP-2 increases intestinal growth and glucose absorption. T1R1-T1R3 combination co-expressed on the apical domain of cholecystokinin (CCK) expressing cells is a luminal sensor for a number of L-amino acids; with amino acid-activation of the receptor eliciting CCK secretion. This article focuses on the role of the gut-expressed T1R1, T1R2 and T1R3 in intestinal sweet and L-amino acid sensing. The impact of exploiting T1R2-T1R3 as a nutritional target for enhancing intestinal glucose absorption and gut structural maturity in young animals is also highlighted.

  2. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary

  3. Specific Inhibitors of Platelet-Derived Growth Factor or Epidermal Growth Factor Receptor Tyrosine Kinase Reduce Pulmonary Fibrosis in Rats

    PubMed Central

    Rice, Annette B.; Moomaw, Cindy R.; Morgan, Daniel L.; Bonner, James C.

    1999-01-01

    The proliferation of myofibroblasts is a central feature of pulmonary fibrosis. In this study we have used tyrosine kinase inhibitors of the tyrphostin class to specifically block autophosphorylation of the platelet-derived growth factor receptor (PDGF-R) or epidermal growth factor receptor (EGF-R). AG1296 specifically inhibited autophosphorylation of PDGF-R and blocked PDGF-stimulated [3H]thymidine uptake by rat lung myofibroblasts in vitro. AG1478 was demonstrated as a selective blocker of EGF-R autophosphorylation and inhibited EGF-stimulated DNA synthesis in vitro. In a rat model of pulmonary fibrosis caused by intratracheal instillation of vanadium pentoxide (V2O5), intraperitoneal delivery of 50 mg/kg AG1296 or AG1478 in dimethylsulfoxide 1 hour before V2O5 instillation and again 2 days after instillation reduced the number of epithelial and mesenchymal cells incorporating bromodeoxyuridine (Brdu) by ∼50% at 3 and 6 days after instillation. V2O5 instillation increased lung hydroxyproline fivefold 15 days after instillation, and AG1296 was more than 90% effective in preventing the increase in hydroxyproline, whereas AG1478 caused a 50% to 60% decrease in V2O5-stimulated hydroxyproline accumulation. These data provide evidence that PDGF and EGF receptor ligands are potent mitogens for collagen-producing mesenchymal cells during pulmonary fibrogenesis, and targeting tyrosine kinase receptors could offer a strategy for the treatment of fibrotic lung diseases. PMID:10393853

  4. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Lowe, Edward D; Carrington, Mark; Higgins, Matthew K

    2014-12-12

    The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50° kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface.

  5. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain.

    PubMed

    Ortíz-Rentería, Miguel; Juárez-Contreras, Rebeca; González-Ramírez, Ricardo; Islas, León D; Sierra-Ramírez, Félix; Llorente, Itzel; Simon, Sidney A; Hiriart, Marcia; Rosenbaum, Tamara; Morales-Lázaro, Sara L

    2018-02-13

    The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.

  6. Role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of Dr+ Escherichia coli receptor protein decay accelerating factor (DAF or CD55) by nitric oxide.

    PubMed

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2013-02-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. © 2012 The Authors Journal compilation © 2012 FEBS.

  7. Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells.

    PubMed

    Gekle, Michael; Freudinger, Ruth; Mildenberger, Sigrid; Silbernagl, Stefan

    2002-04-01

    Epidermal growth factor (EGF) regulates cell proliferation, differentiation, and ion transport by using extracellular signal-regulated kinase (ERK)1/2 as a downstream signal. Furthermore, the EGF-receptor (EGF-R) is involved in signaling by G protein-coupled receptors, growth hormone, and cytokines by means of transactivation. It has been suggested that steroids interact with peptide hormones, in part, by rapid, potentially nongenomic, mechanisms. Previously, we have shown that aldosterone modulates Na(+)/H(+) exchange in Madin-Darby canine kidney (MDCK) cells by means of ERK1/2 in a way similar to growth factors. Here, we tested the hypothesis that aldosterone uses the EGF-R as a heterologous signal transducer in MDCK cells. Nanomolar concentrations of aldosterone induce a rapid increase in ERK1/2 phosphorylation, cellular Ca(2+) concentration, and Na(+)/H(+) exchange activity similar to increases induced by EGF. Furthermore, aldosterone induced a rapid increase in EGF-R-Tyr phosphorylation, and inhibition of EGF-R kinase abolished aldosterone-induced signaling. Inhibition of ERK1/2 phosphorylation reduced the Ca(2+) response, whereas prevention of Ca(2+) influx did not abolish ERK1/2 phosphorylation. Our data show that aldosterone uses the EGF-R-ERK1/2 signaling cascade to elicit its rapid effects in MDCK cells.

  8. Myogenic transcription factors regulate pro-metastatic miR-182.

    PubMed

    Dodd, R D; Sachdeva, M; Mito, J K; Eward, W C; Brigman, B E; Ma, Y; Dodd, L; Kim, Y; Lev, D; Kirsch, D G

    2016-04-07

    Approximately 30% of patients with soft-tissue sarcoma die from pulmonary metastases. The mechanisms that drive sarcoma metastasis are not well understood. Recently, we identified miR-182 as a driver of sarcoma metastasis in a primary mouse model of soft-tissue sarcoma. We also observed elevated miR-182 in a subset of primary human sarcomas that metastasized to the lungs. Here, we show that myogenic differentiation factors regulate miR-182 levels to contribute to metastasis in mouse models. We find that MyoD directly binds the miR-182 promoter to increase miR-182 expression. Furthermore, mechanistic studies revealed that Pax7 can promote sarcoma metastasis in vivo through MyoD-dependent regulation of pro-metastatic miR-182. Taken together, these results suggest that sarcoma metastasis can be partially controlled through Pax7/MyoD-dependent activation of miR-182 and provide insight into the role that myogenic transcription factors have in sarcoma progression.

  9. Temporal Profiling of Orexin Receptor-Arrestin-Ubiquitin Complexes Reveals Differences between Receptor Subtypes*

    PubMed Central

    Dalrymple, Matthew B.; Jaeger, Werner C.; Eidne, Karin A.; Pfleger, Kevin D. G.

    2011-01-01

    Orexin G protein-coupled receptors (OxRs) and their cognate agonists have been implicated in a number of disorders since their recent discovery, ranging from narcolepsy to formation of addictive behavior. Bioluminescence resonance energy transfer assays of agonist-occupied OxRs provided evidence for a strong dose-dependent interaction with both trafficking proteins β-arrestin 1 and 2 that required unusually high agonist concentrations compared with inositol phosphate signaling. This appears to be reflected in functional differences in potency with respect to orexin A (OxA) and OxR2-dependent ERK1/2 phosphorylation after 90 min compared with 2 min, potentially consistent with β-arrestin-mediated versus G protein-mediated signaling, respectively. Furthermore, extended bioluminescence resonance energy transfer kinetic data monitoring OxA-dependent receptor-β-arrestin and β-arrestin-ubiquitin proximity suggested subtype-specific differences in receptor trafficking, with OxR2 activation resulting in more sustained receptor-β-arrestin-ubiquitin complex formation than elicited by OxR1 activation. Enzyme-linked immunosorbent assay (ELISA) data also revealed that OxR1 underwent significantly more rapid recycling compared with OxR2. Finally, we have observed sustained OxA-dependent ERK1/2 phosphorylation in the presence of OxR2 compared with OxR1. Although both OxR subtypes could be classified as class B receptors for β-arrestin usage based on the initial strength of interaction with both β-arrestins, our temporal profiling revealed tangible differences between OxR subtypes. Consequently, OxR1 appears to fit uneasily into the commonly used β-arrestin classification scheme. More importantly, it is hoped that this improved profiling capability, enabling the subtleties of protein complex formation, stability, and duration to be assessed in live cells, will help unlock the therapeutic potential of targeting these receptors. PMID:21378163

  10. Temporal profiling of orexin receptor-arrestin-ubiquitin complexes reveals differences between receptor subtypes.

    PubMed

    Dalrymple, Matthew B; Jaeger, Werner C; Eidne, Karin A; Pfleger, Kevin D G

    2011-05-13

    Orexin G protein-coupled receptors (OxRs) and their cognate agonists have been implicated in a number of disorders since their recent discovery, ranging from narcolepsy to formation of addictive behavior. Bioluminescence resonance energy transfer assays of agonist-occupied OxRs provided evidence for a strong dose-dependent interaction with both trafficking proteins β-arrestin 1 and 2 that required unusually high agonist concentrations compared with inositol phosphate signaling. This appears to be reflected in functional differences in potency with respect to orexin A (OxA) and OxR2-dependent ERK1/2 phosphorylation after 90 min compared with 2 min, potentially consistent with β-arrestin-mediated versus G protein-mediated signaling, respectively. Furthermore, extended bioluminescence resonance energy transfer kinetic data monitoring OxA-dependent receptor-β-arrestin and β-arrestin-ubiquitin proximity suggested subtype-specific differences in receptor trafficking, with OxR2 activation resulting in more sustained receptor-β-arrestin-ubiquitin complex formation than elicited by OxR1 activation. Enzyme-linked immunosorbent assay (ELISA) data also revealed that OxR1 underwent significantly more rapid recycling compared with OxR2. Finally, we have observed sustained OxA-dependent ERK1/2 phosphorylation in the presence of OxR2 compared with OxR1. Although both OxR subtypes could be classified as class B receptors for β-arrestin usage based on the initial strength of interaction with both β-arrestins, our temporal profiling revealed tangible differences between OxR subtypes. Consequently, OxR1 appears to fit uneasily into the commonly used β-arrestin classification scheme. More importantly, it is hoped that this improved profiling capability, enabling the subtleties of protein complex formation, stability, and duration to be assessed in live cells, will help unlock the therapeutic potential of targeting these receptors.

  11. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    PubMed

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n

  12. Ginsenoside-Rg{sub 1} induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Hoi-Hin; Chan, Lai-Sheung; Poon, Po-Ying

    2015-09-15

    Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg{sub 1} (Rg{sub 1}), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg{sub 1}-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg{sub 1} could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a.more » Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3′-UTR. Intriguingly, ginsenoside-Rg{sub 1} was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg{sub 1}-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg{sub 1} could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg{sub 1,} and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy. - Highlights: • Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. • Ginsenoside-Rg{sub 1} (Rg{sub 1}) has been demonstrated as an angiogenesis-stimulating compound. • We found that Rg{sub 1} induces angiogenesis

  13. GABAA receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Cl--sensitive WNK1 kinase.

    PubMed

    Heubl, Martin; Zhang, Jinwei; Pressey, Jessica C; Al Awabdh, Sana; Renner, Marianne; Gomez-Castro, Ferran; Moutkine, Imane; Eugène, Emmanuel; Russeau, Marion; Kahle, Kristopher T; Poncer, Jean Christophe; Lévi, Sabine

    2017-11-24

    The K + -Cl - co-transporter KCC2 (SLC12A5) tunes the efficacy of GABA A receptor-mediated transmission by regulating the intraneuronal chloride concentration [Cl - ] i . KCC2 undergoes activity-dependent regulation in both physiological and pathological conditions. The regulation of KCC2 by synaptic excitation is well documented; however, whether the transporter is regulated by synaptic inhibition is unknown. Here we report a mechanism of KCC2 regulation by GABA A receptor (GABA A R)-mediated transmission in mature hippocampal neurons. Enhancing GABA A R-mediated inhibition confines KCC2 to the plasma membrane, while antagonizing inhibition reduces KCC2 surface expression by increasing the lateral diffusion and endocytosis of the transporter. This mechanism utilizes Cl - as an intracellular secondary messenger and is dependent on phosphorylation of KCC2 at threonines 906 and 1007 by the Cl - -sensing kinase WNK1. We propose this mechanism contributes to the homeostasis of synaptic inhibition by rapidly adjusting neuronal [Cl - ] i to GABA A R activity.

  14. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    PubMed

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. PPARγ suppresses the proliferation of cardiac myxoma cells through downregulation of MEF2D in a miR-122-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Youzhu; Yang, Jie; Bian, Shizhu

    2016-06-03

    Peroxisome proliferator-activated receptor gamma (PPARγ), a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of cells proliferation. However, its effects on cardiac myxoma (CM) cells and the underlying signaling mechanism is unclear. In the present study, we demonstrated that the level of PPARγ is inversely correlated with that of myocyte enhancer factor 2D (MEF2D), a biomarker of CM. We found that activation of PPARγ inhibit MEF2D expression via upregulation of miR-122, which can target the 3′-UTR of MEF2D and inhibit MEF2D expression, by directly binding to the PPRE in the miR-122 promoter region. Functional experimentsmore » further showed that miR-122-dependent downregulation of MEF2D by PPARγ suppress the proliferation of CM cells. These results suggest that PPARγ may exert its antiproliferative effects by negatively regulating the MEF2D in CM cells, which through upregulation of miR-122, and PPARγ/miR-122/MEF2D signaling pathway may be a novel target for treatment of CM. -- Highlights: •PPARγ expression is inversely correlated with MEF2D expression in CM tissues. •PPARγ downregulates MEF2D expression in CM cells. •PPARγ inhibits MEF2D expression via upregulation of miR-122. •miR-122-dependent downregulation of MEF2D by PPARγ suppresses the proliferation of CM cells.« less

  16. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  17. Calcium-Dependent Energetics of Calmodulin Domain Interactions with Regulatory Regions of the Ryanodine Receptor Type 1 (RyR1)

    PubMed Central

    Newman, Rhonda A.; Sorensen, Brenda R.; Kilpatrick, Adina M.; Shea, Madeline A.

    2014-01-01

    Calmodulin (CaM) plays a vital role in calcium homeostasis by allosterically modulating intracellular calcium channels including the homo-tetrameric human Ryanodine Receptor Type 1 (hRyR1). Apo (calcium-free) CaM activates hRyR1 while calcium-saturated CaM inhibits it. Two CaM-binding regions (residues 1975–1999 and 3614–3643) identified in each RyR1 monomer were proposed to allow CaM to bridge adjacent RyR1 subunits. We explored the distinct roles of CaM domains by using fluorescence anisotropy to determine the affinity of CaM1–148 (full-length), CaM1–80 (N-domain) and CaM76–148 (C-domain) for peptides encompassing hRyR1 residues 1975–1999 or 3614–3643. Both CaM1–148 and CaM76–148 associated in a calcium-independent manner with similar affinities for hRyR1(3614–3643)p while CaM1–80 required calcium and bound ~250-fold more weakly. Association of CaM1–148, CaM1–80 and CaM76–148 with hRyR1(1975–1999)p was much less favorable than with hRyR1(3614–3643)p; differences between the two CaM domains were smaller. Equilibrium calcium titrations monitored by steady-state fluorescence demonstrated that both hRyR1 peptides increased the calcium-binding affinity of both CaM domains. These thermodynamic properties support a prior model in which the CaM C-domain associates with RyR1(3614–3643) at low levels of calcium, positioning CaM to rapidly respond to calcium efflux. However, the affinity of the N-domain of CaM for hRyR1(1975–1999)p is insufficient to explain a model in which CaM bridges adjacent RyR1 subunits within the tetramer. This indicates that other protein factors or properties of the tertiary or quaternary structure of hRyR1 contribute to the energetics of CaM-mediated regulation. PMID:25145833

  18. Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors

    PubMed Central

    Iurlaro, Raffaella; Püschel, Franziska; León-Annicchiarico, Clara Lucía; O'Connor, Hazel; Martin, Seamus J.; Palou-Gramón, Daniel; Lucendo, Estefanía

    2017-01-01

    ABSTRACT Metabolic stress occurs frequently in tumors and in normal tissues undergoing transient ischemia. Nutrient deprivation triggers, among many potential cell death-inducing pathways, an endoplasmic reticulum (ER) stress response with the induction of the integrated stress response transcription factor ATF4. However, how this results in cell death remains unknown. Here we show that glucose deprivation triggered ER stress and induced the unfolded protein response transcription factors ATF4 and CHOP. This was associated with the nontranscriptional accumulation of TRAIL receptor 1 (TRAIL-R1) (DR4) and with the ATF4-mediated, CHOP-independent induction of TRAIL-R2 (DR5), suggesting that cell death in this context may involve death receptor signaling. Consistent with this, the ablation of TRAIL-R1, TRAIL-R2, FADD, Bid, and caspase-8 attenuated cell death, although the downregulation of TRAIL did not, suggesting ligand-independent activation of TRAIL receptors. These data indicate that stress triggered by glucose deprivation promotes the ATF4-dependent upregulation of TRAIL-R2/DR5 and TRAIL receptor-mediated cell death. PMID:28242652

  19. Determination of the exact molecular requirements for type 1 angiotensin receptor epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy.

    PubMed

    Smith, Nicola J; Chan, Hsiu-Wen; Qian, Hongwei; Bourne, Allison M; Hannan, Katherine M; Warner, Fiona J; Ritchie, Rebecca H; Pearson, Richard B; Hannan, Ross D; Thomas, Walter G

    2011-05-01

    Major interest surrounds how angiotensin II triggers cardiac hypertrophy via epidermal growth factor receptor transactivation. G protein-mediated transduction, angiotensin type 1 receptor phosphorylation at tyrosine 319, and β-arrestin-dependent scaffolding have been suggested, yet the mechanism remains controversial. We examined these pathways in the most reductionist model of cardiomyocyte growth, neonatal ventricular cardiomyocytes. Analysis with [(32)P]-labeled cardiomyocytes, wild-type and [Y319A] angiotensin type 1 receptor immunoprecipitation and phosphorimaging, phosphopeptide analysis, and antiphosphotyrosine blotting provided no evidence for tyrosine phosphorylation at Y319 or indeed of the receptor, and mutation of Y319 (to A/F) did not prevent either epidermal growth factor receptor transactivation in COS-7 cells or cardiomyocyte hypertrophy. Instead, we demonstrate that transactivation and cardiomyocyte hypertrophy are completely abrogated by loss of G-protein coupling, whereas a constitutively active angiotensin type 1 receptor mutant was sufficient to trigger transactivation and growth in the absence of ligand. These results were supported by the failure of the β-arrestin-biased ligand SII angiotensin II to transactivate epidermal growth factor receptor or promote hypertrophy, whereas a β-arrestin-uncoupled receptor retained these properties. We also found angiotensin II-mediated cardiomyocyte hypertrophy to be attenuated by a disintegrin and metalloprotease inhibition. Thus, G-protein coupling, and not Y319 phosphorylation or β-arrestin scaffolding, is required for epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy via the angiotensin type 1 receptor.

  20. Dependence and physical exercise: Spanish validation of the Exercise Dependence Scale-Revised (EDS-R).

    PubMed

    Sicilia, Alvaro; González-Cutre, David

    2011-05-01

    The purpose of this study was to validate the Spanish version of the Exercise Dependence Scale-Revised (EDS-R). To achieve this goal, a sample of 531 sport center users was used and the psychometric properties of the EDS-R were examined through different analyses. The results supported both the first-order seven-factor model and the higher-order model (seven first-order factors and one second-order factor). The structure of both models was invariant across age. Correlations among the subscales indicated a related factor model, supporting construct validity of the scale. Alpha values over .70 (except for Reduction in Other Activities) and suitable levels of temporal stability were obtained. Users practicing more than three days per week had higher scores in all subscales than the group practicing with a frequency of three days or fewer. The findings of this study provided reliability and validity for the EDS-R in a Spanish context.

  1. miR-200a/miR-141 and miR-205 upregulation might be associated with hormone receptor status and prognosis in endometrial carcinomas.

    PubMed

    Dong, Ying; Si, Jing-Wen; Li, Wen-Ting; Liang, Li; Zhao, Jian; Zhou, Mei; Li, Dong; Li, Ting

    2015-01-01

    The aim of this study was to compare the clinicopathological significance of miR-200a/miR-141 and miR-205 expression in endometrioid carcinomas (ECs) versus nonendometrioid carcinomas (NECs) and to assess their correlation with hormone receptor status. miR-200a/miR-141 and miR-205 expression in 154 endometrial cancers was determined by qRT-PCR. The status of estrogen and progesterone receptor (ER/PR) was assessed using immunohistochemistry. miR-200a/miR-141 and miR-205 increased significantly in ECs and in NECs. The expression level of miR-200a was significantly higher in NECs than in ECs (P=0.025). Furthermore, there was a trend that NECs with worse clinicopathological variables had a higher miR-200a expression, while an inverse trend existed in ECs. miR-205 upregulation occurred frequently in NECs without lymph node metastases (P=0.030), whereas such association was not present in ECs. Interestingly, In ECs, miR-200a/miR-141 upregulation occurred frequently in the hormone receptor positive subgroups than the negative subgroups (P<0.05). Similarly, the expression level of miR-205 was higher in the hormone receptor positive subgroups and the association between miR-205 and PR reached statistical significance (P=0.024). In contrast, in NECs, a negative correlation was found between miR-200a/miR-141 and ER or PR status. Meanwhile, in ECs, miR-200a upregulation correlated with prolonged survival in the ER positive subgroup (P=0.046), whereas an inverse trend existed in the ER negative subgroup. Our findings suggest that miR-200a/miR-141 and miR-205 increased significantly in ECs and in NECs. However, they might behave differently in ECs versus NECs. miR-200a/miR-141 and miR-205 might be associated with hormone receptor status in endometrial cancer and may possess prognostic impacts.

  2. Opiate physical dependence and N-methyl-D-aspartate receptors.

    PubMed

    Noda, Yukihiro; Nabeshima, Toshitaka

    2004-10-01

    The present review focused the involvement of N-methyl-D-aspartate (NMDA) receptors in morphine physical dependence. The increased levels of extracellular glutamate, NMDA receptor zeta subunit (NR1) mRNA, NMDA receptor epsilon 1 subunit (NR2A) protein, phosphorylated Ca(2+)/calmodulin kinase II (p-CaMKII) protein, c-fos mRNA, c-Fos protein, are observed in the specific brain areas of mice and/or rats showing signs of naloxone-precipitated withdrawal. In preclinical and clinical studies, a variety of NMDA receptor antagonists and pretreatment with an antisense oligonucleotide of the NR1 have been reported to inhibit the development, expression and/or maintenance of opiate physical dependence. In contrast to data obtained in adult animals, NMDA receptor antagonists are neither effective in blocking the development of opiate dependence nor the expression of opiate withdrawal in neonatal rats. In the NMDA receptor-deficient mice, the NR2A knockout mice show the marked loss of typical withdrawal abstinence behaviors precipitated by naloxone. The rescue of NR2A protein by electroporation into the nucleus accumbens of NR2A knockout mice reverses the loss of abstinence behaviors. The activation of CaMKII and increased expression of c-Fos protein in the brain of animals with naloxone-precipitated withdrawal syndrome are prevented by NMDA receptor antagonists, whereas the increased levels of extracellular glutamate are not prevented by them. These findings indicate that glutamatergic neurotransmission at the NMDA receptor site contributes to the development, expression and maintenance of opiate dependence, and suggest that NMDA receptor antagonists may be a useful adjunct in the treatment of opiate dependence.

  3. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells.

    PubMed

    Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko

    2015-02-01

    Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer.

  4. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells

    PubMed Central

    Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko

    2015-01-01

    Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer. PMID:25692008

  5. Angiotensin II Receptor Antagonism Reduces Transforming Growth Factor Beta and Smad Signaling in Thoracic Aortic Aneurysm

    PubMed Central

    Nataatmadja, Maria; West, Jennifer; Prabowo, Sulistiana; West, Malcolm

    2013-01-01

    ABSTRACT Background The expression of transforming growth factor beta (TGF-β) and Smad3 regulates extracellular matrix homeostasis and inflammation in aortic aneurysms. The expression of Smad3 depends on signaling by angiotensin II (AngII) receptor pathways through TGF-β receptor–dependent and –independent pathways. Methods To determine the expression of AngII type 1 (AT1R) and type 2 receptors (AT2R), TGF-β, and Smad3 in thoracic aortic aneurysms, we performed immunohistochemistry testing on tissue and cultured cells derived from subjects with Marfan syndrome (MFS) and bicuspid aortic valve (BAV) malformation and from normal aortas of subjects who were organ donors. Results MFS and BAV aneurysm tissue showed enhanced accumulation of TGF-β and Smad3 in vascular smooth muscle cells (VSMCs) and in inflammatory cells in the subintimal layer and tunica media. The normal aortic wall exhibited minimal TGF-β and Smad3 staining. Cultured VSMCs from MFS and BAV samples showed nuclear Smad3 and strong cytoplasmic TGF-β expression in the cytoplasmic vesicles. In control cells, Smad3 was located mainly in the cytoplasm, and weak cytoplasmic TGF-β was distributed with a pattern similar to that of the aneurysm-derived cells. Compared to normal aorta cells, AT1R and AT2R expression was increased in both aneurysm types. Treatment of cultured VSMCs with the AT1R antagonist losartan caused both reduced TGF-β vesicle localization and nuclear expression of Smad3. Conclusions Increased TGF-β and Smad3 expression in aneurysm tissue and cultured VSMCs is consistent with aberrant TGF-β expression and the activation of Smad3 signaling. Losartan-mediated reduction in TGF-β expression and the cytoplasmic localization of Smad3 support a role for AT1R antagonism in the inhibition of aneurysm progression. PMID:23532685

  6. Regulation of subcellular localization of the Aryl Hydrocarbon Receptor (AhR)

    USGS Publications Warehouse

    Richter, Catherine A.; Tillitt, Donald E.; Hannink, Mark

    2001-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxicity of dioxin and other xenobiotics. In the absence of exogenous ligand, AhR is cytosolic. We investigated how AhR is retained in the cytosol and how dioxin induces AhR to move to the nucleus. Disruption of nuclear export of AhR by the nuclear export inhibitor leptomycin B (LMB) or by mutation of the AhR nuclear export signal resulted in nuclear accumulation of AhR in the absence of exogenous ligand. Mutation of the AhR nuclear localization signal resulted in defects in nuclear import of AhR in both the presence and the absence of exogenous ligand. Dioxin treatment caused a more rapid accumulation of AhR in the nucleus than LMB treatment. In the presence of both dioxin and LMB, nuclear accumulation of AhR was more rapid than in the presence of dioxin alone. Our results show that AhR shuttles between the nucleus and the cytosol in the absence of exogenous ligand. Binding of ligand induces an increase in the rate of nuclear import of AhR but does not eliminate nuclear export of AhR.

  7. Variable Dependence of Signaling Output on Agonist Occupancy of Ste2p, a G Protein-coupled Receptor in Yeast.

    PubMed

    Sridharan, Rajashri; Connelly, Sara M; Naider, Fred; Dumont, Mark E

    2016-11-11

    We report here on the relationship between ligand binding and signaling responses in the yeast pheromone response pathway, a well characterized G protein-coupled receptor system. Responses to agonist (α-factor) by cells expressing widely varying numbers of receptors depend primarily on fractional occupancy, not the absolute number of agonist-bound receptors. Furthermore, the concentration of competitive antagonist required to inhibit α-factor-dependent signaling is more than 10-fold higher than predicted based on the known ligand affinities. Thus, responses to a particular number of agonist-bound receptors can vary greatly, depending on whether there are unoccupied or antagonist-bound receptors present on the same cell surface. This behavior does not appear to be due to pre-coupling of receptors to G protein or to the Sst2p regulator of G protein signaling. The results are consistent with a signaling response that is determined by the integration of positive signals from agonist-occupied receptors and inhibitory signals from unoccupied receptors, where the inhibitory signals can be diminished by antagonist binding. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. CSF-1 Receptor-Dependent Colon Development, Homeostasis and Inflammatory Stress Response

    PubMed Central

    Huynh, Duy; Akçora, Dilara; Malaterre, Jordane; Chan, Chee Kai; Dai, Xu-Ming; Bertoncello, Ivan; Stanley, E. Richard; Ramsay, Robert G.

    2013-01-01

    The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) directly regulates the development of Paneth cells (PC) and influences proliferation and cell fate in the small intestine (SI). In the present study, we have examined the role of CSF-1 and the CSF-1R in the large intestine, which lacks PC, in the steady state and in response to acute inflammation induced by dextran sulfate sodium (DSS). As previously shown in mouse, immunohistochemical (IHC) analysis of CSF-1R expression showed that the receptor is baso-laterally expressed on epithelial cells of human colonic crypts, indicating that this expression pattern is shared between species. Colons from Csf1r null and Csf1op/op mice were isolated and sectioned for IHC identification of enterocytes, enteroendocrine cells, goblet cells and proliferating cells. Both Csf1r−/− and Csf1op/op mice were found to have colon defects in enterocytes and enteroendocrine cell fate, with excessive goblet cell staining and reduced cell proliferation. In addition, the gene expression profiles of the cell cycle genes, cyclinD1, c-myc, c-fos, and c-myb were suppressed in Csf1r−/− colonic crypt, compared with those of WT mice and the expression of the stem cell marker gene Lgr5 was markedly reduced. However, analysis of the proliferative responses of immortalized mouse colon epithelial cells (lines; Immorto-5 and YAMC) indicated that CSF-1R is not a major regulator of colonocyte proliferation and that its effects on proliferation are indirect. In an examination of the acute inflammatory response, Csf1r +/− male mice were protected from the adverse affects of DSS-induced colitis compared with WT mice, while Csf1r +/− female mice were significantly less protected. These data indicate that CSF-1R signaling plays an important role in colon homeostasis and stem cell gene expression but that the receptor exacerbates the response to inflammatory challenge in male mice. PMID:23451116

  9. Increased urinary excretion of platelet activating factor in mice with lupus nephritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macconi, D.; Noris, M.; Benfenati, E.

    1991-01-01

    Platelet activating factor (PAF) is present in urine from humans and experimental animals in normal conditions. Very little is known about changes in PAF urinary excretion under pathologic conditions and no data are available about the origin of PAF in the urine. In the present study we explored the possibility that immunologic renal disease is associated with an increase in PAF urinary excretion using gas chromatography-mass spectrometry technique. To clarify the renal or extrarenal origin of urinary PAF we evaluated whether exogenously administered PAF (1-(1{prime},2{prime}-{sup 3}H)alkyl) is filtered through the glomerulus and excreted in the urine. The results show that:more » (1) urine from mice with lupus nephritis in the early phase of the disease contained amounts of PAF comparable to those excreted in normal mouse urine, (2) PAF levels increased when animals started to develop high grade proteinuria, (3) after intravenous injection of ({sup 3}H) PAF In nephritic mice, a negligible amount of ({sup 3}H) ether lipid, corresponding to ({sup 3}H)1-alkyl -2-acyl-3-phosphocholine (alkyl-2-acyl-GPC), was recovered from the 24 h urine extract.« less

  10. Once-Monthly Continuous Erythropoietin Receptor Activator (C.E.R.A.) in Patients with Hemodialysis-Dependent Chronic Kidney Disease: Pooled Data from Phase III Trials.

    PubMed

    Locatelli, Francesco; Choukroun, Gabriel; Truman, Matt; Wiggenhauser, Alfons; Fliser, Danilo

    2016-04-01

    Erythropoiesis-stimulating agents and iron are commonly used in patients with chronic kidney disease with the aim of correcting anemia and maintaining stable hemoglobin levels. We analyzed pooled data from 13 studies with similar designs included in the Umbrella Continuous Erythropoietin Receptor Activator (C.E.R.A.) program to investigate the effects of continuous erythropoiesis receptor activator in clinically relevant subgroups of patients with chronic kidney disease and to determine whether the efficacy and safety outcomes demonstrated in the overall chronic kidney disease population are maintained in specific subgroups. Data from 13 Phase III trials set up with similar design were retrospectively pooled for this analysis. Patients with chronic kidney disease who had previously been receiving epoetin or darbepoetin were switched to continuous erythropoiesis receptor activator once-monthly after a 4- to 8-week screening period. Patients entered a 16-week continuous erythropoiesis receptor activator dose-titration period followed by an 8-week evaluation period. In total, 2060 patients were included in the analysis. Subgroups were defined based on: hemoglobin target range [lower (10.0-12.0 g/dL)/upper (10.5-13.0 g/dL)], gender (female/male), age (<65/≥65), baseline N-terminal pro-B-type natriuretic peptide levels (<5000/≥5000), cardiovascular risk factors (diabetes/cardiac/vascular/none). Across all subgroups analyzed, switching from shorter-acting erythropoiesis-stimulating agents to continuous erythropoiesis receptor activator once-monthly maintained stable hemoglobin concentrations in a high proportion of patients (78%), with only moderate hemoglobin fluctuations and a low number of dose changes. The safety profile across subgroups was as expected based on pre-existing risk factors; observed increases in adverse events were attributable to underlying risk factors rather than study drug. This retrospective analysis of 13 trials showed that continuous

  11. [Changes of prostaglandin D2,carboxypeptidase A3 and platelet activating factor in guinea pig in anaphylactic shock].

    PubMed

    Yang, Kai; Guo, Xiang-jie; Yan, Xue-bin; Gao, Cai-rong

    2012-06-01

    To detect the changes of leukotriene E4(LTE4), prostaglandin D2(PGD2), carboxypeptidase A3(CPA3) and platelet activating factor (PAF) in guinea pigs died from anaphylactic shock. Guinea pigs were used for establishing anaphylactic shock models. The levels of LTE4, PGD2 and CPA3, and PAF were detected in urine, plasma, and brain tissues with ELISA kit, respectively. The significant biomarkers were selected comparing with control group. The changes of PGD2, CPA3 and PAF in the guinea pigs at time zero, 12 and 24 hours after death were observed and compared respectively. The effect of platelet activating factor acetylhydrolase (PAF-AH) to PAF in guinea pig brain was examined and compared. There were no statistically differences of LTE4 levels in urine observed between experimental group and control group. The levels of CPA3, PGD2 and PAF in the experimental group were significantly higher than that in the control group at 0 h. The levels of PAF at 12 and 24 hours after anaphylactic shock were significantly higher than that in the control group. The levels of PAF decreased significantly after pretreatment with PAF-AH. LTE4 in urine cannot be selected as a biomarker to determine the anaphylactic shock. PGD2 and CPA3 in plasma, and PAF in brain tissue may be used as biomarkers to determine the anaphylactic shock. PAF-AH may be potentially useful for clinical treatment of anaphylactic shock.

  12. Chimeras of the native form or achondroplasia mutant (G375C) of human fibroblast growth factor receptor 3 induce ligand-dependent differentiation of PC12 cells.

    PubMed Central

    Thompson, L M; Raffioni, S; Wasmuth, J J; Bradshaw, R A

    1997-01-01

    Mutations in the gene for human fibroblast growth factor receptor 3 (hFGFR3) cause a variety of skeletal dysplasias, including the most common genetic form of dwarfism, achondroplasia (ACH). Evidence indicates that these phenotypes are not due to simple haploinsufficiency of FGFR3 but are more likely related to a role in negatively regulating skeletal growth. The effects of one of these mutations on FGFR3 signaling were examined by constructing chimeric receptors composed of the extracellular domain of human platelet-derived growth factor receptor beta (hPDGFR beta) and the transmembrane and intracellular domains of hFGFR3 or of an ACH (G375C) mutant. Following stable transfection in PC12 cells, which lack platelet-derived growth factor (PDGF) receptors, all clonal cell lines, with either type of chimera, showed strong neurite outgrowth in the presence of PDGF but not in its absence. Antiphosphotyrosine immunoblots showed ligand-dependent autophosphorylation, and both receptor types stimulated strong phosphorylation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase, an event associated with the differentiative response of these cells. In addition, ligand-dependent phosphorylation of phospholipase Cgamma and Shc was also observed. All of these responses were comparable to those observed from ligand activation, such as by nerve growth factor, of the native PC12 cells used to prepare the stable transfectants. The cells with the chimera bearing the ACH mutation were more rapidly responsive to ligand with less sustained MAPK activation, indicative of a preactivated or primed condition and consistent with the view that these mutations weaken ligand control of FGFR3 function. However, the full effect of the mutation likely depends in part on structural features of the extracellular domain. Although FGFR3 has been suggested to act as a negative regulator of long-bone growth in chrondrocytes, it produces differentiative signals similar to

  13. The insulin receptor substrate-1-related 4PS substrate but not the interleukin-2R gamma chain is involved in interleukin-13-mediated signal transduction.

    PubMed

    Wang, L M; Michieli, P; Lie, W R; Liu, F; Lee, C C; Minty, A; Sun, X J; Levine, A; White, M F; Pierce, J H

    1995-12-01

    Interleukin-13 (IL-13) induced a potent mitogenic response in IL-3-dependent TF-1 cells and DNA synthesis to a lesser extent in MO7E and FDC-P1 cells. IL-13 stimulation of these lines, like IL-4 and insulin-like growth factor-1 (IGF-1), resulted in tyrosine phosphorylation of a 170-kD substrate. The tyrosine-phosphorylated 170-kD substrate strongly associated with the 85-kD subunit of phosphoinositol-3 (PI-3) kinase and with Grb-2. Anti-4PS serum readily detected the 170-kD substrate in lysates from both TF-1 and FDC-P1 cells stimulated with IL-13 or IL-4. These data provide evidence that IL-13 induces tyrosine phosphorylation of the 4PS substrate, providing an essential interface between the IL-13 receptor and signaling molecules containing SH2 domains. IL-13 and IL-4 stimulation of murine L cell fibroblasts, which endogenously express the IL-4 receptor (IL-4R alpha) and lack expression of the IL-2 receptor gamma subunit (IL-2R gamma), resulted in tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1)/4PS. Enhanced tyrosine phosphorylation of IRS-1/4PS was observed in response to IL-4, but not IL-13 treatment of L cells transfected with the IL-2R gamma chain. These results indicate that IL-13 does not use the IL-2R gamma subunit in its receptor complex and that expression of IL-2R gamma enhances, but is not absolutely required for mediating IL-4-induced tyrosine phosphorylation of IRS-1/4PS.

  14. Nuclear receptor coactivators function in estrogen receptor- and progestin receptor-dependent aspects of sexual behavior in female rats

    PubMed Central

    Molenda-Figueira, Heather A.; Williams, Casey A.; Griffin, Andreana L.; Rutledge, Eric M.; Blaustein, Jeffrey D.; Tetel, Marc J.

    2008-01-01

    The ovarian hormones, estradiol (E) and progesterone (P) facilitate the expression of sexual behavior in female rats. E and P mediate many of these behavioral effects by binding to their respective intracellular receptors in specific brain regions. Nuclear receptor coactivators, including Steroid Receptor Coactivator-1 (SRC-1) and CREB Binding Protein (CBP), dramatically enhance ligand-dependent steroid receptor transcriptional activity in vitro. Previously, our lab has shown that SRC-1 and CBP modulate estrogen receptor (ER)-mediated induction of progestin receptor (PR) gene expression in the ventromedial nucleus of the hypothalamus (VMN) and hormone-dependent sexual receptivity in female rats. Female sexual behaviors can be activated by high doses of E alone in ovariectomized rats, and thus are believed to be ER-dependent. However, the full repertoire of female sexual behavior, in particular, proceptive behaviors such as hopping, darting and ear wiggling, are considered to be PR-dependent. In the present experiments, the function of SRC-1 and CBP in distinct ER- (Exp. 1) and PR- (Exp. 2) dependent aspects of female sexual behavior was investigated. In Exp. 1, infusion of antisense oligodeoxynucleotides to SRC-1 and CBP mRNA into the VMN decreased lordosis intensity in rats treated with E alone, suggesting that these coactivators modulate ER-mediated female sexual behavior. In Exp. 2, antisense to SRC-1 and CBP mRNA around the time of P administration reduced PR-dependent ear wiggling and hopping and darting. Taken together, these data suggest that SRC-1 and CBP modulate ER and PR action in brain and influence distinct aspects of hormone-dependent sexual behaviors. These findings support our previous studies and provide further evidence that SRC-1 and CBP function together to regulate ovarian hormone action in behaviorally-relevant brain regions. PMID:16769066

  15. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse.

    PubMed

    Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani

    2009-07-15

    Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.

  16. Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex

    PubMed Central

    Tamada, Taro; Honjo, Eijiro; Maeda, Yoshitake; Okamoto, Tomoyuki; Ishibashi, Matsujiro; Tokunaga, Masao; Kuroki, Ryota

    2006-01-01

    A crystal structure of the signaling complex between human granulocyte colony-stimulating factor (GCSF) and a ligand binding region of GCSF receptor (GCSF-R), has been determined to 2.8 Å resolution. The GCSF:GCSF-R complex formed a 2:2 stoichiometry by means of a cross-over interaction between the Ig-like domains of GCSF-R and GCSF. The conformation of the complex is quite different from that between human GCSF and the cytokine receptor homologous domain of mouse GCSF-R, but similar to that of the IL-6/gp130 signaling complex. The Ig-like domain cross-over structure necessary for GCSF-R activation is consistent with previously reported thermodynamic and mutational analyses. PMID:16492764

  17. Impaired activity-dependent FMRP translation and enhanced mGluR-dependent LTD in Fragile X premutation mice

    PubMed Central

    Iliff, Adam J.; Renoux, Abigail J.; Krans, Amy; Usdin, Karen; Sutton, Michael A.; Todd, Peter K.

    2013-01-01

    Fragile X premutation-associated disorders, including Fragile X-associated Tremor Ataxia Syndrome, result from unmethylated CGG repeat expansions in the 5′ untranslated region (UTR) of the FMR1 gene. Premutation-sized repeats increase FMR1 transcription but impair rapid translation of the Fragile X mental retardation protein (FMRP), which is absent in Fragile X Syndrome (FXS). Normally, FMRP binds to RNA and regulates metabotropic glutamate receptor (mGluR)-mediated synaptic translation, allowing for dendritic synthesis of several proteins. FMRP itself is also synthesized at synapses in response to mGluR activation. However, the role of activity-dependent translation of FMRP in synaptic plasticity and Fragile X-premutation-associated disorders is unknown. To investigate this question, we utilized a CGG knock-in mouse model of the Fragile X premutation with 120–150 CGG repeats in the mouse Fmr1 5′ UTR. These mice exhibit increased Fmr1 mRNA production but impaired FMRP translational efficiency, leading to a modest reduction in basal FMRP expression. Cultured hippocampal neurons and synaptoneurosomes derived from CGG KI mice demonstrate impaired FMRP translation in response to the group I mGluR agonist 3,5-dihydroxyphenylglycine. Electrophysiological analysis reveals enhanced mGluR-mediated long-term depression (mGluR-LTD) at CA3–CA1 synapses in acute hippocampal slices prepared from CGG KI mice relative to wild-type littermates, similar to Fmr1 knockout mice. However, unlike mGluR-LTD in mice completely lacking FMRP, mGluR-LTD in CGG knock-in mice remains dependent on new protein synthesis. These studies demonstrate partially overlapping synaptic plasticity phenotypes in mouse models of FXS and Fragile X premutation disorders and support a role for activity-dependent synthesis of FMRP in enduring forms of synaptic plasticity. PMID:23250915

  18. Aberrant expression and function of death receptor-3 and death decoy receptor-3 in human cancer.

    PubMed

    Ge, Zhicheng; Sanders, Andrew J; Ye, Lin; Jiang, Wen G

    2011-03-01

    Death receptor-3 (DR3) and death decoy receptor-3 (DcR3) are both members of the tumour necrosis factor receptor (TNFR) superfamily. The TNFR superfamily contains eight death domain-containing receptors, including TNFR1 (also called DR1), Fas (also called DR2), DR3, DR4, DR5, DR6, NGFR and EDAR. Upon the binding of these receptors with their corresponding ligands, the death domain recruits various proteins that mediate both the death and proliferation of cells. Receptor function is negatively regulated by decoy receptors (DcR1, DcR2, DcR3 and OPG). DR3/DcR3 are a pair of positive and negative players with which vascular endothelial growth inhibitor (VEGI) interacts. VEGI has been suggested to be a potential tumour suppressor. The inhibitory effects of VEGI on cancer are manifested in three main areas: a direct effect on cancer cells, an anti-angiogenic effect on endothelial cells, and the stimulation of dendritic cell maturation. A recent study indicated that DR3 may be a new receptor for E-selectin, which has been reported to be associated with cancer metastasis. DcR3 is a soluble receptor, highly expressed in various tumours, which lacks an apparent transmembrane segment, prevents cytokine response through ligand binding and neutralization, and is an inhibitor of apoptosis. DcR3 serves as a decoy receptor for FasL, LIGHT and VEGI. The cytokine LIGHT activates various anti-tumour functions and is expected to be a promising candidate for cancer therapy. Certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing DcR3, which blocks FasL function. DR3/DcR3 play profound roles in regulating cell death and proliferation in cancer. The present review briefly discusses DR3/DcR3 and attempts to elucidate the role of these negative and positive players in cancer.

  19. Properties of GluR3 receptors tagged with GFP at the amino or carboxyl terminus

    PubMed Central

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Eusebi, Fabrizio; Miledi, Ricardo

    2007-01-01

    Anatomical visualization of neurotransmitter receptor localization is facilitated by tagging receptors, but this process can alter their functional properties. We have evaluated the distribution and properties of WT glutamate receptor 3 (GluR3) α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (WT GluR3) and two receptors in which GFP was tagged to the amino terminus (GFP-GluR3) or to the carboxyl terminus (GluR3-GFP). Although the fluorescence in Xenopus oocytes was stronger in the vegetal hemisphere because of localization of internal structures (probable sites of production, storage or recycling of receptors), the insertion of receptors into the plasma membrane was polarized to the animal hemisphere. The fluorescence intensity of oocytes injected with GluR3-GFP RNA was approximately double that of oocytes injected with GFP-GluR3 RNA. Accordingly, GluR3-GFP oocytes generated larger kainate-induced currents than GFP-GluR3 oocytes, with similar EC50 values. Currents elicited by glutamate, or AMPA coapplied with cyclothiazide, were also larger in GluR3-GFP oocytes. The glutamate- to kainate-current amplitude ratios differed, with GluR3-GFP being activated more efficiently by glutamate than the WT or GFP-GluR3 receptors. This pattern correlates with the slower decay of glutamate-induced currents generated by GluR3-GFP receptors. These changes were not observed when GFP was tagged to the amino terminus, and these receptors behaved like the WT. The antagonistic effects of 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were not altered in any of the tagged receptors. We conclude that GFP is a useful and convenient tag for visualizing these proteins. However, the effects of different sites of tag insertion on receptor characteristics must be taken into account in assessing the roles played by these receptor proteins. PMID:17881566

  20. Properties of GluR3 receptors tagged with GFP at the amino or carboxyl terminus.

    PubMed

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Eusebi, Fabrizio; Miledi, Ricardo

    2007-09-25

    Anatomical visualization of neurotransmitter receptor localization is facilitated by tagging receptors, but this process can alter their functional properties. We have evaluated the distribution and properties of WT glutamate receptor 3 (GluR3) alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (WT GluR3) and two receptors in which GFP was tagged to the amino terminus (GFP-GluR3) or to the carboxyl terminus (GluR3-GFP). Although the fluorescence in Xenopus oocytes was stronger in the vegetal hemisphere because of localization of internal structures (probable sites of production, storage or recycling of receptors), the insertion of receptors into the plasma membrane was polarized to the animal hemisphere. The fluorescence intensity of oocytes injected with GluR3-GFP RNA was approximately double that of oocytes injected with GFP-GluR3 RNA. Accordingly, GluR3-GFP oocytes generated larger kainate-induced currents than GFP-GluR3 oocytes, with similar EC(50) values. Currents elicited by glutamate, or AMPA coapplied with cyclothiazide, were also larger in GluR3-GFP oocytes. The glutamate- to kainate-current amplitude ratios differed, with GluR3-GFP being activated more efficiently by glutamate than the WT or GFP-GluR3 receptors. This pattern correlates with the slower decay of glutamate-induced currents generated by GluR3-GFP receptors. These changes were not observed when GFP was tagged to the amino terminus, and these receptors behaved like the WT. The antagonistic effects of 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were not altered in any of the tagged receptors. We conclude that GFP is a useful and convenient tag for visualizing these proteins. However, the effects of different sites of tag insertion on receptor characteristics must be taken into account in assessing the roles played by these receptor proteins.

  1. Gastric damage and granulocyte infiltration induced by indomethacin in tumour necrosis factor receptor 1 (TNF-R1) or inducible nitric oxide synthase (iNOS) deficient mice

    PubMed Central

    Souza, M H L P; Lemos, H. Paula; Oliveira, R B; Cunha, F Q

    2004-01-01

    Background: Tumour necrosis factor α (TNF-α) is involved in non-steroidal anti-inflammatory drug induced gastropathy. Nitric oxide (NO) is a mediator of gastrointestinal mucosal defence but, paradoxically, it also contributes to mucosal damage. Aims: We optimised the C57BL/6 mouse model of indomethacin induced gastropathy to evaluate the role of TNF-α and inducible nitric oxide synthase (iNOS) generated NO in gastric damage and granulocyte infiltration using tumour necrosis factor receptor 1 (TNF-R1−/−) or iNOS (iNOS−/−) deficient mice. Methods: Different doses of indomethacin (2.5, 5, 10, 20 mg/kg) were administered and animals were assessed 6, 12, or 24 hours later. Gastric damage was measured by the sum of all erosions in the gastric mucosa, and gastric granulocyte infiltration was determined by myeloperoxidase (MPO) activity. Other groups of wild-type mice received thalidomide, dexamethasone, fucoidin, l-NAME, or 1400W, and then indomethacin was administered. Additionally, indomethacin was administered to TNF-R1−/− or iNOS−/−. Gastric damage and MPO activity were evaluated 12 hours later. Results: Indomethacin induced dose and time dependent gastric damage and increase in MPO activity in wild-type mice, with the greatest effect at a dose of 10 mg/kg and after 12 hours. Treatment with thalidomide, dexamethasone, or fucoidin reduced gastric damage and MPO activity induced by indomethacin. After indomethacin administration, TNF-R1−/− had less gastric damage and MPO activity than controls. Genetic (knockout mice) or pharmacological (1400W and l-NAME) inhibition of iNOS activity reduced indomethacin induced gastric damage, despite no reduction in MPO activity. Conclusion: TNF-α, acting via TNF-R1, is involved in indomethacin induced gastric damage and granulocyte infiltration. Furthermore, iNOS generated NO is involved in gastric damage induced by indomethacin. PMID:15138204

  2. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    USDA-ARS?s Scientific Manuscript database

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  3. Distinct Contributions of T1R2 and T1R3 Taste Receptor Subunits to the Detection of Sweet Stimuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie,Y.; Vigues, S.; Hobbs, J.

    2005-01-01

    The molecular mechanisms by which G protein-coupled receptor (GPCR)-type chemosensory receptors of animals selectively interact with their cognate ligands remain poorly understood. There is growing evidence that many chemosensory receptors exist in multimeric complexes, though little is known about the relative contributions of individual subunits to receptor functions. This study showed that each of the two subunits in the mammalian heteromeric T1R2:T1R3 sweet taste receptor binds sweet stimuli, though with distinct affinities and conformational changes. Furthermore, ligand affinities for T1R3 are drastically reduced by the introduction of a single amino acid change associated with decreased sweet taste sensitivity in mice.more » Thus, individual T1R subunits increase the receptive range of the sweet taste receptor, offering a functional mechanism for phenotypic variations in sweet taste.« less

  4. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies.

    PubMed

    Dwivedi, Pankaj; Greis, Kenneth D

    2017-02-01

    Granulocyte colony-stimulating factor is a hematopoietic cytokine that stimulates neutrophil production and hematopoietic stem cell mobilization by initiating the dimerization of homodimeric granulocyte colony-stimulating factor receptor. Different mutations of CSF3R have been linked to a unique spectrum of myeloid disorders and related malignancies. Myeloid disorders caused by the CSF3R mutations include severe congenital neutropenia, chronic neutrophilic leukemia, and atypical chronic myeloid leukemia. In this review, we provide an analysis of granulocyte colony-stimulating factor receptor, various mutations, and their roles in the severe congenital neutropenia, chronic neutrophilic leukemia, and malignant transformation, as well as the clinical implications and some perspective on approaches that could expand our knowledge with respect to the normal signaling mechanisms and those associated with mutations in the receptor. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  5. Candidate's thesis: Platelet-activating factor-induced hearing loss: mediated by nitric oxide?

    PubMed

    Rhee, Chung-Ku

    2003-12-01

    Platelet-activating factor (PAF)in middle ear effusion is thought to induce hearing loss. The purpose of this study is to investigate the role of nitric oxide (NO) in the mechanism of PAF-induced hearing loss by studying the effects of PAF application on the round window membrane (RWM) with and without PAF-antagonist NO-blocker. Longitudinal study on randomized guinea pigs using PAF to induce hearing loss. METHODS Guinea pigs were divided into four groups: PBS, PAF, PAF-antagonist, and L-NAME. The PBS group received phosphate buffered saline (PBS) and the PAF groups received 10, 20, and 40 microg of PAF soaked into gelfoam and placed on the RWM. PAF-antagonist (WEB 2170) and NOS inhibitor NG-nitro-l-arginine-methylester (L-NAME) were injected intraperitoneally prior to PAF 20 microg application on the RWM. The following three tests were performed on each animal group: Hearing was tested with an auditory brainstem response (ABR) test over 24 hours. At the end of 24 hours, cochlear hair cells were examined by scanning electron microscopy (SEM) and immunohistochemistry was carried out on the cochlea to test the expression of inducible nitric oxide synthase (iNOS). The PAF group developed significant elevation of ABR threshold and cochlear hair cell damage in the SEM group as compared with the PBS control group. The PAF-antagonist (WEB 2170) and the L-NAME groups did not show significant elevation of ABR threshold and cochlear hair cell damage compared with the group administered PAF 20 microg, but in the PAF-antagonist group, the elevation of ABR threshold was significant compared with that of the PBS control group, whereas it was not significant compared with the PBS group in the L-NAME group. Strong expression of iNOS on cochlea was observed in the PAF group and lighter expression was seen in PBS, WEB 2170, and L-NAME groups. This study demonstrated that PAF placed on the RWM induced hearing loss and cochlear hair cell damage. The PAF-antagonists and L

  6. Dual Roles of Endogenous Platelet-activating Factor Acetylhydrolase in a Murine Model of Necrotizing Enterocolitis

    PubMed Central

    Lu, Jing; Pierce, Marissa; Franklin, Andrew; Jilling, Tamas; Stafforini, Diana M.; Caplan, Michael

    2010-01-01

    Human preterm infants with necrotizing enterocolitis (NEC) have increased circulating and luminal levels of platelet-activating factor (PAF) and decreased serum PAF-acetylhydrolase (PAF-AH), the enzyme that inactivates PAF. Formula supplemented with recombinant PAF-AH decreases NEC in a neonatal rat model. We hypothesized that endogenous PAF-AH contributes to neonatal intestinal homeostasis, and therefore developed PAF-AH−/− mice using standard approaches to study the role of this enzyme in the neonatal NEC model. Following exposure to a well-established NEC model, intestinal tissues were evaluated for histology, pro-inflammatory cytokine mRNA synthesis, and death using standard techniques. We found that mortality rates were significantly lower in PAF-AH−/− pups compared to wild-type controls before 24 hours of life but surviving PAF-AH−/− animals were more susceptible to NEC development compared to wild-type controls. Increased NEC incidence was associated with prominent inflammation characterized by elevated intestinal mRNA expression of sPLA2, iNOS and CXCL1. In conclusion, the data support a protective role for endogenous PAF-AH in the development of NEC, and since preterm neonates have endogenous PAF-AH deficiency, this may place them at increased risk for disease. PMID:20531249

  7. Neuron-to-glia signaling mediated by excitatory amino acid receptors regulates ErbB receptor function in astroglial cells of the neuroendocrine brain.

    PubMed

    Dziedzic, Barbara; Prevot, Vincent; Lomniczi, Alejandro; Jung, Heike; Cornea, Anda; Ojeda, Sergio R

    2003-02-01

    Hypothalamic astroglial erbB tyrosine kinase receptors are required for the timely initiation of mammalian puberty. Ligand-dependent activation of these receptors sets in motion a glia-to-neuron signaling pathway that prompts the secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development, from hypothalamic neuroendocrine neurons. The neuronal systems that may regulate this growth factor-mediated back signaling to neuroendocrine neurons have not been identified. Here we demonstrate that hypothalamic astrocytes contain metabotropic receptors of the metabotropic glutamate receptor 5 subtype and the AMPA receptor subunits glutamate receptor 2 (GluR2) and GluR3. As in excitatory synapses, these receptors are in physical association with their respective interacting/clustering proteins Homer and PICK1. In addition, they are associated with erbB-1 and erbB-4 receptors. Concomitant activation of astroglial metabotropic and AMPA receptors results in the recruitment of erbB tyrosine kinase receptors and their respective ligands to the glial cell membrane, transactivation of erbB receptors via a mechanism requiring metalloproteinase activity, and increased erbB receptor gene expression. By facilitating erbB-dependent signaling and promoting erbB receptor gene expression in astrocytes, a neuron-to-glia glutamatergic pathway may represent a basic cell-cell communication mechanism used by the neuroendocrine brain to coordinate the facilitatory transsynaptic and astroglial input to LHRH neurons during sexual development.

  8. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity. Copyright © 2016 the American

  9. Muscarinic Receptor-Dependent Long Term Depression in the Perirhinal Cortex and Recognition Memory are Impaired in the rTg4510 Mouse Model of Tauopathy.

    PubMed

    Scullion, Sarah E; Barker, Gareth R I; Warburton, E Clea; Randall, Andrew D; Brown, Jonathan T

    2018-02-26

    Neurodegenerative diseases affecting cognitive dysfunction, such as Alzheimer's disease and fronto-temporal dementia, are often associated impairments in the visual recognition memory system. Recent evidence suggests that synaptic plasticity, in particular long term depression (LTD), in the perirhinal cortex (PRh) is a critical cellular mechanism underlying recognition memory. In this study, we have examined novel object recognition and PRh LTD in rTg4510 mice, which transgenically overexpress tau P301L . We found that 8-9 month old rTg4510 mice had significant deficits in long- but not short-term novel object recognition memory. Furthermore, we also established that PRh slices prepared from rTg4510 mice, unlike those prepared from wildtype littermates, could not support a muscarinic acetylcholine receptor-dependent form of LTD, induced by a 5 Hz stimulation protocol. In contrast, bath application of the muscarinic agonist carbachol induced a form of chemical LTD in both WT and rTg4510 slices. Finally, when rTg4510 slices were preincubated with the acetylcholinesterase inhibitor donepezil, the 5 Hz stimulation protocol was capable of inducing significant levels of LTD. These data suggest that dysfunctional cholinergic innervation of the PRh of rTg4510 mice, results in deficits in synaptic LTD which may contribute to aberrant recognition memory in this rodent model of tauopathy.

  10. Analysis of various types of single-polypeptide-chain (sc) heterodimeric A{sub 2A}R/D{sub 2}R complexes and their allosteric receptor–receptor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Toshio, E-mail: kamiya@z2.keio.jp; Department of Neurology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526; Cell Biology Laboratory, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502

    Highlights: • Various scA{sub 2A}R/D{sub 2}R constructs, with spacers between the two receptors, were created. • Using whole cell binding assay, constructs were examined for their binding activity. • Although the apparent ratio of A{sub 2A}R to D{sub 2}R binding sites should be 1, neither was 1. • Counter agonist-independent binding cooperativity occurred in context of scA{sub 2A}R/D{sub 2}R. - Abstract: Adenosine A{sub 2A} receptor (A{sub 2A}R) heteromerizes with dopamine D{sub 2} receptor (D{sub 2}R). However, these class A G protein-coupled receptor (GPCR) dimers are not fully formed, but depend on the equilibrium between monomer and dimer. In order tomore » stimulate the heteromerization, we have previously shown a successful design for a fusion receptor, single-polypeptide-chain (sc) heterodimeric A{sub 2A}R/D{sub 2}R complex. Here, using whole cell binding assay, six more different scA{sub 2A}R/D{sub 2}R constructs were examined. Not only in scA{sub 2A}R/D{sub 2}R ‘liberated’ with longer spacers between the two receptors, which confer the same configuration as the prototype, the A{sub 2A}R-odr4TM-D{sub 2L}R, but differ in size (Forms 1–3), but also in scA{sub 2A}R/D{sub 2L}R (Form 6) fused with a transmembrane (TM) of another type II TM protein, instead of odr4TM, neither of their fixed stoichiometry (the apparent ratios of A{sub 2A}R to D{sub 2}R binding sites) was 1, suggesting their compact folding. This suggests that type II TM, either odr4 or another, facilitates the equilibrial process of the dimer formation between A{sub 2A}R and D{sub 2L}R, resulting in the higher-order oligomer formation from monomer of scA{sub 2A}R/D{sub 2L}R itself. Also, in the reverse type scA{sub 2A}R/D{sub 2L}R, i.e., the D{sub 2L}R-odr4TM-A{sub 2A}R, counter agonist-independent binding cooperativity (cooperative folding) was found to occur (Forms 4 and 5). In this way, the scA{sub 2A}R/D{sub 2L}R system has unveiled the cellular phenomenon as a snapshot of the

  11. Extracellular pH Regulates Zinc Signaling via an Asp Residue of the Zinc-sensing Receptor (ZnR/GPR39)*

    PubMed Central

    Cohen, Limor; Asraf, Hila; Sekler, Israel; Hershfinkel, Michal

    2012-01-01

    Zinc activates a specific Zn2+-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca2+ responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na+/H+ exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn2+ binding site, His17 or His19, or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp313 with alanine resulted in similar Ca2+ responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na+/H+ exchange at pH 7.4 and pH 6.5. Substitution of Asp313 to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp313, which was shown to modulate Zn2+ binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity. PMID:22879599

  12. Extracellular pH regulates zinc signaling via an Asp residue of the zinc-sensing receptor (ZnR/GPR39).

    PubMed

    Cohen, Limor; Asraf, Hila; Sekler, Israel; Hershfinkel, Michal

    2012-09-28

    Zinc activates a specific Zn(2+)-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca(2+) responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na(+)/H(+) exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn(2+) binding site, His(17) or His(19), or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp(313) with alanine resulted in similar Ca(2+) responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na(+)/H(+) exchange at pH 7.4 and pH 6.5. Substitution of Asp(313) to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp(313), which was shown to modulate Zn(2+) binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity.

  13. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    PubMed

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  14. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  15. [Association between platelet-activating factor acetylhydrolase gene polymorphisms and gastrointestinal bleeding in children with Henoch-Schönlein purpura].

    PubMed

    Wang, Bao-Xiang; Mei, Hong; Peng, Han-Ming; Gao, Yuan; Ding, Yan

    2017-04-01

    To study the association between the single nucleotide polymorphisms (SNPs) of the ninth exon Val279Phe of platelet-activating factor acetylhydrolase (PAF-AH) gene and gastrointestinal bleeding in children with Henoch-Schönlein purpura (HSP). A total 516 children with HSP were enrolled, among whom 182 had gastrointestinal bleeding and 334 had no gastrointestinal bleeding. PCR was used to investigate the distribution of genotypes and alleles in the SNPs of Val97Phe. The plasma PAF-AH activity was measured, as well as the levels of platelet-activating factor (PAF), granular membrane protein-140 (GMP-140), β-thromboglobulin (β-TG), and platelet factor 4 (PF4). The Val279Phe genotype and allele frequencies were in Hardy-Weinberg equilibrium, and the homozygous genotype TT and heterozygotes accounted for 0.97% and 6.05% respectively. The gastrointestinal bleeding group had a significantly higher allele frequency than the control group (5.22% vs 3.33%; P<0.01). The HSP patients with GG genotype in the gastrointestinal bleeding group had significantly higher levels of plasma PAF and GMP-140 than those in the non-gastrointestinal bleeding group (P<0.05), while the non-gastrointestinal bleeding group had a significantly higher PAF-AH activity than the gastrointestinal bleeding group (P<0.05). There were no significant differences in β-TG and PF4 between the two groups (P>0.05). Val279Phe gene polymorphisms in PAF-AH are associated with PAF-AH activity and PAF and GMP-140 levels and may be a risk factor for HSP with gastrointestinal bleeding.

  16. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function

    NASA Astrophysics Data System (ADS)

    Pridans, Clare; Sauter, Kristin A.; Baer, Kristin; Kissel, Holger; Hume, David A.

    2013-10-01

    Hereditary diffuse leukoencephalopathy with spheroids (HDLS) in humans is a rare autosomal dominant disease characterized by giant neuroaxonal swellings (spheroids) within the CNS white matter. Symptoms are variable and can include personality and behavioural changes. Patients with this disease have mutations in the protein kinase domain of the colony-stimulating factor 1 receptor (CSF1R) which is a tyrosine kinase receptor essential for microglia development. We investigated the effects of these mutations on Csf1r signalling using a factor dependent cell line. Corresponding mutant forms of murine Csf1r were expressed on the cell surface at normal levels, and bound CSF1, but were not able to sustain cell proliferation. Since Csf1r signaling requires receptor dimerization initiated by CSF1 binding, the data suggest a mechanism for phenotypic dominance of the mutant allele in HDLS.

  17. Human IgG2 antibodies against epidermal growth factor receptor effectively trigger antibody-dependent cellular cytotoxicity but, in contrast to IgG1, only by cells of myeloid lineage.

    PubMed

    Schneider-Merck, Tanja; Lammerts van Bueren, Jeroen J; Berger, Sven; Rossen, Kai; van Berkel, Patrick H C; Derer, Stefanie; Beyer, Thomas; Lohse, Stefan; Bleeker, Wim K; Peipp, Matthias; Parren, Paul W H I; van de Winkel, Jan G J; Valerius, Thomas; Dechant, Michael

    2010-01-01

    Ab-dependent cellular cytotoxicity (ADCC) is usually considered an important mechanism of action for immunotherapy with human IgG1 but not IgG2 Abs. The epidermal growth factor receptor (EGF-R) Ab panitumumab represents the only human IgG2 Ab approved for immunotherapy and inhibition of EGF-R signaling has been described as its principal mechanism of action. In this study, we investigated effector mechanisms of panitumumab compared with zalutumumab, an EGF-R Ab of the human IgG1 isotype. Notably, panitumumab was as effective as zalutumumab in recruiting ADCC by myeloid effector cells (i.e., neutrophils and monocytes) in contrast to NK cell-mediated ADCC, which was only induced by the IgG1 Ab. Neutrophil-mediated tumor cell killing could be stimulated by myeloid growth factors and was triggered via FcgammaRIIa. Panitumumab-mediated ADCC was significantly affected by the functional FcgammaRIIa-R131H polymorphism and was induced more effectively by neutrophils from FcgammaRIIa-131H homozygous donors than from -131R individuals. This polymorphism did not affect neutrophil ADCC induced by the IgG1 Ab zalutumumab. The in vivo activity of both Abs was assessed in two animal models: a high-dose model, in which signaling inhibition is a dominant mechanism of action, and a low-dose model, in which effector cell recruitment plays a prominent role. Zalutumumab was more effective than panitumumab in the high-dose model, reflecting its stronger ability to induce EGF-R downmodulation and growth inhibition. In the low-dose model, zalutumumab and panitumumab similarly prevented tumor growth. Thus, our results identify myeloid cell-mediated ADCC as a potent and additional mechanism of action for EGF-R-directed immunotherapy.

  18. Transcript variations, phylogenetic tree and chromosomal localization of porcine aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) genes.

    PubMed

    Sadowska, Agnieszka; Paukszto, Lukasz; Nynca, Anna; Szczerbal, Izabela; Orlowska, Karina; Swigonska, Sylwia; Ruszkowska, Monika; Molcan, Tomasz; Jastrzebski, Jan P; Panasiewicz, Grzegorz; Ciereszko, Renata E

    2017-03-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor best known for mediating xenobiotic-induced toxicity. AhR requires aryl hydrocarbon receptor nuclear translocator (ARNT) to form an active transcription complex and promote the activation of genes which have dioxin responsive element in their regulatory regions. The present study was performed to determine the complete cDNA sequences of porcine AhR and ARNT genes and their chromosomal localization. Total RNA from porcine livers were used to obtain the sequence of the entire porcine transcriptome by next-generation sequencing (NGS; lllumina HiSeq2500). In addition, both, in silico analysis and fluorescence in situ hybridization (FISH) were used to determine chromosomal localization of porcine AhR and ARNT genes. In silico analysis of nucleotide sequences showed that there were two transcript variants of AhR and ARNT genes in the pig. In addition, computer analysis revealed that AhR gene in the pig is located on chromosome 9 and ARNT on chromosome 4. The results of FISH experiment confirmed the localization of porcine AhR and ARNT genes. In the present study, for the first time, the full cDNAs of AhR and ARNT were demonstrated in the pig. In future, it would be interesting to determine the tissue distribution of AhR and ARNT transcript variants in the pig and to test whether these variants are associated with different biological functions and/or different activation pathways.

  19. Ghrelin-induced stimulation of colonic propulsion is dependent on hypothalamic neuropeptide Y1- and corticotrophin-releasing factor 1 receptor activation.

    PubMed

    Tebbe, J J; Mronga, S; Tebbe, C G; Ortmann, E; Arnold, R; Schäfer, M K-H

    2005-09-01

    Peptides participating in the hypothalamic control of feeding behaviour are also involved in the central autonomic control of gastrointestinal functions, such as secretion and motility. An anatomical interaction and functional relationship in the central nervous system between the feeding-related peptides neuropeptide Y and ghrelin is well documented. Furthermore, it has been shown that feeding-related peptides can influence digestive function via central corticotrophin-releasing factor (CRF) pathways. In the present study, we investigated the role of ghrelin in the central autonomic control of colonic motility. Furthermore, we addressed the hypothesis that ghrelin is involved in the hypothalamic control of colonic motor function, utilizing central neuropeptide Y receptors and hypothalamic CRF pathways. Ghrelin (0.03, 0.06 and 0.12 nmol) bilaterally microinjected into the paraventricular nucleus (PVN) induced a significant stimulation of colonic propulsion. In particular, the colonic transit time decreased from 312+/-7 min to 198+/-12 min. Microinjection of the neuropeptide Y1 receptor antagonist, BIBP-3226 (200 pmol), or the nonselective CRF receptor antagonist, astressin (30 pmol), into the PVN abolished the stimulatory effect of ghrelin injected into the PVN on colonic transit time, whereas pretreatment with the selective CRF2 receptor, antisauvagine-30 (28 pmol), failed to affect the effect of PVN-ghrelin injection on colonic propulsion. These results suggest that ghrelin can act as central modulator of gastrointestinal motor functions at the level of the PVN via neuropeptide Y1- and CRF1 receptor-dependent mechanisms.

  20. A Human Blood-Brain Barrier Transcytosis Assay Reveals Antibody Transcytosis Influenced by pH-Dependent Receptor Binding

    PubMed Central

    Sade, Hadassah; Baumgartner, Claudia; Hugenmatter, Adrian; Moessner, Ekkehard; Freskgård, Per-Ola; Niewoehner, Jens

    2014-01-01

    We have adapted an in vitro model of the human blood-brain barrier, the immortalized human cerebral microvascular endothelial cells (hCMEC/D3), to quantitatively measure protein transcytosis. After validating the receptor-mediated transport using transferrin, the system was used to measure transcytosis rates of antibodies directed against potential brain shuttle receptors. While an antibody to the insulin-like growth factor 1 receptor (IGF1R) was exclusively recycled to the apical compartment, the fate of antibodies to the transferrin receptor (TfR) was determined by their relative affinities at extracellular and endosomal pH. An antibody with reduced affinity at pH5.5 showed significant transcytosis, while pH-independent antibodies of comparable affinities at pH 7.4 remained associated with intracellular vesicular compartments and were finally targeted for degradation. PMID:24788759

  1. Hepatic regulation of platelet-activating factor acetylhydrolase and lecithin:cholesterol acyltransferase biliary and plasma output in rats exposed to bacterial lipopolysaccharide.

    PubMed

    Svetlov, S I; Sturm, E; Olson, M S; Crawford, J M

    1999-07-01

    Normal rat bile contains secretory platelet-activating factor acetylhydrolase (PAF-AH), the enzyme capable of hydrolyzing the inflammatory mediator platelet-activating factor (PAF), and phospholipids containing oxidized truncated fatty acids. Because lecithin:cholesterol acyltransferase (LCAT) possesses intrinsic PAF-AH-like activity, it also may represent a potential anti-inflammatory enzyme. The behavior of PAF-AH and LCAT in hepatobiliary inflammatory responses in vivo has not been characterized. We therefore investigated the biliary and plasma secretion and pharmacological characteristics of these enzymes in rats subjected to intraportal bacterial endotoxin exposure (lipopolysaccharide [LPS], Escherichia coli, 055:B5). Portal vein LPS infusion (1 mg/kg, bolus) resulted in a maximal 4- to 5-fold increase in bile PAF-AH-specific activity with a gradual decline to baseline by 18 hours. Biliary PAF-AH hydrolyzed also the truncated sn-2-succinoyl and sn-2-glutaroyl analogs of PAF, indicating a broader activity of PAF-AH in bile toward byproducts of glycerophospholipid peroxidation. Plasma PAF-AH activity was not altered 5 hours after LPS injection compared with saline injection, but it was significantly elevated 18 hours after endotoxin exposure. The levels of LCAT in bile were low and declined to nearly undetectable values by 5 hours after cannulation in both control and LPS-exposed rats. Plasma LCAT activity was significantly increased after 5 hours and decreased 18 hours after LPS injection. In summary, hepatic exposure to endotoxin results in a rapid increase in biliary secretion of PAF-AH followed by elevation of LCAT and PAF-AH levels in plasma. We propose that biliary secretion of PAF-AH may be involved in the hepatic response to endotoxic insult by counteracting potential inflammatory damage in the biliary tree and gastrointestinal tract, whereas plasma increases in LCAT and PAF-AH may promote elimination of excess PAF and oxidized phospholipids in the

  2. Pneumolysin mediates heterotypic aggregation of neutrophils and platelets in vitro.

    PubMed

    Nel, Jan G; Durandt, Chrisna; Theron, Annette J; Tintinger, Gregory R; Pool, Roger; Richards, Guy A; Mitchell, Timothy J; Feldman, Charles; Anderson, Ronald

    2017-06-01

    Platelets orchestrate the inflammatory activities of neutrophils, possibly contributing to pulmonary and myocardial damage during severe pneumococcal infection. This study tested the hypothesis that the pneumococcal toxin, pneumolysin (Ply), activates production of platelet-activating factor (PAF) and thromboxane A 2 (TxA 2 ) by neutrophils, these bioactive lipids being potential mediators of neutrophil:platelet (NP) networking. The effects of recombinant Ply (10-80 ng mL -1 ) on the production of PAF and TxA 2 by isolated neutrophils were measured using ELISA procedures, and NP aggregation by flow cytometry. Exposure of neutrophils to Ply induced production of PAF and, to a lesser extent, TxA 2 , achieving statistical significance at ≥20 ng mL -1 of the toxin. In the case of NP interactions, Ply promoted heterotypic aggregation which was dependent on upregulation of P-selectin (CD62P) and activation of protease-activated receptor 1 (PAR1), attaining statistical significance at ≥10 ng mL -1 of the toxin, but did not involve either PAF or TxA 2 . Ply induces synthesis of PAF and TxA 2, by human neutrophils, neither of which appears to contribute to the formation of NP heterotypic aggregates in vitro, a process which is seemingly dependent on CD62P and PAR1. These pro-inflammatory activities of Ply may contribute to the pathogenesis of pulmonary and myocardial injury during severe pneumococcal infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  3. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats.

    PubMed

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-07-20

    Aripiprazole is a D2-like receptor (D2R) partial agonist with a favourable clinical profile. Previous investigations indicated that acute and short-term administration of aripiprazole had effects on PKA activity, GSK3β-dependent pathways, GABAA receptors, NMDA receptor and CREB1 in the brain. Since antipsychotics are used chronically in clinics, the present study investigated the long-term effects of chronic oral aripiprazole treatment on these cellular signalling pathways, in comparison with haloperidol (a D2R antagonist) and bifeprunox (a potent D2R partial agonist). We found that the Akt-GSK3β pathway was activated by aripiprazole and bifeprunox in the prefrontal cortex; NMDA NR2A levels were reduced by aripiprazole and haloperidol. In the nucleus accumbens, all three drugs increased Akt-GSK3β signalling; in addition, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3, β-catenin and GABAA receptors, NMDA receptor subunits, as well as CREB1 phosphorylation levels. The results suggest that chronic oral administration of aripiprazole affects schizophrenia-related cellular signalling pathways and markers (including Akt-GSK3β signalling, Dvl-GSK3β-β-catenin signalling, GABAA receptor, NMDA receptor and CREB1) in a brain-region-dependent manner; the selective effects of aripiprazole on these signalling pathways might be associated with its unique clinical effects.

  4. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats

    PubMed Central

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-01-01

    Aripiprazole is a D2-like receptor (D2R) partial agonist with a favourable clinical profile. Previous investigations indicated that acute and short-term administration of aripiprazole had effects on PKA activity, GSK3β-dependent pathways, GABAA receptors, NMDA receptor and CREB1 in the brain. Since antipsychotics are used chronically in clinics, the present study investigated the long-term effects of chronic oral aripiprazole treatment on these cellular signalling pathways, in comparison with haloperidol (a D2R antagonist) and bifeprunox (a potent D2R partial agonist). We found that the Akt-GSK3β pathway was activated by aripiprazole and bifeprunox in the prefrontal cortex; NMDA NR2A levels were reduced by aripiprazole and haloperidol. In the nucleus accumbens, all three drugs increased Akt-GSK3β signalling; in addition, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3, β-catenin and GABAA receptors, NMDA receptor subunits, as well as CREB1 phosphorylation levels. The results suggest that chronic oral administration of aripiprazole affects schizophrenia-related cellular signalling pathways and markers (including Akt-GSK3β signalling, Dvl-GSK3β-β-catenin signalling, GABAA receptor, NMDA receptor and CREB1) in a brain-region-dependent manner; the selective effects of aripiprazole on these signalling pathways might be associated with its unique clinical effects. PMID:27435909

  5. Bladder inflammatory transcriptome in response to tachykinins: Neurokinin 1 receptor-dependent genes and transcription regulatory elements

    PubMed Central

    Saban, Ricardo; Simpson, Cindy; Vadigepalli, Rajanikanth; Memet, Sylvie; Dozmorov, Igor; Saban, Marcia R

    2007-01-01

    Background Tachykinins (TK), such as substance P, and their neurokinin receptors which are ubiquitously expressed in the human urinary tract, represent an endogenous system regulating bladder inflammatory, immune responses, and visceral hypersensitivity. Increasing evidence correlates alterations in the TK system with urinary tract diseases such as neurogenic bladders, outflow obstruction, idiopathic detrusor instability, and interstitial cystitis. However, despite promising effects in animal models, there seems to be no published clinical study showing that NK-receptor antagonists are an effective treatment of pain in general or urinary tract disorders, such as detrusor overactivity. In order to search for therapeutic targets that could block the tachykinin system, we set forth to determine the regulatory network downstream of NK1 receptor activation. First, NK1R-dependent transcripts were determined and used to query known databases for their respective transcription regulatory elements (TREs). Methods An expression analysis was performed using urinary bladders isolated from sensitized wild type (WT) and NK1R-/- mice that were stimulated with saline, LPS, or antigen to provoke inflammation. Based on cDNA array results, NK1R-dependent genes were selected. PAINT software was used to query TRANSFAC database and to retrieve upstream TREs that were confirmed by electrophoretic mobility shift assays. Results The regulatory network of TREs driving NK1R-dependent genes presented cRel in a central position driving 22% of all genes, followed by AP-1, NF-kappaB, v-Myb, CRE-BP1/c-Jun, USF, Pax-6, Efr-1, Egr-3, and AREB6. A comparison between NK1R-dependent and NK1R-independent genes revealed Nkx-2.5 as a unique discriminator. In the presence of NK1R, Nkx2-5 _01 was significantly correlated with 36 transcripts which included several candidates for mediating bladder development (FGF) and inflammation (PAR-3, IL-1R, IL-6, α-NGF, TSP2). In the absence of NK1R, the matrix Nkx2

  6. Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling.

    PubMed

    Schellekens, Harriët; van Oeffelen, Wesley E P A; Dinan, Timothy G; Cryan, John F

    2013-01-04

    G protein-coupled receptors (GPCRs), such as the ghrelin receptor (GHS-R1a), the melanocortin 3 receptor (MC(3)), and the serotonin 2C receptor (5-HT(2C)), are well known for their key role in the homeostatic control of food intake and energy balance. Ghrelin is the only known gut peptide exerting an orexigenic effect and has thus received much attention as an anti-obesity drug target. In addition, recent data have revealed a critical role for ghrelin in dopaminergic mesolimbic circuits involved in food reward signaling. This study investigates the downstream signaling consequences and ligand-mediated co-internalization following heterodimerization of the GHS-R1a receptor with the dopamine 1 receptor, as well as that of the GHS-R1a-MC(3) heterodimer. In addition, a novel heterodimer between the GHS-R1a receptor and the 5-HT(2C) receptor was identified. Interestingly, dimerization of the GHS-R1a receptor with the unedited 5-HT(2C)-INI receptor, but not with the partially edited 5-HT(2C)-VSV isoform, significantly reduced GHS-R1a agonist-mediated calcium influx, which was completely restored following pharmacological blockade of the 5-HT(2C) receptor. These results combined suggest a potential novel mechanism for fine-tuning GHS-R1a receptor-mediated activity via promiscuous dimerization of the GHS-R1a receptor with other G protein-coupled receptors involved in appetite regulation and food reward. These findings may uncover novel mechanisms of significant relevance for the future pharmacological targeting of the GHS-R1a receptor in the homeostatic regulation of energy balance and in hedonic appetite signaling, both of which play a significant role in the development of obesity.

  7. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

    PubMed Central

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID

  8. Perturbation effect of reduced graphene oxide quantum dots (rGOQDs) on aryl hydrocarbon receptor (AhR) pathway in zebrafish.

    PubMed

    Zhang, Jing-Hui; Sun, Tai; Niu, Aping; Tang, Yu-Mei; Deng, Shun; Luo, Wei; Xu, Qun; Wei, Dapeng; Pei, De-Sheng

    2017-07-01

    Graphene quantum dots (GQDs) has been widely used in enormous fields, however, the inherent molecular mechanism of GQDs for potential risks in biological system is still elusive to date. In this study, the outstanding reduced graphene quantum dots (rGOQDs) with the QY as high as 24.62% were successfully synthesized by the improved Hummers method and DMF hydrothermal treatment approach. The rGOQDs were N-doped photoluminescent nanomaterials with functional groups on the surface. The fluorescent bio-imaging was performed by exposing zebrafish in different concentrations of the as-prepared rGOQDs, and the distribution of rGOQDs was successfully observed. Moreover, the developmental toxicity and genotoxicity were evaluated to further investigate the potential hazard of rGOQDs. The result indicated that rGOQDs were responsible for the dose-dependent abnormalities on the development of zebrafish. Since the real-time polymerase chain reaction (RT-PCR) results showed that the expression of cyp1a was the highest expression in the selected genes and significantly up-regulated 8.49 fold in zebrafish, the perturbation of rGOQDs on aryl hydrocarbon receptor (AhR) pathway was investigated by using the Tg(cyp1a:gfp) zebrafish for the first time. The results demonstrated that rGOQDs significantly increased the green fluorescent protein (GFP) expression promoted by cyp1a in a dose-dependent manner, which was also further confirmed by the western blotting. This study offered an opportunity to reveal the potential hazards of in vivo bio-probes, which provided a valuable reference for investigating the graphene-based materials on the disturbance of AhR pathway in biological organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells.

    PubMed

    Bekki, Kanae; Vogel, Helena; Li, Wen; Ito, Tomohiro; Sweeney, Colleen; Haarmann-Stemmann, Thomas; Matsumura, Fumio; Vogel, Christoph F A

    2015-05-01

    The aryl hydrocarbon receptor (AhR) is well known as a ligand binding transcription factor regulating various biological effects. Previously we have shown that long-term exposure to estrogen in breast cancer cells caused not only down regulation of estrogen receptor (ER) but also overexpression of AhR. The AhR interacts with several cell signaling pathways associated with induction of tyrosine kinases, cytokines and growth factors which may support the survival roles of AhR escaping from apoptosis elicited by a variety of apoptosis inducing agents in breast cancer. In this study, we studied the anti-apoptotic role of AhR in different breast cancer cells when apoptosis was induced by exposure to UV light and chemotherapeutic agents. Activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in AhR overexpressing breast cancer cells effectively suppressed the apoptotic response induced by UV-irradiation, doxorubicin, lapatinib and paclitaxel. The anti-apoptotic response of TCDD was uniformly antagonized by the treatment with 3'methoxy-4'nitroflavone (MNF), a specific antagonist of AhR. TCDD's survival action of apoptosis was accompanied with the induction of well-known inflammatory genes, such as cyclooxygenase-2 (COX-2) and NF-κB subunit RelB. Moreover, TCDD increased the activity of the immunosuppressive enzyme indoleamine 2, 3-dioxygenase (IDO), which metabolizes tryptophan to kynurenine (Kyn) and mediates tumor immunity. Kyn also acts as an AhR ligand like TCDD, and kyn induced an anti-apoptotic response in breast cancer cells. Accordingly, our present study suggests that AhR plays a pivotal role in the development of breast cancer via the suppression of apoptosis, and provides an idea that the use of AhR antagonists with chemotherapeutic agents may effectively synergize the elimination of breast cancer cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    NASA Astrophysics Data System (ADS)

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  11. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    PubMed Central

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R. PMID:25628267

  12. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1.

    PubMed

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-28

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr(6.63) forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr(6.63) to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr356(6.63) allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  13. Learning and memory depend on fibroblast growth factor receptor 2 functioning in hippocampus.

    PubMed

    Stevens, Hanna E; Jiang, Ginger Y; Schwartz, Michael L; Vaccarino, Flora M

    2012-06-15

    Fibroblast growth factor (FGF) signaling controls self-renewal of neural stem cells during embryonic telencephalic development. FGF receptor 2 (FGFR2) has a significant role in the production of cortical neurons during embryogenesis, but its role in the hippocampus during development and in adulthood has not been described. Here we dissociate the role of FGFR2 in the hippocampus during development and during adulthood with the use of embryonic knockout and inducible knockout mice. Embryonic knockout of FGFR2 causes a reduction of hippocampal volume and impairment in adult spatial memory in mice. Spatial reference memory, as assessed by performance on the water maze probe trial, was correlated with reduced hippocampal parvalbumin+ cells, whereas short-term learning was correlated with reduction in immature neurons in the dentate gyrus. Furthermore, short-term learning and newly generated neurons in the dentate gyrus were deficient even when FGFR2 was lacking only in adulthood. Taken together, these findings support a dual role for FGFR2 in hippocampal short-term learning and long-term reference memory, which appear to depend on the abundance of two separate cellular components, parvalbumin interneurons and newly generated granule cells in the hippocampus. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Selective binding and oligomerization of the murine granulocyte colony-stimulating factor receptor by a low molecular weight, nonpeptidyl ligand.

    PubMed

    Doyle, Michael L; Tian, Shin-Shay; Miller, Stephen G; Kessler, Linda; Baker, Audrey E; Brigham-Burke, Michael R; Dillon, Susan B; Duffy, Kevin J; Keenan, Richard M; Lehr, Ruth; Rosen, Jon; Schneeweis, Lumelle A; Trill, John; Young, Peter R; Luengo, Juan I; Lamb, Peter

    2003-03-14

    Granulocyte colony-stimulating factor regulates neutrophil production by binding to a specific receptor, the granulocyte colony-stimulating factor receptor, expressed on cells of the granulocytic lineage. Recombinant forms of granulocyte colony-stimulating factor are used clinically to treat neutropenias. As part of an effort to develop granulocyte colony-stimulating factor mimics with the potential for oral bioavailability, we previously identified a nonpeptidyl small molecule (SB-247464) that selectively activates murine granulocyte colony-stimulating factor signal transduction pathways and promotes neutrophil formation in vivo. To elucidate the mechanism of action of SB-247464, a series of cell-based and biochemical assays were performed. The activity of SB-247464 is strictly dependent on the presence of zinc ions. Titration microcalorimetry experiments using a soluble murine granulocyte colony-stimulating factor receptor construct show that SB-247464 binds to the extracellular domain of the receptor in a zinc ion-dependent manner. Analytical ultracentrifugation studies demonstrate that SB-247464 induces self-association of the N-terminal three-domain fragment in a manner that is consistent with dimerization. SB-247464 induces internalization of granulocyte colony-stimulating factor receptor on intact cells, consistent with a mechanism involving receptor oligomerization. These data show that small nonpeptidyl compounds are capable of selectively binding and inducing productive oligomerization of cytokine receptors.

  15. p35 Regulates the CRM1-Dependent Nucleocytoplasmic Shuttling of Nuclear Hormone Receptor Coregulator-Interacting Factor 1 (NIF-1)

    PubMed Central

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W. Y.; Li, Zhen; Fu, Amy K. Y.; Ip, Nancy Y.

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators. PMID:25329792

  16. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    PubMed

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  17. Screening a mouse liver gene expression Compendium Identifies Effectors of the Aryl Hydrocarbon receptor (AhR)

    EPA Science Inventory

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxic effects of 2,3, 7 ,8-tetrachlorodibenzo-p-dioxin {TCDD), dioxin-like compounds (DLC) as well as some drugs and endogenous tryptophan metabolites. Short-term act...

  18. Troglitazone stimulates {beta}-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1{sub A} receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilley, Douglas G., E-mail: douglas.tilley@jefferson.edu; Center for Translational Medicine, Thomas Jefferson University; Nguyen, Anny D.

    2010-06-11

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR{gamma}-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR{gamma} activity, thus we hypothesized that a PPAR{gamma} agonist may exert physiologic effects via the angiotensin II type 1{sub A} receptor (AT1{sub A}R). In AT1{sub A}R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR{gamma} agonist troglitazone (Trog) enhanced AT1{sub A}R internalization and recruitment of endogenous {beta}-arrestin1/2 ({beta}arr1/2) to the AT1{sub A}R. A fluorescence assay to measure diacylglycerolmore » (DAG) accumulation showed that although Ang II induced AT1{sub A}R-G{sub q} protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of {beta}arr1/2 was selective to AT1{sub A}R as the response was prevented by an ARB- and Trog-mediated {beta}arr1/2 recruitment to {beta}1-adrenergic receptor ({beta}1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be {beta}arr2-dependent, as cardiomyocytes isolated from {beta}arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR{gamma} agonist Trog acts at the AT1{sub A}R to simultaneously block G{sub q} protein activation and induce the recruitment of {beta}arr1/2, which leads to an increase in cardiomyocyte contractility.« less

  19. Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic β-cells.

    PubMed

    Hamano, Kunihisa; Nakagawa, Yuko; Ohtsu, Yoshiaki; Li, Longfei; Medina, Johan; Tanaka, Yuji; Masuda, Katsuyoshi; Komatsu, Mitsuhisa; Kojima, Itaru

    2015-07-01

    Glucose activates the glucose-sensing receptor T1R3 and facilitates its own metabolism in pancreatic β-cells. An inhibitor of this receptor would be helpful in elucidating the physiological function of the glucose-sensing receptor. The present study was conducted to examine whether or not lactisole can be used as an inhibitor of the glucose-sensing receptor. In MIN6 cells, in a dose-dependent manner, lactisole inhibited insulin secretion induced by sweeteners, acesulfame-K, sucralose and glycyrrhizin. The IC50 was ∼4 mmol/l. Lactisole attenuated the elevation of cytoplasmic Ca2+ concentration ([Ca2+]c) evoked by sucralose and acesulfame-K but did not affect the elevation of intracellular cAMP concentration ([cAMP]c) induced by these sweeteners. Lactisole also inhibited the action of glucose in MIN6 cells. Thus, lactisole significantly reduced elevations of intracellular [NADH] and intracellular [ATP] induced by glucose, and also inhibited glucose-induced insulin secretion. To further examine the effect of lactisole on T1R3, we prepared HEK293 cells stably expressing mouse T1R3. In these cells, sucralose elevated both [Ca2+]c and [cAMP]c. Lactisole attenuated the sucralose-induced increase in [Ca2+]c but did not affect the elevation of [cAMP]c. Finally, lactisole inhibited insulin secretion induced by a high concentration of glucose in mouse islets. These results indicate that the mouse glucose-sensing receptor was inhibited by lactisole. Lactisole may be useful in assessing the role of the glucose-sensing receptor in mouse pancreatic β-cells. © 2015 Society for Endocrinology.

  20. Histamine H2 receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H2 receptor internalization.

    PubMed

    Fernandez, Natalia; Monczor, Federico; Baldi, Alberto; Davio, Carlos; Shayo, Carina

    2008-10-01

    Agonist-induced internalization of G protein-coupled receptors (GPCRs) has been implicated in receptor desensitization, resensitization, and down-regulation. In the present study, we sought to establish whether the histamine H2 receptor (H2r) agonist amthamine, besides promoting receptor desensitization, induced H2r internalization. We further studied the mechanisms involved and its potential role in receptor resensitization. In COS7 transfected cells, amthamine induced H2r time-dependent internalization, showing 70% of receptor endocytosis after 60-min exposure to amthamine. Agonist removal led to the rapid recovery of resensitized receptors to the cell surface. Similar results were obtained in the presence of cycloheximide, an inhibitor of protein synthesis. Treatment with okadaic acid, an inhibitor of the protein phosphatase 2A (PP2A) family of phosphatases, reduced the recovery of both H2r membrane sites and cAMP response. Arrestin 3 but not arrestin 2 overexpression reduced both H2r membrane sites and H2r-evoked cAMP response. Receptor cotransfection with dominant-negative mutants for arrestin, dynamin, Eps15 (a component of the clathrin-mediated endocytosis machinery), or RNA interference against arrestin 3 abolished both H2r internalization and resensitization. Similar results were obtained in U937 cells endogenously expressing H2r. Our findings suggest that amthamine-induced H2r internalization is crucial for H2r resensitization, processes independent of H2r de novo synthesis but dependent on PP2A-mediated dephosphorylation. Although we do not provide direct evidence for H2r interaction with beta-arrestin, dynamin, and/or clathrin, our results support their involvement in H2r endocytosis. The rapid receptor recycling to the cell surface and the specific involvement of arrestin 3 in receptor internalization further suggest that the H2r belongs to class A GPCRs.

  1. An Essential Role for the K+-dependent Na+/Ca2+-exchanger, NCKX4, in Melanocortin-4-receptor-dependent Satiety*

    PubMed Central

    Li, Xiao-Fang; Lytton, Jonathan

    2014-01-01

    K+-dependent Na+/Ca2+-exchangers are broadly expressed in various tissues, and particularly enriched in neurons of the brain. The distinct physiological roles for the different members of this Ca2+ transporter family are, however, not well described. Here we show that gene-targeted mice lacking the K+-dependent Na+/Ca2+-exchanger, NCKX4 (gene slc24a4 or Nckx4), display a remarkable anorexia with severe hypophagia and weight loss. Feeding and satiety are coordinated centrally by melanocortin-4 receptors (MC4R) in neurons of the hypothalamic paraventricular nucleus (PVN). The hypophagic response of Nckx4 knock-out mice is accompanied by hyperactivation of neurons in the PVN, evidenced by high levels of c-Fos expression. The activation of PVN neurons in both fasted Nckx4 knock-out and glucose-injected wild-type animals is blocked by Ca2+ removal and MC4R antagonists. In cultured hypothalamic neurons, melanocyte stimulating hormone induces an MC4R-dependent and sustained Ca2+ signal, which requires phospholipase C activity and plasma membrane Ca2+ entry. The Ca2+ signal is enhanced in hypothalamic neurons from Nckx4 knock-out animals, and is depressed in cells in which NCKX4 is overexpressed. Finally, MC4R-dependent oxytocin expression in the PVN, a key essential step in satiety, is prevented by blocking phospholipase C activation or Ca2+ entry. These findings highlight an essential, and to our knowledge previously unknown, role for Ca2+ signaling in the MC4R pathway that leads to satiety, and a novel non-redundant role for NCKX4-mediated Ca2+ extrusion in controlling MC4R signaling and feeding behavior. Together, these findings highlight a novel pathway that potentially could be exploited to develop much needed new therapeutics to tackle eating disorders and obesity. PMID:25096581

  2. Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3.

    PubMed

    Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko

    2014-01-01

    The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.

  3. Transforming Growth Factor-B Receptors in Human Breast Cancer.

    DTIC Science & Technology

    1998-05-01

    I., Polyak, K., Iavarone, A., and Massagud, J. Kip/ Cip and Ink4 cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-ß. Genes Dev...specimens. Thirdly, we have developped transient transfection assays to determine how specific TßR mutations affect affect receptor function. Using...Growth Factor-ß (TGFß) is the most potent known inhibitor of cell cycle progression of normal mammary epithelial cells; in addition, it causes cells

  4. Mediator-dependent Nuclear Receptor Functions

    PubMed Central

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  5. TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.

    PubMed

    Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern

    2015-05-19

    The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Insulin growth factor-1 (IGF-1) enhances hippocampal excitatory and seizure activity through IGF-1 receptor-mediated mechanisms in the epileptic brain.

    PubMed

    Jiang, Guohui; Wang, Wei; Cao, Qingqing; Gu, Juan; Mi, Xiujuan; Wang, Kewei; Chen, Guojun; Wang, Xuefeng

    2015-12-01

    Insulin-like growth factor-1 (IGF-1) is known to promote neurogenesis and survival. However, recent studies have suggested that IGF-1 regulates neuronal firing and excitatory neurotransmission. In the present study, focusing on temporal lobe epilepsy, we found that IGF-1 levels and IGF-1 receptor activation are increased in human epileptogenic tissues, and pilocarpine- and pentylenetetrazole-treated rat models. Using an acute model of seizures, we showed that lateral cerebroventricular infusion of IGF-1 elevates IGF-1 receptor (IGF-1R) signalling before pilocarpine application had proconvulsant effects. In vivo electroencephalogram recordings and power spectrogram analysis of local field potential revealed that IGF-1 promotes epileptiform activities. This effect is diminished by co-application of an IGF-1R inhibitor. In an in vitro electrophysiological study, we demonstrated that IGF-1 enhancement of excitatory neurotransmission and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor- and N-methyl-D-aspartate receptor-mediated currents is inhibited by IGF-1R inhibitor. Finally, activation of extracellular signal-related kinase (ERK)-1/2 and protein kinase B (Akt) in seizures in rats is increased by exogenous IGF-1 and diminished by picropodophyllin. A behavioural study reveals that the ERK1/2 or Akt inhibitor attenuates seizure activity. These results indicate that increased IGF-1 levels after recurrent hippocampal neuronal firings might, in turn, promote seizure activity via IGF-1R-dependent mechanisms. The present study presents a previously unappreciated role of IGF-1R in the development of seizure activity. © 2015 Authors; published by Portland Press Limited.

  7. Targeting cancer stem cell plasticity through modulation of epidermal growth factor and insulin-like growth factor receptor signaling in head and neck squamous cell cancer.

    PubMed

    Leong, Hui Sun; Chong, Fui Teen; Sew, Pui Hoon; Lau, Dawn P; Wong, Bernice H; Teh, Bin-Tean; Tan, Daniel S W; Iyer, N Gopalakrishna

    2014-09-01

    Emerging data suggest that cancer stem cells (CSCs) exist in equilibrium with differentiated cells and that stochastic transitions between these states can account for tumor heterogeneity and drug resistance. The aim of this study was to establish an in vitro system that recapitulates stem cell plasticity in head and neck squamous cell cancers (HNSCCs) and identify the factors that play a role in the maintenance and repopulation of CSCs. Tumor spheres were established using patient-derived cell lines via anchorage-independent cell culture techniques. These tumor spheres were found to have higher aldehyde dehydrogenase (ALD) cell fractions and increased expression of Kruppel-like factor 4, SRY (sex determining region Y)-box 2, and Nanog and were resistant to γ-radiation, 5-fluorouracil, cisplatin, and etoposide treatment compared with monolayer culture cells. Monolayer cultures were subject to single cell cloning to generate clones with high and low ALD fractions. ALDHigh clones showed higher expression of stem cell and epithelial-mesenchymal transition markers compared with ALDLow clones. ALD fractions, representing stem cell fractions, fluctuated with serial passaging, equilibrating at a level specific to each cell line, and could be augmented by the addition of epidermal growth factor (EGF) and/or insulin. ALDHigh clones showed increased EGF receptor (EGFR) and insulin-like growth factor-1 receptor (IGF-1R) phosphorylation, with increased activation of downstream pathways compared with ALDLow clones. Importantly, blocking these pathways using specific inhibitors against EGFR and IGF-1R reduced stem cell fractions drastically. Taken together, these results show that HNSCC CSCs exhibit plasticity, with the maintenance of the stem cell fraction dependent on the EGFR and IGF-1R pathways and potentially amenable to targeted therapeutics. ©AlphaMed Press.

  8. T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference.

    PubMed

    Brasser, Susan M; Norman, Meghan B; Lemon, Christian H

    2010-05-01

    Elevated alcohol consumption is associated with enhanced preference for sweet substances across species and may be mediated by oral alcohol-induced activation of neurobiological substrates for sweet taste. Here, we directly examined the contribution of the T1r3 receptor protein, important for sweet taste detection in mammals, to ethanol intake and preference and the neural processing of ethanol taste by measuring behavioral and central neurophysiological responses to oral alcohol in T1r3 receptor-deficient mice and their C57BL/6J background strain. T1r3 knockout and wild-type mice were tested in behavioral preference assays for long-term voluntary intake of a broad concentration range of ethanol, sucrose, and quinine. For neurophysiological experiments, separate groups of mice of each genotype were anesthetized, and taste responses to ethanol and stimuli of different taste qualities were electrophysiologically recorded from gustatory neurons in the nucleus of the solitary tract. Mice lacking the T1r3 receptor were behaviorally indifferent to alcohol (i.e., ∼50% preference values) at concentrations typically preferred by wild-type mice (5-15%). Central neural taste responses to ethanol in T1r3-deficient mice were significantly lower compared with C57BL/6J controls, a strain for which oral ethanol stimulation produced a concentration-dependent activation of sweet-responsive NTS gustatory neurons. An attenuated difference in ethanol preference between knockouts and controls at concentrations >15% indicated that other sensory and/or postingestive effects of ethanol compete with sweet taste input at high concentrations. As expected, T1r3 knockouts exhibited strongly suppressed behavioral and neural taste responses to sweeteners but did not differ from wild-type mice in responses to prototypic salt, acid, or bitter stimuli. These data implicate the T1r3 receptor in the sensory detection and transduction of ethanol taste.

  9. Regulation of neuronal pH by the metabotropic Zn(2+)-sensing Gq-coupled receptor, mZnR/GPR39.

    PubMed

    Ganay, Thibault; Asraf, Hila; Aizenman, Elias; Bogdanovic, Milos; Sekler, Israel; Hershfinkel, Michal

    2015-12-01

    Synaptically released Zn(2+) acts as a neurotransmitter, in part, by activating the postsynaptic metabotropic Zn(2+)-sensing Gq protein-coupled receptor (mZnR/GPR39). In previous work using epithelial cells, we described crosstalk between Zn(2+) signaling and changes in intracellular pH and/or extracellular pH (pHe). As pH changes accompany neuronal activity under physiological and pathological conditions, we tested whether Zn(2+) signaling is involved in regulation of neuronal pH. Here, we report that up-regulation of a major H(+) extrusion pathway, the Na(+)/H(+) exchanger (NHE), is induced by mZnR/GPR39 activation in an extracellular-regulated kinase 1/2-dependent manner in hippocampal neurons in vitro. We also observed that changes in pHe can modulate neuronal mZnR/GPR39-dependent signaling, resulting in reduced activity at pHe 8 or 6.5. Similarly, Zn(2+)-dependent extracellular-regulated kinase 1/2 phosphorylation and up-regulation of NHE activity were absent at acidic pHe. Thus, our results suggest that when pHe is maintained within the physiological range, mZnR/GPR39 activation can up-regulate NHE-dependent recovery from intracellular acidification. During acidosis, as pHe drops, mZnR/GPR39-dependent NHE activation is inhibited, thereby attenuating further H(+) extrusion. This mechanism may serve to protect neurons from excessive decreases in pHe. Thus, mZnR/GPR39 signaling provides a homeostatic adaptive process for regulation of intracellular and extracellular pH changes in the brain. We show that the postsynaptic metabotropic Zn(2+)-sensing Gq protein-coupled receptor (mZnR/GPR39) activation induces up-regulation of a major neuronal H(+) extrusion pathway, the Na(+)/H(+) exchanger (NHE), thereby enhancing neuronal recovery from intracellular acidification. Changes in extracellular pH (pHe), however, modulate neuronal mZnR/GPR39-dependent signaling, resulting in reduced activity at pHe 8 or 6.5. This mechanism may serve to protect neurons from excessive

  10. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.

    2006-04-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET{sub A} receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibitedmore » increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, {beta}-myosin heavy chain ({beta}-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET{sub A} receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and {beta}-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET{sub A} receptor as primary determinants of hypertension and cardiac pathology in AhR null mice.« less

  11. The Functional Role of the T1R Family of Receptors in Sweet Taste and Feeding

    PubMed Central

    Treesukosol, Yada; Smith, Kimberly R.; Spector, Alan C.

    2011-01-01

    The discovery of the T1R family of Class C G protein-coupled receptors in the peripheral gustatory system a decade ago has been a tremendous advance for taste research, and its conceptual reach has extended to other organ systems. There are three proteins in the family, T1R1, T1R2, and T1R3, encoded by their respective genes, Tas1r1, Tas1r2, and Tas1r3. T1R2 combines with T1R3 to form a heterodimer that binds with sugars and other sweeteners. T1R3 also combines with T1R1 to form a heterodimer that binds with L-amino acids. These proteins are expressed not only in taste bud cells, but one or more of these T1Rs have also been identified in the nasal epithelium, gut, pancreas, liver, kidney, testes and brain in various mammalian species. Here we review current perspectives regarding the functional role of these receptors, concentrating on sweet taste and feeding. We also discuss behavioral findings suggesting that a glucose polymer mixture, Polycose, which rodents avidly prefer, appears to activate a receptor that does not depend on the combined expression of T1R2 and T1R3. In addition, although the T1Rs have been implicated as playing a role in glucose sensing, T1R2 knock-out (KO) and T1R3 KO mice display normal chow and fluid intake as well as normal body weight compared with same-sex littermate wild type (WT) controls. Moreover, regardless of whether they are fasted or not, these KO mice do not differ from their WT counterparts in their Polycose intake across a broad range of concentrations in 30-min intake tests. The functional implications of these results and those in the literature are considered. PMID:21376068

  12. Monoclonal antibodies to alphaVbeta3 (7E3 and LM609) inhibit sickle red blood cell-endothelium interactions induced by platelet-activating factor.

    PubMed

    Kaul, D K; Tsai, H M; Liu, X D; Nakada, M T; Nagel, R L; Coller, B S

    2000-01-15

    Abnormal interaction of sickle red blood cells (SS RBC) with the vascular endothelium has been implicated as a factor in the initiation of vasoocclusion in sickle cell anemia. Both von Willebrand factor (vWf) and thrombospondin (TSP) play important roles in mediating SS RBC-endothelium interaction and can bind to the endothelium via alphaVbeta3 receptors. We have used monoclonal antibodies (MoAb) directed against alphaVbeta3 and alphaIIbbeta3 (GPIIb/IIIa) integrins to dissect the role of these integrins in SS RBC adhesion. The murine MoAb 7E3 inhibits both alphaVbeta3 and alphaIIbbeta3 (GPIIb/IIIa), whereas MoAb LM609 selectively inhibits alphaVbeta3, and MoAb 10E5 binds only to alphaIIbbeta3. In this study, we have tested the capacity of these MoAbs to block platelet-activating factor (PAF)-induced SS RBC adhesion in the ex vivo mesocecum vasculature of the rat. Infusion of washed SS RBC in preparations treated with PAF (200 pg/mL), with or without a control antibody, resulted in extensive adhesion of these cells in venules, accompanied by frequent postcapillary blockage and increased peripheral resistance units (PRU). PAF also caused increased endothelial surface and interendothelial expression of endothelial vWf. Importantly, pretreatment ofthe vasculature with either MoAb 7E3 F(ab')(2) or LM609, but not 10E5 F(ab')(2), after PAF almost completely inhibited SS RBC adhesion in postcapillary venules, the sites of maximal adhesion and frequent blockage. The inhibition of adhesion with 7E3 or LM609 was accompanied by smaller increases in PRU and shorter pressure-flow recovery times. Thus, blockade of alphaVbeta3 may constitute a potential therapeutic approach to prevent SS RBC-endothelium interactions under flow conditions. (Blood. 2000;95:368-374)

  13. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R.

    PubMed

    Chakraborty, Sanjukta; Nepiyushchikh, Zhanna; Davis, Michael J; Zawieja, David C; Muthuchamy, Mariappan

    2011-01-01

    The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delineate SP-mediated signaling pathways in lymphatics. We detected expression of neurokinin receptor 1 (NK1R) and neurokinin receptor 3 (NK3R) in RMLMCs. SP stimulation increased phosphorylation of myosin light chain 20 (MLC₂₀) as well as p38 mitogen associated protein kinase (p38-MAPK) and extracellular signal regulated kinase (ERK1/2) indicating activation of both a contractile and a pro-inflammatory MAPK pathway. Pharmacological inhibition of both NK1R and NK3R significantly affected the downstream SP signaling. We further examined whether there was any crosstalk between the two pathways upon SP stimulation. Inhibition of ERK1/2 decreased levels of p-MLC₂₀ after SP activation, in a PKC dependent manner, indicating a potential crosstalk between these two pathways. These data provide the first evidence that SP-mediated crosstalk between pro-inflammatory and contractile signaling mechanisms exists in the lymphatic system and may be an important bridge between lymphatic function modulation and inflammation. © 2010 John Wiley & Sons Ltd.

  14. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R

    PubMed Central

    Chakraborty, Sanjukta; Nepiyushchikh, Zhanna; Davis, Michael J.; Zawieja, David C.; Muthuchamy, Mariappan

    2010-01-01

    Objective The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. Methods A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delineate SP mediated signaling pathways in lymphatics. Results We detected expression of neurokinin receptor 1 (NK1R) and neurokinin receptor 3 (NK3R) in RMLMCs. SP stimulation increased phosphorylation of myosin light chain 20 (MLC20) as well as p38 mitogen associated protein kinase (p38-MAPK) and extracellular signal regulated kinase (ERK1/2) indicating activation of both a contractile and a pro-inflammatory MAPK pathway. Pharmacological inhibition of both NK1R and NK3R significantly affected the downstream SP signaling. We further examined whether there was any crosstalk between the two pathways upon SP stimulation. Inhibition of ERK1/2 decreased levels of p-MLC20 after SP activation, in a PKC dependent manner, indicating a potential crosstalk between these two pathways. Conclusions These data provide the first evidence that SP mediated crosstalk between pro-inflammatory and contractile signaling mechanisms exists in the lymphatic system and may be an important bridge between lymphatic function modulation and inflammation. PMID:21166923

  15. An Insulin-Like Growth Factor 1 Receptor Inhibitor Induces CYP3A4 Expression through a Pregnane X Receptor-Independent, Noncanonical Constitutive Androstane Receptor-Related Mechanism

    PubMed Central

    Li, Linhao; Sinz, Michael W.; Zimmermann, Kurt

    2012-01-01

    Inhibition of insulin-like growth factor-1 receptor (IGF-1R) signaling represents an attractive therapeutic strategy for cancer treatment. A first-generation IGF-1R inhibitor (R)-4-(3-(3-chlorophenyl)-3-hydroxypropyl)-3-(4-methyl-6-morpholino-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one (BMS-536924), however, was associated with potent CYP3A4 induction mediated by pregnane X receptor (PXR; NR1I2) transactivation. Structural activity-based modification led to the synthesis of 4-(1-(2-(4-((2-(4-chloro-1H-pyrazol-1-yl)ethyl)amino)-2-oxo-1,2-dihydropyridin-3-yl)-4-methyl-1H-benzo[d]imidazol-6-yl)piperidin-4-yl) piperazine-1-carboxylate (BMS-665351) with no PXR activity while maintaining its ability to inhibit IGF-1R. However, BMS-665351 significantly induces CYP3A4 expression in human primary hepatocytes (HPHs). Here, we report a novel nonclassical constitutive androstane receptor (CAR; NR1I3)-related pathway of BMS-665351-mediated CYP3A4 induction. BMS-665351 treatment resulted in the significant induction of CYP3A4 in HPHs and HepG2 cells, but failed to activate either PXR or CAR in cell-based reporter assays. Moreover, BMS-665351 at concentrations that induce CYP3A4 expression was unable to translocate human CAR from the cytoplasm to the nucleus of HPHs, which represents the initial step of CAR activation. Nevertheless, quantitative polymerase chain reaction analysis demonstrated that BMS-665351 significantly enhanced the expression of CYP3A4 in CAR- but not PXR-transfected HepG2 and Huh7 cells. It is noteworthy that BMS-665351 selectively induced the expression of CAR but not PXR in all tested hepatic cell systems. Synergistic induction of CYP3A4 was observed in HPHs cotreated with BMS-665351 and prototypical activators of CAR but not PXR. In summary, our results indicate that BMS-665351-mediated induction of CYP3A4 is CAR-dependent, but BMS-665351 itself is not a typical activator of either CAR or PXR, rather it functions as a selective inducer of CAR expression and

  16. Caveolin-1 knockout mice exhibit impaired induction of mGluR-dependent long-term depression at CA3-CA1 synapses.

    PubMed

    Takayasu, Yukihiro; Takeuchi, Koichi; Kumari, Ranju; Bennett, Michael V L; Zukin, R Suzanne; Francesconi, Anna

    2010-12-14

    Group I metabotropic glutamate receptors (mGluR1/5) are important to synaptic circuitry formation during development and to forms of activity-dependent synaptic plasticity. Dysregulation of mGluR1/5 signaling is implicated in some disorders of neurodevelopment, including fragile X syndrome, the most common inherited form of intellectual disabilities and leading cause of autism. Site(s) in the intracellular loops of mGluR1/5 directly bind caveolin-1, an adaptor protein that associates with membrane rafts. Caveolin-1 is the main coat component of caveolae and organizes macromolecular signaling complexes with effector proteins and membrane receptors. We report that long-term depression (LTD) elicited by a single application of the group I mGluR selective agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) was markedly attenuated at Schaffer collateral-CA1 synapses of mice lacking caveolin-1 (Cav1(-/-)), as assessed by field recording. In contrast, multiple applications of DHPG produced LTD comparable to that in WT mice. Passive membrane properties, basal glutamatergic transmission and NMDA receptor (NMDAR)-dependent LTD were unaltered. The remaining LTD was reduced by anisomycin, an inhibitor of protein synthesis, by U0126, an inhibitor of MEK1/2 kinases, and by rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), suggesting mediation by the same mechanisms as in WT. mGluR1/5-dependent activation (phosphorylation) of MEK and extracellular signal-regulated kinase (ERK1/2) was altered in Cav1(-/-) mice; basal phosphorylation was increased, but a single application of DHPG had no further effect, and after DHPG, phosphorylation was similar in WT and Cav1(-/-) mice. Taken together, our findings suggest that caveolin-1 is required for normal coupling of mGluR1/5 to downstream signaling cascades and induction of mGluR-LTD.

  17. Carboxyl‐terminal Heparin‐binding Fragments of Platelet Factor 4 Retain the Blocking Effect on the Receptor Binding of Basic Fibroblast Growth Factor

    PubMed Central

    Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie

    1993-01-01

    Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164

  18. The ELAV RNA-stability factor HuR binds the 5′-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation

    PubMed Central

    Meng, Zheng; King, Peter H.; Nabors, L. Burt; Jackson, Nateka L.; Chen, Ching-Yi; Emanuel, Peter D.; Blume, Scott W.

    2005-01-01

    The type I insulin-like growth factor receptor (IGF-IR) is an integral component in the control of cell proliferation, differentiation and apoptosis. The IGF-IR mRNA contains an extraordinarily long (1038 nt) 5′-untranslated region (5′-UTR), and we have characterized a diverse series of proteins interacting with this RNA sequence which may provide for intricate regulation of IGF-IR gene expression at the translational level. Here, we report the purification and identification of one of these IGF-IR 5′-UTR-binding proteins as HuR, using a novel RNA crosslinking/RNase elution strategy. Because HuR has been predominantly characterized as a 3′-UTR-binding protein, enhancing mRNA stability and generally increasing gene expression, we sought to determine whether HuR might serve a different function in the context of its binding the IGF-IR 5′-UTR. We found that HuR consistently repressed translation initiation through the IGF-IR 5′-UTR. The inhibition of translation by HuR was concentration dependent, and could be reversed in trans by addition of a fragment of the IGF-IR 5′-UTR containing the HuR binding sites as a specific competitor, or abrogated by deletion of the third RNA recognition motif of HuR. We determined that HuR repressed translation initiation through the IGF-IR 5′-UTR in cells as well, and that siRNA knockdown of HuR markedly increased IGF-IR protein levels. Interestingly, we also found that HuR potently inhibited IGF-IR translation mediated through internal ribosome entry. Kinetic assays were performed to investigate the mechanism of translation repression by HuR and the dynamic interplay between HuR and the translation apparatus. We found that HuR, occupying a cap-distal position, significantly delayed translation initiation mediated by cap-dependent scanning, but was eventually displaced from its binding site, directly or indirectly, as a consequence of ribosomal scanning. However, HuR perpetually blocked the activity of the IGF-IR IRES

  19. R- and S-terbutaline activate large conductance and Ca2+ dependent K+ (BKCa) channel through interacting with β2 and M receptor respectively.

    PubMed

    Fan, Zhuo; Lin, Wei; Lv, Nanying; Ye, Yanrui; Tan, Wen

    2016-11-01

    This study investigated the effect of the β 2 receptor agonist terbutaline on the single channel activity of BK Ca channel. The effects of racemate and two isomers of terbutaline were all assessed. β 2 adrenoceptors were stably overexpressed on HEK293 cells by lentiviral transduction method and chicken BK Ca channels were transiently expressed on normal HEK293 cell line or HEK293 cells overexpressing β 2 receptors. Data showed that terbutaline significantly increased the single channel open probability of BK Ca channel within 10min. The channel activating effects of terbutaline are stereoselective and mainly stay with the R-enantiomers. The opening probability of BK Ca channel at 10min after drug application normalized to that just before drug application (Po10/Po0s) for R- and S-terbutaline were 7.85±3.20 and 1.06±0.45 respectively at 1μM concentration, corresponding to 28.37±9.96 and 2.68±1.09 at the higher concentration of 10μM. ICI 118551 blocked the effect of R- but not S-terbutaline (10μM), whereas atropine blocked the channel activating effects of S-terbutaline of higher concentration. In addition, the muscarinic receptor agonist carbachol increased the BK Ca channel activity in an atropine-sensitive manner as an positive control experiment, which indicate the involvement of M receptor in the channel activating effect of S-terbutaline. Copyright © 2016. Published by Elsevier B.V.

  20. Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells.

    PubMed

    Seo, Yoona; Kim, Yoo-Sun; Lee, Kyung Eun; Park, Tai Hyun; Kim, Yuri

    2017-01-01

    Neuroblastoma (NB) originates from immature neuronal cells and currently has a poor clinical outcome. NB cells possess cancer stem cells (CSCs) characteristics that facilitate the initiation of a tumor, as well as its metastasis. Human bitter taste receptors, referred to as TAS2Rs, are one of five types of basic taste receptors and they belong to a family of G-protein coupled receptors. The recent finding that taste receptors are expressed in non-gustatory tissues suggest that they mediate additional functions distinct from taste perception. While it is generally admitted that the recognition of bitter tastes may be associated with a self-defense system to prevent the ingestion of poisonous food compounds, this recognition may also serve as a disease-related function in the human body. In particular, the anti-cancer stemness and invasion effects of TAS2Rs on NB cells remain poorly understood. In the present study, endogenous expression of TAS2R8 and TAS2R10 in SK-N-BE(2)C and SH-SY5Y cells was examined. In addition, higher levels of TAS2R8 and TAS2R10 expression were investigated in more differentiated SY5Y cells. Both TAS2Rs were up-regulated following the induction of neuronal cell differentiation by retinoic acid. In addition, ectopic transfection of the two TAS2Rs induced neurite elongation in the BE(2)C cells, and down-regulated CSCs markers (including DLK1, CD133, Notch1, and Sox2), and suppressed self-renewal characteristics. In particular, TAS2RS inhibited tumorigenicity. Furthermore, when TAS2Rs was over-expressed, cell migration, cell invasion, and matrix metalloproteinases activity were inhibited. Expression levels of hypoxia-inducible factor-1α, a well-known regulator of tumor metastasis, as well as its downstream targets, vascular endothelial growth factor and glucose transporter-1, were also suppressed by TAS2Rs. Taken together, these novel findings suggest that TAS2Rs targets CSCs by suppressing cancer stemness characteristics and NB cell invasion

  1. Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells

    PubMed Central

    Seo, Yoona; Kim, Yoo-Sun; Lee, Kyung Eun; Park, Tai Hyun; Kim, Yuri

    2017-01-01

    Neuroblastoma (NB) originates from immature neuronal cells and currently has a poor clinical outcome. NB cells possess cancer stem cells (CSCs) characteristics that facilitate the initiation of a tumor, as well as its metastasis. Human bitter taste receptors, referred to as TAS2Rs, are one of five types of basic taste receptors and they belong to a family of G-protein coupled receptors. The recent finding that taste receptors are expressed in non-gustatory tissues suggest that they mediate additional functions distinct from taste perception. While it is generally admitted that the recognition of bitter tastes may be associated with a self-defense system to prevent the ingestion of poisonous food compounds, this recognition may also serve as a disease-related function in the human body. In particular, the anti-cancer stemness and invasion effects of TAS2Rs on NB cells remain poorly understood. In the present study, endogenous expression of TAS2R8 and TAS2R10 in SK-N-BE(2)C and SH-SY5Y cells was examined. In addition, higher levels of TAS2R8 and TAS2R10 expression were investigated in more differentiated SY5Y cells. Both TAS2Rs were up-regulated following the induction of neuronal cell differentiation by retinoic acid. In addition, ectopic transfection of the two TAS2Rs induced neurite elongation in the BE(2)C cells, and down-regulated CSCs markers (including DLK1, CD133, Notch1, and Sox2), and suppressed self-renewal characteristics. In particular, TAS2RS inhibited tumorigenicity. Furthermore, when TAS2Rs was over-expressed, cell migration, cell invasion, and matrix metalloproteinases activity were inhibited. Expression levels of hypoxia-inducible factor-1α, a well-known regulator of tumor metastasis, as well as its downstream targets, vascular endothelial growth factor and glucose transporter-1, were also suppressed by TAS2Rs. Taken together, these novel findings suggest that TAS2Rs targets CSCs by suppressing cancer stemness characteristics and NB cell invasion

  2. Activation of 5-HT7 receptors reverses NMDA-R-dependent LTD by activating PKA in medial vestibular neurons.

    PubMed

    Li, Yan-Hai; Han, Lei; Wu, Kenneth Lap Kei; Chan, Ying-Shing

    2017-09-01

    The medial vestibular nucleus (MVN) is a major output station for neurons that project to the vestibulo-spinal pathway. MVN neurons show capacity for long-term depression (LTD) during the juvenile period. We investigated LTD of MVN neurons using whole-cell patch-clamp recordings. High frequency stimulation (HFS) robustly induced LTD in 90% of type B neurons in the MVN, while only 10% of type A neurons were responsive, indicating that type B neurons are the major contributors to LTD in the MVN. The neuromodulator serotonin (5-HT) is known to modulate LTD in neural circuits of the cerebral cortex and the hippocampus. We therefore aim to determine the action of 5-HT on the LTD of type B MVN neurons and elucidate the relevant 5-HT receptor subtypes responsible for its action. Using specific agonists and antagonists of 5-HT receptors, we found that selective activation of 5-HT 7 receptor in type B neurons in the MVN of juvenile (P13-16) rats completely abolished NMDA-receptor-mediated LTD in a protein kinase A (PKA)-dependent manner. Our finding that 5-HT restricts plasticity of type B MVN neurons via 5-HT 7 receptors offers a mechanism whereby vestibular tuning contributes to the maturation of the vestibulo-spinal circuit and highlights the role of 5-HT in postural control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    PubMed

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier

  4. Correlation between erythropoietin receptor(s) and estrogen and progesterone receptor expression in different breast cancer cell lines.

    PubMed

    Trošt, Nina; Hevir, Neli; Rižner, Tea Lanišnik; Debeljak, Nataša

    2013-03-01

    Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways

  5. Picomolar platelet-activating factor mobilizes Ca to change platelet shape without activating phospholipase C or protein kinase C; simultaneous fluorometric measurement of intracellular free Ca concentration and aggregation.

    PubMed

    James-Kracke, M R; Sexe, R B; Shukla, S D

    1994-11-01

    The purpose of this study was to investigate signal transduction mechanisms activated by low and high concentrations of platelet-activating factor (PAF) in rabbit platelets and to contrast the responses to those induced by thrombin. We measured changes in intracellular free calcium ([Ca++]i) with fura2, while monitoring light scatter simultaneously as a measure of shape change and aggregation in a dual-excitation dual-emission spectrofluorometer. An abrupt 20% fall in light scatter, coincident with the peak of the [Ca++]i, indicated shape change in Ca-containing or Ca-free medium and was blocked by BAPTA loading and 10 microM cytochalasin B. A secondary decline in light scatter, indicating aggregation, occurred only in Ca-containing medium and only under conditions favoring protein kinase C (PKC) activation. PAF at 10(-12) M did not increase 1,4,5-inositol triphosphate content, which suggested PKC would not be activated. However, PAF at 10(-12) rapidly increased [Ca++]i to 900 nM in 7 sec seemingly by Ca influx through receptor-operated channels inducing shape change. PAF at 10(-9) and 10(-8) M increased [Ca++]i to 2 microM in 12 sec and induced both shape change and aggregation. However, in platelets pretreated with 100 nM staurosporine to inhibit protein kinases, 10(-9) M PAF did not cause aggregation even though [Ca++]i still rose to 2 microM, which indicated that PKC plays a role in aggregation but not in Ca++ mobilization.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Serratia marcescens Cyclic AMP Receptor Protein Controls Transcription of EepR, a Novel Regulator of Antimicrobial Secondary Metabolites.

    PubMed

    Stella, Nicholas A; Lahr, Roni M; Brothers, Kimberly M; Kalivoda, Eric J; Hunt, Kristin M; Kwak, Daniel H; Liu, Xinyu; Shanks, Robert M Q

    2015-08-01

    Serratia marcescens generates secondary metabolites and secreted enzymes, and it causes hospital infections and community-acquired ocular infections. Previous studies identified cyclic AMP (cAMP) receptor protein (CRP) as an indirect inhibitor of antimicrobial secondary metabolites. Here, we identified a putative two-component regulator that suppressed crp mutant phenotypes. Evidence supports that the putative response regulator eepR was directly transcriptionally inhibited by cAMP-CRP. EepR and the putative sensor kinase EepS were necessary for the biosynthesis of secondary metabolites, including prodigiosin- and serratamolide-dependent phenotypes, swarming motility, and hemolysis. Recombinant EepR bound to the prodigiosin and serratamolide promoters in vitro. Together, these data introduce a novel regulator of secondary metabolites that directly connects the broadly conserved metabolism regulator CRP with biosynthetic genes that may contribute to competition with other microbes. This study identifies a new transcription factor that is directly controlled by a broadly conserved transcription factor, CRP. CRP is well studied in its role to help bacteria respond to the amount of nutrients in their environment. The new transcription factor EepR is essential for the bacterium Serratia marcescens to produce two biologically active compounds, prodigiosin and serratamolide. These two compounds are antimicrobial and may allow S. marcescens to compete for limited nutrients with other microorganisms. Results from this study tie together the CRP environmental nutrient sensor with a new regulator of antimicrobial compounds. Beyond microbial ecology, prodigiosin and serratamolide have therapeutic potential; therefore, understanding their regulation is important for both applied and basic science. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Non-conventional Frizzled ligands and Wnt receptors.

    PubMed

    Hendrickx, Marijke; Leyns, Luc

    2008-05-01

    The Wnt family of secreted signaling factors plays numerous roles in embryonic development and in stem cell biology. In the adult, Wnt signaling is involved in tissue homeostasis and mutations that lead to the overexpression of Wnt can be linked to cancer. Wnt signaling is transduced intracellularly by the Frizzled (Fzd) family of receptors. In the canonical pathway, accumulation of beta-catenin and the subsequent formation of a complex with T cell factors (TCF) or lymphoid enhancing factors (Lef) lead to target gene activation. The identification of Ryk as an alternative Wnt receptor and the discovery of the novel Fzd ligands Norrie disease protein (NDP) and R-Spondin, changed the traditional view of Wnts binding to Fzd receptors. Mouse R-Spondin cooperates with Wnt signaling and Low density lipoprotein (LDL) receptor related protein (LRP) to activate beta-catenin dependent gene expression and is involved in processes such as limb and placental development in the mouse. NDP is the product of the Norrie disease gene and controls vascular development in the retina, inner ear and in the female reproductive system during pregnancy. In this review a functional overview of the interactions of the different Wnt and non-Wnt ligands with the Fzd receptors is given as well as a survey of Wnts binding to Ryk and we discuss the biological significance of these interactions.

  8. Low Dopamine D2/D3 Receptor Availability is Associated with Steep Discounting of Delayed Rewards in Methamphetamine Dependence

    PubMed Central

    Ballard, Michael E.; Mandelkern, Mark A.; Monterosso, John R.; Hsu, Eustace; Robertson, Chelsea L.; Ishibashi, Kenji; Dean, Andy C.

    2015-01-01

    Background: Individuals with substance use disorders typically exhibit a predilection toward instant gratification with apparent disregard for the future consequences of their actions. Indirect evidence suggests that low dopamine D2-type receptor availability in the striatum contributes to the propensity of these individuals to sacrifice long-term goals for short-term gain; however, this possibility has not been tested directly. We investigated whether striatal D2/D3 receptor availability is negatively correlated with the preference for smaller, more immediate rewards over larger, delayed alternatives among research participants who met DSM-IV criteria for methamphetamine (MA) dependence. Methods: Fifty-four adults (n = 27 each: MA-dependent, non-user controls) completed the Kirby Monetary Choice Questionnaire, and underwent positron emission tomography scanning with [18F]fallypride. Results: MA users displayed steeper temporal discounting (p = 0.030) and lower striatal D2/D3 receptor availability (p < 0.0005) than controls. Discount rate was negatively correlated with striatal D2/D3 receptor availability, with the relationship reaching statistical significance in the combined sample (r = -0.291, p = 0.016) and among MA users alone (r = -0.342, p = 0.041), but not among controls alone (r = -0.179, p = 0.185); the slopes did not differ significantly between MA users and controls (p = 0.5). Conclusions: These results provide the first direct evidence of a link between deficient D2/D3 receptor availability and steep temporal discounting. This finding fits with reports that low striatal D2/D3 receptor availability is associated with a higher risk of relapse among stimulant users, and may help to explain why some individuals choose to continue using drugs despite knowledge of their eventual negative consequences. Future research directions and therapeutic implications are discussed. PMID:25603861

  9. Low Dopamine D2/D3 Receptor Availability is Associated with Steep Discounting of Delayed Rewards in Methamphetamine Dependence.

    PubMed

    Ballard, Michael E; Mandelkern, Mark A; Monterosso, John R; Hsu, Eustace; Robertson, Chelsea L; Ishibashi, Kenji; Dean, Andy C; London, Edythe D

    2015-01-20

    Individuals with substance use disorders typically exhibit a predilection toward instant gratification with apparent disregard for the future consequences of their actions. Indirect evidence suggests that low dopamine D2-type receptor availability in the striatum contributes to the propensity of these individuals to sacrifice long-term goals for short-term gain; however, this possibility has not been tested directly. We investigated whether striatal D2/D3 receptor availability is negatively correlated with the preference for smaller, more immediate rewards over larger, delayed alternatives among research participants who met DSM-IV criteria for methamphetamine (MA) dependence. Fifty-four adults (n = 27 each: MA-dependent, non-user controls) completed the Kirby Monetary Choice Questionnaire, and underwent positron emission tomography scanning with [(18)F]fallypride. MA users displayed steeper temporal discounting (p = 0.030) and lower striatal D2/D3 receptor availability (p < 0.0005) than controls. Discount rate was negatively correlated with striatal D2/D3 receptor availability, with the relationship reaching statistical significance in the combined sample (r = -0.291, p = 0.016) and among MA users alone (r = -0.342, p = 0.041), but not among controls alone (r = -0.179, p = 0.185); the slopes did not differ significantly between MA users and controls (p = 0.5). These results provide the first direct evidence of a link between deficient D2/D3 receptor availability and steep temporal discounting. This finding fits with reports that low striatal D2/D3 receptor availability is associated with a higher risk of relapse among stimulant users, and may help to explain why some individuals choose to continue using drugs despite knowledge of their eventual negative consequences. Future research directions and therapeutic implications are discussed. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  10. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    PubMed

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  11. The Odorant ( R)-Citronellal Attenuates Caffeine Bitterness by Inhibiting the Bitter Receptors TAS2R43 and TAS2R46.

    PubMed

    Suess, Barbara; Brockhoff, Anne; Meyerhof, Wolfgang; Hofmann, Thomas

    2018-03-14

    Sensory studies showed the volatile fraction of lemon grass and its main constituent, the odor-active citronellal, to significantly decrease the perceived bitterness of a black tea infusion as well as caffeine solutions. Seven citronellal-related derivatives were synthesized and shown to inhibit the perceived bitterness of caffeine in a structure-dependent manner. The aldehyde function at carbon 1, the ( R)-configuration of the methyl-branched carbon 3, and a hydrophobic carbon chain were found to favor the bitter inhibitory activity of citronellal; for example, even low concentrations of 25 ppm were observed to reduce bitterness perception of caffeine solution (6 mmol/L) by 32%, whereas ( R)-citronellic acid (100 pm) showed a reduction of only 21% and ( R)-citronellol (100 pm) was completely inactive. Cell-based functional experiments, conducted with the human bitter taste receptors TAS2R7, TAS2R10, TAS2R14, TAS2R43, and TAS2R46 reported to be sensitive to caffeine, revealed ( R)-citronellal to completely block caffeine-induced calcium signals in TAS2R43-expressing cells, and, to a lesser extent, in TAS2R46-expressing cells. Stimulation of TAS2R43-expressing cells with structurally different bitter agonists identified ( R)-citronellal as a general allosteric inhibitor of TAS2R43. Further structure/activity studies indicated 3-methyl-branched aliphatic aldehydes with a carbon chain of ≥4 C atoms as best TAS2R43 antagonists. Whereas odor-taste interactions have been mainly interpreted in the literature to be caused by a central neuronal integration of odors and tastes, rather than by peripheral events at the level of reception, the findings of this study open up a new dimension regarding the interaction of the two chemical senses.

  12. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology.

    PubMed

    Fuxe, K; Marcellino, D; Rivera, A; Diaz-Cabiale, Z; Filip, M; Gago, B; Roberts, D C S; Langel, U; Genedani, S; Ferraro, L; de la Calle, A; Narvaez, J; Tanganelli, S; Woods, A; Agnati, L F

    2008-08-01

    Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson's disease, schizophrenia and drug addiction or drug dependence may substantially build on the existence of intramembrane receptor-receptor interactions within dopamine receptor containing receptor mosaics (RM; dimeric or high-order receptor oligomers) where it is believed that the dopamine D(2) receptor may operate as the 'hub receptor' within these complexes. The constitutive adenosine A(2A)/dopamine D(2) RM, located in the dorsal striato-pallidal GABA neurons, are of particular interest in view of the demonstrated antagonistic A(2A)/D(2) interaction within these heteromers; an interaction that led to the suggestion and later demonstration that A(2A) antagonists could be used as novel anti-Parkinsonian drugs. Based on the likely existence of A(2A)/D(2)/mGluR5 RM located both extrasynaptically on striato-pallidal GABA neurons and on cortico-striatal glutamate terminals, multiple receptor-receptor interactions within this RM involving synergism between A(2A)/mGluR5 to counteract D(2) signaling, has led to the proposal of using combined mGluR5 and A(2A) antagonists as a future anti-Parkinsonian treatment. Based on the same RM in the ventral striato-pallidal GABA pathways, novel strategies for the treatment of schizophrenia, building on the idea that A(2A) agonists and/or mGluR5 agonists will help reduce the increased dopaminergic signaling associated with this disease, have been suggested. Such treatment may ensure the proper glutamatergic drive from the mediodorsal thalamic nucleus to the prefrontal cortex, one which is believed to be reduced in schizophrenia due to a dominance of D(2)-like signaling in the ventral striatum. Recently, A(2A) receptors also have been shown to counteract the locomotor and sensitizing actions of cocaine and increases in A(2A) receptors have also been observed in the nucleus accumbens after extended cocaine self-administration, probably

  13. NFIL3 suppresses hypoxia-induced apoptotic cell death by targeting the insulin-like growth factor 2 receptor.

    PubMed

    Lin, Kuan-Ho; Kuo, Chia-Hua; Kuo, Wei-Wen; Ho, Tsung-Jung; Pai, Peiying; Chen, Wei-Kung; Pan, Lung-Fa; Wang, Chien-Cheng; Padma, V Vijaya; Huang, Chih-Yang

    2015-06-01

    The insulin-like growth factor-II/mannose 6-phosphate receptor (IGF2R) over-expression correlates with heart disease progression. The IGF2R is not only an IGF2 clearance receptor, but it also triggers signal transduction, resulting in cardiac hypertrophy, apoptosis and fibrosis. The present study investigated the nuclear factor IL-3 (NFIL3), a transcription factor of the basic leucine zipper superfamily, and its potential pro-survival effects in cardiomyocytes. NFIL3 might play a key role in heart development and act as a survival factor in the heart, but the regulatory mechanisms are still unclear. IGF2 and IGF2R protein expression were highly increased in rat hearts subjected to hemorrhagic shock. IGF2R protein expression was also up-regulated in H9c2 cells exposed to hypoxia. Over-expression of NFIL3 in H9c2 cardiomyoblast cells inhibited the induction of hypoxia-induced apoptosis and down-regulated IGF2R expression levels. Gel shift assay, double-stranded DNA pull-down assay and chromatin immune-precipitation analyses indicated that NFIL3 binds directly to the IGF2R promoter region. Using a luciferase assay, we further observed NFIL3 repress IGF2R gene promoter activity. Our results demonstrate that NFIL3 is an important negative transcription factor, which through binding to the promoter of IGF2R, suppresses the apoptosis induced by IGF2R signaling in H9c2 cardiomyoblast cells under hypoxic conditions. © 2015 Wiley Periodicals, Inc.

  14. Selective regulation of clathrin-mediated epidermal growth factor receptor signaling and endocytosis by phospholipase C and calcium.

    PubMed

    Delos Santos, Ralph Christian; Bautista, Stephen; Lucarelli, Stefanie; Bone, Leslie N; Dayam, Roya M; Abousawan, John; Botelho, Roberto J; Antonescu, Costin N

    2017-10-15

    Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca 2+ , or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca 2+ - and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca 2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes. © 2017 Delos Santos et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. The miR-199-dynamin regulatory axis controls receptor-mediated endocytosis.

    PubMed

    Aranda, Juan F; Canfrán-Duque, Alberto; Goedeke, Leigh; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-09-01

    Small non-coding RNAs (microRNAs) are important regulators of gene expression that modulate many physiological processes; however, their role in regulating intracellular transport remains largely unknown. Intriguingly, we found that the dynamin (DNM) genes, a GTPase family of proteins responsible for endocytosis in eukaryotic cells, encode the conserved miR-199a and miR-199b family of miRNAs within their intronic sequences. Here, we demonstrate that miR-199a and miR-199b regulate endocytic transport by controlling the expression of important mediators of endocytosis such as clathrin heavy chain (CLTC), Rab5A, low-density lipoprotein receptor (LDLR) and caveolin-1 (Cav-1). Importantly, miR-199a-5p and miR-199b-5p overexpression markedly inhibits CLTC, Rab5A, LDLR and Cav-1 expression, thus preventing receptor-mediated endocytosis in human cell lines (Huh7 and HeLa). Of note, miR-199a-5p inhibition increases target gene expression and receptor-mediated endocytosis. Taken together, our work identifies a new mechanism by which microRNAs regulate intracellular trafficking. In particular, we demonstrate that the DNM, miR-199a-5p and miR-199b-5p genes act as a bifunctional locus that regulates endocytosis, thus adding an unexpected layer of complexity in the regulation of intracellular trafficking. © 2015. Published by The Company of Biologists Ltd.

  16. Targeting Death Receptor TRAIL-R2 by Chalcones for TRAIL-Induced Apoptosis in Cancer Cells

    PubMed Central

    Szliszka, Ewelina; Jaworska, Dagmara; Kłósek, Małgorzata; Czuba, Zenon P.; Król, Wojciech

    2012-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells without toxicity to normal cells. TRAIL binds to death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) expressed on cancer cell surface and activates apoptotic pathways. Endogenous TRAIL plays an important role in immune surveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL mediated death, it is important to search for and develop new strategies to overcome this resistance. Chalcones can sensitize cancer cells to TRAIL-induced apoptosis. We examined the cytotoxic and apoptotic effects of TRAIL in combination with four chalcones: chalcone, isobavachalcone, licochalcone A and xanthohumol on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor expression was analyzed using flow cytometry. The decreased expression of death receptors in cancer cells may be the cause of TRAIL-resistance. Chalcones enhance TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2. Our study has indicated that chalcones augment the antitumor activity of TRAIL and confirm their cancer chemopreventive properties. PMID:23203129

  17. On estimation of time-dependent attributable fraction from population-based case-control studies.

    PubMed

    Zhao, Wei; Chen, Ying Qing; Hsu, Li

    2017-09-01

    Population attributable fraction (PAF) is widely used to quantify the disease burden associated with a modifiable exposure in a population. It has been extended to a time-varying measure that provides additional information on when and how the exposure's impact varies over time for cohort studies. However, there is no estimation procedure for PAF using data that are collected from population-based case-control studies, which, because of time and cost efficiency, are commonly used for studying genetic and environmental risk factors of disease incidences. In this article, we show that time-varying PAF is identifiable from a case-control study and develop a novel estimator of PAF. Our estimator combines odds ratio estimates from logistic regression models and density estimates of the risk factor distribution conditional on failure times in cases from a kernel smoother. The proposed estimator is shown to be consistent and asymptotically normal with asymptotic variance that can be estimated empirically from the data. Simulation studies demonstrate that the proposed estimator performs well in finite sample sizes. Finally, the method is illustrated by a population-based case-control study of colorectal cancer. © 2017, The International Biometric Society.

  18. Induction of an interleukin-1 receptor (IL-1R) on monocytic cells. Evidence that the receptor is not encoded by a T cell-type IL-1R mRNA.

    PubMed

    Spriggs, M K; Lioubin, P J; Slack, J; Dower, S K; Jonas, U; Cosman, D; Sims, J E; Bauer, J

    1990-12-25

    Primary human monocytes and the human monocytic cell line THP-1 were induced to express receptors for interleukin-1 alpha (IL-1 alpha) and IL-1 beta. Treatment of primary monocytes with dexamethasone resulted in a 10-fold increase in receptor number over untreated cells, to approximately 2,000 receptors/cell. Treatment of THP-1 cells with phorbol ester followed by prostaglandin E2 and dexamethasone resulted in the expression of approximately 30,000 receptors/cell. Competitive binding assays on THP-1 cells showed that both IL-1 alpha and IL-1 beta bind to the same receptor. The monocyte IL-1R is significantly smaller (63 kDa) than the T cell IL-1R (80 kDa) and is immunologically distinct. However, induction of monocytes and monocytic cell lines leads to the appearance of an abundant mRNA of approximately 5,000 bases which hybridizes to a cDNA probe from the T cell-type IL-1R. Sequence data obtained from a cDNA clone of this mRNA indicate that the message is identical to the T cell IL-1R mRNA throughout the coding region. A smaller mRNA, also homologous to the T cell IL-1R mRNA, accumulated in induced THP-1 cells and has a shorter 3'-untranslated region than the larger. Data are presented which suggest that neither form of this message encodes the 63-kDa IL-1R, but rather that this protein is the product of a separate nonhomologous mRNA.

  19. Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation.

    PubMed

    Yu, Li-Ming; Di, Wen-Cheng; Dong, Xue; Li, Zhi; Zhang, Yong; Xue, Xiao-Dong; Xu, Yin-Li; Zhang, Jian; Xiao, Xiong; Han, Jin-Song; Liu, Yu; Yang, Yang; Wang, Hui-Shan

    2018-02-01

    It has been demonstrated that the anti-oxidative and cardioprotective effects of melatonin are, at least in part, mediated by its membrane receptors. However, the direct downstream signaling remains unknown. We previously found that melatonin ameliorated myocardial ischemia-reperfusion (MI/R) injury in diabetic animals, although the underlying mechanisms are also incompletely understood. This study was designed to determine the role of melatonin membrane receptors in melatonin's cardioprotective actions against diabetic MI/R injury with a focus on cGMP and its downstream effector PKG. Streptozotocin-induced diabetic Sprague-Dawley rats and high-glucose medium-incubated H9c2 cardiomyoblasts were utilized to determine the effects of melatonin against MI/R injury. Melatonin treatment preserved cardiac function and reduced oxidative damage and apoptosis. Additionally, melatonin increased intracellular cGMP level, PKGIα expression, p-VASP/VASP ratio and further modulated myocardial Nrf-2-HO-1 and MAPK signaling. However, these effects were blunted by KT5823 (a selective inhibitor of PKG) or PKGIα siRNA except that intracellular cGMP level did not changed significantly. Additionally, our in vitro study showed that luzindole (a nonselective melatonin membrane receptor antagonist) or 4P-PDOT (a selective MT 2 receptor antagonist) not only blocked the cytoprotective effect of melatonin, but also attenuated the stimulatory effect of melatonin on cGMP-PKGIα signaling and its modulatory effect on Nrf-2-HO-1 and MAPK signaling. This study showed that melatonin ameliorated diabetic MI/R injury by modulating Nrf-2-HO-1 and MAPK signaling, thus reducing myocardial apoptosis and oxidative stress and preserving cardiac function. Importantly, melatonin membrane receptors (especially MT 2 receptor)-dependent cGMP-PKGIα signaling played a critical role in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Expression of death decoy receptor-3 (DcR3) in human breast cancer and its functional effects on breast cancer cells in vitro.

    PubMed

    Ge, Zhicheng; Sanders, Andrew J; Ye, Lin; Wang, Yu; Jiang, Wen G

    2011-01-01

    Death Decoy Receptor-3 (DcR3), otherwise known as tumour necrosis factor receptor superfamily member 6b, is suggested to be involved in the progression and immune evasion of malignant tumours. Its ligands include FASL and LIGHT (Tumour necrosis factor ligand superfamily member 14). DcR3 has been found to be amplified in certain solid tumours. However, its role in breast tumours remains unclear. In the present study, we examined the role played by DcR3 in MCF7 and MDA-MB-231 cell lines. The expression of DcR3 was examined in MCF7 and MDA-MB-231 cell lines using immunocytochemical staining and RT-PCR. Anti-DcR3 hammerhead ribozyme transgenes were constructed and transfected into cells to create DcR3 knock-down cell sublines. The biological impact of modifying DcR3 expression in breast cancer cells was evaluated using a variety of in vitro assays, including growth, adhesion, migration and invasion models. MCF7 and MDA-MB-231 cells, usually expressing DcR3, were transfected with the anti-DcR3 ribozyme transgene. Stable transfectants containing the DcR3 ribozyme transgene (MCF7DcR3KO, MDA-MB-231DcR3KO) displayed a reduction of DcR3 expression at mRNA and protein levels. DcR3 knockdown in MCF7 cells was found to significantly reduce invasive capacity compared to pEF6 control cell lines (30.78 +/- 6.40 vs.151.67 +/- 17.67 P < 0.001). The rate of migration in MCF7DcR3KO was significantly lower than MCF7pEF6 (P < 0.001). In contrast, no such significant differences was seen between MDA-MB-231DcR3KO and MDA-MB-231pEF6. Suppressing DcR3 expression was found to have an inhibitory effect on cellular invasion and migration in MCF7 breast cancer cells. This suggests that the invasion and migration capacity of this breast cancer cell line may, at least partly, depend on DcR3. DcR3 may be regarded as a negative regulator for aggressiveness during the development and progression of certain types of breast cancer.

  1. Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells.

    PubMed

    Martinez-Moreno, Julio M; Herencia, Carmen; Montes de Oca, Addy; Muñoz-Castañeda, Juan R; Rodríguez-Ortiz, M Encarnación; Díaz-Tocados, Juan M; Peralbo-Santaella, Esther; Camargo, Antonio; Canalejo, Antonio; Rodriguez, Mariano; Velasco-Gimena, Francisco; Almaden, Yolanda

    2016-03-01

    Clinical and epidemiologic studies reveal an association between vitamin D deficiency and increased risk of cardiovascular disease. Because vascular smooth muscle cell (VSMC)-derived tissue factor (TF) is suggested to be critical for arterial thrombosis, we investigated whether the vitamin D molecules calcitriol and paricalcitol could reduce the expression of TF induced by the proinflammatory cytokine TNF-α in human aortic VSMCs. We found that, compared with controls, incubation with TNF-α increased TF expression and procoagulant activity in a NF-κB-dependent manner, as deduced from the increased nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κB) and direct interaction of NF-κB to the TF promoter. This was accompanied by the up-regulation of TF signaling mediator protease-activated receptor 2 (PAR-2) expression and by the down-regulation of vitamin D receptor expression in a miR-346-dependent way. However, addition of calcitriol or paricalcitol blunted the TNF-α-induced TF expression and activity (2.01 ± 0.24 and 1.32 ± 0.14 vs. 3.02 ± 0.39 pmol/mg protein, P < 0.05), which was associated with down-regulation of NF-κB signaling and PAR-2 expression, as well as with restored levels of vitamin D receptor and enhanced expression of TF pathway inhibitor. Our data suggest that inflammation promotes a prothrombotic state through the up-regulation of TF function in VSMCs and that the beneficial cardiovascular effects of vitamin D may be partially due to decreases in TF expression and its activity in VSMCs. © FASEB.

  2. MUC5AC, a Gel-Forming Mucin Accumulating in Gallstone Disease, Is Overproduced via an Epidermal Growth Factor Receptor Pathway in the Human Gallbladder

    PubMed Central

    Finzi, Laetitia; Barbu, Véronique; Burgel, Pierre-Regis; Mergey, Martine; Kirkwood, Kimberly S.; Wick, Elizabeth C.; Scoazec, Jean-Yves; Peschaud, Frédérique; Paye, François; Nadel, Jay A.; Housset, Chantal

    2006-01-01

    Despite evidence that mucin overproduction is critical in the pathogenesis of gallstones, the mechanisms triggering mucin production in gallstone disease are unknown. Here, we tested the potential implication of an inflammation-dependent epidermal growth factor receptor (EGF-R) pathway in the regulation of gallbladder mucin synthesis. In gallbladder tissue sections from subjects with cholesterol gallstones, mucus accumulation was associated with neutrophil infiltration and with increased expressions of EGF-R and of tumor necrosis factor-α (TNF-α). In primary cultures of human gallbladder epithelial cells, TNF-α induced EGF-R overexpression. In the presence of TNF-α, EGF-R ligands (either EGF or transforming growth factor-α) caused significant increases in MUC5AC mRNA and protein production, whereas expression of the other gallbladder mucins MUC1, MUC3, and MUC5B was unchanged. In addition, on gallbladder tissue sections from subjects with gallstones, increased MUC5AC immunoreactivity was detected in the epithelium and within mucus gel in the lumen. Studies in primary cultures demonstrated that MUC5AC up-regulation induced by the combination of TNF-α with EGF-R ligands was completely blunted by inhibitors of EGF-R tyrosine kinase and mitogen-activated protein/extracellular signal-related kinase kinase. In conclusion, an inflammation-dependent EGF-R cascade causes overproduction of the gel-forming mucin MUC5AC, which accumulates in cholesterol gallstone disease. The ability to interrupt this cascade is of potential interest in the prevention of cholesterol gallstones. PMID:17148666

  3. Taste responses in mice lacking taste receptor subunit T1R1

    PubMed Central

    Kusuhara, Yoko; Yoshida, Ryusuke; Ohkuri, Tadahiro; Yasumatsu, Keiko; Voigt, Anja; Hübner, Sandra; Maeda, Katsumasa; Boehm, Ulrich; Meyerhof, Wolfgang; Ninomiya, Yuzo

    2013-01-01

    The T1R1 receptor subunit acts as an umami taste receptor in combination with its partner, T1R3. In addition, metabotropic glutamate receptors (brain and taste variants of mGluR1 and mGluR4) are thought to function as umami taste receptors. To elucidate the function of T1R1 and the contribution of mGluRs to umami taste detection in vivo, we used newly developed knock-out (T1R1−/−) mice, which lack the entire coding region of the Tas1r1 gene and express mCherry in T1R1-expressing cells. Gustatory nerve recordings demonstrated that T1R1−/− mice exhibited a serious deficit in inosine monophosphate-elicited synergy but substantial residual responses to glutamate alone in both chorda tympani and glossopharyngeal nerves. Interestingly, chorda tympani nerve responses to sweeteners were smaller in T1R1−/− mice. Taste cell recordings demonstrated that many mCherry-expressing taste cells in T1R1+/− mice responded to sweet and umami compounds, whereas those in T1R1−/− mice responded to sweet stimuli. The proportion of sweet-responsive cells was smaller in T1R1−/− than in T1R1+/− mice. Single-cell RT-PCR demonstrated that some single mCherry-expressing cells expressed all three T1R subunits. Chorda tympani and glossopharyngeal nerve responses to glutamate were significantly inhibited by addition of mGluR antagonists in both T1R1−/− and T1R1+/− mice. Conditioned taste aversion tests demonstrated that both T1R1−/− and T1R1+/− mice were equally capable of discriminating glutamate from other basic taste stimuli. Avoidance conditioned to glutamate was significantly reduced by addition of mGluR antagonists. These results suggest that T1R1-expressing cells mainly contribute to umami taste synergism and partly to sweet sensitivity and that mGluRs are involved in the detection of umami compounds. PMID:23339178

  4. Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor.

    PubMed

    Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders

    2008-11-01

    Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors like vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1) and its receptor, IGF-1R, have been implicated in CNV. We have previously shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in-vivo model. In this study we investigated the effect of PPP on VEGF expression both in vitro and in vivo and whether this effect has anti-angiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in choroids and retinal pigment epithelial cells (APRE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed 22-32% (p = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroids were significantly reduced. In cultured APRE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. We could confirm that PPP reduced the level of transcriptional activity of VEGF promoter. PPP reduces IGF-1 dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the therapy of conditions associated with CNV including neovascular AMD.

  5. Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor.

    PubMed

    Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders

    2008-06-01

    Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF)-1 and its receptor, IGF-1R, have been implicated in CNV. A prior study has shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in vivo model. In this study we investigated the effect of PPP on VEGF expression, both in vitro and in vivo, and whether this effect has antiangiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in the choroid and retinal pigment epithelial cells (ARPE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed a 22% to 32% (P = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroid were significantly reduced. In cultured ARPE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. PPP reduced the level of transcriptional activity of the VEGF promoter. PPP reduces IGF-1-dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the treatment of conditions associated with CNV, including neovascular AMD.

  6. Relation of epidermal growth factor receptor and estrogen receptor-independent pS2 protein to the malignant transformation of mucinous cystic neoplasms of the pancreas.

    PubMed

    Kirby, R E; Lewandrowski, K B; Southern, J F; Compton, C C; Warshaw, A L

    1995-01-01

    To evaluate the role of epidermal growth factor receptor (EGF-R) and pS2 protein in the evolution of malignancy in mucinous cystic tumors of the pancreas. Mucinous cystic tumors of the pancreas include histologically benign but premalignant mucinous cystic neoplasms and mucinous cystadenocarcinoma. The molecular events leading to transformation from a benign to a malignant mucinous tumor are not known. Overexpression of EGF-R and detection of an estrogen-induced protein (pS2) has been demonstrated in ductal adenocarcinomas of the pancreas, but these factors have not been evaluated in mucinous cystic tumors. Twenty-six mucinous tumors were examined for EGF-R, pS2 protein, and estrogen and progesterone receptors. Eight (61.2%) of 13 malignant tumors exhibited increased expression of EGF-R, whereas EGF-R was not detected in any of the 13 benign tumors (P = .002). The pS2 protein was detected in nine of 11 malignant and 11 of 11 benign tumors (P = .480). Estrogen and progesterone receptors were not detected in the epithelium of either tumor type. The median survival time of the patients with EGF-R-negative tumors was 29.0 months compared with 14.5 months for those with EGF-R-positive tumors, but this difference did not reach significance owing to the small population size. Overexpression of EGF-R in mucinous cystic tumors, as in ductal adenocarcinomas, may be an important feature associated with malignancy and may have prognostic significance. Failure to detect EGF-R in histologically benign epithelium suggests that the upregulation of EGF-R may be important in the evolution of aggressive behavior. The expression of pS2 protein appears to be independent of estrogen and may play a role in the proliferative activity of mucinous tumors. However, pS2 expression is not a feature associated exclusively with malignancy.

  7. Mutation of Drosophila dopamine receptor DopR leads to male-male courtship behavior.

    PubMed

    Chen, Bin; Liu, He; Ren, Jing; Guo, Aike

    2012-07-06

    In Drosophila, dopamine plays important roles in many biological processes as a neuromodulator. Previous studies showed that dopamine level could affect fly courtship behaviors. Disturbed dopamine level leads to abnormal courtship behavior in two different ways. Dopamine up-regulation induces male-male courtship behavior, while down-regulation of dopamine level results in increased sexual attractiveness of males towards other male flies. Until now, the identity of the dopamine receptor involved in this abnormal male-male courtship behavior remains unknown. Here we used genetic approaches to investigate the role of dopamine receptors in fly courtship behavior. We found that a dopamine D1-like receptor, DopR, was involved in fly courtship behavior. DopR mutant male flies display male-male courtship behavior. This behavior is mainly due to the male's increased propensity to court other males. Expression of functional DopR successfully rescued this mutant phenotype. Knock-down of D2-like receptor D2R and another D1-like receptor, DAMB, did not induce male-male courtship behavior, indicating the receptor-type specificity of this phenomenon. Our findings provide insight into a possible link between dopamine level disturbance and the induced male-male courtship behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Molecular Cloning and Characterization of Two Pig Vasoactive Intestinal Polypeptide Receptors (VPAC1-R and VPAC2-R)

    PubMed Central

    He, Xiaping; Meng, Fengyan; Wang, Yajun

    2014-01-01

    We here report the cloning, tissue expression, and functional analyses of the two pig vasoactive intestinal polypeptide (VIP) receptors (pVPAC1-R and pVPAC2-R). The cloned full-length pVPAC1-R and pVPAC2-R share high structural similarity with their mammalian counterparts. Functional assay revealed that the full-length pVPAC1-R and pVPAC2-R-expressed Chinese hamster ovary (CHO) cells could be activated by pVIP and pPACAP38 potently, indicating that pVPAC1-R and pVPAC2-R are capable of binding VIP and pituitary adenylate cyclase-activating polypeptide (PACAP). In addition to the identification of the transcripts encoding the two full-length receptors, multiple splice transcript variants were isolated. Comparison with the pig genome database revealed that pVPAC1-R and pVPAC2-R share a unique gene structure with 14 exons different from other vertebrates. Reverse transcription and polymerase chain reaction (RT-PCR) assays further showed that the transcript encoding the full-length pVPAC2-R is widely expressed in all adult tissues whereas the splice variants of pVPAC1-R are predominantly expressed in all tissues instead of the transcript encoding the full-length receptor, hinting that pVPAC2-R may play more important roles than pVPAC1-R in mediating VIP and PACAP actions. Our present findings help to elucidate the important role of VIP and PACAP and promote to rethink of their species-specific physiological roles including their actions in regulation of phenotypic traits in pigs. PMID:24520933

  9. Differential Effects of CSF-1R D802V and KIT D816V Homologous Mutations on Receptor Tertiary Structure and Allosteric Communication

    PubMed Central

    Da Silva Figueiredo Celestino Gomes, Priscila; Panel, Nicolas; Laine, Elodie; Pascutti, Pedro Geraldo; Solary, Eric; Tchertanov, Luba

    2014-01-01

    The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind. PMID:24828813

  10. Role of G protein-coupled receptor kinases in the homologous desensitization of the human and mouse melanocortin 1 receptors.

    PubMed

    Sánchez-Más, Jesús; Guillo, Lidia A; Zanna, Paola; Jiménez-Cervantes, Celia; García-Borrón, José C

    2005-04-01

    The melanocortin 1 receptor, a G protein-coupled receptor positively coupled to adenylyl cyclase, is a key regulator of epidermal melanocyte proliferation and differentiation and a determinant of human skin phototype and skin cancer risk. Despite its potential importance for regulation of pigmentation, no information is available on homologous desensitization of this receptor. We found that the human melanocortin 1 receptor (MC1R) and its mouse ortholog (Mc1r) undergo homologous desensitization in melanoma cells. Desensitization is not dependent on protein kinase A, protein kinase C, calcium mobilization, or MAPKs, but is agonist dose-dependent. Both melanoma cells and normal melanocytes express two members of the G protein-coupled receptor kinase (GRK) family, GRK2 and GRK6. Cotransfection of the receptor and GRK2 or GRK6 genes in heterologous cells demonstrated that GRK2 and GRK6 impair agonist-dependent signaling by MC1R or Mc1r. However, GRK6, but not GRK2, was able to inhibit MC1R agonist-independent constitutive signaling. Expression of a dominant negative GRK2 mutant in melanoma cells increased their cAMP response to agonists. Agonist-stimulated cAMP production decreased in melanoma cells enriched with GRK6 after stable transfection. Therefore, GRK2 and GRK6 seem to be key regulators of melanocortin 1 receptor signaling and may be important determinants of skin pigmentation.

  11. TNF Receptor 2 Makes Tumor Necrosis Factor a Friend of Tumors

    PubMed Central

    Sheng, Yuqiao; Li, Feng; Qin, Zhihai

    2018-01-01

    Tumor necrosis factor (TNF) is widely accepted as a tumor-suppressive cytokine via its ubiquitous receptor TNF receptor 1 (TNFR1). The other receptor, TNFR2, is not only expressed on some tumor cells but also on suppressive immune cells, including regulatory T cells and myeloid-derived suppressor cells. In contrast to TNFR1, TNFR2 diverts the tumor-inhibiting TNF into a tumor-advocating factor. TNFR2 directly promotes the proliferation of some kinds of tumor cells. Also activating immunosuppressive cells, it supports immune escape and tumor development. Hence, TNFR2 may represent a potential target of cancer therapy. Here, we focus on expression and role of TNFR2 in the tumor microenvironment. We summarize the recent progress in understanding how TNFR2-dependent mechanisms promote carcinogenesis and tumor growth and discuss the potential value of TNFR2 in cancer treatment. PMID:29892300

  12. Lipoproteins alter the catalytic behavior of the platelet-activating factor acetylhydrolase in human plasma.

    PubMed Central

    Stafforini, D M; Carter, M E; Zimmerman, G A; McIntyre, T M; Prescott, S M

    1989-01-01

    Platelet-activating factor (PAF) has been implicated as a mediator of inflammation, allergy, shock, and thrombosis. A specific degradative enzyme, PAF acetylhydrolase (EC 3.1.1.47), is found in plasma and could regulate the concentration of PAF in blood. In plasma, 70% of the PAF acetylhydrolase is found with low density lipoprotein (LDL), and the remainder is in high density lipoprotein (HDL). In previous studies we found that with subsaturating concentrations of PAF the activity in LDL seemed to be the relevant one; e.g., depletion of LDL slowed degradation of PAF, while removal of HDL accelerated the degradation slightly. We have pursued this observation by using plasma from humans with lipoprotein mutations. In abetalipoproteinemia, all of the PAF acetylhydrolase activity was in HDL, whereas in Tangier disease all of the activity was in LDL. In both conditions the total activity measured in an optimized assay was normal or increased. However, when we measured the t1/2 of PAF in plasma, we found that it was prolonged in subjects with abetalipoproteinemia compared to normal controls. Conversely, the t1/2 in Tangier plasma was shortened. We next demonstrated that the PAF acetylhydrolase in HDL was recognized by an antibody to the enzyme purified from LDL, establishing that the enzyme in the two particles is the same protein. Finally, we inactivated the PAF acetylhydrolase in isolated lipoprotein particles and then reconstituted them with enzyme from the opposite particle. The reconstituted particles were used to measure the t1/2 of PAF, and we again found that the LDL particle was more efficient. We conclude that the lipoprotein environment of the PAF acetylhydrolase markedly influences its catalytic behavior. This may be important in pathophysiology and will complicate attempts to assess the role of this enzyme in such circumstances. Images PMID:2928339

  13. Differences in skin sympathetic involvements between two chronic autonomic disorders: multiple system atrophy and pure autonomic failure.

    PubMed

    Asahina, Masato; Akaogi, Yuichi; Yamanaka, Yoshitaka; Koyama, Yu; Hattori, Takamichi

    2009-06-01

    Certain stimuli evoke increased sweat secretion (sympathetic sweat response; SSwR) and reduced skin blood flow (skin vasomotor reflex; SkVR) in the palm/sole. We evaluated SSwR and SkVR in patients with multiple system atrophy (MSA) and pure autonomic failure (PAF). SSwR and SkVR on the palm in response to deep inspiration and mental arithmetic were recorded in 11 MSA patients, 11 PAF patients, and 11 healthy controls. In addition, the head-up tilt test was performed, and the coefficient of variation of R-R intervals (CV(R-R)) was obtained. SSwR amplitudes were significantly lower in the MSA and PAF patients than the controls. SkVR amplitudes in the PAF patients were significantly lower than the controls, but preserved in the MSA patients. In head-up tilt tests, all MSA and PAF patients showed orthostatic hypotension, with similar severity. CV(R-R) was low in the MSA and PAF patients, but a significant difference was found only between the PAF and control groups. In the MSA patients, SkVR was preserved, but SSwR was diminished. In the PAF patients, both SkVR and SSwR were attenuated. The combination of SkVR and SSwR tests may differentiate MSA and PAF.

  14. Platelet-activating factor dilates efferent arterioles through glomerulus-derived nitric oxide.

    PubMed

    Arima, S; Ren, Y; Juncos, L A; Ito, S

    1996-01-01

    Despite evidence that platelet-activating factor (PAF) is produced by the glomerulus, its direct action on the glomerular microcirculation is poorly understood. It was recently reported that at picomolar concentrations, PAF dilates isolated microperfused afferent arterioles (Af-Art) via nitric oxide (NO). The present study tested the hypothesis that PAF acts on the glomerulus to release NO, which in turn controls the resistance of the efferent arteriole (Ef-Art). Rabbit Ef-Art were perfused from the distal end (retrograde perfusion [RP]) to eliminate the influence of the glomerulus, or through the glomerulus from the end of the Af-Art (orthograde perfusion [OP]) to maintain the influence of the glomerulus. Ef-Art were preconstricted by approximately 40% with norepinephrine and increasing doses of PAF were added to both the arteriolar perfusate and bath. Only with OP did PAF at picomolar concentrations cause significant dilation: at 400 pmol, the diameter increased by 64 +/- 11% from the preconstricted level (N = 6, P < 0.01). This dilation was completely abolished by pretreatment with an NO-synthesis inhibitor. To study its possible constrictor action, PAF was added to nonpreconstricted Ef-Art. At nanomolar concentrations, PAF constricted Ef-Art similarly in both RP and OP: at 40 nM, the diameter decreased by 24 +/- 4% (N = 6, P < 0.01) and 20 +/- 2% (N = 6, P < 0.01), respectively. This constriction was attenuated by pretreatment with indomethacin (Indo) in both RP (14 +/- 2%, N = 7; P < 0.02 versus without Indo) and OP (10 +/- 2%, N = 6; P < 0.02 versus without Indo). (1) at picomolar concentrations, PAF stimulates the glomerulus to release NO, which in turn dilates the Ef-Art; and (2) at nanomolar concentrations, PAF constricts the Ef-Art partly through release of cyclooxygenase metabolites. Thus, PAF may play a role in glomerular hemodynamics under various physiological and pathological conditions.

  15. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    PubMed Central

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling. PMID:19103595

  16. The insulin-like growth factor 1 receptor (IGF1R) contributes to reduced size in dogs

    PubMed Central

    Hoopes, Barbara C.; Rimbault, Maud; Liebers, David; Ostrander, Elaine A.

    2012-01-01

    Domestic dog breeds have undergone intense selection for a variety of morphologic features, including size. Among small-dog breeds, defined as those averaging less than ~15 in. at the withers, there remains still considerable variation in body size. Yet essentially all such dogs are fixed for the same allele at the insulin-like growth factor 1 gene, which we and others previously found to be a size locus of large effect. In this study we sought to identify additional genes that contribute to tiny size in dogs using an association scan with the single nucleotide polymorphism (SNP) dataset CanMap, in which 915 purebred dogs were genotyped at 60,968 SNP markers. Our strongest association for tiny size (defined as breed-average height not more than 10 in. at the withers) was on canine chromosome 3 (p = 1.9 × 10−70). Fine mapping revealed a nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine in the insulin-like growth factor 1 receptor (IGF1R). This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor’s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it. This work underscores the central importance of the IGF1 pathway in controlling the tremendous size diversity of dogs. PMID:22903739

  17. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  19. Collagen Membranes Adsorb the Transforming Growth FactorReceptor I Kinase-Dependent Activity of Enamel Matrix Derivative.

    PubMed

    Stähli, Alexandra; Miron, Richard J; Bosshardt, Dieter D; Sculean, Anton; Gruber, Reinhard

    2016-05-01

    Enamel matrix derivative (EMD) and collagen membranes (CMs) are simultaneously applied in regenerative periodontal surgery. The aim of this study is to evaluate the ability of two CMs and a collagen matrix to adsorb the activity intrinsic to EMD that provokes transforming growth factor (TGF)-β signaling in oral fibroblasts. Three commercially available collagen products were exposed to EMD or recombinant TGF-β1, followed by vigorous washing. Oral fibroblasts were either seeded directly onto collagen products or were incubated with the respective supernatant. Expression of TGF-β target genes interleukin (IL)-11 and proteoglycan 4 (PRG4) was evaluated by real time polymerase chain reaction. Proteomic analysis was used to study the fraction of EMD proteins binding to collagen. EMD or TGF-β1 provoked a significant increase of IL-11 and PRG4 expression of oral fibroblasts when seeded onto collagen products and when incubated with the respective supernatant. Gene expression was blocked by the TGF-β receptor I kinase inhibitor SB431542. Amelogenin bound most abundantly to gelatin-coated culture dishes. However, incubation of palatal fibroblasts with recombinant amelogenin did not alter expression of IL-11 and PRG4. These in vitro findings suggest that collagen products adsorb a TGF-β receptor I kinase-dependent activity of EMD and make it available for potential target cells.

  20. A novel platelet activating factor receptor antagonist reduces cell infiltration and expression of inflammatory mediators in mice exposed to desiccating conditions after PRK.

    PubMed

    Esquenazi, Salomon; He, Jiucheng; Li, Na; Bazan, Nicolas G; Esquenazi, Isi; Bazan, Haydee E P

    2009-01-01

    To study the contribution of a novel PAF receptor antagonist LAU-0901 in the modulation of the increased inflammatory response in mice exposed to dessicating conditions (DE) after PRK. Eighty 13-14 week old female Balb/C mice were used. They were divided into two groups: One group was treated with LAU-0901 topical drops. The other group was treated with vehicle. In each group ten mice served as controls and ten were placed in DE. The other twenty mice underwent bilateral PRK and were divided in two additional groups: ten mice remained under normal conditions (NC) and the other ten were exposed to DE. After 1 week all animals underwent in vivo confocal microscopy, immunostaining and western blotting analysis. Confocal microscopy showed an increased number of reflective structures in the corneal epithelium after PRK and exposure to DE in eyes treated with vehicle as compared to eyes treated with LAU-090). Significant decrease of COX-2 and Arginase I expression and reduced alpha SMA cells was observed after PRK and exposure to DE in eyes treated with LAU-0901. Exposure of mice to a DE after PRK increases the epithelial turnover rate. PAF is involved in the inflammatory cell infiltration and expression of inflammatory cytokines that follow PRK under DE.

  1. Synthetic Deletion of the Interleukin 23 Receptor (IL-23R) Stalk Region Led to Autonomous IL-23R Homodimerization and Activation.

    PubMed

    Hummel, Thorben M; Ackfeld, Theresa; Schönberg, Marco; Ciupka, Gregor; Schulz, Falk; Oberdoerster, Anne; Grötzinger, Joachim; Scheller, Jürgen; Floss, Doreen M

    2017-09-01

    Interleukin 23 (IL-23) regulates the development of TH17 cells, which are important for antimicrobial and antifungal responses and autoimmune and chronic inflammatory diseases. IL-23-induced Jak/STAT signaling is mediated via the heterodimeric IL-23 receptor (IL-23R)-IL-12 receptor β1 (IL-12Rβ1) complex. The typical signal-transducing receptor of the IL-6/IL-12 family contains three extracellular-membrane-proximal fibronectin type III (FNIII) domains, which are not involved in cytokine binding but are mandatory for signal transduction. In place of FNIII-type domains, IL-23R has a structurally undefined stalk. We hypothesized that the IL-23R stalk acts as a spacer to position the cytokine binding domains at a defined distance from the plasma membrane to enable signal transduction. Minor deletions of the murine, but not of the human, IL-23R stalk resulted in unresponsiveness to IL-23. Complete deletion of the human IL-23R stalk and the extended murine IL-23R stalk, including a 20-amino-acid-long duplication of domain 3, however, induced ligand-independent, autonomous receptor activation, as determined by STAT3 phosphorylation and cell proliferation. Ligand-independent, autonomous activity was caused by IL-23R homodimers and was independent of IL-12Rβ1. Our data show that deletion of the stalk results in biologically active IL-23R homodimers, thereby creating an as-yet-undescribed receptor complex of the IL-6/IL-12 cytokine family. Copyright © 2017 American Society for Microbiology.

  2. Mechanisms of the priming effect of low doses of lipopoly-saccharides on leukocyte-dependent platelet aggregation in whole blood.

    PubMed

    Montrucchio, Giuseppe; Bosco, Ornella; Del Sorbo, Lorenzo; Fascio Pecetto, Paolo; Lupia, Enrico; Goffi, Alberto; Omedè, Paola; Emanuelli, Giorgio; Camussi, Giovanni

    2003-11-01

    Several studies focused on the ability of bacterial lipopolysac-charides (LPS) in triggering platelet and/or leukocyte activation. The aim of this study was to investigate the molecular mechanisms involved in the aggregation of platelets and in their interaction with leukocytes in whole blood after stimulation with low doses of LPS. LPS did not directly induce platelet aggregation in whole blood, but they primed the aggregation of platelets induced by epinephrine, adenosine diphosphate and arachidonic acid. As shown by cytofluorimetry, platelets neither bind FITC-LPS, nor express the LPS-receptors CD14 and toll-like receptor 4 (TLR4). On the contrary, LPS primed monocytes and to a lesser extent polymorphonuclear neutrophils to adhere to platelets. Both platelet-leukocyte interaction and platelet aggregation in whole blood were inhibited by blockade of CD14 and TLR4. Moreover, the interaction between platelets and leukocytes was inhibited by P-selectin, and by blockade of PAF and reactive oxygen species, suggesting a role of P-selectin and of leukocyte-derived mediators. In conclusion, these results elucidate the mechanisms leading to platelet activation and interaction with leukocytes triggered by LPS. They suggest that the activation of platelets by LPS is mainly dependent on leukocytes and especially monocytes as a result of CD14 and TLR4 engagement. Moreover, we found that leukocyte-platelet interaction was triggered by the synthesis of PAF and the generation of oxygen radicals that induced upregulation of surface expression of P-selectin.

  3. Substance P (SP) enhances CCL5-induced chemotaxis and intracellular signaling in human monocytes, which express the truncated neurokinin-1 receptor (NK1R)

    PubMed Central

    Chernova, Irene; Lai, Jian-Ping; Li, Haiying; Schwartz, Lynnae; Tuluc, Florin; Korchak, Helen M.; Douglas, Steven D.; Kilpatrick, Laurie E.

    2009-01-01

    Substance P (SP) is a potent modulator of monocyte/macrophage function. The SP-preferring receptor neurokinin-1 receptor (NK1R) has two forms: a full-length NK1R (NK1R-F) isoform and a truncated NK1R (NK1R-T) isoform, which lacks the terminal cytoplasmic 96-aa residues. The distribution of these receptor isoforms in human monocytes is not known. We previously identified an interaction among SP, NK1R, and HIV viral strains that use the chemokine receptor CCR5 as a coreceptor, suggesting crosstalk between NK1R and CCR5. The purpose of this study was to determine which form(s) of NK1R are expressed in human peripheral blood monocytes and to determine whether SP affects proinflammatory cellular responses mediated through the CCR5 receptor. Human peripheral blood monocytes were found to express NK1R-T but not NK1R-F. SP interactions with NK1R-T did not mobilize calcium (Ca2+), but SP mobilized Ca2+ when the NK1R-F was transfected into monocytes. However, the NK1R-T was functional in monocytes, as SP enhanced the CCR5 ligand CCL5-elicited Ca2+ mobilization, a response inhibited by the NK1R antagonist aprepitant. SP interactions with the NK1R-T also enhanced CCL5-mediated chemotaxis, which was ERK1/2-dependent. NK1R-T selectively activated ERK2 but increased ERK1 and ERK2 activation by CCL5. Activation of NK1R-T elicited serine phosphorylation of CCR5, indicating that crosstalk between CCL5 and SP may occur at the level of the receptor. Thus, NK1R-T is functional in human monocytes and activates select signaling pathways, and the NK1R-T-mediated enhancement of CCL5 responses does not require the NK1R terminal cytoplasmic domain. PMID:18835883

  4. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. Thesemore » antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.« less

  5. Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription

    PubMed Central

    Kang, Jian; Kusnadi, Eric P.; Ogden, Allison J.; Hicks, Rodney J.; Bammert, Lukas; Kutay, Ulrike; Hung, Sandy; Sanij, Elaine; Hannan, Ross D.; Hannan, Katherine M.; Pearson, Richard B.

    2016-01-01

    Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrients. We demonstrate that modulation of rDNA transcription initiation, elongation and rRNA processing is an immediate, co-regulated response to altered amino acid abundance, dependent on both mTORC1 activation of S6K1 and MYC activity. Growth factors regulate rDNA transcription initiation while amino acids modulate growth factor-dependent rDNA transcription by primarily regulating S6K1-dependent rDNA transcription elongation and processing. Thus, we show for the first time amino acids regulate rRNA synthesis by a distinct, post-initiation mechanism, providing a novel model for integrated control of ribosome biogenesis that has implications for understanding how this process is dysregulated in cancer. PMID:27385002

  6. Contribution of adrenal hormones to nicotine-induced inhibition of synovial plasma extravasation in the rat.

    PubMed

    Miao, F J; Benowitz, N L; Heller, P H; Levine, J D

    1997-01-01

    1. In this study, we examined the mechanism(s) by which s.c. nicotine inhibits synovial plasma extravasation. We found that nicotine dose-dependently inhibited bradykinin (BK)- and platelet activating factor (PAF)-induced plasma extravasation. 2. The effect of nicotine on both BK- and PAF-induced plasma extravasation was attenuated by adrenal medullectomy. ICI-118,551 (a selective beta 2-adrenoceptor blocker) (30 micrograms ml-1, intra-articularly) significantly attenuated the inhibitory action of high-dose (1 mg kg-1) nicotine on BK-induced plasma extravasation without affecting the inhibition by low- (0.01 microgram kg-1) dose nicotine or that on PAF-induced plasma extravasation by nicotine at any dose. This suggested that beta 2-adrenoceptors mediate the inhibitory actions of high-dose, but not low-dose, nicotine. We also found that systemic naloxone (an opioid receptor antagonist) (two hourly injections of 1 mg kg-1, i.p.) attenuated the inhibitory action produced by all doses of nicotine on BK- or PAF-induced plasma extravasation, suggesting the contribution of endogenous opioids. 3. RU-38,486 (a glucocorticoid receptor antagonist) (30 mg kg-1, s.c.), and metyrapone (a glucocorticoid synthesis inhibitor) (two hourly injections of 100 mg kg-1, i.p.) both attenuated the action of high-dose nicotine without affecting that of low-dose nicotine. 4. Spinal mecamylamine (a nicotinic receptor antagonist) (0.025 mg kg-1, intrathecally, i.t.) attenuated the action of high-dose, but not low-dose, nicotine, suggesting that part of the action of high-dose nicotine is mediated by spinal nicotinic receptors. 5. Combined treatment with ICI-118,551, naloxone and RU-38,486 attenuated the action of low-dose nicotine by an amount similar to that produced by naloxone alone but produced significantly greater attenuation of the effect of high-dose nicotine when compared to the action of any of the three antagonists alone.

  7. Contribution of adrenal hormones to nicotine-induced inhibition of synovial plasma extravasation in the rat

    PubMed Central

    Jia-Pei Miao, Frederick; Benowitz, Neal L; Heller, Philip H; Levine, Jon D

    1997-01-01

    In this study, we examined the mechanism(s) by which s.c. nicotine inhibits synovial plasma extravasation. We found that nicotine dose-dependently inhibited bradykinin (BK)- and platelet activating factor (PAF)-induced plasma extravasation. The effect of nicotine on both BK- and PAF-induced plasma extravasation was attenuated by adrenal medullectomy. ICI-118,551 (a selective β2-adrenoceptor blocker) (30 μg ml−1, intra-articularly) significantly attenuated the inhibitory action of high-dose (1 mg kg−1) nicotine on BK-induced plasma extravasation without affecting the inhibition by low- (0.01 μg kg−1) dose nicotine or that on PAF-induced plasma extravasation by nicotine at any dose. This suggested that β2-adrenoceptors mediate the inhibitory actions of high-dose, but not low-dose, nicotine. We also found that systemic naloxone (an opioid receptor antagonist) (two hourly injections of 1 mg kg−1, i.p.) attenuated the inhibitory action produced by all doses of nicotine on BK- or PAF-induced plasma extravasation, suggesting the contribution of endogenous opioids. RU-38,486 (a glucocorticoid receptor antagonist) (30 mg kg−1, s.c.) and metyrapone (a glucocorticoid synthesis inhibitor) (two hourly injections of 100 mg kg−1, i.p.) both attenuated the action of high-dose nicotine without affecting that of low-dose nicotine. Spinal mecamylamine (a nicotinic receptor antagonist) (0.025 mg kg−1, intrathecally, i.t.) attenuated the action of high-dose, but not low-dose, nicotine, suggesting that part of the action of high-dose nicotine is mediated by spinal nicotinic receptors. Combined treatment with ICI-118,551, naloxone and RU-38,486 attenuated the action of low-dose nicotine by an amount similar to that produced by naloxone alone but produced significantly greater attenuation of the effect of high-dose nicotine when compared to the action of any of the three antagonists alone. PMID:9117123

  8. Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor-β (TGF-β)/Smad Signaling.

    PubMed

    Yan, Xiaohua; Liao, Hongwei; Cheng, Minzhang; Shi, Xiaojing; Lin, Xia; Feng, Xin-Hua; Chen, Ye-Guang

    2016-01-01

    TGF-β is a pleiotropic cytokine that regulates a wide range of cellular actions and pathophysiological processes. TGF-β signaling is spatiotemporally fine-tuned. As a key negative regulator of TGF-β signaling, Smad7 exerts its inhibitory effects by blocking receptor activity, inducing receptor degradation or interfering with Smad-DNA binding. However, the functions and the molecular mechanisms underlying the actions of Smad7 in TGF-β signaling are still not fully understood. In this study we report a novel mechanism whereby Smad7 antagonizes TGF-β signaling at the Smad level. Smad7 oligomerized with R-Smad proteins upon TGF-β signaling and directly inhibited R-Smad activity, as assessed by Gal4-luciferase reporter assays. Mechanistically, Smad7 competes with Smad4 to associate with R-Smads and recruits the E3 ubiquitin ligase NEDD4L to activated R-Smads, leading to their polyubiquitination and proteasomal degradation. Similar to the R-Smad-Smad4 oligomerization, the interaction between R-Smads and Smad7 is mediated by their mad homology 2 (MH2) domains. A positive-charged basic region including the L3/β8 loop-strand module and adjacent amino acids in the MH2 domain of Smad7 is essential for the interaction. These results shed new light on the regulation of TGF-β signaling by Smad7. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    PubMed

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  10. Bacterial superantigens bypass Lck-dependent T cell receptor signaling by activating a Galpha11-dependent, PLC-beta-mediated pathway.

    PubMed

    Bueno, Clara; Lemke, Caitlin D; Criado, Gabriel; Baroja, Miren L; Ferguson, Stephen S G; Rahman, A K M Nur-Ur; Tsoukas, Constantine D; McCormick, John K; Madrenas, Joaquin

    2006-07-01

    The paradigm to explain antigen-dependent T cell receptor (TCR) signaling is based on the activation of the CD4 or CD8 coreceptor-associated kinase Lck. It is widely assumed that this paradigm is also applicable to signaling by bacterial superantigens. However, these bacterial toxins can activate human T cells lacking Lck, suggesting the existence of an additional pathway of TCR signaling. Here we showed that this alternative pathway operates in the absence of Lck-dependent tyrosine-phosphorylation events and was initiated by the TCR-dependent activation of raft-enriched heterotrimeric Galpha11 proteins. This event, in turn, activated a phospholipase C-beta and protein kinase C-mediated cascade that turned on the mitogen-activated protein kinases ERK-1 and ERK-2, triggered Ca(2+) influx, and translocated the transcription factors NF-AT and NF-kappaB to the nucleus, ultimately inducing the production of interleukin-2 in Lck-deficient T cells. The triggering of this alternative pathway by superantigens suggests that these toxins use a G protein-coupled receptor as a coreceptor on T cells.

  11. Transcription factor-dependent chromatin remodeling of Il18r1 during Th1 and Th2 differentiation 1

    PubMed Central

    Yu, Qing; Chang, Hua-Chen; Ahyi, Ayele-Nati N.; Kaplan, Mark H.

    2008-01-01

    The IL-18Rα chain is expressed on Th1 but not Th2 cells. We have recently shown that Stat4 is an important component of programming the Il18r1 locus (encoding IL-18Rα) for maximal expression in Th1 cells. Il18r1 is reciprocally repressed during Th2 development. In this report we demonstrate that the establishment of DNase hypersensitivity patterns that are distinct among undifferentiated CD4 T cells, Th1 and Th2 cells. Stat6 is required for the repression of Il18r1 expression and in Stat6-deficient Th2 cultures, mRNA levels, histone acetylation and H3K4 methylation levels are intermediate between levels observed in Th1 and Th2 cells. Despite the repressive effects of IL-4 during Th2 differentiation, we observed only modest binding of Stat6 to the Il18r1 locus. In contrast, we observed robust GATA-3 binding to a central region of the locus where DNase hypersensitivity sites overlapped with conserved non-coding sequences in Il18r1 introns. Ectopic expression of GATA-3 in differentiated Th1 cells repressed Il18r1 mRNA and surface expression of IL-18Rα. These data provide further mechanistic insight into transcription factor dependent establishment of Th subset-specific patterns of gene expression. PMID:18714006

  12. Transduction of human IL-9 receptor cDNA into TF1 cells induces IL-9 dependency and erythroid differentiation.

    PubMed

    Xiao, M; Luo, Z; Mantel, C; Broxmeyer, H E; Lu, L

    2000-02-01

    Human growth factor-dependent cell line TF1, which lacks interleukin (IL)-9 receptors (R) and does not grow in IL-9, was transduced with a retroviral vector containing human IL-9R cDNA and a selection marker. An IL-9-dependent TF1 cell line, which could also grow in other cytokines, was established after selection in G418 and could produce mature RBC in response to cytokine stimulation. TF1 cells transduced with the same viral vector without the IL-9R insert cDNA (mock control) and then selected responded the same as nontransduced TF1 cells. They failed to grow in response to IL-9 and did not generate RBC. An increased number and size of burst-forming units-erythroid (BFU-E)-like colonies were detected from IL-9R-transduced TF1 cells, compared with mock-transduced cells, in response to erythropoietin (EPO) and IL-9. To evaluate self-renewal and differentiation capacity, colony-replating assays were performed in the presence of IL-3, GM-CSF, IL-9, and EPO. After four replatings, the cloning efficiency of IL-9R-transduced TF1 cells decreased from 98% to 38%, most likely due to terminal erythroid cell differentiation. In contrast, no change in replating efficiency was detected in mock-transduced cells. TF1 cells stably expressing IL-9R and responding to IL-9 can serve as a cell line model to study the intracellular signals mediating IL-9-induced erythroid cell proliferation and differentiation.

  13. Fibroblast growth factor receptor inhibitors.

    PubMed

    Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma

    2013-01-01

    Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.

  14. Interleukin 1 Receptor (IL-1R1) Activation Exacerbates Toxin-Induced Acute Kidney Injury.

    PubMed

    Privratsky, Jamie R; Zhang, Jiandong; Lu, Xiaohan; Rudemiller, Nathan; Wei, Qingqing; Yu, Yen-Rei; Gunn, Michael Dee; Crowley, Steven D

    2018-05-23

    Acute kidney injury (AKI) is a leading cause of morbidity and mortality. Cisplatin is an effective chemotherapeutic agent whose administration is limited by nephrotoxicity. Therapies to prevent cisplatin-induced AKI are lacking. While tumor necrosis factor-α (TNF) plays a key role in the pathogenesis of cisplatin nephrotoxicity, the immune signaling pathways that trigger TNF generation in this context require elucidation. Sterile injury triggers the release and activation of both isoforms of interleukin(IL)-1, IL-1α and IL-1β, and stimulation of the interleukin-1 receptor (IL-1R1) by these ligands engages a pro-inflammatory signaling cascade that induces TNF induction. We therefore hypothesized that IL-1R1 activation exacerbates cisplatin-induced AKI by inducing TNF production thereby augmenting inflammatory signals between kidney parenchymal cells and infiltrating myeloid cells. IL-1R1+/+ (WT) and IL-1R1-/- (KO) mice were subjected to cisplatin-induced AKI. Compared to WT mice, IL-1R1 KO mice had attenuated AKI as measured by serum creatinine and BUN; renal NGAL mRNA levels; and blinded histological analysis of kidney pathology. In the cisplatin-injured kidney, IL-1R1 KO mice had diminished levels of whole kidney TNF and fewer Ly6G-expressing neutrophils. In addition, an unbiased machine learning analysis of intra-renal immune cells revealed a diminished number of CD11bint/CD11cint myeloid cells in IL-1R1 KO injured kidneys compared to IL-1R1 WT kidneys. Following cisplatin, IL-1R1 KO kidneys, compared to WTs, had fewer TNF-producing macrophages, CD11bint/CD11cint cells, and neutrophils, consistent with an effect of IL-1R1 to polarize intra-renal myeloid cells toward a pro-inflammatory phenotype. Interruption of IL-1-dependent signaling pathways warrants further evaluation to decrease nephrotoxicity during cisplatin therapy.

  15. Lysophosphatidylcholine acyltransferase1 overexpression promotes oral squamous cell carcinoma progression via enhanced biosynthesis of platelet-activating factor.

    PubMed

    Shida-Sakazume, Tomomi; Endo-Sakamoto, Yosuke; Unozawa, Motoharu; Fukumoto, Chonji; Shimada, Ken; Kasamatsu, Atsushi; Ogawara, Katsunori; Yokoe, Hidetaka; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2015-01-01

    The relevance of lysophosphatidylcholine acyltransferase1 (LPCAT1), a cytosolic enzyme in the remodeling pathway of phosphatidylcholine metabolism, in oral squamous cell carcinoma (OSCC) is unknown. We investigated LPCAT1 expression and its functional mechanism in OSCCs. We analyzed LPCAT1 mRNA and protein expression levels in OSCC-derived cell lines. Immunohistochemistry was performed to identify correlations between LPCAT1 expression levels and primary OSCCs clinicopathological status. We established LPCAT1 knockdown models of the OSCC-derived cell lines (SAS, Ca9-22) for functional analysis and examined the association between LPCAT1 expression and the platelet-activating factor (PAF) concentration and PAF-receptor (PAFR) expression. LPCAT1 mRNA and protein were up-regulated significantly (p<0.05) in OSCC-derived cell lines compared with human normal oral keratinocytes. Immunohistochemistry showed significantly (p<0.05) elevated LPCAT1 expression in primary OSCCs compared with normal counterparts and a strong correlation between LPCAT1-positive OSCCs and tumoral size and regional lymph node metastasis. In LPCAT1 knockdown cells, cellular proliferation and invasiveness decreased significantly (p<0.05); cellular migration was inhibited compared with control cells. Down-regulation of LPCAT1 resulted in a decreased intercellular PAF concentration and PAFR expression. LPCAT1 was overexpressed in OSCCs and correlated with cellular invasiveness and migration. LPCAT1 may contribute to tumoral growth and metastasis in oral cancer.

  16. The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation

    PubMed Central

    Jennings, Katie A.; Platt, Nicola J.; Cragg, Stephanie J.

    2015-01-01

    Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD. PMID:26117304

  17. Effects of two novel tachykinin antagonists, FK224 and FK888, on neurogenic airway plasma exudation, bronchoconstriction and systemic hypotension in guinea-pigs in vivo.

    PubMed Central

    Hirayama, Y.; Lei, Y. H.; Barnes, P. J.; Rogers, D. F.

    1993-01-01

    1. We compared the effects of two novel tachykinin receptor antagonists, FK888 (selective at the tachykinin NK1 receptor) and FK224 (dual antagonist at NK1 and NK2 tachykinin receptors) on stimulus-evoked airway plasma exudation, bronchoconstriction and systemic hypotension in guinea-pigs in vivo. Plasma exudation was induced by substance P (SP), synthetic tachykinin receptor agonists, platelet activating factor (PAF), electrical stimulation of the cervical vagus nerves or by inhalation of cigarette smoke. Changes in airway tone and in carotid artery blood pressure (BP) were induced by synthetic tachykinin agonists, PAF and vagal stimulation. 2. Both FK224 and FK888 dose-dependently inhibited SP-induced plasma exudation in the lower trachea and main bronchi (ID50 values respectively of 1.1 and 0.1 mumol kg-1 in lower trachea, and of 0.5 and 0.1 mumol kg-1 in main bronchi) with complete inhibition at both airway levels at 10 mumol kg-1 for FK224 and at 2 mumol kg-1 for FK888. 3. The NK1-selective tachykinin receptor agonist, [Sar9,Met(O2)11]substance P ([Sar]SP), induced plasma exudation, a response which was blocked by both FK888 and FK224. The NK2-selective agonist, [beta-Ala8]neurokinin A-(4-10) ([beta-Ala]NKA), did not induce plasma exudation: neither FK888 nor FK224 affected this lack of response to [beta-Ala]NKA. 4. [beta-Ala]NKA induced bronchoconstriction, a response which was blocked by FK224 but which was completely unaffected by FK888. [Sar]SP induced a small but significant bronchoconstriction which was completely inhibited by both tachykinin antagonists. 5. In animals pretreated with capsaicin to deplete sensory neuropeptides, PAF induced both plasma exudation and bronchoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7682142

  18. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    PubMed

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  19. Simultaneous inhibition of aryl hydrocarbon receptor (AhR) and Src abolishes androgen receptor signaling.

    PubMed

    Ghotbaddini, Maryam; Cisse, Keyana; Carey, Alexis; Powell, Joann B

    2017-01-01

    Altered c-Src activity has been strongly implicated in the development, growth, progression, and metastasis of human cancers including prostate cancer. Src is known to regulate several biological functions of tumor cells, including proliferation. There are several Src inhibitors under evaluation for clinical effectiveness but have shown little activity in monotherapy trials of solid tumors. Combination studies are being explored by in vitro analysis and in clinical trials. Here we investigate the effect of simultaneous inhibition of the aryl hydrocarbon receptor (AhR) and Src on androgen receptor (AR) signaling in prostate cancer cells. AhR has also been reported to interact with the Src signaling pathway during prostate development. c-Src protein kinase is associated with the AhR complex in the cytosol and upon ligand binding to AhR, c-Src is activated and released from the complex. AhR has also been shown to regulate AR signaling which remains functionally important in the development and progression of prostate cancer. We provide evidence that co-inhibition of AhR and Src abolish AR activity. Evaluation of total protein and cellular fractions revealed decreased pAR expression and AR nuclear localization. Assays utilizing an androgen responsive element (ARE) and qRT-PCR analysis of AR genes revealed decreased AR promoter activity and transcriptional activity in the presence of both AhR and Src inhibitors. Furthermore, co-inhibition of AhR and Src reduced the growth of prostate cancer cells compared to individual treatments. Several studies have revealed that AhR and Src individually inhibit cellular proliferation. However, this study is the first to suggest simultaneous inhibition of AhR and Src to inhibit AR signaling and prostate cancer cell growth.

  20. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors

    PubMed Central

    Moaddel, Ruin; Abdrakhmanova, Galia; Kozak, Joanna; Jozwiak, Krzysztof; Toll, Lawrence; Jimenez, Lucita; Rosenberg, Avraham; Tran, Thao; Xiao, Yingxian; Zarate, Carlos A.; Wainer, Irving W.

    2012-01-01

    The effect of the (R,S)-ketamine metabolites (R,S)-norketamine, (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)- hydroxynorketamine on the activity of α7 and α3β4 neuronal nicotinic acetylcholine receptors was investigated using patch-clamp techniques. The data indicated that (R,S)-dehydronorketamine inhibited acetylcholine-evoked currents in α7-nicotinic acetylcholine receptor, IC50 = 55 ± 6 nM, and that (2S,6S)-hydroxynorketamine, (2R,6R)-hydroxynorketamine and (R,S)-norketamine also inhibited α7-nicotinic acetylcholine receptor function at concentrations ≤1μM, while (R,S)-ketamine was inactive at these concentrations. The inhibitory effect of (R,S)-dehydronorketamine was voltage-independent and the compound did not competitively displace selective α7-nicotinic acetylcholine receptor ligands [125I]-α-bungarotoxin and [3H]-epibatidine indicating that (R,S)-dehydronorketamine is a negative allosteric modulator of the α7-nicotinic acetylcholine receptor. (R,S)-Ketamine and (R,S)-norketamine inhibited (S)-nicotine-induced whole-cell currents in cells expressing α3β4-nicotinic acetylcholine receptor, IC50 3.1 and 9.1μM, respectively, while (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine were weak inhibitors, IC50 >100μM. The binding affinities of (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine at the NMDA receptor were also determined using rat brain membranes and the selective NMDA receptor antagonist [3H]-MK-801. The calculated Ki values were 38.95 μM for (S)-dehydronorketamine, 21.19 μM for (2S,6S)-hydroxynorketamine and > 100 μM for (2R,6R)-hydroxynorketamine. The results suggest that the inhibitory activity of ketamine metabolites at the α7-nicotinic acetylcholine receptor may contribute to the clinical effect of the drug. PMID:23183107

  1. EphA2 is a functional receptor for the growth factor progranulin.

    PubMed

    Neill, Thomas; Buraschi, Simone; Goyal, Atul; Sharpe, Catherine; Natkanski, Elizabeth; Schaefer, Liliana; Morrione, Andrea; Iozzo, Renato V

    2016-12-05

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. © 2016 Neill et al.

  2. EphA2 is a functional receptor for the growth factor progranulin

    PubMed Central

    Neill, Thomas; Goyal, Atul; Sharpe, Catherine

    2016-01-01

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. PMID:27903606

  3. Palmitoylation-dependent activation of MC1R prevents melanomagenesis

    PubMed Central

    Chen, Shuyang; Zhu, Bo; Yin, Chengqian; Liu, Wei; Han, Changpeng; Chen, Baoen; Liu, Tongzheng; Li, Xin; Chen, Xiang; Li, Chunying; Hu, Limin; Zhou, Jun; Xu, Zhi-Xiang; Gao, Xiumei; Wu, Xu; Goding, Colin R.; Cui, Rutao

    2017-01-01

    The melanocortin-1 receptor (MC1R), a G protein-coupled receptor, plays a crucial role in human and mouse pigmentation1–8. Activation of MC1R in melanocytes by α-melanocyte-stimulating hormone (α-MSH)9 stimulates cAMP signaling and melanin production and enhances DNA repair after UV irradiation (UVR)10–16. Individuals carrying MC1R variants, especially those associated with red hair color, fair skin and poor tanning ability (RHC-variants), are associated with higher risk of melanoma5,17,18,19,20. However, how MC1R activity might be modulated by UV irradiation, why redheads are more prone to developing melanoma, and whether the activity of RHC variants might be restored for therapeutic benefit remain unresolved questions. Here we demonstrate a potential MC1R-targeted intervention strategy to rescue loss-of-function MC1R in MC1R RHC-variants for therapeutic benefit based on activating MC1R protein palmitoylation. Specifically, MC1R palmitoylation, primarily mediated by the protein-acyl transferase (PAT) ZDHHC13, is essential for activating MC1R signaling that triggers increased pigmentation, UVB-induced G1-like cell cycle arrest and control of senescence and melanomagenesis in vitro and in vivo. Using C57BL/6J-MC1Re/eJ mice expressing MC1R RHC-variants we show that pharmacological activation of palmitoylation rescues the defects of MC1R RHC-variants and prevents melanomagenesis. The results highlight a central role for MC1R palmitoylation in pigmentation and protection against melanoma. PMID:28869973

  4. Expression of bitter taste receptor Tas2r105 in mouse kidney.

    PubMed

    Liu, Xin; Gu, Fu; Jiang, Li; Chen, Fuxue; Li, Feng

    2015-03-20

    The kidney is the most important excretory organ in the body and plays an essential role in maintaining homeostasis in vivo by conserving body fluid and electrolytes and removing metabolic waste. In this study, three types of transgenic system were used to investigate the expression of the bitter taste receptor Tas2r105 in mouse renal tissue (Tas2r105-GFP/Cre, Tas2r105-GFP/Cre-DTA and Tas2r105-GFP/Cre-LacZ). The results suggest that bitter taste receptors Tas2r105 and Tas2r106 are expressed in the renal corpuscle and the renal tubule, including the proximal tubule and distal tubule. Expression of α-gustducin, an important component of taste signal transduction, was also detected in mouse kidney. Meanwhile, conditional diphtheria toxin (DTA) expression in Tas2r105+ cells caused an increase in size of the glomerulus and renal tubule, accompanied by a decrease in cell density in the glomerulus. This indicates that Tas2r105+ cells play an important role in maintaining the structure of the glomerulus and renal tubules. Overall, the current study collectively demonstrates that cells labeled by bitter taste receptor expression may play a critical role in controlling human health, and have properties far beyond the original concept of taste perception. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. 6-Methoxyflavanones as Bitter Taste Receptor Blockers for hTAS2R39

    PubMed Central

    Roland, Wibke S. U.; Gouka, Robin J.; Gruppen, Harry; Driesse, Marianne; van Buren, Leo; Smit, Gerrit; Vincken, Jean-Paul

    2014-01-01

    Many (dietary) bitter compounds, e.g. flavonoids, activate bitter receptor hTAS2R39 in cell-based assays. Several flavonoids, amongst which some flavanones, are known not to activate this receptor. As certain flavanones are known to mask bitter taste sensorially, flavanones might act as bitter receptor antagonists. Fourteen flavanones were investigated for their potential to reduce activation of hTAS2R39 by epicatechin gallate (ECG), one of the main bitter compounds occurring in green tea. Three flavanones showed inhibitory behavior towards the activation of hTAS2R39 by ECG: 4′-fluoro-6-methoxyflavanone, 6,3′-dimethoxyflavanone, and 6-methoxyflavanone (in order of decreasing potency). The 6-methoxyflavanones also inhibited activation of hTAS2R14 (another bitter receptor activated by ECG), though to a lesser extent. Dose-response curves of ECG at various concentrations of the full antagonist 4′-fluoro-6-methoxyflavanone and wash-out experiments indicated reversible insurmountable antagonism. The same effect was observed for the structurally different agonist denatonium benzoate. PMID:24722342

  6. An essential role for IL-2 receptor in regulatory T cell function

    PubMed Central

    Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233

  7. Positive and negative modulation of circadian activity rhythms by mGluR5 and mGluR2/3 metabotropic glutamate receptors.

    PubMed

    Gannon, Robert L; Millan, Mark J

    2011-01-01

    Glutamate released from retinal ganglion cells conveys information about the daily light:dark cycle to master circadian pacemaker neurons within the suprachiasmatic nucleus that then synchronize internal circadian rhythms with the external day-length. Glutamate activation of ionotropic glutamate receptors in the suprachiasmatic nucleus is well established, but the function of the metabotropic glutamate receptors that are also located in this nucleus is not known. Therefore, in this study we evaluated agonists and antagonists acting at orthosteric or allosteric sites for mGluR5 and mGluR2/3 metabotropic glutamate receptors for their ability to modulate light-induced phase advances and delays of hamster circadian activity rhythms. mGluR5 allosteric antagonists fenobam, MPEP and MTEP, each 10 mg/kg, potentiated light-induced phase advances of hamster circadian activity rhythms, while the mGluR5 agonists CHPG, (S)-3,5-DHPG or positive allosteric modulator CDPPB had no effect. Neither mGluR5 agonists nor antagonists had any effect on light-induced phase delays of activity rhythms. The competitive mGluR2/3 antagonist LY341495, 10 mg/kg, also potentiated light-induced phase advances, but inhibited light-induced phase delays. The mGluR2/3 agonists LY354740 and LY404039 were without effect on phase advances while a third agonist LY379268, 10 mg/kg, inhibited both light-induced advances and delays. Finally, mGluR2/3 agonists LY379268 and LY404039 also inhibited light-induced phase delays of activity rhythms. These results suggest that during light-induced phase advances, mGluR2/3 and mGluR5 receptors act to negatively modulate the effects of light on the circadian pacemaker or its output(s). mGluR5 receptors do not appear to be involved during light-induced phase delays. In contrast, the role for mGluR2/3 receptors during phase delays is more complicated as both agonists and antagonists inhibit light-induced phase delays. Dysfunctions in human circadian rhythms have been

  8. Aryl hydrocarbon receptor (AhR) a possible target for the treatment of skin disease.

    PubMed

    Napolitano, Maddalena; Patruno, Cataldo

    2018-07-01

    Aryl hydrocarbon receptor (AhR) is a transcription factor expressed in all skin cells type. It responds to exogenous and endogenous chemicals by inducing/repressing the expression of several genes with toxic or protective effects in a wide range of species and tissues. In healthy skin, AhR signalling contributes to keratinocytes differentiation, skin barrier function, skin pigmentation, and mediates oxidative stress. In the last years, some studies have shown that AhR seems to be involved in the pathogenesis of some skin diseases, even if the currently available data are contradictory. Indeed, while the blocking the AhR signalling activity could prevent or treat skin cancer, the AhR activation seems to be advantageous for the treatment of inflammatory skin diseases. Therefore, for its multifaceted role in skin diseases, AhR seems to be an attractive therapeutic target. Indeed, recently some molecules have been identified for the prevention of skin cancer and the treatment of inflammatory skin diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Immunocytochemical localization of metabotropic (mGluR2/3 and mGluR4a) and ionotropic (GluR2/3) glutamate receptors in adrenal medullary ganglion cells.

    PubMed

    Sarría, R; Díez, J; Losada, J; Doñate-Oliver, F; Kuhn, R; Grandes, P

    2006-02-01

    The localization of metabotropic glutamate receptors of groups II (mGluR2/3) and III (mGluR4a) and the subunits 2 and 3 of alfa-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (GluR2/3) was investigated with immunocytochemical methods in the rat adrenal gland. MGluR2/3, mGluR4a and GluR2/3 immunoreactivities were observed in large-sized, centrally located type I adrenal medullary ganglion neurons. Furthermore, the small-sized type II adrenal ganglion neurons identified by their immunoreactivity to brain nitric oxide synthase (bNOS), also expressed mGluR2/3, mGluR4a and GluR2/3. These cells were disposed in the peripheral portion of the adrenal medulla. None of the type I neurons were positively labeled for bNOS. These morphological observations suggest that activation of glutamate receptors in ganglion neurons may be instrumental in the control of adrenal endocrine systems as well as blood regulation.

  10. Mutations in the Polybasic Juxtamembrane Sequence of Both Plasma Membrane- and Endoplasmic Reticulum-localized Epidermal Growth Factor Receptors Confer Ligand-independent Cell Transformation*

    PubMed Central

    Bryant, Kirsten L.; Antonyak, Marc A.; Cerione, Richard A.; Baird, Barbara; Holowka, David

    2013-01-01

    Deregulation of ErbB receptor-tyrosine kinases is a hallmark of many human cancers. Conserved in the ErbB family is a cluster of basic amino acid residues in the cytoplasmic juxtamembrane region. We found that charge-silencing mutagenesis within this juxtamembrane region of the epidermal growth factor receptor (EGFR) results in the generation of a mutant receptor (EGFR Mut R1-6) that spontaneously transforms NIH 3T3 cells in a ligand-independent manner. A similar mutant with one additional basic residue, EGFR Mut R1-5, fails to exhibit ligand-independent transformation. The capacity of EGFR Mut R1-6 to mediate this transformation is maintained when this mutant is retained in the endoplasmic reticulum via a single point mutation, L393H, which we describe. We show that EGFR Mut R1-6 with or without L393H exhibits enhanced basal tyrosine phosphorylation when ectopically expressed, and the ligand-independent transforming activity of EGFR Mut R1-6 is sensitive to inhibition of EGFR kinase activity and is particularly dependent on PI3K and mTOR activity. Similar to EGFR Mut R1-6/L393H in NIH 3T3 cells, EGFR variant type III, a highly oncogenic mutant form of EGFR linked to human brain cancers, confers transforming activity while it is wholly endoplasmic reticulum-retained in U87 cells. Our findings highlight the importance of the polybasic juxtamembrane sequence in regulating the oncogenic potential of EGFR signaling. PMID:24142702

  11. Ligand-dependent nucleo-cytoplasmic shuttling of peroxisome proliferator-activated receptors, PPARα and PPARγ.

    PubMed

    Umemoto, Tomoe; Fujiki, Yukio

    2012-07-01

    Peroxisome proliferator-activated receptors (PPARs) play important roles in diverse biological processes including metabolisms of sugars and lipids and differentiation of cells such as adipocytes. PPARs are transcription factors belonging to the ligand-dependent hormone receptor group. To function as transcription factors, PPARs translocate into nucleus where they associate with transcription apparatus. However, mechanisms underlying nuclear transport of PPARs remain enigmatic. We show here that PPARα and PPARγ dynamically shuttle between nucleus and cytoplasm, although they constitutively and predominantly appear in nucleus. With a series of truncation mutants, we identify that PPAR nuclear transport is mediated by at least two nuclear localization signals (NLSs) in DNA-binding domain (DBD)-hinge and activation function 1 (AF1) regions and their respective receptors including importinα/β, importin 7, and an unidentified receptor. PPARs also harbor two nuclear export signals in DBD and ligand-binding domain regions that are recognized by distinct export receptors, calreticulin and CRM1. Moreover, we show that nuclear-cytoplasmic shuttling of PPARs is regulated by respective PPAR ligands and Ca2+ concentration. Taken together, we suggest that the multiple pathways for the nuclear-cytoplasmic transport of PPARs regulate the biological functions of PPARs in response to external signals. © 2012 The Authors Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  12. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Respiratory Diseases and Thoracic Oncology Department, Ambroise Pare Hospital – APHP, Versailles Saint Quentin en Yvelines University, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt

    2015-10-02

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studiesmore » indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.« less

  13. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads.

    PubMed

    Chaikuad, Apirat; Bullock, Alex N

    2016-11-01

    Stimulation of the transforming growth factor β (TGF-β) family receptors activates an intracellular phosphorylation-dependent signaling cascade that culminates in Smad transcriptional activation and turnover. Structural studies have identified a number of allosteric mechanisms that control the localization, conformation, and oligomeric state of the receptors and Smads. Such mechanisms dictate the ordered binding of substrate and adaptor proteins that determine the directionality of the signaling process. Activation of the pathway has been illustrated by the various structures of the receptor-activated Smads (R-Smads) with SARA, Smad4, and YAP, respectively, whereas mechanisms of down-regulation have been elucidated by the structural complexes of FKBP12, Ski, and Smurf1. Interesting parallels have emerged between the R-Smads and the Forkhead-associated (FHA) and interferon regulatory factor (IRF)-associated domains, as well as the Hippo pathway. However, important questions remain as to the mechanism of Smad-independent signaling. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. IGF-1 receptor cleavage in hypertension.

    PubMed

    Cirrik, Selma; Schmid-Schönbein, Geert W

    2018-06-01

    Increased protease activity causes receptor dysfunction due to extracellular cleavage of different membrane receptors in hypertension. The vasodilatory effects of insulin-like growth factor-1 (IGF-1) are decreased in hypertension. Therefore, in the present study the association of an enhanced protease activity and IGF-1 receptor cleavage was investigated using the spontaneously hypertensive rats (SHRs) and their normotensive Wistar Kyoto (WKY) controls (n = 4). Matrix metalloproteinase (MMP) activities were determined using gelatin zymography on plasma and different tissue samples. WKY aorta rings were incubated in WKY or SHR plasma with or without MMP inhibitors, and immunohistochemistry was used to quantify the densities of the alpha and beta IGF-1 receptor (IGF-1R) subunits and to determine receptor cleavage. The pAkt and peNOS levels in the aorta were investigated using immunoblotting as a measure of IGF-IR function. Increased MMP-2 and MMP-9 activities were detected in plasma and peripheral tissues of SHRs. IGF-1R beta labeling was similar in both groups without plasma incubation, but the fraction of immunolabeled area for IGF-1R alpha was lower in the endothelial layer of the SHR aorta (p < 0.05). A 24-h incubation of WKY aorta with SHR plasma did not affect the IGF-1R beta labeling density, but reduced the IGF-1R alpha labeling density in the endothelium (p < 0.05). MMP inhibitors prevented this decrease (p < 0.01). Western blot analyses revealed that the pAkt and peNOS levels under IGF-1-stimulated and -unstimulated conditions were lower in SHRs (p < 0.05). A reduced IGF-1 cellular response in the aorta was associated with the decrease in the IGF-1R alpha subunit in the SHR hypertension model. Our results indicate that MMP-dependent receptor cleavage contributed to the reduced IGF-1 response in SHRs.

  15. The N-terminal domain of GluR6-subtype glutamate receptor ion channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Janesh; Schuck, Peter; Jin, Rongsheng

    2009-09-25

    The amino-terminal domain (ATD) of glutamate receptor ion channels, which controls their selective assembly into AMPA, kainate and NMDA receptor subtypes, is also the site of action of NMDA receptor allosteric modulators. Here we report the crystal structure of the ATD from the kainate receptor GluR6. The ATD forms dimers in solution at micromolar protein concentrations and crystallizes as a dimer. Unexpectedly, each subunit adopts an intermediate extent of domain closure compared to the apo and ligand-bound complexes of LIVBP and G protein-coupled glutamate receptors (mGluRs), and the dimer assembly has a markedly different conformation from that found in mGluRs.more » This conformation is stabilized by contacts between large hydrophobic patches in the R2 domain that are absent in NMDA receptors, suggesting that the ATDs of individual glutamate receptor ion channels have evolved into functionally distinct families.« less

  16. Characterization of the Truncated Androgen Receptor Generated by Calpain-Dependent Proteolysis in Prostate Cancer

    DTIC Science & Technology

    2009-08-31

    hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell, 2007. 27(3): p. 380 -92. 26. Takayama, K...TSS_upstream * 69570641 69571326 0.02 UGT2B15 -5 TSS_upstream 71417985 71418195 0.05 UNQ689 -796 TSS_upstream 29 83631386 83632082 0.02 MASA 60948

  17. Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness

    PubMed Central

    Papouin, Thomas; Dunphy, Jaclyn; Tolman, Michaela; Dineley, Kelly T.; Haydon, Philip G.

    2017-01-01

    Summary The activation of the N-methyl D-aspartate receptor (NMDAR) is controlled by a glutamate-binding site and a distinct, independently regulated, co-agonist-binding site. In most brain regions, the NMDAR co-agonist is the astrocyte-derived gliotransmitter D-serine. We found that D-serine levels oscillate in mouse hippocampus as a function of wakefulness, in vitro and in vivo. This causes a full saturation of the NMDAR co-agonist site in the dark (active)-phase that dissipates to sub-saturating levels during the light (sleep)-phase, and influences learning performance throughout the day. We demonstrate that hippocampal astrocytes sense the wakefulness-dependent activity of septal cholinergic fibers through the α7-nicotinic acetylcholine receptor (α7nAChR), whose activation drives D-serine release. We conclude that astrocytes tune the gating of synaptic NMDARs to the vigilance state and demonstrate that this is directly relevant to schizophrenia, a disorder characterized by NMDAR and cholinergic hypofunctions. Indeed, bypassing cholinergic activity with a clinically-tested α7nAChR agonist successfully enhances NMDARs activation. PMID:28479102

  18. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    PubMed Central

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  19. D4 dopamine-receptor (DRD4) alleles and novelty seeking in substance-dependent, personality-disorder, and control subjects.

    PubMed Central

    Gelernter, J; Kranzler, H; Coccaro, E; Siever, L; New, A; Mulgrew, C L

    1997-01-01

    Two reports have been published suggesting an association between the personality trait of novelty seeking and the DRD4*7R allele at the D4 dopamine-receptor locus (with heterozygotes or homozygotes for DRD4*7R having higher novelty seeking). We studied novelty seeking and four coding-sequence polymorphisms affecting protein structure in the D4 dopamine-receptor gene (DRD4) in a sample of 341 American subjects, of whom 224 are of primarily European ancestry and 117 are of primarily African ancestry. These subjects had diagnoses of substance dependence or personality disorder (PD) or were screened to exclude major psychiatric diagnosis. We found that, although the substance-dependent subjects had significantly higher novelty seeking than the control and PD subjects, they did not differ in DRD4*7R allele frequency. There was no association between any DRD4 polymorphism and novelty seeking in any population or diagnostic group, except for a significant association between the DRD4*7R allele and lower novelty seeking among European American females and African American substance abusers. The novelty seeking of subjects heterozygous for a null mutation did not differ from that of subjects with two functional alleles. We conclude that the most likely explanation of these results is that the DRD4 VNTR does not influence directly the trait of novelty seeking, in these samples. PMID:9345090

  20. Dopamine D1 vs D5 receptor-dependent induction of seizures in relation to DARPP-32, ERK1/2 and GluR1-AMPA signalling

    PubMed Central

    O’Sullivan, Gerard J.; Dunleavy, Mark; Hakansson, Kerstin; Clementi, Mario; Kinsella, Anthony; Croke, David T.; Drago, John; Fienberg, Allen A.; Greengard, Paul; Sibley, David R.; Fisone, Gilberto; Henshall, David C.; Waddington, John L.

    2013-01-01

    Summary Recent reports have shown that the selective dopamine D1-like agonist SKF 83822 [which stimulates adenylate cyclase, but not phospholipase C] induces prominent behavioral seizures in mice, whereas its benzazepine congener SKF 83959 [which stimulates phospholipase C, but not adenylate cyclase] does not. To investigate the relative involvement of D1 vs D5 receptors in mediating seizures, ethological behavioral topography and cortical EEGs were recorded in D1, D5 and DARPP-32 knockout mice in response to a convulsant dose of SKF 83822. SKF 83822-induced behavioral and EEG seizures were gene dose-dependently abolished in D1 knockouts. In both heterozygous and homozygous D5 knockouts, the latency to first seizure was significantly increased and total EEG seizures were reduced relative to wild-types. The majority (60%) of homozygous DARPP-32 knockouts did not have seizures; of those having seizures (40%), the latency to first seizure was significantly increased and the number of high amplitude, high frequency polyspike EEG events was reduced. In addition, immunoblotting was performed to investigate downstream intracellular signalling mechanisms at D1-like receptors following challenge with SKF 83822 and SKF 83959. In wild-types administered SKF 83822, levels of ERK1/2 and GluR1 AMPA receptor phosphorylation increased two-fold in both the striatum and hippocampus; in striatal slices DARPP-32 phosphorylation at Thr34 increased five-fold relative to vehicle-treated controls. These findings indicate that D1, and to a lesser extent D5, receptor coupling to DARPP-32, ERK1/2 and glutamatergic signalling is involved in mediating the convulsant effects of SKF 83822. PMID:18367215

  1. Metabotropic glutamate receptor 5 upregulates surface NMDA receptor expression in striatal neurons via CaMKII.

    PubMed

    Jin, Dao-Zhong; Xue, Bing; Mao, Li-Min; Wang, John Q

    2015-10-22

    Metabotropic and ionotropic glutamate receptors are closely clustered in postsynaptic membranes and are believed to interact actively with each other to control excitatory synaptic transmission. Metabotropic glutamate receptor 5 (mGluR5), for example, has been well documented to potentiate ionotropic NMDA receptor activity, although underlying mechanisms are poorly understood. In this study, we investigated the role of mGluR5 in regulating trafficking and subcellular distribution of NMDA receptors in adult rat striatal neurons. We found that the mGluR1/5 agonist DHPG concentration-dependently increased NMDA receptor GluN1 and GluN2B subunit expression in the surface membrane. Meanwhile, DHPG reduced GluN1 and GluN2B levels in the intracellular compartment. The effect of DHPG was blocked by an mGluR5 selective antagonist MTEP but not by an mGluR1 selective antagonist 3-MATIDA. Pretreatment with an inhibitor or a specific inhibitory peptide for synapse-enriched Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) also blocked the DHPG-stimulated redistribution of GluN1 and GluN2B. In addition, DHPG enhanced CaMKIIα activity and elevated GluN2B phosphorylation at a CaMKII-sensitive site (serine 1303). These results demonstrate that mGluR5 regulates trafficking of NMDA receptors in striatal neurons. Activation of mGluR5 appears to induce rapid trafficking of GluN1 and GluN2B to surface membranes through a signaling pathway involving CaMKII. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Alkyl isothiocyanates suppress epidermal growth factor receptor kinase activity but augment tyrosine kinase activity.

    PubMed

    Nomura, Takahiro; Uehara, Yoshimasa; Kawajiri, Hiroo; Ryoyama, Kazuo; Yamori, Takao; Fuke, Yoko

    2009-10-01

    We have reported the in vitro and in vivo anticancer activities of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) derived from a Japanese spice, wasabi. In order to obtain some clues about the mechanism of the anticancer activity, we have studied the effect of alkyl isothiocyanates (MITCs) on protein kinase activities. The anti-autophosphorylation activity of MITCs with respect to the epidermal growth factor (EGF)-stimulated receptor kinase of A431 epidermoid carcinoma cells was examined by incorporation of radioactive ATP into an acid-insoluble fraction. Their anti-phosphorylation activity with respect to the non-receptor protein kinase was analyzed by a standard SDS-PAGE method. All the tested MITCs interfered with the EGF-stimulated receptor kinase activity in a dose-dependent manner, although their effects were less than 1/10 of that of erbstatin in microg/ml. On the other hand, the MITCs did not interfere with non-receptor kinases (kinase A, kinase C, tyrosine kinase and calmodulin dependent kinase III), but enhanced non-receptor tyrosine kinase. A possible anticancer mechanism of MITCs may involve the suppression of EGF receptor kinase activity and augmentation of non-receptor PTK.

  3. miR-24 and miR-122 Negatively Regulate the Transforming Growth Factor-β/Smad Signaling Pathway in Skeletal Muscle Fibrosis.

    PubMed

    Sun, Yaying; Wang, Hui; Li, Yan; Liu, Shaohua; Chen, Jiwu; Ying, Hao

    2018-06-01

    Fibrosis is common after skeletal muscle injury, undermining tissue regeneration and function. The mechanism underlying skeletal muscle fibrosis remains unveiled. Transforming growth factor-β/Smad signaling pathway is supposed to play a pivotal role. However, how microRNAs interact with transforming growth factor-β/Smad-related muscle fibrosis remains unclear. We showed that microRNA (miR)-24-3p and miR-122-5p declined in skeletal muscle fibrosis, which was a consequence of transforming growth factor-β. Upregulating Smad4 suppressed two microRNAs, whereas inhibiting Smad4 elevated microRNAs. Luciferase reporter assay and chromatin immunoprecipitation confirmed that Smad4 directly inhibited two microRNAs. On the other hand, overexpression of these two miRs retarded fibrotic process. We further identified that Smad2 was a direct target of miR-24-3p, whereas miR-122-5p targeted transforming growth factorreceptor-II. Both targets were important participants in transforming growth factor-β/Smad signaling. Taken together, a positive feedback loop in transforming growth factor-β/Smad4 signaling pathway in skeletal muscle fibrosis was identified. Transforming growth factor-β/Smad axis could be downregulated by microRNAs. This effect, however, was suppressed by Smad4, the downstream of transforming growth factor-β. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. AT2R (Angiotensin II Type 2 Receptor)-Mediated Regulation of NCC (Na-Cl Cotransporter) and Renal K Excretion Depends on the K Channel, Kir4.1.

    PubMed

    Wu, Peng; Gao, Zhong-Xiuzi; Duan, Xin-Peng; Su, Xiao-Tong; Wang, Ming-Xiao; Lin, Dao-Hong; Gu, Ruimin; Wang, Wen-Hui

    2018-04-01

    AT2R (AngII [angiotensin II] type 2 receptor) is expressed in the distal nephrons. The aim of the present study is to examine whether AT2R regulates NCC (Na-Cl cotransporter) and Kir4.1 of the distal convoluted tubule. AngII inhibited the basolateral 40 pS K channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule treated with losartan but not with PD123319. AT2R agonist also inhibits the K channel, indicating that AT2R was involved in tonic regulation of Kir4.1. The infusion of PD123319 stimulated the expression of tNCC (total NCC) and pNCC (phosphorylated NCC; Thr 53 ) by a time-dependent way with the peak at 4 days. PD123319 treatment (4 days) stimulated the basolateral 40 pS K channel activity, augmented the basolateral K conductance, and increased the negativity of distal convoluted tubule membrane. The stimulation of Kir4.1 was essential for PD123319-induced increase in NCC because inhibiting AT2R increased the expression of tNCC and pNCC only in wild-type but not in the kidney-specific Kir4.1 knockout mice. Renal clearance study showed that thiazide-induced natriuretic effect was larger in PD123319-treated mice for 4 days than untreated mice. However, this effect was absent in kidney-specific Kir4.1 knockout mice which were also Na wasting under basal conditions. Finally, application of AT2R antagonist decreased the renal ability of K excretion and caused hyperkalemia in wild-type but not in kidney-specific Kir4.1 knockout mice. We conclude that AT2R-dependent regulation of NCC requires Kir4.1 in the distal convoluted tubule and that AT2R plays a role in stimulating K excretion by inhibiting Kir4.1 and NCC. © 2018 American Heart Association, Inc.

  5. NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling.

    PubMed

    Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R

    2014-12-01

    N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.

  6. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist*

    PubMed Central

    Makita, Noriko; Sato, Tomohiko; Yajima-Shoji, Yuki; Sato, Junichiro; Manaka, Katsunori; Eda-Hashimoto, Makiko; Ootaki, Masanori; Matsumoto, Naoki; Nangaku, Masaomi; Iiri, Taroh

    2016-01-01

    Disease-causing mutations in G protein-coupled receptor (GPCR) genes, including the V2 vasopressin receptor (V2R) gene, often cause misfolded receptors, leading to a defect in plasma membrane trafficking. A novel V2R mutation, T273M, identified in a boy with partial nephrogenic diabetes insipidus (NDI), shows intracellular localization and partial defects similar to the two mutants we described previously (10). Although non-peptide V2R antagonists have been shown to rescue the membrane localization of V2R mutants, their level of functional rescue is weak. Interestingly, it has been reported that a non-peptide agonist, OPC51803, activates misfolded V2R mutants intracellularly without degradation, thus potentially serving as a therapeutic agent against NDI (14). In our current experiments, however, a peptide antagonist blocked arginine vasopressin (AVP)- or OPC51803-stimulated cAMP accumulation both in COS-7 and MDCK cells, suggesting that OPC51803 mainly stimulates cell surface V2R mutants. In addition, our analyses revealed that OPC51803 works not only as a non-peptide agonist that causes activation/β-arrestin-dependent desensitization of V2R mutants expressed at the plasma membrane but also as a pharmacochaperone that promotes the endoplasmic reticulum-retained mutant maturation and trafficking to the plasma membrane. The ratio of the pharmacochaperone effect to the desensitization effect likely correlates negatively with the residual function of the tested mutants, suggesting that OPC5 has a more favorable effect on the V2R mutants with a less residual function. We speculated that the canceling of the desensitization effect of OPC51803 by the pharmacochaperone effect after long-term treatment may produce sustainable signaling, and thus pharmacochaperone agonists such as OPC51803 may serve as promising therapeutics for NDI caused by misfolded V2R mutants. PMID:27601473

  7. Psychotropic and Nonpsychotropic Cannabis Derivatives Inhibit Human 5-HT3A receptors through a Receptor Desensitization-Dependent Mechanism

    PubMed Central

    Xiong, Wei; Koo, Bon-Nyeo; Morton, Russell; Zhang, Li

    2011-01-01

    Δ9 tetrahydrocannabinol (THC) and cannabidiol (CBD) are the principal psychoactive and non-psychoactive components of cannabis. While most THC-induced behavioral effects are thought to depend on endogenous cannabinoid 1 (CB1) receptors, the molecular targets for CBD remain unclear. Here, we report that CBD and THC inhibited the function of human 5-HT3A receptors (h5-HT3ARs) expressed in HEK 293 cells. The magnitude of THC and CBD inhibition was maximal 5 min after a continuous incubation with cannabinoids. The EC50 values for CBD and THC-induced inhibition were 110 nM and 322 nM respectively in HEK 293 cells expressing h5-HT3ARs. In these cells, CBD and THC did not stimulate specific [35S]-GTP-γs binding in membranes, suggesting that the inhibition by cannabinoids is unlikely mediated by a G-protein dependent mechanism. On the other hand, both CBD and THC accelerated receptor desensitization kinetics without significantly changing activation time. The extent of cannabinoid inhibition appeared to depend on receptor desensitization. Reducing receptor desensitization by nocodazole, 5-hydroxyindole and a point-mutation in the large cytoplasmic domain of the receptor significantly decreased CBD-induced inhibition. Similarly, the magnitude of THC and CBD-induced inhibition varied with the apparent desensitization rate of h5-HT3ARs expressed in Xenopus oocytes. For instance, with increasing amount of h5-HT3AR cRNA injected into the oocytes, the receptor desensitization rate at steady state decreased. THC and CBD-induced inhibition was correlated with the change in the receptor desensitization rate. Thus, CBD and THC inhibit h5-HT3A receptors through a mechanism that is dependent on receptor desensitization. PMID:21477640

  8. Oxidative stress-induced iron signaling is responsible for peroxide-dependent oxidation of dichlorodihydrofluorescein in endothelial cells: role of transferrin receptor-dependent iron uptake in apoptosis.

    PubMed

    Tampo, Yoshiko; Kotamraju, Srigiridhar; Chitambar, Christopher R; Kalivendi, Shasi V; Keszler, Agnes; Joseph, Joy; Kalyanaraman, B

    2003-01-10

    Dichlorodihydrofluorescein (DCFH) is one of the most frequently used probes for detecting intracellular oxidative stress. In this study, we report that H2O2-dependent intracellular oxidation of DCFH to a green fluorescent product, 2',7'-dichlorofluorescein (DCF), required the uptake of extracellular iron transported through a transferrin receptor (TfR) in endothelial cells. H2O2-induced DCF fluorescence was inhibited by the monoclonal IgA-class anti-TfR antibody (42/6) that blocked TfR endocytosis and the iron uptake. H2O2-mediated inactivation of cytosolic aconitase was responsible for activation of iron regulatory protein-1 and increased expression of TfR, resulting in an increased iron uptake into endothelial cells. H2O2-mediated caspase-3 proteolytic activation was inhibited by anti-TfR antibody. Similar results were obtained in the presence of a lipid hydroperoxide. We conclude that hydroperoxide-induced DCFH oxidation and endothelial cell apoptosis required the uptake of extracellular iron by the TfR-dependent iron transport mechanism and that the peroxide-induced iron signaling, in general, has broader implications in oxidative vascular biology.

  9. Targeted Morphoproteomic Profiling of Ewing's Sarcoma Treated with Insulin-Like Growth Factor 1 Receptor (IGF1R) Inhibitors: Response/Resistance Signatures

    PubMed Central

    Subbiah, Vivek; Naing, Aung; Brown, Robert E.; Chen, Helen; Doyle, Laurence; LoRusso, Patricia; Benjamin, Robert; Anderson, Pete; Kurzrock, Razelle

    2011-01-01

    Background Insulin-like growth factor 1 receptor (IGF1R) targeted therapies have resulted in responses in a small number of patients with advanced metastatic Ewing's sarcoma. We performed morphoproteomic profiling to better understand response/resistance mechanisms of Ewing's sarcoma to IGF1R inhibitor-based therapy. Methodology/Principal Findings This pilot study assessed two patients with advanced Ewing's sarcoma treated with IGF1R antibody alone followed by combined IGF1R inhibitor plus mammalian target of rapamycin (mTOR) inhibitor treatment once resistance to single-agent IGF1R inhibitor developed. Immunohistochemical probes were applied to detect p-mTOR (Ser2448), p-Akt (Ser473), p-ERK1/2 (Thr202/Tyr204), nestin, and p-STAT3 (Tyr 705) in the original and recurrent tumor. The initial remarkable radiographic responses to IGF1R-antibody therapy was followed by resistance and then response to combined IGF1R plus mTOR inhibitor therapy in both patients, and then resistance to the combination regimen in one patient. In patient 1, upregulation of p-Akt and p-mTOR in the tumor that relapsed after initial response to IGF1R antibody might explain the resistance that developed, and the subsequent response to combined IGF1R plus mTOR inhibitor therapy. In patient 2, upregulation of mTOR was seen in the primary tumor, perhaps explaining the initial response to the IGF1R and mTOR inhibitor combination, while the resistant tumor that emerged showed activation of the ERK pathway as well. Conclusion/Significance Morphoproteomic analysis revealed that the mTOR pathway was activated in these two patients with advanced Ewing's sarcoma who showed response to combined IGF1R and mTOR inhibition, and the ERK pathway in the patient in whom resistance to this combination emerged. Our pilot results suggests that morphoproteomic assessment of signaling pathway activation in Ewing's sarcoma merits further investigation as a guide to understanding response and resistance signatures. PMID

  10. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    PubMed

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  11. An Examination of the Role of L-Glutamate and Inosine 5'-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor.

    PubMed

    Blonde, Ginger D; Spector, Alan C

    2017-06-01

    The heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a concentration series of Maltrin-580, a maltodextrin, in a brief-access test (10-s trials) as a positive control. Similar tests followed with monosodium glutamate (MSG) with and without the ribonucleotide inosine 5'-monophosphate (IMP), but always in the presence of the epithelial sodium channel blocker amiloride (A). Brief-access tests were repeated following short-term (30-min) and long-term (48-h) exposures to MSG + A + IMP and were also conducted with sodium gluconate replacing MSG. Finally, progressive ratio tests were conducted with Maltrin-580 or MSG + A + IMP, to assess appetitive behavior while minimizing satiation. Overall, MSG generated little concentration-dependent responding in either food-restricted WT or KO mice, even in combination with IMP. However, KO mice licked less to the amino acid stimuli, a measure of consummatory behavior in the brief-access tests. In contrast, both groups initiated a similar number of trials and had a similar breakpoint in the progressive ratio task, both measures of appetitive (approach) behavior. Collectively, these results suggest that while the T1R1 + T1R3 receptor is necessary for consummatory responding to MSG (+IMP), other receptors are sufficient to maintain appetitive responding to this "umami" stimulus complex in food-restricted mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  13. Vitamin D receptor displays DNA binding and transactivation as a heterodimer with the retinoid X receptor, but not with the thyroid hormone receptor.

    PubMed

    Thompson, P D; Hsieh, J C; Whitfield, G K; Haussler, C A; Jurutka, P W; Galligan, M A; Tillman, J B; Spindler, S R; Haussler, M R

    1999-12-01

    The vitamin D receptor (VDR) is a transcription factor believed to function as a heterodimer with the retinoid X receptor (RXR). However, it was reported [Schräder et al., 1994] that, on putative vitamin D response elements (VDREs) within the rat 9k and mouse 28k calcium binding protein genes (rCaBP 9k and mCaBP 28k), VDR and thyroid hormone receptor (TR) form heterodimers that transactivate in response to both 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and triiodothyronine (T(3)). We, therefore, examined associations of these receptors on the putative rCaBP 9k and mCaBP 28k VDREs, as well as on established VDREs from the rat osteocalcin (rOC) and mouse osteopontin (mOP) genes, plus the thyroid hormone response element (TRE) from the rat myosin heavy chain (rMHC) gene. In gel mobility shift assays, we found no evidence for VDR-TR heterodimer interaction with any tested element. Further, employing these hormone response elements linked to reporter genes in transfected cells, VDR and TR mediated responses to their cognate ligands only from the rOC/mOP and rMHC elements, respectively, while the CaBP elements were unresponsive to any combination of ligand(s). Utilizing the rOC and mOP VDREs, two distinct repressive actions of TR on VDR-mediated signaling were demonstrated: a T(3)-independent action, presumably via direct TR-RXR competition for DNA binding, and a T(3)-dependent repression, likely by diversion of limiting RXR from VDR-RXR toward the formation of TR-RXR heterodimers. The relative importance of these two mechanisms differed in a response element-specific manner. These results may provide a partial explanation for the observed association between hyperthyroidism and bone demineralization/osteoporosis. Copyright 1999 Wiley-Liss, Inc.

  14. Characterization of insulin-like growth factor I receptor on human erythrocytes.

    PubMed

    Hizuka, N; Takano, K; Tanaka, I; Honda, N; Tsushima, T; Shizume, K

    1985-12-01

    [125I]Insulin-like growth factor I (IGF-I) specifically bound to erythrocytes; the binding was saturable, and time and temperature dependent. Steady state binding was reached at 16 h at 4 C, and specific binding averaged 14.3 +/- 0.7% (+/- SEM) at a concentration of 3.6 X 10(9) cells/ml in seven normal subjects. [125I]IGF-I binding to the cells was displaced by unlabeled IGF-I in a dose-dependent manner. Scatchard analysis indicated a linear plot, and Ka and number of binding sites/cell were 1.43 +/- 0.07 X 10(9) M-1 and 20.7 +/- 2.2, respectively. Compared to IGF-I, the relative potencies of multiplication-stimulating activity and insulin for displacing [125I]IGF-I binding were 20% and 1%, respectively. [125I]IGF-I binding to erythrocytes from patients with acromegaly was lower than binding to cells from pituitary dwarfs. An inverse correlation between plasma IGF-I level and the number of IGF-I-binding sites per cell was found (r = -0.75; P less than 0.005). These results demonstrate that [125I]IGF-I binding to erythrocytes can be used for clinical measurement of the IGF-I receptor.

  15. Risk and protective factors for falls on stairs in young children: multicentre case–control study

    PubMed Central

    Kendrick, D; Zou, K; Ablewhite, J; Watson, M; Coupland, C; Kay, B; Hawkins, A; Reading, R

    2016-01-01

    Aim To investigate risk and protective factors for stair falls in children aged <5 years. Methods Multicentre case–control study at hospitals, minor injury units and general practices in and around four UK study centres. Cases were children with medically attended stair fall injuries. Controls were matched on age, sex, calendar time and study centre. A total of 610 cases and 2658 controls participated. Results Cases’ most common injuries were bangs on the head (66%), cuts/grazes not requiring stitches (14%) and fractures (12%). Parents of cases were significantly more likely not to have stair gates (adjusted OR (AOR) 2.50, 95% CI 1.90 to 3.29; population attributable fraction (PAF) 21%) or to leave stair gates open (AOR 3.09, 95% CI 2.39 to 4.00; PAF 24%) both compared with having closed stair gates. They were more likely not to have carpeted stairs (AOR 1.52, 95% CI 1.09 to 2.10; PAF 5%) and not to have a landing part-way up their stairs (AOR 1.34, 95% CI 1.08 to 1.65; PAF 18%). They were more likely to consider their stairs unsafe to use (AOR 1.46, 95% CI 1.07 to 1.99; PAF 5%) or to be in need of repair (AOR 1.71, 95% CI 1.16 to 2.50; PAF 5%). Conclusion Structural factors including having landings part-way up the stairs and keeping stairs in good repair were associated with reduced stair fall injury risk. Family factors including having stair gates, not leaving gates open and having stair carpets were associated with reduced injury risk. If these associations are causal, addressing these factors in housing policy and routine child health promotion could reduce stair fall injuries. PMID:26662926

  16. β cell membrane remodelling and procoagulant events occur in inflammation-driven insulin impairment: a GLP-1 receptor dependent and independent control.

    PubMed

    Gleizes, Céline; Kreutter, Guillaume; Abbas, Malak; Kassem, Mohamad; Constantinescu, Andrei Alexandru; Boisramé-Helms, Julie; Yver, Blandine; Toti, Florence; Kessler, Laurence

    2016-02-01

    Inflammation and hyperglycaemia are associated with a prothrombotic state. Cell-derived microparticles (MPs) are the conveyors of active procoagulant tissue factor (TF) and circulate at high concentration in diabetic patients. Liraglutide, a glucagon-like peptide (GLP)-1 analogue, is known to promote insulin secretion and β-cell preservation. In this in vitro study, we examined the link between insulin impairment, procoagulant activity and plasma membrane remodelling, under inflammatory conditions. Rin-m5f β-cell function, TF activity mediated by MPs and their modulation by 1 μM liraglutide were examined in a cell cross-talk model. Methyl-β-cyclodextrine (MCD), a cholesterol depletor, was used to evaluate the involvement of raft on TF activity, MP shedding and insulin secretion as well as Soluble N-éthylmaleimide-sensitive-factor Attachment protein Receptor (SNARE)-dependent exocytosis. Cytokines induced a two-fold increase in TF activity at MP surface that was counteracted by liraglutide. Microparticles prompted TF activity on the target cells and a two-fold decrease in insulin secretion via protein kinase A (PKA) and p38 signalling, that was also abolished by liraglutide. Large lipid raft clusters were formed in response to cytokines and liraglutide or MCD-treated cells showed similar patterns. Cells pre-treated by saturating concentration of the GLP-1r antagonist exendin (9-39), showed a partial abolishment of the liraglutide-driven insulin secretion and liraglutide-decreased TF activity. Measurement of caspase 3 cleavage and MP shedding confirmed the contribution of GLP-1r-dependent and -independent pathways. Our results confirm an integrative β-cell response to GLP-1 that targets receptor-mediated signalling and membrane remodelling pointing at the coupling of insulin secretion and inflammation-driven procoagulant events. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and

  17. An introduction to the molecular basics of aryl hydrocarbon receptor biology.

    PubMed

    Abel, Josef; Haarmann-Stemmann, Thomas

    2010-11-01

    Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.

  18. Liver Tumor Promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Dependent on the Aryl Hydrocarbon Receptor and TNF/IL-1 Receptors

    PubMed Central

    Kennedy, Gregory D.; Nukaya, Manabu; Moran, Susan M.; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S.; Pitot, Henry C.; Drinkwater, Norman R.; Bradfield, Christopher A.

    2014-01-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn (“dioxin”). To this end, we first employed congenic mice homozygous for either the Ahrb1 or Ahrd alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by “interleukin-1 (IL-1)-like” inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the “IL-1-like” cytokines. PMID:24718703

  19. Liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin is dependent on the aryl hydrocarbon receptor and TNF/IL-1 receptors.

    PubMed

    Kennedy, Gregory D; Nukaya, Manabu; Moran, Susan M; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S; Pitot, Henry C; Drinkwater, Norman R; Bradfield, Christopher A

    2014-07-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn ("dioxin"). To this end, we first employed congenic mice homozygous for either the Ahr(b1) or Ahr(d) alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by "interleukin-1 (IL-1)-like" inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the "IL-1-like" cytokines. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie,Y.; Hobbs, J.; Vigues, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain amore » large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.« less

  1. Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes1234

    PubMed Central

    Chen, Qing-Ying; Alarcon, Suzanne; Tharp, Anilet; Ahmed, Osama M; Estrella, Nelsa L; Greene, Tiffani A; Rucker, Joseph; Breslin, Paul AS

    2009-01-01

    Background: The TAS1R1 and TAS1R3 G protein–coupled receptors are believed to function in combination as a heteromeric glutamate taste receptor in humans. Objective: We hypothesized that variations in the umami perception of glutamate would correlate with variations in the sequence of these 2 genes, if they contribute directly to umami taste. Design: In this study, we first characterized the general sensitivity to glutamate in a sample population of 242 subjects. We performed these experiments by sequencing the coding regions of the genomic TAS1R1 and TAS1R3 genes in a separate set of 87 individuals who were tested repeatedly with monopotassium glutamate (MPG) solutions. Last, we tested the role of the candidate umami taste receptor hTAS1R1-hTAS1R3 in a functional expression assay. Results: A subset of subjects displays extremes of sensitivity, and a battery of different psychophysical tests validated this observation. Statistical analysis showed that the rare T allele of single nucleotide polymorphism (SNP) R757C in TAS1R3 led to a doubling of umami ratings of 25 mmol MPG/L. Other suggestive SNPs of TAS1R3 include the A allele of A5T and the A allele of R247H, which both resulted in an approximate doubling of umami ratings of 200 mmol MPG/L. We confirmed the potential role of the human TAS1R1-TAS1R3 heteromer receptor in umami taste by recording responses, specifically to l-glutamate and inosine 5′-monophosphate (IMP) mixtures in a heterologous expression assay in HEK (human embryonic kidney) T cells. Conclusions: There is a reliable and valid variation in human umami taste of l-glutamate. Variations in perception of umami taste correlated with variations in the human TAS1R3 gene. The putative human taste receptor TAS1R1-TAS1R3 responds specifically to l-glutamate mixed with the ribonucleotide IMP. Thus, this receptor likely contributes to human umami taste perception. PMID:19587085

  2. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability

    PubMed Central

    Mayer, Christine; Zhao, Jian; Yuan, Xuejun; Grummt, Ingrid

    2004-01-01

    In cycling cells, transcription of ribosomal RNA genes by RNA polymerase I (Pol I) is tightly coordinated with cell growth. Here, we show that the mammalian target of rapamycin (mTOR) regulates Pol I transcription by modulating the activity of TIF-IA, a regulatory factor that senses nutrient and growth-factor availability. Inhibition of mTOR signaling by rapamycin inactivates TIF-IA and impairs transcription-initiation complex formation. Moreover, rapamycin treatment leads to translocation of TIF-IA into the cytoplasm. Rapamycin-mediated inactivation of TIF-IA is caused by hypophosphorylation of Ser 44 (S44) and hyperphosphorylation of Ser 199 (S199). Phosphorylation at these sites affects TIF-IA activity in opposite ways, for example, phosphorylation of S44 activates and S199 inactivates TIF-IA. The results identify a new target for mTOR-signaling pathways and elucidate the molecular mechanism underlying mTOR-dependent regulation of rRNA synthesis. PMID:15004009

  3. Sigma ReceptorR) Ligands with Antiproliferative and Anticancer Activity.

    PubMed

    Georgiadis, Markos-Orestis; Karoutzou, Olga; Foscolos, Angeliki-Sofia; Papanastasiou, Ioannis

    2017-08-25

    Sigma receptorR) ligands have proven to be useful as cancer diagnostics and anticancer therapeutics and their ligands have been developed as molecular probes in oncology. Moreover, various σR ligands generate cancer cell death in vitro and in vivo. These σR ligands have exhibited promising results against numerous human and rodent cancers and are investigated under preclinical and clinical study trials, indicating a new category of drugs in cancer therapy.

  4. Overlapping but distinct topology for zebrafish V2R-like olfactory receptors reminiscent of odorant receptor spatial expression zones.

    PubMed

    Ahuja, Gaurav; Reichel, Vera; Kowatschew, Daniel; Syed, Adnan S; Kotagiri, Aswani Kumar; Oka, Yuichiro; Weth, Franco; Korsching, Sigrun I

    2018-05-23

    The sense of smell is unrivaled in terms of molecular complexity of its input channels. Even zebrafish, a model vertebrate system in many research fields including olfaction, possesses several hundred different olfactory receptor genes, organized in four different gene families. For one of these families, the initially discovered odorant receptors proper, segregation of expression into distinct spatial subdomains within a common sensory surface has been observed both in teleost fish and in mammals. However, for the remaining three families, little to nothing was known about their spatial coding logic. Here we wished to investigate, whether the principle of spatial segregation observed for odorant receptors extends to another olfactory receptor family, the V2R-related OlfC genes. Furthermore we thought to examine, how expression of OlfC genes is integrated into expression zones of odorant receptor genes, which in fish share a single sensory surface with OlfC genes. To select representative genes, we performed a comprehensive phylogenetic study of the zebrafish OlfC family, which identified a novel OlfC gene, reduced the number of pseudogenes to 1, and brought the total family size to 60 intact OlfC receptors. We analyzed the spatial pattern of OlfC-expressing cells for seven representative receptors in three dimensions (height within the epithelial layer, horizontal distance from the center of the olfactory organ, and height within the olfactory organ). We report non-random distributions of labeled neurons for all OlfC genes analysed. Distributions for sparsely expressed OlfC genes are significantly different from each other in nearly all cases, broad overlap notwithstanding. For two of the three coordinates analyzed, OlfC expression zones are intercalated with those of odorant receptor zones, whereas in the third dimension some segregation is observed. Our results show that V2R-related OlfC genes follow the same spatial logic of expression as odorant receptors and

  5. Staurosporine potentiates platelet activating factor stimulated phospholipase C activity in rabbit platelets but does not block desensitization by platelet activating factor.

    PubMed

    Morrison, W J; Dhar, A; Shukla, S D

    1989-01-01

    The possible involvement of protein kinase C activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets. PAF (100 nM for 5 seconds) stimulated incorporation of 32P into proteins and caused [3H]InsP3 levels to increase about 260% of control. These responses were compared after platelets were pretreated with either PAF, phorbol 12-myristate 13-acetate (PMA) or staurosporine and also after pretreatments with staurosporine followed by PAF or PMA. Pretreating platelets with staurosporine potentiated PAF-stimulated [3H]InsP3 levels by 54% and blocked protein phosphorylation. Pretreatments with PAF and PMA caused PAF-stimulated [3H]InsP3 levels to decrease to 115 and 136%, respectively. Staurosporine pretreatment blocked the decrease caused by the PMA pretreatment but not that by PAF. This study demonstrates that PAF-stimulated PLC activity is negatively affected by protein kinase C (PKC) activation and that inhibition of PKC activity did not prevent desensitization of PLC by PAF.

  6. Arrestin Scaffolds NHERF1 to the P2Y12 Receptor to Regulate Receptor Internalization*

    PubMed Central

    Nisar, Shaista P.; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J.; Kelly, Eamonn; Mundell, Stuart J.

    2012-01-01

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y12 receptor (P2Y12R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y12R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y12R internalization. In vitro and prior to agonist stimulation P2Y12R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101

  7. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.

    PubMed

    Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J

    2012-07-13

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.

  8. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  9. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.

  10. Prostaglandin E2 EP2 activation reduces memory decline in R6/1 mouse model of Huntington's disease by the induction of BDNF-dependent synaptic plasticity.

    PubMed

    Anglada-Huguet, Marta; Vidal-Sancho, Laura; Giralt, Albert; García-Díaz Barriga, Gerardo; Xifró, Xavier; Alberch, Jordi

    2016-11-01

    Huntington's disease (HD) patients and mouse models show learning and memory impairment even before the onset of motor symptoms. Deficits in hippocampal synaptic plasticity have been involved in the HD memory impairment. Several studies show that prostaglandin E2 (PGE2) EP2 receptor stimulates synaptic plasticity and memory formation. However, this role was not explored in neurodegenerative diseases. Here, we investigated the capacity of PGE2 EP2 receptor to promote synaptic plasticity and memory improvements in a model of HD, the R6/1 mice, by administration of the agonist misoprostol. We found that misoprostol increases dendritic branching in cultured hippocampal neurons in a brain-derived neurotrophic factor (BDNF)-dependent manner. Then, we implanted an osmotic mini-pump system to chronically administrate misoprostol to R6/1 mice from 14 to 18weeks of age. We observed that misoprostol treatment ameliorates the R6/1 long-term memory deficits as analyzed by the T-maze spontaneous alternation task and the novel object recognition test. Importantly, administration of misoprostol promoted the expression of hippocampal BDNF. Moreover, the treatment with misoprostol in R6/1 mice blocked the reduction in the number of PSD-95 and VGluT-1 positive particles observed in hippocampus of vehicle-R6/1 mice. In addition, we observed an increase of cAMP levels in the dentate ` of WT and R6/1 mice treated with misoprostol. Accordingly, we showed a reduction in the number of mutant huntingtin nuclear inclusions in the dentate gyrus of R6/1 mice. Altogether, these results suggest a putative therapeutic effect of PGE2 EP2 receptor in reducing cognitive deficits in HD. Copyright © 2016. Published by Elsevier Inc.

  11. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells

    PubMed Central

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C.; Hershfeld, Alena; Kenyon, Lawrence C.

    2015-01-01

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K+ channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  12. Vibrio cholerae ToxR downregulates virulence factor production in response to cyclo(Phe-Pro).

    PubMed

    Bina, X Renee; Taylor, Dawn L; Vikram, Amit; Ante, Vanessa M; Bina, James E

    2013-08-27

    Vibrio cholerae is an aquatic organism that causes the severe acute diarrheal disease cholera. The ability of V. cholerae to cause disease is dependent upon the production of two critical virulence determinants, cholera toxin (CT) and the toxin-coregulated pilus (TCP). The expression of the genes that encode for CT and TCP production is under the control of a hierarchical regulatory system called the ToxR regulon, which functions to activate virulence gene expression in response to in vivo stimuli. Cyclic dipeptides have been found to be produced by numerous bacteria, yet their biological function remains unknown. V. cholerae has been shown to produce cyclo(Phe-Pro). Previous studies in our laboratory demonstrated that cyclo(Phe-Pro) inhibited V. cholerae virulence factor production. For this study, we report on the mechanism by which cyclo(Phe-Pro) inhibited virulence factor production. We have demonstrated that exogenous cyclo(Phe-Pro) activated the expression of leuO, a LysR-family regulator that had not been previously associated with V. cholerae virulence. Increased leuO expression repressed aphA transcription, which resulted in downregulation of the ToxR regulon and attenuated CT and TCP production. The cyclo(Phe-Pro)-dependent induction of leuO expression was found to be dependent upon the virulence regulator ToxR. Cyclo(Phe-Pro) did not affect toxR transcription or ToxR protein levels but appeared to enhance the ToxR-dependent transcription of leuO. These results have identified leuO as a new component of the ToxR regulon and demonstrate for the first time that ToxR is capable of downregulating virulence gene expression in response to an environmental cue. The ToxR regulon has been a focus of cholera research for more than three decades. During this time, a model has emerged wherein ToxR functions to activate the expression of Vibrio cholerae virulence factors upon host entry. V. cholerae and other enteric bacteria produce cyclo(Phe-Pro), a cyclic dipeptide

  13. HIV-1 Tat reduces nephrin in human podocytes: a potential mechanism for enhanced glomerular permeability in HIV-associated nephropathy.

    PubMed

    Doublier, Sophie; Zennaro, Cristina; Spatola, Tiziana; Lupia, Enrico; Bottelli, Antonella; Deregibus, Maria Chiara; Carraro, Michele; Conaldi, Pier Giulio; Camussi, Giovanni

    2007-02-19

    To determine whether HIV-1 Tat may directly alter glomerular permeability in HIV-associated nephropathy (HIVAN). Heavy proteinuria is a hallmark of HIVAN. The slit diaphragm is the ultimate glomerular filtration barrier critical for maintaining the efficiency of the ultrafiltration unit of the kidney. In this study, we evaluated the direct effect of Tat protein on the permeability of isolated glomeruli and on the expression of nephrin, the main slit diaphragm component, by human cultured podocytes. Permeability was studied by measuring the permeability to albumin in isolated rat glomeruli. We also evaluated the expression of nephrin in human cultured podocytes by using immunofluorescence and Western blot. We found that Tat increased albumin permeability in isolated glomeruli, and rapidly induced the redistribution and loss of nephrin in cultured podocytes. Pretreatment of glomeruli and podocytes with blocking antibodies showed that Tat reduced nephrin expression by engaging vascular endothelial growth factor receptors types 2 and 3 and the integrin alphavbeta3. Pre-incubation of podocytes with two platelet-activating factor (PAF) receptor antagonists prevented the loss and redistribution of nephrin induced by Tat, suggesting that PAF is an intracellular mediator of Tat action. Tat induced a rapid PAF synthesis by podocytes. When podocytes transfected to overexpress PAF-acetylhydrolase, the main catabolic enzyme of PAF, were stimulated with Tat, the redistribution and loss of nephrin was abrogated. The present results define a mechanism by which Tat may reduce nephrin expression in podocytes, thus increasing glomerular permeability. This provides new insights in the understanding of HIVAN pathogenesis.

  14. (+)-Pentazocine Reduces NMDA-Induced Murine Retinal Ganglion Cell Death Through a σR1-Dependent Mechanism

    PubMed Central

    Zhao, Jing; Mysona, Barbara A.; Qureshi, Azam; Kim, Lily; Fields, Taylor; Gonsalvez, Graydon B.; Smith, Sylvia B.; Bollinger, Kathryn E.

    2016-01-01

    Purpose To evaluate, in vivo, the effects of the sigma-1 receptorR1) agonist, (+)-pentazocine, on N-methyl-D-aspartate (NMDA)-mediated retinal excitotoxicity. Methods Intravitreal NMDA injections were performed in C57BL/6J mice (wild type [WT]) and σR1−/− (σR1 knockout [KO]) mice. Fellow eyes were injected with phosphate-buffered saline (PBS). An experimental cohort of WT and σR1 KO mice was administered (+)-pentazocine by intraperitoneal injection, and untreated animals served as controls. Retinas derived from mice were flat-mounted and labeled for retinal ganglion cells (RGCs). The number of RGCs was compared between NMDA and PBS-injected eyes for all groups. Apoptosis was assessed using TUNEL assay. Levels of extracellular-signal–regulated kinases (ERK1/2) were analyzed by Western blot. Results N-methyl-D-aspartate induced a significant increase in TUNEL-positive nuclei and a dose-dependent loss of RGCs. Mice deficient in σR1 showed greater RGC loss (≈80%) than WT animals (≈50%). (+)-Pentazocine treatment promoted neuronal survival, and this effect was prevented by deletion of σR1. (+)-Pentazocine treatment resulted in enhanced activation of ERK at the 6-hour time point following NMDA injection. The (+)-pentazocine–induced ERK activation was diminished in σR1 KO mice. Conclusions Targeting σR1 activation prevented RGC death while enhancing activation of the mitogen-activated protein kinase (MAPK), ERK1/2. Sigma-1 receptor is a promising therapeutic target for retinal neurodegenerative diseases. PMID:26868747

  15. The glucagon-like peptide-2 receptor C terminus modulates beta-arrestin-2 association but is dispensable for ligand-induced desensitization, endocytosis, and G-protein-dependent effector activation.

    PubMed

    Estall, Jennifer L; Koehler, Jacqueline A; Yusta, Bernardo; Drucker, Daniel J

    2005-06-10

    Classic models of receptor desensitization and internalization have been largely based on the behavior of Family A G-protein-coupled receptors (GPCRs). The glucagon-like peptide-2 receptor (GLP-2R) is a member of the Family B glucagon-secretin GPCR family, which exhibit significant sequence and structural differences from the Family A receptors in their intracellular and extracellular domains. To identify structural motifs that regulate GLP-2R signaling and cell surface receptor expression, we analyzed the functional properties of a series of mutant GLP-2Rs. The majority of the C-terminal receptor tail was dispensable for GLP-2-induced cAMP accumulation, ERK1/2 activation, and endocytosis in transfected cells. However, progressive truncation of the C terminus reduced cell surface receptor expression, altered agonist-induced GLP-2R trafficking, and abrogated protein kinase A-mediated heterologous receptor desensitization. Elimination of the distal 21 amino acids of the receptor was sufficient to promote constitutive receptor internalization and prevent agonist-induced recruitment of beta-arrestin-2. Site-directed mutagenesis identified specific amino acid residues within the distal GLP-2R C terminus that mediate the stable association with beta-arrestin-2. Surprisingly, although the truncated mutant receptors failed to interact with beta-arrestin-2, they underwent homologous desensitization and subsequent resensitization with kinetics similar to that observed with the wild-type GLP-2R. Our data suggest that, although the GLP-2R C terminus is not required for coupling to cellular machinery regulating signaling or desensitization, it may serve as a sorting signal for intracellular trafficking. Taken together with the previously demonstrated clathrin and dynamin-independent, lipid-raft-dependent pathways for internalization, our data suggest that GLP-2 receptor signaling has evolved unique structural and functional mechanisms for control of receptor trafficking

  16. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors.

    PubMed

    Zvejniece, L; Vavers, E; Svalbe, B; Vilskersts, R; Domracheva, I; Vorona, M; Veinberg, G; Misane, I; Stonans, I; Kalvinsh, I; Dambrova, M

    2014-02-01

    Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. E1R was tested for sigma receptor binding activity in a [³H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca²⁺ concentration ([Ca²⁺](i)) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca²⁺](i) increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases. © 2013 The British Pharmacological Society.

  17. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors

    PubMed Central

    Zvejniece, L; Vavers, E; Svalbe, B; Vilskersts, R; Domracheva, I; Vorona, M; Veinberg, G; Misane, I; Stonans, I; Kalvinsh, I; Dambrova, M

    2014-01-01

    Background and Purpose Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. Experimental Approach E1R was tested for sigma receptor binding activity in a [3H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca2+ concentration ([Ca2+]i) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. Key Results Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca2+]i increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. Conclusion and Implications E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases. PMID:24490863

  18. Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5.

    PubMed

    Fieblinger, Tim; Sebastianutto, Irene; Alcacer, Cristina; Bimpisidis, Zisis; Maslava, Natallia; Sandberg, Sabina; Engblom, David; Cenci, M Angela

    2014-03-26

    In animal models of Parkinson's disease, striatal overactivation of ERK1/2 via dopamine (DA) D1 receptors is the hallmark of a supersensitive molecular response associated with dyskinetic behaviors. Here we investigate the pathways involved in D1 receptor-dependent ERK1/2 activation using acute striatal slices from rodents with unilateral 6-hydroxydopamine (6-OHDA) lesions. Application of the dopamine D1-like receptor agonist SKF38393 induced ERK1/2 phosphorylation and downstream signaling in the DA-denervated but not the intact striatum. This response was mediated through a canonical D1R/PKA/MEK1/2 pathway and independent of ionotropic glutamate receptors but blocked by antagonists of L-type calcium channels. Coapplication of an antagonist of metabotropic glutamate receptor type 5 (mGluR5) or its downstream signaling molecules (PLC, PKC, IP3 receptors) markedly attenuated SKF38393-induced ERK1/2 activation. The role of striatal mGluR5 in D1-dependent ERK1/2 activation was confirmed in vivo in 6-OHDA-lesioned animals treated systemically with SKF38393. In one experiment, local infusion of the mGluR5 antagonist MTEP in the DA-denervated rat striatum attenuated the activation of ERK1/2 signaling by SKF38393. In another experiment, 6-OHDA lesions were applied to transgenic mice with a cell-specific knockdown of mGluR5 in D1 receptor-expressing neurons. These mice showed a blunted striatal ERK1/2 activation in response to SFK38393 treatment. Our results reveal that D1-dependent ERK1/2 activation in the DA-denervated striatum depends on a complex interaction between PKA- and Ca(2+)-dependent signaling pathways that is critically modulated by striatal mGluR5.

  19. The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity

    PubMed Central

    Lou, Meizhen; Garrett, Thomas P. J.; McKern, Neil M.; Hoyne, Peter A.; Epa, V. Chandana; Bentley, John D.; Lovrecz, George O.; Cosgrove, Leah J.; Frenkel, Maurice J.; Ward, Colin W.

    2006-01-01

    The insulin receptor (IR) and the type-1 insulin-like growth factor receptor (IGF1R) are homologous multidomain proteins that bind insulin and IGF with differing specificity. Here we report the crystal structure of the first three domains (L1–CR–L2) of human IR at 2.3 Å resolution and compare it with the previously determined structure of the corresponding fragment of IGF1R. The most important differences seen between the two receptors are in the two regions governing ligand specificity. The first is at the corner of the ligand-binding surface of the L1 domain, where the side chain of F39 in IR forms part of the ligand binding surface involving the second (central) β-sheet. This is very different to the location of its counterpart in IGF1R, S35, which is not involved in ligand binding. The second major difference is in the sixth module of the CR domain, where IR contains a larger loop that protrudes further into the ligand-binding pocket. This module, which governs IGF1-binding specificity, shows negligible sequence identity, significantly more α-helix, an additional disulfide bond, and opposite electrostatic potential compared to that of the IGF1R. PMID:16894147

  20. Activation of the Sigma-1 receptor by haloperidol metabolites facilitates brain-derived neurotrophic factor secretion from human astroglia

    PubMed Central

    Dalwadi, Dhwanil A.; Kim, Seongcheol; Schetz, John A.

    2017-01-01

    Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists. PMID:28188803

  1. The complement factor 5a receptor 1 has a pathogenic role in chronic inflammation and renal fibrosis in a murine model of chronic pyelonephritis.

    PubMed

    Choudhry, Naheed; Li, Ke; Zhang, Ting; Wu, Kun-Yi; Song, Yun; Farrar, Conrad A; Wang, Na; Liu, Cheng-Fei; Peng, Qi; Wu, Weiju; Sacks, Steven H; Zhou, Wuding

    2016-09-01

    Complement factor 5a (C5a) interaction with its receptor (C5aR1) contributes to the pathogenesis of inflammatory diseases, including acute kidney injury. However, its role in chronic inflammation, particularly in pathogen-associated disorders, is largely unknown. Here we tested whether the development of chronic inflammation and renal fibrosis is dependent on C5aR1 in a murine model of chronic pyelonephritis. C5aR1-deficient (C5aR1-/-) mice showed a significant reduction in bacterial load, tubule injury and tubulointerstitial fibrosis in the kidneys following infection, compared with C5aR1-sufficient mice. This was associated with reduced renal leukocyte infiltration specifically for the population of Ly6Chi proinflammatory monocytes/macrophages and reduced intrarenal gene expression of key proinflammatory and profibrogenic factors in C5aR1-/- mice following infection. Antagonizing C5aR1 decreased renal bacterial load, tissue inflammation and tubulointerstitial fibrosis. Ex vivo and in vitro studies showed that under infection conditions, C5a/C5aR1 interaction upregulated the production of proinflammatory and profibrogenic factors by renal tubular epithelial cells and monocytes/macrophages, whereas the phagocytic function of monocytes/macrophages was down-regulated. Thus, C5aR1-dependent bacterial colonization of the tubular epithelium, C5a/C5aR1-mediated upregulation of local inflammatory responses to uropathogenic E. coli and impairment of phagocytic function of phagocytes contribute to persistent bacterial colonization of the kidney, chronic renal inflammation and subsequent tubulointerstitial fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  2. Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3β (GSK3β)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends.

    PubMed

    Basu, Sreya; Sladecek, Stefan; Pemble, Hayley; Wittmann, Torsten; Slotman, Johan A; van Cappellen, Wiggert; Brenner, Hans-Rudolf; Galjart, Niels

    2014-10-31

    The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2-9XS/9XA) and are resistant to GSK3β-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2-8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3β-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xuqin; Sun, Tao; Wang, Xiaodong, E-mail: xdwang666@hotmail.com

    2013-07-05

    Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcriptionmore » of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.« less

  4. Clarifying CB2 receptor-dependent and independent effects of THC on human lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarafian, Theodore; Montes, Cindy; Harui, Airi

    Marijuana smoking is associated with a number of abnormal findings in the lungs of habitual smokers. Previous studies revealed that {delta}{sup 9}-tetrahydrocannabinol (THC) caused mitochondrial injury in primary lung epithelial cells and in the cell line, A549 [Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P., and Roth, M. D. (2003). Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol Lung Cell Mol Physiol 284, L298-306; Sarafian, T., Habib, N., Mao, J. T., Tsu, I. H., Yamamoto, M. L., Hsu, E., Tashkin, D. P., and Roth, M. D. (2005). Gene expression changes in human small airway epithelialmore » cells exposed to Delta9-tetrahydrocannabinol. Toxicol Lett 158, 95-107]. The role of cannabinoid receptors in this injury was unclear, as was the potential impact on cell function. In order to investigate these questions, A549 cells were engineered to over-express the type 2 cannabinoid receptor (CB2R) using a self-inactivating lentiviral vector. This transduction resulted in a 60-fold increase in CB2R mRNA relative to cells transduced with a control vector. Transduced cell lines were used to study the effects of THC on chemotactic activity and mitochondrial function. Chemotaxis in response to a 10% serum gradient was suppressed in a concentration-dependent manner by exposure to THC. CB2R-transduced cells exhibited less intrinsic chemotactic activity (p < 0.05) and were 80- to 100-fold more sensitive to the inhibitory effects of THC. Studies using SR144528, a selective CB2R antagonist, verified that these effects were mediated by the CB2R. Marijuana smoke extract, but not smoke extracts from tobacco or placebo marijuana cigarettes, reproduced these effects (p < 0.05). THC decreased ATP level and mitochondrial membrane potential ({psi}{sub m}) in both control and CB2R-transduced cells. However, these decreases did not play a significant role in chemotaxis inhibition since cyclosporine A, which protected against

  5. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization.

    PubMed

    Beavers, David L; Wang, Wei; Ather, Sameer; Voigt, Niels; Garbino, Alejandro; Dixit, Sayali S; Landstrom, Andrew P; Li, Na; Wang, Qiongling; Olivotto, Iacopo; Dobrev, Dobromir; Ackerman, Michael J; Wehrens, Xander H T

    2013-11-19

    This study sought to study the role of junctophilin-2 (JPH2) in atrial fibrillation (AF). JPH2 is believed to have an important role in sarcoplasmic reticulum (SR) Ca(2+) handling and modulation of ryanodine receptor Ca(2+) channels (RyR2). Whereas defective RyR2-mediated Ca(2+) release contributes to the pathogenesis of AF, nothing is known about the potential role of JPH2 in atrial arrhythmias. Screening 203 unrelated hypertrophic cardiomyopathy patients uncovered a novel JPH2 missense mutation (E169K) in 2 patients with juvenile-onset paroxysmal AF (pAF). Pseudoknock-in (PKI) mouse models were generated to determine the molecular defects underlying the development of AF caused by this JPH2 mutation. PKI mice expressing E169K mutant JPH2 exhibited a higher incidence of inducible AF than wild type (WT)-PKI mice, whereas A399S-PKI mice expressing a hypertrophic cardiomyopathy-linked JPH2 mutation not associated with atrial arrhythmias were not significantly different from WT-PKI. E169K-PKI but not A399A-PKI atrial cardiomyocytes showed an increased incidence of abnormal SR Ca(2+) release events. These changes were attributed to reduced binding of E169K-JPH2 to RyR2. Atrial JPH2 levels in WT-JPH2 transgenic, nontransgenic, and JPH2 knockdown mice correlated negatively with the incidence of pacing-induced AF. Ca(2+) spark frequency in atrial myocytes and the open probability of single RyR2 channels from JPH2 knockdown mice was significantly reduced by a small JPH2-mimicking oligopeptide. Moreover, patients with pAF had reduced atrial JPH2 levels per RyR2 channel compared to sinus rhythm patients and an increased frequency of spontaneous Ca(2+) release events. Our data suggest a novel mechanism by which reduced JPH2-mediated stabilization of RyR2 due to loss-of-function mutation or reduced JPH2/RyR2 ratios can promote SR Ca(2+) leak and atrial arrhythmias, representing a potential novel therapeutic target for AF. Copyright © 2013. Published by Elsevier Inc.

  6. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization

    PubMed Central

    Voigt, Niels; Garbino, Alejandro; Dixit, Sayali S.; Landstrom, Andrew P.; Li, Na; Wang, Qiongling; Olivotto, Iacopo; Dobrev, Dobromir; Ackerman, Michael J.; Wehrens, Xander H.T.

    2013-01-01

    Objectives To study the role of junctophilin 2 (JPH2) in atrial fibrillation (AF). Background JPH2 is believed to have an important role in sarcoplasmic reticulum (SR) Ca2+ handling and modulation of ryanodine receptor Ca2+ channels (RyR2). Whereas defective RyR2-mediated Ca2+ release contributes to the pathogenesis of AF, nothing is known about the potential role of JPH2 in atrial arrhythmias. Methods Screening 203 unrelated hypertrophic cardiomyopathy patients uncovered a novel JPH2 missense mutation (E169K) in 2 patients with juvenile-onset paroxysmal AF (pAF). Pseudo-knockin (PKI) mouse models were generated to determine the molecular defects underlying the development of AF caused by this JPH2 mutation. Results PKI mice expressing E169K mutant JPH2 exhibited a higher incidence of inducible AF compared with wildtype (WT)-PKI mice, while A399S-PKI mice expressing a HCM-linked JPH2 mutation not associated with atrial arrhythmias were not significantly different from WT-PKI. E169K-PKI but not A399A-PKI atrial cardiomyocytes showed an increased incidence of abnormal SR Ca2+ release events. These changes were attributed to reduced binding of E169KJPH2 to RyR2. Atrial JPH2 levels in WT-JPH2 transgenic, nontransgenic, and JPH2 knockdown mice correlated negatively with the incidence of pacing-induced AF. Ca2+ spark frequency in atrial myocytes and the open probability of single RyR2 channels from JPH2 knockdown mice was significantly reduced by a small JPH2-mimicking oligopeptide. Moreover, patients with pAF had reduced atrial JPH2 levels per RyR2 channel compared to sinus rhythm patients, and an increased frequency of spontaneous Ca2+ release events. Conclusions Our data suggest a novel mechanism by which reduced JPH2-mediated stabilization of RyR2 due to loss-of-function mutation or reduced JPH2:RyR2 ratios can promote SR Ca2+ leak and atrial arrhythmias, representing a potential novel therapeutic target for AF. PMID:23973696

  7. Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon.

    PubMed

    Kendig, Derek M; Hurst, Norman R; Bradley, Zachary L; Mahavadi, Sunila; Kuemmerle, John F; Lyall, Vijay; DeSimone, John; Murthy, Karnam S; Grider, John R

    2014-12-01

    Intraluminal nutrients in the gut affect the peristaltic reflex, although the mechanism is not well defined. Recent evidence supports the presence of taste receptors and their signaling components in enteroendocrine cells, although their function is unclear. This study aimed to determine if nutrients modify colonic motility through activation of taste receptors. Colonic sections were immunostained for the umami taste receptor T1R1/T1R3, which mediates the response to umami ligands, such as monosodium glutamate (MSG), in taste cells. Ascending contraction, descending relaxation, and calcitonin gene-related peptide release were measured in three-chamber flat-sheet preparations of rat colon in response to MSG alone or with inosine 5'-monophosphate (IMP). Velocity of artificial fecal pellet propulsion was measured by video recording in guinea pig distal colon. T1R1/T1R3 receptors were present in enteroendocrine cells of colonic sections from human, rat, mouse, and guinea pig. MSG initiated ascending contraction and descending relaxation components of the peristaltic reflex and calcitonin gene-related peptide release in flat-sheet preparations. IMP augmented the MSG-induced effects, suggesting activation of T1R1/T1R3 receptors. In T1R1(-/-) mice, mucosal stroking, but not MSG, elicited a peristaltic reflex. Intraluminal perfusion of MSG enhanced the velocity of artificial fecal pellet propulsion, which was also augmented by IMP. Propulsion was also increased by l-cysteine, but not l-tryptophan, supporting a role of T1R1/T1R3 receptors. We conclude that T1R1/T1R3 activation by luminal MSG or l-cysteine elicits a peristaltic reflex and CGRP release and increases the velocity of pellet propulsion in distal colon. This mechanism may explain how nutrients regulate colonic propulsion. Copyright © 2014 the American Physiological Society.

  8. Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon

    PubMed Central

    Kendig, Derek M.; Hurst, Norman R.; Bradley, Zachary L.; Mahavadi, Sunila; Kuemmerle, John F.; Lyall, Vijay; DeSimone, John; Murthy, Karnam S.

    2014-01-01

    Intraluminal nutrients in the gut affect the peristaltic reflex, although the mechanism is not well defined. Recent evidence supports the presence of taste receptors and their signaling components in enteroendocrine cells, although their function is unclear. This study aimed to determine if nutrients modify colonic motility through activation of taste receptors. Colonic sections were immunostained for the umami taste receptor T1R1/T1R3, which mediates the response to umami ligands, such as monosodium glutamate (MSG), in taste cells. Ascending contraction, descending relaxation, and calcitonin gene-related peptide release were measured in three-chamber flat-sheet preparations of rat colon in response to MSG alone or with inosine 5′-monophosphate (IMP). Velocity of artificial fecal pellet propulsion was measured by video recording in guinea pig distal colon. T1R1/T1R3 receptors were present in enteroendocrine cells of colonic sections from human, rat, mouse, and guinea pig. MSG initiated ascending contraction and descending relaxation components of the peristaltic reflex and calcitonin gene-related peptide release in flat-sheet preparations. IMP augmented the MSG-induced effects, suggesting activation of T1R1/T1R3 receptors. In T1R1−/− mice, mucosal stroking, but not MSG, elicited a peristaltic reflex. Intraluminal perfusion of MSG enhanced the velocity of artificial fecal pellet propulsion, which was also augmented by IMP. Propulsion was also increased by l-cysteine, but not l-tryptophan, supporting a role of T1R1/T1R3 receptors. We conclude that T1R1/T1R3 activation by luminal MSG or l-cysteine elicits a peristaltic reflex and CGRP release and increases the velocity of pellet propulsion in distal colon. This mechanism may explain how nutrients regulate colonic propulsion. PMID:25324508

  9. Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801

    NASA Astrophysics Data System (ADS)

    Trujillo, Keith A.; Akil, Huda

    1991-01-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.

  10. The PDZ scaffold NHERF-2 interacts with mGluR5 and regulates receptor activity.

    PubMed

    Paquet, Maryse; Asay, Matthew J; Fam, Sami R; Inuzuka, Hiroyuki; Castleberry, Amanda M; Oller, Heide; Smith, Yoland; Yun, C Chris; Traynelis, Stephen F; Hall, Randy A

    2006-10-06

    The two members of the group I metabotropic glutamate receptor family, mGluR1 and mGluR5, both couple to G(q) to mediate rises in intracellular calcium. The alternatively spliced C termini (CT) of mGluRs1 and 5are known to be critical for regulating receptor activity and to terminate in motifs suggestive of potential interactions with PDZ domains. We therefore screened the CTs of both mGluR1a and mGluR5 against a PDZ domain proteomic array. Out of 96 PDZ domains examined, the domain that bound most strongly to mGluR5-CT was the second PDZ domain of the Na(+)/H(+) exchanger regulatory factor 2 (NHERF-2). This interaction was confirmed by reverse overlay, and a single point mutation to the mGluR5-CT was found to completely disrupt the interaction. Full-length mGluR5 robustly associated with full-length NHERF-2 in cells, as assessed by co-immunoprecipitation and confocal microscopy experiments. In contrast, mGluR1a was found to bind NHERF-2 in vitro with a weaker affinity than mGluR5, and furthermore mGluR1a did not detectably associate with NHERF-2 in a cellular context. Immunohistochemical experiments revealed that NHERF-2 and mGluR5 exhibit overlapping patterns of expression in mouse brain, being found most abundantly in astrocytic processes and postsynaptic neuronal elements. In functional experiments, the interaction of NHERF-2 with mGluR5 in cells was found to prolong mGluR5-mediated calcium mobilization and to also potentiate mGluR5-mediated cell death, whereas coexpression of mGluR1a with NHERF-2 had no evident effects on mGluR1a functional activity. These observations reveal that NHERF-2 can selectively modulate mGluR5 signaling, which may contribute to cell-specific regulation of mGluR5 activity.

  11. NcoA2-Dependent Inhibition of HIF-1α Activation Is Regulated via AhR.

    PubMed

    Tsai, Chi-Hao; Li, Ching-Hao; Liao, Po-Lin; Cheng, Yu-Wen; Lin, Cheng-Hui; Huang, Shih-Hsuan; Kang, Jaw-Jou

    2015-12-01

    High endogenous levels of aryl hydrocarbon receptor (AhR) contribute to hypoxia signaling pathway inhibition following exposure to the potent AhR ligand benzo[a]pyrene (B[a]P) and could alter cellular homeostasis and disease condition. Increasing evidence indicates that AhR might compete with AhR nuclear translocator (ARNT) for complex formation with hypoxia-inducible factor-1α (HIF-1α) for transactivation, which could alter several physiological variables. Nuclear receptor coactivator 2 (NcoA2) is a transcription coactivator that regulates transcription factor activation and inhibition of basic helix-loop-helix Per (Period)-ARNT-SIM (single-minded) (bHLH-PAS) family proteins, such as HIF-1α, ARNT, and AhR, through protein-protein interactions. In this study, we demonstrated that both hypoxia and hypoxia-mimic conditions decreased NcoA2 protein expression in HEK293T cells. Hypoxia response element (HRE) and xenobiotic-responsive element (XRE) transactivation also were downregulated with NcoA2 knockdown under hypoxic conditions. In addition, B[a]P significantly decreased NcoA2 protein expression be accompanied with AhR degradation. We next evaluated whether the absence of AhR could affect NcoA2 protein function under hypoxia-mimetic conditions. NcoA2 and HIF-1α nuclear localization decreased in both B[a]P-pretreated and AhR-knockdown HepG2 cells under hypoxia-mimic conditions. Interestingly, NcoA2 overexpression downregulated HRE transactivation by competing with HIF-1α and AhR to form protein complexes with ARNT. Both NcoA2 knockdown and overexpression inhibited endothelial cell tube formation in vitro. We also demonstrated using the in vivo plug assay that NcoA2-regulated vascularization decreased in mice. Taken together, these results revealed a biphasic role of NcoA2 between AhR and hypoxic conditions, thus providing a novel mechanism underlying the cross talk between AhR and hypoxia that affects disease development and progression. © The Author 2015

  12. Tumour necrosis factors modulate the affinity state of the leukotriene B4 receptor on human neutrophils.

    PubMed Central

    Brom, J; Knöller, J; Köller, M; König, W

    1988-01-01

    Pre-incubation of human polymorphonuclear granulocytes with recombinant human tumour necrosis factors (TNF) revealed a time- and dose-dependent reduction of the expression of leukotriene B4-receptor sites. Analysis of the binding data by Scatchard plots showed a shift from a heterologous receptor population (indicating high- and low-affinity subsets) to a homologous population. From the results it is considered that TNF can influence host defence through the modulation of leukotriene B4 receptor affinity. PMID:2851543

  13. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  14. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila

    PubMed Central

    Pitmon, E.; Stephens, G.; Parkhurst, S. J.; Wolf, F. W.; Kehne, G.; Taylor, M.

    2016-01-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH‐positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. PMID:26749475

  15. Vascular Endothelial Growth Factor-dependent Spinogenesis Underlies Antidepressant-like Effects of Enriched Environment*

    PubMed Central

    Huang, Yu-Fei; Yang, Chih-Hao; Huang, Chiung-Chun; Hsu, Kuei-Sen

    2012-01-01

    Current antidepressant treatments remain limited by poor efficacy and a slow onset of action. Increasing evidence demonstrates that enriched environment (EE) treatment can promote structural and behavioral plasticity in the brain and dampen stress-induced alterations of neuroplasticity. Here, we have examined whether short term exposure to EE is able to produce antidepressant-like effects. Our results show that housing adult mice in an EE cage for 7 days led to antidepressant-like behavioral profiles and a significant increase in the number of dendritic spines in hippocampal CA1 pyramidal neurons. These EE-induced antidepressant-like effects are primarily attributed to increased vascular endothelial growth factor (VEGF) expression through a hypoxia-inducible factor-1α (HIF-1α)-mediated transcriptional mechanism. Blockade of HIF-1α synthesis by lentiviral infection with HIF-1α small hairpin RNAs completely blocked the increase in expression of VEGF and the antidepressant-like effects induced by EE. Moreover, no significant antidepressant-like effects were observed with EE treatment in VEGF receptor 2 (Flk-1) knock-out mice. The increase in HIF-1α expression in the hippocampus induced by EE was associated with a decrease in endogenous levels of microRNA-107 (miR-107). Overexpression of miR-107 in the hippocampus completely blocked EE-induced HIF-1α expression and the antidepressant-like effects. These results support a model in which the down-regulation of miR-107, acting through HIF-1α, mediates VEGF-dependent spinogenesis to underlie the EE-induced antidepressant-like effects. PMID:23074224

  16. Effects of platelet activating factor on contractile force and 45Ca fluxes in guinea-pig isolated atria.

    PubMed Central

    Diez, J.; Delpón, E.; Tamargo, J.

    1990-01-01

    1. The effects of platelet activating factor (PAF) were studied on the electromechanical properties and 45Ca2+ fluxes of guinea-pig isolated atria. 2 Both in spontaneously beating and electrically driven atria, PAF (10(-12)-10(-7) M) increased atrial rate but produced a biphasic effect on contractile force. At low concentrations (up to 10(-10) M) it produced a positive inotropic effect, while at higher concentrations PAF exerted a negative inotropic effect. A similar biphasic effect was observed in the slow contractions elicited by isoprenaline in K(+)-depolarized atrial fibres. 3. The positive inotropic effect of PAF was prevented by verapamil, whereas pretreatment of atria with propranolol, phentolamine, indomethacin or atropine did not modify its positive and negative inotropic actions. BN 52021, a specific PAF antagonist, abolished both the positive and negative inotropic effects. 4. PAF had no effect on the characteristics of the action potentials recorded in either normally polarized or K(+)-depolarized (slow action potential) atrial fibres. 5. At concentrations at which it increased contractile force, PAF potentiated the contractile responses to Ca2+ (0.9-9 mM), whereas at negative inotropic concentrations it inhibited them. The negative inotropic effect of PAF was partially reversed in 70% Na+ medium. 6. At 10(-11) M, PAF increased 45Ca2+ uptake and reduced the rate coefficient (kcm) for the 45Ca2+ efflux. This increase in 45Ca2+ uptake was abolished in atria pretreated with verapamil or BN 52021. However, 10(-7) M PAF modified neither 45Ca2+ uptake nor efflux in atrial muscle.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2379035

  17. Interleukin-1 receptor (IL-1R) mediates epilepsy-induced sleep disruption.

    PubMed

    Huang, Tzu-Rung; Jou, Shuo-Bin; Chou, Yu-Ju; Yi, Pei-Lu; Chen, Chun-Jen; Chang, Fang-Chia

    2016-11-22

    Sleep disruptions are common in epilepsy patients. Our previous study demonstrates that homeostatic factors and circadian rhythm may mediate epilepsy-induced sleep disturbances when epilepsy occurs at different zeitgeber hours. The proinflammatory cytokine, interleukin-1 (IL-1), is a somnogenic cytokine and may also be involved in epileptogenesis; however, few studies emphasize the effect of IL-1 in epilepsy-induced sleep disruption. We herein hypothesized that IL-1 receptor type 1 (IL-1R1) mediates the pathogenesis of epilepsy and epilepsy-induced sleep disturbances. We determined the role of IL-1R1 by using IL-1R1 knockout (IL-1R1 -/- KO) mice. Our results elucidated the decrease of non-rapid eye movement (NREM) sleep during the light period in IL-1R -/- mice and confirmed the somnogenic role of IL-1R1. Rapid electrical amygdala kindling was performed to induce epilepsy at the particular zeitgeber time (ZT) point, ZT13. Our results demonstrated that seizure thresholds induced by kindling stimuli, such as the after-discharge threshold and successful kindling rates, were not altered in IL-1R -/- mice when compared to those obtained from the wildtype mice (IL-1R +/+ mice). This result suggests that IL-1R1 is not involved in kindling-induced epileptogenesis. During sleep, ZT13 kindling stimulation significantly enhanced NREM sleep during the subsequent 6 h (ZT13-18) in wildtype mice, and sleep returned to the baseline the following day. However, the kindling-induced sleep alteration was absent in the IL-1R -/- KO mice. These results indicate that the IL-1 signal mediates epilepsy-induced sleep disturbance, but dose not participate in kindling-induced epileptogenesis.

  18. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF).

    PubMed

    Tan, B S; Tiong, K H; Choo, H L; Chung, F Fei-Lei; Hii, L-W; Tan, S H; Yap, I K S; Pani, S; Khor, N T W; Wong, S F; Rosli, R; Cheong, S-K; Leong, C-O

    2015-07-16

    p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.

  19. Elevated serum tumor necrosis factor-alpha and soluble tumor necrosis factor receptors correlate with aberrant energy metabolism in liver cirrhosis.

    PubMed

    Shiraki, Makoto; Terakura, Yoichi; Iwasa, Junpei; Shimizu, Masahito; Miwa, Yoshiyuki; Murakami, Nobuo; Nagaki, Masahito; Moriwaki, Hisataka

    2010-03-01

    Protein-energy malnutrition is frequently observed in patients with liver cirrhosis and is associated with their poor prognosis. Tumor necrosis factor-alpha (TNF-alpha) is elevated in those patients and may contribute to the alterations of energy metabolism. Our aim was to characterize the aberrant energy metabolism in cirrhotic patients with regard to TNF-alpha. Twenty-four patients (mean age 65 +/- 6 y) with viral liver cirrhosis who did not have hepatocellular carcinoma or acute infections were studied. Twelve healthy volunteers were recruited after matching for age, gender, and body mass index with the patients and served as controls (59 +/- 8 y). Serum levels of TNF-alpha, soluble 55-kDa TNF receptor (sTNF-R55), soluble 75-kDa TNF receptor (sTNF-R75), and leptin were determined by immunoassay. Substrate oxidation rates of carbohydrate and fat were estimated by indirect calorimetry after overnight bedrest and fasting. In cirrhotic patients, serum levels of TNF-alpha, sTNF-R55, and sTNF-R75 were significantly higher than those in the controls and correlated with the increasing grade of disease severity as defined by Child-Pugh classification. Serum leptin concentration was not different between cirrhotics and controls but correlated with their body mass index. The decrease in substrate oxidation rate of carbohydrate and the increase in substrate oxidation rate of fat significantly correlated with serum TNF-alpha, sTNF-R55, and sTNF-R75 concentrations. Tumor necrosis factor-alpha might be associated with the aberrant energy metabolism in patients with liver cirrhosis. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  20. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells.

    PubMed

    Teng, Yun; Radde, Brandie N; Litchfield, Lacey M; Ivanova, Margarita M; Prough, Russell A; Clark, Barbara J; Doll, Mark A; Hein, David W; Klinge, Carolyn M

    2015-06-19

    Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3-12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.