Sample records for factor receptor positive

  1. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer?

    PubMed

    Wu, Victoria Shang; Kanaya, Noriko; Lo, Chiao; Mortimer, Joanne; Chen, Shiuan

    2015-09-01

    Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e., estrogen receptor [ER] and progesterone receptor [PgR]) and human epidermal growth factor receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2-) breast cancer and HR-negative (HR-) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    PubMed

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  3. Palbociclib in Combination With Tamoxifen as First Line Therapy for Metastatic Hormone Receptor Positive Breast Cancer

    ClinicalTrials.gov

    2018-01-24

    Hormone Receptor Positive Malignant Neoplasm of Breast; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Estrogen Receptor Positive Breast Cancer; Progesterone Receptor Positive Tumor; Metastatic Breast Cancer

  4. Breast density and parenchymal texture measures as potential risk factors for estrogen-receptor positive breast cancer

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina

    2014-03-01

    Accurate assessment of a woman's risk to develop specific subtypes of breast cancer is critical for appropriate utilization of chemopreventative measures, such as with tamoxifen in preventing estrogen-receptor positive breast cancer. In this context, we investigate quantitative measures of breast density and parenchymal texture, measures of glandular tissue content and tissue structure, as risk factors for estrogen-receptor positive (ER+) breast cancer. Mediolateral oblique (MLO) view digital mammograms of the contralateral breast from 106 women with unilateral invasive breast cancer were retrospectively analyzed. Breast density and parenchymal texture were analyzed via fully-automated software. Logistic regression with feature selection and was performed to predict ER+ versus ER- cancer status. A combined model considering all imaging measures extracted was compared to baseline models consisting of density-alone and texture-alone features. Area under the curve (AUC) of the receiver operating characteristic (ROC) and Delong's test were used to compare the models' discriminatory capacity for receptor status. The density-alone model had a discriminatory capacity of 0.62 AUC (p=0.05). The texture-alone model had a higher discriminatory capacity of 0.70 AUC (p=0.001), which was not significantly different compared to the density-alone model (p=0.37). In contrast the combined density-texture logistic regression model had a discriminatory capacity of 0.82 AUC (p<0.001), which was statistically significantly higher than both the density-alone (p<0.001) and texture-alone regression models (p=0.04). The combination of breast density and texture measures may have the potential to identify women specifically at risk for estrogen-receptor positive breast cancer and could be useful in triaging women into appropriate risk-reduction strategies.

  5. Modification of cytokine-induced killer cells with chimeric antigen receptors (CARs) enhances antitumor immunity to epidermal growth factor receptor (EGFR)-positive malignancies.

    PubMed

    Ren, Xuequn; Ma, Wanli; Lu, Hong; Yuan, Lei; An, Lei; Wang, Xicai; Cheng, Guanchang; Zuo, Shuguang

    2015-12-01

    Epidermal growth factor receptor (EGFR, ErbB1, Her-1) is a cell surface molecule overexpressing in a variety of human malignancies and, thus, is an excellent target for immunotherapy. Immunotherapy targeting EGFR-overexpressing malignancies using genetically modified immune effector cells is a novel and promising approach. In the present study, we have developed an adoptive cellular immunotherapy strategy based on the chimeric antigen receptor (CAR)-modified cytokine-induced killer (CAR-CIK) cells specific for the tumor cells expressing EGFR. To generate CAR-CIK cells, a lentiviral vector coding the EGFR-specific CAR was constructed and transduced into the CIK cells. The CAR-CIK cells showed significantly enhanced cytotoxicity and increased production of cytokines IFN-γ and IL-2 when co-cultured with EGFR-positive cancer cells. In tumor xenografts, adoptive immunotherapy of CAR-CIK cells could inhibit tumor growth and prolong the survival of EGFR-overexpressing human tumor xenografts. Moreover, tumor growth inhibition and prolonged survival in mice with EGFR(+) human cancer were associated with the increased persistence of CAR-CIK cells in vivo. Our study indicates that modification with EGFR-specific CAR strongly enhances the antitumor activity of the CIK cells against EGFR-positive malignancies.

  6. Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer

    PubMed Central

    Chung, Il Yong; Park, Yu Rang; Min, Yul Ha; Lee, Yura; Yoon, Tae In; Sohn, Guiyun; Lee, Sae Byul; Kim, Jisun; Kim, Hee Jeong; Ko, Beom Seok; Son, Byung Ho; Ahn, Sei Hyun

    2017-01-01

    The aim of this study was to determine the relationship between the body mass index (BMI) at a breast cancer diagnosis and various factors including the hormone-receptor, menopause, and lymph-node status, and identify if there is a specific patient subgroup for which the BMI has an effect on the breast cancer prognosis. We retrospectively analyzed the data of 8,742 patients with non-metastatic invasive breast cancer from the research database of Asan Medical Center. The overall survival (OS) and breast-cancer-specific survival (BCSS) outcomes were compared among BMI groups using the Kaplan-Meier method and Cox proportional-hazards regression models with an interaction term. There was a significant interaction between BMI and hormone-receptor status for the OS (P = 0.029), and BCSS (P = 0.013) in lymph-node-positive breast cancers. Obesity in hormone-receptor-positive breast cancer showed a poorer OS (adjusted hazard ratio [HR] = 1.51, 95% confidence interval [CI] = 0.92 to 2.48) and significantly poorer BCSS (HR = 1.80, 95% CI = 1.08 to 2.99). In contrast, a high BMI in hormone-receptor-negative breast cancer revealed a better OS (HR = 0.44, 95% CI = 0.16 to 1.19) and BCSS (HR = 0.53, 95% CI = 0.19 to 1.44). Being underweight (BMI < 18.50 kg/m2) with hormone-receptor-negative breast cancer was associated with a significantly worse OS (HR = 1.98, 95% CI = 1.00–3.95) and BCSS (HR = 2.24, 95% CI = 1.12–4.47). There was no significant interaction found between the BMI and hormone-receptor status in the lymph-node-negative setting, and BMI did not interact with the menopause status in any subgroup. In conclusion, BMI interacts with the hormone-receptor status in a lymph-node-positive setting, thereby playing a role in the prognosis of breast cancer. PMID:28248981

  7. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    PubMed Central

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed. PMID:27468248

  8. Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors.

    PubMed

    Ping Li, Wen; Meyer, Laura A; Capretto, David A; Sherman, Christopher D; Anderson, Carolyn J

    2008-04-01

    The epidermal growth-factor receptor (EGFR) and its ligands have been recognized as critical factors in the pathophysiology of tumorigenesis. Overexpression of the EGFR plays a significant role in the tumor progression of a wide variety of solid human cancers. Therefore, the EGFR represents an attractive target for the design of novel diagnostic and therapeutic agents for cancer. Cetuximab (C225, Erbitux) was the first monoclonal antibody targeted against the ligand-binding site of EGFR approved by the Food and Drug Administration for the treatment of patients with EGFR-expressing, metastatic colorectal carcinoma, although clinical trials showed variability in the response to this treatment. The aim of this study involved using cetuximab to design a positron emission tomography (PET) agent to image the overexpression of EGFR in tumors. Cetuximab was conjugated with the chelator, DOTA, for radiolabeling with the positron-emitter, 64Cu (T(1/2) = 12.7 hours). 64Cu-DOTA-cetuximab showed high binding affinity to EGFR-positive A431 cells (K(D) of 0.28 nM). Both biodistribution and microPET imaging studies with 64Cu-DOTA-cetuximab demonstrated greater uptake at 24 hours postinjection in EGFR-positive A431 tumors (18.49% +/- 6.50% injected dose per gram [ID/g]), compared to EGFR-negative MDA-MB-435 tumors (2.60% +/- 0.35% ID/g). A431 tumor uptake at 24 hours was blocked with unlabeled cetuximab (10.69% +/- 2.72% ID/g), suggesting that the tumor uptake was receptor mediated. Metabolism experiments in vivo showed that 64Cu-DOTA-cetuximab was relatively stable in the blood of tumor-bearing mice; however, there was significant metabolism in the liver and tumors. 64Cu-DOTA-cetuximab is a potential agent for imaging EGFR-positive tumors in humans.

  9. Safety and Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer.

    PubMed

    Rugo, Hope S; Delord, Jean-Pierre; Im, Seock-Ah; Ott, Patrick A; Piha-Paul, Sarina A; Bedard, Philippe L; Sachdev, Jasgit; Tourneau, Christophe Le; van Brummelen, Emilie M J; Varga, Andrea; Salgado, Roberto; Loi, Sherene; Saraf, Sanatan; Pietrangelo, Dina; Karantza, Vassiliki; Tan, Antoinette R

    2018-03-20

    Purpose: We investigated the safety and antitumor activity of the anti-programmed death 1 monoclonal antibody pembrolizumab in patients with estrogen receptor-positive (ER + )/human epidermal growth factor receptor 2-negative (HER2 - ) advanced breast cancer with programmed death ligand 1-positive (PD-L1-positive) tumors in the phase Ib open-label, multicohort KEYNOTE-028 (NCT02054806) study. Experimental Design: Patients with ER + /HER2 - advanced breast cancer with PD-L1-positive tumors (combined positive score ≥1) received pembrolizumab (10 mg/kg every 2 weeks) up to 2 years or until confirmed progression/intolerable toxicity. Primary endpoints were safety and overall response rate (ORR), based on Response Evaluation Criteria in Solid Tumors, version 1 (RECIST v1.1) as assessed by investigator review. Results: Between April 2014 and January 2015, 25 patients were enrolled. Median number of prior therapies for breast cancer, including endocrine agents, was 9 (range, 3-15). Median follow-up was 9.7 months (range, 0.7-31.8 months). Three patients experienced partial response (PR) and none experienced complete response (CR), resulting in an ORR of 12.0% (95% CI, 2.5%-31.2%); 16% of patients had stable disease (SD) and clinical benefit rate (CR + PR + [SD for ≥24 weeks]) was 20% (95% CI, 7-41). Median duration of response was 12.0 months (range, 7.4-15.9 months). The incidence of treatment-related adverse events was 64%; nausea (20%) and fatigue (12%) were most common and were predominantly grade 1/2. No treatment-related discontinuations or deaths occurred. Conclusions: Pembrolizumab was well tolerated with modest but durable overall response in certain patients with previously treated, advanced, PD-L1-positive, ER + /HER2 - breast cancer. Clin Cancer Res; 1-8. ©2018 AACR. ©2018 American Association for Cancer Research.

  10. Phase III Randomized Study of Ribociclib and Fulvestrant in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: MONALEESA-3.

    PubMed

    Slamon, Dennis J; Neven, Patrick; Chia, Stephen; Fasching, Peter A; De Laurentiis, Michelino; Im, Seock-Ah; Petrakova, Katarina; Bianchi, Giulia Val; Esteva, Francisco J; Martín, Miguel; Nusch, Arnd; Sonke, Gabe S; De la Cruz-Merino, Luis; Beck, J Thaddeus; Pivot, Xavier; Vidam, Gena; Wang, Yingbo; Rodriguez Lorenc, Karen; Miller, Michelle; Taran, Tetiana; Jerusalem, Guy

    2018-06-03

    Purpose This phase III study evaluated ribociclib plus fulvestrant in patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer who were treatment naïve or had received up to one line of prior endocrine therapy in the advanced setting. Patients and Methods Patients were randomly assigned at a two-to-one ratio to ribociclib plus fulvestrant or placebo plus fulvestrant. The primary end point was locally assessed progression-free survival. Secondary end points included overall survival, overall response rate, and safety. Results A total of 484 postmenopausal women were randomly assigned to ribociclib plus fulvestrant, and 242 were assigned to placebo plus fulvestrant. Median progression-free survival was significantly improved with ribociclib plus fulvestrant versus placebo plus fulvestrant: 20.5 months (95% CI, 18.5 to 23.5 months) versus 12.8 months (95% CI, 10.9 to 16.3 months), respectively (hazard ratio, 0.593; 95% CI, 0.480 to 0.732; P < .001). Consistent treatment effects were observed in patients who were treatment naïve in the advanced setting (hazard ratio, 0.577; 95% CI, 0.415 to 0.802), as well as in patients who had received up to one line of prior endocrine therapy for advanced disease (hazard ratio, 0.565; 95% CI, 0.428 to 0.744). Among patients with measurable disease, the overall response rate was 40.9% for the ribociclib plus fulvestrant arm and 28.7% for placebo plus fulvestrant. Grade 3 adverse events reported in ≥ 10% of patients in either arm (ribociclib plus fulvestrant v placebo plus fulvestrant) were neutropenia (46.6% v 0%) and leukopenia (13.5% v 0%); the only grade 4 event reported in ≥ 5% of patients was neutropenia (6.8% v 0%). Conclusion Ribociclib plus fulvestrant might represent a new first- or second-line treatment option in hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer.

  11. Positive Matrix Factorization Model for environmental data analyses

    EPA Pesticide Factsheets

    Positive Matrix Factorization is a receptor model developed by EPA to provide scientific support for current ambient air quality standards and implement those standards by identifying and quantifying the relative contributions of air pollution sources.

  12. Steroid hormone and epidermal growth factor receptors in meningiomas.

    PubMed

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  13. The relationship between somatostatin, epidermal growth factor, and steroid hormone receptors in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reubi, J.C.; Torhorst, J.

    1989-09-15

    The somatostatin (SS) and the epidermal growth factor (EGF) receptor content have been established in 36 primary breast cancers by receptor autoradiography on adjacent tissue sections. Iodine 125 (125I)-EGF was used as radioligand for EGF receptor visualization whereas an iodinated SS-28 analogue or an octapeptide SS analogue were used to measure SS receptors. Six of 36 tumors contained SS receptors, whereas ten of the 36 tumors were shown to contain EGF receptors. None of the tumor samples containing SS receptors were simultaneously EGF receptor positive. In contrast, all SS receptor-positive tumors simultaneously contained steroid receptors. The positive correlation between SSmore » receptors and steroid receptors as well as the negative correlation between SS receptors and EGF receptors therefore suggest that the small percentage of SS receptor-positive breast tumors are a group of differentiated breast tumors with a good prognosis. In these cases, combined hormonetherapy including SS analogs may be of potential interest.« less

  14. GSK3 Protein Positively Regulates Type I Insulin-like Growth Factor Receptor through Forkhead Transcription Factors FOXO1/3/4

    PubMed Central

    Huo, Xiaodong; Liu, Shu; Shao, Ting; Hua, Hui; Kong, Qingbin; Wang, Jiao; Luo, Ting; Jiang, Yangfu

    2014-01-01

    Glycogen synthase kinase-3 (GSK3) has either tumor-suppressive roles or pro-tumor roles in different types of human tumors. A number of GSK3 targets in diverse signaling pathways have been uncovered, such as tuberous sclerosis complex subunit 2 and β-catenin. The O subfamily of forkhead/winged helix transcription factors (FOXO) is known as tumor suppressors that induce apoptosis. In this study, we find that FOXO binds to type I insulin-like growth factor receptor (IGF-IR) promoter and stimulates its transcription. GSK3 positively regulates the transactivation activity of FOXO and stimulates IGF-IR expression. Although kinase-dead GSK3β cannot up-regulate IGF-IR, the constitutively active GSK3β induces IGF-IR expression in a FOXO-dependent manner. Serum starvation or Akt inhibition leads to an increase in IGF-IR expression, which could be blunted by GSK3 inhibition. GSK3β knockdown or GSK3 inhibitor suppresses IGF-I-induced IGF-IR, Akt, and ERK1/2 phosphorylation. Moreover, knockdown of GSK3β or FOXO1/3/4 leads to a decrease in cellular proliferation and abrogates IGF-I-induced hepatoma cell proliferation. These results suggest that GSK3 and FOXO may positively regulate IGF-I signaling and hepatoma cell proliferation. PMID:25053419

  15. Resistance to therapy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: progress with latest therapeutic strategies.

    PubMed

    Lousberg, Laurence; Collignon, Joëlle; Jerusalem, Guy

    2016-11-01

    In this article, we focus on the subtype of estrogen receptor (ER)-positive, human epidermal growth factor 2 (HER2)-positive breast cancer (BC). Preclinical and clinical data indicate a complex molecular bidirectional crosstalk between the ER and HER2 pathways. This crosstalk probably constitutes one of the key mechanisms of drug resistance in this subclass of BC. Delaying or even reversing drug resistance seems possible by targeting pathways implicated in this crosstalk. High-risk patients currently receive anti-HER2 therapy, chemotherapy and endocrine therapy in the adjuvant setting. In metastatic cases, most patients receive a combination of anti-HER2 therapy and chemotherapy. Only selected patients presenting more indolent disease are candidates for combinations of anti-HER2 therapy and endocrine therapy. However, relative improvements in progression-free survival by chemotherapy-based regimens are usually lower in ER-positive patients than the ER-negative and HER2-positive subgroup. Consequently, new approaches aiming to overcome endocrine therapy resistance by adding targeted therapies to endocrine therapy based regimens are currently explored. In addition, dual blockade of HER2 or the combination of trastuzumab and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOP) inhibitors targeting the downstream pathway are strategies to overcome resistance to trastuzumab. This may lead in the near future to the less frequent use of chemotherapy-based treatment options in ER-positive, HER2-positive BC.

  16. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  17. Breast Cancer Risk Factors Defined by Estrogen and Progesterone Receptor Status

    PubMed Central

    Monroe, Kristine R.; Wilkens, Lynne R.; Kolonel, Laurence N.; Pike, Malcolm C.; Henderson, Brian E.

    2009-01-01

    Prospective data on ethnic differences in hormone receptor-defined subtypes of breast cancer and their risk factor profiles are scarce. The authors examined the joint distributions of estrogen receptor (ER) and progesterone receptor (PR) status across 5 ethnic groups and the associations of established risk factors with ER/PR status in the Multiethnic Cohort Study (Hawaii and Los Angeles, California). During an average of 10.4 years of follow-up of 84,427 women between 1993–1996 and 2004/2005, 2,543 breast cancer cases with data on ER/PR status were identified: 1,672 estrogen receptor-positive (ER+)/progesterone receptor-positive (PR+); 303 ER+/progesterone receptor-negative (PR−); 77 estrogen receptor-negative (ER−)/PR+; and 491 ER−/PR−. ER/PR status varied significantly across racial/ethnic groups even within the same tumor stage (for localized tumors, P < 0.0001; for advanced tumors, P = 0.01). The highest fraction of ER−/PR− tumors was observed in African Americans (31%), followed by Latinas (25%), Whites (18%), Japanese (14%), and Native Hawaiians (14%). Associations differed between ER+/PR+ and ER−/PR− cases for postmenopausal obesity (P = 0.02), age at menarche (P = 0.05), age at first birth (P = 0.04), and postmenopausal hormone use (P < 0.0001). African Americans are more likely to be diagnosed with ER−/PR− tumors independently of stage at diagnosis, and there are disparate risk factor profiles across the ER/PR subtypes of breast cancer. PMID:19318616

  18. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    PubMed

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  19. Novel Positive Regulatory Role for the SPL6 Transcription Factor in the N TIR-NB-LRR Receptor-Mediated Plant Innate Immunity

    PubMed Central

    Padmanabhan, Meenu S.; Ma, Shisong; Burch-Smith, Tessa M.; Czymmek, Kirk; Huijser, Peter; Dinesh-Kumar, Savithramma P.

    2013-01-01

    Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5. PMID:23516366

  20. Ternary complex factor SAP-1 is required for Erk-mediated thymocyte positive selection.

    PubMed

    Costello, Patrick S; Nicolas, Robert H; Watanabe, Yasuyuki; Rosewell, Ian; Treisman, Richard

    2004-03-01

    Thymocyte selection and differentiation requires extracellular signal-regulated kinase (Erk) signaling, but transcription factor substrates of Erk in thymocytes are unknown. We have characterized the function of SAP-1 (Elk4), an Erk-regulated transcription factor, in thymocyte development. Early thymocyte development was normal, but single-positive thymocyte and peripheral T cell numbers were reduced, reflecting a T cell-autonomous defect. T cell receptor-induced activation of SAP-1 target genes such as Egr1 was substantially impaired in double-positive thymocytes, although Erk activation was normal. Analysis of T cell receptor transgenes showed that positive selection was reduced by 80-90% in SAP-1-deficient mice; heterozygous mice showed a moderate defect. Negative selection was unimpaired. SAP-1 thus directly links Erk signaling to the transcriptional events required for thymocyte positive selection.

  1. GABAB Receptor Positive Modulation Decreases Selective Molecular and Behavioral Effects of Cocaine

    PubMed Central

    Lhuillier, Loic; Mombereau, Cedric; Cryan, John F.; Kaupmann, Klemens

    2006-01-01

    Exposure to cocaine induces selective behavioral and molecular adaptations. In rodents, acute cocaine induces increased locomotor activity whereas prolonged drug exposure results in behavioral locomotor sensitization, which is thought to be a consequence of drug–induced neuroadaptive changes. Recent attention has been given to compounds activating GABAB receptors as potential anti-addictive therapies. In particular the principle of allosteric positive GABAB receptor modulators is very promising in this respect, as positive modulators lack the sedative and muscle relaxant properties of full GABAB receptor agonists such as baclofen. Here we investigated the effects of systemic application of the GABAB receptor positive modulator GS39783 in animals treated with acute and chronic cocaine administration. Both GS39783 and baclofen dose-dependently attenuated acute cocaine-induced hyperlocomotion. Furthermore, both compounds also efficiently blocked cocaine-induced Fos induction in the striatal complex. In chronic studies GS39783 induced a modest attenuation of cocaine-induced locomotor sensitization. Chronic cocaine induces the accumulation of the transcription factor ΔFosB and up regulates cAMP-response-element-binding-protein (CREB) and dopamine-and-cAMP-regulated-phosphoprotein of 32 kd (DARPP-32). GS39783 blocked the induction/activation of DARPP-32 and CREB in the nucleus accumbens and dorsal striatum and partially inhibited ΔFosB accumulation in the dorsal striatum. In summary our data provide evidence that GS39783 attenuates the acute behavioral effects of cocaine exposure in rodents and in addition prevents the induction of selective long-term adaptive changes in dopaminergic signaling pathways. Further investigation of GABAB receptor positive modulation as a novel therapeutic strategy for the treatment of cocaine dependence and possibly other drugs of abuse is therefore warranted. PMID:16710312

  2. Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.

    PubMed

    Turner, Nicholas C; Ro, Jungsil; André, Fabrice; Loi, Sherene; Verma, Sunil; Iwata, Hiroji; Harbeck, Nadia; Loibl, Sibylle; Huang Bartlett, Cynthia; Zhang, Ke; Giorgetti, Carla; Randolph, Sophia; Koehler, Maria; Cristofanilli, Massimo

    2015-07-16

    Growth of hormone-receptor-positive breast cancer is dependent on cyclin-dependent kinases 4 and 6 (CDK4 and CDK6), which promote progression from the G1 phase to the S phase of the cell cycle. We assessed the efficacy of palbociclib (an inhibitor of CDK4 and CDK6) and fulvestrant in advanced breast cancer. This phase 3 study involved 521 patients with advanced hormone-receptor-positive, human epidermal growth factor receptor 2-negative breast cancer that had relapsed or progressed during prior endocrine therapy. We randomly assigned patients in a 2:1 ratio to receive palbociclib and fulvestrant or placebo and fulvestrant. Premenopausal or perimenopausal women also received goserelin. The primary end point was investigator-assessed progression-free survival. Secondary end points included overall survival, objective response, rate of clinical benefit, patient-reported outcomes, and safety. A preplanned interim analysis was performed by an independent data and safety monitoring committee after 195 events of disease progression or death had occurred. The median progression-free survival was 9.2 months (95% confidence interval [CI], 7.5 to not estimable) with palbociclib-fulvestrant and 3.8 months (95% CI, 3.5 to 5.5) with placebo-fulvestrant (hazard ratio for disease progression or death, 0.42; 95% CI, 0.32 to 0.56; P<0.001). The most common grade 3 or 4 adverse events in the palbociclib-fulvestrant group were neutropenia (62.0%, vs. 0.6% in the placebo-fulvestrant group), leukopenia (25.2% vs. 0.6%), anemia (2.6% vs. 1.7%), thrombocytopenia (2.3% vs. 0%), and fatigue (2.0% vs. 1.2%). Febrile neutropenia was reported in 0.6% of palbociclib-treated patients and 0.6% of placebo-treated patients. The rate of discontinuation due to adverse events was 2.6% with palbociclib and 1.7% with placebo. Among patients with hormone-receptor-positive metastatic breast cancer who had progression of disease during prior endocrine therapy, palbociclib combined with fulvestrant resulted

  3. Trastuzumab Emtansine in Treating Older Patients With Human Epidermal Growth Factor Receptor 2-Positive Stage I-III Breast Cancer

    ClinicalTrials.gov

    2018-02-01

    Estrogen Receptor Status; HER2 Positive Breast Carcinoma; Progesterone Receptor Status; Stage I Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  4. Source apportionments of PM2.5 organic carbon using molecular marker Positive Matrix Factorization and comparison of results from different receptor models

    NASA Astrophysics Data System (ADS)

    Heo, Jongbae; Dulger, Muaz; Olson, Michael R.; McGinnis, Jerome E.; Shelton, Brandon R.; Matsunaga, Aiko; Sioutas, Constantinos; Schauer, James J.

    2013-07-01

    Four hundred fine particulate matter (PM2.5) samples collected over a 1-year period at two sites in the Los Angeles Basin were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and organic molecular markers. The results were used in a Positive Matrix Factorization (PMF) receptor model to obtain daily, monthly and annual average source contributions to PM2.5 OC. Results of the PMF model showed similar source categories with comparable year-long contributions to PM2.5 OC across the sites. Five source categories providing reasonably stable profiles were identified: mobile, wood smoke, primary biogenic, and two types of secondary organic carbon (SOC) (i.e., anthropogenic and biogenic emissions). Total primary emission factors and total SOC factors contributed approximately 60% and 40%, respectively, to the annual-average OC concentrations. Primary sources showed strong seasonal patterns with high winter peaks and low summer peaks, while SOC showed a reverse pattern with highs in the spring and summer in the region. Interestingly, smoke from forest fires which occurred episodically in California during the summer and fall of 2009 was identified and combined with the primary biogenic source as one distinct factor to the OC budget. The PMF resolved factors were further investigated and compared to a chemical mass balance (CMB) model and a second multi-variant receptor model (UNMIX) using molecular markers considered in the PMF. Good agreement between the source contribution from mobile sources and biomass burning for three models were obtained, providing additional weight of evidence that these source apportionment techniques are sufficiently accurate for policy development. However, the CMB model did not quantify primary biogenic emissions, which were included in other sources with the SOC. Both multivariate receptor models, the PMF and the UNMIX, were unable to separate source contributions from diesel and gasoline engines.

  5. Positional signaling mediated by a receptor-like kinase in Arabidopsis.

    PubMed

    Kwak, Su-Hwan; Shen, Ronglai; Schiefelbein, John

    2005-02-18

    The position-dependent specification of root epidermal cells in Arabidopsis provides an elegant paradigm for cell patterning during development. Here, we describe a new gene, SCRAMBLED (SCM), required for cells to appropriately interpret their location within the developing root epidermis. SCM encodes a receptor-like kinase protein with a predicted extracellular domain of six leucine-rich repeats and an intracellular serine-threonine kinase domain. SCM regulates the expression of the GLABRA2, CAPRICE, WEREWOLF, and ENHANCER OF GLABRA3 transcription factor genes that define the cell fates. Further, the SCM gene is expressed throughout the developing root. Therefore, SCM likely enables developing epidermal cells to detect positional cues and establish an appropriate cell-type pattern.

  6. Clinical Overestimation of HER2 Positivity in Early Estrogen and Progesterone Receptor-Positive Breast Cancer and the Value of Molecular Subtyping Using BluePrint.

    PubMed

    Myburgh, Ettienne J; Langenhoven, Lizanne; Grant, Kathleen A; van der Merwe, Lize; Kotze, Maritha J

    2017-08-01

    Human epidermal growth factor receptor 2 (HER2) positivity is an important prognostic and predictive indicator in breast cancer. HER2 status is determined by immunohistochemistry and fluorescent in situ hybridization (FISH), which are potentially inaccurate techniques as a result of several technical factors, polysomy of chromosome 17, and amplification or overexpression of CEP17 (centromeric probe for chromosome 17) and/or HER2. In South Africa, HER2-positive tumors are excluded from a MammaPrint (MP; Agendia BV, Amsterdam, Netherlands) pretest algorithm. Clinical HER2 status has been reported to correlate poorly with molecular subtype. The aim of this study was to investigate the correlation of clinical HER2 status with BluePrint (BP) molecular subtyping. Clinico-pathologic and genomic information was extracted from a prospectively collected central MP database containing records of 256 estrogen receptor-positive and/or progesterone receptor-positive tumors. Twenty-one tumors considered HER2 positive on immunohistochemistry or FISH were identified for this study. The median age of patients was 56 years (range, 34 to 77 years), with a median tumor size of 16 mm (3 to 27 mm). Four (19%) tumors were confirmed HER2-enriched subtype, six (29%) were luminal A, and 11 (52%) were luminal B. The positive predictive values of HER2/CEP17 ratio ≥ 2 and HER2 copy number ≥ 6 were only 29% and 40%, respectively. The differences in means for HER2/CEP17 ratio were significant between BP HER2-enriched versus luminal ( P = .0249; 95% CI, 0.12 to 1.21) and MP high-risk versus low-risk tumors ( P = .0002; 95% CI, 0.40 to 1.06). Of the 21 tumors considered clinically HER2 positive, only four were HER2-enriched subtype with BP, indicating an overestimation of HER2 positivity. FISH testing has a poor positive predictive value.

  7. Divergent effects of insulin-like growth factor-1 receptor expression on prognosis of estrogen receptor positive versus triple negative invasive ductal breast carcinoma.

    PubMed

    Hartog, Hermien; Horlings, Hugo M; van der Vegt, Bert; Kreike, Bas; Ajouaou, Abderrahim; van de Vijver, Marc J; Marike Boezen, H; de Bock, Geertruida H; van der Graaf, Winette T A; Wesseling, Jelle

    2011-10-01

    The insulin-like growth factor type 1 receptor (IGF1R) is involved in progression of breast cancer and resistance to systemic treatment. Targeting IGF1R signaling may, therefore, be beneficial in systemic treatment. We report the effect of IGF1R expression on prognosis in invasive ductal breast carcinoma (IDC), the most common type of breast cancer. Immunohistochemistry was performed on tumor tissue of a consecutive cohort of 429 female patients treated for operable primary IDC. Associations between IGF1R expression with clinicopathological parameters, disease free survival (DFS) and breast cancer specific survival (BCSS) were evaluated by multivariate analyses focusing on ER-positive and triple negative IDC (TN-IDC). To enlarge the TN-IDCs cohort, we analyzed a combined dataset of 51 TN-IDC tumors from our series with 64 TN-IDCs with similar clinicopathological parameters. Patients with tumors expressing cytoplasmic IGF1R have a longer DFS and BCSS (DFS: HR 0.46, 95% CI 0.27-0.49, P = 0.005, BCSS: HR 0.38, 95% CI 0.19-0.74, P = 0.005). This effect was most prominent in ER-positive tumors. However, in a combined series of 105 TN-IDCs cytoplasmic IGF1R expression was associated with a shorter DFS (HR = 2.29, 95% CI 1.08-4.84, P = 0.03), also when combined in a multivariate model, including well-known prognostic factors (HR 2.06; 95% CI 0.95-4.47; P = 0.07). IGF1R expression in ER-positive IDC is strongly related to a favorable DFS and BCSS, but to a shorter DFS in TN-IDC tumors. This divergent effect of IGF1R expression in subgroups of IDC may affect selection of patients for IGF1R targeted therapy.

  8. Positive regulation of raphe serotonin neurons by serotonin 2B receptors.

    PubMed

    Belmer, Arnauld; Quentin, Emily; Diaz, Silvina L; Guiard, Bruno P; Fernandez, Sebastian P; Doly, Stéphane; Banas, Sophie M; Pitychoutis, Pothitos M; Moutkine, Imane; Muzerelle, Aude; Tchenio, Anna; Roumier, Anne; Mameli, Manuel; Maroteaux, Luc

    2018-06-01

    Serotonin is a neurotransmitter involved in many psychiatric diseases. In humans, a lack of 5-HT 2B receptors is associated with serotonin-dependent phenotypes, including impulsivity and suicidality. A lack of 5-HT 2B receptors in mice eliminates the effects of molecules that directly target serotonergic neurons including amphetamine derivative serotonin releasers, and selective serotonin reuptake inhibitor antidepressants. In this work, we tested the hypothesis that 5-HT 2B receptors directly and positively regulate raphe serotonin neuron activity. By ex vivo electrophysiological recordings, we report that stimulation by the 5-HT 2B receptor agonist, BW723C86, increased the firing frequency of serotonin Pet1-positive neurons. Viral overexpression of 5-HT 2B receptors in these neurons increased their excitability. Furthermore, in vivo 5-HT 2B -receptor stimulation by BW723C86 counteracted 5-HT 1A autoreceptor-dependent reduction in firing rate and hypothermic response in wild-type mice. By a conditional genetic ablation that eliminates 5-HT 2B receptor expression specifically and exclusively from Pet1-positive serotonin neurons (Htr2b 5-HTKO mice), we demonstrated that behavioral and sensitizing effects of MDMA (3,4-methylenedioxy-methamphetamine), as well as acute behavioral and chronic neurogenic effects of the antidepressant fluoxetine, require 5-HT 2B receptor expression in serotonergic neurons. In Htr2b 5-HTKO mice, dorsal raphe serotonin neurons displayed a lower firing frequency compared to control Htr2b lox/lox mice as assessed by in vivo extracellular recordings and a stronger hypothermic effect of 5-HT 1A -autoreceptor stimulation was observed. The increase in head-twitch response to DOI (2,5-dimethoxy-4-iodoamphetamine) further confirmed the lower serotonergic tone resulting from the absence of 5-HT 2B receptors in serotonin neurons. Together, these observations indicate that the 5-HT 2B receptor acts as a direct positive modulator of serotonin Pet1

  9. Fibroblast growth factor receptor inhibitors.

    PubMed

    Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma

    2013-01-01

    Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.

  10. Utility of the CPS+EG staging system in hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer treated with neoadjuvant chemotherapy.

    PubMed

    Marmé, Frederik; Lederer, Bianca; Blohmer, Jens-Uwe; Costa, Serban Dan; Denkert, Carsten; Eidtmann, Holger; Gerber, Bernd; Hanusch, Claus; Hilfrich, Jörn; Huober, Jens; Jackisch, Christian; Kümmel, Sherko; Loibl, Sibylle; Paepke, Stefan; Untch, Michael; von Minckwitz, Gunter; Schneeweiss, Andreas

    2016-01-01

    Pathologic complete response after neoadjuvant chemotherapy (NACT) correlates with overall survival (OS) in primary breast cancer. A recently described staging system based on pre-treatment clinical stage (CS), final pathological stage (PS), estrogen receptor (ER) status and nuclear grade (NG) leads to a refined estimation of prognosis in unselected patients. Its performance in luminal type breast cancers has not been determined. This study investigates the clinical utility of this CPS+EG score when restricted to hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) patients and compares the results to a cohort of unselected patients. The CPS+EG score was calculated for 6637 unselected patients and 2454 patients with HR+/HER2- tumours who received anthracycline/taxane-based NACT within 8 prospective German trials. Five-year disease-free survival (DFS) and OS were 75.6% and 84.1% for the unselected cohort and 80.6% and 87.8% for the HR+/HER2- subgroup, respectively. The CPS+EG system distinguished different prognostic groups with 5-year DFS ranging from 0% to 91%. The CPS+EG system leads to an improved categorisation of patients by outcome compared to CS, PS, ER or NG alone. When applying the CPS+EG score to the HR+/HER2- subgroup, a shift to lower scores was observed compared to the overall population, but 5-year DFS and OS for the individual scores were identical to that observed in the overall population. In HR+/HER2- patients, the CPS+EG staging system retains its ability to facilitate a refined stratification of patients according to outcome. It can help to select candidates for post-neoadjuvant clinical trials in luminal breast cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma.

    PubMed

    Ahmed, Nabil; Brawley, Vita S; Hegde, Meenakshi; Robertson, Catherine; Ghazi, Alexia; Gerken, Claudia; Liu, Enli; Dakhova, Olga; Ashoori, Aidin; Corder, Amanda; Gray, Tara; Wu, Meng-Fen; Liu, Hao; Hicks, John; Rainusso, Nino; Dotti, Gianpietro; Mei, Zhuyong; Grilley, Bambi; Gee, Adrian; Rooney, Cliona M; Brenner, Malcolm K; Heslop, Helen E; Wels, Winfried S; Wang, Lisa L; Anderson, Peter; Gottschalk, Stephen

    2015-05-20

    The outcome for patients with metastatic or recurrent sarcoma remains poor. Adoptive therapy with tumor-directed T cells is an attractive therapeutic option but has never been evaluated in sarcoma. We conducted a phase I/II clinical study in which patients with recurrent/refractory human epidermal growth factor receptor 2 (HER2) -positive sarcoma received escalating doses (1 × 10(4)/m(2) to 1 × 10(8)/m(2)) of T cells expressing an HER2-specific chimeric antigen receptor with a CD28.ζ signaling domain (HER2-CAR T cells). We enrolled 19 patients with HER2-positive tumors (16 osteosarcomas, one Ewing sarcoma, one primitive neuroectodermal tumor, and one desmoplastic small round cell tumor). HER2-CAR T-cell infusions were well tolerated with no dose-limiting toxicity. At dose level 3 (1 × 10(5)/m(2)) and above, we detected HER2-CAR T cells 3 hours after infusion by quantitative polymerase chain reaction in 14 of 16 patients. HER2-CAR T cells persisted for at least 6 weeks in seven of the nine evaluable patients who received greater than 1 × 10(6)/m(2) HER2-CAR T cells (P = .005). HER2-CAR T cells were detected at tumor sites of two of two patients examined. Of 17 evaluable patients, four had stable disease for 12 weeks to 14 months. Three of these patients had their tumor removed, with one showing ≥ 90% necrosis. The median overall survival of all 19 infused patients was 10.3 months (range, 5.1 to 29.1 months). This first evaluation of the safety and efficacy of HER2-CAR T cells in patients with cancer shows the cells can persist for 6 weeks without evident toxicities, setting the stage for studies that combine HER2-CAR T cells with other immunomodulatory approaches to enhance their expansion and persistence. © 2015 by American Society of Clinical Oncology.

  12. Disease management patterns for postmenopausal women in Europe with hormone-receptor-positive, human epidermal growth factor receptor-2 negative advanced breast cancer.

    PubMed

    André, Fabrice; Neven, Patrick; Marinsek, Nina; Zhang, Jie; Baladi, Jean-Francois; Degun, Ravi; Benelli, Giancarlo; Saletan, Stephen; Jerusalem, Guy

    2014-06-01

    International guidelines for hormone-receptor-positive (HR(+)), human epidermal growth factor receptor-2 negative (HER2(-)) advanced breast cancer (BC) recommend sequential lines of hormonal therapy (HT), and only recommend chemotherapy for patients with extensive visceral involvement or rapidly progressive disease. This study evaluated actual physician-reported treatments for advanced BC in Europe. We conducted a retrospective chart review of 355 postmenopausal women with HR(+), HER2(-) advanced BC who progressed on ≥1 line of HT (adjuvant or advanced) and completed ≥1 line of chemotherapy (advanced). Treatment choice was evaluated for each line of therapy. Of 355 patients, 111 (31%) received first-line chemotherapy, whereas 218 (61%) and 26 (7%) switched from HT to chemotherapy in second and third line, respectively. More patients receiving first-line HT had bone metastases (73% vs 27% chemotherapy). Patients treated with first-line chemotherapy had more brain (12% vs 3% HT) or extensive liver (13% vs 6% HT) metastases. Subgroup analysis of 188 patients who received first-line HT and had de novo advanced BC or relapsed/recurrent disease more than 1 year after adjuvant therapy found that the majority (89%; n = 167) of these patients switched to chemotherapy in second line. However, among these 167 patients, 27% had no significant changes in metastases between first and second line. Among the 73% of patients who had significant changes in metastases, 20% had no brain metastases or extensive visceral disease. Our study suggests that the guideline-recommended use of multiple HT lines is open to interpretation and that optimal treatment for European postmenopausal women with HR(+), HER2(-) advanced BC who responded to HT may not be achieved.

  13. Phase II Study of Neoadjuvant Anthracycline-Based Regimens Combined With Nanoparticle Albumin-Bound Paclitaxel and Trastuzumab for Human Epidermal Growth Factor Receptor 2-Positive Operable Breast Cancer.

    PubMed

    Tanaka, Satoru; Iwamoto, Mitsuhiko; Kimura, Kosei; Matsunami, Nobuki; Morishima, Hirotaka; Yoshidome, Katsuhide; Nomura, Takashi; Morimoto, Takashi; Yamamoto, Daigo; Tsubota, Yu; Kobayashi, Toshihiro; Uchiyama, Kazuhisa

    2015-06-01

    We treated patients with operable human epidermal growth factor receptor 2-positive breast cancer with neoadjuvant anthracycline regimens followed by nanoparticle albumin-bound paclitaxel plus trastuzumab. Of the 44 patients, 49% achieved a pathologic complete response (pCR). The pCR rate was 36% and 71% in the patients with estrogen receptor-positive and -negative cancer, respectively. Neoadjuvant therapy using this combination appears to be effective and safe. Introduction: Neoadjuvant chemotherapy plus trastuzumab. Neoadjuvant chemotherapy plus trastuzumab results in a 30% to 50% pathologic complete response (pCR) rate in human epidermal growth factor receptor 2 (HER2)-positive breast cancer and has been associated with improved therapeutic outcomes. Thus, the pCR rate can be useful in evaluating novel agents in this patient population. Nanoparticle albumin-bound (nab)-paclitaxel (PTX) can reduce the toxicity of PTX while maintaining its efficacy. The present study evaluated the activity and safety of nab-PTX as a neoadjuvant treatment of HER2(+) breast cancer. We treated patients with stage I to IIIA breast cancer using neoadjuvant epirubicin/cyclophosphamide (EC) or 5-fluorouracil/epirubicin/cyclophosphamide every 3 weeks (q3w) for 4 cycles, followed by nab-PTX (260 mg/m(2)) plus trastuzumab q3w for 4 cycles. The primary endpoint was the pCR rate. The secondary endpoints included the clinical response rate, disease-free survival, pathologic response rate (defined as pCR or minimal residual invasive disease only in the breast), breast-conserving surgery rate, and safety. Forty-six patients were enrolled. One patient met the exclusion criteria because of the coexistence of another malignant disease; therefore, we evaluated 45 patients in the entire study. One patient experienced rapid disease progression during EC therapy, leaving 44 patients evaluable for nab-PTX treatment. Of the 45 patients, 49% achieved a pCR. The pCR rate was 36% and 71% in those with

  14. Patterns of resource utilization and cost for postmenopausal women with hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer in Europe.

    PubMed

    Jerusalem, Guy; Neven, Patrick; Marinsek, Nina; Zhang, Jie; Degun, Ravi; Benelli, Giancarlo; Saletan, Stephen; Ricci, Jean-François; Andre, Fabrice

    2015-10-24

    Healthcare resource utilization in breast cancer varies by disease characteristics and treatment choices. However, lack of clarity in guidelines can result in varied interpretation and heterogeneous treatment management and costs. In Europe, the extent of this variability is unclear. Therefore, evaluation of chemotherapy use and costs versus hormone therapy across Europe is needed. This retrospective chart review (N = 355) examined primarily direct costs for chemotherapy versus hormone therapy in postmenopausal women with hormone-receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) advanced breast cancer across 5 European countries (France, Germany, The Netherlands, Belgium, and Sweden). Total direct costs across the first 3 treatment lines were approximately €10,000 to €14,000 lower for an additional line of hormone therapy-based treatment versus switching to chemotherapy-based treatment. Direct cost difference between chemotherapy-based and hormone therapy-based regimens was approximately €1900 to €2500 per month. Chemotherapy-based regimens were associated with increased resource utilization (managing side effects; concomitant targeted therapy use; and increased frequencies of hospitalizations, provider visits, and monitoring tests). The proportion of patients taking sick leave doubled after switching from hormone therapy to chemotherapy. These results suggest chemotherapy is associated with increased direct costs and potentially with increased indirect costs (lower productivity of working patients) versus hormone therapy in HR+, HER2- advanced breast cancer.

  15. Optimizing Quality of Life in Patients with Hormone Receptor-Positive Metastatic Breast Cancer: Treatment Options and Considerations.

    PubMed

    Chalasani, Pavani

    2017-01-01

    The treatment landscape for hormone receptor-positive metastatic breast cancer continues to evolve as the molecular mechanisms of this heterogeneous disease are better understood and targeted treatment strategies are developed. Patients are now living for extended periods of time with this disease as they progress through sequential lines of treatment. With a rapidly expanding therapeutic armamentarium, the prevalence of metastatic breast cancer patients with prolonged survival is expected to increase, as is the duration of survival. Practice guidelines recommend endocrine therapy alone as first-line therapy for the majority of patients with metastatic hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer. The approval of new agents and expanded combination options has extended their use beyond first line, but endocrine therapy is not used as widely in clinical practice as recommended. As all treatments are palliative, even as survival is prolonged, optimizing and maintaining patient quality of life is crucial. This article surveys data relevant to the use of endocrine therapy in the setting of hormone receptor-positive metastatic breast cancer, including key clinical evidence regarding approved therapies and the impact of these therapies on patient quality of life. © 2017 S. Karger AG, Basel.

  16. GAP-43 is essential for the neurotrophic effects of BDNF and positive AMPA receptor modulator S18986.

    PubMed

    Gupta, S K; Mishra, R; Kusum, S; Spedding, M; Meiri, K F; Gressens, P; Mani, S

    2009-04-01

    Positive alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor modulators include benzamide compounds that allosterically modulate AMPA glutamate receptors. These small molecules that cross the blood-brain barrier have been shown to act as a neuroprotectant by increasing the levels of endogenous brain-derived neurotrophic factor (BDNF). Positive AMPA receptor modulators have also been shown to increase the levels of growth-associated protein-43 (GAP-43). GAP-43 plays a major role in many aspects of neuronal function in vertebrates. The goal of this study was to determine whether GAP-43 was important in mediating the actions of positive AMPA receptor modulator (S18986) and BDNF. Using cortical cultures from GAP-43 knockout and control mice, we show that (1) GAP-43 is upregulated in response to S18986 and BDNF in control cultures; (2) this upregulation of GAP-43 is essential for mediating the neuroprotective effects of S18986 and BDNF; (3) administration of S18986 and BDNF leads to an increase in the expression of the glutamate transporters GLT-1 and GLAST that are key to limiting excitotoxic cell death and this increase in GLT-1 and GLAST expression is completely blocked in the absence of GAP-43. Taken together this study concludes that GAP-43 is an important mediator of the neurotrophic effects of S18986 and BDNF on neuronal survival and plasticity, and is essential for the success of positive AMPA receptor modulator-BDNF-based neurotrophin therapy.

  17. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  18. Race and hormone receptor-positive breast cancer outcomes in a randomized chemotherapy trial.

    PubMed

    Sparano, Joseph A; Wang, Molin; Zhao, Fengmin; Stearns, Vered; Martino, Silvana; Ligibel, Jennifer A; Perez, Edith A; Saphner, Tom; Wolff, Antonio C; Sledge, George W; Wood, William C; Davidson, Nancy E

    2012-03-07

    The association between black race and worse outcomes in operable breast cancer reported in previous studies has been attributed to a higher incidence of more aggressive triple-negative disease, disparities in care, and comorbidities. We evaluated associations between black race and outcomes, by tumor hormone receptor and HER2 expression, in patients who were treated with contemporary adjuvant therapy. The effect of black race on disease-free and overall survival was evaluated using Cox proportional hazards models adjusted for multiple covariates in a clinical trial population that was treated with anthracycline- and taxane-containing chemotherapy. Categorical variables were compared using the Fisher exact test. All P values are two-sided. Of 4817 eligible patients, 405 (8.4%) were black. Compared with nonblack patients, black patients had a higher rate of triple-negative disease (31.9% vs 17.2%; P < .001) and a higher body mass index (median: 31.7 vs 27.4 kg/m(2); P < .001). Black race was statistically significantly associated with worse disease-free survival (5-year disease-free survival, black vs nonblack: 76.7% vs 84.5%; hazard ratio of recurrence or death = 1.58, 95% confidence interval = 1.19 to 2.10, P = .0015) and overall survival (5-year overall survival, black vs nonblack: 87.6% vs 91.9%; hazard ratio of death = 1.49, 95% confidence interval = 1.05 to 2.12, P = .025) in patients with hormone receptor-positive HER2-negative disease but not in patients with triple-negative or HER2-positive disease. In a model that included black race, hormone receptor-positive HER2-negative disease vs other subtypes, and their interaction, the interaction term was statistically significant for disease-free survival (P = .027) but not for overall survival (P = .086). Factors other than disparities in care or aggressive disease contribute to increased recurrence in black women with hormone receptor-positive breast cancer.

  19. Characterization of the expression and clinical features of epidermal growth factor receptor and vascular endothelial growth factor receptor-2 in esophageal carcinoma

    PubMed Central

    NIYAZ, MADINIYAT; ANWER, JURAT; LIU, HUI; ZHANG, LIWEI; SHAYHEDIN, ILYAR; AWUT, IDIRIS

    2015-01-01

    The present study aimed to understand the expression characteristics of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-2 (VEGFR-2) in individuals of Uygur, Han and Kazak ethnicity with esophageal carcinoma in Xinjiang (China) and their interrelation analysis, and to investigate the expression differences in these genes between esophageal carcinoma and pericarcinoma tissue samples, and between the three ethnic groups. The expression levels of EGFR and VEGFR-2 from 119 pairs of esophageal carcinoma tissue and corresponding pericarcinoma tissue from Uygur, Han and Kazak patients with esophageal carcinoma were detected by immunohistochemistry following surgical resection, and an additional five carcinoma in situ specimens were also tested. The relative expression was analyzed among the ethnic groups and clinicopathological parameters. The positive rate of EGFR in esophageal carcinoma tissue from patients of Uygur, Han and Kazak heritage was 70.73, 68.42 and 67.5%, respectively. For VEGFR-2 the positive rate was 73.17, 68.42 and 67.5%, respectively. No significant difference was detected in their expression between the three ethnic groups (P>0.05); however, EGFR and VEGFR-2 overexpression were correlated with lymph node metastasis (P<0.05). VEGF expression was also correlated with the expression of VEGFR-2 in esophageal carcinoma tissues. EGFR was positive in carcinoma in situ samples, while VEGFR-2 was negative. The overexpression of EGFR is therefore an early event and may have a significant role in the progression of esophageal carcinoma pathogenesis. EGFR overexpression may correlate with the expression of VEGFR-2 in esophageal cancer. These results may aid the early diagnosis of esophageal cancer, and the development of individual target treatment in the future. PMID:26788193

  20. Phase III, Randomized Study of Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade With Lapatinib Plus Trastuzumab in Combination With an Aromatase Inhibitor in Postmenopausal Women With HER2-Positive, Hormone Receptor-Positive Metastatic Breast Cancer: ALTERNATIVE.

    PubMed

    Johnston, Stephen R D; Hegg, Roberto; Im, Seock-Ah; Park, In Hae; Burdaeva, Olga; Kurteva, Galina; Press, Michael F; Tjulandin, Sergei; Iwata, Hiroji; Simon, Sergio D; Kenny, Sarah; Sarp, Severine; Izquierdo, Miguel A; Williams, Lisa S; Gradishar, William J

    2018-03-10

    Purpose Human epidermal growth factor receptor 2 (HER2) targeting plus endocrine therapy (ET) improved clinical benefit in HER2-positive, hormone receptor (HR)-positive metastatic breast cancer (MBC) versus ET alone. Dual HER2 blockade enhances clinical benefit versus single HER2 blockade. The ALTERNATIVE study evaluated the efficacy and safety of dual HER2 blockade plus aromatase inhibitor (AI) in postmenopausal women with HER2-positive/HR-positive MBC who received prior ET and prior neo(adjuvant)/first-line trastuzumab (TRAS) plus chemotherapy. Methods Patients were randomly assigned (1:1:1) to receive lapatinib (LAP) + TRAS + AI, TRAS + AI, or LAP + AI. Patients for whom chemotherapy was intended were excluded. The primary end point was progression-free survival (PFS; investigator assessed) with LAP + TRAS + AI versus TRAS + AI. Secondary end points were PFS (comparison of other arms), overall survival, overall response rate, clinical benefit rate, and safety. Results Three hundred fifty-five patients were included in this analysis: LAP + TRAS + AI (n = 120), TRAS + AI (n = 117), and LAP + AI (n = 118). Baseline characteristics were balanced. The study met its primary end point; superior PFS was observed with LAP + TRAS + AI versus TRAS + AI (median PFS, 11 v 5.7 months; hazard ratio, 0.62; 95% CI, 0.45 to 0.88; P = .0064). Consistent PFS benefit was observed in predefined subgroups. Overall response rate, clinical benefit rate, and overall survival also favored LAP + TRAS + AI. The median PFS with LAP + AI versus TRAS + AI was 8.3 versus 5.7 months (hazard ratio, 0.71; 95% CI, 0.51 to 0.98; P = .0361). Common adverse events (AEs; ≥ 15%) with LAP + TRAS + AI, TRAS + AI, and LAP + AI were diarrhea (69%, 9%, and 51%, respectively), rash (36%, 2%, and 28%, respectively), nausea (22%, 9%, and 22%, respectively), and paronychia (30%, 0%, and 15%, respectively), mostly grade 1 or 2. Serious AEs were reported similarly across the three groups, and AEs leading to

  1. PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients.

    PubMed

    Beelen, Karin; Opdam, Mark; Severson, Tesa M; Koornstra, Rutger H T; Vincent, Andrew D; Wesseling, Jelle; Muris, Jettie J; Berns, Els M J J; Vermorken, Jan B; van Diest, Paul J; Linn, Sabine C

    2014-01-27

    Inhibitors of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway can overcome endocrine resistance in estrogen receptor (ER) α-positive breast cancer, but companion diagnostics indicating PI3K/AKT/mTOR activation and consequently endocrine resistance are lacking. PIK3CA mutations frequently occur in ERα-positive breast cancer and result in PI3K/AKT/mTOR activation in vitro. Nevertheless, the prognostic and treatment-predictive value of these mutations in ERα-positive breast cancer is contradictive. We tested the clinical validity of PIK3CA mutations and other canonic pathway drivers to predict intrinsic resistance to adjuvant tamoxifen. In addition, we tested the association between these drivers and downstream activated proteins. Primary tumors from 563 ERα-positive postmenopausal patients, randomized between adjuvant tamoxifen (1 to 3 years) versus observation were recollected. PIK3CA hotspot mutations in exon 9 and exon 20 were assessed with Sequenom Mass Spectometry. Immunohistochemistry was performed for human epidermal growth factor receptor 2 (HER2), phosphatase and tensin homolog (PTEN), and insulin-like growth factor 1 receptor (IGF-1R). We tested the association between these molecular alterations and downstream activated proteins (like phospho-protein kinase B (p-AKT), phospho-mammalian target of rapamycin (p-mTOR), p-ERK1/2, and p-p70S6K). Recurrence-free interval improvement with tamoxifen versus control was assessed according to the presence or absence of canonic pathway drivers, by using Cox proportional hazard models, including a test for interaction. PIK3CA mutations (both exon 9 and exon 20) were associated with low tumor grade. An enrichment of PIK3CA exon 20 mutations was observed in progesterone receptor- positive tumors. PIK3CA exon 20 mutations were not associated with downstream-activated proteins. No significant interaction between PIK3CA mutations or any of the other canonic pathway

  2. Positive selection moments identify potential functional residues in human olfactory receptors

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Weisinger-Lewin, Y.; Lancet, D.; Shepherd, G. M.

    1996-01-01

    Correlated mutation analysis and molecular models of olfactory receptors have provided evidence that residues in the transmembrane domains form a binding pocket for odor ligands. As an independent test of these results, we have calculated positive selection moments for the alpha-helical sixth transmembrane domain (TM6) of human olfactory receptors. The moments can be used to identify residues that have been preferentially affected by positive selection and are thus likely to interact with odor ligands. The results suggest that residue 622, which is commonly a serine or threonine, could form critical H-bonds. In some receptors a dual-serine subsite, formed by residues 622 and 625, could bind hydroxyl determinants on odor ligands. The potential importance of these residues is further supported by site-directed mutagenesis in the beta-adrenergic receptor. The findings should be of practical value for future physiological studies, binding assays, and site-directed mutagenesis.

  3. Effectiveness and cost-effectiveness of erlotinib versus gefitinib in first-line treatment of epidermal growth factor receptor-activating mutation-positive non-small-cell lung cancer patients in Hong Kong.

    PubMed

    Lee, Vivian W Y; Schwander, Bjoern; Lee, Victor H F

    2014-06-01

    To compare the effectiveness and cost-effectiveness of erlotinib versus gefitinib as first-line treatment of epidermal growth factor receptor-activating mutation-positive non-small-cell lung cancer patients. DESIGN. Indirect treatment comparison and a cost-effectiveness assessment. Hong Kong. Those having epidermal growth factor receptor-activating mutation-positive non-small-cell lung cancer. Erlotinib versus gefitinib use was compared on the basis of four relevant Asian phase-III randomised controlled trials: one for erlotinib (OPTIMAL) and three for gefitinib (IPASS; NEJGSG; WJTOG). The cost-effectiveness assessment model simulates the transition between the health states: progression-free survival, progression, and death over a lifetime horizon. The World Health Organization criterion (incremental cost-effectiveness ratio <3 times of gross domestic product/capita:

  4. Noninvasive detection of activating estrogen receptor 1 (ESR1) mutations in estrogen receptor-positive metastatic breast cancer.

    PubMed

    Guttery, David S; Page, Karen; Hills, Allison; Woodley, Laura; Marchese, Stephanie D; Rghebi, Basma; Hastings, Robert K; Luo, Jinli; Pringle, J Howard; Stebbing, Justin; Coombes, R Charles; Ali, Simak; Shaw, Jacqueline A

    2015-07-01

    Activating mutations in the estrogen receptor 1 (ESR1) gene are acquired on treatment and can drive resistance to endocrine therapy. Because of the spatial and temporal limitations of needle core biopsies, our goal was to develop a highly sensitive, less invasive method of detecting activating ESR1 mutations via circulating cell-free DNA (cfDNA) and tumor cells as a "liquid biopsy." We developed a targeted 23-amplicon next-generation sequencing (NGS) panel for detection of hot-spot mutations in ESR1, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), tumor protein p53 (TP53), fibroblast growth factor receptor 1 (FGFR1), and fibroblast growth factor receptor 2 (FGFR2) in 48 patients with estrogen receptor-α-positive metastatic breast cancer who were receiving systemic therapy. Selected mutations were validated using droplet digital PCR (ddPCR). Nine baseline cfDNA samples had an ESR1 mutation. NGS detected 3 activating mutations in ESR1, and 3 hot-spot mutations in PIK3CA, and 3 in TP53 in baseline cfDNA, and the ESR1 p.D538G mutation in 1 matched circulating tumor cell sample. ddPCR analysis was more sensitive than NGS and identified 6 additional baseline cfDNA samples with the ESR1 p.D538G mutation at a frequency of <1%. In serial blood samples from 11 patients, 4 showed changes in cfDNA, 2 with emergence of a mutation in ESR1. We also detected a low frequency ESR1 mutation (1.3%) in cfDNA of 1 primary patient who was thought to have metastatic disease but was clear by scans. Early identification of ESR1 mutations by liquid biopsy might allow for cessation of ineffective endocrine therapies and switching to other treatments, without the need for tissue biopsy and before the emergence of metastatic disease. © 2015 American Association for Clinical Chemistry.

  5. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    USDA-ARS?s Scientific Manuscript database

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  6. Expression of epidermal growth factor receptor and vascular endothelial growth factor in malignant canine epithelial nasal tumours.

    PubMed

    Shiomitsu, K; Johnson, C L; Malarkey, D E; Pruitt, A F; Thrall, D E

    2009-06-01

    Epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) signalling pathways play a role in carcinogenesis. Inhibition of EGF receptor (EGFR) and of VEGF is effective in increasing the radiation responsiveness of neoplastic cells both in vitro and in human trials. In this study, immunohistochemical evaluation was employed to determine and characterize the potential protein expression levels and patterns of EGFR and VEGF in a variety of canine malignant epithelial nasal tumours. Of 24 malignant canine nasal tumours, 13 (54.2%) were positive for EGFR staining and 22 (91.7%) were positive for VEGF staining. The intensity and percentage of immunohistochemically positive neoplastic cells for EGFR varied. These findings indicate that EGFR and VEGF proteins were present in some malignant epithelial nasal tumours in the dogs, and therefore, it may be beneficial to treat canine patients with tumours that overexpress EGFR and VEGF with specific inhibitors in conjunction with radiation.

  7. TRAIL Death Receptor-4 Expression Positively Correlates With the Tumor Grade in Breast Cancer Patients With Invasive Ductal Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanlioglu, Ahter D.; Department of Medical Biology and Genetics, Akdeniz University Faculty of Medicine, Antalya; Korcum, Aylin F.

    2007-11-01

    Purpose: Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells, and a number of clinical trials have recently been initiated to test the safety and antitumoral potential of TRAIL in cancer patients. Four different receptors have been identified to interact with TRAIL: two are death-inducing receptors (TRAIL-R1 [DR4] and TRAIL-R2 [DR5]), whereas the other two (TRAIL-R3 [DcR1] and TRAIL-R4 [DcR2]) do not induce death upon ligation and are believed to counteract TRAIL-induced cytotoxicity. Because high levels of DcR2 expression have recently been correlated with carcinogenesis in the prostate and lung, thismore » study investigated the importance of TRAIL and TRAIL receptor expression in breast cancer patients with invasive ductal carcinoma, taking various prognostic markers into consideration. Methods and Materials: Immunohistochemical analyses were performed on 90 breast cancer patients with invasive ductal carcinoma using TRAIL and TRAIL receptor-specific antibodies. Age, menopausal status, tumor size, lymph node status, tumor grade, lymphovascular invasion, perineural invasion, extracapsular tumor extension, presence of an extensive intraductal component, multicentricity, estrogen and progesterone receptor status, and CerbB2 expression levels were analyzed with respect to TRAIL/TRAIL receptor expression patterns. Results: The highest TRAIL receptor expressed in patients with invasive ductal carcinoma was DR4. Although progesterone receptor-positive patients exhibited lower DR5 expression, CerbB2-positive tissues displayed higher levels of both DR5 and TRAIL expressions. Conclusions: DR4 expression positively correlates with the tumor grade in breast cancer patients with invasive ductal carcinoma.« less

  8. Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors in T790M-positive non-small cell lung cancer: review on emerged mechanisms of resistance

    PubMed Central

    Minari, Roberta; Bordi, Paola

    2016-01-01

    Osimertinib, third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), has been approved in the US and EU for the treatment of EGFR mutant T790M-positive non-small cell lung cancer (NSCLC) patients resistant to first- or second-generation EGFR-TKIs, such as gefitinib, erlotinib and afatinib. Although exciting survival data and response rates have been registered in patients treated with this and other third-generation EGFR-TKIs, unfortunately acquired resistance still occurs after approximately 10 months. Mechanisms determining progression of disease are heterogeneous and not fully understood. EGFR-dependent resistance mechanisms (such as new EGFR mutations), bypass pathway activation [as erb-b2 receptor tyrosine kinase 2 (HER2) or MET amplification] and histological transformation [in small cell lung cancer (SCLC)] have been reported, similarly to previous generation TKIs. Here, we review principle mechanisms of innate and acquired resistance described in literature both in clinical and preclinical settings during NSCLC treatment with third-generation EGFR-TKIs. PMID:28149764

  9. Impact of Diabetes, Insulin, and Metformin Use on the Outcome of Patients With Human Epidermal Growth Factor Receptor 2-Positive Primary Breast Cancer: Analysis From the ALTTO Phase III Randomized Trial.

    PubMed

    Sonnenblick, Amir; Agbor-Tarh, Dominique; Bradbury, Ian; Di Cosimo, Serena; Azim, Hatem A; Fumagalli, Debora; Sarp, Severine; Wolff, Antonio C; Andersson, Michael; Kroep, Judith; Cufer, Tanja; Simon, Sergio D; Salman, Pamela; Toi, Masakazu; Harris, Lyndsay; Gralow, Julie; Keane, Maccon; Moreno-Aspitia, Alvaro; Piccart-Gebhart, Martine; de Azambuja, Evandro

    2017-05-01

    Purpose Previous studies have suggested an association between metformin use and improved outcome in patients with diabetes and breast cancer. In the current study, we aimed to explore this association in human epidermal growth factor receptor 2 (HER2 ) -positive primary breast cancer in the context of a large, phase III adjuvant trial. Patients and Methods The ALTTO trial randomly assigned patients with HER2-positive breast cancer to receive 1 year of either trastuzumab alone, lapatinib alone, their sequence, or their combination. In this substudy, we evaluated whether patients with diabetes at study entry-with or without metformin treatment-were associated with different disease-free survival (DFS), distant disease-free survival (DDFS), and overall survival (OS) compared with patients without diabetes. Results A total of 8,381 patients were included in the current analysis: 7,935 patients (94.7%) had no history of diabetes at diagnosis, 186 patients (2.2%) had diabetes with no metformin treatment, and 260 patients (3.1%) were diabetic and had been treated with metformin. Median follow-up was 4.5 years (0.16 to 6.31 years), at which 1,205 (14.38%), 929 (11.08%), and 528 (6.3%) patients experienced DFS, DDFS, and OS events, respectively. Patients with diabetes who had not been treated with metformin experienced worse DFS (multivariable hazard ratio [HR], 1.40; 95% CI, 1.01 to 1.94; P = .043), DDFS (multivariable HR, 1.56; 95% CI, 1.10 to 2.22; P = .013), and OS (multivariable HR, 1.87; 95% CI, 1.23 to 2.85; P = .004). This effect was limited to hormone receptor-positive patients. Whereas insulin treatment was associated with a detrimental effect, metformin had a salutary effect in patients with diabetes who had HER2-positive and hormone receptor-positive breast cancer. Conclusion Metformin may improve the worse prognosis that is associated with diabetes and insulin treatment, mainly in patients with primary HER2-positive and hormone receptor-positive breast cancer.

  10. The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells.

    PubMed

    Ariazi, Eric A; Brailoiu, Eugen; Yerrum, Smitha; Shupp, Heather A; Slifker, Michael J; Cunliffe, Heather E; Black, Michael A; Donato, Anne L; Arterburn, Jeffrey B; Oprea, Tudor I; Prossnitz, Eric R; Dun, Nae J; Jordan, V Craig

    2010-02-01

    The G protein-coupled receptor GPR30 binds 17beta-estradiol (E(2)) yet differs from classic estrogen receptors (ERalpha and ERbeta). GPR30 can mediate E(2)-induced nongenomic signaling, but its role in ERalpha-positive breast cancer remains unclear. Gene expression microarray data from five cohorts comprising 1,250 breast carcinomas showed an association between increased GPR30 expression and ERalpha-positive status. We therefore examined GPR30 in estrogenic activities in ER-positive MCF-7 breast cancer cells using G-1 and diethylstilbestrol (DES), ligands that selectively activate GPR30 and ER, respectively, and small interfering RNAs. In expression studies, E(2) and DES, but not G-1, transiently downregulated both ER and GPR30, indicating that this was ER mediated. In Ca(2+) mobilization studies, GPR30, but not ERalpha, mediated E(2)-induced Ca(2+) responses because E(2), 4-hydroxytamoxifen (activates GPR30), and G-1, but not DES, elicited cytosolic Ca(2+) increases not only in MCF-7 cells but also in ER-negative SKBr3 cells. Additionally, in MCF-7 cells, GPR30 depletion blocked E(2)-induced and G-1-induced Ca(2+) mobilization, but ERalpha depletion did not. Interestingly, GPR30-coupled Ca(2+) responses were sustained and inositol triphosphate receptor mediated in ER-positive MCF-7 cells but transitory and ryanodine receptor mediated in ER-negative SKBr3 cells. Proliferation studies involving GPR30 depletion indicated that the role of GPR30 was to promote SKBr3 cell growth but reduce MCF-7 cell growth. Supporting this, G-1 profoundly inhibited MCF-7 cell growth, potentially via p53 and p21 induction. Further, flow cytometry showed that G-1 blocked MCF-7 cell cycle progression at the G(1) phase. Thus, GPR30 antagonizes growth of ERalpha-positive breast cancer and may represent a new target to combat this disease.

  11. Assembly and activation of neurotrophic factor receptor complexes.

    PubMed

    Simi, Anastasia; Ibáñez, Carlos F

    2010-04-01

    Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.

  12. Alterations of the genes involved in the PI3K and estrogen-receptor pathways influence outcome in human epidermal growth factor receptor 2-positive and hormone receptor-positive breast cancer patients treated with trastuzumab-containing neoadjuvant chemotherapy

    PubMed Central

    2013-01-01

    Background Chemotherapy with trastuzumab is widely used for patients with human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but a significant number of patients with the tumor fail to respond, or relapse. The mechanisms of recurrence and biomarkers that indicate the response to the chemotherapy and outcome are not fully investigated. Methods Genomic alterations were analyzed using single-nucleotide polymorphism arrays in 46 HER2 immunohistochemistry (IHC) 3+ or 2+/fluorescent in situ hybridization (FISH)+ breast cancers that were treated with neoadjuvant chemotherapy with paclitaxel, cyclophosphamid, epirubicin, fluorouracil, and trastuzumab. Patients were classified into two groups based on presence or absence of alterations of 65 cancer-associated genes, and the two groups were further classified into four groups based on genomic HER2 copy numbers or hormone receptor status (HR+/−). Pathological complete response (pCR) and relapse-free survival (RFS) rates were compared between any two of the groups. Results and discussion The pCR rate was 54% in 37 patients, and the RFS rate at 3 years was 72% (95% CI, 0.55-0.89) in 42 patients. The analysis disclosed 8 tumors with nonamplified HER2 and 38 tumors with HER2 amplification, indicating the presence of discordance in tumors diagnosed using current HER2 testing. The 8 patients showed more difficulty in achieving pCR (P=0.019), more frequent relapse (P=0.018), and more frequent alterations of genes in the PI3K pathway (P=0.009) than the patients with HER2 amplification. The alterations of the PI3K and estrogen receptor (ER) pathway genes generally indicated worse RFS rates. The prognostic significance of the alterations was shown in patients with a HR+ tumor, but not in patients with a HR- tumor when divided. Alterations of the PI3K and ER pathway genes found in patients with a HR+ tumor with poor outcome suggested that crosstalk between the two pathways may be involved in resistance to the

  13. Understanding Cytokine and Growth Factor Receptor Activation Mechanisms

    PubMed Central

    Atanasova, Mariya; Whitty, Adrian

    2012-01-01

    Our understanding of the detailed mechanism of action of cytokine and growth factor receptors – and particularly our quantitative understanding of the link between structure, mechanism and function – lags significantly behind our knowledge of comparable functional protein classes such as enzymes, G protein-coupled receptors, and ion channels. In particular, it remains controversial whether such receptors are activated by a mechanism of ligand-induced oligomerization, versus a mechanism in which the ligand binds to a pre-associated receptor dimer or oligomer that becomes activated through subsequent conformational rearrangement. A major limitation to progress has been the relative paucity of methods for performing quantitative mechanistic experiments on unmodified receptors expressed at endogenous levels on live cells. In this article we review the current state of knowledge on the activation mechanisms of cytokine and growth factor receptors, critically evaluate the evidence for and against the different proposed mechanisms, and highlight other key questions that remain unanswered. New approaches and techniques have led to rapid recent progress in this area, and the field is poised for major advances in the coming years, which promises to revolutionize our understanding of this large and biologically and medically important class of receptors. PMID:23046381

  14. A Novel Positive Feedback Loop Mediated by the Docking Protein Gab1 and Phosphatidylinositol 3-Kinase in Epidermal Growth Factor Receptor Signaling

    PubMed Central

    Rodrigues, Gerard A.; Falasca, Marco; Zhang, Zhongtao; Ong, Siew Hwa; Schlessinger, Joseph

    2000-01-01

    The Gab1 protein is tyrosine phosphorylated in response to various growth factors and serves as a docking protein that recruits a number of downstream signaling proteins, including phosphatidylinositol 3-kinase (PI-3 kinase). To determine the role of Gab1 in signaling via the epidermal growth factor (EGF) receptor (EGFR) we tested the ability of Gab1 to associate with and modulate signaling by this receptor. We show that Gab1 associates with the EGFR in vivo and in vitro via pTyr sites 1068 and 1086 in the carboxy-terminal tail of the receptor and that overexpression of Gab1 potentiates EGF-induced activation of the mitogen-activated protein kinase and Jun kinase signaling pathways. A mutant of Gab1 unable to bind the p85 subunit of PI-3 kinase is defective in potentiating EGFR signaling, confirming a role for PI-3 kinase as a downstream effector of Gab1. Inhibition of PI-3 kinase by a dominant-interfering mutant of p85 or by Wortmannin treatment similarly impairs Gab1-induced enhancement of signaling via the EGFR. The PH domain of Gab1 was shown to bind specifically to phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], a product of PI-3 kinase, and is required for activation of Gab1-mediated enhancement of EGFR signaling. Moreover, the PH domain mediates Gab1 translocation to the plasma membrane in response to EGF and is required for efficient tyrosine phosphorylation of Gab1 upon EGF stimulation. In addition, overexpression of Gab1 PH domain blocks Gab1 potentiation of EGFR signaling. Finally, expression of the gene for the lipid phosphatase PTEN, which dephosphorylates PtdIns(3,4,5)P3, inhibits EGF signaling and translocation of Gab1 to the plasma membrane. These results reveal a novel positive feedback loop, modulated by PTEN, in which PI-3 kinase functions as both an upstream regulator and a downstream effector of Gab1 in signaling via the EGFR. PMID:10648629

  15. Functional selectivity induced by mGlu₄ receptor positive allosteric modulation and concomitant activation of Gq coupled receptors.

    PubMed

    Yin, Shen; Zamorano, Rocio; Conn, P Jeffrey; Niswender, Colleen M

    2013-03-01

    Metabotropic glutamate receptors (mGlus) are a group of Family C Seven Transmembrane Spanning Receptors (7TMRs) that play important roles in modulating signaling transduction, particularly within the central nervous system. mGlu(4) belongs to a subfamily of mGlus that is predominantly coupled to G(i/o) G proteins. We now report that the ubiquitous autacoid and neuromodulator, histamine, induces substantial glutamate-activated calcium mobilization in mGlu(4)-expressing cells, an effect which is observed in the absence of co-expressed chimeric G proteins. This strong induction of calcium signaling downstream of glutamate activation of mGlu(4) depends upon the presence of H(1) histamine receptors. Interestingly, the potentiating effect of histamine activation does not extend to other mGlu(4)-mediated signaling events downstream of G(i/o) G proteins, such as cAMP inhibition, suggesting that the presence of G(q) coupled receptors such as H(1) may bias normal mGlu(4)-mediated G(i/o) signaling events. When the activity induced by small molecule positive allosteric modulators of mGlu(4) is assessed, the potentiated signaling of mGlu(4) is further biased by histamine toward calcium-dependent pathways. These results suggest that G(i/o)-coupled mGlus may induce substantial, and potentially unexpected, calcium-mediated signaling events if stimulation occurs concomitantly with activation of G(q) receptors. Additionally, our results suggest that signaling induced by small molecule positive allosteric modulators may be substantially biased when G(q) receptors are co-activated. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells through the Toll-like receptor 4/nuclear factor-κB pathway.

    PubMed

    Jiang, Ninghong; Xie, Feng; Guo, Qisang; Li, Ming-Qing; Xiao, Jingjing; Sui, Long

    2017-06-01

    Toll-like receptor 4 is overexpressed in various tumors, including cervical carcinoma. However, the role of Toll-like receptor 4 in cervical cancer remains controversial, and the underlying mechanisms are largely elusive. Therefore, Toll-like receptor 4 in cervical cancer and related mechanisms were investigated in this study. Quantitative reverse transcription polymerase chain reaction and western blot analyses were used to detect messenger RNA and protein levels in HeLa, Caski, and C33A cells with different treatments. Proliferation was quantified using Cell Counting Kit-8. Cell cycle distribution and apoptosis were assessed by flow cytometry. Higher levels of Toll-like receptor 4 expression were found in human papillomavirus-positive cells compared to human papillomavirus-negative cells. Proliferation of HeLa and Caski cells was promoted in lipopolysaccharide-stimulated groups but suppressed in short hairpin RNA-transfected groups. Apoptosis rates were lower in lipopolysaccharide-stimulated groups relative to short hairpin RNA-transfected groups. In addition, G2-phase distribution was enhanced when Toll-like receptor 4 was downregulated. Moreover, the pNF-κBp65 level was positively correlated with the Toll-like receptor 4 level in HeLa and Caski cells, though when an nuclear factor-κB inhibitor was applied to lipopolysaccharide-stimulated groups, the patterns of proliferation and apoptosis were opposite to those of the lipopolysaccharide-stimulated groups without inhibitor treatment. In conclusion, these data suggest that Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells at least in part through the Toll-like receptor 4/nuclear factor-κB pathway, which may be correlated with the occurrence and development of cervical carcinoma.

  17. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis.

    PubMed

    Miraoui, Hichem; Marie, Pierre J

    2010-11-02

    Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.

  18. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2more » hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.« less

  19. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  20. Genetics Home Reference: tumor necrosis factor receptor-associated periodic syndrome

    MedlinePlus

    ... Email Facebook Twitter Home Health Conditions TRAPS Tumor necrosis factor receptor-associated periodic syndrome Printable PDF Open ... to view the expand/collapse boxes. Description Tumor necrosis factor receptor-associated periodic syndrome (commonly known as ...

  1. The nuclear orphan receptors COUP-TF and ARP-1 positively regulate the trout estrogen receptor gene through enhancing autoregulation.

    PubMed Central

    Lazennec, G; Kern, L; Valotaire, Y; Salbert, G

    1997-01-01

    The rainbow trout estrogen receptor (rtER) is a positively autoregulated gene in liver cells. In a previous report, we showed that upregulation is mediated by an estrogen response element (ERE) located in the proximal promoter of the gene and that a half binding site for nuclear receptors (5'-TGACCT-3') located 15 bp upstream of the ERE is involved in the magnitude of the estrogen response. We now report that the human orphan receptor COUP-TF and a COUP-TF-like protein from trout liver are able to bind to the consensus half-site. When cotransfected with the rtER gene proximal promoter, COUP-TF had no regulatory functions on its own. Interestingly, COUP-TF enhanced rtER transactivation properties in the presence of estradiol in a dose-dependent manner when cotransfected with the rtER gene promoter. Unliganded retinoid receptor heterodimers had the same helper function as COUP-TF in the presence of estradiol but were switched to repressors when the ligand all-trans-retinoic acid was added. Mutation of the consensus half-site only slightly reduced COUP-TF helper function, suggesting that it actually results from a complex mechanism that probably involves both DNA binding of COUP-TF to the promoter and protein-protein interaction with another transcription factor bound to the promoter. Nevertheless, a DNA-binding-defective mutant of COUP-TF was also defective in ER helper function. Competition footprinting analysis suggested that COUP-TF actually establishes contacts with the consensus upstream half-site and the downstream ERE half-site that would form a DR-24-like response element. Interaction of COUP-TF with the DR-24 element was confirmed in footprinting assays by using nuclear extracts from Saccharomyces cerevisiae expressing COUP-TF. Finally, interaction of COUP-TF with mutants of the rtER gene promoter showed that COUP-TF recognizes the ERE when the upstream half-site is mutated. These data show that COUP-TF may activate transcription through interaction with

  2. Anthocyanins potentiate the activity of trastuzumab in human epidermal growth factor receptor 2-positive breast cancer cells in vitro and in vivo.

    PubMed

    Liu, Weihua; Xu, Jinmei; Liu, Yilun; Yu, Xiaoping; Tang, Xi; Wang, Zhi; Li, Xin

    2014-10-01

    Human epidermal growth factor receptor 2 (HER2) has been found to be overexpressed in ~25% of invasive breast cancer and is significantly associated with a poor prognosis in breast cancer patients. The anthocyanins cyanidin-3-glucoside (C3G) and peonidin-3-glucoside have been identified as potential drugs for the therapy of HER2‑positive breast cancer. They have been used as supplements in targeted therapeutics and chemotherapeutics in Asia, however, the underlying mechanism remains to be elucidated. The aim of the present study was to investigate the synergism between C3G and trastuzumab (Trast). To address this question, the response to C3G, Trast and a combination of the two drugs, in three representative HER2‑positive cell lines was evaluated. The combination treatments induced apoptosis, inhibited cell growth and affected HER2 and its downstream signaling pathway in MDA‑MB‑453, BT474 and HCC1569 cells, and the effects were synergistic. The combination of 3CG and Trast inhibited tumor growth in an in vivo xenograft model. The data from the present study suggested that C3G exhibits potent antitumor activity when combined with Trast under the investigated conditions.

  3. Differential Potency of 2,6-Dimethylcyclohexanol Isomers for Positive Modulation of GABAA Receptor Currents.

    PubMed

    Chowdhury, Luvana; Croft, Celine J; Goel, Shikha; Zaman, Naina; Tai, Angela C-S; Walch, Erin M; Smith, Kelly; Page, Alexandra; Shea, Kevin M; Hall, C Dennis; Jishkariani, D; Pillai, Girinath G; Hall, Adam C

    2016-06-01

    GABAA receptors meet all of the pharmacological requirements necessary to be considered important targets for the action of general anesthetic agents in the mammalian brain. In the following patch-clamp study, the relative modulatory effects of 2,6-dimethylcyclohexanol diastereomers were investigated on human GABAA (α1β3γ2s) receptor currents stably expressed in human embryonic kidney cells. Cis,cis-, trans,trans-, and cis,trans-isomers were isolated from commercially available 2,6-dimethylcyclohexanol and were tested for positive modulation of submaximal GABA responses. For example, the addition of 30 μM cis,cis-isomer resulted in an approximately 2- to 3-fold enhancement of the EC20 GABA current. Coapplications of 30 μM 2,6-dimethylcyclohexanol isomers produced a range of positive enhancements of control GABA responses with a rank order for positive modulation: cis,cis > trans,trans ≥ mixture of isomers > > cis,trans-isomer. In molecular modeling studies, the three cyclohexanol isomers bound with the highest binding energies to a pocket within transmembrane helices M1 and M2 of the β3 subunit through hydrogen-bonding interactions with a glutamine at the 224 position and a tyrosine at the 220 position. The energies for binding to and hydrogen-bond lengths within this pocket corresponded with the relative potencies of the agents for positive modulation of GABAA receptor currents (cis,cis > trans,trans > cis,trans-2,6-dimethylcyclohexanol). In conclusion, the stereochemical configuration within the dimethylcyclohexanols is an important molecular feature in conferring positive modulation of GABAA receptor activity and for binding to the receptor, a consideration that needs to be taken into account when designing novel anesthetics with enhanced therapeutic indices. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. G protein-coupled receptor 30 expression is up-regulated by EGF and TGF alpha in estrogen receptor alpha-positive cancer cells.

    PubMed

    Vivacqua, Adele; Lappano, Rosamaria; De Marco, Paola; Sisci, Diego; Aquila, Saveria; De Amicis, Francesca; Fuqua, Suzanne A W; Andò, Sebastiano; Maggiolini, Marcello

    2009-11-01

    In the present study, we evaluated the regulation of G protein-coupled receptor (GPR)30 expression in estrogen receptor (ER)-positive endometrial, ovarian, and estrogen-sensitive, as well as tamoxifen-resistant breast cancer cells. We demonstrate that epidermal growth factor (EGF) and TGF alpha transactivate the GPR30 promoter and accordingly up-regulate GPR30 mRNA and protein levels only in endometrial and tamoxifen-resistant breast cancer cells. These effects exerted by EGF and TGF alpha were dependent on EGF receptor (EGFR) expression and activation and involved phosphorylation of the Tyr(1045) and Tyr(1173) EGFR sites. Using gene-silencing experiments and specific pharmacological inhibitors, we have ascertained that EGF and TGF alpha induce GPR30 expression through the EGFR/ERK transduction pathway, and the recruitment of c-fos to the activator protein-1 site located within GPR30 promoter sequence. Interestingly, we show that functional cross talk of GPR30 with both activated EGFR and ER alpha relies on a physical interaction among these receptors, further extending the potential of estrogen to trigger a complex stimulatory signaling network in hormone-sensitive tumors. Given that EGFR/HER2 overexpression is associated with tamoxifen resistance, our data may suggest that ligand-activated EGFR could contribute to the failure of tamoxifen therapy also by up-regulating GPR30, which in turn could facilitates the action of estrogen. In addition, important for resistance is the ability of tamoxifen to bind to and activate GPR30, the expression of which is up-regulated by EGFR activation. Our results emphasize the need for new endocrine agents able to block widespread actions of estrogen without exerting any stimulatory activity on transduction pathways shared by the steroid and growth factor-signaling networks.

  5. Signatures of positive selection in the cis-regulatory sequences of the human oxytocin receptor (OXTR) and arginine vasopressin receptor 1a (AVPR1A) genes.

    PubMed

    Schaschl, Helmut; Huber, Susanne; Schaefer, Katrin; Windhager, Sonja; Wallner, Bernard; Fieder, Martin

    2015-05-13

    The evolutionary highly conserved neurohypophyseal hormones oxytocin and arginine vasopressin play key roles in regulating social cognition and behaviours. The effects of these two peptides are meditated by their specific receptors, which are encoded by the oxytocin receptor (OXTR) and arginine vasopressin receptor 1a genes (AVPR1A), respectively. In several species, polymorphisms in these genes have been linked to various behavioural traits. Little, however, is known about whether positive selection acts on sequence variants in genes influencing variation in human behaviours. We identified, in both neuroreceptor genes, signatures of balancing selection in the cis-regulative acting sequences such as transcription factor binding and enhancer sequences, as well as in a transcriptional repressor sequence motif. Additionally, in the intron 3 of the OXTR gene, the SNP rs59190448 appears to be under positive directional selection. For rs59190448, only one phenotypical association is known so far, but it is in high LD' (>0.8) with loci of known association; i.e., variants associated with key pro-social behaviours and mental disorders in humans. Only for one SNP on the OXTR gene (rs59190448) was a sign of positive directional selection detected with all three methods of selection detection. For rs59190448, however, only one phenotypical association is known, but rs59190448 is in high LD' (>0.8), with variants associated with important pro-social behaviours and mental disorders in humans. We also detected various signatures of balancing selection on both neuroreceptor genes.

  6. Adult celiac disease with acetylcholine receptor antibody positive myasthenia gravis

    PubMed Central

    Freeman, Hugh J; Gillett, Helen R; Gillett, Peter M; Oger, Joel

    2009-01-01

    Celiac disease has been associated with some autoimmune disorders. A 40-year-old competitive strongman with celiac disease responded to a gluten-free diet, but developed profound and generalized motor weakness with acetylcholine receptor antibody positive myasthenia gravis, a disorder reported to occur in about 1 in 5000. This possible relationship between myasthenia gravis and celiac disease was further explored in serological studies. Frozen stored serum samples from 23 acetylcholine receptor antibody positive myasthenia gravis patients with no intestinal symptoms were used to screen for celiac disease. Both endomysial and tissue transglutaminase antibodies were examined. One of 23 (or, about 4.3%) was positive for both IgA-endomysial and IgA tissue transglutaminase antibodies. Endoscopic studies subsequently showed duodenal mucosal scalloping and biopsies confirmed the histopathological changes of celiac disease. Celiac disease and myasthenia gravis may occur together more often than is currently appreciated. The presence of motor weakness in celiac disease may be a clue to occult myasthenia gravis, even in the absence of intestinal symptoms. PMID:19824105

  7. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    PubMed

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier

  8. Pembrolizumab and Enobosarm in Treating Patients With Androgen Receptor Positive Metastatic Triple Negative Breast Cancer

    ClinicalTrials.gov

    2018-04-05

    Androgen Receptor Positive; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Triple-Negative Breast Carcinoma

  9. Differences in expression of the cancer stem cell marker aldehyde dehydrogenase 1 among estrogen receptor-positive/human epidermal growth factor receptor type 2-negative breast cancer cases with early, late, and no recurrence.

    PubMed

    Miyoshi, Yuichiro; Shien, Tadahiko; Ogiya, Akiko; Ishida, Naoko; Yamazaki, Kieko; Horii, Rie; Horimoto, Yoshiya; Masuda, Norikazu; Yasojima, Hiroyuki; Inao, Touko; Osako, Tomofumi; Takahashi, Masato; Tomioka, Nobumoto; Endo, Yumi; Hosoda, Mitsuchika; Doihara, Hiroyoshi; Miyoshi, Shinichiro; Yamashita, Hiroko

    2016-07-02

    The significance of the expression of aldehyde dehydrogenase 1 (ALDH1), a cancer stem cell marker, for predicting the recurrence of estrogen receptor (ER)-positive/human epidermal growth factor receptor type 2 (HER2)-negative breast cancer is still poorly understood. The value of ALDH1 in predicting the time of recurrence remains unknown. In total, 184 patients with early distant recurrence, 134 patients with late distant recurrence, and 321 control patients without recurrence for more than 10 years after starting initial treatment for ER-positive/HER2-negative breast cancer, registered in 9 institutions, were analyzed. We assessed relationships between ALDH1 and other clinicopathological features, and ALDH1 expression was compared among the three groups. The relationship between ALDH1 expression and overall survival after recurrence was also evaluated in each group. The rates of ALDH1 expression positivity (more than 1 %) in the early, late, and no recurrence groups were 18.4 %, 13.4 %, and 8.4 %, respectively. ALDH1 expression correlated significantly with lymph node metastases (p = 0.048) and the Ki-67 labeling index (p < 0.001) in the early recurrence group. Multivariate analysis revealed ALDH1 expression to be significantly higher in the early recurrence group than in the no recurrence group (adjusted OR 2.140, 95 % CI 1.144-4.003, p = 0.016). Moreover, there was a significant difference in ALDH1 expression between the early and no recurrence groups receiving adjuvant endocrine therapy and chemotherapy (adjusted OR 4.625, 95 % CI 1.881-12.474, p < 0.001). However, there was no difference in ALDH1 expression between the late and no recurrence groups in univariate analysis (OR 1.507, 95 % CI 0.738-2.998, p = 0.253). In multivariate analysis, ALDH1 was not a factor independently predicting overall survival after the detection of recurrence (adjusted OR 1.451, 95 % CI 0.985-2.085, p = 0.059). Among patients with ER-positive/HER2

  10. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor.

    PubMed

    Gilmore, Andrew P; Valentijn, Anthony J; Wang, Pengbo; Ranger, Ann M; Bundred, Nigel; O'Hare, Michael J; Wakeling, Alan; Korsmeyer, Stanley J; Streuli, Charles H

    2002-08-02

    Novel cancer chemotherapeutics are required to induce apoptosis by activating pro-apoptotic proteins. Both epidermal growth factor (EGF) and insulin-like growth factor (IGF) provide potent survival stimuli in many epithelia, and activation of their receptors is commonly observed in solid human tumors. Here we demonstrate that blockade of the EGF receptor by a new drug in phase III clinical trails for cancer, ZD1839, potently induces apoptosis in mammary epithelial cell lines and primary cultures, as well as in a primary pleural effusion from a breast cancer patient. We identified the mechanism of apoptosis induction by ZD1839. We showed that it prevents cell survival by activating the pro-apoptotic protein BAD. Moreover, we demonstrate that IGF transactivates the EGF receptor and that ZD1839 blocks IGF-mediated phosphorylation of MAPK and BAD. Many cancer therapies kill tumor cells by inducing apoptosis as a consequence of targeting DNA; however, the threshold at which apoptosis can be triggered through DNA damage is often different from that in normal cells. Our results indicate that by targeting a growth factor-mediated survival signaling pathway, BAD phosphorylation can be manipulated therapeutically to induce apoptosis.

  11. Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors

    PubMed Central

    2016-01-01

    Available crystal structures of opioid receptors provide a high-resolution picture of ligand binding at the primary (“orthosteric”) site, that is, the site targeted by endogenous ligands. Recently, positive allosteric modulators of opioid receptors have also been discovered, but their modes of binding and action remain unknown. Here, we use a metadynamics-based strategy to efficiently sample the binding process of a recently discovered positive allosteric modulator of the δ-opioid receptor, BMS-986187, in the presence of the orthosteric agonist SNC-80, and with the receptor embedded in an explicit lipid–water environment. The dynamics of BMS-986187 were enhanced by biasing the potential acting on the ligand–receptor distance and ligand–receptor interaction contacts. Representative lowest-energy structures from the reconstructed free-energy landscape revealed two alternative ligand binding poses at an allosteric site delineated by transmembrane (TM) helices TM1, TM2, and TM7, with some participation of TM6. Mutations of amino acid residues at these proposed allosteric sites were found to either affect the binding of BMS-986187 or its ability to modulate the affinity and/or efficacy of SNC-80. Taken together, these combined experimental and computational studies provide the first atomic-level insight into the modulation of opioid receptor binding and signaling by allosteric modulators. PMID:26841170

  12. Determination of the exact molecular requirements for type 1 angiotensin receptor epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy.

    PubMed

    Smith, Nicola J; Chan, Hsiu-Wen; Qian, Hongwei; Bourne, Allison M; Hannan, Katherine M; Warner, Fiona J; Ritchie, Rebecca H; Pearson, Richard B; Hannan, Ross D; Thomas, Walter G

    2011-05-01

    Major interest surrounds how angiotensin II triggers cardiac hypertrophy via epidermal growth factor receptor transactivation. G protein-mediated transduction, angiotensin type 1 receptor phosphorylation at tyrosine 319, and β-arrestin-dependent scaffolding have been suggested, yet the mechanism remains controversial. We examined these pathways in the most reductionist model of cardiomyocyte growth, neonatal ventricular cardiomyocytes. Analysis with [(32)P]-labeled cardiomyocytes, wild-type and [Y319A] angiotensin type 1 receptor immunoprecipitation and phosphorimaging, phosphopeptide analysis, and antiphosphotyrosine blotting provided no evidence for tyrosine phosphorylation at Y319 or indeed of the receptor, and mutation of Y319 (to A/F) did not prevent either epidermal growth factor receptor transactivation in COS-7 cells or cardiomyocyte hypertrophy. Instead, we demonstrate that transactivation and cardiomyocyte hypertrophy are completely abrogated by loss of G-protein coupling, whereas a constitutively active angiotensin type 1 receptor mutant was sufficient to trigger transactivation and growth in the absence of ligand. These results were supported by the failure of the β-arrestin-biased ligand SII angiotensin II to transactivate epidermal growth factor receptor or promote hypertrophy, whereas a β-arrestin-uncoupled receptor retained these properties. We also found angiotensin II-mediated cardiomyocyte hypertrophy to be attenuated by a disintegrin and metalloprotease inhibition. Thus, G-protein coupling, and not Y319 phosphorylation or β-arrestin scaffolding, is required for epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy via the angiotensin type 1 receptor.

  13. Neuronal expression of fibroblast growth factor receptors in zebrafish.

    PubMed

    Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah

    2013-12-01

    Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Recurrent ESR1-CCDC170 rearrangements in an aggressive subset of estrogen-receptor positive breast cancers

    PubMed Central

    Veeraraghavan, Jamunarani; Tan, Ying; Cao, Xi-Xi; Kim, Jin-Ah; Wang, Xian; Chamness, Gary C.; Maiti, Sourindra N.; Cooper, Laurence J. N.; Edwards, Dean P.; Contreras, Alejandro; Hilsenbeck, Susan G.; Chang, Eric C.; Schiff, Rachel; Wang, Xiao-Song

    2014-01-01

    Characterizing the genetic alterations leading to the more aggressive forms of estrogen receptor positive (ER+) breast cancers are of critical significance in breast cancer management. Here we identify recurrent rearrangements between estrogen receptor gene ESR1 and its neighbor CCDC170, which are enriched in the more aggressive and endocrine-resistant luminal-B tumors, through large-scale analyses of breast cancer transcriptome and copy number alterations. Further screening of 200 ER+ breast cancers identifies eight ESR1-CCDC170 positive tumors. These fusions encode N-terminally truncated CCDC170 proteins (ΔCCDC170). When introduced into ER+ breast cancer cells, ΔCCDC170 leads to markedly increased cell motility and anchorage-independent growth, reduced endocrine sensitivity, and enhanced xenograft tumor formation. Mechanistic studies suggest that ΔCCDC170 engages Gab1 signalosome to potentiate growth factor signaling and enhance cell motility. Together, this study identifies neoplastic ESR1-CCDC170 fusions in a more aggressive subset of ER+ breast cancer, which suggests a new concept of ER pathobiology in breast cancer. PMID:25099679

  15. RECEPTOR MODELING OF AMBIENT PARTICULATE MATTER DATA USING POSITIVE MATRIX FACTORIZATION REVIEW OF EXISTING METHODS

    EPA Science Inventory

    Methods for apportioning sources of ambient particulate matter (PM) using the positive matrix factorization (PMF) algorithm are reviewed. Numerous procedural decisions must be made and algorithmic parameters selected when analyzing PM data with PMF. However, few publications docu...

  16. LY404187: a novel positive allosteric modulator of AMPA receptors.

    PubMed

    Quirk, Jennifer C; Nisenbaum, Eric S

    2002-01-01

    LY404187 is a selective, potent and centrally active positive allosteric modulator of AMPA receptors. LY404187 preferentially acts at recombinant human homomeric GluR2 and GluR4 versus GluR1 and GluR3 AMPA receptors. In addition, LY404187 potentiates the flip splice variant of these AMPA receptors to a greater degree than the flop splice variant. In both recombinant and native AMPA receptors, potentiation by LY404187 displays a unique time-dependent growth that appears to involve a suppression of the desensitization process of these ion channels. LY404187 has been shown to enhance glutamatergic synaptic transmission both in vitro and in vivo. This augmentation of synaptic activity is due to the direct potentiation of AMPA receptor function, as well as an indirect recruitment of voltage-dependent NMDA receptor activity. Enhanced calcium influx through NMDA receptors is known to be a critical step in initiating long-term modifications in synaptic function (e.g., long-term potentiation, LTP). These modifications in synaptic function may be substrates for certain forms of memory encoding. Consistent with a recruitment of NMDA receptor activity, LY404187 has been shown to enhance performance in animal models of cognitive function requiring different mnemonic processes. These data suggest that AMPA receptor potentiators may be therapeutically beneficial for treating cognitive deficits in a variety of disorders, particularly those that are associated with reduced glutamatergic signaling such as schizophrenia. In addition, LY404187 has been demonstrated to be efficacious in animal models of behavioral despair that possess considerable predictive validity for antidepressant activity. Although the therapeutic efficacy of AMPA receptor potentiators in these and other diseases will ultimately be determined in the clinic, evidence suggests that the benefit of these compounds will be mediated by multiple mechanisms of action. These mechanisms include direct enhancement of AMPA

  17. Induction of cyclooxygenase-2 expression by prostaglandin E2 stimulation of the prostanoid EP4 receptor via coupling to Gαi and transactivation of the epidermal growth factor receptor in HCA-7 human colon cancer cells.

    PubMed

    Yoshida, Kenji; Fujino, Hiromichi; Otake, Sho; Seira, Naofumi; Regan, John W; Murayama, Toshihiko

    2013-10-15

    Increased expressions of cyclooxygenase-2 (COX-2) and its downstream metabolite, prostaglandin E2 (PGE2), are well documented events in the development of colorectal cancer. Interestingly, PGE2 itself can induce the expression of COX-2 thereby creating the potential for positive feedback. Although evidence for such a positive feedback has been previously described, the specific E-type prostanoid (EP) receptor subtype that mediates this response, as well as the relevant signaling pathways, remain unclear. We now report that the PGE2 stimulated induction of COX-2 expression in human colon cancer HCA-7 cells is mediated by activation of the prostanoid EP4 receptor subtype and is followed by coupling of the receptor to Gαi and the activation of phosphatidylinositol 3-kinase. Subsequent activation of metalloproteinases releases membrane bound heparin-binding epidermal growth factor-like growth factor resulting in the transactivation of epidermal growth factor receptors and the activation of the extracellular signal-regulated kinases and induction of COX-2 expression. This induction of COX-2 expression by PGE2 stimulation of the prostanoid EP4 receptor may underlie the upregulation of COX-2 during colorectal cancer and appears to be an early event in the process of tumorigenesis. © 2013 Elsevier B.V. All rights reserved.

  18. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed

    Johnson Hamlet, M R; Perkins, L A

    2001-11-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.

  19. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed Central

    Johnson Hamlet, M R; Perkins, L A

    2001-01-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway. PMID:11729154

  20. F-prostanoid receptor regulation of fibroblast growth factor 2 signaling in endometrial adenocarcinoma cells.

    PubMed

    Sales, Kurt J; Boddy, Sheila C; Williams, Alistair R W; Anderson, Richard A; Jabbour, Henry N

    2007-08-01

    Prostaglandin (PG) F(2alpha) is a potent bioactive lipid in the female reproductive tract, and exerts its function after coupling with its heptahelical G-protein-coupled receptor [F-series-prostanoid (FP) receptor] to initiate cell signaling and target gene transcription. In the present study, we found elevated expression of fibroblast growth factor (FGF) 2, FGF receptor 1 (FGFR1), and FP receptor, colocalized within the neoplastic epithelial cells of endometrial adenocarcinomas. We investigated a role for PGF(2alpha)-FP receptor interaction in modulating FGF2 expression and signaling using an endometrial adenocarcinoma cell line stably expressing the FP receptor to the levels detected in endometrial adenocarcinomas (FPS cells) and endometrial adenocarcinoma tissue explants. PGF(2alpha)-FP receptor activation rapidly induced FGF2 mRNA expression, and elevated FGF2 protein expression and secretion into the culture medium in FPS cells and endometrial adenocarcinoma explants. The effect of PGF(2alpha) on the expression and secretion of FGF2 could be abolished by treatment of FPS cells and endometrial tissues with an FP receptor antagonist (AL8810) and inhibitor of ERK (PD98059). Furthermore, we have shown that FGF2 can promote the expression of FGF2 and cyclooxygenase-2, and enhance proliferation of endometrial adenocarcinoma cells via the FGFR1 and ERK pathways, thereby establishing a positive feedback loop to regulate neoplastic epithelial cell function in endometrial adenocarcinomas.

  1. Targeting the fibroblast growth factor receptors for the treatment of cancer.

    PubMed

    Lemieux, Steven M; Hadden, M Kyle

    2013-06-01

    Receptor tyrosine kinases (RTKs) are transmembrane proteins that play a critical role in stimulating signal transduction cascades to influence cell proliferation, growth, and differentiation and they have also been shown to promote angiogenesis when they are up-regulated or mutated. For this reason, their dysfunction has been implicated in the development of human cancer. Over the past decade, much attention has been devoted to developing inhibitors and antibodies against several classes of RTKs, including vascular endothelial growth factor receptors (VEGFRs), epidermal growth factor receptors (EGFRs), and platelet-derived growth factor receptors (PDGFRs). More recently, interest in the fibroblast growth factor receptor (FGFR) class of RTKs as a drug target for the treatment of cancer has emerged. Signaling through FGFRs is critical for normal cellular function and their dysregulation has been linked to various malignancies such as breast and prostate cancer. This review will focus on the current state of both small molecules and antibodies as FGFR inhibitors to provide insight into their development and future potential as anti-cancer agents.

  2. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system.

    PubMed

    Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A

    2004-08-01

    In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.

  3. Docetaxel, Carboplatin, Trastuzumab, and Pertuzumab With or Without Estrogen Deprivation in Treating Patients With Hormone Receptor-Positive, HER2-Positive Operable or Locally Advanced Breast Cancer

    ClinicalTrials.gov

    2018-06-22

    Estrogen Receptor Positive; HER2/Neu Positive; Progesterone Receptor Positive; Stage IB Breast Cancer AJCC v7; Stage IIA Breast Cancer AJCC v6 and v7; Stage IIB Breast Cancer AJCC v6 and v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7

  4. Risk factors for positive margins in conservative surgery for breast cancer after neoadjuvant chemotherapy.

    PubMed

    Bouzón, Alberto; Acea, Benigno; García, Alejandra; Iglesias, Ángela; Mosquera, Joaquín; Santiago, Paz; Seoane, Teresa

    2016-01-01

    Breast conservative surgery after neoadjuvant chemotherapy intends to remove any residual tumor with negative margins. The purpose of this study was to analyze the preoperative clinical-pathological factors influencing the margin status after conservative surgery in breast cancer patients receiving neoadjuvant chemotherapy. A retrospective study of 91 breast cancer patients undergoing neoadjuvant chemotherapy (92 breast lesions) during the period 2006 to 2013. A Cox regression analysis to identify baseline tumor characteristics associated with positive margins after breast conservative surgery was performed. Of all cases, 71 tumors were initially treated with conservative surgery after neoadjuvant chemotherapy. Pathologic exam revealed positive margins in 16 of the 71 cases (22.5%). The incidence of positive margins was significantly higher in cancers with initial size >5cm (P=.021), in cancers with low tumor grade (P=.031), and in patients with hormone receptor-positive cancer (P=.006). After a median follow-up of 45.2 months, 7 patients of the 71 treated with conservative surgery had disease recurrence (9.8%). There was no significant difference in terms of disease-free survival according to the margin status (P=.596). A baseline tumor size >5cm, low tumor grade and hormone receptor-positive status increase the risk for surgical margin involvement in breast conservative surgery after neoadjuvant chemotherapy. Copyright © 2016 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inayama, Y.; Yoneda, H.; Sakai, T.

    Sixty-two patients with schizophrenia and 96 normal controls were investigated for genetic association with restriction fragment length polymorphisms (RFLPs) in the serotonin receptor genes. A positive association between the serotonin 2A receptor gene (HTR2A) and schizophrenia was found, but not between schizophrenia and the serotonin 1A receptor gene. The positive association we report here would suggest that the DNA region with susceptibility to schizophrenia lies in the HTR2A on the long arm of chromosome 13. 15 refs., 2 tabs.

  6. Role of Glutamine 17 of the Bovine Papillomavirus E5 Protein in Platelet-Derived Growth Factor β Receptor Activation and Cell Transformation

    PubMed Central

    Klein, Ophir; Polack, Glenda W.; Surti, Toral; Kegler-Ebo, Deena; Smith, Steven O.; DiMaio, Daniel

    1998-01-01

    The bovine papillomavirus E5 protein is a small, homodimeric transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) β receptor through transmembrane and juxtamembrane interactions, resulting in receptor activation and cell transformation. Glutamine 17 in the transmembrane domain of the 44-amino-acid E5 protein is critical for complex formation and receptor activation, and we previously proposed that glutamine 17 forms a hydrogen bond with threonine 513 of the PDGF β receptor. We have constructed and analyzed mutant E5 proteins containing all possible amino acids at position 17 and examined the ability of these proteins to transform C127 fibroblasts, which express endogenous PDGF β receptor. Although several position 17 mutants were able to transform cells, mutants containing amino acids with side groups that were unable to participate in hydrogen bonding interactions did not form a stable complex with the PDGF β receptor or transform cells, in agreement with the proposed interaction between position 17 of the E5 protein and threonine 513 of the receptor. The nature of the residue at position 17 also affected the ability of the E5 proteins to dimerize. Overall, there was an excellent correlation between the ability of the various E5 mutant proteins to bind the PDGF β receptor, lead to receptor tyrosine phosphorylation, and transform cells. Similar results were obtained in Ba/F3 hematopoietic cells expressing exogenous PDGF β receptor. In addition, treatment of E5-transformed cells with a specific inhibitor of the PDGF receptor tyrosine kinase reversed the transformed phenotype. These results confirm the central importance of the PDGF β receptor in mediating E5 transformation and highlight the critical role of the residue at position 17 of the E5 protein in the productive interaction with the PDGF β receptor. On the basis of molecular modeling analysis and the known chemical properties of the amino acids, we

  7. Role of glutamine 17 of the bovine papillomavirus E5 protein in platelet-derived growth factor beta receptor activation and cell transformation.

    PubMed

    Klein, O; Polack, G W; Surti, T; Kegler-Ebo, D; Smith, S O; DiMaio, D

    1998-11-01

    The bovine papillomavirus E5 protein is a small, homodimeric transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor through transmembrane and juxtamembrane interactions, resulting in receptor activation and cell transformation. Glutamine 17 in the transmembrane domain of the 44-amino-acid E5 protein is critical for complex formation and receptor activation, and we previously proposed that glutamine 17 forms a hydrogen bond with threonine 513 of the PDGF beta receptor. We have constructed and analyzed mutant E5 proteins containing all possible amino acids at position 17 and examined the ability of these proteins to transform C127 fibroblasts, which express endogenous PDGF beta receptor. Although several position 17 mutants were able to transform cells, mutants containing amino acids with side groups that were unable to participate in hydrogen bonding interactions did not form a stable complex with the PDGF beta receptor or transform cells, in agreement with the proposed interaction between position 17 of the E5 protein and threonine 513 of the receptor. The nature of the residue at position 17 also affected the ability of the E5 proteins to dimerize. Overall, there was an excellent correlation between the ability of the various E5 mutant proteins to bind the PDGF beta receptor, lead to receptor tyrosine phosphorylation, and transform cells. Similar results were obtained in Ba/F3 hematopoietic cells expressing exogenous PDGF beta receptor. In addition, treatment of E5-transformed cells with a specific inhibitor of the PDGF receptor tyrosine kinase reversed the transformed phenotype. These results confirm the central importance of the PDGF beta receptor in mediating E5 transformation and highlight the critical role of the residue at position 17 of the E5 protein in the productive interaction with the PDGF beta receptor. On the basis of molecular modeling analysis and the known chemical properties of the

  8. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor- targeted therapeutics: advantages and limitations

    PubMed Central

    Williams, Dustin K.; Wang, Jingyi; Papke, Roger L.

    2011-01-01

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. PMID:21575610

  9. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Economic evaluation of the 70-gene prognosis-signature (MammaPrint®) in hormone receptor-positive, lymph node-negative, human epidermal growth factor receptor type 2-negative early stage breast cancer in Japan.

    PubMed

    Kondo, Masahide; Hoshi, Shu-Ling; Ishiguro, Hiroshi; Toi, Masakazu

    2012-06-01

    The 70-gene prognosis-signature is validated as a good predictor of recurrence for hormone receptor-positive (ER+), lymph node-negative (LN-), human epidermal growth factor receptor type 2-negative (HER2-) early stage breast cancer (ESBC) in Japanese patient population. Its high cost and potential in avoiding unnecessary adjuvant chemotherapy arouse interest in its economic impact. This study evaluates the cost-effectiveness of including the assay into Japan's social health insurance benefit package. An economic decision tree and Markov model under Japan's health system from the societal perspective is constructed with clinical evidence from the pool analysis of validation studies. One-way sensitivity analyses are also performed. Incremental cost-effectiveness ratio is estimated as ¥3,873,922/quality adjusted life year (QALY) (US$43,044/QALY), which is not more than the suggested social willingness-to-pay for one QALY gain from an innovative medical intervention in Japan, ¥5,000,000/QALY (US$55,556/QALY). However, sensitivity analyses show the instability of this estimation. The introduction of the assay into Japanese practice of ER+, LN-, HER2- ESBC treatment by including it to Japan's social health insurance benefit package has a reasonable chance to be judged as cost-effective and may be justified as an efficient deployment of finite health care resources.

  11. Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer.

    PubMed

    Baker, Cheryl H; Solorzano, Carmen C; Fidler, Isaiah J

    2002-04-01

    We determined whether concurrent blockage of vascular endothelial growth factor (VEGF) receptor and epidermal growth factor (EGF) receptor signaling by two novel tyrosine kinase inhibitors, PTK 787 and PKI 166, respectively, can inhibit angiogenesis and, hence, the growth and metastasis of human pancreatic carcinoma in nude mice. Highly metastatic human pancreatic carcinoma L3.6pl cells were injected into the pancreas of nude mice. Seven days later, groups of mice began receiving oral doses of PTK 787 and PKI 166 three times weekly. Some groups of mice also received i.p. injections of gemcitabine twice a week. The mice were necropsied when the control mice became moribund. Treatment with PTK 787 and PKI 166, with gemcitabine alone, or with the combination of PTK 787, PKI 166, and gemcitabine produced 69, 50, and 97% reduction in the volume of pancreatic tumors, respectively. Administration of protein tyrosine kinase inhibitors and gemcitabine also significantly decreased the incidence of lymph node and liver metastasis. The therapeutic efficacy directly correlated with a decrease in circulating proangiogenic molecules (VEGF, interleukin-8), a decrease in microvessel density, a decrease in proliferating cell nuclear antigen staining, and an increase in apoptosis of tumor cells and endothelial cells. Therapies produced by combining gemcitabine with either PKI 166 or PTK 787 were similar to those produced by combining gemcitabine with both PKI 166 and PTK 787. These results suggest that blockade of either epidermal growth factor receptor or VEGF receptor signaling combined with chemotherapy provides an effective approach to the therapy of pancreatic cancer.

  12. Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.

    PubMed

    Tong, Dandan; Liang, Ya-Nan; Stepanova, A A; Liu, Yu; Li, Xiaobo; Wang, Letian; Zhang, Fengmin; Vasilyeva, N V

    2017-02-01

    Recent research indicates that the C-terminal Eps15 homology domain 1 is associated with epithelial growth factor receptor-mediated endocytosis recycling in non-small-cell lung cancer. The aim of this study was to determine the clinical significance of Eps15 homology domain 1 gene expression in relation to phosphorylation of epithelial growth factor receptor expression in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Eps15 homology domain 1, RAB11FIP3, and phosphorylation of epithelial growth factor receptor expression via immunohistochemistry. The clinical significance was assessed via a multivariate Cox regression analysis, Kaplan-Meier curves, and the log-rank test. Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor were upregulated in 60.46% (185/306) and 53.92% (165/306) of tumor tissues, respectively, as assessed by immunohistochemistry. The statistical correlation analysis indicated that Eps15 homology domain 1 overexpression was positively correlated with the increases in phosphorylation of epithelial growth factor receptor ( r = 0.242, p < 0.001) and RAB11FIP3 ( r = 0.165, p = 0.005) expression. The multivariate Cox proportional hazard model analysis demonstrated that the expression of Eps15 homology domain 1 alone is a significant prognostic marker of breast cancer for the overall survival in the total, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. However, the use of combined expression of Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor markers is more effective for the disease-free survival in the overall population, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. Moreover, the combined markers are also significant prognostic markers of breast cancer in the human epidermal growth factor receptor 2 (+), estrogen receptor (+), and estrogen receptor (-) groups. Eps15 homology domain

  13. Factors Modulating Estrogen Receptor Activity

    DTIC Science & Technology

    1997-07-01

    public release; distribution unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and should not be...TITLE AND SUBTITLE Activity Factors Modulating Estrogen Receptor 6. AUTHOR( S ) Michael J. Garabedian, Ph.D. 7. PERFORMING ORGANIZATION NAME( S ) AND...ADDRESS(ES) New York University Medical Center New York, New York 10016 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) Commander U.S

  14. Cost-Effectiveness of Pertuzumab in Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer

    PubMed Central

    Qian, Yushen; Pollom, Erqi L.; King, Martin T.; Dudley, Sara A.; Shaffer, Jenny L.; Chang, Daniel T.; Gibbs, Iris C.; Goldhaber-Fiebert, Jeremy D.; Horst, Kathleen C.

    2016-01-01

    Purpose The Clinical Evaluation of Pertuzumab and Trastuzumab (CLEOPATRA) study showed a 15.7-month survival benefit with the addition of pertuzumab to docetaxel and trastuzumab (THP) as first-line treatment for patients with human epidermal growth factor receptor 2 (HER2) –overexpressing metastatic breast cancer. We performed a cost-effectiveness analysis to assess the value of adding pertuzumab. Patient and Methods We developed a decision-analytic Markov model to evaluate the cost effectiveness of docetaxel plus trastuzumab (TH) with or without pertuzumab in US patients with metastatic breast cancer. The model followed patients weekly over their remaining lifetimes. Health states included stable disease, progressing disease, hospice, and death. Transition probabilities were based on the CLEOPATRA study. Costs reflected the 2014 Medicare rates. Health state utilities were the same as those used in other recent cost-effectiveness studies of trastuzumab and pertuzumab. Outcomes included health benefits expressed as discounted quality-adjusted life-years (QALYs), costs in US dollars, and cost effectiveness expressed as an incremental cost-effectiveness ratio. One- and multiway deterministic and probabilistic sensitivity analyses explored the effects of specific assumptions. Results Modeled median survival was 39.4 months for TH and 56.9 months for THP. The addition of pertuzumab resulted in an additional 1.81 life-years gained, or 0.62 QALYs, at a cost of $472,668 per QALY gained. Deterministic sensitivity analysis showed that THP is unlikely to be cost effective even under the most favorable assumptions, and probabilistic sensitivity analysis predicted 0% chance of cost effectiveness at a willingness to pay of $100,000 per QALY gained. Conclusion THP in patients with metastatic HER2-positive breast cancer is unlikely to be cost effective in the United States. PMID:26351332

  15. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  16. Low Estrogen Receptor (ER)-Positive Breast Cancer and Neoadjuvant Systemic Chemotherapy: Is Response Similar to Typical ER-Positive or ER-Negative Disease?

    PubMed

    Landmann, Alessandra; Farrugia, Daniel J; Zhu, Li; Diego, Emilia J; Johnson, Ronald R; Soran, Atilla; Dabbs, David J; Clark, Beth Z; Puhalla, Shannon L; Jankowitz, Rachel C; Brufsky, Adam M; Ahrendt, Gretchen M; McAuliffe, Priscilla F; Bhargava, Rohit

    2018-05-08

    Pathologic complete response (pCR) rate after neoadjuvant chemotherapy was compared between 141 estrogen receptor (ER)-negative (43%), 41 low ER+ (13%), 47 moderate ER+ (14%), and 98 high ER+ (30%) tumors. Human epidermal growth factor receptor 2-positive cases, cases without semiquantitative ER score, and patients treated with neoadjuvant endocrine therapy alone were excluded. The pCR rate of low ER+ tumors was similar to the pCR rate of ER- tumors (37% and 26% for low ER and ER- respectively, P = .1722) but significantly different from the pCR rate of moderately ER+ (11%, P = .0049) and high ER+ tumors (4%, P < .0001). Patients with pCR had an excellent prognosis regardless of the ER status. In patients with residual disease (no pCR), the recurrence and death rate were higher in ER- and low ER+ cases compared with moderate and high ER+ cases. Low ER+ breast cancers are biologically similar to ER- tumors. Semiquantitative ER H-score is an important determinant of response to neoadjuvant chemotherapy.

  17. Transforming growth factor-alpha short-circuits downregulation of the epidermal growth factor receptor.

    PubMed

    Ouyang, X; Gulliford, T; Huang, G; Epstein, R J

    1999-04-01

    Transforming growth factor-alpha (TGFalpha) is an epidermal growth factor receptor (EGFR) ligand which is distinguished from EGF by its acid-labile structure and potent transforming function. We recently reported that TGFalpha induces less efficient EGFR heterodimerization and downregulation than does EGF (Gulliford et al., 1997, Oncogene, 15:2219-2223). Here we use isoform-specific EGFR and ErbB2 antibodies to show that the duration of EGFR signalling induced by a single TGFalpha exposure is less than that induced by equimolar EGF. The protein trafficking inhibitor brefeldin A (BFA) reduces the duration of EGF signalling to an extent similar to that seen with TGFalpha alone; the effects of TGFalpha and BFA on EGFR degradation are opposite, however, with TGFalpha sparing EGFR from downregulation but BFA accelerating EGF-dependent receptor loss. This suggests that BFA blocks EGFR recycling and thus shortens EGF-dependent receptor signalling, whereas TGFalpha shortens receptor signalling and thus blocks EGFR downregulation. Consistent with this, repeated application of TGFalpha is accompanied by prolonged EGFR expression and signalling, whereas similar application of EGF causes receptor downregulation and signal termination. These findings indicate that constitutive secretion of pH-labile TGFalpha may perpetuate EGFR signalling by permitting early oligomer dissociation and dephosphorylation within acidic endosomes, thereby extinguishing a phosphotyrosine-based downregulation signal and creating an irreversible autocrine growth loop.

  18. Congestive Heart Failure During Osimertinib Treatment for Epidermal Growth Factor Receptor (EGFR)-mutant Non-small Cell Lung Cancer (NSCLC).

    PubMed

    Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki

    2017-08-15

    We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity.

  19. Congestive Heart Failure During Osimertinib Treatment for Epidermal Growth Factor Receptor (EGFR)-mutant Non-small Cell Lung Cancer (NSCLC)

    PubMed Central

    Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki

    2017-01-01

    We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity. PMID:28781309

  20. Evolving landscape of human epidermal growth factor receptor 2-positive breast cancer treatment and the future of biosimilars.

    PubMed

    Jackisch, Christian; Lammers, Philip; Jacobs, Ira

    2017-04-01

    Human epidermal growth factor receptor 2-positive (HER2+) breast cancer comprises approximately 15%-20% of all breast cancers and is associated with a poor prognosis. The introduction of anti-HER2 therapy has significantly improved clinical outcomes for patients with HER2+ breast cancer, and multiple HER2-directed agents (ie, trastuzumab, pertuzumab, lapatinib, and ado-trastuzumab emtansine [T-DM1]) are approved for clinical use in various settings. The treatment landscape for patients with HER2+ breast cancer is continuing to evolve. While novel agents and therapeutic strategies are emerging, biologic therapies, particularly trastuzumab, are likely to remain a mainstay of treatment. However, access issues create barriers to the use of biologics, and there is evidence for underuse of trastuzumab worldwide. A biosimilar is a biologic product that is highly similar to a licensed biologic in terms of product safety and effectiveness. Biosimilars of trastuzumab are in development and may soon become available. The introduction of biosimilars may improve access to anti-HER2 therapies by providing additional treatment options and lower-cost alternatives. Because HER2-targeted drugs may be administered for extended periods of time and in combination with other systemic therapies, biosimilars have the potential to result in significant savings for healthcare systems. Herein we review current and emerging treatment options for, and discuss the possible role of biosimilars in, treating patients with HER2+ breast cancer. Copyright © 2017 Authors, Pfizer Inc. Published by Elsevier Ltd.. All rights reserved.

  1. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using (64)Cu-DOTA-trastuzumab PET.

    PubMed

    Mortimer, Joanne E; Bading, James R; Colcher, David M; Conti, Peter S; Frankel, Paul H; Carroll, Mary I; Tong, Shan; Poku, Erasmus; Miles, Joshua K; Shively, John E; Raubitschek, Andrew A

    2014-01-01

    Women with human epidermal growth factor receptor 2 (HER2)-positive breast cancer are candidates for treatment with the anti-HER2 antibody trastuzumab. Assessment of HER2 status in recurrent disease is usually made by core needle biopsy of a single lesion, which may not represent the larger tumor mass or other sites of disease. Our long-range goal is to develop PET of radiolabeled trastuzumab for systemically assessing tumor HER2 expression and identifying appropriate use of anti-HER2 therapies. The purpose of this study was to evaluate PET/CT of (64)Cu-DOTA-trastuzumab for detecting and measuring tumor uptake of trastuzumab in patients with HER2-positive metastatic breast cancer. Eight women with biopsy-confirmed HER2-positive metastatic breast cancer and no anti-HER2 therapy for 4 mo or longer underwent complete staging, including (18)F-FDG PET/CT. For 6 of the 8 patients, (64)Cu-DOTA-trastuzumab injection (364-512 MBq, 5 mg of trastuzumab) was preceded by trastuzumab infusion (45 mg). PET/CT (PET scan duration 1 h) was performed 21-25 (day 1) and 47-49 (day 2) h after (64)Cu-DOTA-trastuzumab injection. Scan fields of view were chosen on the basis of (18)F-FDG PET/CT. Tumor detection sensitivity and uptake analyses were limited to lesions identifiable on CT; lesions visualized relative to adjacent tissue on PET were considered PET-positive. Radiolabel uptake in prominent lesions was measured as maximum single-voxel standardized uptake value (SUVmax). Liver uptake of (64)Cu was reduced approximately 75% with the 45-mg trastuzumab predose, without significant effect on tumor uptake. The study included 89 CT-positive lesions. Detection sensitivity was 77%, 89%, and 93% for day 1, day 2, and (18)F-FDG, respectively. On average, tumor uptake was similar for (64)Cu-DOTA-trastuzumab and (18)F-FDG (SUVmax and range, 8.1 and 3.0-22.5 for day 1 [n = 48]; 8.9 and 0.9-28.9 for day 2 [n = 38]; 9.7 and 3.3-25.4 for (18)F-FDG [n = 56]), but same-lesion SUVmax was not correlated

  2. Full control of ligand positioning reveals spatial thresholds for T cell receptor triggering.

    PubMed

    Cai, Haogang; Muller, James; Depoil, David; Mayya, Viveka; Sheetz, Michael P; Dustin, Michael L; Wind, Shalom J

    2018-04-30

    Elucidating the rules for receptor triggering in cell-cell and cell-matrix contacts requires precise control of ligand positioning in three dimensions. Here, we use the T cell receptor (TCR) as a model and subject T cells to different geometric arrangements of ligands, using a nanofabricated single-molecule array platform. This comprises monovalent TCR ligands anchored to lithographically patterned nanoparticle clusters surrounded by mobile adhesion molecules on a supported lipid bilayer. The TCR ligand could be co-planar with the supported lipid bilayer (2D), excluding the CD45 transmembrane tyrosine phosphatase, or elevated by 10 nm on solid nanopedestals (3D), allowing closer access of CD45 to engaged TCR. The two configurations resulted in different T cell responses, depending on the lateral spacing between the ligands. These results identify the important contributions of lateral and axial components of ligand positioning and create a more complete foundation for receptor engineering for immunotherapy.

  3. Toll-like receptor 4-positive macrophages protect mice from Pasteurella pneumotropica-induced pneumonia

    NASA Technical Reports Server (NTRS)

    Hart, Marcia L.; Mosier, Derek A.; Chapes, Stephen K.

    2003-01-01

    This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4(Lps-del) mouse strains C57BL10/ScN (B10) and STOCK Abb(tm1) TLR4(Lps-del) Slc11a1(s)(B10 x C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4(Lps-del) genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 x C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 x C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 x C2D mice, and there was earlier transcription of KC and MIP-1alpha in B10 x C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 x C2D mice, which lack CD4(+) T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.

  4. The Intracellular Juxtamembrane Domain of the Epidermal Growth Factor (EGF) Receptor Is Responsible for the Allosteric Regulation of EGF Binding*S⃞♦

    PubMed Central

    Macdonald-Obermann, Jennifer L.; Pike, Linda J.

    2009-01-01

    We have previously shown that the binding of epidermal growth factor (EGF) to its receptor can best be described by a model that involves negative cooperativity in an aggregating system (Macdonald, J. L., and Pike, L. J. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 112–117). However, despite the fact that biochemical analyses indicate that EGF induces dimerization of its receptor, the binding data provided no evidence for positive linkage between EGF binding and dimer assembly. By analyzing the binding of EGF to a number of receptor mutants, we now report that in naive, unphosphorylated EGF receptors, ligand binding is positively linked to receptor dimerization but the linkage is abolished upon autophosphorylation of the receptor. Both phosphorylated and unphosphorylated EGF receptors exhibit negative cooperativity, indicating that mechanistically, cooperativity is distinct from the phenomenon of linkage. Nonetheless, both the positive linkage and the negative cooperativity observed in EGF binding require the presence of the intracellular juxtamembrane domain. This indicates the existence of inside-out signaling in the EGF receptor system. The intracellular juxtamembrane domain has previously been shown to be required for the activation of the EGF receptor tyrosine kinase (Thiel, K. W., and Carpenter, G. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 19238–19243). Our experiments expand the role of this domain to include the allosteric control of ligand binding by the extracellular domain. PMID:19336395

  5. Safety and efficacy of neratinib in combination with capecitabine in patients with metastatic human epidermal growth factor receptor 2-positive breast cancer.

    PubMed

    Saura, Cristina; Garcia-Saenz, Jose A; Xu, Binghe; Harb, Wael; Moroose, Rebecca; Pluard, Timothy; Cortés, Javier; Kiger, Corinne; Germa, Caroline; Wang, Kongming; Martin, Miguel; Baselga, José; Kim, Sung-Bae

    2014-11-10

    Neratinib is a potent irreversible pan-tyrosine kinase inhibitor with antitumor activity and acceptable tolerability in patients with human epidermal growth factor receptor 2 (HER2) -positive breast cancer. A multinational, open-label, phase I/II trial was conducted to determine the maximum-tolerated dose (MTD) of neratinib plus capecitabine in patients with solid tumors (part one) and to evaluate the safety and efficacy of neratinib plus capecitabine in patients with HER2-positive metastatic breast cancer (part two). Part one was a 3 + 3 dose-escalation study in which patients with advanced solid tumors received oral neratinib once per day continuously plus capecitabine twice per day on days 1 to 14 of a 21-day cycle at predefined dose levels. In part two, patients with trastuzumab-pretreated HER2-positive metastatic breast cancer received neratinib plus capecitabine at the MTD. The primary end point in part two was objective response rate (ORR). In part one (n = 33), the combination of neratinib 240 mg per day plus capecitabine 1,500 mg/m(2) per day was defined as the MTD, which was further evaluated in part 2 (n = 72). The most common drug-related adverse events were diarrhea (88%) and palmar-plantar erythrodysesthesia syndrome (48%). In part two, the ORR was 64% (n = 39 of 61) in patients with no prior lapatinib exposure and 57% (n = 4 of 7) in patients previously treated with lapatinib. Median progression-free survival was 40.3 and 35.9 weeks, respectively. Neratinib in combination with capecitabine had a manageable toxicity profile and showed promising antitumor activity in patients with HER2-positive metastatic breast cancer pretreated with trastuzumab and lapatinib. © 2014 by American Society of Clinical Oncology.

  6. Fibroblast growth factor receptors, developmental corruption and malignant disease.

    PubMed

    Kelleher, Fergal C; O'Sullivan, Hazel; Smyth, Elizabeth; McDermott, Ray; Viterbo, Antonella

    2013-10-01

    Fibroblast growth factors (FGF) are a family of ligands that bind to four different types of cell surface receptor entitled, FGFR1, FGFR2, FGFR3 and FGFR4. These receptors differ in their ligand binding affinity and tissue distribution. The prototypical receptor structure is that of an extracellular region comprising three immunoglobulin (Ig)-like domains, a hydrophobic transmembrane segment and a split intracellular tyrosine kinase domain. Alternative gene splicing affecting the extracellular third Ig loop also creates different receptor isoforms entitled FGFRIIIb and FGFRIIIc. Somatic fibroblast growth factor receptor (FGFR) mutations are implicated in different types of cancer and germline FGFR mutations occur in developmental syndromes particularly those in which craniosynostosis is a feature. The mutations found in both conditions are often identical. Many somatic FGFR mutations in cancer are gain-of-function mutations of established preclinical oncogenic potential. Gene amplification can also occur with 19-22% of squamous cell lung cancers for example having amplification of FGFR1. Ontologic comparators can be informative such as aberrant spermatogenesis being implicated in both spermatocytic seminomas and Apert syndrome. The former arises from somatic FGFR3 mutations and Apert syndrome arises from germline FGFR2 mutations. Finally, therapeutics directed at inhibiting the FGF/FGFR interaction are a promising subject for clinical trials.

  7. The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling.

    PubMed

    Giorgetti-Peraldi, S; Murdaca, J; Mas, J C; Van Obberghen, E

    2001-07-05

    Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and angiogenesis. Activation of VEGF receptors leads to the recruitment of SH2 containing proteins which link the receptors to the activation of signaling pathways. Here we report that Grb10, an adapter protein of which the biological role remains unknown, is tyrosine phosphorylated in response to VEGF in endothelial cells (HUVEC) and in 293 cells expressing the VEGF receptor KDR. An intact SH2 domain is required for Grb10 tyrosine phosphorylation in response to VEGF, and this phosphorylation is mediated in part through the activation of Src. In HUVEC, VEGF increases Grb10 mRNA level. Expression of Grb10 in HUVEC or in KDR expressing 293 cells results in an increase in the amount and in the tyrosine phosphorylation of KDR. In 293 cells, this is correlated with the activation of signaling molecules, such as MAP kinase. By expressing mutants of Grb10, we found that the positive action of Grb10 is independent of its SH2 domain. Moreover, these Grb10 effects on KDR seem to be specific since Grb10 has no effect on the insulin receptor, and Grb2, another adapter protein, does not mimic the effect of Grb10 on KDR. In conclusion, we propose that VEGF up-regulates Grb10 level, which in turn increases KDR molecules, suggesting that Grb10 could be involved in a positive feedback loop in VEGF signaling.

  8. Renal atrial natriuretic factor receptors in hamster cardiomyopathy.

    PubMed

    Mukaddam-Daher, S; Jankowski, M; Dam, T V; Quillen, E W; Gutkowska, J

    1995-12-01

    Hamsters with cardiomyopathy (CMO), an experimental model of congestive heart failure, display stimulated renin-angiotensin-aldosterone and enhanced sympathetic nervous activity, all factors that lead to sodium retention, volume expansion and subsequent elevation of plasma atrial natriuretic factor (ANF) by the cardiac atria. However, sodium and water retention persist in CMO, indicating hyporesponsiveness to endogenous ANF. These studies were undertaken to fully characterize renal ANF receptor subtypes in normal hamsters and to evaluate whether alterations in renal ANF receptors may contribute to renal resistance to ANF in cardiomyopathy. Transcripts of the guanylyl cyclase-A (GC-A) and guanylyl cyclase B (GC-B) receptors were detected by quantitative polymerase chain reaction (PCR) in renal cortex, and outer and inner medullas. Compared to normal controls, the cardiomyopathic hamster's GC-A mRNA was similar in cortex but significantly increased in outer and inner medulla. Levels of GC-B mRNA were not altered by the disease. On the other hand, competitive binding studies, autoradiography, and affinity cross-linking demonstrated the absence of functional GC-B receptors in the kidney glomeruli and inner medulla. Also, C-type natriuretic peptide (CNP), the natural ligand for the GC-B receptors, failed to stimulate glomerular production of its second messenger cGMP. In CMO, sodium and water excretion were significantly reduced despite elevated plasma ANF (50.5 +/- 11.1 vs. 309.4 +/- 32.6 pg/ml, P < 0.001). Competitive binding studies of renal glomerular ANF receptors revealed no change in total receptor density, Bmax (369.6 +/- 27.4 vs. 282.8 +/- 26.2 fmol/mg protein), nor in dissociation constant, Kd (647.4 +/- 79.4 vs. 648.5 +/- 22.9 pM). Also, ANF-C receptor density (254.3 +/- 24.8 vs. 233.8 +/- 23.5 fmol/mg protein), nor affinity were affected by heart failure. Inner medullary receptors were exclusively of the GC-A subtype with Bmax (153.2 +/- 26.4 vs. 134

  9. Successful pemetrexed-containing chemotherapy for epidermal growth factor receptor mutation-positive adenosquamous cell carcinoma of the lung: A case report

    PubMed Central

    WATANABE, HIROKO; TAMURA, TOMOHIRO; KAGOHASHI, KATSUNORI; KAWAGUCHI, MIO; KURISHIMA, KOICHI; SATOH, HIROAKI

    2016-01-01

    Pemetrexed-containing chemotherapy has shown promise in the treatment of non-small-cell lung cancer (NSCLC). However, although adenosquamous cell lung cancer (ASCLC) is a type of NSCLC, the availability of studies investigating its response to pemetrexed-containing chemotherapy is limited. A 66-year-old woman was referred to Mito Medical Center, University of Tsukuba with hemoptysis and a chest computed tomography (CT) scan revealed a large cavitary mass in the lower lobe of the left lung. The patient underwent left lower lobectomy and mediastinal lymph node dissection. The tumor was staged as pT2bN2M0. An epidermal growth factor receptor (EGFR) exon 19 deletion was identified in the adenocarcinomatous as well as the squamous cell carcinomatous components. Despite gefitinib therapy for pulmonary metastases, the patient developed cavitary metastases in both lungs. Therefore, treatment with pemetrexed-containing chemotherapy was initiated. A chest CT scan revealed significant regression of the metastatic lesions in both lungs, with thinning of the walls. The patient remains well and recurrence-free 19 months after the initiation of pemetrexed-containing chemotherapy. Therefore, the clinical response of EGFR mutation-positive ASCLC to pemetrexed-containing chemotherapy was promising, suggesting pemetrexed to be one of the key drugs for this subset of ASCLC patients. PMID:27073680

  10. Magnetic resonance metabolic profiling of estrogen receptor-positive breast cancer: correlation with currently used molecular markers

    PubMed Central

    Koo, Ja Seung; Kim, Siwon; Park, Vivian Youngjean; Kim, Eun-Kyung; Kim, Suhkmann; Kim, Min Jung

    2017-01-01

    Estrogen receptor (ER)-positive breast cancers overall have a good prognosis, however, some patients suffer relapses and do not respond to endocrine therapy. The purpose of this study was to determine whether there are any correlations between high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) metabolic profiles of core needle biopsy (CNB) specimens and the molecular markers currently used in patients with ER-positive breast cancers. The metabolic profiling of CNB samples from 62 ER-positive cancers was performed by HR-MAS MRS. Metabolic profiles were compared according to human epidermal growth factor receptor 2 (HER2) and Ki-67 status, and luminal type, using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA). In univariate analysis, the HER2-positive group was shown to have higher levels of glycine and glutamate, compared to the HER2-negative group (P<0.01, and P <0.01, respectively). The high Ki-67 group showed higher levels of glutamate than the low Ki-67 group without statistical significance. Luminal B cancers showed higher levels of glycine (P=0.01) than luminal A cancers. In multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles showed visible discrimination between the subgroups according to HER2 and Ki-67 status, and luminal type. This study showed that the metabolic profiles of CNB samples assessed by HR-MAS MRS can be used to detect potential prognostic biomarkers as well as to understand the difference in metabolic mechanism among subtypes of ER-positive breast cancer. PMID:28969000

  11. The cytoplasmic end of transmembrane domain 3 regulates the activity of the Saccharomyces cerevisiae G-protein-coupled alpha-factor receptor.

    PubMed Central

    Parrish, William; Eilers, Markus; Ying, Weiwen; Konopka, James B

    2002-01-01

    The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors. PMID:11861550

  12. Muscarinic receptor M4 positive allosteric modulators attenuate central effects of cocaine.

    PubMed

    Dall, Camilla; Weikop, Pia; Dencker, Ditte; Molander, Anna C; Wörtwein, Gitta; Conn, P Jeffrey; Fink-Jensen, Anders; Thomsen, Morgane

    2017-07-01

    Cocaine addiction is a chronic brain disease affecting neurotransmission. Muscarinic cholinergic receptors modulate dopaminergic signaling in the reward system, and muscarinic receptor stimulation can block direct reinforcing effects of cocaine. Here, we tested the hypothesis that specific muscarinic M 4 receptor stimulation can attenuate the discriminative stimulus effects and conditioned rewarding effects of cocaine, measures believed to predict the ability of cocaine and cocaine-associated cues to elicit relapse to drug taking. We tested the M 4 -selective positive allosteric modulators VU0152100 and VU0467154 in a drug discrimination assay and a conditioned place preference assay, including extinction and reinstatement of place preference. Specificity of the cocaine discrimination effect was verified using knockout mice lacking either M 1 or M 4 receptors (M 1 -/- , M 4 -/- ). We also replicated previous findings in cocaine-induced locomotor hyperactivity and striatal dopamine microdialysis assays. VU0152100 attenuated the discriminative stimulus effect of cocaine in wild-type mice and M 1 -/- mice, but not in M 4 -/- mice, without affecting rates of responding. As previously shown with VU0152100, VU0467154 almost eliminated cocaine-induced hyperactivity and striatal dopamine efflux. VU0467154 failed to attenuate acquisition of cocaine-conditioned place preference, but facilitated extinction and prevented reinstatement of the conditioned place preference. These findings further support the notion that M 4 receptors are promising targets for the treatment of cocaine addiction, by showing that results can be replicated using distinct ligands, and that in addition to blocking reinforcing effects of cocaine relevant to ongoing drug taking, M 4 positive allosteric modulators can also attenuate subjective and conditioned effects relevant to relapse. Copyright © 2017. Published by Elsevier B.V.

  13. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha}more » co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.« less

  14. Synthesis and exploration of novel radiolabeled bombesin peptides for targeting receptor positive tumor.

    PubMed

    De, Kakali; Banerjee, Indranil; Sinha, Samarendu; Ganguly, Shantanu

    2017-03-01

    Increasing evidence of peptide receptor overexpression in various cancer cells, warrant the development of receptor specific radiolabeled peptides for molecular imaging and therapy in nuclear medicine. Gastrin-releasing-peptide (GRP) receptor, are overexpressed in a variety of human cancer cells. The present study report the synthesis and biological evaluation of new bombesin (BBN) analogs, HYNIC-Asp-[Phe 13 ]BBN(7-13)-NH-CH 2 -CH 2 -CH3:BA1, HYNIC-Pro-[Tyr 13 Met 14 ]BBN(7-14)NH 2 :BA2 as prospective tumor imaging agent with compare to BBN(7-14)NH 2 :BS as standard. The pharmacophores were radiolabeled in high yields with 99m Tc, characterized for their stability in serum and saline, cysteine/histidine and were found to be substantially stable. Internalization/externalization and receptor binding studies were assessed using MDA-MB-231 cells and showed high receptor binding-affinity and favourable internalization. Fluorescence studies revealed that BA1 changed the morphology of the cells and could localize in the nucleus more effectively than BA2/BS. Cell-viability studies displayed substantial antagonistic and nuclear-internalization effect of BA1. BA1 also exhibited antiproliferative effect on MDA-MB-231 cell by inducing apoptosis. In vivo behaviour of the radiopeptides was evaluated in GRP receptor positive tumor bearing mice. The 99m Tc-BA1/ 99m Tc-BA2 demonstrated rapid blood/urinary clearance through the renal pathway and comparatively more significant tumor uptake image and favourable tumor-to-non-target ratios provided by 99m Tc-BA1. The specificity of the in vivo uptake was confirmed by co-injection with BS. Moreover, 99m Tc-BA1 provided a much clearer tumor image in scintigraphic studies than others. Thus the combination of favourable in vitro and in vivo properties renders BA1 as more potential antagonist bombesin-peptide for targeting GRP-receptor positive tumor. These properties are encouraging to carry out further experiments for non-invasive receptor

  15. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    PubMed Central

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  16. Prediction of breast cancer risk by genetic risk factors, overall and by hormone receptor status.

    PubMed

    Hüsing, Anika; Canzian, Federico; Beckmann, Lars; Garcia-Closas, Montserrat; Diver, W Ryan; Thun, Michael J; Berg, Christine D; Hoover, Robert N; Ziegler, Regina G; Figueroa, Jonine D; Isaacs, Claudine; Olsen, Anja; Viallon, Vivian; Boeing, Heiner; Masala, Giovanna; Trichopoulos, Dimitrios; Peeters, Petra H M; Lund, Eiliv; Ardanaz, Eva; Khaw, Kay-Tee; Lenner, Per; Kolonel, Laurence N; Stram, Daniel O; Le Marchand, Loïc; McCarty, Catherine A; Buring, Julie E; Lee, I-Min; Zhang, Shumin; Lindström, Sara; Hankinson, Susan E; Riboli, Elio; Hunter, David J; Henderson, Brian E; Chanock, Stephen J; Haiman, Christopher A; Kraft, Peter; Kaaks, Rudolf

    2012-09-01

    There is increasing interest in adding common genetic variants identified through genome wide association studies (GWAS) to breast cancer risk prediction models. First results from such models showed modest benefits in terms of risk discrimination. Heterogeneity of breast cancer as defined by hormone-receptor status has not been considered in this context. In this study we investigated the predictive capacity of 32 GWAS-detected common variants for breast cancer risk, alone and in combination with classical risk factors, and for tumours with different hormone receptor status. Within the Breast and Prostate Cancer Cohort Consortium, we analysed 6009 invasive breast cancer cases and 7827 matched controls of European ancestry, with data on classical breast cancer risk factors and 32 common gene variants identified through GWAS. Discriminatory ability with respect to breast cancer of specific hormone receptor-status was assessed with the age adjusted and cohort-adjusted concordance statistic (AUROC(a)). Absolute risk scores were calculated with external reference data. Integrated discrimination improvement was used to measure improvements in risk prediction. We found a small but steady increase in discriminatory ability with increasing numbers of genetic variants included in the model (difference in AUROC(a) going from 2.7% to 4%). Discriminatory ability for all models varied strongly by hormone receptor status. Adding information on common polymorphisms provides small but statistically significant improvements in the quality of breast cancer risk prediction models. We consistently observed better performance for receptor-positive cases, but the gain in discriminatory quality is not sufficient for clinical application.

  17. The role of tumour necrosis factor alpha and soluble tumour necrosis factor alpha receptors in the symptomatology of schizophrenia.

    PubMed

    Turhan, Levent; Batmaz, Sedat; Kocbiyik, Sibel; Soygur, Arif Haldun

    2016-07-01

    Background Immunological mechanisms may be responsible for the development and maintenance of schizophrenia symptoms. Aim The aim of this study is to measure tumour necrosis factor-alpha (TNF-α), soluble tumour necrosis factor-alpha receptor I (sTNF-αRI), and soluble tumour necrosis factor-alpha receptor II (sTNF-αRII) levels in patients with schizophrenia and healthy individuals, and to determine their relationship with the symptoms of schizophrenia. Methods Serum TNF-α, sTNF-αRI and sTNF-αRII levels were measured. The Positive and Negative Syndrome Scale (PANSS) was administered for patients with schizophrenia (n = 35), and the results were compared with healthy controls (n = 30). Hierarchical regression analyses were undertaken to predict the levels of TNF-α, sTNF-αRI and sTNF-αRII. Results No significant difference was observed in TNF-α levels, but sTNF-αRI and sTNF-αRII levels were lower in patients with schizophrenia. Serum sTNF-αRI and sTNF-αRII levels were found to be negatively correlated with the negative subscale score of the PANSS, and sTNF-αRI levels were also negatively correlated with the total score of the PANSS. Smoking, gender, body mass index were not correlated with TNF-α and sTNF-α receptor levels. Conclusions These results suggest that there may be a change in anti-inflammatory response in patients with schizophrenia due to sTNF-αRI and sTNF-αRII levels. The study also supports low levels of TNF activity in schizophrenia patients with negative symptoms.

  18. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance

    USDA-ARS?s Scientific Manuscript database

    Ghrelin and the ghrelin receptor (GH secretagogue receptor, GHS-R) are believed to have important roles in energy homeostasis. We describe results from the first studies to be conducted in congenic (N10) adult ghrelin(-/-) and Ghsr(-/-) mice under conditions of both positive (high-fat diet) and nega...

  19. Tumor Necrosis Factor Receptor Levels Are Associated With Carotid Atherosclerosis

    PubMed Central

    Elkind, Mitchell S.; Cheng, Jianfeng; Boden-Albala, Bernadette; Rundek, Tanja; Thomas, Joyce; Chen, Hong; Rabbani, LeRoy E.; Sacco, Ralph L.

    2009-01-01

    Background and Purpose Recent evidence suggests that atherosclerosis is an inflammatory condition. Serum levels of inflammatory markers may serve as measures of the severity of atherosclerosis and risk of stroke. We sought to determine whether tumor necrosis factor-α (TNF-α) and TNF receptor levels are associated with carotid plaque thickness. Methods The Northern Manhattan Stroke Study is a community-based study of stroke risk factors. For this cross-sectional analysis, inflammatory marker levels, including TNF-α and TNF receptors 1 and 2, were measured by immunoassay in stroke-free community subjects undergoing carotid duplex Doppler ultrasound. Maximal carotid plaque thickness (MCPT) was measured for each subject. Analyses were stratified by age <70 and ≥70 years. Simple and multiple linear regression analyses were used to calculate the association between marker levels and MCPT. Multiple logistic regression was used to calculate odds ratios and 95% CIs for the association of inflammatory markers with MCPT ≥1.5 mm (>75th percentile), after adjustment for demographic and potential medical confounding factors. Results The mean age of the 279 subjects was 67.6±8.5 years; 49% were men; 63% were Hispanic, 17% black, and 17% white. Mean values for TNF-α and its receptors were as follows: TNF-α, 1.88±3.97 ng/mL; TNF receptor 1, 2.21±0.99 ng/mL; and TNF receptor 2, 4.85±2.23 ng/mL. Mean MCPT was elevated in those in the highest quartiles compared with lowest quartiles of TNF receptor 1 and 2 (1.24 versus 0.79 mm and 1.23 versus 0.80 mm, respectively). Among those aged <70 years, TNF receptor 1 and 2 were associated with an increase in MCPT (mean difference=0.36 mm, P=0.01 for TNF receptor 1 and mean difference=0.10 mm, P=0.04 for TNF receptor 2). After adjustment for sex, race-ethnicity, hypertension, diabetes mellitus, LDL cholesterol, smoking, and body mass index, associations remained (mean difference=0.36 mm, P=0.001 for TNF receptor 1 and mean

  20. Beta receptor-mediated modulation of the late positive potential in humans.

    PubMed

    de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander

    2012-02-01

    Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.

  1. Role of ERRF, a Novel ER-Related Nuclear Factor, in the Growth Control of ER-Positive Human Breast Cancer Cells

    PubMed Central

    Su, Dan; Fu, Xiaoying; Fan, Songqing; Wu, Xiao; Wang, Xin-Xin; Fu, Liya; Dong, Xue-Yuan; Ni, Jianping Jenny; Fu, Li; Zhu, Zhengmao; Dong, Jin-Tang

    2012-01-01

    Whereas estrogen–estrogen receptor α (ER) signaling plays an important role in breast cancer growth, it is also necessary for the differentiation of normal breast epithelial cells. How this functional conversion occurs, however, remains unknown. Based on a genome-wide sequencing study that identified mutations in several breast cancer genes, we examined some of the genes for mutations, expression levels, and functional effects on cell proliferation and tumorigenesis. We present the data for C1orf64 or ER-related factor (ERRF) from 31 cell lines and 367 primary breast cancer tumors. Whereas mutation of ERRF was infrequent (1 of 79 or 1.3%), its expression was up-regulated in breast cancer, and the up-regulation was more common in lower-stage tumors. In addition, increased ERRF expression was significantly associated with ER and/or progesterone receptor (PR) positivity, which was still valid in human epidermal growth factor receptor 2 (HER2)–negative tumors. In ER-positive tumors, ERRF expression was inversely correlated with HER2 status. Furthermore, higher ERRF protein expression was significantly associated with better disease-free survival and overall survival, particularly in ER- and/or PR-positive and HER2-negative tumors (luminal A subtype). Functionally, knockdown of ERRF in two ER-positive breast cancer cell lines, T-47D and MDA-MB-361, suppressed cell growth in vitro and tumorigenesis in xenograft models. These results suggest that ERRF plays a role in estrogen-ER–mediated growth of breast cancer cells and could, thus, be a potential therapeutic target. PMID:22341523

  2. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  3. Influence of estrogen receptor status on dietary risk factors for breast cancer.

    PubMed Central

    Hislop, T G; Kan, L; Coldman, A J; Band, P R; Brauer, G

    1988-01-01

    It has been suggested that the relation between diet and breast cancer may depend on estrogen receptor (ER) status. We examined the responses to a self-administered questionnaire on frequency of consumption of various foods by 493 women with breast cancer (160 with ER-negative tumours and 333 with ER-positive tumours) and 527 controls whose menopausal status was known. Analysis of the reported consumption of foods selected for their fat or carotene content showed no clear distinction in dietary factors between the ER-negative and ER-positive groups. Frequent consumption of meat fats generally increased the risk of both ER-negative and ER-positive tumours; there were no clear trends in risk associated with vegetable consumption for either ER group. Fish was the only item affecting the risk for ER-negative and ER-positive tumours differently, frequent consumption reducing the risk for the former (p = 0.02). The results do not support the hypothesis that ER status influences the relation between dietary fat consumption and risk of breast cancer. PMID:3342359

  4. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    PubMed

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  5. Peroxisome proliferator-activated receptor δ (PPARδ) induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTor activation

    PubMed Central

    Yuan, Hongyan; Lu, Jin; Xiao, Junfeng; Upadhyay, Geeta; Umans, Rachel; Kallakury, Bhaskar; Yin, Yuhzi; Fant, Michael E.; Kopelovich, Levy; Glazer, Robert I.

    2013-01-01

    The peroxisome proliferator-activated receptor-δ (PPARδ) regulates a multitude of physiological processes associated with glucose and lipid metabolism, inflammation and proliferation. One or more of these processes are potential risk factors for the ability of PPARδ agonists to promote tumorigenesis in the mammary gland. In the present study, we describe a new transgenic mouse model in which activation of PPARδ in the mammary epithelium by endogenous or synthetic ligands resulted in progressive histopathological changes that culminated in the appearance of estrogen receptor- and progesterone receptor-positive and ErbB2-negative infiltrating ductal carcinomas. Multiparous mice presented with mammary carcinomas after a latency of 12 months, and administration of the PPARδ ligand GW501516 reduced tumor latency to five months. Histopathological changes occurred concurrently with an increase in an inflammatory, invasive, metabolic and proliferative gene signature, including expression of the trophoblast gene, Plac1, beginning one week after GW501516 treatment, and remained elevated throughout tumorigenesis. The appearance of malignant changes correlated with a pronounced increase in phosphatidylcholine and lysophosphatidic acid metabolites, which coincided with activation of Akt and mTor signaling that were attenuated by treatment with the mTor inhibitor everolimus. Our findings are the first to demonstrate a direct role of PPARδ in the pathogenesis of mammary tumorigenesis, and suggest a rationale for therapeutic approaches to prevent and treat this disease. PMID:23811944

  6. Cy5.5-labeled Affibody molecule for near-infrared fluorescent optical imaging of epidermal growth factor receptor positive tumors

    NASA Astrophysics Data System (ADS)

    Miao, Zheng; Ren, Gang; Liu, Hongguang; Jiang, Lei; Cheng, Zhen

    2010-05-01

    Affibody protein is an engineered protein scaffold with a three-helical bundle structure. Affibody molecules of small size (7 kD) have great potential for targeting overexpressed cancer biomarkers in vivo. To develop an Affibody-based molecular probe for in vivo optical imaging of epidermal growth factor receptor (EGFR) positive tumors, an anti-EGFR Affibody molecule, Ac-Cys-ZEGFR:1907 (7 kD), is site-specifically conjugated with a near-IR fluorescence dye, Cy5.5-mono-maleimide. Using fluorescent microscopy, the binding specificity of the probe Cy5.5-ZEGFR:1907 is checked by a high-EGFR-expressing A431 cell and low-EGFR-expressing MCF7 cells. The binding affinity of Cy5.5-ZEGFR:1907 (KD) to EGFR is 43.6+/-8.4 nM, as determined by flow cytometry. For an in vivo imaging study, the probe shows fast tumor targeting and good tumor contrast as early as 0.5 h postinjection (p.i.) for A431 tumors, while MCF7 tumors are barely visible. An ex vivo imaging study also demonstrates that Cy5.5-ZEGFR:1907 has high tumor, liver, and kidney uptakes at 24 h p.i.. In conclusion, Cy5.5-ZEGFR:1907 shows good affinity and high specificity to the EGFR. There is rapid achievement of good tumor-to-normal-tissue contrasts of Cy5.5-ZEGFR:1907, thus demonstrating its potential for EGFR-targeted molecular imaging of cancers.

  7. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  8. A Phase II Study Evaluating the Role of Androgen Receptors as Targets for Therapy of Pre-treated Post-menopausal Patients With ER/PgR-negative/AR-positive or ER and/or PgRpositive/ AR-positive Metastatic Breast Cancer (ARTT)

    ClinicalTrials.gov

    2016-09-28

    Metastatic Breastcancer; Estrogen Receptor Positive Breast Cancer; Estrogen Receptor Negative Neoplasm; Progesterone Receptor Positive Tumor; Progesterone Receptor Negative Neoplasm; Androgen Receptor Gene Overexpression

  9. The anticonvulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator

    PubMed Central

    Fisher, Janet L.

    2009-01-01

    SUMMARY Stiripentol(STP) has been used as co-therapy for treatment of epilepsy for many years. Its mechanism of action has long been considered to be indirect, as it inhibits the enzymes responsible for metabolism of other anticonvulsant agents. However, a recent report suggested that STP might also act at the neuronal level, increasing inhibitory GABAergic neurotransmission. We examined the effect of STP on the functional properties of recombinant GABAA receptors (GABARs) and found that it was a positive allosteric modulator of these ion channels. Its activity showed some dependence on subunit composition, with greater potentiation of α3-containing receptors and reduced potentiation when the β1 or ε subunits were present. STP caused a leftward shift in the GABA concentration-response relationship, but did not increase the peak response of the receptors to a maximal GABA concentration. Although STP shares some functional characteristics with the neurosteroids, its activity was not inhibited by a neurosteroid site antagonist and was unaffected by a mutation in the α3 subunit that reduced positive modulation by neurosteroids. The differential effect of STP on β1- and β2/β3-containing receptors was not altered by mutations within the second transmembrane domain that affect modulation by loreclezole. These findings suggest that STP acts as a direct allosteric modulator of the GABAR at a site distinct from many commonly used anti-convulsant, sedative and anxiolytic drugs. Its higher activity at α3-containing receptors as well as its activity at δ-containing receptors may provide a unique opportunity to target selected populations of GABARs. PMID:18585399

  10. Inhibiting the Epidermal Growth Factor Receptor | Center for Cancer Research

    Cancer.gov

    The Epidermal Growth Factor Receptor (EGFR) is a widely distributed cell surface receptor that responds to several extracellular signaling molecules through an intracellular tyrosine kinase, which phosphorylates target enzymes to trigger a downstream molecular cascade. Since the discovery that EGFR mutations and amplifications are critical in a number of cancers, efforts have

  11. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo.

    PubMed Central

    Truss, M; Bartsch, J; Schelbert, A; Haché, R J; Beato, M

    1995-01-01

    Hormonal induction of the mouse mammary tumour virus (MMTV) promoter is mediated by interactions between hormone receptors and other transcription factors bound to a complex array of sites. Previous results suggested that access to these sites is modulated by their precise organization into a positioned regulatory nucleosome. Using genomic footprinting, we show that MMTV promoter DNA is rotationally phased in intact cells containing either episomal or chromosomally integrated proviral fragments. Prior to induction there is no evidence for factors bound to the promoter. Following progesterone induction of cells with high levels of receptor, genomic footprinting detects simultaneous protection over the binding sites for hormone receptors, NF-I and the octamer binding proteins. Glucocorticoid or progestin induction leads to a characteristic chromatin remodelling that is independent of ongoing transcription. The centre of the regulatory nucleosome becomes more accessible to DNase I and restriction enzymes, but the limits of the nucleosome are unchanged and the 145 bp core region remains protected against micrococcal nuclease digestion. Thus, the nucleosome covering the MMTV promoter is neither removed nor shifted upon hormone induction, and all relevant transcription factors bind to the surface of the rearranged nucleosome. Since these factors cannot bind simultaneously to free DNA, maintainance of the nucleosome may be required for binding of factors to contiguous sites. Images PMID:7737125

  12. Characteristics and treatment of human epidermal growth factor receptor 2 positive breast cancer: 43,485 cases from the National Cancer Database treated in 2010 and 2011.

    PubMed

    Killelea, Brigid K; Chagpar, Anees B; Horowitz, Nina R; Lannin, Donald R

    2017-02-01

    Although identification of human epidermal growth factor receptor 2 (Her2) positive breast cancer represents one of the greatest advances over the past 3 decades, it has not been studied extensively on a national level. The National Cancer Database is a joint project of the American Cancer Society and the American College of Surgeons and contains data on about 70% of the cancer cases in the United States. Data on Her2 have been collected since 2010 and was used for this study. Of 298,937 cases of invasive breast cancer with known Her2 status diagnosed in 2010 and 2011, 43,485 (14.5%) were Her2 positive. Her2 positivity was greatest in Asian/Pacific Islanders and least in non-Hispanic Whites and was markedly more common in younger women. The incidence of Her2 positive tumors ranged from a low of 13.9% in the Mountain West region to a high of 16.0% in the West South Central region (P < .001). Compared with Her2 negative tumors, Her2 positive tumors were larger (2.6 vs 2.2 cm, P < .001), more likely to have positive nodes (39% vs 31% P < .001), have lymphovascular invasion (30% vs 20%, P < .001), and be high grade (56% vs 29%, P < .001). There were also differences by histology: invasive ductal 16.4%, invasive lobular 5.5%, tubular 2.3%, inflammatory 36%, and Paget's with invasion 59%. When adjusted for age, race, tumor size, and nodal status Her2 positive tumors were much more likely to receive chemotherapy (odds ratio = 5.5, confidence interval = 5.2 to 6.0) and somewhat less likely to undergo breast preservation (odds ratio = .78, confidence interval = .76 to .80). Her2 positive tumors have distinct epidemiologic, clinical, and treatment characteristics. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions

    PubMed Central

    Rajasekaran, Deepa; Gröning, Sabine; Schmitz, Corinna; Zierow, Swen; Drucker, Natalie; Bakou, Maria; Kohl, Kristian; Mertens, André; Lue, Hongqi; Weber, Christian; Xiao, Annie; Luker, Gary; Kapurniotu, Aphrodite; Lolis, Elias; Bernhagen, Jürgen

    2016-01-01

    An emerging number of non-chemokine mediators are found to bind to classical chemokine receptors and to elicit critical biological responses. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that exhibits chemokine-like activities through non-cognate interactions with the chemokine receptors CXCR2 and CXCR4, in addition to activating the type II receptor CD74. Activation of the MIF-CXCR2 and -CXCR4 axes promotes leukocyte recruitment, mediating the exacerbating role of MIF in atherosclerosis and contributing to the wealth of other MIF biological activities. Although the structural basis of the MIF-CXCR2 interaction has been well studied and was found to engage a pseudo-ELR and an N-like loop motif, nothing is known about the regions of CXCR4 and MIF that are involved in binding to each other. Using a genetic strain of Saccharomyces cerevisiae that expresses a functional CXCR4 receptor, site-specific mutagenesis, hybrid CXCR3/CXCR4 receptors, pharmacological reagents, peptide array analysis, chemotaxis, fluorescence spectroscopy, and circular dichroism, we provide novel molecular information about the structural elements that govern the interaction between MIF and CXCR4. The data identify similarities with classical chemokine-receptor interactions but also provide evidence for a partial allosteric agonist compared with CXCL12 that is possible due to the two binding sites of CXCR4. PMID:27226569

  14. Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma

    PubMed Central

    Ahmed, Nabil; Brawley, Vita S.; Hegde, Meenakshi; Robertson, Catherine; Ghazi, Alexia; Gerken, Claudia; Liu, Enli; Dakhova, Olga; Ashoori, Aidin; Corder, Amanda; Gray, Tara; Wu, Meng-Fen; Liu, Hao; Hicks, John; Rainusso, Nino; Dotti, Gianpietro; Mei, Zhuyong; Grilley, Bambi; Gee, Adrian; Rooney, Cliona M.; Brenner, Malcolm K.; Heslop, Helen E.; Wels, Winfried S.; Wang, Lisa L.; Anderson, Peter; Gottschalk, Stephen

    2015-01-01

    Purpose The outcome for patients with metastatic or recurrent sarcoma remains poor. Adoptive therapy with tumor-directed T cells is an attractive therapeutic option but has never been evaluated in sarcoma. Patients and Methods We conducted a phase I/II clinical study in which patients with recurrent/refractory human epidermal growth factor receptor 2 (HER2) –positive sarcoma received escalating doses (1 × 104/m2 to 1 × 108/m2) of T cells expressing an HER2-specific chimeric antigen receptor with a CD28.ζ signaling domain (HER2-CAR T cells). Results We enrolled 19 patients with HER2-positive tumors (16 osteosarcomas, one Ewing sarcoma, one primitive neuroectodermal tumor, and one desmoplastic small round cell tumor). HER2-CAR T-cell infusions were well tolerated with no dose-limiting toxicity. At dose level 3 (1 × 105/m2) and above, we detected HER2-CAR T cells 3 hours after infusion by quantitative polymerase chain reaction in 14 of 16 patients. HER2-CAR T cells persisted for at least 6 weeks in seven of the nine evaluable patients who received greater than 1 × 106/m2 HER2-CAR T cells (P = .005). HER2-CAR T cells were detected at tumor sites of two of two patients examined. Of 17 evaluable patients, four had stable disease for 12 weeks to 14 months. Three of these patients had their tumor removed, with one showing ≥ 90% necrosis. The median overall survival of all 19 infused patients was 10.3 months (range, 5.1 to 29.1 months). Conclusion This first evaluation of the safety and efficacy of HER2-CAR T cells in patients with cancer shows the cells can persist for 6 weeks without evident toxicities, setting the stage for studies that combine HER2-CAR T cells with other immunomodulatory approaches to enhance their expansion and persistence. PMID:25800760

  15. Budget impact analysis of everolimus for the treatment of hormone receptor positive, human epidermal growth factor receptor-2 negative (HER2-) advanced breast cancer in the United States.

    PubMed

    Xie, Jipan; Diener, Melissa; De, Gourab; Yang, Hongbo; Wu, Eric Q; Namjoshi, Madhav

    2013-01-01

    To estimate the budget impact of everolimus as the first and second treatment option after letrozole or anastrozole (L/A) failure for post-menopausal women with hormone receptor positive (HR+), human epidermal growth factor receptor-2 negative (HER2-) advanced breast cancer (ABC). Pharmacy and medical budget impacts (2011 USD) were estimated over the first year of everolimus use in HR+, HER2- ABC from a US payer perspective. Epidemiology data were used to estimate target population size. Pre-everolimus entry treatment options included exemestane, fulvestrant, and tamoxifen. Pre- and post-everolimus entry market shares were estimated based on market research and assumptions. Drug costs were based on wholesale acquisition cost. Patients were assumed to be on treatment until progression or death. Annual medical costs were calculated as the average of pre- and post-progression medical costs weighted by the time in each period, adjusted for survival. One-way and two-way sensitivity analyses were conducted to assess the model robustness. In a hypothetical 1,000,000 member plan, 72 and 159 patients were expected to be candidates for everolimus treatment as first and second treatment option, respectively, after L/A failure. The total budget impact for the first year post-everolimus entry was $0.044 per member per month [PMPM] (pharmacy budget: $0.058 PMPM; medical budget: -$0.014 PMPM), assuming 10% of the target population would receive everolimus. The total budget impacts for the first and second treatment options after L/A failure were $0.014 PMPM (pharmacy budget: $0.018; medical budget: -$0.004) and $0.030 PMPM (pharmacy budget: $0.040; medical budget: -$0.010), respectively. Results remained robust in sensitivity analyses. Assumptions about some model input parameters were necessary and may impact results. Increased pharmacy costs for HR+, HER2- ABC following everolimus entry are expected to be partially offset by reduced medical service costs. Pharmacy and total

  16. Carboxypeptidase M Is a Positive Allosteric Modulator of the Kinin B1 Receptor*

    PubMed Central

    Zhang, Xianming; Tan, Fulong; Skidgel, Randal A.

    2013-01-01

    Ligand binding to extracellular domains of G protein-coupled receptors can result in novel and nuanced allosteric effects on receptor signaling. We previously showed that the protein-protein interaction of carboxypeptidase M (CPM) and kinin B1 receptor (B1R) enhances B1R signaling in two ways; 1) kinin binding to CPM causes a conformational activation of the B1R, and 2) CPM-generated des-Arg-kinin agonist is efficiently delivered to the B1R. Here, we show CPM is also a positive allosteric modulator of B1R signaling to its agonist, des-Arg10-kallidin (DAKD). In HEK cells stably transfected with B1R, co-expression of CPM enhanced DAKD-stimulated increases in intracellular Ca2+ or phosphoinositide turnover by a leftward shift of the dose-response curve without changing the maximum. CPM increased B1R affinity for DAKD by ∼5-fold but had no effect on basal B1R-dependent phosphoinositide turnover. Soluble, recombinant CPM bound to HEK cells expressing B1Rs without stimulating receptor signaling. CPM positive allosteric action was independent of enzyme activity but depended on interaction of its C-terminal domain with the B1R extracellular loop 2. Disruption of the CPM/B1R interaction or knockdown of CPM in cytokine-treated primary human endothelial cells inhibited the allosteric enhancement of CPM on B1R DAKD binding or ERK1/2 activation. CPM also enhanced the DAKD-induced B1R conformational change as detected by increased intramolecular fluorescence or bioluminescence resonance energy transfer. Thus, CPM binding to extracellular loop 2 of the B1R results in positive allosteric modulation of B1R signaling, and disruption of this interaction could provide a novel therapeutic approach to reduce pathological B1R signaling. PMID:24108126

  17. Identifying Dust Sources by Positive Matrix Factorization (PMF)

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann P.

    2010-05-01

    This presentation is on the source attribution by Positive Matrix Factorization (PMF) of aerosol samples collected in Iraq, a major source of mineral dust in the Middle East. Globally transported mineral dust from North Africa, the Middle East, China, and elsewhere are routinely being sampled at high elevation monitoring sites such as those on the Canary Islands and Hawaii, and many ambient monitoring sites worldwide. Chemical results of these filter samples reflect differences in sources impacting at each site, further complicated by the regional geomorphology and meteorology. Trace elements, isotopes, elemental ratios, and mineralogy are generally being used to pinpoint geological source regions of natural and anthropogenic dusts. A receptor site is seldom impacted by only one source at a time. Dust palls are continually being modified by added dust from soils across which they migrate, also by particle segregation in the dust plume, and precipitation of the coarser particles. The result is that dust is a mixture, with contributions from different sources, each with a different chemical and mineralogical signature. PMF is a non-negative factorization procedure that produces only positive factor scores and loadings, in contrast to classical factor analysis (FA) and Principal Components Analysis (PCA). PMF enables us to resolve factors (chemical signatures) for source types contributing to the ambient chemical data set, and also models the source-type contributions to individual ambient samples. The latter can often be related to specific source regions. PMF was applied separately to two ambient data sets collected in Iraq in 2006, the one on Teflon membrane filters and the other on quartz fiber. Each of the filter types were previously analyzed for different chemical species: Teflon membrane for elements, by XRF and ICP-MS, while quartz fiber filters were analyzed for ions and carbon. [Engelbrecht et al. 2009] A set of 392 Teflon filter samples analyzed for 25

  18. Gab-family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors.

    PubMed

    Hibi, M; Hirano, T

    2000-04-01

    Gab1 and Gab2 (Grb2 associated binder 1 and 2) are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a potential substrate for the protein tyrosine phosphatase, Corkscrew, Both Gab1 and Gab2, like DOS, have a pleckstrin homology domain and potential binding sites for SH2 and SH3 domains. Gab1 and Gab2 are phosphorylated on tyrosine upon the stimulation of various cytokines, growth factors, and antigen receptors, and interact with signaling molecules, such as Grb2, SHP-2, and PI-3 kinase. Overexpression of Gab1 or Gab2 mimics or enhances growth factor or cytokine-mediated biological processes and activates ERK MAP kinase. These data imply that Gab1 and Gab2 act downstream of a broad range of cytokine and growth factor receptors, as well as T and B antigen receptors, and link these receptors to ERK MAP kinase and biological actions.

  19. GABAA receptor: Positive and negative allosteric modulators.

    PubMed

    Olsen, Richard W

    2018-01-31

    gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABA A R) and Type B (GABA B R) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABA B R is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABA A R pharmacology, the topic of this article. GABA A R are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABA A R the targets of agonist depressants and antagonist convulsants, but most GABA A R drugs act at other (allosteric) binding sites on the GABA A R proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABA A R subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABA A R subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABA A R subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABA A R subtype-dependent extracellular domain sites. Thus GABA A R subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of

  20. Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding.

    PubMed

    Michel, A D; Chambers, L J; Clay, W C; Condreay, J P; Walter, D S; Chessell, I P

    2007-05-01

    The P2X(7) receptor exhibits complex pharmacological properties. In this study, binding of a [(3)H]-labelled P2X(7) receptor antagonist to human P2X(7) receptors has been examined to further understand ligand interactions with this receptor. The P2X(7) receptor antagonist, N-[2-({2-[(2-hydroxyethyl)amino]ethyl}amino)-5-quinolinyl]-2-tricyclo[3.3.1.1(3,7)]dec-1-ylacetamide (compound-17), was radiolabelled with tritium and binding studies were performed using membranes prepared from U-2 OS or HEK293 cells expressing human recombinant P2X(7) receptors. Binding of [(3)H]-compound-17 was higher in membranes prepared from cells expressing P2X(7) receptors than from control cells and was inhibited by ATP suggesting labelled sites represented human P2X(7) receptors. Binding was reversible, saturable and modulated by P2X(7) receptor ligands (Brilliant Blue G, KN62, ATP, decavanadate). Furthermore, ATP potency was reduced in the presence of divalent cations or NaCl. Radioligand binding exhibited both positive and negative cooperativity. Positive cooperativity was evident from bell shaped Scatchard plots, reduction in radioligand dissociation rate by unlabelled compound-17 and enhancement of radioligand binding by KN62 and unlabelled compound-17. ATP and decavanadate inhibited binding in a negative cooperative manner as they enhanced radioligand dissociation. These data demonstrate that human P2X(7) receptors can be directly labelled and provide novel insights into receptor function. The positive cooperativity observed suggests that binding of compound-17 to one subunit in the P2X(7) receptor complex enhances subsequent binding to other P2X(7) subunits in the same complex. The negative cooperative effects of ATP suggest that ATP and compound-17 bind at separate, interacting, sites on the P2X(7) receptor.

  1. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    PubMed

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  2. Harnessing tumor necrosis factor receptors to enhance antitumor activities of drugs.

    PubMed

    Muntané, Jordi

    2011-10-17

    Cancer is the second-leading cause of death in the U.S. behind heart disease and over stroke. The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The inhibition of cell death pathways is one of these tumor characteristics which also include sustained proliferative signaling, evading growth suppressor signaling, replicative immortality, angiogenesis, and promotion of invasion and metastasis. Cell death is mediated through death receptor (DR) stimulation initiated by specific ligands that transmit signaling to the cell death machinery or through the participation of mitochondria. Cell death involving DR is mediated by the superfamily of tumor necrosis factor receptor (TNF-R) which includes TNF-R type I, CD95, DR3, TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 (TRAIL-R1) and -2 (TRAIL-R2), DR6, ectodysplasin A (EDA) receptor (EDAR), and the nerve growth factor (NGF) receptor (NGFR). The expression of these receptors in healthy and tumor cells induces treatment side effects that limit the systemic administration of cell death-inducing therapies. The present review is focused on the different therapeutic strategies such as targeted antibodies or small molecules addressed to selective stimulated DR-mediated apoptosis or reduce cell proliferation in cancer cells.

  3. An Arg for Gly substitution at position 31 in the insulin receptor, linked to insulin resistance, inhibits receptor processing and transport.

    PubMed

    van der Vorm, E R; van der Zon, G C; Möller, W; Krans, H M; Lindhout, D; Maassen, J A

    1992-01-05

    In a patient with Leprechaunism, we have characterized a new mutation in the insulin receptor substituting Arg for Gly at position 31. The proband, the mother, and the maternal grandfather were heterozygous for the mutation. Fibroblasts of the proband show a strongly reduced number of high affinity insulin receptors on the cell surface, whereas fibroblasts of the healthy mother and grandfather show moderately reduced insulin receptor numbers. In the other family members neither the binding defect nor the Arg31 mutation was found. The Arg31-mutant receptor was overexpressed in Chinese hamster ovary cells. In these cells the mutant alpha beta-proreceptor was not proteolytically cleaved and no transport to the cell surface took place. The proreceptor was unable to bind insulin and to undergo autophosphorylation. In addition, the proreceptor was not recognized by monoclonal antibodies directed against conformation-dependent epitopes. These findings suggest that the Gly31 to Arg31 mutant is involved in the insulin receptor dysfunction seen in the Leprechaun patient. The mutation seems to alter the conformation of the receptor in such way that the transport of the proreceptor to the Golgi compartment, where proteolytical processing occurs, is inhibited.

  4. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated themore » effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.« less

  5. Preclinical evaluation of 68Ga-DOTA-minigastrin for the detection of cholecystokinin-2/gastrin receptor-positive tumors.

    PubMed

    Brom, Maarten; Joosten, Lieke; Laverman, Peter; Oyen, Wim J G; Béhé, Martin; Gotthardt, Martin; Boerman, Otto C

    2011-04-01

    In comparison to somatostatin receptor scintigraphy, gastrin receptor scintigraphy using 111In-DTPA-minigastrin (MG0) showed added value in diagnosing neuroendocrine tumors. We investigated whether the 68Ga-labeled gastrin analogue DOTA-MG0 is suited for positron emission tomography (PET), which could improve image quality. Targeting of cholecystokinin-2 (CCK2)/gastrin receptor-positive tumor cells with DOTA-MG0 labeled with either 111In or 68Ga in vitro was investigated using the AR42J rat tumor cell line. Biodistribution was examined in BALB/c nude mice with a subcutaneous AR42J tumor. In vivo PET imaging was performed using a preclinical PET-computed tomographic scanner. DOTA-MG0 showed high receptor affinity in vitro. Biodistribution studies revealed high tumor uptake of 68Ga-DOTA-MG0: 4.4 ± 1.3 %ID/g at 1 hour postinjection. Coadministration of an excess unlabeled peptide blocked the tumor uptake (0.7 ± 0.1 %ID/g), indicating CCK2/gastrin receptor-mediated uptake (p  =  .0005). The biodistribution of 68Ga-DOTA-MG0 was similar to that of 111In-DOTA-MG0. Subcutaneous and intraperitoneal tumors were clearly visualized by small-animal PET imaging with 5 MBq 68Ga-DOTA-MG0. 111In- and 68Ga-labeled DOTA-MG0 specifically accumulate in CCK2/gastrin receptor-positive AR42J tumors with similar biodistribution apart from the kidneys. AR42J tumors were clearly visualized by microPET. Therefore, 68Ga-DOTA-MG0 is a promising tracer for PET imaging of CCK2/gastrin receptor-positive tumors in humans.

  6. Estrogen receptor status of breast cancer in Ontario

    PubMed Central

    McKeown-Eyssen, Gail E.; Rogers-Melamed, Iris; Clarke, E. Aileen

    1985-01-01

    Data from a number of studies of breast cancer have suggested that after the ages associated with the menopause the rates of estrogen-receptor-positive tumours increase with age, whereas the rates of estrogen-receptor-negative tumours do not. Previous investigators studied cases in specific treatment centres, so there was a possibility that the findings were influenced by differences in patterns of case referral by age. A review of all the cases of breast cancer diagnosed in Ontario women in 1981 and assayed for estrogen receptors, however, confirmed the earlier findings. The results showed that the incidence of estrogen-receptor-positive and estrogen-receptor-negative tumours increased at about the same rate before age 45, but thereafter an increase in incidence was seen only for estrogen-receptor-positive tumours. These differences in patterns of incidence suggest the possibility that the two types of tumour may have different etiologic factors. PMID:4063915

  7. Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues.

    PubMed

    Xiong, Jing; Zhou, L I; Lim, Yoon; Yang, Miao; Zhu, Yu-Hong; Li, Zhi-Wei; Fu, Deng-Li; Zhou, Xin-Fu

    2015-07-01

    There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro , while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.

  8. Dynamic Regulation of Platelet-Derived Growth Factor Receptor α Expression in Alveolar Fibroblasts during Realveolarization

    PubMed Central

    Chen, Leiling; Acciani, Thomas; Le Cras, Tim; Lutzko, Carolyn

    2012-01-01

    Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α–expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α–positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α–green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α–GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α–GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α–positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial–mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable

  9. The TM2 6′ Position of GABAA Receptors Mediates Alcohol Inhibition

    PubMed Central

    Howard, Rebecca J.; Trudell, James R.; Harris, R. Adron

    2012-01-01

    Ionotropic GABAA receptors (GABAARs), which mediate inhibitory neurotransmission in the central nervous system, are implicated in the behavioral effects of alcohol and alcoholism. Site-directed mutagenesis studies support the presence of discrete molecular sites involved in alcohol enhancement and, more recently, inhibition of GABAARs. We used Xenopus laevis oocytes to investigate the 6′ position in the second transmembrane region of GABAARs as a site influencing alcohol inhibition. We asked whether modification of the 6′ position by substitution with larger residues or methanethiol labeling [using methyl methanethiosulfonate (MMTS)] of a substituted cysteine, reduced GABA action and/or blocked further inhibition by alcohols. Labeling of the 6′ position in either α2 or β2 subunits reduced responses to GABA. In addition, methanol and ethanol potentiation increased after MMTS labeling or substitution with tryptophan or methionine, consistent with elimination of an inhibitory site for these alcohols. Specific alcohols, but not the anesthetic etomidate, competed with MMTS labeling at the 6′ position. We verified a role for the 6′ position in previously tested α2β2 as well as more physiologically relevant α2β2γ2s GABAARs. Finally, we built a novel molecular model based on the invertebrate glutamate-gated chloride channel receptor, a GABAAR homolog, revealing that the 6′ position residue faces the channel pore, and modification of this residue alters volume and polarity of the pore-facing cavity in this region. These results indicate that the 6′ positions in both α2 and β2 GABAAR subunits mediate inhibition by short-chain alcohols, which is consistent with the presence of multiple counteracting sites of action for alcohols on ligand-gated ion channels. PMID:22072732

  10. Risk of recurrence and chemotherapy benefit for patients with node-negative, estrogen receptor-positive breast cancer: recurrence score alone and integrated with pathologic and clinical factors.

    PubMed

    Tang, Gong; Cuzick, Jack; Costantino, Joseph P; Dowsett, Mitch; Forbes, John F; Crager, Michael; Mamounas, Eleftherios P; Shak, Steven; Wolmark, Norman

    2011-11-20

    The 21-gene breast cancer assay recurrence score (RS) is widely used for assessing recurrence risk and predicting chemotherapy benefit in patients with estrogen receptor (ER) -positive breast cancer. Pathologic and clinical factors such as tumor size, grade, and patient age also provide independent prognostic utility. We developed a formal integration of these measures and evaluated its prognostic and predictive value. From the National Surgical Adjuvant Breast and Bowel (NSABP) B-14 and translational research cohort of the Arimidex, Tamoxifen Alone or in Combination (TransATAC) studies, we included patients who received hormonal monotherapy, had ER-positive tumors, and RS and traditional clinicopathologic factors assessed (647 and 1,088, respectively). Individual patient risk assessments from separate Cox models were combined using meta-analysis to form an RS-pathology-clinical (RSPC) assessment of distant recurrence risk. Risk assessments by RS and RSPC were compared in node-negative (N0) patients. RSPC was compared with RS for predicting chemotherapy benefit in NSABP B-20. RSPC had significantly more prognostic value for distant recurrence than did RS (P < .001) and showed better separation of risk in the study population. RSPC classified fewer patients as intermediate risk (17.8% v 26.7%, P < .001) and more patients as lower risk (63.8% v 54.2%, P < .001) than did RS among 1,444 N0 ER-positive patients. In B-20, the interaction of RSPC with chemotherapy was not statistically significant (P = .10), in contrast to the previously reported significant interaction of RS with chemotherapy (P = .037). RSPC refines the assessment of distant recurrence risk and reduces the number of patients classified as intermediate risk. Adding clinicopathologic measures did not seem to enhance the value of RS alone nor the individual biology RS identifies in predicting chemotherapy benefit.

  11. Human epidermal growth factor receptor 2 testing in invasive breast cancer: should histological grade, type and oestrogen receptor status influence the decision to repeat testing?

    PubMed

    Rakha, Emad A; Pigera, Marian; Shin, Sandra J; D'Alfonso, Timothy; Ellis, Ian O; Lee, Andrew H S

    2016-07-01

    The recent American Society of Clinical Oncology/College of American Pathologists guidelines for human epidermal growth factor receptor 2 (HER2) testing in breast cancer recommend repeat testing based on tumour grade, tumour type, and hormone receptor status. The aim of this study was to test the value of these criteria. HER2 status was concordant in the core biopsies and excision specimens in 392 of 400 invasive carcinomas. The major reasons for discordance were amplification around the cut-off for positivity and tumour heterogeneity. Of 116 grade 3 carcinomas that were HER2-negative in the core biopsy, four were HER2-positive in the excision specimen. Three of these four either showed borderline negative amplification in the core biopsy or were heterogeneous. None of the 55 grade 1 carcinomas were HER2-positive. Review of repeat testing of HER2 in routine practice suggested that it may also be of value for multifocal tumours and if recommended by the person assessing the in-situ hybridization. Mandatory repeat HER2 testing of grade 3 HER2-negative carcinomas is not appropriate. This is particularly true if repeat testing is performed after borderline negative amplification in the core biopsy or in HER2-negative heterogeneous carcinomas. © 2015 John Wiley & Sons Ltd.

  12. Effects of the GABAB Receptor-Positive Modulators CGP7930 and rac-BHFF in Baclofen- and γ-Hydroxybutyrate-Discriminating Pigeons

    PubMed Central

    France, Charles P.; Cheng, Kejun; Rice, Kenner C.

    2012-01-01

    In vivo effects of GABAB receptor-positive modulators suggest them to have therapeutic potential to treat central nervous system disorders such as anxiety and drug abuse. Although these effects are thought to be mediated by positive modulation of GABAB receptors, such modulation has been examined primarily in vitro. This study further examined the in vivo properties of the GABAB receptor-positive modulators 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl) phenol (CGP7930) and (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF). In pigeons discriminating baclofen from saline, γ-hydroxybutyrate (GHB) produced 100% baclofen-appropriate responding, and the GABAB antagonist 3-aminopropyl(dimethoxymethyl) phosphinic acid (CGP35348) blocked the effects of both drugs. CGP7930 and rac-BHFF produced at most 41 and 74% baclofen-appropriate responding, respectively, and enhanced the discriminative stimulus effects of baclofen, but not of GHB. In pigeons discriminating GHB from saline, CGP7930 and rac-BHFF produced at most 1 and 49% GHB-appropriate responding, respectively, and enhanced the effects of baclofen, but not of GHB. Enhancement of the discriminative stimulus effects of baclofen by rac-BHFF and CGP7930 is further evidence of their effectiveness as GABAB receptor-positive modulators in vivo. Furthermore, lack of complete substitution of the positive modulators rac-BHFF and CGP7930 for baclofen and GHB suggests that their discriminative stimulus effects differ from those of GABAB receptor agonists. Finally, together with converging evidence that the GABAB receptor populations mediating the effects of baclofen and GHB are not identical, the present findings suggest that these populations differ in their susceptibility to positive modulatory effects. Such differences could allow for more selective therapeutic targeting of the GABAB system. PMID:22319197

  13. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konnai, Satoru; Usui, Tatsufumi; Ikeda, Manabu

    2005-09-01

    Previously, we found an up-regulation of tumor necrosis factor alpha (TNF)-{alpha} and an imbalance of TNF receptors in sheep experimentally infected with bovine leukemia virus (BLV). In order to investigate the different TNF-{alpha}-induced responses, in this study we examined the TNF-{alpha}-induced proliferative response and the expression levels of two distinct TNF receptors on peripheral blood mononuclear cells (PBMC) derived from BLV-uninfected cattle and BLV-infected cattle that were aleukemic (AL) or had persistent lymphocytosis (PL). The proliferative response of PBMC isolated from those cattle with PL in the presence of recombinant bovine TNF-{alpha} (rTNF-{alpha}) was significantly higher than those from ALmore » cattle and uninfected cattle and the cells from PL cattle expressed significantly higher mRNA levels of TNF receptor type II (TNF-RII) than those from AL and BLV-uninfected cattle. No difference was found in TNF-RI mRNA levels. Most cells expressing TNF-RII in PL cattle were CD5{sup +} or sIgM{sup +} cells and these cells showed resistance to TNF-{alpha}-induced apoptosis. Additionally, there were significant positive correlations between the changes in provirus load and TNF-RII mRNA levels, and TNF-{alpha}-induced proliferation and TNF-RII mRNA levels. These data suggest that imbalance in the expression of TNF receptors could at least in part contribute to the progression of lymphocytosis in BLV infection.« less

  14. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    PubMed Central

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  15. Prohibitin promotes androgen receptor activation in ER-positive breast cancer

    PubMed Central

    Liu, Pengying; Xu, Yumei; Zhang, Wenwen; Li, Yan; Tang, Lin; Chen, Weiwei; Xu, Jing; Sun, Qian; Guan, Xiaoxiang

    2017-01-01

    ABSTRACT Prohibitin (PHB) is an evolutionarily conserved protein with multiple functions in both normal and cancer cells. Androgen receptor (AR) was reported to act as a different role in the ER-positive and ER-negative breast cancer. However, little is known about the role of PHB and whether PHB could regulate AR expression in the ER-positive breast cancer. Here, we determined the expression and clinical outcomes of PHB in breast cancer samples using 121 breast cancer tissues and published databases, and investigated the role of PHB in breast cancer cell growth, apoptosis and cell cycle arrest in the ER-positive breast cancer cells. We obtained the expression of PHB is significantly low in breast cancer samples, and low PHB expression positively correlated with poor prognosis of breast cancer. We detected that PHB could inhibit breast cancer cell proliferation, change cell cycle distribution and promote cell apoptosis in the ER-positive breast cancer cells. Moreover, we found PHB could significantly increase AR expression in both mRNA and protein levels in the ER-positive breast cancer cells. Additionally, a significant positive correlation between PHB and AR expression was identified in the 121 breast cancer tissues. PHB and AR expression are associated with prognosis in the ER-positive breast cancer patients. Our results indicate that PHB promotes AR activation in ER-positive breast cancer, making PHB and AR potential molecular targets for ER-positive breast cancer therapy. PMID:28272969

  16. Fulvestrant With or Without Lapatinib in Treating Postmenopausal Women With Stage III or Stage IV Breast Cancer That is Hormone Receptor-Positive

    ClinicalTrials.gov

    2018-06-01

    Estrogen Receptor Positive; HER2 Positive Breast Carcinoma; HER2/Neu Negative; Progesterone Receptor Positive; Recurrent Breast Carcinoma; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7

  17. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach

    PubMed Central

    Samkoe, Kimberley S.; Tichauer, Kenneth M.; Gunn, Jason R.; Wells, Wendy A.; Hasan, Tayyaba; Pogue, Brian W.

    2014-01-01

    As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant, therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry. Using multiple xenograft tumor models with varying epidermal growth factor receptor (EGFR) expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored immunohistochemistry and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot or in vitro flow cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immuno-staining, with implications for use in non-invasive monitoring of therapy or therapeutic guidance during surgery. PMID:25344226

  18. Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding

    PubMed Central

    Michel, A D; Chambers, L J; Clay, W C; Condreay, J P; Walter, D S; Chessell, I P

    2007-01-01

    Background and Purpose: The P2X7 receptor exhibits complex pharmacological properties. In this study, binding of a [3H]-labelled P2X7 receptor antagonist to human P2X7 receptors has been examined to further understand ligand interactions with this receptor. Experimental Approach: The P2X7 receptor antagonist, N-[2-({2-[(2-hydroxyethyl)amino]ethyl}amino)-5-quinolinyl]-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide (compound-17), was radiolabelled with tritium and binding studies were performed using membranes prepared from U-2 OS or HEK293 cells expressing human recombinant P2X7 receptors. Key Results: Binding of [3H]-compound-17 was higher in membranes prepared from cells expressing P2X7 receptors than from control cells and was inhibited by ATP suggesting labelled sites represented human P2X7 receptors. Binding was reversible, saturable and modulated by P2X7 receptor ligands (Brilliant Blue G, KN62, ATP, decavanadate). Furthermore, ATP potency was reduced in the presence of divalent cations or NaCl. Radioligand binding exhibited both positive and negative cooperativity. Positive cooperativity was evident from bell shaped Scatchard plots, reduction in radioligand dissociation rate by unlabelled compound-17 and enhancement of radioligand binding by KN62 and unlabelled compound-17. ATP and decavanadate inhibited binding in a negative cooperative manner as they enhanced radioligand dissociation. Conclusions: These data demonstrate that human P2X7 receptors can be directly labelled and provide novel insights into receptor function. The positive cooperativity observed suggests that binding of compound-17 to one subunit in the P2X7 receptor complex enhances subsequent binding to other P2X7 subunits in the same complex. The negative cooperative effects of ATP suggest that ATP and compound-17 bind at separate, interacting, sites on the P2X7 receptor. PMID:17339830

  19. Definitive treatment of androgen receptor-positive salivary duct carcinoma with androgen deprivation therapy and external beam radiotherapy.

    PubMed

    Soper, Margaret S; Iganej, Shawn; Thompson, Lester D R

    2014-01-01

    Salivary duct carcinoma (SDC) is an aggressive malignancy with high recurrence rates. Standard management includes surgical resection followed by adjuvant radiation. Androgen receptor positivity has been described to be present in 40% to 90% of SDCs, and a recent case series showed a benefit to androgen deprivation therapy (ADT) in recurrent or metastatic disease. We present the case of an 87-year-old woman with a locally advanced androgen receptor-positive parotid SDC treated definitively with ADT and external beam radiotherapy, a regimen modeled after the treatment of prostate cancer. She had a complete response on positron emission tomography (PET)/CT scan and had no evidence of disease 24 months after the completion of treatment. To our knowledge, this case report is the first to describe the use of ADT plus radiation to definitively treat SDC. This regimen could be considered in patients with androgen receptor-positive SDCs who are considered unresectable or who refuse surgery. Copyright © 2013 Wiley Periodicals, Inc.

  20. Transformation-specific interaction of the bovine papillomavirus E5 oncoprotein with the platelet-derived growth factor receptor transmembrane domain and the epidermal growth factor receptor cytoplasmic domain.

    PubMed Central

    Cohen, B D; Goldstein, D J; Rutledge, L; Vass, W C; Lowy, D R; Schlegel, R; Schiller, J T

    1993-01-01

    The bovine papillomavirus E5 transforming protein appears to activate both the epidermal growth factor receptor (EGF-R) and the platelet-derived growth factor receptor (PDGF-R) by a ligand-independent mechanism. To further investigate the ability of E5 to activate receptors of different classes and to determine whether this stimulation occurs through the extracellular domain required for ligand activation, we constructed chimeric genes encoding PDGF-R and EGF-R by interchanging the extracellular, membrane, and cytoplasmic coding domains. Chimeras were transfected into NIH 3T3 and CHO(LR73) cells. All chimeras expressed stable protein which, upon addition of the appropriate ligand, could be activated as assayed by tyrosine autophosphorylation and biological transformation. Cotransfection of E5 with the wild-type and chimeric receptors resulted in the ligand-independent activation of receptors, provided that a receptor contained either the transmembrane domain of the PDGF-R or the cytoplasmic domain of the EGF-R. Chimeric receptors that contained both of these domains exhibited the highest level of E5-induced biochemical and biological stimulation. These results imply that E5 activates the PDGF-R and EGR-R by two distinct mechanisms, neither of which specifically involves the extracellular domain of the receptor. Consistent with the biochemical and biological activation data, coimmunoprecipitation studies demonstrated that E5 formed a complex with any chimera that contained a PDGF-R transmembrane domain or an EGF-R cytoplasmic domain, with those chimeras containing both domains demonstrating the greatest efficiency of complex formation. These results suggest that although different domains of the PDGF-R and EGF-R are required for E5 activation, both receptors are activated directly by formation of an E5-containing complex. Images PMID:8394451

  1. FUNCTIONAL ANALYSIS OF A NOVEL POSITIVE ALLOSTERIC MODULATOR OF AMPA RECEPTORS DERIVED FROM A STRUCTURE-BASED DRUG DESIGN STRATEGY

    PubMed Central

    Harms, Jonathan E.; Benveniste, Morris; Maclean, John K. F.; Partin, Kathryn M.; Jamieson, Craig

    2012-01-01

    Positive allosteric modulators of α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) receptors facilitate synaptic plasticity and can improve various forms of learning and memory. These modulators show promise as therapeutic agents for the treatment of neurological disorders such as schizophrenia, ADHD, and mental depression. Three classes of positive modulator, the benzamides, the thiadiazides, and the biarylsulfonamides differentially occupy a solvent accessible binding pocket at the interface between the two subunits that form the AMPA receptor ligand-binding pocket. Here, we describe the electrophysiological properties of a new chemotype derived from a structure-based drug design strategy (SBDD), which makes similar receptor interactions compared to previously reported classes of modulator. This pyrazole amide derivative, JAMI1001A, with a promising developability profile, efficaciously modulates AMPA receptor deactivation and desensitization of both flip and flop receptor isoforms. PMID:22735771

  2. Lapatinib or Trastuzumab Plus Taxane Therapy for Human Epidermal Growth Factor Receptor 2-Positive Advanced Breast Cancer: Final Results of NCIC CTG MA.31.

    PubMed

    Gelmon, Karen A; Boyle, Frances M; Kaufman, Bella; Huntsman, David G; Manikhas, Alexey; Di Leo, Angelo; Martin, Miguel; Schwartzberg, Lee S; Lemieux, Julie; Aparicio, Samuel; Shepherd, Lois E; Dent, Susan; Ellard, Susan L; Tonkin, Katia; Pritchard, Kathleen I; Whelan, Timothy J; Nomikos, Dora; Nusch, Arnd; Coleman, Robert E; Mukai, Hirofumi; Tjulandin, Sergei; Khasanov, Rustem; Rizel, Shulamith; Connor, Anne P; Santillana, Sergio L; Chapman, Judith-Anne W; Parulekar, Wendy R

    2015-05-10

    The efficacy of lapatinib versus trastuzumab combined with taxanes in the first-line setting of human epidermal growth factor receptor 2 (HER2) -positive metastatic breast cancer (BC) is unknown. The MA.31 trial compared a combination of first-line anti-HER2 therapy (lapatinib or trastuzumab) and taxane therapy for 24 weeks, followed by the same anti-HER2 monotherapy until progression. Stratification was by prior (neo)adjuvant anti-HER2 therapy, prior (neo)adjuvant taxane, planned taxane, and liver metastases. The primary end point was intention-to-treat (ITT) progression-free survival (PFS), defined as time from random assignment to progression by RECIST (version 1.0) criteria, or death for patients with locally assessed HER2-positive tumors. The primary test statistic was a stratified log-rank test for noninferiority. PFS was also assessed for patients with centrally confirmed HER2-positive tumors. From July 17, 2008, to December 1, 2011, 652 patients were accrued from 21 countries, resulting in 537 patients with centrally confirmed HER2-positive tumors. Median follow-up was 21.5 months. Median ITT PFS was 9.0 months with lapatinib and 11.3 months with trastuzumab. By ITT analysis, PFS was inferior for lapatinib compared with trastuzumab, with a stratified hazard ratio (HR) of 1.37 (95% CI, 1.13 to 1.65; P = .001). In patients with centrally confirmed HER2-positive tumors, median PFS was 9.1 months with lapatinib and 13.6 months with trastuzumab (HR, 1.48; 95% CI, 1.20 to 1.83; P < .001). More grade 3 or 4 diarrhea and rash were observed with lapatinib (P < .001). PFS results were supported by the secondary end point of overall survival, with an ITT HR of 1.28 (95% CI, 0.95 to 1.72; P = .11); in patients with centrally confirmed HER2-positive tumors, the HR was 1.47 (95% CI, 1.03 to 2.09; P = .03). As first-line therapy for HER2-positive metastatic BC, lapatinib combined with taxane was associated with shorter PFS and more toxicity compared with trastuzumab

  3. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer

    USDA-ARS?s Scientific Manuscript database

    An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis, and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in r...

  4. Type-I Insulin-Like Growth Factor Receptor (IGF1R)-Estrogen Receptor (ER) Crosstalk Contributes to Antiestrogen Therapy Resistance in Breast Cancer Cells

    DTIC Science & Technology

    2013-02-01

    penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR...great success in treating estrogen receptor (ER) positive breast cancer. However, both acquired and de novo resistance to this therapy prevents it from...has shown great success in treating estrogen receptor (ER) positive breast tumors. However, both acquired and de novo resistance to this therapy

  5. Exemestane With or Without Entinostat in Treating Patients With Recurrent Hormone Receptor-Positive Breast Cancer That is Locally Advanced or Metastatic

    ClinicalTrials.gov

    2018-06-28

    Estrogen Receptor Positive; HER2/Neu Negative; Male Breast Carcinoma; Progesterone Receptor Positive; Recurrent Breast Carcinoma; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7

  6. Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity

    PubMed Central

    Kim, Youngmi; Kim, Eunhee; Wu, Qiulian; Guryanova, Olga; Hitomi, Masahiro; Lathia, Justin D.; Serwanski, David; Sloan, Andrew E.; Weil, Robert J.; Lee, Jeongwu; Nishiyama, Akiko; Bao, Shideng; Hjelmeland, Anita B.; Rich, Jeremy N.

    2012-01-01

    Growth factor-mediated proliferation and self-renewal maintain tissue-specific stem cells and are frequently dysregulated in cancers. Platelet-derived growth factor (PDGF) ligands and receptors (PDGFRs) are commonly overexpressed in gliomas and initiate tumors, as proven in genetically engineered models. While PDGFRα alterations inform intertumoral heterogeneity toward a proneural glioblastoma (GBM) subtype, we interrogated the role of PDGFRs in intratumoral GBM heterogeneity. We found that PDGFRα is expressed only in a subset of GBMs, while PDGFRβ is more commonly expressed in tumors but is preferentially expressed by self-renewing tumorigenic GBM stem cells (GSCs). Genetic or pharmacological targeting of PDGFRβ (but not PDGFRα) attenuated GSC self-renewal, survival, tumor growth, and invasion. PDGFRβ inhibition decreased activation of the cancer stem cell signaling node STAT3, while constitutively active STAT3 rescued the loss of GSC self-renewal caused by PDGFRβ targeting. In silico survival analysis demonstrated that PDGFRB informed poor prognosis, while PDGFRA was a positive prognostic factor. Our results may explain mixed clinical responses of anti-PDGFR-based approaches and suggest the need for integration of models of cancer as an organ system into development of cancer therapies. PMID:22661233

  7. Immunocytochemical assessment of sigma-1 receptor and human sterol isomerase in breast cancer and their relationship with a series of prognostic factors

    PubMed Central

    Simony-Lafontaine, J; Esslimani, M; Bribes, E; Gourgou, S; Lequeux, N; Lavail, R; Grenier, J; Kramar, A; Casellas, P

    2000-01-01

    The purpose of this study was to immunocytochemically investigate two new markers, the sigma-1 receptor and the human sterol isomerase (hSI), in comparison with a series of clinicopathological and immunocytochemical prognostic factors in a trial including 95 patients with operable primary breast cancers. Our results showed no statistically significant relationship between these two markers and the age of the patients, their menopausal status, the tumour size and its histological grade, the nodal status and the expression of the Ki-67 proliferative marker. However, we evidenced a close correlation between the sigma-1 receptor expression and the hormonal receptor positivity (P = 0.008), essentially due to a link with the progesterone receptor status (P = 0.01). By contrast there was an inverse relationship between hSI expression and the oestrogen receptor and/or progesterone receptor positivity (P = 0.098). A significant relationship was shown between both the sigma-1 receptor, hSI expressions and Bcl2 expression, with P = 0.017 and 0.035 respectively. We also assessed whether the expression of the sigma-1 receptor or hSI might be linked with disease-free survival (DFS) and found that the presence of hSI and the absence of sigma-1 receptor expression were associated with a poorer disease-free survival (P = 0.007). Altogether these results suggest that in primary breast carcinomas in association with the evaluation of the steroid receptor status, the sigma-1 receptor and hSI may be interesting new markers useful to identify those patients who might be able to benefit from an adjuvant therapy. © 2000 Cancer Research Campaign PMID:10864204

  8. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling

    PubMed Central

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2017-01-01

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr52, which then promoted the dephosphorylation of CAR at Thr38 by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR. PMID:23652203

  9. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    PubMed

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  10. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2007-03-01

    Fibroblast growth factor receptors (Fgfrs) are expressed in the ureteric bud and metanephric mesenchyme of the developing kidney. Furthermore, in vitro and in vivo studies have shown that exogenous fibroblast growth factors (Fgfs) increase growth and maturation of the metanephric mesenchyme and ureteric bud. Deletion of fgf7, fgf10, and fgfr2IIIb (the receptor isoform that binds Fgf7 and Fgf10) in mice lead to smaller kidneys with fewer collecting ducts and nephrons. Overexpression of a dominant negative receptor isoform in transgenic mice has revealed more striking defects including renal aplasia or severe dysplasia. Moreover, deletion of many fgf ligands and receptors in mice results in early embryonic lethality, making it difficult to determine their roles in kidney development. Recently, conditional targeting approaches revealed that deletion of fgf8 from the metanephric mesenchyme interrupts nephron formation. Furthermore, deletion of fgfr2 from the ureteric bud resulted in both ureteric bud branching and stromal mesenchymal patterning defects. Deletion of both fgfr1 and fgfr2 in the metanephric mesenchyme resulted in renal aplasia, characterized by defects in metanephric mesenchyme formation and initial ureteric bud elongation and branching. Thus, Fgfr signaling is critical for growth and patterning of all renal lineages at early and later stages of kidney development.

  11. Co-localization of TRPV2 and insulin-like growth factor-I receptor in olfactory neurons in adult and fetal mouse.

    PubMed

    Matsui, Hitoshi; Noguchi, Tomohiro; Takakusaki, Kaoru; Kashiwayanagi, Makoto

    2014-01-01

    TRPV2, a member of the transient receptor potential family, has been isolated as a capsaicin-receptor homolog and is thought to respond to noxious heat. Here we show that TRPV2 mRNA is predominantly expressed in the subpopulation of olfactory sensory neurons (OSNs). We carried out histochemical analyses of TRPV2 and insulin-like growth factor-I receptor (IGF-IR) using in situ hybridization and immunofluorescence in the adult olfactory system. In olfactory mucosa, intensive TRPV2 immunostaining was observed at the olfactory axon bundles but not at the soma. TRPV2-positive labeling was preferentially found in the olfactory nerve layer in the olfactory bulb (OB). Furthermore, we demonstrated that a positive signal for IGF-IR mRNA was detected in OSNs expressing TRPV2 mRNA. In embryonic stages, TRPV2 immunoreactivity was observed on axon bundles of developing OSNs in the nasal region starting from 12.5 d of gestation and through fetal development. Observations in this study suggest that TRPV2 coupled with IGF-IR localizes to growing olfactory axons in the OSNs.

  12. Hormone Receptor Status in Breast Cancer and its Relation to Age and Other Prognostic Factors

    PubMed Central

    Pourzand, Ali; Fakhree, M. Bassir A.; Hashemzadeh, Shahryar; Halimi, Monireh; Daryani, Amir

    2011-01-01

    Background: Increasing evidence shows the importance of young age, estrogen receptor (ER), progesterone receptor (PR) status, and HER-2 expression in patients with breast cancers. Patients and methods: We organized an analytic cross-sectional study of 105 women diagnosed with breast cancer who have been operated on between 2008 to 2010. We evaluated age, size, hormone receptor status, HER-2 and P53 expression as possible indicator of lymph node involvement. Results: There is a direct correlation between positive progesterone receptor status and being younger than 40 (P < 0.05). Also, compared with older women, young women had tumors that were more likely to be large in size and have higher stages (P < 0.05). Furthermore patients with negative progesterone receptor status were more likely to have HER-2 overexpression (P < 0.05). The differences in propensity to lymph node metastasis between hormone receptor statuses were not statically significant. Conclusions: Although negative progesterone receptor tumors were more likely to have HER-2 overexpression, it is possible that higher stage and larger size breast cancer in younger women is related to positive progesterone receptor status. PMID:21695095

  13. Design, synthesis and screening studies of potent thiazol-2-amine derivatives as fibroblast growth factor receptor 1 inhibitors.

    PubMed

    Kumar, B V S Suneel; Lakshmi, Narasu; Kumar, M Ravi; Rambabu, Gundla; Manjashetty, Thimmappa H; Arunasree, Kalle M; Sriram, Dharmarajan; Ramkumar, Kavya; Neamati, Nouri; Dayam, Raveendra; Sarma, J A R P

    2014-01-01

    Fibroblast growth factor receptor 1 (FGFR1) a tyrosine kinase receptor, plays important roles in angiogenesis, embryonic development, cell proliferation, cell differentiation, and wound healing. The FGFR isoforms and their receptors (FGFRs) considered as a potential targets and under intense research to design potential anticancer agents. Fibroblast growth factors (FGF's) and its growth factor receptors (FGFR) plays vital role in one of the critical pathway in monitoring angiogenesis. In the current study, quantitative pharmacophore models were generated and validated using known FGFR1 inhibitors. The pharmacophore models were generated using a set of 28 compounds (training). The top pharmacophore model was selected and validated using a set of 126 compounds (test set) and also using external validation. The validated pharmacophore was considered as a virtual screening query to screen a database of 400,000 virtual molecules and pharmacophore model retrieved 2800 hits. The retrieved hits were subsequently filtered based on the fit value. The selected hits were subjected for docking studies to observe the binding modes of the retrieved hits and also to reduce the false positives. One of the potential hits (thiazole-2-amine derivative) was selected based the pharmacophore fit value, dock score, and synthetic feasibility. A few analogues of the thiazole-2-amine derivative were synthesized. These compounds were screened for FGFR1 activity and anti-proliferative studies. The top active compound showed 56.87% inhibition of FGFR1 activity at 50 µM and also showed good cellular activity. Further optimization of thiazole-2-amine derivatives is in progress.

  14. Positive Modulators of the N-Methyl-d-aspartate Receptor: Structure-Activity Relationship Study of Steroidal 3-Hemiesters.

    PubMed

    Krausova, Barbora; Slavikova, Barbora; Nekardova, Michaela; Hubalkova, Pavla; Vyklicky, Vojtech; Chodounska, Hana; Vyklicky, Ladislav; Kudova, Eva

    2018-05-24

    Here, we report the synthesis of pregn-5-ene and androst-5-ene dicarboxylic acid esters and explore the structure-activity relationship (SAR) for their modulation of N-methyl-d-aspartate receptors (NMDARs). All compounds were positive modulators of recombinant GluN1/GluN2B receptors (EC 50 varying from 1.8 to 151.4 μM and E max varying from 48% to 452%). Moreover, 10 compounds were found to be more potent GluN1/GluN2B receptor modulators than endogenous pregnenolone sulfate (EC 50 = 21.7 μM). The SAR study revealed a relationship between the length of the residues at carbon C-3 of the steroid molecule and the positive modulatory effect at GluN1/GluN2B receptors for various D-ring modifications. A selected compound, 20-oxo-pregnenolone hemiadipate, potentiated native NMDARs to a similar extent as GluN1/GluN2A-D receptors and inhibited AMPARs and GABA A R responses. These results provide a unique opportunity for the development of new steroid based drugs with potential use in the treatment of neuropsychiatric disorders involving hypofunction of NMDARs.

  15. A glioma-derived analog to platelet-derived growth factor: demonstration of receptor competing activity and immunological crossreactivity.

    PubMed Central

    Nistér, M; Heldin, C H; Wasteson, A; Westermark, B

    1984-01-01

    A human clonal glioma cell line, U-343 MGa Cl 2, cultured under serum-free conditions, was found to release a factor that competed with 125I-labeled platelet-derived growth factor (125I-PDGF) for binding to human foreskin fibroblasts. The concentration of competing activity in conditioned medium was equal to 20-30 ng of PDGF per ml. The PDGF receptor competing activity had an elution position on Sephadex G-200 close to that of tracer PDGF. The same fractions in the chromatogram also contained growth-promoting activity and material active in a PDGF radioimmunoassay. Incubation of partially purified, 125I-labeled glioma factor with fibroblasts, or rabbit anti-PDGF serum, led to the selective binding of a component with an estimated Mr of 31,000, as shown by NaDodSO4/gel electrophoresis under nonreducing conditions. After reduction this component migrated as a Mr 18,000 protein. Thus, the behavior in NaDodSO4/gel electrophoresis was similar to that of PDGF. Furthermore, incubation of partially purified glioma factor with immobilized PDGF antibodies markedly decreased the amount of PDGF receptor competing activity remaining in the supernatant. These results suggest that the factor produced by glioma cells has structural, immunological, and functional resemblance to PDGF. We previously reported that a human osteosarcoma cell line produces a PDGF-like molecule with growth-promoting activity. Taken together with the recent finding that PDGF is homologous to the transforming gene product of simian sarcoma virus, our present data give additional support for the idea that an autocrine activation of the PDGF receptor may be operational in the growth of human tumors of mesenchymal or glial origin. Images PMID:6322178

  16. Insulin-like growth factor I and risk of breast cancer by age and hormone receptor status-A prospective study within the EPIC cohort.

    PubMed

    Kaaks, Rudolf; Johnson, Theron; Tikk, Kaja; Sookthai, Disorn; Tjønneland, Anne; Roswall, Nina; Overvad, Kim; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Dossus, Laure; Rinaldi, Sabina; Romieu, Isabelle; Boeing, Heiner; Schütze, Madlen; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Grioni, Sara; Tumino, Rosario; Sacerdote, Carlotta; Panico, Salvatore; Buckland, Genevieve; Argüelles, Marcial; Sánchez, María-José; Amiano, Pilar; Chirlaque, Maria-Dolores; Ardanaz, Eva; Bueno-de-Mesquita, H Bas; van Gils, Carla H; Peeters, Petra H; Andersson, Anne; Sund, Malin; Weiderpass, Elisabete; Gram, Inger Torhild; Lund, Eiliv; Khaw, Kay-Tee; Wareham, Nick; Key, Timothy J; Travis, Ruth C; Merritt, Melissa A; Gunter, Marc J; Riboli, Elio; Lukanova, Annekatrin

    2014-06-01

    Experimental evidence shows cross-talk in mammary cells between estrogen, insulin-like growth factor I (IGF-I) and their respective receptors and possible synergistic effects of estrogen receptor (ER) activation and increased IGF-I signaling with regard to breast tumor development, and epidemiological evidence suggests that circulating IGF-I levels may be related more to the risk of ER-positive than ER-negative breast cancer. Using a case-control study nested within the prospective European EPIC cohort (938 breast cancer cases and 1,394 matched control subjects), we analyzed the relationships of prediagnostic serum IGF-I levels with the risk of estrogen and progesterone receptor-positive and -negative breast tumors. IGF-I levels were positively associated with the risk of ER+ breast tumors overall (pre- and postmenopausal women combined, odds ratio (OR)Q4-Q1 = 1.41 [95% confidence interval (CI) 1.01-1.98] for the highest vs. lowest quartile; OR = 1.17 [95% CI 1.04-1.33] per 1-standard deviation (SD) increase in IGF-I, ptrend = 0.01) and among women who were diagnosed with breast cancer at 50 years or older (ORQ3-Q1 = 1.38 [95% CI 1.01-1.89]; OR = 1.19 [95% CI 1.04-1.36] per 1-SD increase in IGF-I, ptrend = 0.01) but not with receptor-positive disease diagnosed at an earlier age. No statistically significant associations were observed for ER- breast tumors overall and by age at diagnosis. Tests for heterogeneity by receptor status of the tumor were not statistically significant, except for women diagnosed with breast cancer at 50 years or older (phet = 0.03 for ER+/PR+ vs. ER-/PR- disease). Our data add to a global body of evidence indicating that higher circulating IGF-I levels may increase risk specifically of receptor-positive, but not receptor-negative, breast cancer diagnosed at 50 years or older. © 2013 UICC.

  17. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    PubMed

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  18. Involvement of macrophage migration inhibitory factor and its receptor (CD74) in human breast cancer.

    PubMed

    Richard, Vincent; Kindt, Nadège; Decaestecker, Christine; Gabius, Hans-Joachim; Laurent, Guy; Noël, Jean-Christophe; Saussez, Sven

    2014-08-01

    Macrophage migration inhibitory factor (MIF) and its receptor CD74 appear to be involved in tumorigenesis. We evaluated, by immunohistochemical staining, the tissue expression and distribution of MIF and CD74 in serial sections of human invasive breast cancer tumor specimens. The serum MIF level was also determined in breast cancer patients. We showed a significant increase in serum MIF average levels in breast cancer patients compared to healthy individuals. MIF tissue expression, quantified by a modified Allred score, was strongly increased in carcinoma compared to tumor-free specimens, in the cancer cells and in the peritumoral stroma, with fibroblasts the most intensely stained. We did not find any significant correlation with histoprognostic factors, except for a significant inverse correlation between tumor size and MIF stromal positivity. CD74 staining was heterogeneous and significantly decreased in cancer cells but increased in the surrounding stroma, namely in lymphocytes, macrophages and vessel endothelium. There was no significant variation according to classical histoprognostic factors, except that CD74 stromal expression was significantly correlated with triple-negative receptor (TRN) status and the absence of estrogen receptors. In conclusion, our data support the concept of a functional role of MIF in human breast cancer. In addition to auto- and paracrine effects on cancer cells, MIF could contribute to shape the tumor microenvironment leading to immunomodulation and angiogenesis. Interfering with MIF effects in breast tumors in a therapeutic perspective remains an attractive but complex challenge. Level of co-expression of MIF and CD74 could be a surrogate marker for efficacy of anti-angiogenic drugs, particularly in TRN breast cancer tumor.

  19. Gene expression profiling of histologically normal breast tissue in females with human epidermal growth factor receptor 2‑positive breast cancer.

    PubMed

    Zubor, Pavol; Hatok, Jozef; Moricova, Petra; Kapustova, Ivana; Kajo, Karol; Mendelova, Andrea; Sivonova, Monika Kmetova; Danko, Jan

    2015-02-01

    Gene expression profile‑based taxonomy of breast cancer (BC) has been described as a significant breakthrough in comprehending the differences in the origin and behavior of cancer to allow individually tailored therapeutic approaches. In line with this, we hypothesized that the gene expression profile of histologically normal epithelium (HNEpi) could harbor certain genetic abnormalities predisposing breast tissue cells to develop human epidermal growth factor receptor 2 (HER2)‑positive BC. Thus, the aim of the present study was to assess gene expression in normal and BC tissue (BCTis) from patients with BC in order to establish its value as a potential diagnostic marker for cancer development. An array study evaluating a panel of 84 pathway‑ and disease‑specific genes in HER2‑positive BC and tumor‑adjacent HNEpi was performed using quantitative polymerase chain reaction in 12 patients using microdissected samples from frozen tissue. Common prognostic and predictive parameters of BC were assessed by immunohistochemistry and in situ hybridization. In the BCTis and HNEpi samples of 12 HER2‑positive subjects with BC, the expression of 2,016 genes was assessed. A total of 39.3% of genes were deregulated at a minimal two‑fold deregulation rate and 10.7% at a five‑fold deregulation rate in samples of HNEpi or BCTis. Significant differences in gene expression between BCTis and HNEpi samples were revealed for BCL2L2, CD44, CTSD, EGFR, ERBB2, ITGA6, NGFB, RPL27, SCBG2A1 and SCGB1D2 genes (P<0.05), as well as GSN, KIT, KLK5, SERPINB5 and STC2 genes (P<0.01). Insignificant differences (P<0.07) were observed for CCNA1, CLU, DLC1, GABRP and IL6 genes. The ontological gene analyses revealed that the majority of the deregulated genes in the HNEpi samples were part of the functional gene group directly associated with BC origin and prognosis. Functional analysis showed that the most frequent gene deregulations occurred in genes associated with apoptosis and cell

  20. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  1. Successful combination immunotherapy of anti-gamma aminobutyric acid (GABA)A receptor antibody-positive encephalitis with extensive multifocal brain lesions.

    PubMed

    Fukami, Yuki; Okada, Hiroaki; Yoshida, Mari; Yamaguchi, Keiji

    2017-08-31

    A 78-year old woman who presented with akinetic mutism was admitted to our hospital. Brain MRI showed multifocal increased T 2 /FLAIR signal with extensive cortical-subcortical involvement. We suspected autoimmune encephalitis and the patient received methylprednisolone pulse. Her conscious level gradually recovered, but later relapsed again and presented with refractory status epilepticus. We treated her with intravenous immunoglobulin, plasma exchange and pulsed cyclophosphamide, with satisfactory response. A brain biopsy showed perivascular lymphocytic infiltrates and reactive gliosis. Anti-gamma aminobutyric acid (GABA) A receptor antibodies test came back to be positive after her recovery, and the diagnosis of anti-GABA A receptor antibody-positive encephalitis was made. This is a very rare case where brain biopsies were performed in a patient with anti-GABA A receptor antibody-positive encephalitis.

  2. Analysis of ligand-receptor cross-linked fragments by mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, C.D.; Sargsyan, H.; Hurst, Gregory

    G-protein coupled receptors (GPCRs) are a class of integral membrane receptor proteins that are characterized by a signature seven-transmembrane (7-TM) configuration. The a-factor receptor (Ste2p) from Saccharomyces cerevisiae is a GPCR that, upon binding of a peptide ligand, transduces a signal to initiate a cascade of events leading to the mating of haploid yeast cells. This study summarizes the application of affinity purification and of matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) experiments using biotinylated photoactivatable a-factor analogs. Affinity purification and enrichment of biotinylated peptides by monomeric avidin beads resulted in mass spectrometric detection of specific signals corresponding to crosslinked fragments ofmore » Ste2p. Data obtained from cyanogen bromide (CNBr) fragments of receptor cross-linked to an a-factor analog with the photoaffinity group p-benzoyl-L-phenylalanine on position 1 were in agreement with the previous results reported by our laboratory suggesting the cross-linking between position 1 of a-factor and a region of Ste2p covering residues 251 294.« less

  3. Atrial natriuretic factor receptor heterogeneity in rat tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andresen, J.W.; Kuno, T.; Kamisaki, Y.

    1986-03-01

    Rat /sup 125/I-atrial natriuretic factor (ANF, 8-33) was used to identify ANF receptors in membrane preparations from rat adrenal gland and lung. When solubilized with Lubrol-PX, the receptors retained a binding profile and properties that correspond to the high affinity and specificity found in crude membranes. Single peaks of binding activity were observed in gel permeation HPLC and density gradient centrifugation analysis of the solubilized preparations. However, when membranes and solubilized preparations were labeled with /sup 125/I-ANF, treated with crosslinking reagent (disuccinimidyl suberate), and analyzed by SDS gel electrophoresis several specifically labeled bands (120,000, 70,000, and 60,000 daltons) were identifiedmore » by autoradiography. The relative distribution of the specifically labeled proteins varied significantly between rat adrenal gland and lung. In adrenal glands the 120K dalton band was the most prominent specifically labeled protein, while the 60K and 70K dalton proteins were labeled to a lesser degree. In lung membranes the lower molecular weight proteins were more prominent. These results suggest the presence of multiple ANF receptor subtypes, the distribution of which varies among tissues. Chromatographic separation and further characterization of these receptors are currently in progress, and preliminary purification studies support this hypothesis.« less

  4. Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American Society of Clinical Oncology clinical practice guideline.

    PubMed

    Ramakrishna, Naren; Temin, Sarah; Chandarlapaty, Sarat; Crews, Jennie R; Davidson, Nancy E; Esteva, Francisco J; Giordano, Sharon H; Gonzalez-Angulo, Ana M; Kirshner, Jeffrey J; Krop, Ian; Levinson, Jennifer; Modi, Shanu; Patt, Debra A; Perez, Edith A; Perlmutter, Jane; Winer, Eric P; Lin, Nancy U

    2014-07-01

    To provide formal expert consensus-based recommendations to practicing oncologists and others on the management of brain metastases for patients with human epidermal growth factor receptor 2 (HER2) -positive advanced breast cancer. The American Society of Clinical Oncology (ASCO) convened a panel of medical oncology, radiation oncology, guideline implementation, and advocacy experts and conducted a systematic review of the literature. When that failed to yield sufficiently strong quality evidence, the Expert Panel undertook a formal expert consensus-based process to produce these recommendations. ASCO used a modified Delphi process. The panel members drafted recommendations, and a group of other experts joined them for two rounds of formal ratings of the recommendations. No studies or existing guidelines met the systematic review criteria; therefore, ASCO conducted a formal expert consensus-based process. Patients with brain metastases should receive appropriate local therapy and systemic therapy, if indicated. Local therapies include surgery, whole-brain radiotherapy, and stereotactic radiosurgery. Treatments depend on factors such as patient prognosis, presence of symptoms, resectability, number and size of metastases, prior therapy, and whether metastases are diffuse. Other options include systemic therapy, best supportive care, enrollment onto a clinical trial, and/or palliative care. Clinicians should not perform routine magnetic resonance imaging (MRI) to screen for brain metastases, but rather should have a low threshold for MRI of the brain because of the high incidence of brain metastases among patients with HER2-positive advanced breast cancer. © 2014 by American Society of Clinical Oncology.

  5. TNF Receptor 2 Makes Tumor Necrosis Factor a Friend of Tumors

    PubMed Central

    Sheng, Yuqiao; Li, Feng; Qin, Zhihai

    2018-01-01

    Tumor necrosis factor (TNF) is widely accepted as a tumor-suppressive cytokine via its ubiquitous receptor TNF receptor 1 (TNFR1). The other receptor, TNFR2, is not only expressed on some tumor cells but also on suppressive immune cells, including regulatory T cells and myeloid-derived suppressor cells. In contrast to TNFR1, TNFR2 diverts the tumor-inhibiting TNF into a tumor-advocating factor. TNFR2 directly promotes the proliferation of some kinds of tumor cells. Also activating immunosuppressive cells, it supports immune escape and tumor development. Hence, TNFR2 may represent a potential target of cancer therapy. Here, we focus on expression and role of TNFR2 in the tumor microenvironment. We summarize the recent progress in understanding how TNFR2-dependent mechanisms promote carcinogenesis and tumor growth and discuss the potential value of TNFR2 in cancer treatment. PMID:29892300

  6. Positive Results Bias and Impact Factor in Ophthalmology.

    PubMed

    Mimouni, Michael; Krauthammer, Mark; Gershoni, Assaf; Mimouni, Francis; Nesher, Ronit

    2015-01-01

    Previous studies in several fields of medicine have reported an association between the result of a trial (positive versus negative) and the impact factor of the journal in which it is published. The purpose of this study was to test the hypotheses that in the field of ophthalmology: (1) studies with positive results have a greater chance of being published in journals with a higher impact factor; (2) likewise, studies with a larger number of participants are more likely to be published in journals with a higher impact factor. In this retrospective study, consecutive randomized, controlled trials conducted in the field of ophthalmology between 1 January 2010 and 1 January 2013 were retrieved from PubMed. Each study was classified as having either a positive or negative result. A positive result was defined as a study in which there was a statistically significant difference between groups (p < 0.05). The impact factor of the journal in which the study was published was retrieved. The number of patients enrolled and whether or not the trial was placebo controlled was documented as well. Out of 2524 studies identified, 892 met the inclusion criteria. Studies with positive results were published in journals with a significantly higher impact factor than that of the journals in which negative result studies were published (p < 0.001). Studies with positive results had a slightly larger number of participants than studies with negative results (p = 0.028). In multiple regression analysis, the ranked impact factor was significantly predicted by the primary outcome (positive versus negative results) and the number of participants in a study (total R(2 )= 2.95, p < 0.001). In the field of ophthalmology, articles with positive results are currently published in journals with a higher impact factor. This finding supports the ongoing occurrence of positive results bias in the field of ophthalmology.

  7. Autoantibodies against β1 receptor and AT1 receptor in type 2 diabetes patients with left ventricular dilatation.

    PubMed

    Zhao, Linshuang; Xu, Chunyan; Xu, Jinling

    2014-01-01

    To explore the relationship between the autoantibodies against the β1 and AT1 receptors and left ventricular dilatation in patients with type 2 diabetes (T2DM). The autoantibodies against the β1 and angiotensin II type 1 (AT1) receptors of T2DM patients with and without hypertension were screened by ELISA. Multiple logistic regression was used to analyze the risk factors for left ventricular dilatation. The reversing effect of left ventricular dilatation was evaluated after receptor blocker treatment. The positive rates of autoantibodies against the β1 and AT1 receptors (43.0 and 44.1%, respectively) in T2DM patients with hypertension were significantly higher than those in normotensive patients (16.0 and 10.4%, respectively; all p < 0.01). Furthermore, among T2DM patients with hypertension, the positive rates (61.4 and 64.9%, respectively) in patients with left ventricular dilatation were remarkably higher than those with normal left ventricular dimensions (34.4 and 36.1%, respectively; all p < 0.01). The presence of β1 receptor antibody and AT1 receptor antibody were risk factors for left ventricular dilatation (p < 0.05). The curative effect of metoprolol tartrate and valsartan in reversing left ventricular hypertrophy in the group positive for autoantibodies was much better than in the negative group. The findings show that autoantibodies against the β1 and AT1 receptors may play a role in predicting left ventricular dilatation in T2DM patients in combination with hypertension. Metoprolol tartrate and valsartan are effective and safe in the treatment of these patients. © 2014 S. Karger AG, Basel.

  8. The ubiquitin ligase Nedd4 mediates oxidized low-density lipoprotein-induced downregulation of insulin-like growth factor-1 receptor

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Parthasarathy, Sampath; Delafontaine, Patrice

    2008-01-01

    Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 μg/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2 ± 1.7 h from 24.4 ± 4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. PMID:18723765

  9. Exploring pharmacological activities and signaling of morphinans substituted in position 6 as potent agonists interacting with the μ opioid receptor

    PubMed Central

    2014-01-01

    Background Opioid analgesics are the most effective drugs for the treatment of moderate to severe pain. However, they also produce several adverse effects that can complicate pain management. The μ opioid (MOP) receptor, a G protein-coupled receptor, is recognized as the opioid receptor type which primarily mediates the pharmacological actions of clinically used opioid agonists. The morphinan class of analgesics including morphine and oxycodone are of main importance as therapeutically valuable drugs. Though the natural alkaloid morphine contains a C-6-hydroxyl group and the semisynthetic derivative oxycodone has a 6-carbonyl function, chemical approaches have uncovered that functionalizing position 6 gives rise to a range of diverse activities. Hence, position 6 of N-methylmorphinans is one of the most manipulated sites, and is established to play a key role in ligand binding at the MOP receptor, efficacy, signaling, and analgesic potency. We have earlier reported on a chemically innovative modification in oxycodone resulting in novel morphinans with 6-acrylonitrile incorporated substructures. Results This study describes in vitro and in vivo pharmacological activities and signaling of new morphinans substituted in position 6 with acrylonitrile and amido functions as potent agonists and antinociceptive agents interacting with MOP receptors. We show that the presence of a 6-cyano group in N-methylmorphinans has a strong influence on the binding to the opioid receptors and post-receptor signaling. One 6-cyano-N-methylmorphinan of the series was identified as the highest affinity and most selective MOP agonist, and very potent in stimulating G protein coupling and intracellular calcium release through the MOP receptor. In vivo, this MOP agonist showed to be greatly effective against thermal and chemical nociception in mice with marked increased antinociceptive potency than the lead molecule oxycodone. Conclusion Development of such novel chemotypes by targeting

  10. Structure of nerve growth factor complexed with the shared neurotrophin receptor p75.

    PubMed

    He, Xiao-Lin; Garcia, K Christopher

    2004-05-07

    Neurotrophins are secreted growth factors critical for the development and maintenance of the vertebrate nervous system. Neurotrophins activate two types of cell surface receptors, the Trk receptor tyrosine kinases and the shared p75 neurotrophin receptor. We have determined the 2.4 A crystal structure of the prototypic neurotrophin, nerve growth factor (NGF), complexed with the extracellular domain of p75. Surprisingly, the complex is composed of an NGF homodimer asymmetrically bound to a single p75. p75 binds along the homodimeric interface of NGF, which disables NGF's symmetry-related second p75 binding site through an allosteric conformational change. Thus, neurotrophin signaling through p75 may occur by disassembly of p75 dimers and assembly of asymmetric 2:1 neurotrophin/p75 complexes, which could potentially engage a Trk receptor to form a trimolecular signaling complex.

  11. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8.

    PubMed

    Auciello, Giulio; Cunningham, Debbie L; Tatar, Tulin; Heath, John K; Rappoport, Joshua Z

    2013-01-15

    Fibroblast growth factor receptors (FGFRs) mediate a wide spectrum of cellular responses that are crucial for development and wound healing. However, aberrant FGFR activity leads to cancer. Activated growth factor receptors undergo stimulated endocytosis, but can continue to signal along the endocytic pathway. Endocytic trafficking controls the duration and intensity of signalling, and growth factor receptor signalling can lead to modifications of trafficking pathways. We have developed live-cell imaging methods for studying FGFR dynamics to investigate mechanisms that coordinate the interplay between receptor trafficking and signal transduction. Activated FGFR enters the cell following recruitment to pre-formed clathrin-coated pits (CCPs). However, FGFR activation stimulates clathrin-mediated endocytosis; FGF treatment increases the number of CCPs, including those undergoing endocytosis, and this effect is mediated by Src and its phosphorylation target Eps8. Eps8 interacts with the clathrin-mediated endocytosis machinery and depletion of Eps8 inhibits FGFR trafficking and immediate Erk signalling. Once internalized, FGFR passes through peripheral early endosomes en route to recycling and degredative compartments, through an Src- and Eps8-dependent mechanism. Thus Eps8 functions as a key coordinator in the interplay between FGFR signalling and trafficking. This work provides the first detailed mechanistic analysis of growth factor receptor clustering at the cell surface through signal transduction and endocytic trafficking. As we have characterised the Src target Eps8 as a key regulator of FGFR signalling and trafficking, and identified the early endocytic system as the site of Eps8-mediated effects, this work provides novel mechanistic insight into the reciprocal regulation of growth factor receptor signalling and trafficking.

  12. Selective coexpression of VEGF receptor 2 in EGFRvIII-positive glioblastoma cells prevents cellular senescence and contributes to their aggressive nature.

    PubMed

    Jones, Karra A; Gilder, Andrew S; Lam, Michael S; Du, Na; Banki, Michael A; Merati, Aran; Pizzo, Donald P; VandenBerg, Scott R; Gonias, Steven L

    2016-05-01

    In glioblastoma (GBM), the gene for epidermal growth factor receptor (EGFR) is frequently amplified. EGFR mutations also are common, including a truncation mutation that yields a constitutively active variant called EGFR variant (v)III. EGFRvIII-positive GBM progresses rapidly; however, the reason for this is not clear because the activity of EGFRvIII is attenuated compared with EGF-ligated wild-type EGFR. We hypothesized that EGFRvIII-expressing GBM cells selectively express other oncogenic receptors that support tumor progression. Mining of The Cancer Genome Atlas prompted us to test whether GBM cells in culture, which express EGFRvIII, selectively express vascular endothelial growth factor receptor (VEGFR)2. We also studied human GBM propagated as xenografts. We then applied multiple approaches to test the effects of VEGFR2 on GBM cell growth, apoptosis, and cellular senescence. In human GBM, EGFR overexpression and EGFRvIII positivity were associated with increased VEGFR2 expression. In GBM cells in culture, EGFRvIII-initiated cell signaling increased expression of VEGFR2, which prevented cellular senescence and promoted cell cycle progression. The VEGFR-selective tyrosine kinase inhibitor cediranib decreased tumor DNA synthesis, increased staining for senescence-associated β-galactosidase, reduced retinoblastoma phosphorylation, and increased p27(Kip1), all markers of cellular senescence. Similar results were obtained when VEGFR2 was silenced. VEGFR2 expression by GBM cells supports cell cycle progression and prevents cellular senescence. Coexpression of VEGFR2 by GBM cells in which EGFR signaling is activated may contribute to the aggressive nature of these cells. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Soluble tumor necrosis factor receptor-1 in preterm infants with chronic lung disease.

    PubMed

    Sato, Miho; Mori, Masaaki; Nishimaki, Shigeru; An, Hiromi; Naruto, Takuya; Sugai, Toshiyuki; Shima, Yoshio; Seki, Kazuo; Yokota, Shumpei

    2010-04-01

    It is clear that inflammation plays an important role in developing chronic lung disease in preterm infants. The purpose of the present study is to investigate changes of serum soluble tumor necrosis factor receptor-1 levels over time in infants with chronic lung disease. The serum levels of soluble tumor necrosis factor receptor-1 were measured after delivery, and at 7, 14, 21 and 28 days of age in 10 infants with chronic lung disease and in 18 infants without chronic lung disease. The serum level of soluble tumor necrosis factor receptor-1 was significantly higher in infants with chronic lung disease than in infants without chronic lung disease after delivery. The differences between these two groups remained up to 28 days of age. Prenatal inflammation with persistence into postnatal inflammation may be involved in the onset of chronic lung disease.

  14. Constrained positive matrix factorization: Elemental ratios, spatial distinction, and chemical transport model source contributions

    NASA Astrophysics Data System (ADS)

    Sturtz, Timothy M.

    Source apportionment models attempt to untangle the relationship between pollution sources and the impacts at downwind receptors. Two frameworks of source apportionment models exist: source-oriented and receptor-oriented. Source based apportionment models use presumed emissions and atmospheric processes to estimate the downwind source contributions. Conversely, receptor based models leverage speciated concentration data from downwind receptors and apply statistical methods to predict source contributions. Integration of both source-oriented and receptor-oriented models could lead to a better understanding of the implications sources have on the environment and society. The research presented here investigated three different types of constraints applied to the Positive Matrix Factorization (PMF) receptor model within the framework of the Multilinear Engine (ME-2): element ratio constraints, spatial separation constraints, and chemical transport model (CTM) source attribution constraints. PM10-2.5 mass and trace element concentrations were measured in Winston-Salem, Chicago, and St. Paul at up to 60 sites per city during two different seasons in 2010. PMF was used to explore the underlying sources of variability. Information on previously reported PM10-2.5 tire and brake wear profiles were used to constrain these features in PMF by prior specification of selected species ratios. We also modified PMF to allow for combining the measurements from all three cities into a single model while preserving city-specific soil features. Relatively minor differences were observed between model predictions with and without the prior ratio constraints, increasing confidence in our ability to identify separate brake wear and tire wear features. Using separate data, source contributions to total fine particle carbon predicted by a CTM were incorporated into the PMF receptor model to form a receptor-oriented hybrid model. The level of influence of the CTM versus traditional PMF was

  15. Emerging growth factor receptor antagonists for the treatment of renal cell carcinoma.

    PubMed

    Zahoor, Haris; Rini, Brian I

    2016-12-01

    The landscape of systemic treatment for metastatic renal cell carcinoma (RCC) has dramatically changed with the introduction of targeted agents including vascular endothelial growth factor (VEGF) inhibitors. Recently, multiple new agents including growth factor receptor antagonists and a checkpoint inhibitor were approved for the treatment of refractory metastatic RCC based on encouraging benefit shown in clinical trials. Areas covered: The background and biological rationale of existing treatment options including a brief discussion of clinical trials which led to their approval, is presented. This is followed by reviewing the limitations of these therapeutic options, medical need to develop new treatments and major goals of ongoing research. We then discuss two recently approved growth factor receptor antagonists i.e. cabozantinib and lenvatinib, and a recently approved checkpoint inhibitor, nivolumab, and issues pertaining to drug development, and future directions in treatment of metastatic RCC. Expert opinion: Recently approved growth factor receptor antagonists have shown encouraging survival benefit but associated drug toxicity is a major issue. Nivolumab, a programmed death 1 (PD-1) checkpoint inhibitor, has similarly shown survival benefit and is well tolerated. With multiple options now available in this patient population, the right sequence of these agents remains to be determined.

  16. Cardioprotective Role of Tumor Necrosis Factor Receptor-Associated Factor 2 by Suppressing Apoptosis and Necroptosis.

    PubMed

    Guo, Xiaoyun; Yin, Haifeng; Li, Lei; Chen, Yi; Li, Jing; Doan, Jessica; Steinmetz, Rachel; Liu, Qinghang

    2017-08-22

    Programmed cell death, including apoptosis, mitochondria-mediated necrosis, and necroptosis, is critically involved in ischemic cardiac injury, pathological cardiac remodeling, and heart failure progression. Whereas apoptosis and mitochondria-mediated necrosis signaling is well established, the regulatory mechanisms of necroptosis and its significance in the pathogenesis of heart failure remain elusive. We examined the role of tumor necrosis factor receptor-associated factor 2 (Traf2) in regulating myocardial necroptosis and remodeling using genetic mouse models. We also performed molecular and cellular biology studies to elucidate the mechanisms by which Traf2 regulates necroptosis signaling. We identified a critical role for Traf2 in myocardial survival and homeostasis by suppressing necroptosis. Cardiac-specific deletion of Traf2 in mice triggered necroptotic cardiac cell death, pathological remodeling, and heart failure. Plasma tumor necrosis factor α level was significantly elevated in Traf2 -deficient mice, and genetic ablation of TNFR1 largely abrogated pathological cardiac remodeling and dysfunction associated with Traf2 deletion. Mechanistically, Traf2 critically regulates receptor-interacting proteins 1 and 3 and mixed lineage kinase domain-like protein necroptotic signaling with the adaptor protein tumor necrosis factor receptor-associated protein with death domain as an upstream regulator and transforming growth factor β-activated kinase 1 as a downstream effector. It is important to note that genetic deletion of RIP3 largely rescued the cardiac phenotype triggered by Traf2 deletion, validating a critical role of necroptosis in regulating pathological remodeling and heart failure propensity. These results identify an important Traf2-mediated, NFκB-independent, prosurvival pathway in the heart by suppressing necroptotic signaling, which may serve as a new therapeutic target for pathological remodeling and heart failure. © 2017 American Heart

  17. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan Rajagopalan

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful formore » targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.« less

  18. 11q13 is a Susceptibility Locus for Hormone Receptor Positive Breast Cancer†

    PubMed Central

    Lambrechts, Diether; Truong, Therese; Justenhoven, Christina; Humphreys, Manjeet K.; Wang, Jean; Hopper, John L.; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Cornelissen, Sten; van Hien, Richard; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Milne, Roger L.; Zamora, M. Pilar; Arias Pérez, José Ignacio; Benítez, Javier; Hamann, Ute; Ko, Yon-Dschun; Brüning, Thomas; Chang-Claude, Jenny; Eilber, Ursel; Hein, Rebecca; Nickels, Stefan; Flesch-Janys, Dieter; Wang-Gohrke, Shan; John, Esther M.; Miron, Alexander; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Chenevix-Trench, Georgia; Beesley, Jonathan; Chen, Xiaoqing; Menegaux, Florence; Cordina-Duverger, Emilie; Shen, Chen-Yang; Yu, Jyh-Cherng; Wu, Pei-Ei; Hou, Ming-Feng; Andrulis, Irene L.; Selander, Teresa; Glendon, Gord; Mulligan, Anna Marie; Anton-Culver, Hoda; Ziogas, Argyrios; Muir, Kenneth R.; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Puttawibul, Puttisak; Jones, Michael; Orr, Nicholas; Ashworth, Alan; Swerdlow, Anthony; Severi, Gianluca; Baglietto, Laura; Giles, Graham; Southey, Melissa; Marmé, Federik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Yesilyurt, Betul T.; Neven, Patrick; Paridaens, Robert; Wildiers, Hans; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Schott, Sarah; Bartram, Claus R.; Schmutzler, Rita K.; Cox, Angela; Brock, Ian W.; Elliott, Graeme; Cross, Simon S.; Fasching, Peter A.; Schulz-Wendtland, Ruediger; Ekici, Arif B.; Beckmann, Matthias W.; Fletcher, Olivia; Johnson, Nichola; Silva, Isabel dos Santos; Peto, Julian; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Dörk, Thilo; Schürmann, Peter; Bremer, Michael; Hillemanns, Peter; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Rogov, Yuri I.; Karstens, Johann H.; Khusnutdinova, Elza; Bermisheva, Marina; Prokofieva, Darya; Gancev, Shamil; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Nordestgaard, Børge G.; Bojesen, Stig E.; Lanng, Charlotte; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Couch, Fergus J.; Olson, Janet E.; Wang, Xianshu; Fredericksen, Zachary; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børresen-Dale, Anne-Lise; Devilee, Peter; Tollenaar, Robert A.E.M.; Seynaeve, Caroline M.; Hooning, Maartje J.; García-Closas, Montserrat; Chanock, Stephen J.; Lissowska, Jolanta; Sherman, Mark E.; Hall, Per; Liu, Jianjun; Czene, Kamila; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Lindblom, Annika; Margolin, Sara; Dunning, Alison M.; Pharoah, Paul D.P.; Easton, Douglas F.; Guénel, Pascal; Brauch, Hiltrud

    2012-01-01

    A recent two-stage genome-wide association study (GWAS) identified five novel breast cancer susceptibility loci on chromosomes 9, 10 and 11. To provide more reliable estimates of the relative risk associated with these loci and investigate possible heterogeneity by subtype of breast cancer, we genotyped the variants rs2380205, rs1011970, rs704010, rs614367, rs10995190 in 39 studies from the Breast Cancer Association Consortium (BCAC), involving 49,608 cases and 48,772 controls of predominantly European ancestry. Four of the variants showed clear evidence of association (P ≤ 3 × 10−9) and weak evidence was observed for rs2380205 (P = 0.06). The strongest evidence was obtained for rs614367, located on 11q13 (per-allele odds ratio 1.21, P = 4 × 10−39). The association for rs614367 was specific to estrogen receptor (ER)-positive disease and strongest for ER plus progesterone receptor (PR)-positive breast cancer, whereas the associations for the other three loci did not differ by tumor subtype. PMID:22461340

  19. 11q13 is a susceptibility locus for hormone receptor positive breast cancer.

    PubMed

    Lambrechts, Diether; Truong, Therese; Justenhoven, Christina; Humphreys, Manjeet K; Wang, Jean; Hopper, John L; Dite, Gillian S; Apicella, Carmel; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Cornelissen, Sten; van Hien, Richard; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Milne, Roger L; Zamora, M Pilar; Pérez, José Ignacio Arias; Benítez, Javier; Hamann, Ute; Ko, Yon-Dschun; Brüning, Thomas; Chang-Claude, Jenny; Eilber, Ursel; Hein, Rebecca; Nickels, Stefan; Flesch-Janys, Dieter; Wang-Gohrke, Shan; John, Esther M; Miron, Alexander; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Chenevix-Trench, Georgia; Beesley, Jonathan; Chen, Xiaoqing; Menegaux, Florence; Cordina-Duverger, Emilie; Shen, Chen-Yang; Yu, Jyh-Cherng; Wu, Pei-Ei; Hou, Ming-Feng; Andrulis, Irene L; Selander, Teresa; Glendon, Gord; Mulligan, Anna Marie; Anton-Culver, Hoda; Ziogas, Argyrios; Muir, Kenneth R; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Puttawibul, Puttisak; Jones, Michael; Orr, Nicholas; Ashworth, Alan; Swerdlow, Anthony; Severi, Gianluca; Baglietto, Laura; Giles, Graham; Southey, Melissa; Marmé, Federik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Yesilyurt, Betul T; Neven, Patrick; Paridaens, Robert; Wildiers, Hans; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Schott, Sarah; Bartram, Claus R; Schmutzler, Rita K; Cox, Angela; Brock, Ian W; Elliott, Graeme; Cross, Simon S; Fasching, Peter A; Schulz-Wendtland, Ruediger; Ekici, Arif B; Beckmann, Matthias W; Fletcher, Olivia; Johnson, Nichola; Silva, Isabel Dos Santos; Peto, Julian; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Dörk, Thilo; Schürmann, Peter; Bremer, Michael; Hillemanns, Peter; Bogdanova, Natalia V; Antonenkova, Natalia N; Rogov, Yuri I; Karstens, Johann H; Khusnutdinova, Elza; Bermisheva, Marina; Prokofieva, Darya; Gancev, Shamil; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Nordestgaard, Børge G; Bojesen, Stig E; Lanng, Charlotte; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Couch, Fergus J; Olson, Janet E; Wang, Xianshu; Fredericksen, Zachary; Alnaes, Grethe Grenaker; Kristensen, Vessela; Børresen-Dale, Anne-Lise; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline M; Hooning, Maartje J; García-Closas, Montserrat; Chanock, Stephen J; Lissowska, Jolanta; Sherman, Mark E; Hall, Per; Liu, Jianjun; Czene, Kamila; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Lindblom, Annika; Margolin, Sara; Dunning, Alison M; Pharoah, Paul D P; Easton, Douglas F; Guénel, Pascal; Brauch, Hiltrud

    2012-07-01

    A recent two-stage genome-wide association study (GWAS) identified five novel breast cancer susceptibility loci on chromosomes 9, 10, and 11. To provide more reliable estimates of the relative risk associated with these loci and investigate possible heterogeneity by subtype of breast cancer, we genotyped the variants rs2380205, rs1011970, rs704010, rs614367, and rs10995190 in 39 studies from the Breast Cancer Association Consortium (BCAC), involving 49,608 cases and 48,772 controls of predominantly European ancestry. Four of the variants showed clear evidence of association (P ≤ 3 × 10(-9) ) and weak evidence was observed for rs2380205 (P = 0.06). The strongest evidence was obtained for rs614367, located on 11q13 (per-allele odds ratio 1.21, P = 4 × 10(-39) ). The association for rs614367 was specific to estrogen receptor (ER)-positive disease and strongest for ER plus progesterone receptor (PR)-positive breast cancer, whereas the associations for the other three loci did not differ by tumor subtype. © 2012 Wiley Periodicals, Inc.

  20. IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2.

    PubMed

    Merz, Constanze; von Mässenhausen, Anne; Queisser, Angela; Vogel, Wenzel; Andrén, Ove; Kirfel, Jutta; Duensing, Stefan; Perner, Sven; Nowak, Michael

    2016-04-01

    Prostate cancer is the most diagnosed cancer in men and multiple risk factors and genetic alterations have been described. The TMPRSS2-ERG fusion event and the overexpression of the transcription factor ERG are present in approximately 50% of all prostate cancer patients, however, the clinical outcome is still controversial. Prostate tumors produce various soluble factors, including the pleiotropic cytokine IL-6, regulating cellular processes such as proliferation and metastatic segregation. Here, we used prostatectomy samples in a tissue microarray format and analyzed the co-expression and the clinicopathologic data of ERG and IL-6 using immunohistochemical double staining and correlated the read-out with clinicopathologic data. Expression of ERG and IL-6 correlated strongly in prostate tissue samples. Forced expression of ERG in prostate tumor cell lines resulted in significantly increased secretion of IL-6, whereas the down-regulation of ERG decreased IL-6 secretion. By dissecting the underlying mechanism in prostate tumor cell lines we show the ERG-mediated up-regulation of the prostanoid receptors EP2 and EP3. The prostanoid receptor EP2 was overexpressed in human prostate cancer tissue. Furthermore, the proliferation rate and IL-6 secretion in DU145 cells was reduced after treatment with EP2-receptor antagonist. Collectively, our study shows that the expression of ERG in prostate cancer is linked to the expression of IL-6 mediated by the prostanoid receptor EP2. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normalmore » epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers.« less

  2. Expression of transforming growth factor alpha and epidermal growth factor receptor messenger RNA in neoplastic and nonneoplastic human kidney tissue.

    PubMed

    Mydlo, J H; Michaeli, J; Cordon-Cardo, C; Goldenberg, A S; Heston, W D; Fair, W R

    1989-06-15

    Using Northern blot analysis, we have demonstrated that mRNA for transforming growth factor alpha (TGF-alpha) was expressed in five malignant kidney tissue specimens but was not detected in their autologous nonneoplastic homologues. In addition, the expression of epidermal growth factor (EGF) receptor mRNA in these malignant tissues was 2- to 3-fold greater than in nontransformed tissues. In two cases examined using immunohistochemistry, we were able to correlate the increased expression of the mRNA with an increase in protein expression. Since TGF-alpha is known to bind to the EGF receptor, the finding of an increased expression of both TGF-alpha and EGF receptor mRNA in kidney tumor tissue suggests that interaction between TGF-alpha and the EGF receptor may play a role in promoting transformation and/or proliferation of kidney neoplasms, perhaps by an autocrine mechanism.

  3. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  4. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.

  5. EphA2 is a functional receptor for the growth factor progranulin.

    PubMed

    Neill, Thomas; Buraschi, Simone; Goyal, Atul; Sharpe, Catherine; Natkanski, Elizabeth; Schaefer, Liliana; Morrione, Andrea; Iozzo, Renato V

    2016-12-05

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. © 2016 Neill et al.

  6. EphA2 is a functional receptor for the growth factor progranulin

    PubMed Central

    Neill, Thomas; Goyal, Atul; Sharpe, Catherine

    2016-01-01

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. PMID:27903606

  7. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    PubMed

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  8. Estrogen-related receptor alpha induces the expression of vascular endothelial growth factor in breast cancer cells

    PubMed Central

    Stein, Rebecca A.; Gaillard, Stéphanie; McDonnell, Donald P.

    2009-01-01

    Estrogen-related receptor alpha (ERRα) is an orphan member of the nuclear receptor family of transcription factors. In addition to its function as a metabolic regulator, ERRα has been implicated in the growth and progression of several malignancies. In the setting of breast cancer, not only is ERRα a putative negative prognostic factor, but we have recently found that knockdown of its expression retards tumor growth in a xenograft model of this disease. The specific aspects of ERRα function that are responsible for its actions in breast cancer, however, remain unclear. Using the coactivator PGC-1α as a protein ligand to regulate ERRα activity, we analyzed the effects of this receptor on gene expression in the ERα-positive MCF-7 cell line. This analysis led to the identification of a large number of potential ERRα target genes, many of which were subsequently validated in other breast cancer cell lines. Importantly, we demonstrate in this study that activation of ERRα in several different breast cancer cell lines leads to a significant increase in VEGF mRNA expression, an activity that translates into an increase in VEGF protein secretion. The induction of VEGF results from the interaction of ERRα with specific ERR-responsive elements within the VEGF promoter. These findings suggest that ERRα-dependent induction of VEGF may contribute to the overall negative phenotype observed in tumors in which ERRα is expressed and provide validation for its use as a therapeutic target in cancer. PMID:19429439

  9. Anticancer molecules targeting fibroblast growth factor receptors.

    PubMed

    Liang, Guang; Liu, Zhiguo; Wu, Jianzhang; Cai, Yuepiao; Li, Xiaokun

    2012-10-01

    The fibroblast growth factor receptor (FGFR) family includes four highly conserved receptor tyrosine kinases: FGFR1-4. Upon ligand binding, FGFRs activate an array of downstream signaling pathways, such as the mitogen activated protein kinase (MAPK) and the phosphoinositide-3-kinase (PI3K)/Akt pathways. These FGFR cascades play crucial roles in tumor cell proliferation, angiogenesis, migration, and survival. The combination of knockdown studies and pharmaceutical inhibition in preclinical models demonstrates that FGFRs are attractive targets for therapeutic intervention in cancer. Multiple FGFR inhibitors with various structural skeletons have been designed, synthesized, and evaluated. Reviews on FGFRs have recently focused on FGFR signaling, pathophysiology, and functions in cancer or other diseases. In this article, we review recent advances in structure-activity relationships (SAR) of FGFR inhibitors, as well as the FGFR-targeting drug design strategies currently employed in targeting deregulated FGFRs by antibodies and small molecule inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Human Epidermal Growth Factor Receptor 2 Expression in Unresectable Gastric Cancers: Relationship with CT Characteristics.

    PubMed

    Lee, Jeong Sub; Kim, Se Hyung; Im, Seock-Ah; Kim, Min A; Han, Joon Koo

    2017-01-01

    To retrospectively analyze the qualitative CT features that correlate with human epidermal growth factor receptor 2 (HER2)-expression in pathologically-proven gastric cancers. A total of 181 patients with pathologically-proven unresectable gastric cancers with HER2-expression (HER2-positive [n = 32] and negative [n = 149]) were included. CT features of primary gastric and metastatic tumors were reviewed. The prevalence of each CT finding was compared in both groups. Thereafter, binary logistic regression determined the most significant differential CT features. Clinical outcomes were compared using Kaplan-Meier method. HER2-postive cancers showed lower clinical T stage (21.9% vs. 8.1%; p = 0.015), hyperattenuation on portal phase (62.5% vs. 30.9%; p = 0.003), and was more frequently metastasized to the liver (62.5% vs. 32.2%; p = 0.001), than HER2-negative cancers. On binary regression analysis, hyperattenuation of the tumor (odds ratio [OR], 4.68; p < 0.001) and hepatic metastasis (OR, 4.43; p = 0.001) were significant independent factors that predict HER2-positive cancers. Median survival of HER2-positive cancers (13.7 months) was significantly longer than HER2-negative cancers (9.6 months) ( p = 0.035). HER2-positive gastric cancers show less-advanced T stage, hyperattenuation on the portal phase, and frequently metastasize to the liver, as compared to HER2-negative cancers.

  11. Expression of keratinocyte growth factor and its receptor in noncholesteatomatous and cholesteatomatous chronic otitis media.

    PubMed

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Terakado, Mariko; Hishikawa, Yoshitaka; Koji, Takehiko

    2010-07-01

    The purpose of the study was to test a hypothesis that the keratinocyte growth factor (KGF) is a key factor in the pathologic difference between cholesteatomatous (C-COM) and noncholesteatomatous chronic otitis media (NC-COM). We compared the expression levels of KGF and its receptor (KGFR) and the proliferation activity of epithelial cells between NC-COM and C-COM. The epithelial lesion was surgically excised with subepithelial tissue from 18 patients with NC-COM and 70 patients with C-COM, and was processed for immunohistochemistry for KGF and KGFR. We also examined the proportion of proliferating epithelial cells using Ki-67 and the extent of infiltrating B and T cells. Keratinocyte growth factor was positive in 5 of 18 (28%) NC-COM specimens and in 61 of 69 (88%) C-COM specimens (p < 0.0001). Furthermore, 37 (60%) C-COM specimens were positive for KGFR, but none of NC-COM were positive (0%; p < 0.01). The Ki-67 labeling index (LI) was significantly smaller in NC-COM than in C-COM (p < 0.001). B-Cell LI was almost similar in the 2 groups. T-Cell LI was significantly higher in C-COM than in NC-COM (p < 0.0001). Interestingly, T-cell LI in NC-COM was higher in KGF-positive tissues than in KGF-negative tissues (p < 0.05). The results indicated that coexpression of KGF and KGFR seems to explain the pathologic difference between C-COM and NC-COM, and that KGF may play an important role in the development of cholesteatoma.

  12. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization

    NASA Astrophysics Data System (ADS)

    Tasić, M.; Mijić, Z.; Rajšić, S.; Stojić, A.; Radenković, M.; Joksić, J.

    2009-04-01

    The primary objective of the present study was to assess anthropogenic impacts of heavy metals to the environment by determination of total atmospheric deposition of heavy metals. Atmospheric depositions (wet + dry) were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade, using bulk deposition samplers. Concentrations of Fe, Al, Pb, Zn, Cu, Ni, Mn, Cr, V, As and Cd were analyzed using atomic absorption spectrometry. Based upon these results, the study attempted to examine elemental associations in atmospheric deposition and to elucidate the potential sources of heavy metal contaminants in the region by the use of multivariate receptor model Positive Matrix Factorization (PMF).

  13. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Brown, Steven G.; Frankel, Anna; Hafner, Hilary R.

    Eight 3-h speciated hydrocarbon measurements were collected daily by the South Coast Air Quality Management District (SCAQMD) as part of the Photochemical Assessment Monitoring Stations (PAMS) program during the summers of 2001-03 at two sites in the Los Angeles air basin, Azusa and Hawthorne. Over 30 hydrocarbons from over 500 samples at Azusa and 600 samples at Hawthorne were subsequently analyzed using the multivariate receptor model positive matrix factorization (PMF). At Azusa and Hawthorne, five and six factors were identified, respectively, with a good comparison between predicted and measured mass. At Azusa, evaporative emissions (a median of 31% of the total mass), motor vehicle exhaust (22%), liquid/unburned gasoline (27%), coatings (17%), and biogenic emissions (3%) factors were identified. Factors identified at Hawthorne were evaporative emissions (a median of 34% of the total mass), motor vehicle exhaust (24%), industrial process losses (15%), natural gas (13%), liquid/unburned gasoline (13%), and biogenic emissions (1%). Together, the median contribution from mobile source-related factors (exhaust, evaporative emissions, and liquid/unburned gasoline) was 80% and 71% at Azusa and Hawthorne, respectively, similar to previous source apportionment results using the chemical mass balance (CMB) model. There is a difference in the distribution among mobile source factors compared to the CMB work, with an increase in the contribution from evaporative emissions, though the cause (changes in emissions or differences between models) is unknown.

  14. Up-regulation of proproliferative genes and the ligand/receptor pair placental growth factor and vascular endothelial growth factor receptor 1 in hepatitis C cirrhosis.

    PubMed

    Huang, Xiao X; McCaughan, Geoffrey W; Shackel, Nicholas A; Gorrell, Mark D

    2007-09-01

    Cirrhosis can lead to hepatocellular carcinoma (HCC). Non-diseased liver and hepatitis C virus (HCV)-associated cirrhosis with or without HCC were compared. Proliferation pathway genes, immune response genes and oncogenes were analysed by a quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunostaining. Real-time RT-PCR showed up-regulation of genes in HCV cirrhosis including the proliferation-associated genes bone morphogenetic protein 3 (BMP3), placental growth factor 3 (PGF3), vascular endothelial growth factor receptor 1 (VEGFR1) and soluble VEGFR1, the oncogene FYN, and the immune response-associated genes toll-like receptor 9 (TLR9) and natural killer cell transcript 4 (NK4). Expressions of TLR2 and the oncogenes B-cell CLL/lymphoma 9 (BCL9) and PIM2 were decreased in HCV cirrhosis. In addition, PIM2 and TLR2 were increased in HCV cirrhosis with HCC compared with HCV cirrhosis. The ligand/receptor pair PGF and VEGFR1 was intensely expressed by the portal tract vascular endothelium. VEGFR1 was expressed in reactive biliary epithelial structures in fibrotic septum and in some stellate cells and macrophages. PGF and VEGFR1 may have an important role in the pathogenesis of the neovascular response in cirrhosis.

  15. PPARδ induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation.

    PubMed

    Yuan, Hongyan; Lu, Jin; Xiao, Junfeng; Upadhyay, Geeta; Umans, Rachel; Kallakury, Bhaskar; Yin, Yuhzi; Fant, Michael E; Kopelovich, Levy; Glazer, Robert I

    2013-07-15

    The peroxisome proliferator-activated receptor-δ (PPARδ) regulates a multitude of physiological processes associated with glucose and lipid metabolism, inflammation, and proliferation. One or more of these processes are potential risk factors for the ability of PPARδ agonists to promote tumorigenesis in the mammary gland. In this study, we describe a new transgenic mouse model in which activation of PPARδ in the mammary epithelium by endogenous or synthetic ligands resulted in progressive histopathologic changes that culminated in the appearance of estrogen receptor- and progesterone receptor-positive and ErbB2-negative infiltrating ductal carcinomas. Multiparous mice presented with mammary carcinomas after a latency of 12 months, and administration of the PPARδ ligand GW501516 reduced tumor latency to 5 months. Histopathologic changes occurred concurrently with an increase in an inflammatory, invasive, metabolic, and proliferative gene signature, including expression of the trophoblast gene, Plac1, beginning 1 week after GW501516 treatment, and remained elevated throughout tumorigenesis. The appearance of malignant changes correlated with a pronounced increase in phosphatidylcholine and lysophosphatidic acid metabolites, which coincided with activation of Akt and mTOR signaling that were attenuated by treatment with the mTOR inhibitor everolimus. Our findings are the first to show a direct role of PPARδ in the pathogenesis of mammary tumorigenesis, and suggest a rationale for therapeutic approaches to prevent and treat this disease. ©2013 AACR.

  16. Isoforms of receptors of fibroblast growth factors.

    PubMed

    Gong, Siew-Ging

    2014-12-01

    The breadth and scope of Fibroblast Growth Factor signaling is immense, with documentation of its role in almost every organism and system studied so far. FGF ligands signal through a family of four distinct tyrosine kinase receptors, the FGF receptors (FGFRs). One contribution to the diversity of function and signaling of FGFs and their receptors arises from the numerous alternative splicing variants that have been documented in the FGFR literature. The present review discusses the types and roles of alternatively spliced variants of the FGFR family members and the significant impact of alternative splicing on the physiological functions of five broad classes of FGFR isoforms. Some characterized known regulatory mechanisms of alternative splicing and future directions in studies of FGFR alternative splicing are also discussed. Presence, absence, and/or the combination of specific exons within each FGFR protein impart upon each individual isoform its unique function and expression pattern during normal function and in diseased states (e.g., in cancers and birth defects). A better understanding of the diversity of FGF signaling in different developmental contexts and diseased states can be achieved through increased knowledge of the presence of specific FGFR isoforms and their impact on downstream signaling and functions. Modern high-throughput techniques afford an opportunity to explore the distribution and function of isoforms of FGFR during development and in diseases. © 2014 Wiley Periodicals, Inc.

  17. Carboxyl‐terminal Heparin‐binding Fragments of Platelet Factor 4 Retain the Blocking Effect on the Receptor Binding of Basic Fibroblast Growth Factor

    PubMed Central

    Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie

    1993-01-01

    Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164

  18. Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration.

    PubMed

    Seki, Ekihiro; Tsutsui, Hiroko; Iimuro, Yuji; Naka, Tetsuji; Son, Gakuhei; Akira, Shizuo; Kishimoto, Tadamitsu; Nakanishi, Kenji; Fujimoto, Jiro

    2005-03-01

    Toll-like receptors (TLRs) act as innate immune signal sensors and play central roles in host defense. Myeloid differentiation factor (MyD) 88 is a common adaptor molecule required for signaling mediated by TLRs. When the receptors are activated, cells bearing TLRs produce various proinflammatory cytokines in a MyD88-dependent manner. Liver regeneration following partial hepatectomy (PH) requires innate immune responses, particularly interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) production by Kupffer cells, although the recognition and activation processes are still unknown. We investigated whether TLR/MyD88 signaling is critical for induction of innate immune responses after PH. In Myd88(-/-) mice after PH, induction of expression of immediate early genes involved in hepatocyte replication and phosphorylation of STAT3 in the liver, and production of TNF-alpha/IL-6 by and activation of NF-kappaB in the Kupffer cells were grossly subnormal and were associated with impaired liver regeneration. However, TLR2, 4 and 9, which recognize gram-negative and -positive bacterial products, are not essential for NF-kappaB activation and IL-6 production after PH, which excludes a possible contribution of TLR2/TLR4 or TLR9 to MyD88-mediated pathways. In conclusion, the TLR/MyD88 pathway is essential for incidental liver restoration, particularly its early phase.

  19. Epidermal growth factor receptor gene amplification in surgical resected Japanese lung cancer.

    PubMed

    Sasaki, Hidefumi; Shimizu, Shigeki; Okuda, Katsuhiro; Kawano, Osamu; Yukiue, Haruhiro; Yano, Motoki; Fujii, Yoshitaka

    2009-06-01

    To evaluate the epidermal growth factor receptor (EGFR) protein expression and increased copy number as predictors of clinical outcome in patients with non-small-cell lung cancer (NSCLC), we have performed fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC). We investigated the EGFR increased copy number and EGFR protein expression statuses in 109 surgically treated NSCLC cases. The presence or absence of EGFR mutations of kinase domains was analyzed by genotyping analysis and sequences, and already reported. EGFR increased copy number was defined as Cappuzzo et al. criteria. FISH positive was found from 36/109 (33.0%) lung cancer patients, including 30 high polysomy cases and 6 gene amplification cases. FISH-positive cases were significantly correlated with worse prognosis (log-rank test p=0.0097). Within EGFR-mutant patients (n=55), FISH-positive cases were also correlated with poor prognosis (p=0.0255). FISH-negative tumors were found to be more frequently well-differentiated histology. Smoking status (never smoker vs. smoker, p=0.1510), and gender (p=0.5248) did not correlated with FISH positive. EGFR IHC results were correlated with FISH results (p=0.004), but not correlated with prognosis (p=0.2815). Although EGFR FISH-positive rate did not correlated with EGFR mutation (p=0.1973), EGFR polysomy or amplification cases were correlated with EGFR mutations (p=0.0023). In conclusion, the EGFR FISH-positive rate in Japanese patients with NSCLC was similar to rates in Western populations, unlike the higher frequencies of EGFR mutation in East Asians. A high EGFR gene copy number might have shorter survival in NSCLC.

  20. Biosynthesis and intracellular transport of the receptor for platelet-derived growth factor.

    PubMed Central

    Claesson-Welsh, L; Rönnstrand, L; Heldin, C H

    1987-01-01

    The biosynthesis of the receptor for platelet-derived growth factor (PDGF) was examined in metabolically labeled human foreskin fibroblasts. The receptor was synthesized as a 145-kDa precursor, which, when incubated with endo-beta-N-acetylglucosaminidase H (endo H), underwent a 15-kDa decrease in molecular mass. This indicates that the size of the core protein is about 130 kDa and that the 145-kDa form represents a receptor precursor carrying high-mannose N-linked oligosaccharide groups. Within 15 min after synthesis, the receptor was converted to a 165-kDa form. This form was entirely resistant to endo H treatment and probably represents a receptor molecule that has undergone further posttranslational modification, including O-linked glycosylation. Subsequently, within 30 min, a molecule of 170 kDa--i.e., the size of the mature receptor--appeared. A slightly larger molecule, of 175 kDa, which could be immunoprecipitated from PDGF-stimulated 32P-labeled cells, probably represents a receptor further modified by autophosphorylation. The 170-kDa molecule had an isoelectric point of about 4.5. Addition of PDGF increased the turnover rate of the 170-kDa PDGF receptor. Images PMID:2827155

  1. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  2. The GABA(B) receptor positive modulator BHF177 attenuated anxiety, but not conditioned fear, in rats.

    PubMed

    Li, Xia; Kaczanowska, Katarzyna; Finn, M G; Markou, Athina; Risbrough, Victoria B

    2015-10-01

    GABAB (γ-aminobutyric acid B) receptors may be a therapeutic target for anxiety disorders. Here we characterized the effects of the GABAB receptor positive allosteric modulator (PAM) BHF177 on conditioned and unconditioned physiological responses to threat in the light-enhanced startle (LES), stress-induced hyperthermia, and fear-potentiated startle (FPS) procedures in rats. The effects of BHF177 on LES were compared with those of the GABAB receptor agonists baclofen and CGP44532, and the positive control buspirone, a 5-HT1A receptor partial agonist with anxiolytic activity in humans. Baclofen (0.4, 0.9 and 1.25 mg/kg) and CGP44532 (0.065, 0.125 and 0.25 mg/kg) administration had significant sedative, but not anxiolytic, activity reflected in overall decrease in the startle response in the LES tests. BHF177 (10, 20 and 40 mg/kg) had no effect on LES, nor did it produce an overall sedative effect. Interesting, however, when rats were grouped by high and low LES responses, BHF177 had anxiolytic-like effects only on LES in high, but not low, LES responding rats. BHF177 also blocked stress-induced hyperthermia, but had no effect on conditioned fear responses in the FPS test. Buspirone (1 and 3 mg/kg) had an anxiolytic-like profile in both LES and FPS tests. These results indicate that BHF177 may specifically attenuate unconditioned anxiety in individuals that exhibit a high anxiety state, and has fewer sedative effects than direct agonists. Thus, BHF177 or other GABAB receptor PAMs may be promising compounds for alleviating increased anxiety seen in various psychiatric disorders with a superior side-effect profile compared to GABAB receptor agonists. Published by Elsevier Ltd.

  3. Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a german breast group 26/breast international group 03-05 study.

    PubMed

    von Minckwitz, Gunter; du Bois, Andreas; Schmidt, Marcus; Maass, Nicolai; Cufer, Tanja; de Jongh, Felix E; Maartense, Eduard; Zielinski, Christoph; Kaufmann, Manfred; Bauer, Wolfgang; Baumann, Klaus H; Clemens, Michael R; Duerr, Ralph; Uleer, Christoph; Andersson, Michael; Stein, Robert C; Nekljudova, Valentina; Loibl, Sibylle

    2009-04-20

    Trastuzumab shows clinical activity in human epidermal growth factor receptor 2 (HER-2)-positive early and advanced breast cancer. In the German Breast Group 26/Breast International Group 03-05 trial, we investigated if trastuzumab treatment should be continued beyond progression. Patients with HER-2-positive breast cancer that progresses during treatment with trastuzumab were randomly assigned to receive capecitabine (2,500 mg/m(2) body-surface area on days 1 through 14 [1,250 mg/m(2) semi-daily]) alone or with continuation of trastuzumab (6 mg/kg body weight) in 3-week cycles. The primary end point was time to progression. We randomly assigned 78 patients to capecitabine and 78 patients to capecitabine plus trastuzumab. Sixty-five events and 38 deaths in the capecitabine group and 62 events and 33 deaths in the capecitabine-plus-trastuzumab group occurred during 15.6 months of follow-up. Median times to progression were 5.6 months in the capecitabine group and 8.2 months in the capecitabine-plus-trastuzumab group with an unadjusted hazard ratio of 0.69 (95% CI, 0.48 to 0.97; two-sided log-rank P = .0338). Overall survival rates were 20.4 months (95% CI, 17.8 to 24.7) in the capecitabine group and 25.5 months (95% CI, 19.0 to 30.7) in the capecitabine-plus-trastuzumab group (P = .257). Overall response rates were 27.0% with capecitabine and 48.1% with capecitabine plus trastuzumab (odds ratio, 2.50; P = .0115). Continuation of trastuzumab beyond progression was not associated with increased toxicity. Continuation of trastuzumab plus capecitabine showed a significant improvement in overall response and time to progression compared with capecitabine alone in women with HER-2-positive breast cancer who experienced progression during trastuzumab treatment.

  4. Human epidermal growth factor receptor bispecific ligand trap RB200: abrogation of collagen-induced arthritis in combination with tumour necrosis factor blockade

    PubMed Central

    2011-01-01

    Introduction Rheumatoid arthritis (RA) is a chronic disease associated with inflammation and destruction of bone and cartilage. Although inhibition of TNFα is widely used to treat RA, a significant number of patients do not respond to TNFα blockade, and therefore there is a compelling need to continue to identify alternative therapeutic strategies for treating chronic inflammatory diseases such as RA. The anti-epidermal growth factor (anti-EGF) receptor antibody trastuzumab has revolutionised the treatment of patients with EGF receptor-positive breast cancer. Expression of EGF ligands and receptors (known as HER) has also been documented in RA. The highly unique compound RB200 is a bispecific ligand trap that is composed of full-length extracellular domains of HER1 and HER3 EGF receptors. Because of its pan-HER specificity, RB200 inhibits responses mediated by HER1, HER2 and HER3 in vitro and in vivo. The objective of this study was to assess the effect of RB200 combined with TNF blockade in a murine collagen-induced arthritis (CIA) model of RA. Methods Arthritic mice were treated with RB200 alone or in combination with the TNF receptor fusion protein etanercept. We performed immunohistochemistry to assess CD31 and in vivo fluorescent imaging using anti-E-selectin antibody labelled with fluorescent dye to elucidate the effect of RB200 on the vasculature in CIA. Results RB200 significantly abrogated CIA by reducing paw swelling and clinical scores. Importantly, low-dose RB200 combined with a suboptimal dose of etanercept led to complete abrogation of arthritis. Moreover, the combination of RB200 with etanercept abrogated the intensity of the E-selectin-targeted signal to the level seen in control animals not immunised to CIA. Conclusions The human pan-EGF receptor bispecific ligand trap RB200, when combined with low-dose etanercept, abrogates CIA, suggesting that inhibition of events downstream of EGF receptor activation, in combination with TNFα inhibitors, may

  5. Selective binding and oligomerization of the murine granulocyte colony-stimulating factor receptor by a low molecular weight, nonpeptidyl ligand.

    PubMed

    Doyle, Michael L; Tian, Shin-Shay; Miller, Stephen G; Kessler, Linda; Baker, Audrey E; Brigham-Burke, Michael R; Dillon, Susan B; Duffy, Kevin J; Keenan, Richard M; Lehr, Ruth; Rosen, Jon; Schneeweis, Lumelle A; Trill, John; Young, Peter R; Luengo, Juan I; Lamb, Peter

    2003-03-14

    Granulocyte colony-stimulating factor regulates neutrophil production by binding to a specific receptor, the granulocyte colony-stimulating factor receptor, expressed on cells of the granulocytic lineage. Recombinant forms of granulocyte colony-stimulating factor are used clinically to treat neutropenias. As part of an effort to develop granulocyte colony-stimulating factor mimics with the potential for oral bioavailability, we previously identified a nonpeptidyl small molecule (SB-247464) that selectively activates murine granulocyte colony-stimulating factor signal transduction pathways and promotes neutrophil formation in vivo. To elucidate the mechanism of action of SB-247464, a series of cell-based and biochemical assays were performed. The activity of SB-247464 is strictly dependent on the presence of zinc ions. Titration microcalorimetry experiments using a soluble murine granulocyte colony-stimulating factor receptor construct show that SB-247464 binds to the extracellular domain of the receptor in a zinc ion-dependent manner. Analytical ultracentrifugation studies demonstrate that SB-247464 induces self-association of the N-terminal three-domain fragment in a manner that is consistent with dimerization. SB-247464 induces internalization of granulocyte colony-stimulating factor receptor on intact cells, consistent with a mechanism involving receptor oligomerization. These data show that small nonpeptidyl compounds are capable of selectively binding and inducing productive oligomerization of cytokine receptors.

  6. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Raymond; Matthews, Jason, E-mail: jason.matthews@utoronto.ca

    2013-07-15

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 andmore » HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.« less

  7. Is the Factor Observed in Investigations on the Item-Position Effect Actually the Difficulty Factor?

    PubMed

    Schweizer, Karl; Troche, Stefan

    2018-02-01

    In confirmatory factor analysis quite similar models of measurement serve the detection of the difficulty factor and the factor due to the item-position effect. The item-position effect refers to the increasing dependency among the responses to successively presented items of a test whereas the difficulty factor is ascribed to the wide range of item difficulties. The similarity of the models of measurement hampers the dissociation of these factors. Since the item-position effect should theoretically be independent of the item difficulties, the statistical ex post manipulation of the difficulties should enable the discrimination of the two types of factors. This method was investigated in two studies. In the first study, Advanced Progressive Matrices (APM) data of 300 participants were investigated. As expected, the factor thought to be due to the item-position effect was observed. In the second study, using data simulated to show the major characteristics of the APM data, the wide range of items with various difficulties was set to zero to reduce the likelihood of detecting the difficulty factor. Despite this reduction, however, the factor now identified as item-position factor, was observed in virtually all simulated datasets.

  8. Tumor necrosis factor receptor-associated factor 6 (TRAF6) participates in anti-lipopolysaccharide factors (ALFs) gene expression in mud crab.

    PubMed

    Sun, Wan-Wei; Zhang, Xin-Xu; Wan, Wei-Song; Wang, Shu-Qi; Wen, Xiao-Bo; Zheng, Huai-Ping; Zhang, Yue-Ling; Li, Sheng-Kang

    2017-02-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a key cytoplasm signal adaptor that mediates signals activated by tumor necrosis factor receptor (TNFR) superfamily and the Interleukin-1 receptor/Toll-like receptor (IL-1/TLR) superfamily. The full-length 2492 bp TRAF6 (Sp-TRAF6) from Scylla paramamosain contains 1800 bp of open reading frame (ORF) encoding 598 amino acids, including an N-terminal RING-type zinc finger, two TRAF-type zinc fingers and a conserved C-terminal meprin and TRAF homology (MATH) domain. Multiple alignment analysis shows that the putative amino acid sequence of Sp-TRAf6 has highest identity of 88% with Pt-TRAF6 from Portunus trituberculatus, while the similarity of Sp-TRAF6 with other crustacean sequences was 54-55%. RT-PCR analysis indicated that Sp-TRAF6 transcripts were predominantly expressed in the hepatopancreas and stomach, whereas it was barely detected in the heart and hemocytes in our study. Moreover, Sp-TRAF6 transcripts were significantly up-regulated after Vibrio parahemolyticus and LPS challenges. RNA interference assay was carried out used by siRNA to investigate the genes expression patterns regulated by Sp-TRAF6. The qRT-PCR results showed that silencing Sp-TRAF6 gene could inhibit SpALF1, SpALF2, SpALF5 and SpALF6 expression in hemocytes, while inhibit SpALF1, SpALF3, SpALF4, SpALF5 and SpALF6 expression in hepatopancreas. Taken together, the acute-phase response to immune challenges and the inhibition of SpALFs gene expression indicate that Sp-TRAF6 plays an important role in host defense against pathogen invasions via regulation of ALF gene expression in S. paramamosain. Copyright © 2016. Published by Elsevier Ltd.

  9. Genetic imaging of the association of oxytocin receptor gene (OXTR) polymorphisms with positive maternal parenting

    PubMed Central

    Michalska, Kalina J.; Decety, Jean; Liu, Chunyu; Chen, Qi; Martz, Meghan E.; Jacob, Suma; Hipwell, Alison E.; Lee, Steve S.; Chronis-Tuscano, Andrea; Waldman, Irwin D.; Lahey, Benjamin B.

    2013-01-01

    Background: Well-validated models of maternal behavior in small-brain mammals posit a central role of oxytocin in parenting, by reducing stress and enhancing the reward value of social interactions with offspring. In contrast, human studies are only beginning to gain insights into how oxytocin modulates maternal behavior and affiliation. Methods: To explore associations between oxytocin receptor genes and maternal parenting behavior in humans, we conducted a genetic imaging study of women selected to exhibit a wide range of observed parenting when their children were 4–6 years old. Results: In response to child stimuli during functional magnetic resonance imaging (fMRI), hemodynamic responses in brain regions that mediate affect, reward, and social behavior were significantly correlated with observed positive parenting. Furthermore, single nucleotide polymorphisms (SNPs) (rs53576 and rs1042778) in the gene encoding the oxytocin receptor were significantly associated with both positive parenting and hemodynamic responses to child stimuli in orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and hippocampus. Conclusions: These findings contribute to the emerging literature on the role of oxytocin in human social behavior and support the feasibility of tracing biological pathways from genes to neural regions to positive maternal parenting behaviors in humans using genetic imaging methods. PMID:24550797

  10. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors.

    PubMed

    Zvejniece, L; Vavers, E; Svalbe, B; Vilskersts, R; Domracheva, I; Vorona, M; Veinberg, G; Misane, I; Stonans, I; Kalvinsh, I; Dambrova, M

    2014-02-01

    Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. E1R was tested for sigma receptor binding activity in a [³H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca²⁺ concentration ([Ca²⁺](i)) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca²⁺](i) increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases. © 2013 The British Pharmacological Society.

  11. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors

    PubMed Central

    Zvejniece, L; Vavers, E; Svalbe, B; Vilskersts, R; Domracheva, I; Vorona, M; Veinberg, G; Misane, I; Stonans, I; Kalvinsh, I; Dambrova, M

    2014-01-01

    Background and Purpose Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. Experimental Approach E1R was tested for sigma receptor binding activity in a [3H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca2+ concentration ([Ca2+]i) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. Key Results Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca2+]i increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. Conclusion and Implications E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases. PMID:24490863

  12. Impact of epidermal growth factor receptor gene expression level on clinical outcomes in epidermal growth factor receptor mutant lung adenocarcinoma patients taking first-line epidermal growth factor receptor-tyrosine kinase inhibitors.

    PubMed

    Chang, Huang-Chih; Chen, Yu-Mu; Tseng, Chia-Cheng; Huang, Kuo-Tung; Wang, Chin-Chou; Chen, Yung-Che; Lai, Chien-Hao; Fang, Wen-Feng; Kao, Hsu-Ching; Lin, Meng-Chih

    2017-03-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are first-choice treatments for advanced non-small-cell lung cancer patients harboring EGFR mutations. Although EGFR mutations are strongly predictive of patients' outcomes and their response to treatment with EGFR-TKIs, early failure of first-line therapy with EGFR-TKIs in patients with EGFR mutations is not rare. Besides several clinical factors influencing EGFR-TKI efficacies studied earlier such as the Eastern Cooperative Oncology Group performance status or uncommon mutation, we would like to see whether semi-quantify EGFR mutation gene expression calculated by 2 -ΔΔct was a prognostic factor in EGFR-mutant non-small cell lung cancer patients receiving first-line EGFR-TKIs. This retrospective study reviews 926 lung cancer patients diagnosed from January 2011 to October 2013 at the Kaohsiung Chang Gung Memorial Hospital in Taiwan. Of 224 EGFR-mutant adenocarcinoma patients, 148 patients who had 2 -ΔΔct data were included. The best cutoff values of 2 -ΔΔct for in-frame deletions in exon 19 (19 deletion) and a position 858 substituted from leucine (L) to an arginine (R) in exon 21 (L858R) were determined using receiver operating characteristic curves. Patients were divided into high and low 2 -ΔΔct expression based on the above cutoff level. The best cutoff point of 2 -ΔΔct value of 19 deletion and L858R was 31.1 and 104.7, respectively. In all, 92 (62.1%) patients showed high 2 -ΔΔct expression and 56 patients (37.9%) low 2 -ΔΔct expression. The mean age was 65.6 years. Progression-free survival of 19 deletion mutant patients with low versus high expression level was 17.07 versus 12.04 months (P = 0.004), respectively. Progression-free survival of L858 mutant patients was 13.75 and 7.96 months (P = 0.008), respectively. EGFR-mutant lung adenocarcinoma patients with lower EGFR gene expression had longer progression-free survival duration without interfering

  13. Decoding Corticotropin-Releasing Factor Receptor Type 1 Crystal 
Structures

    PubMed Central

    Doré, Andrew S.; Bortolato, Andrea; Hollenstein, Kaspar; Cheng, Robert K.Y.; Read, Randy J.; Marshall, Fiona H.

    2017-01-01

    The structural analysis of class B G protein-coupled receptors (GPCR), cell surface proteins responding to peptide hormones, has until recently been restricted to the extracellular domain (ECD). Cor-ticotropin-releasing factor receptor type 1 (CRF1R) is a class B receptor mediating stress response and also considered a drug target for depression and anxiety. Here we report the crystal structure of the trans-membrane domain of human CRF1R in complex with the small-molecule antagonist CP-376395 in a hex-agonal setting with translational non-crystallographic symmetry. Molecular dynamics and metadynamics simulations on this novel structure and the existing TMD structure for CRF1R provides insight as to how the small molecule ligand gains access to the induced-fit allosteric binding site with implications for the observed selectivity against CRF2R. Furthermore, molecular dynamics simulations performed using a full-length receptor model point to key interactions between the ECD and extracellular loop 3 of the TMD providing insight into the full inactive state of multidomain class B GPCRs. PMID:28183242

  14. Impact of palbociclib plus letrozole on pain severity and pain interference with daily activities in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer as first-line treatment.

    PubMed

    Bell, T; Crown, J P; Lang, I; Bhattacharyya, H; Zanotti, G; Randolph, S; Kim, S; Huang, X; Huang Bartlett, C; Finn, R S; Slamon, D

    2016-05-01

    Background Palbociclib is a recently approved drug for use in combination with letrozole as initial endocrine-based therapy for the treatment of postmenopausal women with advanced estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+/HER2-) breast cancer. This report assesses the impact of palbociclib in combination with letrozole versus letrozole alone on patient-reported outcomes of pain. Methods Palbociclib was evaluated in an open-label, randomized, phase II study (PALOMA-1/TRIO-18) among postmenopausal women with advanced ER+/HER2- breast cancer who had not received prior systemic treatment for their advanced disease. Patients received continuous oral letrozole 2.5 mg daily alone or the same letrozole dose and schedule plus oral palbociclib 125 mg, given once daily for 3 weeks followed by 1 week off over repeated 28-day cycles. The primary study endpoint was investigator-assessed progression-free survival in the intent-to-treat population, and these results have recently been published (Finn et al., Lancet Oncol 2015;16:25-35). One of the key secondary endpoints was the evaluation of pain, as measured using the Brief Pain Inventory (BPI) patient-reported outcome tool. The BPI was administered at baseline and on day 1 of every cycle thereafter until disease progression and/or treatment discontinuation. Clinical trial registration This study is registered with ClinicalTrials.gov (NCT00721409). Results There were no statistically significant differences in Pain Severity or Pain Interference scores of the BPI between the two treatment groups for the overall population or among those with any bone disease at baseline. A limitation of the study is that results were not adjusted for the concomitant use of opioids or other medications used to control pain. Conclusions The addition of palbociclib to letrozole was associated with increased efficacy without negatively impacting pain severity or pain interference with daily activities.

  15. Modeling invasive breast cancer: growth factors propel progression of HER2-positive premalignant lesions

    PubMed Central

    Pradeep, C-R; Zeisel, A; Köstler, WJ; Lauriola, M; Jacob-Hirsch, J; Haibe-Kains, B; Amariglio, N; Ben-Chetrit, N; Emde, A; Solomonov, I; Neufeld, G; Piccart, M; Sagi, I; Sotiriou, C; Rechavi, G; Domany, E; Desmedt, C; Yarden, Y

    2013-01-01

    The HER2/neu oncogene encodes a receptor-like tyrosine kinase whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. However, the mechanisms underlying aggressiveness of HER2 (human epidermal growth factor receptor 2)-overexpressing tumors remain incompletely understood. Because it assists epidermal growth factor (EGF) and neuregulin receptors, we overexpressed HER2 in MCF10A mammary cells and applied growth factors. HER2-overexpressing cells grown in extracellular matrix formed filled spheroids, which protruded outgrowths upon growth factor stimulation. Our transcriptome analyses imply a two-hit model for invasive growth: HER2-induced proliferation and evasion from anoikis generate filled structures, which are morphologically and transcriptionally analogous to preinvasive patients’ lesions. In the second hit, EGF escalates signaling and transcriptional responses leading to invasive growth. Consistent with clinical relevance, a gene expression signature based on the HER2/EGF-activated transcriptional program can predict poorer prognosis of a subgroup of HER2-overexpressing patients. In conclusion, the integration of a three-dimensional cellular model and clinical data attributes progression of HER2-overexpressing lesions to EGF-like growth factors acting in the context of the tumor's microenvironment. PMID:22139081

  16. Epidermal growth factor receptor mutation in gastric cancer.

    PubMed

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  17. Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia.

    PubMed

    Cho, Jay Y; Guo, Changsheng; Torello, Monica; Lunstrum, Gregory P; Iwata, Tomoko; Deng, Chuxia; Horton, William A

    2004-01-13

    Mutations of fibroblast growth factor receptor 3 (FGFR3) are responsible for achondroplasia (ACH) and related dwarfing conditions in humans. The pathogenesis involves constitutive activation of FGFR3, which inhibits proliferation and differentiation of growth plate chondrocytes. Here we report that activating mutations in FGFR3 increase the stability of the receptor. Our results suggest that the mutations disrupt c-Cbl-mediated ubiquitination that serves as a targeting signal for lysosomal degradation and termination of receptor signaling. The defect allows diversion of actively signaling receptors from lysosomes to a recycling pathway where their survival is prolonged, and, as a result, their signaling capacity is increased. The lysosomal targeting defect is additive to other mechanisms proposed to explain the pathogenesis of ACH.

  18. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-09-01

    Fibroblast growth factor receptors (Fgfrs) are expressed throughout the developing kidney. Several early studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB). Transgenic mice that over-express a dominant negative receptor isoform develop renal aplasia/severe dysplasia, confirming the importance of Fgfrs in renal development. Furthermore, global deletion of Fgf7, Fgf10, and Fgfr2IIIb (isoform that binds Fgf7 and Fgf10) in mice leads to small kidneys with fewer collecting ducts and nephrons. Deletion of Fgfrl1, a receptor lacking intracellular signaling domains, causes severe renal dysgenesis. Conditional targeting of Fgf8 from the MM interrupts nephron formation. Deletion of Fgfr2 from the UB results in severe ureteric branching and stromal mesenchymal defects, although loss of Frs2α (major signaling adapter for Fgfrs) in the UB causes only mild renal hypoplasia. Deletion of both Fgfr1 and Fgfr2 in the MM results in renal aplasia with defects in MM formation and initial UB elongation and branching. Loss of Fgfr2 in the MM leads to many renal and urinary tract anomalies as well as vesicoureteral reflux. Thus, Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  19. The DNA replication licensing factor miniature chromosome maintenance 7 is essential for RNA splicing of epidermal growth factor receptor, c-Met, and platelet-derived growth factor receptor.

    PubMed

    Chen, Zhang-Hui; Yu, Yan P; Michalopoulos, George; Nelson, Joel; Luo, Jian-Hua

    2015-01-16

    Miniature chromosome maintenance 7 (MCM7) is an essential component of DNA replication licensing complex. Recent studies indicate that MCM7 is amplified and overexpressed in a variety of human malignancies. In this report, we show that MCM7 binds SF3B3. The binding motif is located in the N terminus (amino acids 221-248) of MCM7. Knockdown of MCM7 or SF3B3 significantly increased unspliced RNA of epidermal growth factor receptor, platelet-derived growth factor receptor, and c-Met. A dramatic drop of reporter gene expression of the oxytocin exon 1-intron-exon 2-EGFP construct was also identified in SF3B3 and MCM7 knockdown PC3 and DU145 cells. The MCM7 or SF3B3 depleted cell extract failed to splice reporter RNA in in vitro RNA splicing analyses. Knockdown of SF3B3 and MCM7 leads to an increase of cell death of both PC3 and DU145 cells. Such cell death induction is partially rescued by expressing spliced c-Met. To our knowledge, this is the first report suggesting that MCM7 is a critical RNA splicing factor, thus giving significant new insight into the oncogenic activity of this protein. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. G protein-coupled receptor kinase 2 positively regulates epithelial cell migration

    PubMed Central

    Penela, Petronila; Ribas, Catalina; Aymerich, Ivette; Eijkelkamp, Niels; Barreiro, Olga; Heijnen, Cobi J; Kavelaars, Annemieke; Sánchez-Madrid, Francisco; Mayor, Federico

    2008-01-01

    Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration. PMID:18369319

  1. Using cholinergic M1 receptor positive allosteric modulators to improve memory via enhancement of brain cholinergic communication.

    PubMed

    Chambon, Caroline; Jatzke, Claudia; Wegener, Nico; Gravius, Andreas; Danysz, Wojciech

    2012-12-15

    Benzylquinolone carboxylic acid (BQCA) is a recently described cholinergic muscarinic M(1) receptor positive allosteric modulator having potential as cognitive enhancer in dementia. The present study focused on the characterisation of BQCA's mode of action in relation to positive effects on memory and side-effects in an animal model. To get insight into this mode of action, in vitro receptor potency/left shift experiments in cells stably expressing the rat's M(1) receptor were performed. They revealed an inflection point value of BQCA corresponding to 306nM, and potentiation of the agonist response up to 47-fold in presence of 10μM of BQCA. In vivo, brain microdialysis showed a maximal brain level of 270nM, 40min after i.p. administration at 10mg/kg. Based on in vitro data obtained with this dose, it can be concluded that BQCA reaches brain levels which should potentiate the agonist response about 4-fold. Behavioural data confirmed that BQCA used at 10mg/kg attenuated scopolamine-induced memory deficit in a spontaneous alternation task. Moreover, BQCA showed no side effect at 10mg/kg and above in spontaneous locomotion and salivation tests. The profile of BQCA observed in the present study displays a clear advantage over the M(1)-M(3) agonist cevimeline. The present data show the therapeutic potential of the M(1) receptor positive allosteric modulator BQCA for the treatment of memory deficits observed in Alzheimer's disease. Copyright © 2012. Published by Elsevier B.V.

  2. Osimertinib in the treatment of patients with epidermal growth factor receptor T790M mutation-positive metastatic non-small cell lung cancer: clinical trial evidence and experience.

    PubMed

    Sullivan, Ivana; Planchard, David

    2016-12-01

    Patients with advanced epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) are particularly sensitive to treatment with first- or second-generation EGFR tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib, which block the cell-signaling pathways that drive the growth of tumor cells. Unfortunately, the majority of patients develop resistance to them after a median duration of response of around 10 months, and in over half of these patients the emergence of the EGFR T790M resistance mutation is detected. Osimertinib is an oral, highly selective, irreversible inhibitor of both EGFR-activating mutations and the T790M-resistance mutation, while sparing the activity of wild-type EGFR This article reviews clinical trial development of osimertinib in patients with NSCLC, presenting efficacy and safety evidence for its value in the EGFR T790M mutation-positive population and in different settings, including patients with metastatic disease. The preclinical background of clinically acquired resistance to osimertinib is presented and the combination tactics being investigated in an attempt to circumvent this are addressed. © The Author(s), 2016.

  3. Osimertinib in the treatment of patients with epidermal growth factor receptor T790M mutation-positive metastatic non-small cell lung cancer: clinical trial evidence and experience

    PubMed Central

    Sullivan, Ivana; Planchard, David

    2016-01-01

    Patients with advanced epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) are particularly sensitive to treatment with first- or second-generation EGFR tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib, which block the cell-signaling pathways that drive the growth of tumor cells. Unfortunately, the majority of patients develop resistance to them after a median duration of response of around 10 months, and in over half of these patients the emergence of the EGFR T790M resistance mutation is detected. Osimertinib is an oral, highly selective, irreversible inhibitor of both EGFR-activating mutations and the T790M-resistance mutation, while sparing the activity of wild-type EGFR. This article reviews clinical trial development of osimertinib in patients with NSCLC, presenting efficacy and safety evidence for its value in the EGFR T790M mutation-positive population and in different settings, including patients with metastatic disease. The preclinical background of clinically acquired resistance to osimertinib is presented and the combination tactics being investigated in an attempt to circumvent this are addressed. PMID:27784815

  4. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin,R.; Clark, S.; Weeks, A.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimermore » interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.« less

  5. Combined caveolin-1 and epidermal growth factor receptor expression as a prognostic marker for breast cancer.

    PubMed

    Liang, Ya-Nan; Liu, Yu; Wang, Letian; Yao, Guodong; Li, Xiaobo; Meng, Xiangning; Wang, Fan; Li, Ming; Tong, Dandan; Geng, Jingshu

    2018-06-01

    Previous studies have indicated that caveolin-1 (Cav-1) is able to bind the signal transduction factor epidermal growth factor receptor (EGFR) to regulate its tyrosine kinase activity. The aim of the present study was to evaluate the clinical significance of Cav-1 gene expression in association with the expression of EGFR in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Cav-1 and EGFR expression using immunohistochemistry, and clinical significance was assessed using multivariate Cox regression analysis, Kaplan-Meier estimator curves and the log-rank test. Stromal Cav-1 was downregulated in 38.56% (118/306) of tumor tissues, whereas cytoplasmic EGFR and Cav-1 were overexpressed in 53.92% (165/306) and 44.12% (135/306) of breast cancer tissues, respectively. EGFR expression was positively associated with cytoplasmic Cav-1 and not associated with stromal Cav-1 expression in breast cancer samples; however, low expression of stromal Cav-1 was negatively associated with cytoplasmic Cav-1 expression in total tumor tissues, and analogous results were identified in the chemotherapy group. Multivariate Cox's proportional hazards model analysis revealed that, for patients in the estrogen receptor (ER)(+) group, the expression of stromal Cav-1 alone was a significant prognostic marker of breast cancer. However, in the chemotherapy, human epidermal growth factor receptor 2 (HER-2)(-), HER-2(+) and ER(-) groups, the use of combined markers was more effective prognostic marker. Stromal Cav-1 has a tumor suppressor function, and the combined marker stromal Cav-1/EGFR expression was identified as an improved prognostic marker in the diagnosis of breast cancer. Parenchymal expression of Cav-1 is able to promote EGFR signaling in breast cancer, potentially being required for EGFR-mediated initiation of mitosis.

  6. Flipped script for gefitinib: A reapproved tyrosine kinase inhibitor for first-line treatment of epidermal growth factor receptor mutation positive metastatic nonsmall cell lung cancer.

    PubMed

    Bogdanowicz, Brian S; Hoch, Matthew A; Hartranft, Megan E

    2017-04-01

    Purpose The approval history, pharmacology, pharmacokinetics, clinical trials, efficacy, dosing recommendations, drug interactions, safety, place in therapy, and economic considerations of gefitinib are reviewed. Summary Lung cancer is one of the most commonly diagnosed cancers and is the leading cause of cancer death. Platinum-based chemotherapy and tyrosine kinase inhibitors, such as erlotinib and afatinib, are recommended therapies for nonsmall cell lung cancer. The European Medicines Association based their approval of gefitinib on the randomized, multicenter Iressa Pan-Asia Study (IPASS, NCT00322452) and a single-arm study showing effectiveness in Caucasians (IFUM, NCT01203917). Both studies were recently referenced by the United States Food & Drug Administration to reapprove gefitinib for the first-line treatment of advanced nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions or exon 21 substitution. Diarrhea, acneiform rash, and interstitial lung disease are known side effects of gefitinib. Conclusion Use of gefitinib for the first-line therapy of metastatic nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions (residues 747-750) or exon 21 substitution mutation (L858R) is well-documented and supported.

  7. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    PubMed

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  8. Antagonism of corticotropin-releasing factor CRF1 receptors blocks the enhanced response to cocaine after social stress.

    PubMed

    Ferrer-Pérez, Carmen; Reguilón, Marina D; Manzanedo, Carmen; Aguilar, M Asunción; Miñarro, José; Rodríguez-Arias, Marta

    2018-03-15

    Numerous studies have shown that social defeat stress induces an increase in the rewarding effects of cocaine. In this study we have investigated the role played by the main hypothalamic stress hormone, corticotropin-releasing factor (CRF), in the effects that repeated social defeat (RSD) induces in the conditioned rewarding effects and locomotor sensitization induced by cocaine. A total of 220 OF1 mice were divided into experimental groups according to the treatment received before each social defeat: saline, 5 or 10 mg/kg of the nonpeptidic corticotropin-releasing factor CRF 1 receptor antagonist CP-154,526, or 15 or 30 µg/kg of the peptidic corticotropin-releasing factor CRF 2 receptor antagonist Astressin 2 -B. Three weeks after the last defeat, conditioned place preference (CPP) induced by 1 mg/kg of cocaine was evaluated. Motor response to 10 mg/kg of cocaine was also studied after a sensitization induction. Blockade of corticotropin-releasing factor CRF 1 receptor reversed the increase in cocaine CPP induced by social defeat. Conversely, peripheral corticotropin-releasing factor CRF 2 receptor blockade produced similar effects to those observed in socially stressed animals. The effect of RSD on cocaine sensitization was again blocked by the corticotropin-releasing factor CRF 1 receptor antagonist, while peripheral CRF 2 receptor antagonist did not show effect. Acute administration of Astressin 2 -B induced an anxiogenic response. Our results confirm that CRF modulates the effects of social stress on reinforcement and sensitization induced by cocaine in contrasting ways. These findings highlight CRF receptors as potential therapeutic targets to be explored by research about stress-related addiction problems. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Palbociclib: A Novel Cyclin-Dependent Kinase Inhibitor for Hormone Receptor-Positive Advanced Breast Cancer.

    PubMed

    Mangini, Neha S; Wesolowski, Robert; Ramaswamy, Bhuvaneswari; Lustberg, Maryam B; Berger, Michael J

    2015-11-01

    To review palbociclib, a novel small-molecule inhibitor of cyclin-dependent kinases 4 and 6, and its current place in therapy for the treatment of hormone receptor (HMR)-positive, human epidermal growth factor receptor 2 (Her2)-negative advanced breast cancer. Four phase I trials, 2 phase II trials, and 1 phase III trial were identified from May 2004 to May 2015 using PubMed, American Society of Clinical Oncology (ASCO) abstracts, and European Society of Medical Oncology (ESMO) abstracts. In the first-line setting, the phase II PALbociclib: Ongoing trials in the Management of breast cAncer (PALOMA)-1 trial randomized patients to receive letrozole alone or letrozole plus palbociclib 125 mg daily for 3 weeks, followed by 1 week off, as initial therapy for advanced breast cancer. The investigator-assessed median progression-free survival (PFS) was 20. 2 months for the combination versus 10.2 months for letrozole alone (hazard ratio [HR] = 0.488; 95% CI = 0.319-0.748; 1-sided P = 0.0004). The ensuing Food and Drug Administration approval of palbociclib was given a "breakthrough therapy" designation, where preliminary evidence suggests substantial improvement over existing therapies for a serious or life-threatening disease. A confirmatory phase III trial, PALOMA-2, is under way. In patients who were previously treated with endocrine therapy for advanced breast cancer, the phase III PALOMA-3 trial randomized patients to fulvestrant plus palbociclib versus fulvestrant plus placebo. The investigator-assessed median PFS at the time of a preplanned analysis was 9.2 months with palbociclib-fulvestrant compared with 3.8 months with placebo-fulvestrant (HR = 0.42; 95% CI = 0.32-0.56; P < 0.001). Palbociclib, the first-in-class CDK4/6 inhibitor, significantly extended PFS in combination with endocrine therapy in the first and subsequent lines of treatment for HMR-positive, Her2-negative advanced breast cancer. © The Author(s) 2015.

  10. Huntingtin interacting protein 1 is a novel brain tumor marker that associates with epidermal growth factor receptor.

    PubMed

    Bradley, Sarah V; Holland, Eric C; Liu, Grace Y; Thomas, Dafydd; Hyun, Teresa S; Ross, Theodora S

    2007-04-15

    Huntingtin interacting protein 1 (HIP1) is a multidomain oncoprotein whose expression correlates with increased epidermal growth factor receptor (EGFR) levels in certain tumors. For example, HIP1-transformed fibroblasts and HIP1-positive breast cancers have elevated EGFR protein levels. The combined association of HIP1 with huntingtin, the protein that is mutated in Huntington's disease, and the known overexpression of EGFR in glial brain tumors prompted us to explore HIP1 expression in a group of patients with different types of brain cancer. We report here that HIP1 is overexpressed with high frequency in brain cancers and that this overexpression correlates with EGFR and platelet-derived growth factor beta receptor expression. Furthermore, serum samples from patients with brain cancer contained anti-HIP1 antibodies more frequently than age-matched brain cancer-free controls. Finally, we report that HIP1 physically associates with EGFR and that this association is independent of the lipid, clathrin, and actin interacting domains of HIP1. These findings suggest that HIP1 may up-regulate or maintain EGFR overexpression in primary brain tumors by directly interacting with the receptor. This novel HIP1-EGFR interaction may work with or independent of HIP1 modulation of EGFR degradation via clathrin-mediated membrane trafficking pathways. Further investigation of HIP1 function in brain cancer biology and validation of its use as a prognostic or predictive brain tumor marker are now warranted.

  11. Anti-tumorigenic effects of a novel digitoxin derivative on both estrogen receptor-positive and triple-negative breast cancer cells.

    PubMed

    Kulkarni, Yogesh M; Yakisich, Juan S; Azad, Neelam; Venkatadri, Rajkumar; Kaushik, Vivek; O'Doherty, George; Iyer, Anand Krishnan V

    2017-06-01

    While there are targeted treatments for triple positive breast cancers, lack of specific biomarkers for triple-negative breast cancers (TNBC) has hindered the development of therapies for this subset of cancers. In this study, we evaluated the anticancer properties of cardiac glycoside Digitoxin (Dtx) and its synthetic analog MonoD on breast cancer cell lines MCF-7 (estrogen receptor-positive breast cancer) and MDA-MB-468 (triple-negative breast cancer). Both cardiac glycosides, at concentrations within the therapeutic range, increased the fraction of cells in the G 0 /G 1 phase of the cell cycle, decreased viability, and inhibited the migration of MCF-7 and MDA-MB-468 cells. Both cardiac glycosides increased production of superoxide and induced apoptosis in both cell types. Reduced protein levels of nuclear factor kappa B and IkappaB kinase-beta were found in cardiac glycoside-treated cells, indicating that the cellular effects of these compounds are mediated via nuclear factor kappa B pathway. This study demonstrates the cytotoxic potential of digitoxin, and more importantly its synthetic analog MonoD, in the treatment of triple-positive breast cancer and more importantly the aggressive triple-negative breast cancer. Collectively, this study provides a basis for the reevaluation of cardiac glycosides in the treatment of breast cancer and more importantly reveals their potential in the treatment of triple-negative breast cancers.

  12. Epidermal Growth Factor-Dependent Transformation by a Human EGF Receptor Proto-Oncogene

    NASA Astrophysics Data System (ADS)

    Velu, Thierry J.; Beguinot, Laura; Vass, William C.; Willingham, Mark C.; Merlino, Glenn T.; Pastan, Ira; Lowy, Douglas R.

    1987-12-01

    The epidermal growth factor (EGF) receptor gene EGFR has been placed in a retrovirus vector to examine the growth properties of cells that experimentally overproduce a full-length EGF receptor. NIH 3T3 cells transfected with the viral DNA or infected with the corresponding rescued retrovirus developed a fully transformed phenotype in vitro that required both functional EGFR expression and the presence of EGF in the growth medium. Cells expressing 4 × 105 EGF receptors formed tumors in nude mice, while control cells did not. Therefore, the EGFR retrovirus, which had a titer on NIH 3T3 cells that was greater than 107 focus-forming units per milliliter, can efficiently transfer and express this gene, and increased numbers of EGF receptors can contribute to the transformed phenotype.

  13. Neer Award 2018: Platelet-derived growth factor receptor α co-expression typifies a subset of platelet-derived growth factor receptor β-positive progenitor cells that contribute to fatty degeneration and fibrosis of the murine rotator cuff.

    PubMed

    Jensen, Andrew R; Kelley, Benjamin V; Mosich, Gina M; Ariniello, Allison; Eliasberg, Claire D; Vu, Brandon; Shah, Paras; Devana, Sai K; Murray, Iain R; Péault, Bruno; Dar, Ayelet; Petrigliano, Frank A

    2018-04-10

    After massive tears, rotator cuff muscle often undergoes atrophy, fibrosis, and fatty degeneration. These changes can lead to high surgical failure rates and poor patient outcomes. The identity of the progenitor cells involved in these processes has not been fully elucidated. Platelet-derived growth factor receptor β (PDGFRβ) and platelet-derived growth factor receptor α (PDGFRα) have previously been recognized as markers of cells involved in muscle fibroadipogenesis. We hypothesized that PDGFRα expression identifies a fibroadipogenic subset of PDGFRβ + progenitor cells that contribute to fibroadipogenesis of the rotator cuff. We created massive rotator cuff tears in a transgenic strain of mice that allows PDGFRβ + cells to be tracked via green fluorescent protein (GFP) fluorescence. We then harvested rotator cuff muscle tissues at multiple time points postoperatively and analyzed them for the presence and localization of GFP + PDGFRβ + PDGFRα + cells. We cultured, induced, and treated these cells with the molecular inhibitor CWHM-12 to assess fibrosis inhibition. GFP + PDGFRβ + PDGFRα + cells were present in rotator cuff muscle tissue and, after massive tears, localized to fibrotic and adipogenic tissues. The frequency of PDGFRβ + PDGFRα + cells increased at 5 days after massive cuff tears and decreased to basal levels within 2 weeks. PDGFRβ + PDGFRα + cells were highly adipogenic and significantly more fibrogenic than PDGFRβ + PDGFRα - cells in vitro and localized to adipogenic and fibrotic tissues in vivo. Treatment with CWHM-12 significantly decreased fibrogenesis from PDGFRβ + PDGFRα + cells. PDGFRβ + PDGFRα + cells directly contribute to fibrosis and fatty degeneration after massive rotator cuff tears in the mouse model. In addition, CWHM-12 treatment inhibits fibrogenesis from PDGFRβ + PDGFRα + cells in vitro. Clinically, perioperative PDGFRβ + PDGFRα + cell inhibition may limit rotator cuff tissue degeneration and, ultimately

  14. QSAR and 3D QSAR of inhibitors of the epidermal growth factor receptor

    NASA Astrophysics Data System (ADS)

    Pinto-Bazurco, Mariano; Tsakovska, Ivanka; Pajeva, Ilza

    This article reports quantitative structure-activity relationships (QSAR) and 3D QSAR models of 134 structurally diverse inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. Free-Wilson analysis was used to derive the QSAR model. It identified the substituents in aniline, the polycyclic system, and the substituents at the 6- and 7-positions of the polycyclic system as the most important structural features. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used in the 3D QSAR modeling. The steric and electrostatic interactions proved the most important for the inhibitory effect. Both QSAR and 3D QSAR models led to consistent results. On the basis of the statistically significant models, new structures were proposed and their inhibitory activities were predicted.

  15. PF4/heparin-antibody complex induces monocyte tissue factor expression and release of tissue factor positive microparticles by activation of FcγRI

    PubMed Central

    Glover, Sam L.; Jonas, William; McEachron, Troy; Pawlinski, Rafal; Arepally, Gowthami M.; Key, Nigel S.; Mackman, Nigel

    2012-01-01

    Heparin-induced thrombocytopenia (HIT) is a potentially devastating form of drug-induced thrombocytopenia that occurs in patients receiving heparin for prevention or treatment of thrombosis. Patients with HIT develop autoantibodies to the platelet factor 4 (PF4)/heparin complex, which is termed the HIT Ab complex. Despite a decrease in the platelet count, the most feared complication of HIT is thrombosis. The mechanism of thrombosis in HIT remains poorly understood. We investigated the effects of the HIT Ab complex on tissue factor (TF) expression and release of TF-positive microparticles in peripheral blood mononuclear cells and monocytes. To model these effects ex vivo, we used a murine mAb specific for the PF4/heparin complex (KKO), as well as plasma from patients with HIT. We found that the HIT Ab complex induced TF expression in monocytes and the release of TF-positive microparticles. Further, we found that induction of TF is mediated via engagement of the FcγRI receptor and activation of the MEK1-ERK1/2 signaling pathway. Our data suggest that monocyte TF may contribute to the development of thrombosis in patients with HIT. PMID:22394597

  16. Interstitial Lung Disease Induced by Osimertinib for Epidermal Growth Factor Receptor (EGFR) T790M-positive Non-small Cell Lung Cancer.

    PubMed

    Matsumoto, Yoshiya; Kawaguchi, Tomoya; Yamamoto, Norio; Sawa, Kenji; Yoshimoto, Naoki; Suzumura, Tomohiro; Watanabe, Tetsuya; Mitsuoka, Shigeki; Asai, Kazuhisa; Kimura, Tatsuo; Yoshimura, Naruo; Kuwae, Yuko; Hirata, Kazuto

    2017-09-01

    A 75-year-old man with stage IV lung adenocarcinoma was treated with osimertinib due to disease progression despite having been administered erlotinib. Both an epidermal growth factor receptor (EGFR) L858R mutation on exon 21 and a T790M mutation on exon 20 were detected in a specimen from a recurrent primary tumor. Five weeks after osimertinib initiation, he developed general fatigue and dyspnea. Chest computed tomography scan revealed diffuse ground glass opacities and consolidation on both lungs. An analysis of the bronchoalveolar lavage fluid revealed marked lymphocytosis, and a transbronchial lung biopsy specimen showed a thickened interstitium with fibrosis and prominent lymphocytic infiltration. We diagnosed the patient to have interstitial lung disease induced by osimertinib.

  17. Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors.

    PubMed

    Croy, Carrie H; Schober, Douglas A; Xiao, Hongling; Quets, Anne; Christopoulos, Arthur; Felder, Christian C

    2014-07-01

    The M(4) receptor is a compelling therapeutic target, as this receptor modulates neural circuits dysregulated in schizophrenia, and there is clinical evidence that muscarinic agonists possess both antipsychotic and procognitive efficacy. Recent efforts have shifted toward allosteric ligands to maximize receptor selectivity and manipulate endogenous cholinergic and dopaminergic signaling. In this study, we present the pharmacological characterization of LY2119620 (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2-oxoethoxy] thieno[2,3-b]pyridine-2-carboxamide), a M(2)/M(4) receptor-selective positive allosteric modulator (PAM), chemically evolved from hits identified through a M4 allosteric functional screen. Although unsuitable as a therapeutic due to M(2) receptor cross-reactivity and, thus, potential cardiovascular liability, LY2119620 surpassed previous congeners in potency and PAM activity and broadens research capabilities through its development into a radiotracer. Characterization of LY2119620 revealed evidence of probe dependence in both binding and functional assays. Guanosine 5'-[γ-(35)S]-triphosphate assays displayed differential potentiation depending on the orthosteric-allosteric pairing, with the largest cooperativity observed for oxotremorine M (Oxo-M) LY2119620. Further [(3)H]Oxo-M saturation binding, including studies with guanosine-5'-[(β,γ)-imido]triphosphate, suggests that both the orthosteric and allosteric ligands can alter the population of receptors in the active G protein-coupled state. Additionally, this work expands the characterization of the orthosteric agonist, iperoxo, at the M(4) receptor, and demonstrates that an allosteric ligand can positively modulate the binding and functional efficacy of this high efficacy ligand. Ultimately, it was the M(2) receptor pharmacology and PAM activity with iperoxo that made LY2119620 the most suitable allosteric partner for the M(2) active-state structure recently solved

  18. Protein partners in the life history of activated fibroblast growth factor receptors.

    PubMed

    Vecchione, Anna; Cooper, Helen J; Trim, Kimberley J; Akbarzadeh, Shiva; Heath, John K; Wheldon, Lee M

    2007-12-01

    Fibroblast growth factor receptors (FGFRs) are a family of four transmembrane (TM) receptor tyrosine kinases (RTKs) which bind to a large family of fibroblast growth factor (FGF) ligands with varying affinity and specificity. FGFR signaling regulates many physiological and pathological processes in development and tissue homeostasis. Understanding FGFR signaling processes requires the identification of partner proteins which regulate receptor function and biological outputs. In this study, we employ an epitope-tagged, covalently dimerized, and constitutively activated form of FGFR1 to identify potential protein partners by MS. By this approach, we sample candidate FGFR effectors throughout the life history of the receptor. Functional classification of the partners identified revealed specific subclasses involved in protein biosynthesis and folding; structural and regulatory components of the cytoskeleton; known signaling effectors and small GTPases implicated in endocytosis and vesicular trafficking. The kinase dependency of the interaction was determined for a subset of previously unrecognized partners by coimmunoprecipitation, Western blotting, and immunocytochemistry. From this group, the small GTPase Rab5 was selected for functional interrogation. We show that short hairpin (sh) RNA-mediated depletion of Rab5 attenuates the activation of the extracellular-regulated kinase (ERK) 1/2 pathway by FGFR signaling. The strategic approach adopted in this study has revealed bona fide novel effectors of the FGFR signaling pathway.

  19. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer.

    PubMed

    Filardo, Edward J

    2002-02-01

    The biological and biochemical effects of estrogen have been ascribed to its known receptors, which function as ligand-inducible transcription factors. However, estrogen also triggers rapid activation of classical second messengers (cAMP, calcium, and inositol triphosphate) and stimulation of intracellular signaling cascades mitogen-activated protein kinase (MAP K), PI3K and eNOS. These latter events are commonly activated by membrane receptors that either possess intrinsic tyrosine kinase activity or couple to heterotrimeric G-proteins. We have shown that estrogen transactivates the epidermal growth factor receptor (EGFR) to MAP K signaling axis via the G-protein-coupled receptor (GPCR), GPR30, through the release of surface-bound proHB-EGF from estrogen receptor (ER)-negative human breast cancer cells [Molecular Endocrinology 14 (2000) 1649]. This finding is consistent with a growing body of evidence suggesting that transactivation of EGFRs by GPCRs is a recurrent theme in cell signaling. GPCR-mediated transactivation of EGFRs by estrogen provides a previously unappreciated mechanism of cross-talk between estrogen and serum growth factors, and explains prior data reporting the EGF-like effects of estrogen. This novel mechanism by which estrogen activates growth factor-dependent signaling and its implications for breast cancer biology are discussed further in this review.

  20. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time

    PubMed Central

    Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H

    2012-01-01

    BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512

  1. Estrogen receptor β and Liver X receptor β: biology and therapeutic potential in CNS diseases.

    PubMed

    Warner, M; Gustafsson, J-A

    2015-02-01

    In the last decade of the twentieth century, two nuclear receptors were discovered in our laboratory and, very surprisingly, were found to have key roles in the central nervous system. These receptors have provided some novel insights into the etiology and progression of neurodegenerative diseases and anxiety disorders. The two receptors are estrogen receptor beta (ERβ) and liver X receptor beta (LXRβ). Both ERβ and LXRβ have potent anti-inflammatory activities and, in addition, LXRβ is involved in the genesis of dopaminergic neurons during development and protection of these neurons against neurodegeneration in adult life. ERβ is involved in migration of cortical neurons and calretinin-positive GABAergic interneurons during development and maintenance of serotonergic neurons in adults. Both receptors are present in magnocellular neurons of the hypothalamic preoptic area including those expressing vasopressin and oxytocin. As both ERβ and LXRβ are ligand-activated transcription factors, their ligands hold great potential in the treatment of diseases of the CNS.

  2. Is the Factor Observed in Investigations on the Item-Position Effect Actually the Difficulty Factor?

    ERIC Educational Resources Information Center

    Schweizer, Karl; Troche, Stefan

    2018-01-01

    In confirmatory factor analysis quite similar models of measurement serve the detection of the difficulty factor and the factor due to the item-position effect. The item-position effect refers to the increasing dependency among the responses to successively presented items of a test whereas the difficulty factor is ascribed to the wide range of…

  3. Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer.

    PubMed

    Mukohara, Toru

    2011-01-01

    Approximately 20% of breast cancers are characterized by overexpression of human epidermal growth factor receptor 2 (HER2) protein and associated gene amplification, and the receptor tyrosine kinase is believed to play a critical role in the pathogenesis of these tumors. The development and implementation of trastuzumab, a humanized monoclonal antibody against the extracellular domain of HER2 protein, has significantly improved treatment outcomes in patients with HER2-overexpressing breast cancer. However, despite this clinical usefulness, unmet needs for better prediction of trastuzumab's response and overcoming primary and acquired resistance remain. In this review, we discuss several potential mechanisms of resistance to trastuzumab that have been closely studied over the last decade. Briefly, these mechanisms include: impaired access of trastuzumab to HER2 by expression of extracellular domain-truncated HER2 (p95 HER2) or overexpression of MUC4; alternative signaling from insulin-like growth factor-1 receptor, other epidermal growth factor receptor family members, or MET; aberrant downstream signaling caused by loss of phosphatase and tensin homologs deleted from chromosome 10 (PTEN), PIK3CA mutation, or downregulation of p27; or FCGR3A polymorphisms. In addition, we discuss potential strategies for overcoming resistance to trastuzumab. Specifically, the epidermal growth factor receptor/HER2 tyrosine kinase inhibitor lapatinib partially overcame trastuzumab resistance in a clinical setting, so its efficacy results and limited data regarding potential mechanisms of resistance to the drug are also discussed. © 2010 Japanese Cancer Association.

  4. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    PubMed

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  5. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors.

    PubMed

    Qi, Shibo; Miao, Zheng; Liu, Hongguang; Xu, Yingding; Feng, Yaqing; Cheng, Zhen

    2012-06-20

    The epidermal growth factor receptor 1 (EGFR) has become an attractive target for cancer molecular imaging and therapy. An Affibody protein with strong binding affinity for EGFR, ZEGFR:1907, has been reported. We are interested in translating Affibody molecules to potential clinical optical imaging of EGFR positive cancers. In this study, four anti-EGFR Affibody based near-infrared (NIR) fluorescent probes were thus prepared, and their in vivo performance was evaluated in the mice bearing EGFR positive subcutaneous A431 tumors. The Affibody analogue, Ac-Cys-ZEGFR:1907, was synthesized using solid-phase peptide synthesis method. The purified small protein was then site-specifically conjugated with four NIR fluorescent dyes, Cy5.5-monomaleimide, Alex-Fluor-680-maleimide, SRfluor680-maleimide, or IRDye-800CW-maleimide, to produce four optical probes-Cy5.5-ZEGFR:1907, Alexa680-ZEGFR:1907, SR680-ZEGFR:1907, and 800CW-ZEGFR:1907. The EGFR binding property and specificity of the four NIR fluorescent Affibody probes were studied by fluorescence microscopy using high EGFR expressing A431 cells and low expressing MCF7 cells. The binding affinities of the probes (KD) to EGFR were further determined by flow cytometry. In vivo optical imaging of the four probes was performed in the mice bearing subcutaneous A431 tumors. The four NIR optical probes were prepared in high purity. In vitro cell imaging studies demonstrated that all of them could specifically bind to EGFR positive A431 cells while showing minimum uptake in low EGFR expressing MCF7 cells. Flow cytometry showed that Cy5.5-ZEGFR:1907 and Alexa680-ZEGFR:1907 possessed high binding affinity in low nanomolar range (43.6 ± 8.4 and 28.3 ± 4.9, respectively). In vivo optical imaging of the four probes revealed that they all showed fast tumor targeting ability and good tumor-to-normal tissue contrast as early as 0.5 h postinjection (p.i.). The tumor-to-normal tissue ratio reached a peak at 2 to 4 h p.i. by regional of

  6. Adjuvant Trastuzumab in HER2-Positive Early Breast Cancer by Age and Hormone Receptor Status: A Cost-Utility Analysis.

    PubMed

    Leung, William; Kvizhinadze, Giorgi; Nair, Nisha; Blakely, Tony

    2016-08-01

    The anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab improves outcomes in patients with node-positive HER2+ early breast cancer. Given trastuzumab's high cost, we aimed to estimate its cost-effectiveness by heterogeneity in age and estrogen receptor (ER) and progesterone receptor (PR) status, which has previously been unexplored, to assist prioritisation. A cost-utility analysis was performed using a Markov macro-simulation model, with a lifetime horizon, comparing a 12-mo regimen of trastuzumab with chemotherapy alone using the latest (2014) effectiveness measures from landmark randomised trials. A New Zealand (NZ) health system perspective was adopted, employing high-quality national administrative data. Incremental quality-adjusted life-years for trastuzumab versus chemotherapy alone are two times higher (2.33 times for the age group 50-54 y; 95% CI 2.29-2.37) for the worst prognosis (ER-/PR-) subtype compared to the best prognosis (ER+/PR+) subtype, causing incremental cost-effectiveness ratios (ICERs) for the former to be less than half those of the latter for the age groups from 25-29 to 90-94 y (0.44 times for the age group 50-54 y; 95% CI 0.43-0.45). If we were to strictly apply an arbitrary cost-effectiveness threshold equal to the NZ gross domestic product per capita (2011 purchasing power parity [PPP]-adjusted: US$30,300; €23,700; £21,200), our study suggests that trastuzumab (2011 PPP-adjusted US$45,400/€35,900/£21,900 for 1 y at formulary prices) may not be cost-effective for ER+ (which are 61% of all) node-positive HER2+ early breast cancer patients but cost-effective for ER-/PR- subtypes (37% of all cases) to age 69 y. Market entry of trastuzumab biosimilars will likely reduce the ICER to below this threshold for premenopausal ER+/PR- cancer but not for ER+/PR+ cancer. Sensitivity analysis using the best-case effectiveness measure for ER+ cancer had the same result. A key limitation was a lack of treatment

  7. Adjuvant Trastuzumab in HER2-Positive Early Breast Cancer by Age and Hormone Receptor Status: A Cost-Utility Analysis

    PubMed Central

    Leung, William; Kvizhinadze, Giorgi; Nair, Nisha; Blakely, Tony

    2016-01-01

    Background The anti–human epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab improves outcomes in patients with node-positive HER2+ early breast cancer. Given trastuzumab’s high cost, we aimed to estimate its cost-effectiveness by heterogeneity in age and estrogen receptor (ER) and progesterone receptor (PR) status, which has previously been unexplored, to assist prioritisation. Methods and Findings A cost-utility analysis was performed using a Markov macro-simulation model, with a lifetime horizon, comparing a 12-mo regimen of trastuzumab with chemotherapy alone using the latest (2014) effectiveness measures from landmark randomised trials. A New Zealand (NZ) health system perspective was adopted, employing high-quality national administrative data. Incremental quality-adjusted life-years for trastuzumab versus chemotherapy alone are two times higher (2.33 times for the age group 50–54 y; 95% CI 2.29–2.37) for the worst prognosis (ER−/PR−) subtype compared to the best prognosis (ER+/PR+) subtype, causing incremental cost-effectiveness ratios (ICERs) for the former to be less than half those of the latter for the age groups from 25–29 to 90–94 y (0.44 times for the age group 50–54 y; 95% CI 0.43–0.45). If we were to strictly apply an arbitrary cost-effectiveness threshold equal to the NZ gross domestic product per capita (2011 purchasing power parity [PPP]–adjusted: US$30,300; €23,700; £21,200), our study suggests that trastuzumab (2011 PPP-adjusted US$45,400/€35,900/£21,900 for 1 y at formulary prices) may not be cost-effective for ER+ (which are 61% of all) node-positive HER2+ early breast cancer patients but cost-effective for ER−/PR− subtypes (37% of all cases) to age 69 y. Market entry of trastuzumab biosimilars will likely reduce the ICER to below this threshold for premenopausal ER+/PR− cancer but not for ER+/PR+ cancer. Sensitivity analysis using the best-case effectiveness measure for ER+ cancer had

  8. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering.

    PubMed

    Ratman, Dariusz; Vanden Berghe, Wim; Dejager, Lien; Libert, Claude; Tavernier, Jan; Beck, Ilse M; De Bosscher, Karolien

    2013-11-05

    The activity of the glucocorticoid receptor (GR), a nuclear receptor transcription factor belonging to subclass 3C of the steroid/thyroid hormone receptor superfamily, is typically triggered by glucocorticoid hormones. Apart from driving gene transcription via binding onto glucocorticoid response elements in regulatory regions of particular target genes, GR can also inhibit gene expression via transrepression, a mechanism largely based on protein:protein interactions. Hereby GR can influence the activity of other transcription factors, without contacting DNA itself. GR is known to inhibit the activity of a growing list of immune-regulating transcription factors. Hence, GCs still rule the clinic for treatments of inflammatory disorders, notwithstanding concomitant deleterious side effects. Although patience is a virtue when it comes to deciphering the many mechanisms GR uses to influence various signaling pathways, the current review is testimony of the fact that groundbreaking mechanistic work has been accumulating over the past years and steadily continues to grow. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Estrogen/Progesterone Receptor Negativity and HER2 Positivity Predict Locoregional Recurrence in Patients With T1a,bN0 Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Jeffrey M.; Gonzalez-Angulo, Ana M.; Guray, Merih

    2010-08-01

    Purpose: Data have suggested that the molecular features of breast cancer are important determinants of outcome; however, few studies have correlated these features with locoregional recurrence (LRR). In the present study, we evaluated estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) as predictors of LRR in patients with lymph node-negative disease and tumors {<=}1 cm, because these patients often do not receive adjuvant chemotherapy or trastuzumab. Methods and Materials: The data from 911 patients with stage T1a,bN0 breast cancer who had received definitive treatment at our institution between 1997 and 2002 were retrospectively reviewed.more » We prospectively analyzed ER/PR/HER2 expression from the archival tissue blocks of 756 patients. These 756 patients represented the cohort for the present study. Results: With a median follow-up of 6.0 years, the 5- and 8-year Kaplan-Meier LRR rate was 1.6% and 5.9%, respectively, with no difference noted in those who underwent breast conservation therapy vs. mastectomy (p = .347). The 8-year LRR rates were greater in the patients with ER-negative (10.6% vs. 4.2%, p = .016), PR-negative (9.0% vs. 4.2%, p = .009), or HER2-positive (17.5% vs. 3.9%, p = 0.009) tumors. On multivariate analysis, ER-negative and PR-negative disease (hazard ratio, 2.37; p = .046) and HER2-positive disease (hazard ratio, 3.13, p = .016) independently predicted for LRR. Conclusion: Patients with ER/PR-negative or HER2-positive T1a,bN0 breast cancer had a greater risk of LRR. Therapeutic strategies, such as the use of chemotherapy and/or anti-HER2 therapies, should be considered for future clinical trials for these patients.« less

  10. Relationship between serum response factor and androgen receptor in prostate cancer.

    PubMed

    Prencipe, Maria; O'Neill, Amanda; O'Hurley, Gillian; Nguyen, Lan K; Fabre, Aurelie; Bjartell, Anders; Gallagher, William M; Morrissey, Colm; Kay, Elaine W; Watson, R William

    2015-11-01

    Serum response factor (SRF) is an important transcription factor in castrate-resistant prostate cancer (CRPC). Since CRPC is associated with androgen receptor (AR) hypersensitivity, we investigated the relationship between SRF and AR. Transcriptional activity was assessed by luciferase assay. Cell proliferation was measured by MTT and flow cytometry. Protein expression in patients was assessed by immunohistochemistry. To investigate AR involvement in SRF response to androgen, AR expression was down-regulated using siRNA. This resulted in the abrogation of SRF induction post-DHT. Moreover, DHT stimulation failed to induce SRF transcriptional activity in AR-negative PC346 DCC cells, which was only restored following AR over-expression. Next, SRF expression was down-regulated by siRNA, resulting in AR increased transcriptional activity in castrate-resistant LNCaP Abl cells but not in the parental LNCaP. This negative feedback loop in the resistant cells was confirmed by immunohistochemistry which showed a negative correlation between AR and SRF expression in CRPC bone metastases and a positive correlation in androgen-naïve prostatectomies. Cell proliferation was next assessed following SRF inhibition, demonstrating that SRF inhibition is more effective than AR inhibition in castrate-resistant cells. Our data support SRF as a promising therapeutic target in combination with current treatments. © 2015 Wiley Periodicals, Inc.

  11. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice1

    PubMed Central

    Sasaki, Takamitsu; Kitadai, Yasuhiko; Nakamura, Toru; Kim, Jang-Seong; Tsan, Rachel Z; Kuwai, Toshio; Langley, Robert R; Fan, Dominic; Kim, Sun-Jin; Fidler, Isaiah J

    2007-01-01

    The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α) and vascular endothelial growth factor (VEGF) but were negative for EGFR, human epidermal growth factor receptor 2 (HER2), and VEGFR. Double immunofluorescence staining revealed that tumor-associated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR), and phosphorylated VEGFR (pVEGFR). Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase) or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01); this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001). AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, and increased the level of apoptosis in both tumor-associated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer. PMID:18084614

  12. Effects of Estrogen Receptor and Human Epidermal Growth Factor Receptor-2 Levels on the Efficacy of Trastuzumab: A Secondary Analysis of the HERA Trial.

    PubMed

    Loi, Sherene; Dafni, Urania; Karlis, Dimitris; Polydoropoulou, Varvara; Young, Brandon M; Willis, Scooter; Long, Bradley; de Azambuja, Evandro; Sotiriou, Christos; Viale, Giuseppe; Rüschoff, Josef; Piccart, Martine J; Dowsett, Mitch; Michiels, Stefan; Leyland-Jones, Brian

    2016-08-01

    A number of studies suggest that response to antihuman epidermal growth factor receptor-2 (currently known as ERBB2, butreferred to asHER2 in this study) agents differs by estrogen receptor (ER) level status. The clinical relevance of this is unknown. To determine the magnitude of trastuzumab benefit according to quantitative levels of ER and HER2 in the HERceptin Adjuvant (HERA) trial. The HERA trial was an international, multicenter, randomized trial that included 5099 patients with early-stage HER2-positive breast cancer, randomized between 2001 and 2005 to receive either no trastuzumab or trastuzumab, after adjuvant chemotherapy. This is a secondary analysis of the HERA study. Local ER immunohistochemical (IHC) analyses, HER2 fluorescence in situ hybridization (FISH) ratio, and copy number results were available for 3037 patients (59.6%) randomized to observation and trastuzumab (1 or 2 years) (cohort 1). Transcript levels of ESR1 and HER2 genes were available for 615 patients (12.1%) (cohort 2). Patients were randomized to receive either no trastuzumab or 1 year vs 2 years of trastuzumab. Endocrine therapy was given to patients with hormone receptor-positive disease as per local guidelines. Disease-free survival (DFS) and overall survival (OS) were the primary and secondary end points in the intent-to-treat population (ITT). Analyses adjusting for crossover (censored and inverse probability weighted [IPW]) were also performed. Interactions among treatment, ER status, and HER2 amplification using predefined cutoffs were assessed in Cox proportional hazards regression models. Median follow-up time was 8 years. Levels of FISH and HER2 copy numbers were significantly higher in ER-negative patients (P < .001). In cohort 1, for DFS and OS, a significant treatment effect was found for all ER, IHC, and FISH levels, except for the ER-positive/HER2 low FISH ratio (≥2 to <5) group (DFS: 3-way ITT Pvalue for interaction = .07; censored = .02; IPW = .03

  13. A dual positive and negative regulation of monocyte activation by leukocyte Ig-like receptor B4 depends on the position of the tyrosine residues in its ITIMs.

    PubMed

    Park, Mijeong; Liu, Robert W; An, Hongyan; Geczy, Carolyn L; Thomas, Paul S; Tedla, Nicodemus

    2017-05-01

    The leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory cell surface receptor, primarily expressed on mono-myeloid cells. It contains 2 C-type Ig-like extracellular domains and a long cytoplasmic domain that contains three intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Data suggest that LILRB4 suppresses Fc receptor-dependent monocyte functions via its ITIMs, but relative contributions of the three ITIMs are not characterised. To address this, tyrosine (Tyr) residues at positions 337, 389 and 419 were single, double or triple mutated to phenylalanine and stably transfected into a human monocytic cell line, THP-1. Intact Tyr 389 was sufficient to maximally inhibit FcγRI-mediated TNF-α production in THP-1 cells, but, paradoxically, Tyr 337 significantly enhanced TNF-α production. In contrast, bactericidal activity was significantly enhanced in mutants containing Tyr 419 , while Tyr 337 markedly inhibited bacteria killing. Taken together, these results indicate that LILRB4 might have dual inhibitory and activating functions, depending on the position of the functional tyrosine residues in its ITIMs and/or the nature of the stimuli.

  14. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  15. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    PubMed

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  16. Smoking-associated lung cancer prevention by blockade of the beta-adrenergic receptor-mediated insulin-like growth factor receptor activation.

    PubMed

    Min, Hye-Young; Boo, Hye-Jin; Lee, Ho Jin; Jang, Hyun-Ji; Yun, Hye Jeong; Hwang, Su Jung; Smith, John Kendal; Lee, Hyo-Jong; Lee, Ho-Young

    2016-10-25

    Activation of receptor tyrosine kinases (RTKs) is associated with carcinogenesis, but its contribution to smoking-associated lung carcinogenesis is poorly understood. Here we show that a tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced insulin-like growth factor 1 receptor (IGF-1R) activation via β-adrenergic receptor (β-AR) is crucial for smoking-associated lung carcinogenesis. Treatment with NNK stimulated the IGF-1R signaling pathway in a time- and dose-dependent manner, which was suppressed by pharmacological or genomic blockade of β-AR and the downstream signaling including a Gβγ subunit of β-AR and phospholipase C (PLC). Consistently, β-AR agonists led to increased IGF-1R phosphorylation. The increase in IGF2 transcription via β-AR, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-kappa B (NF-κB) was associated with NNK-induced IGF-1R activation. Finally, treatment with β-AR antagonists suppressed the acquisition of transformed phenotypes in lung epithelial cells and lung tumor formation in mice. These results suggest that blocking β-AR-mediated IGF-1R activation can be an effective strategy for lung cancer prevention in smokers.

  17. Interstitial Lung Disease Induced by Osimertinib for Epidermal Growth Factor Receptor (EGFR) T790M-positive Non-small Cell Lung Cancer

    PubMed Central

    Matsumoto, Yoshiya; Kawaguchi, Tomoya; Yamamoto, Norio; Sawa, Kenji; Yoshimoto, Naoki; Suzumura, Tomohiro; Watanabe, Tetsuya; Mitsuoka, Shigeki; Asai, Kazuhisa; Kimura, Tatsuo; Yoshimura, Naruo; Kuwae, Yuko; Hirata, Kazuto

    2017-01-01

    A 75-year-old man with stage IV lung adenocarcinoma was treated with osimertinib due to disease progression despite having been administered erlotinib. Both an epidermal growth factor receptor (EGFR) L858R mutation on exon 21 and a T790M mutation on exon 20 were detected in a specimen from a recurrent primary tumor. Five weeks after osimertinib initiation, he developed general fatigue and dyspnea. Chest computed tomography scan revealed diffuse ground glass opacities and consolidation on both lungs. An analysis of the bronchoalveolar lavage fluid revealed marked lymphocytosis, and a transbronchial lung biopsy specimen showed a thickened interstitium with fibrosis and prominent lymphocytic infiltration. We diagnosed the patient to have interstitial lung disease induced by osimertinib. PMID:28794368

  18. A platelet-activating factor (PAF) receptor deficiency exacerbates diet-induced obesity but PAF/PAF receptor signaling does not contribute to the development of obesity-induced chronic inflammation.

    PubMed

    Yamaguchi, Masahiko; Matsui, Masakazu; Higa, Ryoko; Yamazaki, Yasuhiro; Ikari, Akira; Miyake, Masaki; Miwa, Masao; Ishii, Satoshi; Sugatani, Junko; Shimizu, Takao

    2015-02-15

    Platelet-activating factor (PAF) is a well-known phospholipid that mediates acute inflammatory responses. In the present study, we investigated whether PAF/PAF receptor signaling contributed to chronic inflammation in the white adipose tissue (WAT) of PAF receptor-knockout (PAFR-KO) mice. Body and epididymal WAT weights were higher in PAFR-KO mice fed a high-fat diet (HFD) than in wild-type (WT) mice. TNF-α mRNA expression levels in epididymal WAT and the infiltration of CD11c-positive macrophages into epididymal WAT, which led to chronic inflammation, were also elevated in HFD-fed PAFR-KO mice. HFD-fed PAFR-KO mice had higher levels of fasting serum glucose than HFD-fed WT mice as well as impaired glucose tolerance. Although PAF receptor signaling up-regulated the expression of TNF-α and lipopolysaccharide induced the expression of acyl-CoA:lysophosphatidylcholine acyltransferase 2 (LPCAT2) mRNA in bone marrow-derived macrophages, no significant differences were observed in the expression of LPCAT2 mRNA and PAF levels in epididymal WAT between HFD-fed mice and normal diet-fed mice. In addition to our previous finding in which energy expenditure in PAF receptor (PAFR)-deficient mice was low due to impaired brown adipose tissue function, the present study demonstrated that PAF/PAF receptor signaling up-regulated the expression of Ucp1 mRNA, which is essential for cellular thermogenesis, in 3T3-L1 adipocytes. We concluded that the marked accumulation of abdominal fat due to HFD feeding led to more severe chronic inflammation in WAT, which is associated with glucose metabolism disorders, in PAFR-KO mice than in WT mice, and PAF/PAF receptor signaling may regulate energy expenditure and adiposity. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Interaction between the estrogen receptor and fibroblast growth factor receptor pathways in non-small cell lung cancer.

    PubMed

    Siegfried, Jill M; Farooqui, Mariya; Rothenberger, Natalie J; Dacic, Sanja; Stabile, Laura P

    2017-04-11

    The estrogen receptor (ER) promotes non-small cell lung cancer (NSCLC) proliferation. Since fibroblast growth factors (FGFs) are known regulators of stem cell markers in ER positive breast cancer, we investigated whether a link between the ER, FGFs, and stem cell markers exists in NSCLC. In lung preneoplasias and adenomas of tobacco carcinogen exposed mice, the anti-estrogen fulvestrant and/or the aromatase inhibitor anastrozole blocked FGF2 and FGF9 secretion, and reduced expression of the stem cell markers SOX2 and nanog. Mice administered β-estradiol during carcinogen exposure showed increased FGF2, FGF9, SOX2, and Nanog expression in airway preneoplasias. In normal FGFR1 copy number NSCLC cell lines, multiple FGFR receptors were expressed and secreted several FGFs. β-estradiol caused enhanced FGF2 release, which was blocked by fulvestrant. Upon co-inhibition of ER and FGFRs using fulvestrant and the pan-FGFR inhibitor AZD4547, phosphorylation of FRS2, the FGFR docking protein, was maximally reduced, and enhanced anti-proliferative effects were observed. Combined AZD4547 and fulvestrant enhanced lung tumor xenograft growth inhibition and decreased Ki67 and stem cell marker expression. To verify a link between ERβ, the predominant ER in NSCLC, and FGFR signaling in patient tumors, mRNA analysis was performed comparing high versus low ERβ expressing tumors. The top differentially expressed genes in high ERβ tumors involved FGF signaling and human embryonic stem cell pluripotency. These results suggest interaction between the ER and FGFR pathways in NSCLC promotes a stem-like state. Combined FGFR and ER inhibition may increase the efficacy of FGFR inhibitors for NSCLC patients lacking FGFR genetic alterations.

  20. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.

    PubMed

    Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-05-21

    Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Decreased numbers of chemotactic factor receptors in chronic neutropenia with defective chemotaxis: spontaneous recovery from the neutrophil abnormalities during early childhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, K.; Yamazaki, M.; Miyagawa, Y.

    Childhood chronic neutropenia with decreased numbers of chemotactic factor receptors as well as defective chemotaxis was first demonstrated in an 8-month-old girl. Chemotactic factor receptors on neutrophils were assayed using tritiated N-formyl-methionyl-leucyl-phenylalanine (/sup 3/H-FMLP). The patient's neutrophils had decreased numbers of the receptors: numbers of the receptors were 20,000 (less than 3 SD) as compared with those of control cells of 52,000 +/- 6000 (mean +/- SD) (n = 10). The neutropenia disappeared spontaneously by 28 months of age parallel with the improvement of chemotaxis and increase in numbers of chemotactic factor receptors. These results demonstrate a transient decrease ofmore » neutrophil chemotactic factor receptors as one of the pathophysiological bases of a transient defect of neutrophil chemotaxis in this disorder.« less

  2. Loop III region of platelet-derived growth factor (PDGF) B-chain mediates binding to PDGF receptors and heparin.

    PubMed Central

    Schilling, D; Reid IV, J D; Hujer, A; Morgan, D; Demoll, E; Bummer, P; Fenstermaker, R A; Kaetzel, D M

    1998-01-01

    Site-directed mutagenesis of the platelet-derived growth factor (PDGF) B-chain was conducted to determine the importance of cationic amino acid residues (Arg160-Lys161-Lys162; RKK) located within the loop III region in mediating the biological and cell-association properties of the molecule. Binding to both PDGF alpha-and beta-receptors was inhibited by the conversion of all three cationic residues into anionic glutamates (RKK-->EEE), whereas an RKK-->SSS mutant also exhibited a modest loss in affinity for beta-receptors. Replacements with serine at either Arg160 (RKK-->SKK) or at all three positions (RKK-->SSS) had little effect on binding to alpha-receptors. Replacements with either glutamic or serine residues at any of the three positions also resulted in significant inhibition of heparin-binding activity. Furthermore, the RKK-->EEE mutant exhibited decreased association with the cell surface and accumulated in the culture medium as 29-32 kDa forms. Stable transfection of U87 astrocytoma cells with RKK-->EEE mutants of either the A-chain or the B-chain inhibited malignant growth in athymic nude mice. Despite altered receptor-binding activities, each of the loop III mutants retained full mitogenic activity when applied to cultured Swiss 3T3 cells. CD spectrophotometric analysis of the RKK-->EEE mutant revealed a secondary structure indistinguishable from the wild type, with a high degree of beta-sheet structure and random coil content (50% and 43% respectively). These findings indicate an important role of the Arg160-Lys161-Lys162 sequence in mediating the biological and cell-associative activities of the PDGF-BB homodimer, and reveal that the mitogenic activity of PDGF-BB is insufficient to mediate its full oncogenic properties. PMID:9677323

  3. The sweet taste of true synergy: positive allosteric modulation of the human sweet taste receptor.

    PubMed

    Servant, Guy; Tachdjian, Catherine; Li, Xiaodong; Karanewsky, Donald S

    2011-11-01

    A diet low in carbohydrates helps to reduce the amount of ingested calories and to maintain a healthy weight. With this in mind, food and beverage companies have reformulated a large number of their products, replacing sugar or high fructose corn syrup with several different types of zero-calorie sweeteners to decrease or even totally eliminate their caloric content. A challenge remains, however, with the level of acceptance of some of these products in the market-place. Many consumers believe that zero-calorie sweeteners simply do not taste like sugar. A recent breakthrough reveals that positive allosteric modulators of the human sweet taste receptor, small molecules that enhance the receptor activity and sweetness perception, could be more effective than other reported taste enhancers at reducing calories in consumer products without compromising on the true taste of sugar. A unique mechanism of action at the receptor level could explain the robust synergy achieved with these new modulators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. PACE4 is an important driver of ZR-75-1 estrogen receptor-positive breast cancer proliferation and tumor progression.

    PubMed

    Panet, François; Couture, Frédéric; Kwiatkowska, Anna; Desjardins, Roxane; Guérin, Brigitte; Day, Robert

    2017-08-01

    Breast cancer is the most frequent and deadly malignancy in women worldwide. Despite national screening programs combined with new treatments relapse rate remain high and new therapies are needed. From previous work, we identified PACE4, a member of the proprotein convertase (PCs) family of endoproteases, as a novel therapeutic target in prostate cancer. In the present study we asked the question if PACE4 could also be a potential target in breast cancer. In clinical samples of breast adenocarcinoma, we observed a specific overexpression of PACE4 in the estrogen-receptor (ER) positive subtype. We therefore looked for a breast cancer cell line model which would be representative and thus focused on the ZR-75-1 since it both expresses PACE4 and is estrogen-receptor positive. We compared stable knockdowns of furin, PACE4 and PC7 in the estrogen-receptor-positive cell line ZR-75-1 to evaluate their respective contribution to cell growth and tumor progression. PACE4 was the only PC displaying an impact on cell growth. A PACE4 peptide-based inhibitor (C23) was tested and shown to decrease proliferation of ZR-75-1 cells in cell based assays. C23 also had potent effects of tumor progression in vivo on xenografts of the ZR-75-1 cell line in athymic nude mice. Thus, PACE4-silencing and systemic administration of a PACE4 inhibitor resulted in hindered tumor progression with reduction in proliferative indices and increased cell quiescence assessed with biomarkers. Our results suggest that PACE4 is a promising target for estrogen-receptor-positive breast cancer. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer.

    PubMed

    Malik, Durr-E-Shahwar; David, Rhiannon M; Gooderham, Nigel J

    2018-04-01

    Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10 -7 -10 -4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10 -3 -10 -1 M) with PhIP (10 -7 -10 -4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.

  6. Expression of Vascular Endothelial Growth Factor Receptors in Benign Vascular Lesions of the Orbit: A Case Series.

    PubMed

    Atchison, Elizabeth A; Garrity, James A; Castillo, Francisco; Engman, Steven J; Couch, Steven M; Salomão, Diva R

    2016-01-01

    Vascular lesions of the orbit, although not malignant, can cause morbidity because of their location near critical structures in the orbit. For the same reason, they can be challenging to remove surgically. Anti-vascular endothelial growth factor (VEGF) drugs are increasingly being used to treat diseases with prominent angiogenesis. Our study aimed to determine to what extent VEGF receptors and their subtypes are expressed on selected vascular lesions of the orbit. Retrospective case series of all orbital vascular lesions removed by one of the authors (JAG) at the Mayo Clinic. A total of 52 patients who underwent removal of vascular orbital lesions. The pathology specimens from the patients were retrieved, their pathologic diagnosis was confirmed, demographic and clinical information were gathered, and sections from vascular tumors were stained with vascular endothelial growth factor receptor (VEGFR), vascular endothelial growth factor receptor type 1 (VEGFR1), vascular endothelial growth factor receptor type 2 (VEGFR2), and vascular endothelial growth factor receptor type 3 (VEGFR3). The existence and pattern of staining with VEGF and its subtypes on these lesions. There were 28 specimens of venous malformations, 4 capillary hemangiomas, 7 lymphatic malformations, and 6 lymphaticovenous malformations. All samples stained with VEGF, 55% stained with VEGFR1, 98% stained with VEGFR2, and 96% stained with VEGFR3. Most (94%) of the VEGFR2 staining was diffuse. Most orbital vascular lesions express VEGF receptors, which may suggest a future target for nonsurgical treatment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  7. Inhibiting the Epidermal Growth Factor Receptor | Center for Cancer Research

    Cancer.gov

    The Epidermal Growth Factor Receptor (EGFR) is a widely distributed cell surface receptor that responds to several extracellular signaling molecules through an intracellular tyrosine kinase, which phosphorylates target enzymes to trigger a downstream molecular cascade. Since the discovery that EGFR mutations and amplifications are critical in a number of cancers, efforts have been under way to develop and use targeted EGFR inhibitors. These efforts have met with some spectacular successes, but many patients have not responded as expected, have subsequently developed drug-resistant tumors, or have suffered serious side effects from the therapies to date. CCR Investigators are studying EGFR from multiple vantage points with the goal of developing even better strategies to defeat EGFR-related cancers.

  8. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    PubMed Central

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692

  9. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.

    PubMed

    Farroni, Jeffrey S; McCool, Brian A

    2004-08-09

    , these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology.

  10. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. Thesemore » antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.« less

  11. The antipsychotic-like effects of positive allosteric modulators of metabotropic glutamate mGlu4 receptors in rodents

    PubMed Central

    Sławińska, Anna; Wierońska, Joanna M; Stachowicz, Katarzyna; Marciniak, Marcin; Łasoń-Tyburkiewicz, Magdalena; Gruca, Piotr; Papp, Mariusz; Kusek, Magdalena; Tokarski, Krzysztof; Doller, Darío; Pilc, Andrzej

    2013-01-01

    Background and Purpose Because agonists at metabotropic glutamate receptors exert beneficial effects in schizophrenia, we have assessed the actions of Lu AF21934 and Lu AF32615, two chemically distinct, selective and brain-penetrant positive allosteric modulators (PAMs) of the mGlu4 receptor, in several tests reflecting positive, negative and cognitive symptoms of schizophrenia in rodents. Experimental Approach Hyperactivity induced by MK-801 or amphetamine and head twitches induced by 2,5-dimethoxy-4-iodoamphetamine (DOI) in mice were used as models for positive symptoms. Disruption of social interaction and spatial delayed alternation tests induced by MK-801 in rats were used as models for negative and cognitive symptoms of schizophrenia, respectively. Key Results Lu AF21934 (0.1–5 mg·kg−1) and Lu AF32615 (2–10 mg·kg−1) dose-dependently inhibited hyperactivity induced by MK-801 or amphetamine. They also antagonized head twitches and increased frequency of spontaneous excitatory postsynaptic currents (EPSCs) in brain slices, induced by DOI. In mice lacking the mGlu4 receptor (mGlu4−/−) mice, Lu AF21934 did not antagonize DOI-induced head twitches. MK-801-induced disruption in the social interaction test was decreased by Lu AF21934 at 0.5 mg·kg−1 and by Lu AF32615 at 10 mg·kg−1. In the delayed spatial alternation test, Lu AF21934 was active at 1 and 2 mg·kg−1, while Lu AF32615 was active at 10 mg·kg−1. Conclusions and Implications We propose that activation by PAMs of the mGlu4 receptor is a promising approach to the discovery of novel antipsychotic drugs. PMID:23714045

  12. Positive allosteric modulators of the μ-opioid receptor: a novel approach for future pain medications

    PubMed Central

    Burford, N T; Traynor, J R; Alt, A

    2015-01-01

    Morphine and other agonists of the μ-opioid receptor are used clinically for acute and chronic pain relief and are considered to be the gold standard for pain medication. However, these opioids also have significant side effects, which are also mediated via activation of the μ-opioid receptor. Since the latter half of the twentieth century, researchers have sought to tease apart the mechanisms underlying analgesia, tolerance and dependence, with the hope of designing drugs with fewer side effects. These efforts have revolved around the design of orthosteric agonists with differing pharmacokinetic properties and/or selectivity profiles for the different opioid receptor types. Recently, μ-opioid receptor-positive allosteric modulators (μ-PAMs) were identified, which bind to a (allosteric) site on the μ-opioid receptor separate from the orthosteric site that binds an endogenous agonist. These allosteric modulators have little or no detectable functional activity when bound to the receptor in the absence of orthosteric agonist, but can potentiate the activity of bound orthosteric agonist, seen as an increase in apparent potency and/or efficacy of the orthosteric agonist. In this review, we describe the potential advantages that a μ-PAM approach might bring to the design of novel therapeutics for pain that may lack the side effects currently associated with opioid therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24460691

  13. Association of the membrane estrogen receptor, GPR30, with breast tumor metastasis and transactivation of the epidermal growth factor receptor.

    PubMed

    Filardo, Edward J; Quinn, Jeffrey A; Sabo, Edmond

    2008-10-01

    The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases function as a common signaling conduit for membrane receptors that lack intrinsic enzymatic activity, such as G-protein coupled receptors and integrins. GPR30, an orphan member of the seven transmembrane receptor (7TMR) superfamily has been linked to specific estrogen binding, rapid estrogen-mediated activation of adenylyl cyclase and the release of membrane-tethered proHB-EGF. More recently, GPR30 expression in primary breast adenocarcinoma has been associated with pathological parameters commonly used to assess breast cancer progression, including the development of extramammary metastases. This newly appreciated mechanism of cross communication between estrogen and EGF is consistent with the observation that 7TMR-mediated transactivation of the EGFR is a recurrent signaling paradigm and may explain prior data reporting the EGF-like effects of estrogen. The molecular details surrounding GPR30-mediated release of proHB-EGF, the involvement of integrin beta1 as a signaling intermediary in estrogen-dependent EGFR action, and the possible implications of these data for breast cancer progression are discussed herein.

  14. Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor.

    PubMed

    Witters, Lois; Scherle, Peggy; Friedman, Steven; Fridman, Jordan; Caulder, Eian; Newton, Robert; Lipton, Allan

    2008-09-01

    The ErbB family of receptors is overexpressed in numerous human tumors. Overexpression correlates with poor prognosis and resistance to therapy. Use of ErbB-specific antibodies to the receptors (Herceptin or Erbitux) or ErbB-specific small-molecule inhibitors of the receptor tyrosine kinase activity (Iressa or Tarceva) has shown clinical efficacy in several solid tumors. An alternative method of affecting ErbB-initiated tumor growth and survival is to block sheddase activity. Sheddase activity is responsible for cleavage of multiple ErbB ligands and receptors, a necessary step in availability of the soluble, active form of the ligand and a constitutively activated ligand-independent receptor. This sheddase activity is attributed to the ADAM (a disintegrin and metalloprotease) family of proteins. ADAM 10 is the main sheddase of epidermal growth factor (EGF) and HER-2/neu cleavage, whereas ADAM17 is required for cleavage of additional EGF receptor (EGFR) ligands (transforming growth factor-alpha, amphiregulin, heregulin, heparin binding EGF-like ligand). This study has shown that addition of INCB3619, a potent inhibitor of ADAM10 and ADAM17, reduces in vitro HER-2/neu and amphiregulin shedding, confirming that it interferes with both HER-2/neu and EGFR ligand cleavage. Combining INCB3619 with a lapatinib-like dual inhibitor of EGFR and HER-2/neu kinases resulted in synergistic growth inhibition in MCF-7 and HER-2/neu-transfected MCF-7 human breast cancer cells. Combining the INCB7839 second-generation sheddase inhibitor with lapatinib prevented the growth of HER-2/neu-positive BT474-SC1 human breast cancer xenografts in vivo. These results suggest that there may be an additional clinical benefit of combining agents that target the ErbB pathways at multiple points.

  15. [Clinical relevance of ESR1 circulating mutations detection in hormone receptor positive metastatic breast cancer].

    PubMed

    Clatot, Florian; Perdrix, Anne; Sefrioui, David; Sarafan-Vasseur, Nasrin; Di Fiore, Frédéric

    2018-01-01

    If hormone therapy is a key treatment for hormone receptor positive advanced breast cancers, secondary resistance occurs as a rule. Recently, acquired alterations of the ESR1 gene have been identified as a mechanism of resistance on aromatase inhibitor (AI) treatment. The selective pressure by AI exposure during the metastatic setting triggers the emergence of ESR1 activating mutations. In that context, the "liquid biopsy" concept has been used to detect this molecular resistance before progression. Thus, the ESR1 circulating mutation detection will soon be used in daily practice to help monitoring patients on AI treatment and provide an early change for specific therapies that still have to be determined in prospective clinical trials. This review will present the acquired ESR1 mutations, as well as the methods used for their detection in blood and the potential clinical impact of this approach for hormone receptor positive breast cancer management. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  16. Relation of epidermal growth factor receptor and estrogen receptor-independent pS2 protein to the malignant transformation of mucinous cystic neoplasms of the pancreas.

    PubMed

    Kirby, R E; Lewandrowski, K B; Southern, J F; Compton, C C; Warshaw, A L

    1995-01-01

    To evaluate the role of epidermal growth factor receptor (EGF-R) and pS2 protein in the evolution of malignancy in mucinous cystic tumors of the pancreas. Mucinous cystic tumors of the pancreas include histologically benign but premalignant mucinous cystic neoplasms and mucinous cystadenocarcinoma. The molecular events leading to transformation from a benign to a malignant mucinous tumor are not known. Overexpression of EGF-R and detection of an estrogen-induced protein (pS2) has been demonstrated in ductal adenocarcinomas of the pancreas, but these factors have not been evaluated in mucinous cystic tumors. Twenty-six mucinous tumors were examined for EGF-R, pS2 protein, and estrogen and progesterone receptors. Eight (61.2%) of 13 malignant tumors exhibited increased expression of EGF-R, whereas EGF-R was not detected in any of the 13 benign tumors (P = .002). The pS2 protein was detected in nine of 11 malignant and 11 of 11 benign tumors (P = .480). Estrogen and progesterone receptors were not detected in the epithelium of either tumor type. The median survival time of the patients with EGF-R-negative tumors was 29.0 months compared with 14.5 months for those with EGF-R-positive tumors, but this difference did not reach significance owing to the small population size. Overexpression of EGF-R in mucinous cystic tumors, as in ductal adenocarcinomas, may be an important feature associated with malignancy and may have prognostic significance. Failure to detect EGF-R in histologically benign epithelium suggests that the upregulation of EGF-R may be important in the evolution of aggressive behavior. The expression of pS2 protein appears to be independent of estrogen and may play a role in the proliferative activity of mucinous tumors. However, pS2 expression is not a feature associated exclusively with malignancy.

  17. Redox-dependent regulation of epidermal growth factor receptor signaling.

    PubMed

    Heppner, David E; van der Vliet, Albert

    2016-08-01

    Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs) that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR), a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-08-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  19. Activation of G protein-coupled receptor 30 by thiodiphenol promotes proliferation of estrogen receptor α-positive breast cancer cells.

    PubMed

    Lei, Bingli; Peng, Wei; Xu, Gang; Wu, Minghong; Wen, Yu; Xu, Jie; Yu, Zhiqiang; Wang, Yipei

    2017-02-01

    Many studies have been shown that environmental estrogen bisphenol A (BPA) can activate nuclear receptor (estrogen receptor alpha, ERα) or membrane receptor (G-protein-coupled receptor, GPR30) in breast cancer cells and exerts genomic or nongenomic actions inducing cell proliferation. 4,4'-thiodiphenol (TDP) as one of BPA derivatives exhibits more potent estrogenic activity than BPA does. However, comparatively little is known about the ways in which TDP interferes with these signaling pathways and produces cell biological changes. This study evaluated the effect of TDP on cell viability, reactive oxygen species (ROS) formation, and intercellular calcium (Ca 2+ ) fluctuation in MCF-7 breast cancer cells. The underlying molecular mechanism of cell proliferation induced by TDP was analyzed by examining the activation of ERα and GPR30-mediated phosphatidylinotidol 3-kinase/protein kinase B (PI3K/AKT) and extracellular-signa1regulated kinase (ERK1/2) signaling pathways. The results showed that exposure to 0.1-10 μM TDP for 24, 48, and 72 h significantly increased viability of MCF-7 cells. At the same concentration range, TDP exposure for 3 and 24 h markedly elevated ROS production and intracellular Ca 2+ levels. In addition, 0.01-1 μM TDP significantly increased the expression of ERα, GPR30, p-AKT and p-ERK1/2 protein. Specific protein inhibitors blocked phosphorylation of ERK1/2 and AKT and decreased TDP-induced cell proliferation. These findings show that TDP activated the GPR30-PI3K/AKT and ERK1/2 pathways, and the resulting interaction with ERα stimulated MCF-7 cell proliferation. Our results indicate a novel mechanism through which TDP may exert relevant estrogenic action in ERα positive cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Tumor Necrosis Factor Receptor-associated Factor 6 Is an Intranuclear Transcriptional Coactivator in Osteoclasts*

    PubMed Central

    Bai, Shuting; Zha, Jikun; Zhao, Haibo; Ross, F. Patrick; Teitelbaum, Steven L.

    2008-01-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with the cytoplasmic domain of receptor activator of NF-κB (RANK) and is an essential component of the signaling complex mediating osteoclastogenesis. However, the osteoclastic activity of TRAF6 is blunted by its association with four and half LIM domain 2 (FHL2), which functions as an adaptor protein in the cytoplasm and transcriptional regulator in the nucleus. We find that TRAF6 also localizes in the nuclei of osteoclasts but not their bone marrow macrophage precursors and that osteoclast intranuclear abundance is specifically increased by RANK ligand (RANKL). TRAF6 nuclear localization requires FHL2 and is diminished in fhl2-/- osteoclasts. Suggesting transcriptional activity, TRAF6 interacts with the transcription factor RUNX1 in the osteoclast nucleus. FHL2 also associates with RUNX1 but does so only in the presence of TRAF6. Importantly, TRAF6 recognizes FHL2 and RUNX1 in osteoclast nuclei, and the three molecules form a DNA-binding complex that recognizes and transactivates the RUNX1 response element in the fhl2 promoter. Finally, TRAF6 and its proximal activator, RANKL, polyubiquitinate FHL2, prompting its proteasomal degradation. These observations suggest a feedback mechanism whereby TRAF6 negatively regulates osteoclast formation by intracytoplasmic sequestration of FHL2 to blunt RANK activation and as a component of a transcription complex promoting FHL2 expression. PMID:18768464

  1. Synergistic effect of pacritinib with erlotinib on JAK2-mediated resistance in epidermal gowth factor receptor mutation-positive non-small cell lung Cancer.

    PubMed

    Ochi, Nobuaki; Isozaki, Hideko; Takeyama, Masami; Singer, Jack W; Yamane, Hiromichi; Honda, Yoshihiro; Kiura, Katsuyuki; Takigawa, Nagio

    2016-06-10

    The combination effect of pacritinib, a novel JAK2/FLT3 inhibitor, with erlotinib, the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), on non-small cell lung cancer cells with EGFR activating mutations was investigated. The combination showed synergistic effects on JAK2-mediated EGFR TKI-resistant PC-9/ER3 cells in some cases. The combination markedly suppressed pAKT and pERK although pSTAT3 expression was similar regardless of treatment with the pacritinib, pacritinib + erlotinib, or control in PC-9/ER3 cells. Receptor tyrosine kinase array profiling demonstrated that pacritinib suppressed MET in the PC-9/ER3 cells. The combined treatment of pacritinib and erlotinib in PC-9/ER3 xenografts showed more tumor shrinkage compared with each drug as monotherapy. Western blotting revealed that pMET in tumor samples was inhibited. These results suggest MET suppression by pacritinib may play a role in overcoming the EGFR-TKI resistance mediated by JAK2 in the PC-9/ER3 cells. In conclusion, pacritinib combined with EGFR-TKI might be a potent strategy against JAK2-mediated EGFR-TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressingmore » the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation

  3. The 21-gene Recurrence Score® assay predicts distant recurrence in lymph node-positive, hormone receptor-positive, breast cancer patients treated with adjuvant sequential epirubicin- and docetaxel-based or epirubicin-based chemotherapy (PACS-01 trial).

    PubMed

    Penault-Llorca, Frédérique; Filleron, Thomas; Asselain, Bernard; Baehner, Frederick L; Fumoleau, Pierre; Lacroix-Triki, Magali; Anderson, Joseph M; Yoshizawa, Carl; Cherbavaz, Diana B; Shak, Steven; Roca, Lise; Sagan, Christine; Lemonnier, Jérôme; Martin, Anne-Laure; Roché, Henri

    2018-05-04

    The 21-gene Recurrence Score (RS) result predicts outcome and chemotherapy benefit in node-negative and node-positive (N+), estrogen receptor-positive (ER+) patients treated with endocrine therapy. The purpose of this study was to evaluate the prognostic impact of RS results in N+, hormone receptor-positive (HR+) patients treated with adjuvant chemotherapy (6 cycles of FEC100 vs. 3 cycles of FEC100 followed by 3 cycles of docetaxel 100 mg/m 2 ) plus endocrine therapy (ET) in the PACS-01 trial (J Clin Oncol 2006;24:5664-5671). The current study included 530 HR+/N+ patients from the PACS-01 parent trial for whom specimens were available. The primary objective was to evaluate the relationship between the RS result and distant recurrence (DR). There were 209 (39.4%) patients with low RS (< 18), 159 (30%) with intermediate RS (18-30) and 162 (30.6%) with high RS (≥ 31). The continuous RS result was associated with DR (hazard ratio = 4.14; 95% confidence interval: 2.67-6.43; p <  0.001), adjusting for treatment. In multivariable analysis, the RS result remained a significant predictor of DR (p <  0.001) after adjustment for number of positive nodes, tumor size, tumor grade, Ki-67 (immunohistochemical status), and chemotherapy regimen. There was no statistically significant interaction between RS result and treatment in predicting DR (p = 0.79). After adjustment for clinical covariates, the 21-gene RS result is a significant prognostic factor in N+/HR+ patients receiving adjuvant chemoendocrine therapy. Not applicable.

  4. Proton receptor GPR68 expression in dendritic-cell-like S100β-positive cells of rat anterior pituitary gland: GPR68 induces interleukin-6 gene expression in extracellular acidification.

    PubMed

    Horiguchi, Kotaro; Higuchi, Masashi; Yoshida, Saishu; Nakakura, Takashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Kato, Takako; Kato, Yukio

    2014-11-01

    S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. Recently, we succeeded in separating S100β-positive cells into round-cell (dendritic-cell-like) and process-cell types. We also found the characteristic expression of anti-inflammatory factors (interleukin-6, Il-6) and membrane receptors (integrin β-6) in the round type. Here, we further investigate the function of the subpopulation of S100β-positive cells. Since IL-6 is also a paracrine factor that regulates hormone producing-cells, we examine whether a correlation exists among extracellular acid stress, IL-6 and hormone production by using primary cultures of anterior pituitary cells. Dendritic-cell-like S100β-positive cells notably expressed Gpr68 (proton receptor) and Il-6. Furthermore, the expression of Il-6 and proopiomelanocortin (Pomc) was up-regulated by extracellular acidification. The functional role of IL-6 and GPR68 in the gene expression of Pomc during extracellular acidification was also examined. Small interfering RNA for Il-6 up-regulated Pomc expression and that for Gpr68 reversed the down-regulation of Il-6 and up-regulated Pomc expression by extracellular acidification. Thus, S100β-positive dendritic-like cells can sense an increase in extracellular protons via GPR68 and respond by the production of IL-6 in order to suppress the up-regulation of Pomc expression.

  5. Receptor Signaling Directs Global Recruitment of Pre-existing Transcription Factors to Inducible Elements.

    PubMed

    Cockerill, Peter N

    2016-12-01

    Gene expression programs are largely regulated by the tissue-specific expression of lineage-defining transcription factors or by the inducible expression of transcription factors in response to specific stimuli. Here I will review our own work over the last 20 years to show how specific activation signals also lead to the wide-spread re-distribution of pre-existing constitutive transcription factors to sites undergoing chromatin reorganization. I will summarize studies showing that activation of kinase signaling pathways creates open chromatin regions that recruit pre-existing factors which were previously unable to bind to closed chromatin. As models I will draw upon genes activated or primed by receptor signaling in memory T cells, and genes activated by cytokine receptor mutations in acute myeloid leukemia. I also summarize a hit-and-run model of stable epigenetic reprograming in memory T cells, mediated by transient Activator Protein 1 (AP-1) binding, which enables the accelerated activation of inducible enhancers.

  6. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions.

    PubMed

    Sehgal, Poonam; Kong, Xinyu; Wu, Jun; Sunyer, Raimon; Trepat, Xavier; Leckband, Deborah

    2018-03-20

    This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  7. The C Terminus of the Saccharomyces cerevisiae α-Factor Receptor Contributes to the Formation of Preactivation Complexes with Its Cognate G Protein

    PubMed Central

    Dosil, Mercedes; Schandel, Kimberly A.; Gupta, Ekta; Jenness, Duane D.; Konopka, James B.

    2000-01-01

    Binding of the α-factor pheromone to its G-protein-coupled receptor (encoded by STE2) activates the mating pathway in MATa yeast cells. To investigate whether specific interactions between the receptor and the G protein occur prior to ligand binding, we analyzed dominant-negative mutant receptors that compete with wild-type receptors for G proteins, and we analyzed the ability of receptors to suppress the constitutive signaling activity of mutant Gα subunits in an α-factor-independent manner. Although the amino acid substitution L236H in the third intracellular loop of the receptor impairs G-protein activation, this substitution had no influence on the ability of the dominant-negative receptors to sequester G proteins or on the ability of receptors to suppress the GPA1-A345T mutant Gα subunit. In contrast, removal of the cytoplasmic C-terminal domain of the receptor eliminated both of these activities even though the C-terminal domain is unnecessary for G-protein activation. Moreover, the α-factor-independent signaling activity of ste2-P258L mutant receptors was inhibited by the coexpression of wild-type receptors but not by coexpression of truncated receptors lacking the C-terminal domain. Deletion analysis suggested that the distal half of the C-terminal domain is critical for sequestration of G proteins. The C-terminal domain was also found to influence the affinity of the receptor for α-factor in cells lacking G proteins. These results suggest that the C-terminal cytoplasmic domain of the α-factor receptor, in addition to its role in receptor downregulation, promotes the formation of receptor–G-protein preactivation complexes. PMID:10866688

  8. DIRECT MODULATION OF THE PROTEIN KINASE A CATALYTIC SUBUNIT α BY GROWTH FACTOR RECEPTOR TYROSINE KINASES

    PubMed Central

    Caldwell, George B.; Howe, Alan K.; Nickl, Christian K.; Dostmann, Wolfgang R.; Ballif, Bryan A.; Deming, Paula B.

    2011-01-01

    The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The Km for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF and FGF2 and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechansim for regulating PKA activity. PMID:21866565

  9. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells

    PubMed Central

    Tone, Masahide; Tone, Yukiko; Adams, Elizabeth; Yates, Stephen F.; Frewin, Mark R.; Cobbold, Stephen P.; Waldmann, Herman

    2003-01-01

    Recently, agonist antibodies to glucocorticoid-induced tumor necrosis factor receptor (GITR) (tumor necrosis factor receptor superfamily 18) have been shown to neutralize the suppressive activity of CD4+CD25+ regulatory T cells. It was anticipated that this would be the role of the physiological ligand. We have identified and expressed the gene for mouse GITR ligand and have confirmed that its interaction with GITR reverses suppression by CD4+CD25+ T cells. It also, however, provides a costimulatory signal for the antigen-driven proliferation of naïve T cells and polarized T helper 1 and T helper 2 clones. RT-PCR and mAb staining revealed mouse GITR ligand expression in dendritic cells, macrophages, and B cells. Expression was controlled by the transcription factor NF-1 and potentially by alternative splicing of mRNA destabilization sequences. PMID:14608036

  10. Insulin, insulin-like growth factor-1, insulin receptor, and insulin-like growth factor-1 receptor expression in the chick eye and their regulation with imposed myopic or hyperopic defocus.

    PubMed

    Penha, Alexandra Marcha; Schaeffel, Frank; Feldkaemper, Marita

    2011-01-01

    Insulin stimulates eye growth in chicks and this effect is greatly enhanced if the retinal image is degraded by the defocus of either sign. However, it is unclear whether the insulin receptor (IR) is expressed at all in the chicken retina in animals 1-2 weeks post-hatching. We have investigated IR expression and whether IR transcript abundance varies in the fundal layers. To elucidate the possible role of insulin and insulin-like growth factor (IGF)-1 signaling in eye growth regulation, mRNA (mRNA) levels were measured for insulin, IGF-1, IR, and IGF-1 receptor (IGF-1R) during imposed negative or positive defocus. Chicks were treated binocularly with positive or negative spectacle lenses for 4 or 24 h, or they remained untreated (n=6, for each treatment group). Northern blot analyses were performed to screen for transcription variants in the different fundal layers of untreated animals. Real-time PCR was used to quantify IR, IGF-1R, IGF-1, and insulin mRNA levels in the different fundal layers of the chick eye in the three treatment groups. IR mRNA was found in all the studied tissues, although there is evidence of tissue-specific transcript variations. Three major transcripts were detected for IR. The brain, retina, and choroid showed the longest transcript (4.3 kb), which was not present in the liver. Nevertheless, the liver and brain showed a second transcript (2.6 kb) not present in the retina and choroid. A short transcript (1.3 kb) was the predominant form in the liver and choroid, and it seems to be present in the retinal pigment epithelium (RPE) and sclera as well. In the retina, no significant gene expression changes were found when defocus was imposed. Interestingly, in the RPE, both IR and IGF-1R were already downregulated after short periods (4 h) of positive lens wear. In contrast, IR and IGF-1R were upregulated in the choroid and fibrous sclera during treatment with negative, but not positive, lenses. Differences observed in the IR transcript length

  11. Ligand-Independent Epidermal Growth Factor Receptor Overexpression Correlates with Poor Prognosis in Colorectal Cancer.

    PubMed

    Yun, Sumi; Kwak, Yoonjin; Nam, Soo Kyung; Seo, An Na; Oh, Heung-Kwon; Kim, Duck-Woo; Kang, Sung-Bum; Lee, Hye Seung

    2018-01-17

    Molecular treatments targeting epidermal growth factor receptors (EGFRs) are important strategies for advanced colorectal cancer (CRC). However, clinicopathologic implications of EGFRs and EGFR ligand signaling have not been fully evaluated. We evaluated the expression of EGFR ligands and correlation with their receptors, clinicopathologic factors, and patients' survival with CRC. The expression of EGFR ligands, including heparin binding epidermal growth factor like growth factor (HBEGF), transforming growth factor (TGF), betacellulin, and epidermal growth factor (EGF), were evaluated in 331 consecutive CRC samples using mRNA in situ hybridization (ISH). We also evaluated the expression status of EGFR, human epidermal growth factor receptor 2 (HER2), HER3, and HER4 using immunohistochemistry and/or silver ISH. Unlike low incidences of TGF (38.1%), betacellulin (7.9%), and EGF (2.1%), HBEGF expression was noted in 62.2% of CRC samples. However, the expression of each EGFR ligand did not reveal significant correlations with survival. The combined analyses of EGFR ligands and EGFR expression indicated that the ligands‒/EGFR+ group showed a significant association with the worst disease-free survival (DFS, p=0.018) and overall survival (OS, p=0.005). It was also an independent, unfavorable prognostic factor for DFS (p=0.026) and OS (p=0.007). Additionally, HER4 nuclear expression, regardless of ligand expression, was an independent, favorable prognostic factor for DFS (p=0.034) and OS (p=0.049), by multivariate analysis. Ligand-independent EGFR overexpression was suggested to have a significant prognostic impact; thus, the expression status of EGFR ligands, in addition to EGFR, might be necessary for predicting patients' outcome in CRC.

  12. Cardio-oncology Related to Heart Failure: Epidermal Growth Factor Receptor Target-Based Therapy.

    PubMed

    Kenigsberg, Benjamin; Jain, Varun; Barac, Ana

    2017-04-01

    Cancer therapy targeting the epidermal growth factor receptor (EGFR)/erythroblastic leukemia viral oncogene B (ErbB)/human EGFR receptor (HER) family of tyrosine kinases has been successfully used in treatment of several malignancies. The ErbB pathways play a role in the maintenance of cardiac homeostasis. This article summarizes current knowledge about EGFR/ErbB/HER receptor-targeted cancer therapeutics focusing on their cardiotoxicity profiles, molecular mechanisms, and implications in clinical cardio-oncology. The article discusses challenges in predicting, monitoring, and treating cardiac dysfunction and heart failure associated with ErbB-targeted cancer therapeutics and highlights opportunities for researchers and clinical investigators. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia.

    PubMed

    Kinsella, Sinéad; König, Hans-Georg; Prehn, Jochen H M

    2016-01-01

    Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). In the present study, we identified the proapoptotic Bcl-2 family protein Bid as a positive regulator of mutant SOD1-induced TLR-nuclear factor-κB (NF-κB) signaling in microglia. bid-deficient primary mouse microglia showed reduced NF-κB signaling in response to TLR4 activation or exposure to conditioned medium derived from SOD1 (G93A) expressing NSC-34 cells. Attenuation of NF-κB signaling in bid-deficient microglia was associated with lower levels of phosphorylated IKKα/β and p65, with a delayed degradation of IκBα and enhanced degradation of Peli1. Upstream of IKK, we found that Bid interacted with, and promoted, the K63-linked polyubiquitination of the E3 ubiquitin ligase tumor necrosis factor receptor associated factor 6 (TRAF6) in microglia. Our study suggests a key role for Bid in the regulation of TLR4-NF-κB proinflammatory signaling during mutant SOD1-induced disease pathology. Bid promotes TLR4-NF-κB signaling by interacting with TRAF6 and promoting TRAF6 K63-linked polyubiquitination in microglia.

  14. Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: a cohort study.

    PubMed

    Ritte, Rebecca; Lukanova, Annekatrin; Tjønneland, Anne; Olsen, Anja; Overvad, Kim; Mesrine, Sylvie; Fagherazzi, Guy; Dossus, Laure; Teucher, Birgit; Steindorf, Karen; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Grioni, Sara; Mattiello, Amalia; Tumino, Rosario; Sacerdote, Carlotta; Quirós, José Ramón; Buckland, Genevieve; Molina-Montes, Esther; Chirlaque, María-Dolores; Ardanaz, Eva; Amiano, Pilar; Bueno-de-Mesquita, Bas; van Duijnhoven, Franzel; van Gils, Carla H; Peeters, Petra Hm; Wareham, Nick; Khaw, Kay-Tee; Key, Timothy J; Travis, Ruth C; Krum-Hansen, Sanda; Gram, Inger Torhild; Lund, Eiliv; Sund, Malin; Andersson, Anne; Romieu, Isabelle; Rinaldi, Sabina; McCormack, Valerie; Riboli, Elio; Kaaks, Rudolf

    2013-06-01

    Associations of breast cancer overall with indicators of exposures during puberty are reasonably well characterized; however, uncertainty remains regarding the associations of height, leg length, sitting height and menarcheal age with hormone receptor-defined malignancies. Within the European Prospective Investigation into Cancer and Nutrition cohort, Cox proportional hazards models were used to describe the relationships of adult height, leg length and sitting height and age at menarche with risk of estrogen and progesterone receptor negative (ER-PR-) (n = 990) and ER+PR+ (n = 3,524) breast tumors. Height as a single risk factor was compared to a model combining leg length and sitting height. The possible interactions of height, leg length and sitting height with menarche were also analyzed. Risk of both ER-PR- and ER+PR+ malignancies was positively associated with standing height, leg length and sitting height and inversely associated with increasing age at menarche. For ER+PR+ disease, sitting height (hazard ratios: 1.14[95% confidence interval: 1.08-1.20]) had a stronger risk association than leg length (1.05[1.00-1.11]). In comparison, for ER-PR- disease, no distinct differences were observed between leg length and sitting height. Women who were tall and had an early menarche (≤13 years) showed an almost twofold increase in risk of ER+PR+ tumors but no such increase in risk was observed for ER-PR- disease. Indicators of exposures during rapid growth periods were associated with risks of both HR-defined breast cancers. Exposures during childhood promoting faster development may establish risk associations for both HR-positive and -negative malignancies. The stronger associations of the components of height with ER+PR+ tumors among older women suggest possible hormonal links that could be specific for postmenopausal women. Copyright © 2012 UICC.

  15. Factors Influencing Decision-Making for or against Adjuvant and Neoadjuvant Chemotherapy in Postmenopausal Hormone Receptor-Positive Breast Cancer Patients in the EvAluate-TM Study

    PubMed Central

    Gaß, Paul; Fasching, Peter A.; Fehm, Tanja; de Waal, Johann; Rezai, Mahdi; Baier, Bernd; Baake, Gerold; Kolberg, Hans-Christian; Guggenberger, Martin; Warm, Mathias; Harbeck, Nadia; Wuerstlein, Rachel; Deuker, Jörg-Uwe; Dall, Peter; Richter, Barbara; Wachsmann, Grischa; Brucker, Cosima; Siebers, Jan W.; Fersis, Nikos; Kuhn, Thomas; Wolf, Christopher; Vollert, Hans-Walter; Breitbach, Georg-Peter; Janni, Wolfgang; Landthaler, Robert; Kohls, Andreas; Rezek, Daniela; Noesselt, Thomas; Fischer, Gunnar; Henschen, Stephan; Praetz, Thomas; Heyl, Volker; Kühn, Thorsten; Krauss, Thomas; Thomssen, Christoph; Hohn, Andre; Tesch, Hans; Mundhenke, Christoph; Hein, Alexander; Rauh, Claudia; Bayer, Christian M.; Jacob, Adib; Schmidt, Katja; Belleville, Erik; Hadji, Peyman; Brucker, Sara Y.; Beckmann, Matthias W.; Wallwiener, Diethelm; Kümmel, Sherko; Löhberg, Christian R.

    2016-01-01

    Background Decision-making for or against neoadjuvant or adjuvant chemotherapy in postmenopausal patients with hormone receptor-positive breast cancer does not follow any clear guidelines, and some patients may unnecessarily undergo chemotherapy and be exposed to the associated toxicity. The aim of this study was to identify the patient population for whom this issue may bear relevance. Methods Patients being treated with letrozole in the prospective multicenter noninterventional EvAluate-TM study were recruited. The percentage of patients receiving chemotherapy and factors associated with chemotherapy administration were identified. Results In all, 3,924 (37.4%) patients received chemotherapy before treatment with letrozole. Of these, 293 (20%) underwent neoadjuvant therapy. Younger age was predictive for both adjuvant and neoadjuvant therapy. Overall, decisions in favor of administering chemotherapy are more likely to be made in patients with a higher body mass index (BMI), and neoadjuvant chemotherapy is administered at a higher rate in women with a lower BMI. Concomitant medication influenced the overall decision-making regarding chemotherapy, irrespective of whether it was given on a neoadjuvant or adjuvant basis. Conclusion There is an ongoing debate as to whether all of the many patients who receive chemotherapy actually benefit from it. Neoadjuvant chemotherapy is frequently administered in this patient population, and this should encourage further research to resolve current clinical and research issues. PMID:27920623

  16. Factors Influencing Decision-Making for or against Adjuvant and Neoadjuvant Chemotherapy in Postmenopausal Hormone Receptor-Positive Breast Cancer Patients in the EvAluate-TM Study.

    PubMed

    Gaß, Paul; Fasching, Peter A; Fehm, Tanja; de Waal, Johann; Rezai, Mahdi; Baier, Bernd; Baake, Gerold; Kolberg, Hans-Christian; Guggenberger, Martin; Warm, Mathias; Harbeck, Nadia; Wuerstlein, Rachel; Deuker, Jörg-Uwe; Dall, Peter; Richter, Barbara; Wachsmann, Grischa; Brucker, Cosima; Siebers, Jan W; Fersis, Nikos; Kuhn, Thomas; Wolf, Christopher; Vollert, Hans-Walter; Breitbach, Georg-Peter; Janni, Wolfgang; Landthaler, Robert; Kohls, Andreas; Rezek, Daniela; Noesselt, Thomas; Fischer, Gunnar; Henschen, Stephan; Praetz, Thomas; Heyl, Volker; Kühn, Thorsten; Krauss, Thomas; Thomssen, Christoph; Hohn, Andre; Tesch, Hans; Mundhenke, Christoph; Hein, Alexander; Rauh, Claudia; Bayer, Christian M; Jacob, Adib; Schmidt, Katja; Belleville, Erik; Hadji, Peyman; Brucker, Sara Y; Beckmann, Matthias W; Wallwiener, Diethelm; Kümmel, Sherko; Löhberg, Christian R

    2016-10-01

    Decision-making for or against neoadjuvant or adjuvant chemotherapy in postmenopausal patients with hormone receptor-positive breast cancer does not follow any clear guidelines, and some patients may unnecessarily undergo chemotherapy and be exposed to the associated toxicity. The aim of this study was to identify the patient population for whom this issue may bear relevance. Patients being treated with letrozole in the prospective multicenter noninterventional EvAluate-TM study were recruited. The percentage of patients receiving chemotherapy and factors associated with chemotherapy administration were identified. In all, 3,924 (37.4%) patients received chemotherapy before treatment with letrozole. Of these, 293 (20%) underwent neoadjuvant therapy. Younger age was predictive for both adjuvant and neoadjuvant therapy. Overall, decisions in favor of administering chemotherapy are more likely to be made in patients with a higher body mass index (BMI), and neoadjuvant chemotherapy is administered at a higher rate in women with a lower BMI. Concomitant medication influenced the overall decision-making regarding chemotherapy, irrespective of whether it was given on a neoadjuvant or adjuvant basis. There is an ongoing debate as to whether all of the many patients who receive chemotherapy actually benefit from it. Neoadjuvant chemotherapy is frequently administered in this patient population, and this should encourage further research to resolve current clinical and research issues.

  17. Altered Fibroblast Growth Factor Receptor 4 Stability Promotes Prostate Cancer Progression1

    PubMed Central

    Wang, Jianghua; Yu, Wendong; Cai, Yi; Ren, Chengxi; Ittmann, Michael M

    2008-01-01

    Fibroblast growth factor receptor 4 (FGFR-4) is expressed at significant levels in almost all human prostate cancers, and expression of its ligands is ubiquitous. A common polymorphism of FGFR-4 in which arginine (Arg388) replaces glycine (Gly388) at amino acid 388 is associated with progression in human prostate cancer. We show that the FGFR-4 Arg388 polymorphism, which is present in most prostate cancer patients, results in increased receptor stability and sustained receptor activation. In patients bearing the FGFR-4 Gly388 variant, expression of Huntingtin-interacting protein 1 (HIP1), which occurs in more than half of human prostate cancers, also results in FGFR-4 stabilization. This is associated with enhanced proliferation and anchorage-independent growth in vitro. Our findings indicate that increased receptor stability and sustained FGFR-4 signaling occur in most human prostate cancers due to either the presence of a common genetic polymorphism or the expression of a protein that stabilizes FGFR-4. Both of these alterations are associated with clinical progression in patients with prostate cancer. Thus, FGFR-4 signaling and receptor turnover are important potential therapeutic targets in prostate cancer. PMID:18670643

  18. Brain-derived neurotrophic factor and its receptors in Bergmann glia cells.

    PubMed

    Poblete-Naredo, Irais; Guillem, Alain M; Juárez, Claudia; Zepeda, Rossana C; Ramírez, Leticia; Caba, Mario; Hernández-Kelly, Luisa C; Aguilera, José; López-Bayghen, Esther; Ortega, Arturo

    2011-12-01

    Brain-derived neurotrophic factor is an abundant and widely distributed neurotrophin expressed in the Central Nervous System. It is critically involved in neuronal differentiation and survival. The expression of brain-derived neurotrophic factor and that of its catalytic active cognate receptor (TrkB) has been extensively studied in neuronal cells but their expression and function in glial cells is still controversial. Despite of this fact, brain-derived neurotrophic factor is released from astrocytes upon glutamate stimulation. A suitable model to study glia/neuronal interactions, in the context of glutamatergic synapses, is the well-characterized culture of chick cerebellar Bergmann glia cells. Using, this system, we show here that BDNF and its functional receptor are present in Bergmann glia and that BDNF stimulation is linked to the activation of the phosphatidyl-inositol 3 kinase/protein kinase C/mitogen-activated protein kinase/Activator Protein-1 signaling pathway. Accordingly, reverse transcription-polymerase chain reaction (RT-PCR) experiments predicted the expression of full-length and truncated TrkB isoforms. Our results suggest that Bergmann glia cells are able to express and respond to BDNF stimulation favoring the notion of their pivotal role in neuroprotection. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Transforming Growth Factor-B Receptors in Human Breast Cancer.

    DTIC Science & Technology

    1998-05-01

    I., Polyak, K., Iavarone, A., and Massagud, J. Kip/ Cip and Ink4 cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-ß. Genes Dev...specimens. Thirdly, we have developped transient transfection assays to determine how specific TßR mutations affect affect receptor function. Using...Growth Factor-ß (TGFß) is the most potent known inhibitor of cell cycle progression of normal mammary epithelial cells; in addition, it causes cells

  20. Expression and significance of Tie-1 and Tie-2 receptors, and angiopoietins-1, 2 and 4 in colorectal adenocarcinoma: Immunohistochemical analysis and correlation with clinicopathological factors

    PubMed Central

    Nakayama, Toshiyuki; Hatachi, Go; Wen, Chun-Yang; Yoshizaki, Ayumi; Yamazumi, Kazuyuki; Niino, Daisuke; Sekine, Ichiro

    2005-01-01

    AIM: There is strong evidence that tyrosine kinases are involved in the regulation of tumor progression, cellular growth and differentiation. Recently, many kinds of tyrosine kinase receptors have been reported, among them Tie-1 and Tie-2 receptors constitute a major class. Angiopoietin (Ang)-1 is known as a ligand of Tie-2 tyrosine kinase receptor. The objective of this study was to establish a comprehensive Tie-1 and Tie-2 and Ang-1, 2 and 4 expression profile in human colorectal adenocarcinomas. METHODS: We examined 96 cases of surgically resected human colorectal adenocarcinoma by immunohistochemistry and investigated the statistical correlation between the expressions of Ties and Angs and clinicopathological factors. RESULTS: Among the 96 cases of adenocarcinoma, 87 (90.6%), 92 (95.8%), 83 (86.5%), 89 (92.7%), and 76 cases (79.2%) showed positive staining in the cytoplasm of carcinoma cells for the Tie-1 and Tie-2 and Ang-1, 2 and 4 proteins, respectively. Histologically, the expressions of Ties and Angs were variable. The expressions of Ties and Angs were correlated with several clinicopathological factors, but did not correlate with the presence of lymph node metastasis. Ties and Angs were highly expressed in human colorectal adenocarcinoma cells. CONCLUSION: These findings suggest that the Tie-Ang receptor-ligand complex is one of the factors involved in the cellular differentiation and progression of human colorectal adenocarcinoma. PMID:15742397

  1. Phenytoin enhances the phosphorylation of epidermal growth factor receptor and fibroblast growth factor receptor in the subventricular zone and promotes the proliferation of neural precursor cells and oligodendrocyte differentiation.

    PubMed

    Galvez-Contreras, Alma Y; Gonzalez-Castaneda, Rocio E; Campos-Ordonez, Tania; Luquin, Sonia; Gonzalez-Perez, Oscar

    2016-01-01

    Phenytoin is a widely used antiepileptic drug that induces cell proliferation in several tissues, such as heart, bone, skin, oral mucosa and neural precursors. Some of these effects are mediated via fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR). These receptors are strongly expressed in the adult ventricular-subventricular zone (V-SVZ), the main neurogenic niche in the adult brain. The aim of this study was to determine the cell lineage and cell fate of V-SVZ neural progenitors expanded by phenytoin, as well as the effects of this drug on EGFR/FGFR phosphorylation. Male BALB/C mice received 10 mg/kg phenytoin by oral cannula for 30 days. We analysed the proliferation of V-SVZ neural progenitors by immunohistochemistry and western blot. Our findings indicate that phenytoin enhanced twofold the phosphorylation of EGFR and FGFR in the V-SVZ, increased the number of bromodeoxyuridine (BrdU)+/Sox2+ and BrdU+/doublecortin+ cells in the V-SVZ, and expanded the population of Olig2-expressing cells around the lateral ventricles. After phenytoin removal, a large number of BrdU+/Receptor interacting protein (RIP)+ cells were observed in the olfactory bulb. In conclusion, phenytoin enhanced the phosphorylation of FGFR and EGFR, and promoted the expression of neural precursor markers in the V-SVZ. In parallel, the number of oligodendrocytes increased significantly after phenytoin removal. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games.

    PubMed

    Hehlgans, Thomas; Pfeffer, Klaus

    2005-05-01

    The members of the tumour necrosis factor (TNF)/tumour necrosis factor receptor (TNFR) superfamily are critically involved in the maintenance of homeostasis of the immune system. The biological functions of this system encompass beneficial and protective effects in inflammation and host defence as well as a crucial role in organogenesis. At the same time, members of this superfamily are responsible for host damaging effects in sepsis, cachexia, and autoimmune diseases. This review summarizes recent progress in the immunobiology of the TNF/TNFR superfamily focusing on results obtained from animal studies using gene targeted mice. The different modes of signalling pathways affecting cell proliferation, survival, differentiation, apoptosis, and immune organ development as well as host defence are reviewed. Molecular and cellular mechanisms that demonstrate a therapeutic potential by targeting individual receptors or ligands for the treatment of chronic inflammatory or autoimmune diseases are discussed.

  3. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues.

    PubMed

    Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J

    2016-09-01

    Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ

  4. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists.

    PubMed

    Mochizuki, Michiyo; Kori, Masakuni; Kobayashi, Katsumi; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Cho, Suk Young; Pratt, Scott A; Aso, Kazuyoshi

    2016-03-24

    Benzazole derivatives with a flexible aryl group bonded through a one-atom linker as a new scaffold for a corticotropin-releasing factor 1 (CRF1) receptor antagonist were designed, synthesized, and evaluated. We expected that structural diversity could be expanded beyond that of reported CRF1 receptor antagonists. In a structure-activity relationship study, 4-chloro-N(2)-(4-chloro-2-methoxy-6-methylphenyl)-1-methyl-N(7),N(7)-dipropyl-1H-benzimidazole-2,7-diamine 29g had the most potent binding activity against a human CRF1 receptor and the antagonistic activity (IC50 = 9.5 and 88 nM, respectively) without concerns regarding cytotoxicity at 30 μM. Potent CRF1 receptor-binding activity in brain in an ex vivo test and suppression of stress-induced activation of the hypothalamus-pituitary-adrenocortical (HPA) axis were also observed at 138 μmol/kg of compound 29g after oral administration in mice. Thus, the newly designed benzimidazole 29g showed in vivo CRF1 receptor antagonistic activity and good brain penetration, indicating that it is a promising lead for CRF1 receptor antagonist drug discovery research.

  5. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.

    PubMed

    Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel

    2004-02-15

    Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.

  6. Coordinate regulation of estrogen-mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30.

    PubMed

    Quinn, Jeffrey A; Graeber, C Thomas; Frackelton, A Raymond; Kim, Minsoo; Schwarzbauer, Jean E; Filardo, Edward J

    2009-07-01

    Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.

  7. The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling.

    PubMed

    Lievens, Patricia M-J; Mutinelli, Chiara; Baynes, Darcie; Liboi, Elio

    2004-10-08

    Amino acid substitutions at the Lys-650 codon within the activation loop kinase domain of fibroblast growth factor receptor 3 (FGFR3) result in graded constitutive phosphorylation of the receptor. Accordingly, the Lys-650 mutants are associated with dwarfisms with graded clinical severity. To assess the importance of the phosphorylation level on FGFR3 maturation along the secretory pathway, hemagglutinin A-tagged derivatives were studied. The highly activated SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) mutant accumulates in its immature and phosphorylated form in the endoplasmic reticulum (ER), which fails to be degraded. Furthermore, the Janus kinase (Jak)/STAT pathway is activated from the ER by direct recruitment of Jak1. Abolishing the autocatalytic property of the mutated FGFR3 by replacing the critical Tyr-718 reestablishes the receptor full maturation and inhibits signaling. Differently, the low activated hypochondroplasia mutant is present as a mature phosphorylated form on the plasma membrane, although with a delayed transition in the ER, and is completely processed. Signaling does not occur in the presence of brefeldin A; instead, STAT1 is activated when protein secretion is blocked with monensin, suggesting that the hypochondroplasia receptor signals at the exit from the ER. Our results suggest that kinase activity affects FGFR3 trafficking and determines the spatial segregation of signaling pathways. Consequently, the defect in down-regulation of the highly activated receptors results in the increased signaling capacity from the intracellular compartments, and this may determine the severity of the diseases.

  8. Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation.

    PubMed

    Tanaka, Tomohiro; Zhou, Yue; Ozawa, Tatsuhiko; Okizono, Ryuya; Banba, Ayako; Yamamura, Tomohiro; Oga, Eiji; Muraguchi, Atsushi; Sakurai, Hiroaki

    2018-02-16

    The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Results With Accelerated Partial Breast Irradiation in Terms of Estrogen Receptor, Progesterone Receptor, and Human Growth Factor Receptor 2 Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilder, Richard B.; Curcio, Lisa D.; Khanijou, Rajesh K.

    2010-11-01

    Purpose: To report our results with accelerated partial breast irradiation (APBI) in terms of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2/neu) status. Methods and Materials: Between February 2003 and June 2009, 209 women with early-stage breast carcinomas were treated with APBI using multicatheter, MammoSite, or Contura brachytherapy to 34 Gy in 10 fractions twice daily over 5-7 days. Three patient groups were defined by receptor status: Group 1: ER or PR (+) and HER-2/neu (-) (n = 180), Group 2: ER and PR (-) and HER-2/neu (+) (n = 10), and Group 3:more » ER, PR, and HER-2/neu (-) (triple negative breast cancer, n = 19). Median follow-up was 22 months. Results: Group 3 patients had significantly higher Scarff-Bloom-Richardson scores (p < 0.001). The 3-year ipsilateral breast tumor control rates for Groups 1, 2, and 3 were 99%, 100%, and 100%, respectively (p = 0.15). Group 3 patients tended to experience relapse in distant sites earlier than did non-Group 3 patients. The 3-year relapse-free survival rates for Groups 1, 2, and 3 were 100%, 100%, and 81%, respectively (p = 0.046). The 3-year cause-specific and overall survival rates for Groups 1, 2, and 3 were 100%, 100%, and 89%, respectively (p = 0.002). Conclusions: Triple negative breast cancer patients typically have high-grade tumors with significantly worse relapse-free, cause-specific, and overall survival. Longer follow-up will help to determine whether these patients also have a higher risk of ipsilateral breast tumor relapse.« less

  10. ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5.

    PubMed

    Hsu, H; Solovyev, I; Colombero, A; Elliott, R; Kelley, M; Boyle, W J

    1997-05-23

    Members of tumor necrosis factor receptor (TNFR) family signal largely through interactions with death domain proteins and TRAF proteins. Here we report the identification of a novel TNFR family member ATAR. Human and mouse ATAR contain 283 and 276 amino acids, respectively, making them the shortest known members of the TNFR superfamily. The receptor is expressed mainly in spleen, thymus, bone marrow, lung, and small intestine. The intracellular domains of human and mouse ATAR share only 25% identity, yet both interact with TRAF5 and TRAF2. This TRAF interaction domain resides at the C-terminal 20 amino acids. Like most other TRAF-interacting receptors, overexpression of ATAR activates the transcription factor NF-kappaB. Co-expression of ATAR with TRAF5, but not TRAF2, results in synergistic activation of NF-kappaB, suggesting potentially different roles for TRAF2 and TRAF5 in post-receptor signaling.

  11. Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers

    PubMed Central

    Raj, Ganesh V; Sareddy, Gangadhara Reddy; Ma, Shihong; Lee, Tae-Kyung; Viswanadhapalli, Suryavathi; Li, Rui; Liu, Xihui; Murakami, Shino; Chen, Chien-Cheng; Lee, Wan-Ru; Mann, Monica; Krishnan, Samaya Rajeshwari; Manandhar, Bikash; Gonugunta, Vijay K; Strand, Douglas; Tekmal, Rajeshwar Rao; Ahn, Jung-Mo; Vadlamudi, Ratna K

    2017-01-01

    The majority of human breast cancer is estrogen receptor alpha (ER) positive. While anti-estrogens/aromatase inhibitors are initially effective, resistance to these drugs commonly develops. Therapy-resistant tumors often retain ER signaling, via interaction with critical oncogenic coregulator proteins. To address these mechanisms of resistance, we have developed a novel ER coregulator binding modulator, ERX-11. ERX-11 interacts directly with ER and blocks the interaction between a subset of coregulators with both native and mutant forms of ER. ERX-11 effectively blocks ER-mediated oncogenic signaling and has potent anti-proliferative activity against therapy-sensitive and therapy-resistant human breast cancer cells. ERX-11 is orally bioavailable, with no overt signs of toxicity and potent activity in both murine xenograft and patient-derived breast tumor explant models. This first-in-class agent, with its novel mechanism of action of disrupting critical protein-protein interactions, overcomes the limitations of current therapies and may be clinically translatable for patients with therapy-sensitive and therapy-resistant breast cancers. DOI: http://dx.doi.org/10.7554/eLife.26857.001 PMID:28786813

  12. Role of fibroblast growth factor receptor signaling in kidney development

    PubMed Central

    2011-01-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling “decoy” receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development. PMID:21613421

  13. Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia123

    PubMed Central

    Kinsella, Sinéad

    2016-01-01

    Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). In the present study, we identified the proapoptotic Bcl-2 family protein Bid as a positive regulator of mutant SOD1-induced TLR-nuclear factor-κB (NF-κB) signaling in microglia. bid-deficient primary mouse microglia showed reduced NF-κB signaling in response to TLR4 activation or exposure to conditioned medium derived from SOD1 G93A expressing NSC-34 cells. Attenuation of NF-κB signaling in bid-deficient microglia was associated with lower levels of phosphorylated IKKα/β and p65, with a delayed degradation of IκBα and enhanced degradation of Peli1. Upstream of IKK, we found that Bid interacted with, and promoted, the K63-linked polyubiquitination of the E3 ubiquitin ligase tumor necrosis factor receptor associated factor 6 (TRAF6) in microglia. Our study suggests a key role for Bid in the regulation of TLR4-NF-κB proinflammatory signaling during mutant SOD1-induced disease pathology. Bid promotes TLR4-NF-κB signaling by interacting with TRAF6 and promoting TRAF6 K63-linked polyubiquitination in microglia. PMID:27257617

  14. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies.

    PubMed

    Dwivedi, Pankaj; Greis, Kenneth D

    2017-02-01

    Granulocyte colony-stimulating factor is a hematopoietic cytokine that stimulates neutrophil production and hematopoietic stem cell mobilization by initiating the dimerization of homodimeric granulocyte colony-stimulating factor receptor. Different mutations of CSF3R have been linked to a unique spectrum of myeloid disorders and related malignancies. Myeloid disorders caused by the CSF3R mutations include severe congenital neutropenia, chronic neutrophilic leukemia, and atypical chronic myeloid leukemia. In this review, we provide an analysis of granulocyte colony-stimulating factor receptor, various mutations, and their roles in the severe congenital neutropenia, chronic neutrophilic leukemia, and malignant transformation, as well as the clinical implications and some perspective on approaches that could expand our knowledge with respect to the normal signaling mechanisms and those associated with mutations in the receptor. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  15. Endocannabinoid receptor deficiency affects maternal care and alters the dam's hippocampal oxytocin receptor and brain-derived neurotrophic factor expression.

    PubMed

    Schechter, M; Weller, A; Pittel, Z; Gross, M; Zimmer, A; Pinhasov, A

    2013-10-01

    Maternal care is the newborn's first experience of social interaction, and this influences infant survival, development and social competences throughout life. We recently found that postpartum blocking of the endocannabinoid receptor-1 (CB1R) altered maternal behaviour. In the present study, maternal care was assessed by the time taken to retrieve pups, pups' ultrasonic vocalisations (USVs) and pup body weight, comparing CB1R deleted (CB1R KO) versus wild-type (WT) mice. After culling on postpartum day 8, hippocampal expression of oxytocin receptor (OXTR), brain-derived neurotrophic factor (BDNF) and stress-mediating factors were evaluated in CB1R KO and WT dams. Comparisons were also performed with nulliparous (NP) CB1R KO and WT mice. Compared to WT, CB1R KO dams were slower to retrieve their pups. Although the body weight of the KO pups did not differ from the weight of WT pups, they emitted fewer USVs. This impairment of the dam-pup relationship correlated with a significant reduction of OXTR mRNA and protein levels among CB1R KO dams compared to WT dams. Furthermore, WT dams exhibited elevated OXTR mRNA expression, as well as increased levels of mineralocorticoid and glucocorticoid receptors, compared to WT NP mice. By contrast, CB1R KO dams showed no such elevation of OXTR expression, alongside lower BDNF and mineralocorticoid receptors, as well as elevated corticotrophin-releasing hormone mRNA levels, when compared to CB1R KO NP. Thus, it appears that the disruption of endocannabinoid signalling by CB1R deletion alters expression of the OXTR, apparently leading to deleterious effects upon maternal behaviour. © 2013 British Society for Neuroendocrinology.

  16. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Lowe, Edward D; Carrington, Mark; Higgins, Matthew K

    2014-12-12

    The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50° kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface.

  17. Decoy receptor 3 is a prognostic factor in renal cell cancer.

    PubMed

    Macher-Goeppinger, Stephan; Aulmann, Sebastian; Wagener, Nina; Funke, Benjamin; Tagscherer, Katrin E; Haferkamp, Axel; Hohenfellner, Markus; Kim, Sunghee; Autschbach, Frank; Schirmacher, Peter; Roth, Wilfried

    2008-10-01

    Decoy receptor 3 (DcR3) is a soluble protein that binds to and inactivates the death ligand CD95L. Here, we studied a possible association between DcR3 expression and prognosis in patients with renal cell carcinomas (RCCs). A tissue microarray containing RCC tumor tissue samples and corresponding normal tissue samples was generated. Decoy receptor 3 expression in tumors of 560 patients was examined by immunohistochemistry. The effect of DcR3 expression on disease-specific survival and progression-free survival was assessed using univariate analysis and multivariate Cox regression analysis. Decoy receptor 3 serum levels were determined by ELISA. High DcR3 expression was associated with high-grade (P = .005) and high-stage (P = .048) RCCs. The incidence of distant metastasis (P = .03) and lymph node metastasis (P = .002) was significantly higher in the group with high DcR3 expression. Decoy receptor 3 expression correlated negatively with disease-specific survival (P < .001) and progression-free survival (P < .001) in univariate analyses. A multivariate Cox regression analysis retained DcR3 expression as an independent prognostic factor that outperformed the Karnofsky performance status. In patients with high-stage RCCs expressing DcR3, the 2-year survival probability was 25%, whereas in patients with DcR3-negative tumors, the survival probability was 65% (P < .001). Moreover, DcR3 serum levels were significantly higher in patients with high-stage localized disease (P = .007) and metastatic disease (P = .001). DcR3 expression is an independent prognostic factor of RCC progression and mortality. Therefore, the assessment of DcR3 expression levels offers valuable prognostic information that could be used to select patients for adjuvant therapy studies.

  18. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation.

    PubMed

    Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P; Thiels, Cornelius A; Bechtle, Chad A; Garcia, Claudia M; Zhang, Huiming; Yu, Kai; Ornitz, David M; Beebe, David C; Robinson, Michael L

    2008-06-15

    The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27(kip1) and p57(kip2), increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and alpha-, beta- and gamma-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly.

  19. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor

    PubMed Central

    Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella

    2002-01-01

    Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394

  20. Nuclear receptors in pancreatic tumor cells.

    PubMed

    Damaskos, Christos; Garmpis, Nikolaos; Karatzas, Theodore; Kostakis, Ioannis D; Nikolidakis, Lampros; Kostakis, Alkiviadis; Kouraklis, Gregory

    2014-12-01

    This review focuses on nuclear receptors expressed in pancreatic cancer. An extensive search of articles published up to March 2013 was conducted using the MEDLINE database. The key words used were "pancreatic cancer", "molecular receptors" and "growth factors". A total of 112 articles referred to pancreatic cancer, molecular receptors and/or growth factors were included. Receptors of growth factors, such as the epithelial growth factor receptor, insulin-like growth factor-1 receptor, vascular endothelial growth factor receptor and others, such as integrin α5β1, somatostatin receptors, the death receptor 5, claudin, notch receptors, mesothelin receptors, follicle-stimulating hormone receptors, the MUC1 receptor, the adrenomedullin receptor, the farnesoid X receptor, the transferrin receptor, sigma-2 receptors, the chemokine receptor CXCR4, the urokinase plasminogen activator receptor, the ephrine A2 receptor, the GRIA3 receptor, the RON receptor and the angiotensin II receptor AT-1 are expressed in pancreatic tumor cells. These molecules are implicated in tumor growth, apoptosis, angiogenesis, metastasis etc. After identifying the molecular receptors associated with the pancreatic cancer, many more target molecules playing important roles in tumor pathophysiology and senescence-associated signal transduction in cancer cells will be identified. This may have a significant influence on diagnosis, therapy and prognosis of pancreatic cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Mammographic density changes following discontinuation of tamoxifen in premenopausal women with oestrogen receptor-positive breast cancer.

    PubMed

    Kim, Won Hwa; Cho, Nariya; Kim, Young-Seon; Yi, Ann

    2018-04-06

    To evaluate the changes in mammographic density after tamoxifen discontinuation in premenopausal women with oestrogen receptor-positive breast cancers and the underlying factors METHODS: A total of 213 consecutive premenopausal women with breast cancer who received tamoxifen treatment after curative surgery and underwent three mammograms (baseline, after tamoxifen treatment, after tamoxifen discontinuation) were included. Changes in mammographic density after tamoxifen discontinuation were assessed qualitatively (decrease, no change, or increase) by two readers and measured quantitatively by semi-automated software. The association between % density change and clinicopathological factors was evaluated using univariate and multivariate regression analyses. After tamoxifen discontinuation, a mammographic density increase was observed in 31.9% (68/213, reader 1) to 22.1% (47/213, reader 2) by qualitative assessment, with a mean density increase of 1.8% by quantitative assessment compared to density before tamoxifen discontinuation. In multivariate analysis, younger age (≤ 39 years) and greater % density decline after tamoxifen treatment (≥ 17.0%) were independent factors associated with density change after tamoxifen discontinuation (p < .001 and p = .003, respectively). Tamoxifen discontinuation was associated with mammographic density change with a mean density increase of 1.8%, which was associated with younger age and greater density change after tamoxifen treatment. • Increased mammographic density after tamoxifen discontinuation can occur in premenopausal women. • Mean density increase after tamoxifen discontinuation was 1.8%. • Density increase is associated with age and density decrease after tamoxifen.

  2. Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors.

    PubMed

    Nishida, K; Yoshida, Y; Itoh, M; Fukada, T; Ohtani, T; Shirogane, T; Atsumi, T; Takahashi-Tezuka, M; Ishihara, K; Hibi, M; Hirano, T

    1999-03-15

    We previously found that the adapter protein Gab1 (110 kD) is tyrosine-phosphorylated and forms a complex with SHP-2 and PI-3 kinase upon stimulation through either the interleukin-3 receptor (IL-3R) or gp130, the common receptor subunit of IL-6-family cytokines. In this report, we identified another adapter molecule (100 kD) interacting with SHP-2 and PI-3 kinase in response to various stimuli. The molecule displays striking homology to Gab1 at the amino acid level; thus, we named it Gab2. It contains a PH domain, proline-rich sequences, and tyrosine residues that bind to SH2 domains when they are phosphorylated. Gab1 is phosphorylated on tyrosine upon stimulation through the thrombopoietin receptor (TPOR), stem cell factor receptor (SCFR), and T-cell and B-cell antigen receptors (TCR and BCR, respectively), in addition to IL-3R and gp130. Tyrosine phosphorylation of Gab2 was induced by stimulation through gp130, IL-2R, IL-3R, TPOR, SCFR, and TCR. Gab1 and Gab2 were shown to be substrates for SHP-2 in vitro. Overexpression of Gab2 enhanced the gp130 or Src-related kinases-mediated ERK2 activation as that of Gab1 did. These data indicate that Gab-family molecules act as adapters for transmitting various signals.

  3. Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis.

    PubMed

    Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine I

    2017-01-03

    The Gram-positive bacterial cell wall (CW) peptidoglycan-teichoic acid complex is released into the host environment during bacterial metabolism or death. It is a highly inflammatory Toll-like receptor 2 (TLR2) ligand, and previous in vivo studies have demonstrated its ability to recapitulate pathological features of pneumonia and meningitis. We report that an actin-dependent pathway is involved in the internalization of the CW by epithelial and endothelial cells, in addition to the previously described platelet-activating factor receptor (PAFr)-dependent uptake pathway. Unlike the PAFr-dependent pathway, which is mediated by clathrin and dynamin and does not lead to signaling, the alternative pathway is sensitive to 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and engenders Rac1, Cdc42, and phosphatidylinositol 3-kinase (PI3K) signaling. Upon internalization by this macropinocytosis-like pathway, CW is trafficked to lysosomes. Intracellular CW trafficking is more complex than previously recognized and suggests multiple points of interaction with and without innate immune signaling. Streptococcus pneumoniae is a major human pathogen infecting the respiratory tract and brain. It is an established model organism for understanding how infection injures the host. During infection or bacterial growth, bacteria shed their cell wall (CW) into the host environment and trigger inflammation. A previous study has shown that CW enters and crosses cell barriers by interacting with a receptor on the surfaces of host cells, termed platelet-activating factor receptor (PAFr). In the present study, by using cells that are depleted of PAFr, we identified a second pathway with features of macropinocytosis, which is a receptor-independent fluid uptake mechanism by cells. Each pathway contributes approximately the same amount of cell wall trafficking, but the PAFr pathway is silent, while the new pathway appears to contribute to the host inflammatory response to CW insult. Copyright © 2017

  4. Alkyl isothiocyanates suppress epidermal growth factor receptor kinase activity but augment tyrosine kinase activity.

    PubMed

    Nomura, Takahiro; Uehara, Yoshimasa; Kawajiri, Hiroo; Ryoyama, Kazuo; Yamori, Takao; Fuke, Yoko

    2009-10-01

    We have reported the in vitro and in vivo anticancer activities of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) derived from a Japanese spice, wasabi. In order to obtain some clues about the mechanism of the anticancer activity, we have studied the effect of alkyl isothiocyanates (MITCs) on protein kinase activities. The anti-autophosphorylation activity of MITCs with respect to the epidermal growth factor (EGF)-stimulated receptor kinase of A431 epidermoid carcinoma cells was examined by incorporation of radioactive ATP into an acid-insoluble fraction. Their anti-phosphorylation activity with respect to the non-receptor protein kinase was analyzed by a standard SDS-PAGE method. All the tested MITCs interfered with the EGF-stimulated receptor kinase activity in a dose-dependent manner, although their effects were less than 1/10 of that of erbstatin in microg/ml. On the other hand, the MITCs did not interfere with non-receptor kinases (kinase A, kinase C, tyrosine kinase and calmodulin dependent kinase III), but enhanced non-receptor tyrosine kinase. A possible anticancer mechanism of MITCs may involve the suppression of EGF receptor kinase activity and augmentation of non-receptor PTK.

  5. Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta.

    PubMed

    Okuyama, H; Shimahara, Y; Kawada, N; Seki, S; Kristensen, D B; Yoshizato, K; Uyama, N; Yamaoka, Y

    2001-07-27

    Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.

  6. Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells.

    PubMed

    Albanito, Lidia; Sisci, Diego; Aquila, Saveria; Brunelli, Elvira; Vivacqua, Adele; Madeo, Antonio; Lappano, Rosamaria; Pandey, Deo Prakash; Picard, Didier; Mauro, Loredana; Andò, Sebastiano; Maggiolini, Marcello

    2008-08-01

    Different cellular receptors mediate the biological effects induced by estrogens. In addition to the classical nuclear estrogen receptors (ERs)-alpha and -beta, estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPR)-30. Using as a model system SkBr3 and BT20 breast cancer cells lacking the classical ER, the regulation of GPR30 expression by 17beta-estradiol, the selective GPR30 ligand G-1, IGF-I, and epidermal growth factor (EGF) was evaluated. Transient transfections with an expression plasmid encoding a short 5'-flanking sequence of the GPR30 gene revealed that an activator protein-1 site located within this region is required for the activating potential exhibited only by EGF. Accordingly, EGF up-regulated GPR30 protein levels, which accumulated predominantly in the intracellular compartment. The stimulatory role elicited by EGF on GPR30 expression was triggered through rapid ERK phosphorylation and c-fos induction, which was strongly recruited to the activator protein-1 site found in the short 5'-flanking sequence of the GPR30 gene. Of note, EGF activating the EGF receptor-MAPK transduction pathway stimulated a regulatory loop that subsequently engaged estrogen through GPR30 to boost the proliferation of SkBr3 and BT20 breast tumor cells. The up-regulation of GPR30 by ligand-activated EGF receptor-MAPK signaling provides new insight into the well-known estrogen and EGF cross talk, which, as largely reported, contributes to breast cancer progression. On the basis of our results, the action of EGF may include the up-regulation of GPR30 in facilitating a stimulatory role of estrogen, even in ER-negative breast tumor cells.

  7. Role of dietary bioactive natural products in estrogen receptor-positive breast cancer

    PubMed Central

    Bak, Min Ji; Das Gupta, Soumyasri; Wahler, Joseph; Suh, Nanjoo

    2016-01-01

    Estrogen receptor (ER)-positive breast cancer, including luminal-A and -B, is the most common type of breast cancer. Extended exposure to estrogen is associated with an increased risk of breast cancer. Both ER-dependent and ER-independent mechanisms have been implicated in estrogen-mediated carcinogenesis. The ER-dependent pathway involves cell growth and proliferation triggered by the binding of estrogen to the ER. The ER-independent mechanisms depend on the metabolism of estrogen to generate genotoxic metabolites, free radicals and reactive oxygen species to induce breast cancer. A better understanding of the mechanisms that drive ER-positive breast cancer will help optimize targeted approaches to prevent or treat breast cancer. A growing emphasis is being placed on alternative medicine and dietary approaches toward the prevention and treatment of breast cancer. Many natural products and bioactive compounds found in foods have been shown to inhibit breast carcinogenesis via inhibition of estrogen induced oxidative stress as well as ER signaling. This review summarizes the role of bioactive natural products that are involved in the prevention and treatment of estrogen-related and ER-positive breast cancer. PMID:27016037

  8. Translational Breast Cancer Research Consortium (TBCRC) 022: A Phase II Trial of Neratinib for Patients With Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer and Brain Metastases.

    PubMed

    Freedman, Rachel A; Gelman, Rebecca S; Wefel, Jeffrey S; Melisko, Michelle E; Hess, Kenneth R; Connolly, Roisin M; Van Poznak, Catherine H; Niravath, Polly A; Puhalla, Shannon L; Ibrahim, Nuhad; Blackwell, Kimberly L; Moy, Beverly; Herold, Christina; Liu, Minetta C; Lowe, Alarice; Agar, Nathalie Y R; Ryabin, Nicole; Farooq, Sarah; Lawler, Elizabeth; Rimawi, Mothaffar F; Krop, Ian E; Wolff, Antonio C; Winer, Eric P; Lin, Nancy U

    2016-03-20

    Evidence-based treatments for metastatic, human epidermal growth factor receptor 2 (HER2)-positive breast cancer in the CNS are limited. Neratinib is an irreversible inhibitor of erbB1, HER2, and erbB4, with promising activity in HER2-positive breast cancer; however, its activity in the CNS is unknown. We evaluated the efficacy of treatment with neratinib in patients with HER2-positive breast cancer brain metastases in a multicenter, phase II open-label trial. Eligible patients were those with HER2-positive brain metastases (≥ 1 cm in longest dimension) who experienced progression in the CNS after one or more line of CNS-directed therapy, such as whole-brain radiotherapy, stereotactic radiosurgery, and/or surgical resection. Patients received neratinib 240 mg orally once per day, and tumors were assessed every two cycles. The primary endpoint was composite CNS objective response rate (ORR), requiring all of the following: ≥ 50% reduction in volumetric sum of target CNS lesions and no progression of non-target lesions, new lesions, escalating corticosteroids, progressive neurologic signs/symptoms, or non-CNS progression--the threshold for success was five of 40 responders. Forty patients were enrolled between February 2012 and June 2013; 78% of patients had previous whole-brain radiotherapy. Three women achieved a partial response (CNS objective response rate, 8%; 95% CI, 2% to 22%). The median number of cycles received was two (range, one to seven cycles), with a median progression-free survival of 1.9 months. Five women received six or more cycles. The most common grade ≥ 3 event was diarrhea (occurring in 21% of patients taking prespecified loperamide prophylaxis and 28% of those without prophylaxis). Patients in the study experienced a decreased quality of life over time. Although neratinib had low activity and did not meet our threshold for success, 12.5% of patients received six or more cycles. Studies combining neratinib with chemotherapy in patients

  9. Glyphosate induces growth of estrogen receptor alpha positive cholangiocarcinoma cells via non-genomic estrogen receptor/ERK1/2 signaling pathway.

    PubMed

    Sritana, Narongrit; Suriyo, Tawit; Kanitwithayanun, Jantamas; Songvasin, Benjaporn Homkajorn; Thiantanawat, Apinya; Satayavivad, Jutamaad

    2018-06-08

    Previous studies showed that glyphosate stimulates breast cancer cell growth via estrogen receptors. The present study investigated the effect of glyphosate on the estrogen signaling pathway involved in the induction of cholangiocarcinoma (CCA) cell growth. HuCCA-1, RMCCA-1 and MMNK-1 were chosen for comparison. The effects of glyphosate on cell growth, cell cycle and molecular signaling pathways were measured. The results showed that HuCCA-1 cells expressed estrogen receptor alpha (ERα), while ERα was not detected in RMCCA-1 and MMNK-1 cells. ERα was mostly expressed in cytoplasmic compartment of HuCCA-1 cells. Estradiol (E2) (10 -11 -10 -5  M) induced cell proliferation in HuCCA-1 but not in RMCCA-1 and MMNK-1 cells. Glyphosate at the same concentration range also induced HuCCA-1 cell proliferation. The S phase of the cell cycle, and protein levels of the cyclin family were significantly increased after treatment of glyphosate or E2. Both compounds also induced the expression of proliferative signaling-related proteins including ERα, VEGFR2, pERK, PI3K(p85), and PCNA. These effects of glyphosate and E2 were abolished by the ER antagonist, 4-hydroxytamoxifen and U0126, a MEK inhibitor. The data from this study indicate that glyphosate can induce cell growth in ERα positive CCA cells through non-genomic estrogen receptor/ERK1/2 signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Specific Inhibitors of Platelet-Derived Growth Factor or Epidermal Growth Factor Receptor Tyrosine Kinase Reduce Pulmonary Fibrosis in Rats

    PubMed Central

    Rice, Annette B.; Moomaw, Cindy R.; Morgan, Daniel L.; Bonner, James C.

    1999-01-01

    The proliferation of myofibroblasts is a central feature of pulmonary fibrosis. In this study we have used tyrosine kinase inhibitors of the tyrphostin class to specifically block autophosphorylation of the platelet-derived growth factor receptor (PDGF-R) or epidermal growth factor receptor (EGF-R). AG1296 specifically inhibited autophosphorylation of PDGF-R and blocked PDGF-stimulated [3H]thymidine uptake by rat lung myofibroblasts in vitro. AG1478 was demonstrated as a selective blocker of EGF-R autophosphorylation and inhibited EGF-stimulated DNA synthesis in vitro. In a rat model of pulmonary fibrosis caused by intratracheal instillation of vanadium pentoxide (V2O5), intraperitoneal delivery of 50 mg/kg AG1296 or AG1478 in dimethylsulfoxide 1 hour before V2O5 instillation and again 2 days after instillation reduced the number of epithelial and mesenchymal cells incorporating bromodeoxyuridine (Brdu) by ∼50% at 3 and 6 days after instillation. V2O5 instillation increased lung hydroxyproline fivefold 15 days after instillation, and AG1296 was more than 90% effective in preventing the increase in hydroxyproline, whereas AG1478 caused a 50% to 60% decrease in V2O5-stimulated hydroxyproline accumulation. These data provide evidence that PDGF and EGF receptor ligands are potent mitogens for collagen-producing mesenchymal cells during pulmonary fibrogenesis, and targeting tyrosine kinase receptors could offer a strategy for the treatment of fibrotic lung diseases. PMID:10393853

  11. Role of osteoprotegerin/receptor activator of nuclear factor kappa B/receptor activator of nuclear factor kappa B ligand axis in nonalcoholic fatty liver disease.

    PubMed

    Pacifico, Lucia; Andreoli, Gian Marco; D'Avanzo, Miriam; De Mitri, Delia; Pierimarchi, Pasquale

    2018-05-21

    Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease (NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome (MetS), like insulin resistance (IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, MetS, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin (OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesity-related comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of MetS as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD.

  12. Polycythaemia-inducing mutations in the erythropoietin receptor (EPOR): mechanism and function as elucidated by epidermal growth factor receptor-EPOR chimeras.

    PubMed

    Gross, Mor; Ben-Califa, Nathalie; McMullin, Mary F; Percy, Melanie J; Bento, Celeste; Cario, Holger; Minkov, Milen; Neumann, Drorit

    2014-05-01

    Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding. Using this system we analysed three novel EPOR mutations discovered in PFCP patients: a deletion mutation (Del1377-1411), a nonsense mutation (C1370A) and a missense mutation (G1445A). Three different chimeras, bearing these mutations in the cytosolic, EPOR region were generated; Hence, the differences in the chimera-related effects are specifically attributed to the mutations. The results show that the different mutations affect various aspects related to the signalling and metabolism of the chimeric receptors. These include slower degradation rate, higher levels of glycan-mature chimeric receptors, increased sensitivity to low levels of EGF (replacing EPO in this system) and extended signalling cascades. This study provides a novel experimental system to study polycythaemia-inducing mutations in the EPOR, and sheds new light on underlying mechanisms of EPOR over-activation in PFCP patients. © 2014 John Wiley & Sons Ltd.

  13. Phylogenetic analysis of platelet-derived growth factor by radio- receptor assay

    PubMed Central

    1982-01-01

    Competition between 125I-labeled platelet-derived growth factor (PDGF) and unlabeled PDGF forms the basis of a specific "radio-receptor assay" for quantifying PDGF in clotted blood serum. Human clotted blood serum contains 15 ng/ml of PDGF by radio-receptor assay; this corresponds to a PDGF content of approximately 7.5 x 10(-5) pg per circulating platelet, a figure which is corroborated by purification data. Clotted blood sera from mammals, lower vertebrates and marine invertebrates were screened for homologues of human PDGF by radio-receptor assay. All tested specimens from phylum Chordata contain a mitogenic agent that competes with human PDGF for receptor binding. Sera from tunicates down on the chordate line of evolution and sera from all tested animals on the arthropod line of development were negative. The phylogenetic distribution of PDGF homologue does not correlate with platelet distribution since platelets and their precursor cell--the bone marrow megacaryocyte--are unique to the mammalian hematopoietic system. One anatomical feature appearing coordinately with PDGF on the vertebrate line of development is a pressurized circulatory system. The coincidental appearance of these features may lend support to the hypothesis that PDGF plays a role in maintenance and repair of the vascular lining in vivo. PMID:7142300

  14. Fibroblast Growth Factor Receptor-4 and Prostate Cancer Progression

    DTIC Science & Technology

    2007-10-01

    difference between the two FGFR-4 variants? Achondroplasia (dwarfism) is caused by a similar mutation in FGFR-3 (Gly380 to Arg380). Increased FGFR-3...what is the molecular basis for the difference between the two FGFR-4 variants? Achondroplasia is caused by a similar mutation in FGFR-3 (Gly380 to...lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia . Proc Natl Acad Sci U S A 2004;101(2):609-14. 27. Hyun TS, Rao DS

  15. Expression of granulocyte colony-stimulating factor receptor correlates with prognosis in oral and mesopharyngeal carcinoma.

    PubMed

    Tsuzuki, H; Fujieda, S; Sunaga, H; Noda, I; Saito, H

    1998-02-15

    Granulocyte colony-stimulating factor receptors (G-CSFRs) have been observed on the surface of not only hematopoietic cells but also several cancer cells. The stimulation of G-CSF has been demonstrated to induce proliferation and activation of G-CSFR-positive cells. In this study, we investigated the expression of G-CSFR on the surface of tumor cells and G-CSF production in oral and mesopharyngeal squamous cell carcinoma (SCC) by an immunohistochemical approach. Of 58 oral and mesopharyngeal SCCs, 31 cases (53.4%) and 36 cases (62.1%) were positive for G-CSFR and G-CSF, respectively. There was no association between G-CSFR expression and G-CSF staining. In the group positive for G-CSFR expression, relapse was significantly more likely after primary treatment (P = 0.0069), whereas there was no association between G-CSFR expression and age, sex, tumor size, lymph node metastasis, and clinical stage. Also, the G-CSFR-positive groups had a significantly lower disease-free and overall survival rate than the G-CSFR-negative groups (P = 0.0172 and 0.0188, respectively). However, none of the clinical markers correlated significantly with G-CSF staining, nor did the status of G-CSF production influence the overall survival. The results imply that assessment of G-CSFR may prove valuable in selecting patients with oral and mesopharyngeal SCC for aggressive therapy.

  16. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation.

    PubMed

    Dikov, Mikhail M; Ohm, Joyce E; Ray, Neelanjan; Tchekneva, Elena E; Burlison, Jared; Moghanaki, Drew; Nadaf, Sorena; Carbone, David P

    2005-01-01

    Impaired Ag-presenting function in dendritic cells (DCs) due to abnormal differentiation is an important mechanism of tumor escape from immune control. A major role for vascular endothelial growth factor (VEGF) and its receptors, VEGFR1/Flt-1 and VEGFR2/KDR/Flk-1, has been documented in hemopoietic development. To study the roles of each of these receptors in DC differentiation, we used an in vitro system of myeloid DC differentiation from murine embryonic stem cells. Exposure of wild-type, VEGFR1(-/-), or VEGFR2(-/-) embryonic stem cells to exogenous VEGF or the VEGFR1-specific ligand, placental growth factor, revealed distinct roles of VEGF receptors. VEGFR1 is the primary mediator of the VEGF inhibition of DC maturation, whereas VEGFR2 tyrosine kinase signaling is essential for early hemopoietic differentiation, but only marginally affects final DC maturation. SU5416, a VEGF receptor tyrosine kinase inhibitor, only partially rescued the mature DC phenotype in the presence of VEGF, suggesting the involvement of both tyrosine kinase-dependent and independent inhibitory mechanisms. VEGFR1 signaling was sufficient for blocking NF-kappaB activation in bone marrow hemopoietic progenitor cells. VEGF and placental growth factor affect the early stages of myeloid/DC differentiation. The data suggest that therapeutic strategies attempting to reverse the immunosuppressive effects of VEGF in cancer patients might be more effective if they specifically targeted VEGFR1.

  17. Circulating tumour necrosis factor alpha & soluble TNF receptors in patients with Guillain-Barre syndrome.

    PubMed

    Radhakrishnan, V V; Sumi, M G; Reuben, S; Mathai, A; Nair, M D

    2003-05-01

    Tumour necrosis factor-alpha (TNF-alpha) is regarded as one of the immune factors that can induce demyelination of peripheral nerves in patients with Guillian-Barre syndrome (GBS). This present study was undertaken to find out the role of TNF-alpha and soluble TNF receptors in the pathogenesis of GBS; and to study the effect of intravenous immunoglobulin (ivIg) therapy on the serum TNF-alpha and soluble TNF receptors in patients with GBS. Thirty six patients with GBS in progressive stages of motor weakness were included in this study. The serum TNF-alpha and soluble TNF receptors (TNF-RI, TNF-RII) were measured in the serum samples of these patients before and after ivIg therapy by a sandwich ELISA. Of the 36 patients with GBS, 26 (72.2%) showed elevated serum TNF-alpha levels prior to ivIg therapy. Following a complete course of ivIg therapy there was a progressive decrease in the serum TNF-alpha concentrations in these 26 patients. On the other hand, the soluble TNF receptors, particularly TNF-RII showed an increase in the serum of GBS patients following ivIg therapy. The results indicate that ivIg reduces the serum TNF-alpha concentrations in the GBS patients having elevated levels prior to ivIg therapy. Elevated serum levels of soluble TNF receptors following ivIg therapy may play a protective role by inhibiting the demyelinating effect of TNF-alpha in the peripheral nerves of patients with GBS.

  18. Structural analysis of the human fibroblast growth factor receptor 4 kinase.

    PubMed

    Lesca, E; Lammens, A; Huber, R; Augustin, M

    2014-11-11

    The family of fibroblast growth factor receptors (FGFRs) plays an important and well-characterized role in a variety of pathological disorders. FGFR4 is involved in myogenesis and muscle regeneration. Mutations affecting the kinase domain of FGFR4 may cause cancer, for example, breast cancer or rhabdomyosarcoma. Whereas FGFR1-FGFR3 have been structurally characterized, the structure of the FGFR4 kinase domain has not yet been reported. In this study, we present four structures of the kinase domain of FGFR4, in its apo-form and in complex with different types of small-molecule inhibitors. The two apo-FGFR4 kinase domain structures show an activation segment similar in conformation to an autoinhibitory segment observed in the hepatocyte growth factor receptor kinase but different from the known structures of other FGFR kinases. The structures of FGFR4 in complex with the type I inhibitor Dovitinib and the type II inhibitor Ponatinib reveal the molecular interactions with different types of kinase inhibitors and may assist in the design and development of FGFR4 inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Tumor necrosis factor-alpha inhibits stem cell factor-induced proliferation of human bone marrow progenitor cells in vitro. Role of p55 and p75 tumor necrosis factor receptors.

    PubMed Central

    Rusten, L S; Smeland, E B; Jacobsen, F W; Lien, E; Lesslauer, W; Loetscher, H; Dubois, C M; Jacobsen, S E

    1994-01-01

    Stem cell factor (SCF), a key regulator of hematopoiesis, potently synergizes with a number of hematopoietic growth factors. However, little is known about growth factors capable of inhibiting the actions of SCF. TNF-alpha has been shown to act as a bidirectional regulator of myeloid cell proliferation and differentiation. This study was designed to examine interactions between TNF-alpha and SCF. Here, we demonstrate that TNF-alpha potently and directly inhibits SCF-stimulated proliferation of CD34+ hematopoietic progenitor cells. Furthermore, TNF-alpha blocked all colony formation stimulated by SCF in combination with granulocyte colony-stimulating factor (CSF) or CSF-1. The synergistic effect of SCF observed in combination with GM-CSF or IL-3 was also inhibited by TNF-alpha, resulting in colony numbers similar to those obtained in the absence of SCF. These effects of TNF-alpha were mediated through the p55 TNF receptor, whereas little or no inhibition was signaled through the p75 TNF receptor. Finally, TNF-alpha downregulated c-kit cell-surface expression on CD34+ bone marrow cells, and this was predominantly a p55 TNF receptor-mediated event as well. Images PMID:7518828

  20. Psychosocial factors associated with flourishing among Australian HIV-positive gay men.

    PubMed

    Lyons, Anthony; Heywood, Wendy; Rozbroj, Tomas

    2016-09-15

    Mental health outcomes among HIV-positive gay men are generally poorer than in the broader population. However, not all men in this population experience mental health problems. Although much is known about factors associated with depression and anxiety among HIV-positive gay men, little is known about factors associated with positive mental health. Such knowledge can be useful for optimizing well-being support programs for HIV-positive gay men. In this study, we examined flourishing, which broadly covers most aspects of positive mental health. A sample of 357 Australian HIV-positive gay men completed a survey on their mental health and well-being, including the Flourishing Scale. Given the lack of previous research, we explored a wide range of psychosocial factors, including demographics, stigma, discrimination, and social support, to identify key factors linked to flourishing. The sample showed a similar level of flourishing to those in general population samples. Several independent factors were found to be associated with flourishing outcomes. Those who were most likely to be flourishing tended to have low or no internalized HIV-related stigma, were employed, received higher levels of practical support, had a sense of companionship with others, and felt supported by family. These and other findings presented in this article may be used to help inform strategies for promoting optimal levels of mental health, and its associated general health benefits, among HIV-positive gay men.

  1. Fibroblast growth factor receptor two (FGFR2) regulates uterine epithelial integrity and fertility in mice.

    PubMed

    Filant, Justyna; DeMayo, Franco J; Pru, James K; Lydon, John P; Spencer, Thomas E

    2014-01-01

    Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate luminal epithelial (LE) cell proliferation in the adult mouse uterus. This study tested the hypothesis that FGFR2 has a biological role in postnatal development and function of the uterus by conditionally deleting Fgfr2 after birth using progesterone receptor (Pgr)-Cre mice. Adult Fgfr2 mutant female mice were initially subfertile and became infertile with increasing parity. No defects in uterine gland development were observed in conditional Fgfr2 mutant mice. In the adult, Fgfr2 mutant mice possessed a histologically normal reproductive tract with the exception of the uterus. The LE of the Fgfr2 mutant uterus was stratified, but no obvious histological differences were observed in the glandular epithelium, stroma, or myometrium. Within the stratified LE, cuboidal basal cells were present and positive for basal cell markers (KRT14 and TRP63). Nulliparous bred Fgfr2 mutants contained normal numbers of blastocysts on Day 3.5 postmating, but the number of embryo implantation sites was substantially reduced on Day 5.5 postmating. These results support the idea that loss of FGFR2 in the uterus after birth alters its development, resulting in LE stratification and peri-implantation pregnancy loss.

  2. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer.

    PubMed

    Yang, Wei; Hosford, Sarah R; Traphagen, Nicole A; Shee, Kevin; Demidenko, Eugene; Liu, Stephanie; Miller, Todd W

    2018-03-01

    Hyperactivation of the PI3K pathway has been implicated in resistance to antiestrogen therapies in estrogen receptor α (ER)-positive breast cancer, prompting the development of therapeutic strategies to inhibit this pathway. Autophagy has tumor-promoting and -suppressing roles and has been broadly implicated in resistance to anticancer therapies, including antiestrogens. Chloroquine (CQ) is an antimalarial and amebicidal drug that inhibits autophagy in mammalian cells and human tumors. Herein, we observed that CQ inhibited proliferation and autophagy in ER + breast cancer cells. PI3K inhibition with GDC-0941 (pictilisib) induced autophagy. Inhibition of autophagy using CQ or RNA interference potentiated PI3K inhibitor-induced apoptosis. Combined inhibition of PI3K and autophagy effectively induced mitochondrial membrane depolarization, which required the BH3-only proapoptotic proteins Bim and PUMA. Treatment with GDC-0941, CQ, or the combination, significantly suppressed the growth of ER + breast cancer xenografts in mice. In an antiestrogen-resistant xenograft model, GDC-0941 synergized with CQ to provide partial, but durable, tumor regression. These findings warrant clinical evaluation of therapeutic strategies to target ER, PI3K, and autophagy for the treatment of ER + breast cancer.-Yang, W., Hosford, S. R., Traphagen, N. A., Shee, K., Demidenko, E., Liu, S., Miller, T. W. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer.

  3. Tumor necrosis factor receptor 2 as a possible marker of COPD in smokers and ex-smokers

    PubMed Central

    Caram, Laura Miranda de Oliveira; Ferrari, R; Nogueira, DL; Oliveira, MRM; Francisqueti, FV; Tanni, SE; Corrêa, CR; Godoy, I

    2017-01-01

    Introduction Oxidative stress and systemic inflammation are higher in smokers and patients with COPD; however, markers that may help differentiate between smokers and patients with COPD have not yet been identified. We hypothesized that tumor necrosis factor-alpha receptor (TNFR) and soluble form of the receptor for advanced glycation end products (sRAGE) can be indicators of COPD in asymptomatic patients. Patients and methods We evaluated 32 smokers (smoking history >10 pack-years), 32 patients with mild/moderate COPD (smokers and ex-smokers), and 32 never smokers. Concentrations of C-reactive protein (CRP), interleukin (IL)-6, TNFR1 and TNFR2, advanced glycation end products (AGEs), and the sRAGE were measured in serum. Results There were higher CRP and AGEs concentrations in smokers and in patients with COPD (P<0.001 and P=0.01, respectively) compared to controls, without statistical difference between smokers and patients with COPD. Concentrations of sRAGE, IL-6, and TNFR1 did not differ between study groups. TNFR2 was significantly higher in patients with COPD than in smokers (P=0.004) and controls (P=0.004), and the presence of COPD (P=0.02) and CRP (P=0.001) showed a positive association with TNFR2. Positive associations for smoking (P=0.04), CRP (P=0.03), and IL-6 (P=0.03) with AGEs were also found. The interaction variable (smoking × COPD) showed a positive association with IL-6. Conclusion Our data suggest that TNFR2 may be a possible marker of COPD in asymptomatic smokers and ex-smokers. Although smokers and patients with early COPD presented other increased systemic inflammation markers (eg, CRP) and oxidative stress (measured by AGEs), they did not differentiate smokers from COPD. PMID:28744116

  4. Tumor necrosis factor receptor 2 as a possible marker of COPD in smokers and ex-smokers.

    PubMed

    Caram, Laura Miranda de Oliveira; Ferrari, R; Nogueira, D L; Oliveira, Mrm; Francisqueti, F V; Tanni, S E; Corrêa, C R; Godoy, I

    2017-01-01

    Oxidative stress and systemic inflammation are higher in smokers and patients with COPD; however, markers that may help differentiate between smokers and patients with COPD have not yet been identified. We hypothesized that tumor necrosis factor-alpha receptor (TNFR) and soluble form of the receptor for advanced glycation end products (sRAGE) can be indicators of COPD in asymptomatic patients. We evaluated 32 smokers (smoking history >10 pack-years), 32 patients with mild/moderate COPD (smokers and ex-smokers), and 32 never smokers. Concentrations of C-reactive protein (CRP), interleukin (IL)-6, TNFR1 and TNFR2, advanced glycation end products (AGEs), and the sRAGE were measured in serum. There were higher CRP and AGEs concentrations in smokers and in patients with COPD ( P <0.001 and P =0.01, respectively) compared to controls, without statistical difference between smokers and patients with COPD. Concentrations of sRAGE, IL-6, and TNFR1 did not differ between study groups. TNFR2 was significantly higher in patients with COPD than in smokers ( P =0.004) and controls ( P =0.004), and the presence of COPD ( P =0.02) and CRP ( P =0.001) showed a positive association with TNFR2. Positive associations for smoking ( P =0.04), CRP ( P =0.03), and IL-6 ( P =0.03) with AGEs were also found. The interaction variable (smoking × COPD) showed a positive association with IL-6. Our data suggest that TNFR2 may be a possible marker of COPD in asymptomatic smokers and ex-smokers. Although smokers and patients with early COPD presented other increased systemic inflammation markers (eg, CRP) and oxidative stress (measured by AGEs), they did not differentiate smokers from COPD.

  5. Estrogen receptor status in CHEK2-positive breast cancers: implications for chemoprevention.

    PubMed

    Cybulski, C; Huzarski, T; Byrski, T; Gronwald, J; Debniak, T; Jakubowska, A; Górski, B; Wokołorczyk, D; Masojć, B; Narod, S A; Lubiński, J

    2009-01-01

    To investigate the relationship between CHEK2 mutation status and estrogen receptor (ER) status in unselected cases of early-onset breast cancer from Poland, we screened 4441 women diagnosed with breast cancer younger than 51 years and 7217 controls for three inherited mutations in CHEK2 (1100delC, IVS2+1G>A, del5395). ER status was compared between CHEK2-positive and CHEK2-negative breast cancer cases. A truncating mutation in CHEK2 was seen in 140 of 4441 cases and in 70 of 7217 controls [odds ratio (OR) = 3.3; 95% CI = 2.5-4.4; p < 0.0001]. ER status was available for 92 of 140 mutation carriers and for 3001 of 4301 non-carriers with breast cancer. The OR was higher for ER-positive cancers (OR = 3.9; 95% CI = 2.7-5.4; p < 0.0001) than for ER-negative cancers (OR = 2.1; 95% CI = 1.3-3.3; p = 0.002). Sixty-six of the 92 breast cancers in carriers of CHEK2 truncating mutations were ER positive compared with 1742 of the 3001 breast cancers in non-carriers (72% vs 58%; p = 0.01). Women with a CHEK2 mutation face a fourfold increase in the risk of ER-positive breast cancer and might be candidates for tamoxifen chemoprevention.

  6. Accelerated molecular dynamics simulations of the octopamine receptor using GPUs: discovery of an alternate agonist-binding position.

    PubMed

    Kastner, Kevin W; Izaguirre, Jesús A

    2016-10-01

    Octopamine receptors (OARs) perform key biological functions in invertebrates, making this class of G-protein coupled receptors (GPCRs) worth considering for insecticide development. However, no crystal structures and very little research exists for OARs. Furthermore, GPCRs are large proteins, are suspended in a lipid bilayer, and are activated on the millisecond timescale, all of which make conventional molecular dynamics (MD) simulations infeasible, even if run on large supercomputers. However, accelerated Molecular Dynamics (aMD) simulations can reduce this timescale to even hundreds of nanoseconds, while running the simulations on graphics processing units (GPUs) would enable even small clusters of GPUs to have processing power equivalent to hundreds of CPUs. Our results show that aMD simulations run on GPUs can successfully obtain the active and inactive state conformations of a GPCR on this reduced timescale. Furthermore, we discovered a potential alternate active-state agonist-binding position in the octopamine receptor which has yet to be observed and may be a novel GPCR agonist-binding position. These results demonstrate that a complex biological system with an activation process on the millisecond timescale can be successfully simulated on the nanosecond timescale using a simple computing system consisting of a small number of GPUs. Proteins 2016; 84:1480-1489. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Expression of keratinocyte growth factor (KGF) and its receptor in a middle-ear cavity problem.

    PubMed

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2012-01-01

    To investigate the pathogenesis of one of the most troublesome conditions following ear surgery, a middle-ear cavity problem. Keratinocyte growth factor (KGF) and its receptor (KGFR), the ratio of proliferating epithelial cells using Ki-67, and the extent of infiltration of B cells and T cells were examined immunohistochemically in 10 ears with a cavity problem, 70 ears with cholesteatoma and 8 ears with normal skin at the retroauricular incision. KGF was positive in 40% of cavity problem specimens, 37.5% of normal skin specimens, and was positive in 88% of cholesteatoma specimens (cavity problem vs. cholesteatoma, p=0.0004). The positive rate of KGFR in the cavity problem group (33.3%) was between those in cholesteatoma (60%) and normal skin (0%). In contrast to the cholesteatoma specimens, a significantly smaller number of Ki-67 labeling index (LI) was detected in the cavity problem specimens. B cell LI was significantly higher but T cell LI was significantly lower in the cavity problem specimens than in the cholesteatoma group. Our present study indicated that the discordance of paracrine action between stromal KGF and epithelial KGFR with a large number of infiltrating B cells may play an important role in the pathogenesis of a cavity problem. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. NMDA receptor blockade and hippocampal neuronal loss impair fear conditioning and position habit reversal in C57Bl/6 mice.

    PubMed

    Bardgett, Mark E; Boeckman, Ryan; Krochmal, Daniel; Fernando, Hiran; Ahrens, Rebecca; Csernansky, John G

    2003-04-15

    The interpretation of learning and memory deficits in transgenic mice has largely involved theories of NMDA receptor and/or hippocampal function. However, there is little empirical data that describes what NMDA receptors or the hippocampus do in mice. This research assessed the effects of different doses of the NMDA receptor antagonist, MK-801, or different-sized hippocampal lesions on several behavioral parameters in adult male C57Bl/6 mice. In the first set of experiments, different doses of MK-801 (0.05-0.3mg/kg, s.c.) were assayed in fear conditioning, shock sensitivity, locomotion, anxiety, and position habit reversal tests. Contextual and cued fear conditioning, and position habit reversal were impaired in a dose-dependent manner. Locomotor activity was increased immediately after injection of the highest dose of MK-801. A second set of experiments determined the behavioral effects of a moderate and large excitotoxic hippocampal lesion. Both lesions impaired contextual conditioning, while the larger lesion interfered with cued conditioning. Reversal learning was significantly diminished by the large lesion, while the moderate lesion had a detrimental effect at a trend level (P<0.10). These results provide important reference data for studies involving genetic manipulations of NMDA receptor or hippocampal function in mice. Furthermore, they serve as a basis for a non-transgenic mouse model of the NMDA receptor or hippocampal dysfunction hypothesized to occur in human cognitive disorders.

  9. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation.

    PubMed Central

    Brown, Sharron A N; Richards, Christine M; Hanscom, Heather N; Feng, Sheau-Line Y; Winkles, Jeffrey A

    2003-01-01

    Fn14 is a growth-factor-inducible immediate-early-response gene encoding a 102-amino-acid type I transmembrane protein. The human Fn14 protein was recently identified as a cell-surface receptor for the tumour necrosis factor (TNF) superfamily member named TWEAK (TNF-like weak inducer of apoptosis). In the present paper, we report that the human TWEAK extracellular domain can also bind the murine Fn14 protein. Furthermore, site-specific mutagenesis and directed yeast two-hybrid interaction assays revealed that the TNFR-associated factor (TRAF) 1, 2, 3 and 5 adaptor molecules bind the murine Fn14 cytoplasmic tail at an overlapping, but non-identical, amino acid sequence motif. We also found that TWEAK treatment of quiescent NIH 3T3 cells stimulates inhibitory kappaBalpha phosphorylation and transcriptional activation of a nuclear factor-kappaB (NF-kappaB) enhancer/luciferase reporter construct. Fn14 overexpression in transiently transfected NIH 3T3 cells also promotes NF-kappaB activation, and this cellular response requires an intact TRAF binding site. These results indicate that Fn14 is a functional TWEAK receptor that can associate with four distinct TRAF family members and stimulate the NF-kappaB transcription factor signalling pathway. PMID:12529173

  10. Activation of corticotropin-releasing factor receptors from the basolateral or central amygdala increases the tonic immobility response in guinea pigs: an innate fear behavior.

    PubMed

    Donatti, Alberto Ferreira; Leite-Panissi, Christie Ramos Andrade

    2011-11-20

    The tonic immobility (TI) behavior is an innate response associated with extreme threat situations such as a predator attack. Several studies have provided evidence suggesting an important role for corticotropin-releasing factor (CRF) in the regulation of the endocrine system, defensive behaviors and behavioral responses to stress. TI has been shown to be positively correlated with the basal plasma levels of corticosterone. CRF receptors and neurons that are immunoreactive to CRF are found in many cerebral regions, especially in the amygdaloid complex. Previous reports have demonstrated the involvement of the basolateral amygdaloid (BLA) and central amygdaloid (CeA) nuclei in the TI response. In this study, we evaluated the CRF system of the BLA and the CeA in the modulation of the TI response in guinea pigs. The activation of CRF receptors in the BLA and in the CeA promoted an increase in the TI response. In contrast, the inhibition of these receptors via alpha-helical-CRF(9-41) decreased the duration of the TI response. Moreover, neither the activation nor inhibition of CRF receptors in the BLA or the CeA altered spontaneous motor activity in the open-field test. These data suggest that the activation of the CRF receptors in the BLA or the CeA probably potentiates fear and anxiety, which may be one of the factors that promote an increase in the TI behavior. Therefore, these data support the role of the CRF system in the control of emotional responses, particularly in the modulation of innate fear. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Tumour necrosis factors modulate the affinity state of the leukotriene B4 receptor on human neutrophils.

    PubMed Central

    Brom, J; Knöller, J; Köller, M; König, W

    1988-01-01

    Pre-incubation of human polymorphonuclear granulocytes with recombinant human tumour necrosis factors (TNF) revealed a time- and dose-dependent reduction of the expression of leukotriene B4-receptor sites. Analysis of the binding data by Scatchard plots showed a shift from a heterologous receptor population (indicating high- and low-affinity subsets) to a homologous population. From the results it is considered that TNF can influence host defence through the modulation of leukotriene B4 receptor affinity. PMID:2851543

  12. Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro-Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice.

    PubMed

    Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C

    2016-02-01

    The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation

  13. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia

    PubMed Central

    2013-01-01

    Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit. PMID:23866312

  14. Alpha4 containing nicotinic receptors are positioned to mediate postsynaptic effects on serotonin neurons in the rat dorsal raphe nucleus

    PubMed Central

    Commons, Kathryn G.

    2008-01-01

    Nicotinic acetylcholine receptors containing the alpha4 and beta2 subunits constitute the most abundant high-affinity binding site of nicotine in the brain and are critical for the addictive qualities of nicotine. Serotonin neurotransmission is thought to be an important contributor to nicotine addiction. Therefore in this study it was examined how alpha4-containing receptors are positioned to modulate the function of serotonin neurons using ultrastructural analysis of immunolabeling for the alpha4 receptor subunit in the dorsal raphe nucleus (DR), a primary source of forebrain serotonin in the rat. Of 150 profiles labeled for the alpha4 subunit, 140 or 93% consisted of either soma or dendrites, these were often small-caliber (distal) dendrites <1.5 um in diameter (63/150 or 42%). The majority (107/150 or 71%) of profiles containing labeling for alpha4 were dually labeled for the synthetic enzyme for serotonin, tryptophan hydroxylase (TPH). Within dendrites immunogold labeling for alpha4 was present on the plasma membrane or near postsynaptic densities. However, labeling for alpha4 was commonly localized to the cytoplasmic compartment often associated with smooth endoplasmic reticulum, plausibly representing receptors in transit to or from the plasma membrane. Previous studies have suggested that nicotine presynaptically regulates activity onto serotonin neurons, however alpha4 immunolabeling was detected in only 10 axons in the DR or 7% of profiles sampled. This finding suggest that alpha4 containing receptors are minor contributors to presynaptic regulation of synaptic activity onto serotonin neurons, but rather alpha4 containing receptors are positioned to influence serotonin neurons directly at postsynaptic sites. PMID:18403129

  15. Anti-epidermal growth factor receptor skin toxicity: a matter of topical hydration.

    PubMed

    Ferrari, Daris; Codecà, Carla; Bocci, Barbara; Crepaldi, Francesca; Violati, Martina; Viale, Giulia; Careri, Carmela; Caldiera, Sarah; Bordin, Veronica; Luciani, Andrea; Zonato, Sabrina; Cassinelli, Gabriela; Foa, Paolo

    2016-02-01

    Skin toxicity is a frequent complication of anti-epidermal growth factor receptor therapy, which can be an obstacle in maintaining the dose intensity and may negatively impact on the clinical outcome of cancer patients. Skin lesions depend on the disruption of the keratinocyte development pathways and no treatment is clearly effective in resolving the cutaneous alterations frequently found during anti-epidermal growth factor receptor therapy. Among systemic treatments, oral tetracycline proved to be useful in preventing skin manifestations. We describe the case of a patient affected by metastatic colorectal cancer, for whom a combination of chemotherapy and cetuximab was used as second-line treatment. The patient developed a symptomatic papulopustular skin rash that disappeared completely after a twice-daily application of a hydrating and moisturizing cream, mainly consisting of a mixture of paraffin, silicone compounds, and macrogol. The marked cutaneous amelioration allowed the patient to continue cetuximab without any further symptoms and was associated with a partial radiological response.

  16. Structural basis for signal recognition and transduction by platelet-activating-factor receptor.

    PubMed

    Cao, Can; Tan, Qiuxiang; Xu, Chanjuan; He, Lingli; Yang, Linlin; Zhou, Ye; Zhou, Yiwei; Qiao, Anna; Lu, Minmin; Yi, Cuiying; Han, Gye Won; Wang, Xianping; Li, Xuemei; Yang, Huaiyu; Rao, Zihe; Jiang, Hualiang; Zhao, Yongfang; Liu, Jianfeng; Stevens, Raymond C; Zhao, Qiang; Zhang, Xuejun C; Wu, Beili

    2018-06-01

    Platelet-activating-factor receptor (PAFR) responds to platelet-activating factor (PAF), a phospholipid mediator of cell-to-cell communication that exhibits diverse physiological effects. PAFR is considered an important drug target for treating asthma, inflammation and cardiovascular diseases. Here we report crystal structures of human PAFR in complex with the antagonist SR 27417 and the inverse agonist ABT-491 at 2.8-Å and 2.9-Å resolution, respectively. The structures, supported by molecular docking of PAF, provide insights into the signal-recognition mechanisms of PAFR. The PAFR-SR 27417 structure reveals an unusual conformation showing that the intracellular tips of helices II and IV shift outward by 13 Å and 4 Å, respectively, and helix VIII adopts an inward conformation. The PAFR structures, combined with single-molecule FRET and cell-based functional assays, suggest that the conformational change in the helical bundle is ligand dependent and plays a critical role in PAFR activation, thus greatly extending knowledge about signaling by G-protein-coupled receptors.

  17. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less

  18. Comparative Efficacy and Safety of Adjuvant Letrozole Versus Anastrozole in Postmenopausal Patients With Hormone Receptor-Positive, Node-Positive Early Breast Cancer: Final Results of the Randomized Phase III Femara Versus Anastrozole Clinical Evaluation (FACE) Trial.

    PubMed

    Smith, Ian; Yardley, Denise; Burris, Howard; De Boer, Richard; Amadori, Dino; McIntyre, Kristi; Ejlertsen, Bent; Gnant, Michael; Jonat, Walter; Pritchard, Kathleen I; Dowsett, Mitch; Hart, Lowell; Poggio, Susan; Comarella, Lisa; Salomon, Herve; Wamil, Barbara; O'Shaughnessy, Joyce

    2017-04-01

    Purpose The Letrozole (Femara) Versus Anastrozole Clinical Evaluation (FACE) study compared the efficacy and safety of adjuvant letrozole versus anastrozole in postmenopausal patients with hormone receptor (HR) -positive and node-positive early breast cancer (eBC). Methods Postmenopausal women with HR-positive and node-positive eBC were randomly assigned to receive adjuvant therapy with either letrozole (2.5 mg) or anastrozole (1 mg) once per day for 5 years or until recurrence of disease. Patients were stratified on the basis of the number of lymph nodes and human epidermal growth factor receptor 2 status. The primary end point was 5-year disease-free survival (DFS), and the key secondary end points were overall survival and safety. Results A total of 4,136 patients were randomly assigned to receive either letrozole (n = 2,061) or anastrozole (n = 2,075). The final analysis was done at 709 DFS events (letrozole, 341 [16.5%]; anastrozole, 368 [17.7%]). The 5-year estimated DFS rate was 84.9% for letrozole versus 82.9% for anastrozole arm (hazard ratio, 0.93; 95% CI, 0.80 to 1.07; P = .3150). Exploratory analysis showed similar DFS with letrozole and anastrozole in all evaluated subgroups. The 5-year estimated overall survival rate was 89.9% for letrozole versus 89.2% for anastrozole arm (hazard ratio, 0.98; 95% CI, 0.82 to 1.17; P = .7916). Most common grade 3 to 4 adverse events (> 5% of patients) reported for letrozole versus anastrozole were arthralgia (3.9% v 3.3%, and 48.2% v 47.9% for all adverse events), hypertension (1.2% v 1.0%), hot flushes (0.8% v 0.4%), myalgia (0.8% v 0.7%), dyspnea (0.8% v 0.5%), and depression (0.8% v 0.6%). Conclusion Letrozole did not demonstrate significantly superior efficacy or safety compared with anastrozole in postmenopausal patients with HR-positive, node-positive eBC.

  19. PALOMA-3: Phase III Trial of Fulvestrant With or Without Palbociclib in Premenopausal and Postmenopausal Women With Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer That Progressed on Prior Endocrine Therapy-Safety and Efficacy in Asian Patients.

    PubMed

    Iwata, Hiroji; Im, Seock-Ah; Masuda, Norikazu; Im, Young-Hyuck; Inoue, Kenichi; Rai, Yoshiaki; Nakamura, Rikiya; Kim, Jee Hyun; Hoffman, Justin T; Zhang, Ke; Giorgetti, Carla; Iyer, Shrividya; Schnell, Patrick T; Bartlett, Cynthia Huang; Ro, Jungsil

    2017-08-01

    To assess efficacy and safety of palbociclib plus fulvestrant in Asians with endocrine therapy-resistant metastatic breast cancer. The Palbociclib Ongoing Trials in the Management of Breast Cancer 3 (PALOMA-3) trial, a double-blind phase III study, included 521 patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer with disease progression on endocrine therapy. Patient-reported outcomes (PROs) were assessed on study treatment and at the end of treatment. This preplanned subgroup analysis of the PALOMA-3 study included premenopausal and postmenopausal Asians taking palbociclib plus fulvestrant (n = 71) or placebo plus fulvestrant (n = 31). Palbociclib plus fulvestrant improved progression-free survival (PFS) compared with fulvestrant alone. Median PFS was not reached with palbociclib plus fulvestrant (95% CI, 9.2 months to not reached) but was 5.8 months with placebo plus fulvestrant (95% CI, 3.5 to 9.2 months; hazard ratio, 0.485; 95% CI, 0.270 to 0.869; P = .0065). The most common all-cause grade 3 or 4 adverse events in the palbociclib arm were neutropenia (92%) and leukopenia (29%); febrile neutropenia occurred in 4.1% of patients. Within-patient mean trough concentration comparisons across subgroups indicated similar palbociclib exposure between Asians and non-Asians. Global quality of life was maintained; no statistically significant changes from baseline were observed for patient-reported outcome scores with palbociclib plus fulvestrant. This is the first report, to our knowledge, showing that palbociclib plus fulvestrant improves PFS in asian patients. Palbociclib plus fulvestrant was well tolerated in this study.

  20. Small molecule inhibition of fibroblast growth factor receptors in cancer.

    PubMed

    Liang, Guang; Chen, Gaozhi; Wei, Xiaoyan; Zhao, Yunjie; Li, Xiaokun

    2013-10-01

    Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs), which are a sub-family of the superfamily of receptor tyrosine kinases, to regulate human development and metabolism. Uncontrolled FGF signaling is responsible for diverse array of developmental disorders, most notably skeletal syndromes due to FGFR gain-of-function mutations. Studies in the last few years have provided significant evidence for the importance of FGF signaling in the pathogenesis of diverse cancers, including endometrial and bladder cancers. FGFs are both potent mitogenic and angiogenic factors and can contribute to carcinogenesis by stimulating cell proliferation and tumor angiogenesis. Gene knockout and pharmacological inhibition of FGFRs in in vivo and in vitro models validate FGFRs as a target for cancer treatment. Considerable efforts are being expended to develop specific, small-molecule inhibitors for treating FGFR-driven cancers. Recent reviews on the FGF/FGFR system have focused primarily on signaling, pathophysiology, and functions in cancer. In this article, we review the key roles of FGFR in cancer, provide an update on the status of clinical trials with small-molecule FGFR inhibitors, and discuss how the current structural data on FGFR kinases guide the design and characterization of new FGFR inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Unliganded fibroblast growth factor receptor 1 forms density-independent dimers.

    PubMed

    Comps-Agrar, Laëtitia; Dunshee, Diana Ronai; Eaton, Dan L; Sonoda, Junichiro

    2015-10-02

    Fibroblast growth factors receptors (FGFRs) are thought to initiate intracellular signaling cascades upon ligand-induced dimerization of the extracellular domain. Although the existence of unliganded FGFR1 dimers on the surface of living cells has been proposed, this notion remains rather controversial. Here, we employed time-resolved Förster resonance energy transfer combined with SNAP- and ACP-tag labeling in COS7 cells to monitor dimerization of full-length FGFR1 at the cell-surface with or without the coreceptor βKlotho. Using this approach we observed homodimerization of unliganded FGFR1 that is independent of its surface density. The homo-interaction signal observed for FGFR1 was indeed as robust as that obtained for epidermal growth factor receptor (EGFR) and was further increased by the addition of activating ligands or pathogenic mutations. Mutational analysis indicated that the kinase and the transmembrane domains, rather than the extracellular domain, mediate the ligand-independent FGFR1 dimerization. In addition, we observed a formation of a higher order ligand-independent complex by the c-spliced isoform of FGFR1 and βKlotho. Collectively, our approach provides novel insights into the assembly and dynamics of the full-length FGFRs on the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Evaluation of human epidermal growth factor receptor 2 (HER2) single nucleotide polymorphisms (SNPs) in normal and breast tumor tissues and their link with breast cancer prognostic factors.

    PubMed

    Furrer, Daniela; Lemieux, Julie; Côté, Marc-André; Provencher, Louise; Laflamme, Christian; Barabé, Frédéric; Jacob, Simon; Michaud, Annick; Diorio, Caroline

    2016-12-01

    Amplification of the human epidermal growth factor receptor 2 (HER2) gene is associated with worse prognosis and decreased overall survival in breast cancer patients. The HER2 gene contains several polymorphisms; two of the best-characterized HER2 polymorphisms are Ile655Val and Ala1170Pro. The aim of this study was to evaluate the association between these two HER2 polymorphisms in normal breast and breast cancer tissues and known breast cancer prognostic factors in a retrospective cohort study of 73 women with non-metastatic HER2-positive breast cancer. HER2 polymorphisms were assessed in breast cancer tissue and normal breast tissue using TaqMan assay. Ala1170Pro polymorphism in normal breast tissue was associated with age at diagnosis (p = 0.007), tumor size (p = 0.004) and lymphovascular invasion (p = 0.06). Similar significant associations in cancer tissues were observed. No association between the Ile655Val polymorphism and prognostic factors were observed. However, we found significant differences in the distribution of Ile655Val (p = 0.03) and Ala1170Pro (p = 0.01) genotypes between normal breast and breast tumor tissues. This study demonstrates that only the Ala1170Pro polymorphism is associated with prognostic factors in HER2-positive breast cancer patients. Moreover, our results suggest that both HER2 polymorphisms could play a significant role in carcinogenesis in non-metastatic HER2-positive breast cancer women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Immunoenzymatic assays of c-erbB-2 oncoprotein and epidermal growth factor receptor in breast cancer: correlation with clinical and biological parameters].

    PubMed

    Métayé, T; Bareille Saint-Gaudens, A; Millet, C; Ingrand, P; Daban, A; Bégon, F

    1996-01-01

    Two new immunoenzymatic assays for c-erbB-2 oncoprotein and epidermal growth factor receptor (EGF-R) (Oncogene Science) in human breast cancer were validated. Correlations between these assays and some clinical and biological parameters were also studied. The repeatability and reproducibility of standard curves for the two methods gave a coefficient of variation (CV) of less than 4% and about 10% respectively. The accuracy of c-erbB-2 oncoprotein and EGF-R assays was examined by using dilution and recovery tests throughout the standard curves. The linear relations between theoretical and measured values, for these tests, had slopes close to 1 and an intercept near 0. The median value for EGF-R, measured on solubilized membranes of 290 primary tumors, was 0.12 fmol/micrograms protein, the mean value was 0.37 (range 0 to 35.7). For c-erbB-2 oncoprotein, the median value, measured using the same population, was 2.75 human neu unit/micrograms protein, the mean value was 7.85 (range 1 to 125). There was an inverse relationship between EGF-R values and those for the estrogen receptor (ER), progesterone receptor and pS2 protein as well as menopausal status. C-erbB-2 oncoprotein concentrations were positively correlated with ER, pS2 protein and cathepsin D. Furthermore, a significant positive correlation was observed between EGF-R levels and c-erbB-2 oncoprotein levels. In conclusion, immunoenzymatic assays of EGF-R and c-erbB-2 oncoprotein are easy to use, sensitive and reliable. The accurate standardisation of immunoenzymatic assays could contribute to the clinical use of EGF-R and c-erbB-2 oncoprotein as prognostic factors in breast cancer.

  4. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF ormore » thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).« less

  5. Prognostic factors of afatinib as a first-line therapy for advanced EGFR mutation-positive lung adenocarcinoma: a real-world, large cohort study.

    PubMed

    Liang, Sheng-Kai; Lee, Meng-Rui; Liao, Wei-Yu; Ho, Chao-Chi; Ko, Jen-Chung; Shih, Jin-Yuan

    2018-05-04

    Lung cancer remains the primary cause of cancer-related mortality worldwide. Several treatment modalities are available for lung cancer, including surgery, radiation, and chemotherapy. Among the chemotherapeutics available, afatinib has been shown to be effective for those with epidermal growth factor receptor ( EGFR ) mutation-positive lung adenocarcinoma. Herein, we analyzed the factors affecting the prognosis of patients who received afatinib as a first-line therapy for advanced EGFR mutation-positive lung adenocarcinoma in the real-world setting. Patients who received afatinib as a first-line therapy and were reimbursed by the National Health Insurance were recruited in this study. Data on patient characteristics and treatment courses were collected. In total, 259 patients were enrolled (median follow-up, 22.0 months). Of them, 82 (31.7%) were identified to have brain metastases at baseline, which were associated with poor Eastern Cooperative Oncology Group performance status, high incidence of central nervous system progression, and short overall survival. However, the results of our analysis showed that overall survival was not affected by reductions in the afatinib dosage or any upfront local treatments for brain tumors. Multivariate analyses showed that brain metastases at diagnosis and treatment response to afatinib are two important prognostic factors for the overall survival of patients with EGFR mutation-positive lung adenocarcinoma.

  6. EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide

    EPA Science Inventory

    Positive matrix factorization (PMF) is a multivariate factor analysis tool that decomposes a matrix of ambient data into two matrices - factor contributions and factor profiles - which then need to be interpreted by an analyst as to what source types are represented using measure...

  7. Different Use of Cell Surface Glycosaminoglycans As Adherence Receptors to Corneal Cells by Gram Positive and Gram Negative Pathogens

    PubMed Central

    García, Beatriz; Merayo-Lloves, Jesús; Rodríguez, David; Alcalde, Ignacio; García-Suárez, Olivia; Alfonso, José F.; Baamonde, Begoña; Fernández-Vega, Andrés; Vazquez, Fernando; Quirós, Luis M.

    2016-01-01

    The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive, and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies. PMID:27965938

  8. Prospective study of the impact of the Prosigna assay on adjuvant clinical decision-making in unselected patients with estrogen receptor positive, human epidermal growth factor receptor negative, node negative early-stage breast cancer.

    PubMed

    Martín, Miguel; González-Rivera, Milagros; Morales, Serafín; de la Haba-Rodriguez, Juan; González-Cortijo, Lucía; Manso, Luis; Albanell, Joan; González-Martín, Antonio; González, Sónia; Arcusa, Angels; de la Cruz-Merino, Luis; Rojo, Federico; Vidal, María; Galván, Patricia; Aguirre, Elena; Morales, Cristina; Ferree, Sean; Pompilio, Kristen; Casas, Maribel; Caballero, Rosalía; Goicoechea, Uxue; Carrasco, Eva; Michalopoulos, Steven; Hornberger, John; Prat, Aleix

    2015-06-01

    Improved understanding of risk of recurrence (ROR) is needed to reduce cases of recurrence and more effectively treat breast cancer patients. The purpose of this study was to examine how a gene-expression profile (GEP), identified by Prosigna, influences physician adjuvant treatment selection for early breast cancer (EBC) and the effects of this influence on optimizing adjuvant treatment recommendations in clinical practice. A prospective, observational, multicenter study was carried out in 15 hospitals across Spain. Participating medical oncologists completed pre-assessment, post-assessment, and follow-up questionnaires recording their treatment recommendations and confidence in these recommendations, before and after knowing the patient's ROR. Patients completed questionnaires on decision-making, anxiety, and health status. Between June 2013 and January 2014, 217 patients enrolled and a final 200 were included in the study. Patients were postmenopausal, estrogen receptor positive, human epidermal growth hormone factor negative, and node negative with either stage 1 or stage 2 tumors. After receiving the GEP results, treatment recommendations were changed for 40 patients (20%). The confidence of medical oncologists in their treatment recommendations increased in 41.6% and decreased in 6.5% of total cases. Patients reported lower anxiety after physicians made treatment recommendations based on the GEP results (p < 0.05). Though this study does not include evaluation of the impact of GEP on long-term outcomes, it was found that GEP results influenced the treatment decisions of medical oncologists and their confidence in adjuvant therapy selection. Patients' anxiety about the selected adjuvant therapy decreased with use of the GEP.

  9. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    NASA Astrophysics Data System (ADS)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  10. Factor VIII Interacts with the Endocytic Receptor Low-density Lipoprotein Receptor-related Protein 1 via an Extended Surface Comprising "Hot-Spot" Lysine Residues.

    PubMed

    van den Biggelaar, Maartje; Madsen, Jesper J; Faber, Johan H; Zuurveld, Marleen G; van der Zwaan, Carmen; Olsen, Ole H; Stennicke, Henning R; Mertens, Koen; Meijer, Alexander B

    2015-07-03

    Lysine residues are implicated in driving the ligand binding to the LDL receptor family. However, it has remained unclear how specificity is regulated. Using coagulation factor VIII as a model ligand, we now study the contribution of individual lysine residues in the interaction with the largest member of the LDL receptor family, low-density lipoprotein receptor-related protein (LRP1). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and SPR interaction analysis on a library of lysine replacement variants as two independent approaches, we demonstrate that the interaction between factor VIII (FVIII) and LRP1 occurs over an extended surface containing multiple lysine residues. None of the individual lysine residues account completely for LRP1 binding, suggesting an additive binding model. Together with structural docking studies, our data suggest that FVIII interacts with LRP1 via an extended surface of multiple lysine residues that starts at the bottom of the C1 domain and winds around the FVIII molecule. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Aberrant expression and function of death receptor-3 and death decoy receptor-3 in human cancer.

    PubMed

    Ge, Zhicheng; Sanders, Andrew J; Ye, Lin; Jiang, Wen G

    2011-03-01

    Death receptor-3 (DR3) and death decoy receptor-3 (DcR3) are both members of the tumour necrosis factor receptor (TNFR) superfamily. The TNFR superfamily contains eight death domain-containing receptors, including TNFR1 (also called DR1), Fas (also called DR2), DR3, DR4, DR5, DR6, NGFR and EDAR. Upon the binding of these receptors with their corresponding ligands, the death domain recruits various proteins that mediate both the death and proliferation of cells. Receptor function is negatively regulated by decoy receptors (DcR1, DcR2, DcR3 and OPG). DR3/DcR3 are a pair of positive and negative players with which vascular endothelial growth inhibitor (VEGI) interacts. VEGI has been suggested to be a potential tumour suppressor. The inhibitory effects of VEGI on cancer are manifested in three main areas: a direct effect on cancer cells, an anti-angiogenic effect on endothelial cells, and the stimulation of dendritic cell maturation. A recent study indicated that DR3 may be a new receptor for E-selectin, which has been reported to be associated with cancer metastasis. DcR3 is a soluble receptor, highly expressed in various tumours, which lacks an apparent transmembrane segment, prevents cytokine response through ligand binding and neutralization, and is an inhibitor of apoptosis. DcR3 serves as a decoy receptor for FasL, LIGHT and VEGI. The cytokine LIGHT activates various anti-tumour functions and is expected to be a promising candidate for cancer therapy. Certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing DcR3, which blocks FasL function. DR3/DcR3 play profound roles in regulating cell death and proliferation in cancer. The present review briefly discusses DR3/DcR3 and attempts to elucidate the role of these negative and positive players in cancer.

  12. Translational Breast Cancer Research Consortium (TBCRC) 022: A Phase II Trial of Neratinib for Patients With Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer and Brain Metastases

    PubMed Central

    Gelman, Rebecca S.; Wefel, Jeffrey S.; Melisko, Michelle E.; Hess, Kenneth R.; Connolly, Roisin M.; Van Poznak, Catherine H.; Niravath, Polly A.; Puhalla, Shannon L.; Ibrahim, Nuhad; Blackwell, Kimberly L.; Moy, Beverly; Herold, Christina; Liu, Minetta C.; Lowe, Alarice; Agar, Nathalie Y.R.; Ryabin, Nicole; Farooq, Sarah; Lawler, Elizabeth; Rimawi, Mothaffar F.; Krop, Ian E.; Wolff, Antonio C.; Winer, Eric P.; Lin, Nancy U.

    2016-01-01

    Purpose Evidence-based treatments for metastatic, human epidermal growth factor receptor 2 (HER2)–positive breast cancer in the CNS are limited. Neratinib is an irreversible inhibitor of erbB1, HER2, and erbB4, with promising activity in HER2-positive breast cancer; however, its activity in the CNS is unknown. We evaluated the efficacy of treatment with neratinib in patients with HER2-positive breast cancer brain metastases in a multicenter, phase II open-label trial. Patients and Methods Eligible patients were those with HER2-positive brain metastases (≥ 1 cm in longest dimension) who experienced progression in the CNS after one or more line of CNS-directed therapy, such as whole-brain radiotherapy, stereotactic radiosurgery, and/or surgical resection. Patients received neratinib 240 mg orally once per day, and tumors were assessed every two cycles. The primary endpoint was composite CNS objective response rate (ORR), requiring all of the following: ≥50% reduction in volumetric sum of target CNS lesions and no progression of non-target lesions, new lesions, escalating corticosteroids, progressive neurologic signs/symptoms, or non-CNS progression—the threshold for success was five of 40 responders. Results Forty patients were enrolled between February 2012 and June 2013; 78% of patients had previous whole-brain radiotherapy. Three women achieved a partial response (CNS objective response rate, 8%; 95% CI, 2% to 22%). The median number of cycles received was two (range, one to seven cycles), with a median progression-free survival of 1.9 months. Five women received six or more cycles. The most common grade ≥ 3 event was diarrhea (occurring in 21% of patients taking prespecified loperamide prophylaxis and 28% of those without prophylaxis). Patients in the study experienced a decreased quality of life over time. Conclusion Although neratinib had low activity and did not meet our threshold for success, 12.5% of patients received six or more cycles. Studies

  13. Coarse-Grained Molecular Simulation of Epidermal Growth Factor Receptor Protein Tyrosine Kinase Multi-Site Self-Phosphorylation

    PubMed Central

    Koland, John G.

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  14. Factors influencing HIV-risk behaviors among HIV-positive urban African Americans.

    PubMed

    Plowden, Keith O; Fletcher, Audwin; Miller, J Lawrence

    2005-01-01

    Urban African Americans are disproportionately affected by HIV, the virus associated with AIDS. Although incidence and mortality appear to be decreasing in some populations, they continue to remain steady among inner-city African Americans. A major concern is the number of HIV-positive individuals who continue to practice high-risk behaviors. Understanding factors that increase risks is essential for the development and implementation of effective prevention initiatives. Following a constructionist epistemology, this study used ethnography to explore social and cultural factors that influence high-risk behaviors among inner-city HIV-positive African Americans. Leininger's culture care diversity and universality theory guided the study. Individual qualitative interviews were conducted with HIV-positive African Americans in the community to explore social and cultural factors that increase HIV-risky behaviors. For this study, family/kinship, economic, and education factors played a significant role in risky behaviors. Reducing HIV disparity among African Americans is dependent on designing appropriate interventions that enhance protective factors. Clinicians providing care to HIV-positive individuals can play a key role in reducing transmission by recognizing and incorporating these factors when designing effective prevention interventions.

  15. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    PubMed

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  16. TRPV1 recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1.

    PubMed

    Kim, Sangsung; Kang, Changjoong; Shin, Chan Young; Hwang, Sun Wook; Yang, Young Duk; Shim, Won Sik; Park, Min-Young; Kim, Eunhee; Kim, Misook; Kim, Byung-Moon; Cho, Hawon; Shin, Youngki; Oh, Uhtaek

    2006-03-01

    TRPV1, a cloned capsaicin receptor, is a molecular sensor for detecting adverse stimuli and a key element for inflammatory nociception and represents biophysical properties of native channel. However, there seems to be a marked difference between TRPV1 and native capsaicin receptors in the pharmacological response profiles to vanilloids or acid. One plausible explanation for this overt discrepancy is the presence of regulatory proteins associated with TRPV1. Here, we identify Fas-associated factor 1 (FAF1) as a regulatory factor, which is coexpressed with and binds to TRPV1 in sensory neurons. When expressed heterologously, FAF1 reduces the responses of TRPV1 to capsaicin, acid, and heat, to the pharmacological level of native capsaicin receptor in sensory neurons. Furthermore, silencing FAF1 by RNA interference augments capsaicin-sensitive current in native sensory neurons. We therefore conclude that FAF1 forms an integral component of the vanilloid receptor complex and that it constitutively modulates the sensitivity of TRPV1 to various noxious stimuli in sensory neurons.

  17. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    PubMed

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  18. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    PubMed

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  19. In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe

    NASA Astrophysics Data System (ADS)

    Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong

    2018-02-01

    Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.

  20. Patterns of Positive Selection of the Myogenic Regulatory Factor Gene Family in Vertebrates

    PubMed Central

    Zhao, Xiao; Yu, Qi; Huang, Ling; Liu, Qing-Xin

    2014-01-01

    The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution. PMID:24651579

  1. First cytoplasmic loop of glucagon-like peptide-1 receptor can function at the third cytoplasmic loop position of rhodopsin.

    PubMed

    Yamashita, Takahiro; Tose, Koji; Shichida, Yoshinori

    2008-01-01

    G protein-coupled receptors (GPCRs) are classified into several families based on their amino acid sequences. In family 1, GPCRs such as rhodopsin and adrenergic receptor, the structure-function relationship has been extensively investigated to demonstrate that exposure of the third cytoplasmic loop is essential for selective G protein activation. In contrast, much less is known about other families. Here we prepared chimeric mutants between Gt-coupled rhodopsin and Gi/Go- and Gs-coupled glucagon-like peptide-1 (GLP-1) receptor of family 2 and tried to identify the loop region that functions at the third cytoplasmic loop position of rhodopsin. We succeeded in expressing a mutant having the first cytoplasmic loop of GLP-1 receptor and found that this mutant activated Gi and Go efficiently but did not activate Gt. Moreover, the rhodopsin mutant having the first loop of Gs-coupled secretin receptor of family 2 decreased the Gi and Go activation efficiencies. Therefore, the first loop of GLP-1 receptor would share a similar role to the third loop of rhodopsin in G protein activation. This result strongly suggested that different families of GPCRs have maintained molecular architectures of their ancestral types to generate a common mechanism, namely exposure of the cytoplasmic loop, to activate peripheral G protein.

  2. Angiogenic factors and their soluble receptors predict organ dysfunction and mortality in post-cardiac arrest syndrome.

    PubMed

    Wada, Takeshi; Jesmin, Subrina; Gando, Satoshi; Yanagida, Yuichiro; Mizugaki, Asumi; Sultana, Sayeeda N; Zaedi, Sohel; Yokota, Hiroyuki

    2012-09-29

    Post-cardiac arrest syndrome (PCAS) often leads to multiple organ dysfunction syndrome (MODS) with a poor prognosis. Endothelial and leukocyte activation after whole-body ischemia/reperfusion following resuscitation from cardiac arrest is a critical step in endothelial injury and related organ damage. Angiogenic factors, including vascular endothelial growth factor (VEGF) and angiopoietin (Ang), and their receptors play crucial roles in endothelial growth, survival signals, pathological angiogenesis and microvascular permeability. The aim of this study was to confirm the efficacy of angiogenic factors and their soluble receptors in predicting organ dysfunction and mortality in patients with PCAS. A total of 52 resuscitated patients were divided into two subgroups: 23 survivors and 29 non-survivors. The serum levels of VEGF, soluble VEGF receptor (sVEGFR)1, sVEGFR2, Ang1, Ang2 and soluble Tie2 (sTie2) were measured at the time of admission (Day 1) and on Day 3 and Day 5. The ratio of Ang2 to Ang1 (Ang2/Ang1) was also calculated. This study compared the levels of angiogenic factors and their soluble receptors between survivors and non-survivors, and evaluated the predictive value of these factors for organ dysfunction and 28-day mortality. The non-survivors demonstrated more severe degrees of organ dysfunction and a higher prevalence of MODS. Non-survivors showed significant increases in the Ang2 levels and the Ang2/Ang1 ratios compared to survivors. A stepwise logistic regression analysis demonstrated that the Ang2 levels or the Ang2/Ang1 ratios on Day 1 independently predicted the 28-day mortality. The receiver operating characteristic curves of the Ang2 levels, and the Ang2/Ang1 ratios on Day 1 were good predictors of 28-day mortality. The Ang2 levels also independently predicted increases in the Sequential Organ Failure Assessment (SOFA) scores. We observed a marked imbalance between Ang1 and Ang2 in favor of Ang2 in PCAS patients, and the effect was more

  3. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor

    PubMed Central

    Kortüm, Fanny; Harms, Frederike Leonie; Hennighausen, Natascha; Rosenberger, Georg

    2015-01-01

    Endosomal sorting is an essential control mechanism for signaling through the epidermal growth factor receptor (EGFR). We report here that the guanine nucleotide exchange factor αPIX, which modulates the activity of Rho-GTPases, is a potent bimodal regulator of EGFR trafficking. αPIX interacts with the E3 ubiquitin ligase c-Cbl, an enzyme that attaches ubiquitin to EGFR, thereby labelling this tyrosine kinase receptor for lysosomal degradation. We show that EGF stimulation induces αPIX::c-Cbl complex formation. Simultaneously, αPIX and c-Cbl protein levels decrease, which depends on both αPIX binding to c-Cbl and c-Cbl ubiquitin ligase activity. Through interaction αPIX sequesters c-Cbl from EGFR and this results in reduced EGFR ubiquitination and decreased EGFR degradation upon EGF treatment. However, quantitatively more decisive for cellular EGFR distribution than impaired EGFR degradation is a strong stimulating effect of αPIX on EGFR recycling to the cell surface. This function depends on the GIT binding domain of αPIX but not on interaction with c-Cbl or αPIX exchange activity. In summary, our data demonstrate a previously unappreciated function of αPIX as a strong promoter of EGFR recycling. We suggest that the novel recycling regulator αPIX and the degradation factor c-Cbl closely cooperate in the regulation of EGFR trafficking: uncomplexed αPIX and c-Cbl mediate a positive and a negative feedback on EGFR signaling, respectively; αPIX::c-Cbl complex formation, however, results in mutual inhibition, which may reflect a stable condition in the homeostasis of EGF-induced signal flow. PMID:26177020

  4. Acetylcholine receptor antibody-positive myasthenia gravis associated with small-cell lung cancer

    PubMed Central

    Yamasaki, Masahiro; Funaishi, Kunihiko; Saito, Naomi; Yonekawa, Tomomi; Yamawaki, Takemori; Ihara, Daisuke; Daido, Wakako; Ishiyama, Sayaka; Deguchi, Naoko; Taniwaki, Masaya; Hattori, Noboru

    2018-01-01

    Abstract Rationale: Only few cases of myasthenia gravis (MG) associated with small-cell lung cancer (SCLC) have been reported, and cases positive for acetylcholine receptor antibody (AChR-ab) are even rarer. The efficacy of standard MG treatment, such as cholinesterase inhibitor therapy, immunosuppressive therapy using steroids and immunosuppressive drugs, plasma exchange, and intravenous immune globulin (IVIg), for these cases is unclear. Patient concerns and diagnoses: A 71-year-old man complained of bilateral eyelid ptosis. He also presented with dysphagia and masticatory muscle fatigue after chewing. The edrophonium test was positive, and the serum AChR-ab level was increased; therefore, the patient was diagnosed with MG. Computed tomography scan showed a nodule on the left upper lobe of the lung and mediastinal lymphadenopathy. Further examination revealed the lesion as SCLC. Finally, he was diagnosed with AChR-ab-positive MG associated with SCLC. Interventions and outcomes: Oral pyridostigmine and tacrolimus were administered to treat MG; however, his symptoms worsened. Therefore, methylprednisolone and IVIg were administrated, which temporarily improved his symptoms. However, they remained uncontrolled. Meanwhile, chemotherapy with carboplatin and etoposide was administered to treat his SCLC. The lesions shrunk, and the MG symptoms and serum AChR-ab level also improved. Lessons: AChR-ab-positive MG may develop as a comorbidity of SCLC. In such cases, management might require treatment for SCLC in addition to the standard MG treatment to stabilize the MG symptoms. PMID:29703032

  5. A feedback mechanism controlling SCRAMBLED receptor accumulation and cell-type pattern in Arabidopsis.

    PubMed

    Kwak, Su-Hwan; Schiefelbein, John

    2008-12-23

    Cellular pattern formation in the root epidermis of Arabidopsis occurs in a position-dependent manner, generating root-hair (H) cells contacting two underlying cortical cells and nonhair (N) cells contacting one cortical cell. SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase (LRR-RLK), mediates this process through its effect on a downstream transcription factor regulatory network. After perception of a positional cue, the SCM signaling pathway is proposed to preferentially repress WEREWOLF (WER) transcription factor expression in H cells and thereby bias the outcome of mutual lateral inhibition acting between H and N cells. However, the molecular mechanism responsible for this preferential SCM signaling is unknown. Here, we analyze the distribution of the SCM receptor and the biological effect of altering its accumulation pattern. We find that SCM expression and accumulation in the epidermal cell layer is necessary and sufficient to direct the cell-type pattern. Further, SCM preferentially accumulates in H cells, and this accumulation pattern is dependent on the downstream transcription factors. Thus, SCM participates in an autoregulatory feedback loop, enabling cells engaged in SCM signaling to maintain high levels of SCM receptor, which provides a simple mechanism for reinforcing a bias in receptor-mediated signaling to ensure robust pattern formation.

  6. Preparation and evaluation of 99mTc-EDDA/HYNIC-[Lys 3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumours.

    PubMed

    Ferro-Flores, Guillermina; Arteaga de Murphy, Consuelo; Rodriguez-Cortés, Jeanette; Pedraza-López, Martha; Ramírez-Iglesias, María Teresa

    2006-04-01

    Bombesin is a peptide that was initially isolated from frog skin and which belongs to a large group of neuropeptides with many biological functions. The human equivalent is gastrin-releasing peptide (GRP), whose receptors are over-expressed in a variety of malignant tumours. To prepare a HYNIC-[Lys 3]-bombesin analogue that could be easily labelled with 99mTc from lyophilized kit formulations and to evaluate its potential as an imaging agent for GRP receptor-positive tumours. HYNIC was conjugated to the epsilon-amino group of Lys 3 residue at the N-terminal region of bombesin via succinimidyl-N-Boc-HYNIC at pH 9.0. 99mTc labelling was performed by addition of sodium pertechnetate solution and 0.2 M phosphate buffer pH 7.0 to a lyophilized formulation. Stability studies were carried out by reversed phase HPLC and ITLC-SG analyses in serum and cysteine solutions. In-vitro internalization was tested using human prostate cancer PC-3 cells with blocked and non-blocked receptors. Biodistribution and tumour uptake were determined in PC-3 tumour-bearing nude mice. 99mTc-EDDA/HYNIC-[Lys 3]-bombesin was obtained with radiochemical purities >93% and high specific activity ( approximately 0.1 GBq.nmol). Results of in-vitro studies demonstrated a high stability in serum and cysteine solutions, specific cell receptor binding and rapid internalization. Biodistribution data showed a rapid blood clearance, with predominantly renal excretion and specific binding towards GRP receptor-positive tissues such as pancreas and PC-3 tumours. 99mTc-EDDA/HYNIC-[Lys 3]-bombesin obtained from lyophilized kit formulations has promising characteristics for the diagnosis of malignant tumours that over-express the GRP receptor.

  7. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific bindingmore » of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.« less

  8. Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth.

    PubMed

    Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; El-Shishtawy, Kareem A; Li, Yi; Reis, Leonardo O; Zheng, Yichun; Miyamoto, Hiroshi

    2016-10-01

    Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. Our current data support recent observations indicating the involvement of

  9. Analysis and clinical findings of cases positive for the novel synthetic cannabinoid receptor agonist MDMB-CHMICA.

    PubMed

    Seywright, Alice; Torrance, Hazel J; Wylie, Fiona M; McKeown, Denise A; Lowe, David J; Stevenson, Richard

    2016-09-01

    MDMB-CHMICA is a synthetic cannabinoid receptor agonist which has caused concern due to its presence in cases of adverse reaction and death. 43 cases of suspected synthetic cannabinoid ingestion were identified from patients presenting at an Emergency Department and from post-mortem casework. These were subjected to liquid-liquid extraction using tertiary-butyl methyl ether and quantitatively analysed by Electrospray Ionisation Liquid Chromatography-tandem Mass Spectrometry. For positive samples, case and clinical details were sought and interrogated. 11 samples were found positive for MDMB-CHMICA. Concentrations found ranged from <1 to 22 ng/mL (mean: 6 ng/mL, median: 3 ng/mL). The age range was 15-44 years (mean: 26 years, median: 21 years), with the majority (82%) of positive results found in males. Clinical presentations included hypothermia, hypoglycaemia, syncope, recurrent vomiting, altered mental state and serotonin toxicity, with corresponding concentrations of MDMB-CHMICA as low as <1 ng/mL. Duration of hospitalisation ranged from 3 to 24 h (mean: 12 h, median: 8 h). The concentration range presented in this case series is indicative of MDMB-CHMICA having a high potency, as is known to be the case for other synthetic cannabinoid receptor agonists. The age range and gender representation were consistent with that reported for users of other drugs of this type. The clinical presentations observed were typical of synthetic cannabinoid receptor agonists and show the difficulties in identifying reactions potentially associated with drugs of this type. The range of MDMB-CHMICA concentrations in Emergency Department presentations (n = 9) and post-mortem cases (n = 2) was reported. No correlation between the concentration of this drug and clinical presentation or cause of death was reported in this sample. However, the potential for harm associated with low concentrations of MDMB-CHMICA and the symptoms of toxicity being non-specific were

  10. Role of G protein-coupled estrogen receptor-1, matrix metalloproteinases 2 and 9, and heparin binding epidermal growth factor-like growth factor in estradiol-17β-stimulated bovine satellite cell proliferation.

    PubMed

    Kamanga-Sollo, E; Thornton, K J; White, M E; Dayton, W R

    2014-10-01

    In feedlot steers, estradiol-17β (E2) and combined E2 and trenbolone acetate (a testosterone analog) implants enhance rate and efficiency of muscle growth; and, consequently, these compounds are widely used as growth promoters. Although the positive effects of E2 on rate and efficiency of bovine muscle growth are well established, the mechanisms involved in these effects are not well understood. Combined E2 and trenbolone acetate implants result in significantly increased muscle satellite cell number in feedlot steers. Additionally, E2 treatment stimulates proliferation of cultured bovine satellite cells (BSC). Studies in nonmuscle cells have shown that binding of E2 to G protein-coupled estrogen receptor (GPER)-1 results in activation of matrix metalloproteinases 2 and 9 (MMP2/9) resulting in proteolytic release of heparin binding epidermal growth factor-like growth factor (hbEGF) from the cell surface. Released hbEGF binds to and activates the epidermal growth factor receptor resulting in increased proliferation. To assess if GPER-1, MMP2/9, and/or hbEGF are involved in the mechanism of E2-stimulated BSC proliferation, we have examined the effects of G36 (a specific inhibitor of GPER-1), CRM197 (a specific inhibitor of hbEGF), and MMP-2/MMP-9 Inhibitor II (an inhibitor of MMP2/9 activity) on E2-stimulated BSC proliferation. Inhibition of GPER-1, MMP2/9, or hbEGF suppresses E2-stimulated BSC proliferation (P < 0.001) suggesting that all these are required in order for E2 to stimulate BSC proliferation. These results strongly suggest that E2 may stimulate BSC proliferation by binding to GPER-1 resulting in MMP2/9-catalyzed release of cell membrane-bound hbEGF and subsequent activation of epidermal growth factor receptor by binding of released hbEGF. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Ligand binding was acquired during evolution of nuclear receptors

    PubMed Central

    Escriva, Hector; Safi, Rachid; Hänni, Catherine; Langlois, Marie-Claire; Saumitou-Laprade, Pierre; Stehelin, Dominique; Capron, André; Pierce, Raymond; Laudet, Vincent

    1997-01-01

    The nuclear receptor (NR) superfamily comprises, in addition to ligand-activated transcription factors, members for which no ligand has been identified to date. We demonstrate that orphan receptors are randomly distributed in the evolutionary tree and that there is no relationship between the position of a given liganded receptor in the tree and the chemical nature of its ligand. NRs are specific to metazoans, as revealed by a screen of NR-related sequences in early- and non-metazoan organisms. The analysis of the NR gene duplication pattern during the evolution of metazoans shows that the present NR diversity arose from two waves of gene duplications. Strikingly, our results suggest that the ancestral NR was an orphan receptor that acquired ligand-binding ability during subsequent evolution. PMID:9192646

  12. CoMFA analyses of C-2 position salvinorin A analogs at the kappa-opioid receptor provides insights into epimer selectivity.

    PubMed

    McGovern, Donna L; Mosier, Philip D; Roth, Bryan L; Westkaemper, Richard B

    2010-04-01

    The highly potent and kappa-opioid (KOP) receptor-selective hallucinogen Salvinorin A and selected analogs have been analyzed using the 3D quantitative structure-affinity relationship technique Comparative Molecular Field Analysis (CoMFA) in an effort to derive a statistically significant and predictive model of salvinorin affinity at the KOP receptor and to provide additional statistical support for the validity of previously proposed structure-based interaction models. Two CoMFA models of Salvinorin A analogs substituted at the C-2 position are presented. Separate models were developed based on the radioligand used in the kappa-opioid binding assay, [(3)H]diprenorphine or [(125)I]6 beta-iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5 alpha-epoxymorphinan ([(125)I]IOXY). For each dataset, three methods of alignment were employed: a receptor-docked alignment derived from the structure-based docking algorithm GOLD, another from the ligand-based alignment algorithm FlexS, and a rigid realignment of the poses from the receptor-docked alignment. The receptor-docked alignment produced statistically superior results compared to either the FlexS alignment or the realignment in both datasets. The [(125)I]IOXY set (Model 1) and [(3)H]diprenorphine set (Model 2) gave q(2) values of 0.592 and 0.620, respectively, using the receptor-docked alignment, and both models produced similar CoMFA contour maps that reflected the stereoelectronic features of the receptor model from which they were derived. Each model gave significantly predictive CoMFA statistics (Model 1 PSET r(2)=0.833; Model 2 PSET r(2)=0.813). Based on the CoMFA contour maps, a binding mode was proposed for amine-containing Salvinorin A analogs that provides a rationale for the observation that the beta-epimers (R-configuration) of protonated amines at the C-2 position have a higher affinity than the corresponding alpha-epimers (S-configuration). (c) 2010. Published by Elsevier Inc.

  13. Can positive matrix factorization help to understand patterns of organic trace gases at the continental Global Atmosphere Watch site Hohenpeissenberg?

    NASA Astrophysics Data System (ADS)

    Leuchner, M.; Gubo, S.; Schunk, C.; Wastl, C.; Kirchner, M.; Menzel, A.; Plass-Dülmer, C.

    2015-02-01

    From the rural Global Atmosphere Watch (GAW) site Hohenpeissenberg in the pre-alpine area of southern Germany, a data set of 24 C2-C8 non-methane hydrocarbons over a period of 7 years was analyzed. Receptor modeling was performed by positive matrix factorization (PMF) and the resulting factors were interpreted with respect to source profiles and photochemical aging. Differing from other studies, no direct source attribution was intended because, due to chemistry along transport, mass conservation from source to receptor is not given. However, at remote sites such as Hohenpeissenberg, the observed patterns of non-methane hydrocarbons can be derived from combinations of factors determined by PMF. A six-factor solution showed high stability and the most plausible results. In addition to a biogenic and a background factor of very stable compounds, four additional anthropogenic factors were resolved that could be divided into two short- and two long-lived patterns from evaporative sources/natural gas leakage and incomplete combustion processes. The volume or mass contribution at the site over the entire period was, in decreasing order, from the following factor categories: background, gas leakage and long-lived evaporative, residential heating and long-lived combustion, short-lived evaporative, short-lived combustion, and biogenic. The importance with respect to reactivity contribution was generally in reverse order, with the biogenic and the short-lived combustion factors contributing most. The seasonality of the factors was analyzed and compared to results of a simple box model using constant emissions and the photochemical decay calculated from the measured annual cycles of OH radicals and ozone. Two of the factors, short-lived combustion and gas leakage/long-lived evaporative, showed winter/summer ratios of about 9 and 7, respectively, as expected from constant source estimations. Contrarily, the short-lived evaporative emissions were about 3 times higher in summer

  14. Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer

    PubMed Central

    Reinert, Tomas; Saad, Everardo D.; Barrios, Carlos H.; Bines, José

    2017-01-01

    Hormone receptor-positive breast cancer is the most frequent breast cancer subtype. Endocrine therapy (ET) targeting the estrogen receptor (ER) pathway represents the main initial therapeutic approach. The major strategies include estrogen deprivation and the use of selective estrogen modulators or degraders, which show efficacy in the management of metastatic and early-stage disease. However, clinical resistance associated with progression of disease remains a significant therapeutic challenge. Mutations of the ESR1 gene, which encodes the ER, have been increasingly recognized as an important mechanism of ET resistance, with a prevalence that ranges from 11 to 39%. The majority of these mutations are located within the ligand-binding domain and result in an estrogen-independent constitutive activation of the ER and, therefore, resistance to estrogen deprivation therapy such as aromatase inhibition. ESR1 mutations, most often detected from liquid biopsies, have been consistently associated with a worse outcome and are being currently evaluated as a potential biomarker to guide therapeutic decisions. At the same time, targeted therapy directed to ESR1-mutated clones is an appealing concept with preclinical and clinical work in progress. PMID:28361033

  15. Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes.

    PubMed

    Rajasekar, N; Nath, Chandishwar; Hanif, Kashif; Shukla, Rakesh

    2016-12-01

    Our earlier studies showed that insulin receptor (IR) dysfunction along with neuroinflammation and amyloidogenesis played a major role in streptozotocin (STZ)-induced toxicity in astrocytes. N-methyl-D-aspartate (NMDA) receptor antagonist-memantine shows beneficial effects in Alzheimer's disease (AD) pathology. However, the protective molecular and cellular mechanism of memantine in astrocytes is not properly understood. Therefore, the present study was undertaken to investigate the effect of memantine on insulin receptors, neurotrophic factors, neuroinflammation, and amyloidogenesis in STZ-treated astrocytes. STZ (100 μM) treatment for 24 h in astrocytes resulted significant decrease in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-degrading enzyme (IDE) expression in astrocytes. Treatment with memantine (1-10 μM) improved STZ-induced neurotrophic factor decline (BDNF, GDNF) along with IR dysfunction as evidenced by a significant increase in IR protein expression, phosphorylation of IRS-1, Akt, and GSK-3 α/β in astrocytes. Further, memantine attenuated STZ-induced amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 and amyloid-β 1-42 expression and restored IDE expression in astrocytes. In addition, memantine also displays protective effects against STZ-induced astrocyte activation showed by reduction of inflammatory markers, nuclear factor kappa-B translocation, glial fibrillary acidic protein, cyclooxygenase-2, tumor necrosis factor-α level, and oxidative-nitrostative stress. The results suggest that besides the NMDA receptor antagonisic activity, effect on astroglial IR and neurotrophic factor may also be an important factor in the beneficial effect of memantine in AD pathology. Graphical Abstract Novel neuroprotective mechanisms of memenatine in streptozotocin-induced toxicity in astrocytes.

  16. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    PubMed

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  17. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin.

    PubMed

    Hidaka, Takanori; Ogawa, Eisaku; Kobayashi, Eri H; Suzuki, Takafumi; Funayama, Ryo; Nagashima, Takeshi; Fujimura, Taku; Aiba, Setsuya; Nakayama, Keiko; Okuyama, Ryuhei; Yamamoto, Masayuki

    2017-01-01

    Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified Artn as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and ARTN expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.

  18. In the Blink of an Eye: Relating Positive-Feedback Sensitivity to Striatal Dopamine D2-Like Receptors through Blink Rate

    PubMed Central

    Groman, Stephanie M.; James, Alex S.; Seu, Emanuele; Tran, Steven; Clark, Taylor A.; Harpster, Sandra N.; Crawford, Maverick; Burtner, Joanna Lee; Feiler, Karen; Roth, Robert H.; Elsworth, John D.; London, Edythe D.

    2014-01-01

    For >30 years, positron emission tomography (PET) has proven to be a powerful approach for measuring aspects of dopaminergic transmission in the living human brain; this technique has revealed important relationships between dopamine D2-like receptors and dimensions of normal behavior, such as human impulsivity, and psychopathology, particularly behavioral addictions. Nevertheless, PET is an indirect estimate that lacks cellular and functional resolution and, in some cases, is not entirely pharmacologically specific. To identify the relationships between PET estimates of D2-like receptor availability and direct in vitro measures of receptor number, affinity, and function, we conducted neuroimaging and behavioral and molecular pharmacological assessments in a group of adult male vervet monkeys. Data gathered from these studies indicate that variation in D2-like receptor PET measurements is related to reversal-learning performance and sensitivity to positive feedback and is associated with in vitro estimates of the density of functional dopamine D2-like receptors. Furthermore, we report that a simple behavioral measure, eyeblink rate, reveals novel and crucial links between neuroimaging assessments and in vitro measures of dopamine D2 receptors. PMID:25339755

  19. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration*

    PubMed Central

    Ou, Young; Chan, Gordon; Zuo, Jeremy; Rattner, Jerome B.; van der Hoorn, Frans A.

    2016-01-01

    The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process. PMID:27226580

  20. Asparagine, valine, and threonine in the third extracellular loop of muscarinic receptor have essential roles in the positive cooperativity of strychnine-like allosteric modulators.

    PubMed

    Jakubík, J; Krejcí, A; Dolezal, V

    2005-05-01

    We have investigated allosteric interactions of four closely related strychnine-like substances: Wieland-Gumlich aldehyde (WGA), propargyl Wieland-Gumlich aldehyde, strychnine, and brucine with N-methylscopolamine (NMS) on M(3) subtype of muscarinic receptor genetically modified in the second or the third extracellular loop to corresponding loops of M(2) subtype (M(3)o2 and M(3)o3 chimera). The M(3)o2 chimeric receptor The exhibited no change in either affinity of strychnine, brucine, and WGA or in cooperativity of brucine or WGA, whereas both parameters for propargyl-WGA changed. In contrast, there was a change in affinity of all tested modulators (except for brucine) and in their cooperativity in the M(3)o3 chimera. Directions of affinity changes in both chimeras were always toward values of the donor M(2) subtype, but changes in cooperativity were variable. Compared with the native M(3) receptor, strychnine displayed a slight increase in positive cooperativity and propargyl-WGA a robust decrease in negative cooperativity at M(3)o2 chimera. Similar changes were found in the M(3)o3 chimera. Interestingly, cooperativity of brucine and WGA at the M(3)o3 chimera changed from negative to positive. This is the first evidence of constitution of positive cooperativity of WGA by switching sequences of two parental receptors, both exhibiting negative cooperativity. Gradual replacement of individual amino acids revealed that only three residues (NVT of the o3 loop of the M(2) receptor) are involved in this effect. Data suggest that these amino acids are essential for propagation of a conformation change resulting in positive cooperativity induced by these modulators.

  1. Aromatase expression increases the survival and malignancy of estrogen receptor positive breast cancer cells.

    PubMed

    Mukhopadhyay, Keya De; Liu, Zhao; Bandyopadhyay, Abhik; Kirma, Nameer B; Tekmal, Rajeshwar R; Wang, Shui; Sun, Lu-Zhe

    2015-01-01

    In postmenopausal women, local estrogen produced by adipose stromal cells in the breast is believed to support estrogen receptor alpha (ERα) positive breast cancer cell survival and growth. This raises the question of how the ERα positive metastatic breast cancer cells survive after they enter blood and lymph circulation, where estrogen level is very low in postmenopausal women. In this study, we show that the aromatase expression increased when ERα positive breast cancer cells were cultured in suspension. Furthermore, treatment with the aromatase substrate, testosterone, inhibited suspension culture-induced apoptosis whereas an aromatase inhibitor attenuated the effect of testosterone suggesting that suspended circulating ERα positive breast cancer cells may up-regulate intracrine estrogen activity for survival. Consistent with this notion, a moderate level of ectopic aromatase expression rendered a non-tumorigenic ERα positive breast cancer cell line not only tumorigenic but also metastatic in female nude mice without exogenous estrogen supplementation. The increased malignant phenotype was confirmed to be due to aromatase expression as the growth of orthotopic tumors regressed with systemic administration of an aromatase inhibitor. Thus, our study provides experimental evidence that aromatase plays an important role in the survival of metastatic ERα breast cancer cells by suppressing anoikis.

  2. MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

    EPA Science Inventory

    MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
    James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

  3. Vascular Repair After Menstruation Involves Regulation of Vascular Endothelial Growth Factor-Receptor Phosphorylation by sFLT-1

    PubMed Central

    Graubert, Michael D.; Asuncion Ortega, Maria; Kessel, Bruce; Mortola, Joseph F.; Iruela-Arispe, M. Luisa

    2001-01-01

    Regeneration of the endometrium after menstruation requires a rapid and highly organized vascular response. Potential regulators of this process include members of the vascular endothelial growth factor (VEGF) family of proteins and their receptors. Although VEGF expression has been detected in the endometrium, the relationship between VEGF production, receptor activation, and endothelial cell proliferation during the endometrial cycle is poorly understood. To better ascertain the relevance of VEGF family members during postmenstrual repair, we have evaluated ligands, receptors, and activity by receptor phosphorylation in human endometrium throughout the menstrual cycle. We found that VEGF is significantly increased at the onset of menstruation, a result of the additive effects of hypoxia, transforming growth factor-α, and interleukin-1β. Both VEGF receptors, FLT-1 and KDR, followed a similar pattern. However, functional activity of KDR, as determined by phosphorylation studies, revealed activation in the late menstrual and early proliferative phases. The degree of KDR phosphorylation was inversely correlated with the presence of sFLT-1. Endothelial cell proliferation analysis in endometrium showed a peak during the late menstrual and early proliferative phases in concert with the presence of VEGF, VEGF receptor phosphorylation, and decrease of sFLT-1. Together, these results suggest that VEGF receptor activation and the subsequent modulation of sFLT-1 in the late menstrual phase likely contributes to the onset of angiogenesis and endothelial repair in the human endometrium. PMID:11290558

  4. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  5. Factors associated with prolonged time to treatment failure with fulvestrant 500 mg in patients with post-menopausal estrogen receptor-positive advanced breast cancer: a sub-group analysis of the JBCRG-C06 Safari study.

    PubMed

    Kawaguchi, Hidetoshi; Masuda, Norikazu; Nakayama, Takahiro; Aogi, Kenjiro; Anan, Keisei; Ito, Yoshinori; Ohtani, Shoichiro; Sato, Nobuaki; Saji, Shigehira; Takano, Toshimi; Tokunaga, Eriko; Nakamura, Seigo; Hasegawa, Yoshie; Hattori, Masaya; Fujisawa, Tomomi; Morita, Satoshi; Yamaguchi, Miki; Yamashita, Hiroko; Yamashita, Toshinari; Yamamoto, Yutaka; Yotsumoto, Daisuke; Toi, Masakazu; Ohno, Shinji

    2018-01-01

    The JBCRG-C06 Safari study showed that earlier fulvestrant 500 mg (F500) use, a longer time from diagnosis to F500 use, and no prior palliative chemotherapy were associated with significantly longer time to treatment failure (TTF) among Japanese patients with estrogen receptor-positive (ER+) advanced breast cancer (ABC). The objective of this sub-group analysis was to further examine data from the Safari study, focusing on ER + and human epidermal growth factor receptor-negative (HER2-) cases. The Safari study (UMIN000015168) was a retrospective, multi-center cohort study, conducted in 1,072 patients in Japan taking F500 for ER + ABC. The sub-analysis included only patients administered F500 as second-line or later therapy (n = 960). Of these, 828 patients were HER2-. Results Multivariate analysis showed that advanced age (≥65 years; p = .035), longer time (≥3 years) from ABC diagnosis to F500 use (p < .001), no prior chemotherapy (p < .001), and F500 treatment line (p < .001) were correlated with prolonged TTF (median = 5.39 months). In ER+/HER2- patients receiving F500 as a second-line or later therapy, treatment line, advanced age, no prior palliative chemotherapy use, and a longer period from ABC diagnosis to F500 use were associated with longer TTF.

  6. Optimal treatment strategies in postmenopausal women with hormone-receptor-positive and HER2-negative metastatic breast cancer.

    PubMed

    Gligorov, Joseph; Lotz, Jean-Pierre

    2008-12-01

    Metastatic breast cancer (MBC) is unfortunately still considered incurable; treatment aims to prolong progression-free and overall survival, relieve disease symptoms, and maintain quality of life. Treatment can include endocrine therapy, radiotherapy, chemotherapy, bisphosphonates, and/or targeted therapy; which is used depends on the characteristics of the disease [e.g., hormone receptor status, disease site(s), and response to previous treatment] and the patient (age, comorbidity, and personal preferences). For most patients with hormone-receptor-positive tumors, the first choice of treatment is further endocrine therapy, but endocrine resistance is a common problem in advanced disease. Several novel anticancer agents have been developed with the aim of overcoming endocrine resistance, many of which target intracellular signaling pathways implicated in disease progression or resistance. Among these, inhibitors of growth factor receptor tyrosine kinases and of mammalian target of rapamycin have shown the most promise in clinical trials. Chemotherapy is the cornerstone of MBC treatment in most women. Important considerations when choosing chemotherapy include the choice of agents, and whether to use single-agent or combination therapy. Anthracyclines are one of the most active cytotoxic agents currently used for the treatment of breast cancer, and for many women, further anthracycline therapy at progression or relapse would be the preferred option. However, lifetime exposure to anthracyclines is limited by cumulative cardiotoxicity, which often prevents rechallenge in later lines of therapy. Newer anthracycline formulations have been developed with lower cardiotoxicity than the conventional anthracycline doxorubicin, but these agents still impair cardiac function, and have maximum recommended lifetime doses. Recently, the concomitant use of cardioprotective agents, such as dexrazoxane, has emerged as an effective approach to reducing the cardiotoxic effects of

  7. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABAA receptors

    PubMed Central

    Alexeev, Mikhail; Grosenbaugh, Denise K.; Mott, David D.; Fisher, Janet L.

    2012-01-01

    The National Center for Complementary and Alternative Medicine (NCCAM) estimates that nearly 40% of adults in the United States use alternative medicines, often in the form of an herbal supplement. Extracts from the tree bark of magnolia species have been used for centuries in traditional Chinese and Japanese medicines to treat a variety of neurological diseases, including anxiety, depression, and seizures. The active ingredients in the extracts have been identified as the bi-phenolic isomers magnolol and honokiol. These compounds were shown to enhance the activity of GABAA receptors, consistent with their biological effects. The GABAA receptors exhibit substantial subunit heterogeneity, which influences both their functional and pharmacological properties. We examined the activity of magnolol and honokiol at different populations of both neuronal and recombinant GABAA receptors to characterize their mechanism of action and to determine whether sensitivity to modulation was dependent upon the receptor’s subunit composition. We found that magnolol and honokiol enhanced both phasic and tonic GABAergic neurotransmission in hippocampal dentate granule neurons. In addition, all recombinant receptors examined were sensitive to modulation, regardless of the identity of the α, β, or γ subunit subtype, although the compounds showed particularly high efficacy at δ-containing receptors. This direct positive modulation of both synaptic and extra-synaptic populations of GABAA receptors suggests that supplements containing magnolol and/or honokiol would be effective anxiolytics, sedatives, and anti-convulsants. However, significant side-effects and risk of drug interactions would also be expected. PMID:22445602

  8. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor.

    PubMed

    Post-Munson, Debra J; Pieschl, Rick L; Molski, Thaddeus F; Graef, John D; Hendricson, Adam W; Knox, Ronald J; McDonald, Ivar M; Olson, Richard E; Macor, John E; Weed, Michael R; Bristow, Linda J; Kiss, Laszlo; Ahlijanian, Michael K; Herrington, James

    2017-03-15

    The alpha7 (α7) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding. At 0.1mM acetylcholine, 1μM B-973 potentiated peak acetylcholine-induced currents 6-fold relative to maximal acetylcholine (3mM) and slowed channel desensitization, resulting in a 6900-fold increase in charge transfer. The EC 50 of B-973 was approximately 0.3μM at acetylcholine concentrations ranging from 0.03 to 3mM. At a concentration of 1μM, B-973 shifted the acetylcholine EC 50 of peak currents from 0.30mM in control to 0.007mM. B-973 slowed channel deactivation upon acetylcholine removal (τ=50s) and increased the affinity of the α7 agonist [ 3 H]A-585539. In the absence of exogenously added acetylcholine, application of B-973 at concentrations >1μM induced large methyllycaconitine-sensitive currents, suggesting B-973 can function as an Ago-PAM at high concentrations. B-973 will be a useful probe for investigating the biological consequences of increasing α7 receptor activity through allosteric modulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.; Loewenberg, B.; Hoefsloot, L.H.

    Severe congenital neutropenia (Kostmann syndrome) is characterized by profound absolute neutropenia and a maturation arrest of marrow progenitor cells at the promyelocyte-myelocyte stage. Marrow cells from such patients frequently display a reduced responsiveness to granulocyte-colony-stimulating factor (G-CSF). G-CSF binds to and activates a specific receptor which transduces signals critical for the proliferation and maturation of granulocytic progenitor cells. Here the authors report the identification of a somatic point mutation in one allele of the G-CSF receptor gene in a patient with severe congenital neutropenia. The mutation results in a cytoplasmic truncation of the receptor. When expressed in murine myeloid cells,more » the mutant receptor transduced a strong growth signal but, in contrast to the wild-type G-CSF receptor, was defective in maturation induction. This mutant receptor chain may act in a dominant negative manner to block granulocytic maturation. 40 refs., figs., 2 tabs.« less

  10. Factors Associated with Positive Relationships between Stepfathers and Adolescent Stepchildren

    PubMed Central

    Thorsen, Maggie L.; Amato, Paul R.

    2014-01-01

    This study employs nationally representative data on adolescents and their stepfathers (n = 2085) from the National Longitudinal Study of Adolescent Health (Add Health) to examine factors associated with positive stepfather-stepchild relationships in married stepfamilies. Results reveal substantial variability in the perceived quality of adolescents’ relationships with stepfathers. Structural equation models using Wave I data reveal that close relationships with mothers and close ties between mothers and stepfathers are positively related to the perceived quality of adolescents’ relationships with stepfathers. Longitudinal models using Waves I and II do not yield definitive results but suggest that the direction of influence runs in both directions, with the mother-child relationship and the stepfather-stepchild relationship mutually reinforcing one another. We identify a number of other factors that are associated with positive stepfather-stepchild ties, as well as a few factors that may be less consequential than previously thought. Most of the correlates of positive stepfather-stepchild relationships are similar for boys and girls; for Whites, Blacks, and Hispanics; and for stepfamilies of various durations. PMID:24913942

  11. Expression of Epidermal Growth Factor Receptor and Transforming Growth Factor Alpha in Cancer Bladder: Schistosomal and Non-Schistosomal

    PubMed Central

    Badawy, Afkar A.; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Helal, Noha S.; Kamel, Amira

    2017-01-01

    Introduction Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand-receptor combination constitutes an important event in multistep tumorigenesis. Methods This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immuohistochemically stained with EGFR and TGFα antibodies. Results EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy. PMID:28413380

  12. Neomycin is a platelet-derived growth factor (PDGF) antagonist that allows discrimination of PDGF alpha- and beta-receptor signals in cells expressing both receptor types.

    PubMed

    Vassbotn, F S; Ostman, A; Siegbahn, A; Holmsen, H; Heldin, C H

    1992-08-05

    The aminoglycoside neomycin has recently been found to affect certain platelet-derived growth factor (PDGF) responses in C3H/10T1/2 C18 fibroblasts. Using porcine aortic endothelial cells transfected with PDGF alpha- or beta-receptors, we explored the possibility that neomycin interferes with the interaction between the different PDGF isoforms and their receptors. We found that neomycin (5 mM) inhibited the binding of 125I-PDGF-BB to the alpha-receptor with only partial effect on the binding of 125I-PDGF-AA; in contrast, the binding of 125I-PDGF-BB to the beta-receptor was not affected by the aminoglycoside. Scatchard analyses showed that neomycin (5 mM) decreased the number of binding sites for PDGF-BB on alpha-receptor-expressing cells by 87%. Together with cross-competition studies with 125I-labeled PDGF homodimers, the effect of neomycin indicates that PDGF-AA and PDGF-BB bind to both common and unique structures on the PDGF alpha-receptor. Neomycin specifically inhibited the autophosphorylation of the alpha-receptor by PDGF-BB, with less effect on the phosphorylation induced by PDGF-AA and no effect on the phosphorylation of the beta-receptor by PDGF-BB. Thus, neomycin is a PDGF isoform- and receptor-specific antagonist that provides a possibility to compare the signal transduction pathways of alpha- and beta-receptors in cells expressing both receptor types. This approach was used to show that activation of PDGF beta-receptors by PDGF-BB mediated a chemotactic response in human fibroblasts, whereas activation of alpha-receptors by the same ligand inhibited chemotaxis.

  13. Evaluation of Therapy Management and Patient Compliance in Postmenopausal Patients with Hormone Receptor-positive Breast Cancer Receiving Letrozole Treatment: The EvaluateTM Study

    PubMed Central

    Fasching, P. A.; Fehm, T.; Kellner, S.; de Waal, J.; Rezai, M.; Baier, B.; Baake, G.; Kolberg, H.-C.; Guggenberger, M.; Warm, M.; Harbeck, N.; Würstlein, R.; Deuker, J.-U.; Dall, P.; Richter, B.; Wachsmann, G.; Brucker, C.; Siebers, J. W.; Fersis, N.; Kuhn, T.; Wolf, C.; Vollert, H.-W.; Breitbach, G.-P.; Janni, W.; Landthaler, R.; Kohls, A.; Rezek, D.; Noesslet, T.; Fischer, G.; Henschen, S.; Praetz, T.; Heyl, V.; Kühn, T.; Krauß, T.; Thomssen, C.; Kümmel, S.; Hohn, A.; Tesch, H.; Mundhenke, C.; Hein, A.; Rauh, C.; Bayer, C. M.; Jacob, A.; Schmidt, K.; Belleville, E.; Hadji, P.; Wallwiener, D.; Grischke, E.-M.; Beckmann, M. W.; Brucker, S. Y.

    2014-01-01

    Introduction: The EvaluateTM study (Evaluation of therapy management and patient compliance in postmenopausal hormone receptor-positive breast cancer patients receiving letrozole treatment) is a prospective, non-interventional study for the assessment of therapy management and compliance in the routine care of postmenopausal women with invasive hormone receptor-positive breast cancer receiving letrozole. The parameters for inclusion in the study are presented and discussed here. Material and Methods: Between January 2008 and December 2009 a total of 5045 patients in 310 study centers were recruited to the EvaluateTM study. Inclusion criteria were hormone receptor-positive breast cancer and adjuvant treatment or metastasis. 373 patients were excluded from the analysis for various reasons. Results: A total of 4420 patients receiving adjuvant treatment and 252 patients with metastasis receiving palliative treatment were included in the study. For 4181 patients receiving adjuvant treatment, treatment with the aromatase inhibitor letrozole commenced immediately after surgery (upfront). Two hundred patients had initially received tamoxifen and started aromatase inhibitor treatment with letrozole at 1–5 years after diagnosis (switch), und 39 patients only commenced letrozole treatment 5–10 years after diagnosis (extended endocrine therapy). Patient and tumor characteristics were within expected ranges, as were comorbidities and concurrent medication. Conclusion: The data from the EvaluateTM study will offer a good overview of therapy management in the routine care of postmenopausal women with hormone receptor-positive breast cancer. Planned analyses will look at therapy compliance and patient satisfaction with how information is conveyed and the contents of the conveyed information. PMID:25568468

  14. Prediction of consensus binding mode geometries for related chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors.

    PubMed

    Sakkal, Leon A; Rajkowski, Kyle Z; Armen, Roger S

    2017-06-05

    Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A 1 R, A 2A R, A 3 R) and muscarinic acetylcholine (M 1 R, M 5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M 1 R PAMs were predicted to bind in the analogous M 2 R PAM LY2119620 binding site. The M 5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc.

    PubMed

    Le Maitre, Christine L; Richardson, Stephen M A; Baird, Pauline; Freemont, Anthony J; Hoyland, Judith A

    2005-12-01

    Low back pain (LBP) is a common, debilitating and economically important disorder. Current evidence implicates loss of intervertebral disc (IVD) matrix consequent upon 'degeneration' as a major cause of LBP. Degeneration of the IVD involves increases in degradative enzymes and decreases in the extracellular matrix (ECM) component in a process that is controlled by a range of cytokines and growth factors. Studies have suggested using anabolic growth factors to regenerate the normal matrix of the IVD, hence restoring disc height and reversing degenerative disc disease. However, for such therapies to be successful it is vital that the target cells (i.e. the disc cells) express the appropriate receptors. This immunohistochemical study has for the first time investigated the expression and localization of four potentially beneficial growth factor receptors (i.e. TGFbetaRII, BMPRII, FGFR3 and IGFRI) in non-degenerate and degenerate human IVDs. Receptor expression was quantified across regions of the normal and degenerate disc and showed that cells of the nucleus pulposus (NP) and inner annulus fibrosus (IAF) expressed significantly higher levels of the four growth factor receptors investigated. There were no significant differences between the four growth factor expression in non-degenerate and degenerate biopsies. However, expression of TGFbetaRII, FGFR3 and IGFRI, but not BMP RII, were observed in the ingrowing blood vessels that characterize part of the disease aetiology. In conclusion, this study has demonstrated the expression of the four growth factor receptors at similar levels in the chondrocyte-like cells of the NP and IAF in both non-degenerate and degenerate discs, implicating a role in normal disc homeostasis and suggesting that the application of these growth factors to the degenerate human IVD would stimulate matrix production. However, the expression of some of the growth factor receptors on ingrowing blood vessels might be problematic in a therapeutic

  16. Endocrine therapy use among elderly hormone receptor-positive breast cancer patients enrolled in Medicare Part D

    PubMed Central

    Riley, Gerald F.; Warren, Joan L.; Harlan, Linda C.; Blackwell, Steven A.

    2011-01-01

    Background Clinical guidelines recommend that women with hormone-receptor positive breast cancer receive endocrine therapy (selective estrogen receptor modulators [SERMs] or aromatase inhibitors [AIs]) for five years following diagnosis. Objective To examine utilization and adherence to therapy for SERMs and AIs in Medicare Part D prescription drug plans. Data Linked Surveillance, Epidemiology, and End Results (SEER)-Medicare data. Study design We identified 15,542 elderly women diagnosed with hormone-receptor positive breast cancer in years 2003-2005 (the latest SEER data at the time of the study) and enrolled in a Part D plan in 2006 or 2007 (the initial years of Part D). This permitted us to compare utilization and adherence to therapy at various points within the recommended five-year timeframe for endocrine therapy. SERM and AI use was measured from claim records. Non-adherence to therapy was defined as a medication possession ratio of less than 80 percent. Principal findings Between May 2006 and December 2007, 22 percent of beneficiaries received SERM, 52 percent AI, and 26 percent received neither. The percent receiving any endocrine therapy decreased with time from diagnosis. Among SERM and AI users, 20-30 percent were non-adherent to therapy; out-of-pocket costs were higher for AI than SERM and were strongly associated with non-adherence. For AI users without a low income subsidy, adherence to therapy deteriorated after reaching the Part D coverage gap. Conclusions Many elderly breast cancer patients were not receiving therapy for the recommended five years following diagnosis. Choosing a Part D plan that minimizes out-of-pocket costs is critical to ensuring beneficiary access to essential medications. PMID:22340780

  17. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses' Health Study.

    PubMed

    Collins, Laura C; Cole, Kimberly S; Marotti, Jonathan D; Hu, Rong; Schnitt, Stuart J; Tamimi, Rulla M

    2011-07-01

    Previous studies have demonstrated that androgen receptor is expressed in many breast cancers, but its expression in relation to the various breast cancer subtypes as defined by molecular profiling has not been studied in detail. We constructed tissue microarrays from 3093 breast cancers that developed in women enrolled in the Nurses' Health Study. Tissue microarray sections were immunostained for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), cytokeratin 5/6, epidermal growth factor receptor (EGFR) and androgen receptor (ER). Immunostain results were used to categorize each cancer as luminal A or B, HER2 and basal like. The relationships between androgen receptor expression and molecular subtype were analyzed. Overall, 77% of the invasive breast carcinomas were androgen receptor positive. Among 2171 invasive cancers, 64% were luminal A, 15% luminal B, 6% HER2 and 11% basal like. The frequency of androgen receptor expression varied significantly across the molecular phenotypes (P<0.0001). In particular, androgen receptor expression was commonly observed in luminal A (91%) and B (68%) cancers, but was less frequently seen in HER2 cancers (59%). Despite being defined by the absence of ER and PR expression and being considered hormonally unresponsive, 32% of basal-like cancers expressed androgen receptor. Among 246 cases of ductal carcinoma in situ, 86% were androgen receptor positive, but the frequency of androgen receptor expression differed significantly across the molecular phenotypes (P=0.001), and high nuclear grade lesions were less likely to be androgen receptor positive compared with lower-grade lesions. Androgen receptor expression is most commonly seen in luminal A and B invasive breast cancers. However, expression of androgen receptor is also seen in approximately one-third of basal-like cancers, providing further evidence that basal-like cancers represent a heterogeneous group. Our findings raise the

  18. Novel Mechanism for Regulation of Epidermal Growth Factor Receptor Endocytosis Revealed by Protein Kinase A Inhibition

    PubMed Central

    Salazar, Gloria; González, Alfonso

    2002-01-01

    Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40–60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and μ-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of “endocytic evasion,” modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function

  19. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    PubMed

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  20. Fibroblast Growth Factor 10-Fibroblast Growth Factor Receptor 2b Mediated Signaling Is Not Required for Adult Glandular Stomach Homeostasis

    PubMed Central

    Sala, Frederic G.; Ford, Henri R.; Bellusci, Saverio; Grikscheit, Tracy C.

    2012-01-01

    The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10) and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b), in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22) except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis. PMID:23133671

  1. Epidermal growth factor receptor expression is related to post-mitotic events in cerebellar development: regulation by thyroid hormone.

    PubMed

    Carrasco, Emilce; Blum, Mariann; Weickert, Cynthia Shannon; Casper, Diana

    2003-01-10

    It has been established that thyroid hormone and neurotrophic factors both orchestrate developmental events in the brain. However, it is not clear how these two influences are related. In this study, we investigated the effects of thyroid hormone on cerebellar development and the coincident expression of transforming growth factor-alpha (TGF-alpha), a ligand in the epidermal growth factor (EGF) family, and the epidermal growth factor receptor (EGFR). Profiles of thyroid hormone expression were measured in postnatal animals and were found to peak at postnatal day 15 (P15). These levels dropped below detectable levels when mice were made hypothyroid with propylthiouracil (PTU). TGF-alpha and EGFR expression, as determined by RNAse protection assay, was maximal at P6 in normal animals, but remained low in hypothyroid animals, suggesting that thyroid hormone was responsible for their induction. In situ hybridization and immunohistochemical analysis of EGFR expression revealed that this receptor was present on granule cells within the inner zone of the external granule cell layer (EGL), suggesting that EGFR-ligands were not inducing granule cell proliferation. The persistence of EGFR expression on migrating granule cells and subsequent down-regulation of expression in the internal granule cell layer (IGL) implicates a role for EGFR-ligands in differentiation and/or migration. In hypothyroid animals, we observed a delayed progression of granule cell migration, consistent with the persistence of EGFR labeling in the EGL, and in the 'pile-up' of labeled cells at the interface between the molecular layer and the Purkinje cell layer. Taken together, these results implicate thyroid hormone in the coordinated expression of TGF-alpha and EGFR, which are positioned to play a role in post-mitotic developmental events in the cerebellum.

  2. Hispanic Women in Higher Education Administration: Factors That Positively Influence or Hinder Advancement to Leadership Positions.

    ERIC Educational Resources Information Center

    Gorena, Minerva

    A national survey investigated the perceptions of Hispanic women administrators in higher education concerning factors that positively influenced or hindered their advancement to leadership positions, and developed a profile of the Hispanic woman senior level college administrator. Respondents were 68 women in four major subgroups (Central/South…

  3. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes.

    PubMed

    DeRita, Rachel M; Zerlanko, Brad; Singh, Amrita; Lu, Huimin; Iozzo, Renato V; Benovic, Jeffrey L; Languino, Lucia R

    2017-01-01

    It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (Src pY416 ) is co-expressed in Exo with phosphorylated FAK (FAK pY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, Src pY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    PubMed

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  5. Factors Related to Sustained Implementation of Schoolwide Positive Behavior Support

    ERIC Educational Resources Information Center

    McIntosh, Kent; Mercer, Sterett H.; Hume, Amanda E.; Frank, Jennifer L.; Turri, Mary G.; Mathews, Susanna

    2013-01-01

    The purpose of this study was to identify factors associated with sustainability of school-based interventions and the relative contributions of those factors to predicting sustained implementation of Schoolwide Positive Behavior Support (SWPBS). Participants were respondents from 217 schools across 14 U.S. states. Sustainability factors were…

  6. Role for the epidermal growth factor receptor in chemotherapy-induced alopecia.

    PubMed

    Bichsel, Kyle J; Gogia, Navdeep; Malouff, Timothy; Pena, Zachary; Forney, Eric; Hammiller, Brianna; Watson, Patrice; Hansen, Laura A

    2013-01-01

    Treatment of cancer patients with chemotherapeutics like cyclophosphamide often causes alopecia as a result of premature and aberrant catagen. Because the epidermal growth factor receptor (EGFR) signals anagen hair follicles to enter catagen, we hypothesized that EGFR signaling may be involved in cyclophosphamide-induced alopecia. To test this hypothesis, skin-targeted Egfr mutant mice were generated by crossing floxed Egfr and Keratin 14 promoter-driven Cre recombinase mice. Cyclophosphamide treatment of control mice resulted in alopecia while Egfr mutant skin was resistant to cyclophosphamide-induced alopecia. Egfr mutant skin entered catagen normally, as indicated by dermal papilla condensation and decreased follicular proliferation, but did not progress to telogen as did Egfr wild type follicles. Egfr mutant follicles responded with less proliferation, apoptosis, and fewer p53-positive cells after cyclophosphamide. Treatment of control mice with the EGFR inhibitors erlotinib or gefitinib similarly suppressed alopecia and catagen progression by cyclophosphamide. Secondary analysis of clinical trials utilizing EGFR-targeted therapies and alopecia-inducing chemotherapy also revealed evidence for involvement of EGFR in chemotherapy-induced alopecia. Taken together, our results demonstrated the involvement of EGFR signaling in chemotherapy-induced alopecia, which will help in the design of novel therapeutic regimens to minimize chemotherapy-induced alopecia.

  7. Functional characterization of an alpha-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae.

    PubMed

    Mayrhofer, Severine; Pöggeler, Stefanie

    2005-04-01

    The homothallic filamentous ascomycete Sordaria macrospora possesses genes which are thought to encode two pheromone precursors and two seven-transmembrane pheromone receptors. The pheromone precursor genes are termed ppg1 and ppg2. The putative products derived from the gene sequence show structural similarity to the alpha-factor precursors and a-factor precursors of the yeast Saccharomyces cerevisiae. Likewise, sequence similarity has been found between the putative products of the pheromone receptor genes pre2 and pre1 and the S. cerevisiae Ste2p alpha-factor receptor and Ste3p a-factor receptor, respectively. To investigate whether the alpha-factor-like pheromone-receptor pair of S. macrospora is functional, a heterologous yeast assay was used. Our results show that the S. macrospora alpha-factor-like pheromone precursor PPG1 is processed into an active pheromone by yeast MATalpha cells. The S. macrospora PRE2 protein was demonstrated to be a peptide pheromone receptor. In yeast MATa cells lacking the endogenous Ste2p receptor, the S. macrospora PRE2 receptor facilitated all aspects of the pheromone response. Using a synthetic peptide, we can now predict the sequence of one active form of the S. macrospora peptide pheromone. We proved that S. macrospora wild-type strains secrete an active pheromone into the culture medium and that disruption of the ppg1 gene in S. macrospora prevents pheromone production. However, loss of the ppg1 gene does not affect vegetative growth or fertility. Finally, we established the yeast assay as an easy and useful system for analyzing pheromone production in developmental mutants of S. macrospora.

  8. Type I Interferon Receptor Expression in Human Pancreatic and Periampullary Cancer Tissue.

    PubMed

    Booy, Stephanie; Hofland, Leo J; Waaijers, A Marlijn; Croze, Ed; van Koetsveld, Peter M; de Vogel, Lisette; Biermann, Katharina; van Eijck, Casper H J

    2015-01-01

    Interferons (IFNs) have several anticancer mechanisms. A number of clinical trials have been conducted regarding adjuvant IFN-α therapy in pancreatic cancer. Type I IFNs exert their effect via the type I IFN receptor (IFNAR-1, IFNAR-2c). The aims of the present study were to determine the type I IFN receptor expression in pancreatic and periampullary cancer tissues and to study its relation with clinicopathological factors. Receptor expression was determined by immunohistochemistry in paraffin-embedded cancer tissue of 47 pancreatic and 54 periampullary cancer patients. The results demonstrated that 91.5% of the pancreatic tumors and 88.9% of the periampullary tumors showed expression of IFNAR-1, of which 23.4% and 13.0% were strongly positive, respectively. Regarding IFNAR-2c expression, 68.1% of the pancreatic tumors and 68.5% of the periampullary tumors were positive, of which 4.3% of the pancreatic tumors and none of the periampullary tumors had a strong expression. No statistically significant associations were found between type I IFN receptor expression and clinicopathological factors or survival. Type I IFN receptors are expressed in pancreatic and periampullary cancer tissues although with great intertumoral and intratumoral variability. A small proportion of both tumors showed a strong expression of the IFNAR-1; only a very small percentage of the pancreatic tumors showed strong expression of the IFNAR-2c.

  9. Timescale Separation of Positive and Negative Signaling Creates History-Dependent Responses to IgE Receptor Stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, Brooke; Chylek, Lily A.; Liu, Yanli

    The high-affinity receptor for IgE expressed on the surface of mast cells and basophils interacts with antigens, via bound IgE antibody, and triggers secretion of inflammatory mediators that contribute to allergic reactions. To understand how past inputs (memory) influence future inflammatory responses in mast cells, a microfluidic device was used to precisely control exposure of cells to alternating stimulatory and non-stimulatory inputs. We determined that the response to subsequent stimulation depends on the interval of signaling quiescence. For shorter intervals of signaling quiescence, the second response is blunted relative to the first response, whereas longer intervals of quiescence induce anmore » enhanced second response. Through an iterative process of computational modeling and experimental tests, we found that these memory-like phenomena arise from a confluence of rapid, short-lived positive signals driven by the protein tyrosine kinase Syk; slow, long-lived negative signals driven by the lipid phosphatase Ship1; and slower degradation of Ship1 co-factors. This work advances our understanding of mast cell signaling and represents a generalizable approach for investigating the dynamics of signaling systems.« less

  10. PF-06827443 Displays Robust Allosteric Agonist and Positive Allosteric Modulator Activity in High Receptor Reserve and Native Systems.

    PubMed

    Moran, Sean P; Cho, Hyekyung P; Maksymetz, James; Remke, Daniel H; Hanson, Ryan M; Niswender, Colleen M; Lindsley, Craig W; Rook, Jerri M; Conn, P Jeffrey

    2018-04-25

    Positive allosteric modulators (PAMs) of the M 1 subtype of muscarinic acetylcholine receptor have attracted intense interest as an exciting new approach for improving the cognitive deficits in schizophrenia and Alzheimer's disease. Recent evidence suggests that the presence of intrinsic agonist activity of some M 1 PAMs may reduce efficacy and contribute to adverse effect liability. However, the M 1 PAM PF-06827443 was reported to have only weak agonist activity at human M 1 receptors but produced M 1 -dependent adverse effects. We now report that PF-06827443 is an allosteric agonist in cell lines expressing rat, dog, and human M 1 and use of inducible cell lines shows that agonist activity of PF-06827443 is dependent on receptor reserve. Furthermore, PF-06827443 is an agonist in native tissue preparations and induces behavioral convulsions in mice similar to other ago-PAMs. These findings suggest that PF-06827443 is a robust ago-PAM, independent of species, in cell lines and native systems.

  11. Dynamics of GnRH Neuron Ionotropic GABA and Glutamate Synaptic Receptors Are Unchanged during Estrogen Positive and Negative Feedback in Female Mice.

    PubMed

    Liu, Xinhuai; Porteous, Robert; Herbison, Allan E

    2017-01-01

    Inputs from GABAergic and glutamatergic neurons are suspected to play an important role in regulating the activity of the gonadotropin-releasing hormone (GnRH) neurons. The GnRH neurons exhibit marked plasticity to control the ovarian cycle with circulating estradiol concentrations having profound "feedback" effects on their activity. This includes "negative feedback" responsible for suppressing GnRH neuron activity and "positive feedback" that occurs at mid-cycle to activate the GnRH neurons to generate the preovulatory luteinizing hormone surge. In the present study, we employed brain slice electrophysiology to question whether synaptic ionotropic GABA and glutamate receptor signaling at the GnRH neuron changed at times of negative and positive feedback. We used a well characterized estradiol (E)-treated ovariectomized (OVX) mouse model to replicate negative and positive feedback. Miniature and spontaneous postsynaptic currents (mPSCs and sPSCs) attributable to GABA A and glutamatergic receptor signaling were recorded from GnRH neurons obtained from intact diestrous, OVX, OVX + E (negative feedback), and OVX + E+E (positive feedback) female mice. Approximately 90% of GnRH neurons exhibited spontaneous GABA A -mPSCs in all groups but no significant differences in the frequency or kinetics of mPSCs were found at the times of negative or positive feedback. Approximately 50% of GnRH neurons exhibited spontaneous glutamate mPSCs but again no differences were detected. The same was true for spontaneous PSCs in all cases. These observations indicate that the kinetics of ionotropic GABA and glutamate receptor synaptic transmission to GnRH neurons remain stable across the different estrogen feedback states.

  12. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  13. Autocrine expression of the epidermal growth factor receptor ligand heparin-binding EGF-like growth factor in cervical cancer.

    PubMed

    Schrevel, Marlies; Osse, E Michelle; Prins, Frans A; Trimbos, J Baptist M Z; Fleuren, Gert Jan; Gorter, Arko; Jordanova, Ekaterina S

    2017-06-01

    In cervical cancer, the epidermal growth factor receptor (EGFR) is overexpressed in 70-90% of the cases and has been associated with poor prognosis. EGFR-based therapy is currently being explored in cervical cancer. We investigated which EGFR ligand is primarily expressed in cervical cancer and which cell type functions as the major source of this ligand. We hypothesized that macrophages are the main source of EGFR ligands and that a paracrine loop between tumor cells and macrophages is responsible for ligand expression. mRNA expression analysis was performed on 32 cervical cancer cases to determine the expression of the EGFR ligands amphiregulin, β-cellulin, epidermal growth factor (EGF), epiregulin, heparin-binding EGF-like growth factor (HB‑EGF) and transforming growth factor α (TGFα). Subsequently, protein expression was determined immunohistochemically on 36 additional cases. To assess whether macrophages are the major source of EGFR ligands, immunohistochemical double staining was performed on four representative tissue slides. Expression of the chemokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and C-C motif ligand 2 (CCL2) was determined by mRNA in situ hybridization. Of the known EGFR ligands, HB‑EGF had the highest mRNA expression and HB‑EGF and EGFR protein expression were highly correlated. Tumor specimens with high EGFR expression showed higher numbers of macrophages, and higher expression of GM-CSF and CCL2, but only a small subset (9%) of macrophages was found to be HB‑EGF-positive. Strikingly, 78% of cervical cancer specimens were found to express HB‑EGF. Standardized assessment of staining intensity, using spectral imaging analysis, showed that HB‑EGF expression was higher in the tumor compartment than in the stromal compartment. These results suggest that HB‑EGF is an important EGFR ligand in cervical cancer and that cervical cancer cells are the predominant source of HB‑EGF. Therefore, we propose an autocrine

  14. Positive allosteric modulation of mGlu7 receptors by AMN082 affects sleep and wakefulness in the rat.

    PubMed

    Cavas, María; Scesa, Gianluigi; Navarro, José Francisco

    2013-02-01

    Evidence indicates that metabotropic glutamate receptors (mGlu) are involved in the regulation of physiological and behavioral processes, and glutamate has been implicated in several pathologies of the Central Nervous System. Pharmacological evidence suggests the therapeutic potential of targeting mGlu7 receptor in a number of pathological conditions; and previous research has shown the involvement of glutamate on sleep and wakefulness regulation. Here, the effects of mGlu7 receptor selective modulation on sleep and wake states are explored. 32 male Wistar rats were implanted with electrodes for recording sleep and wakefulness. N,N'-Bis(diphenylmethyl)-1,2-ethanediamine dihydrochloride (AMN082) (5, 10, and 20mg/kg, i.p.), a potent, selective and systemically active mGlu7 receptor positive allosteric modulator, or vehicle was administered 1 hour after the beginning of the light period. AMN082 (5 and 10mg/kg) significantly increased total time of sleep; and time spent on Slow Wave Sleep (SWS) was increased. AMN082 at 10mg/kg specifically affected Light SWS, increasing time spent on Light SWS. The highest dose of AMN082, 20mg/kg, significantly reduced time spent in Rapid Eye Movement (REM) sleep, decreasing the number of REM sleep episodes and their mean duration. Total time spent awake was increased and mean episode duration of wakefulness was prolonged. The present results suggest that mGlu7 receptors might be involved in sleep regulation and drugs targeting these receptors could affect sleep and wakefulness architecture. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer

    PubMed Central

    Wolff, Antonio C.; Hammond, M. Elizabeth H.; Hicks, David G.; Dowsett, Mitch; McShane, Lisa M.; Allison, Kimberly H.; Allred, Donald C.; Bartlett, John M.S.; Bilous, Michael; Fitzgibbons, Patrick; Hanna, Wedad; Jenkins, Robert B.; Mangu, Pamela B.; Paik, Soonmyung; Perez, Edith A.; Press, Michael F.; Spears, Patricia A.; Vance, Gail H.; Viale, Giuseppe; Hayes, Daniel F.

    2014-01-01

    Purpose To update the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guideline recommendations for human epidermal growth factor receptor 2 (HER2) testing in breast cancer to improve the accuracy of HER2 testing and its utility as a predictive marker in invasive breast cancer. Methods ASCO/CAP convened an Update Committee that included coauthors of the 2007 guideline to conduct a systematic literature review and update recommendations for optimal HER2 testing. Results The Update Committee identified criteria and areas requiring clarification to improve the accuracy of HER2 testing by immunohistochemistry (IHC) or in situ hybridization (ISH). The guideline was reviewed and approved by both organizations. Recommendations The Update Committee recommends that HER2 status (HER2 negative or positive) be determined in all patients with invasive (early stage or recurrence) breast cancer on the basis of one or more HER2 test results (negative, equivocal, or positive). Testing criteria define HER2-positive status when (on observing within an area of tumor that amounts to >10% of contiguous and homogeneous tumor cells) there is evidence of protein overexpression (IHC) or gene amplification (HER2 copy number or HER2/CEP17 ratio by ISH based on counting at least 20 cells within the area). If results are equivocal (revised criteria), reflex testing should be performed using an alternative assay (IHC or ISH). Repeat testing should be considered if results seem discordant with other histopathologic findings. Laboratories should demonstrate high concordance with a validated HER2 test on a sufficiently large and representative set of specimens. Testing must be performed in a laboratory accredited by CAP or another accrediting entity. The Update Committee urges providers and health systems to cooperate to ensure the highest quality testing. PMID:24099077

  16. Prevalence of Circulating Tumor Cells After Adjuvant Chemotherapy With or Without Anthracyclines in Patients With HER2-negative, Hormone Receptor-positive Early Breast Cancer.

    PubMed

    Schramm, Amelie; Schochter, Fabienne; Friedl, Thomas W P; de Gregorio, Nikolaus; Andergassen, Ulrich; Alunni-Fabbroni, Marianna; Trapp, Elisabeth; Jaeger, Bernadette; Heinrich, Georg; Camara, Oumar; Decker, Thomas; Ober, Angelika; Mahner, Sven; Fehm, Tanja N; Pantel, Klaus; Fasching, Peter A; Schneeweiss, Andreas; Janni, Wolfgang; Rack, Brigitte K

    2017-07-01

    Use of anthracycline-based chemotherapy in patients with early breast cancer (EBC) has been well-established but is often associated with cardiotoxicity. Based on data suggesting a limited benefit of anthracyclines in human epidermal growth factor receptor 2 (HER2)-negative patients, the Simultaneous Study of Docetaxel Based Anthracycline Free Adjuvant Treatment Evaluation, as well as Life Style Intervention Strategies (SUCCESS) C study randomized patients to either anthracycline-containing or anthracycline-free chemotherapy. Given the proven prognostic value of circulating tumor cells (CTCs) in EBC, we compared the prevalence of CTCs after chemotherapy between both treatment arms for a preliminary efficacy assessment. The SUCCESS C trial (NCT00847444) is an open-label, phase III study randomizing 3547 patients with HER2-negative EBC to either 3 cycles of epirubicin, 5-fluorouracil, and cyclophosphamide followed by 3 cycles of docetaxel (FEC-DOC) or 6 cycles of docetaxel and cyclophosphamide (DOC-C). CTC status was prospectively evaluated in hormone receptor-positive patients at the time of last chemotherapy cycle using the US Food and Drug Administration-approved CellSearch System (Janssen Diagnostics). Data on CTC status were available for 1766 patients. Overall, CTCs were found in 221 (12.5%) patients. Univariate analyses revealed that presence of CTCs at time of last chemotherapy cycle was not significantly associated with tumor or patient characteristics (all P > .1). There was no significant difference with respect to presence of CTCs between patients randomized to FEC-DOC or DOC-C (11.5% vs. 13.6%; P = .18). The comparable prevalence of CTCs at the time of last chemotherapy cycle may indicate that anthracycline-free chemotherapy is equally effective to anthracycline-containing chemotherapy in HER2-negative, hormone receptor-positive EBC. However, efficacy data from the final survival analysis of SUCCESS C have to be awaited to confirm these preliminary

  17. 99mTc-EDDA/HYNIC-TOC in management of patients with head and neck somatostatin receptor positive tumors.

    PubMed

    Trogrlic, Mate; Tezak, Stanko

    2016-01-01

    Aim of this study was to determine the value of technetium-99m-hydrazinonicotinyl-Tyr3-octreotide (99mTc-ED-DA/HYNIC-TOC) in patients with somatostatin receptor (SSR) positive tumors of head and neck region. A total number of 16 patients were enrolled in this study. Planar whole body (WB) and single photon emission computed tomography (SPECT) images were acquired at 2 and 4 hours after the injection of approximately 670 MBq of 99mTc-EDDA/HYNIC-TOC. Additional single photon emission computed tomography/computed tomography (SPECT/CT) images of the head and neck region were acquired at 4h post tracer injection. Clinical and imaging follow up were taken as the reference standard. There were 10 female and 6 male patients of age 57.7 ± 12.9 years (58.5; 32-78) years. 99mTc-EDDA/HYNIC-TOC somatostatin receptor scintigraphy (SRS) was TP in 13 patients, TN in two and FP in one. Follow up period for SRS was 31.1 ± 19.4 (29; 2-63) months. 99mTc-EDDA/HYNIC-TOC scintigraphy provided additional information in 50% of patients, with impact on patient management in the same percentage of patients. Distant metastases were found in nine out of 16 patients (56%). 99mTc-EDDA/HYNIC-TOC SRS had sensitivity of 100% (75.3-100%), specificity of 66.7% (9.4-99.2%), accuracy of 93.7%, positive predictive value of 92.9% (66.1-99.8%), and negative predictive value of 100% (15.8-100%). Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC is very useful imaging method in the evalu-ation of patients with SSR positive tumors of head and neck region.

  18. Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells.

    PubMed

    Gekle, Michael; Freudinger, Ruth; Mildenberger, Sigrid; Silbernagl, Stefan

    2002-04-01

    Epidermal growth factor (EGF) regulates cell proliferation, differentiation, and ion transport by using extracellular signal-regulated kinase (ERK)1/2 as a downstream signal. Furthermore, the EGF-receptor (EGF-R) is involved in signaling by G protein-coupled receptors, growth hormone, and cytokines by means of transactivation. It has been suggested that steroids interact with peptide hormones, in part, by rapid, potentially nongenomic, mechanisms. Previously, we have shown that aldosterone modulates Na(+)/H(+) exchange in Madin-Darby canine kidney (MDCK) cells by means of ERK1/2 in a way similar to growth factors. Here, we tested the hypothesis that aldosterone uses the EGF-R as a heterologous signal transducer in MDCK cells. Nanomolar concentrations of aldosterone induce a rapid increase in ERK1/2 phosphorylation, cellular Ca(2+) concentration, and Na(+)/H(+) exchange activity similar to increases induced by EGF. Furthermore, aldosterone induced a rapid increase in EGF-R-Tyr phosphorylation, and inhibition of EGF-R kinase abolished aldosterone-induced signaling. Inhibition of ERK1/2 phosphorylation reduced the Ca(2+) response, whereas prevention of Ca(2+) influx did not abolish ERK1/2 phosphorylation. Our data show that aldosterone uses the EGF-R-ERK1/2 signaling cascade to elicit its rapid effects in MDCK cells.

  19. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration.

    PubMed

    Ou, Young; Chan, Gordon; Zuo, Jeremy; Rattner, Jerome B; van der Hoorn, Frans A

    2016-07-15

    The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The relationship between BIM deletion polymorphism and clinical significance of epidermal growth factor receptor-mutated non-small cell lung cancer patients with epidermal growth factor receptor-tyrosine kinase inhibitor therapy: a meta-analysis.

    PubMed

    Zou, Qian; Zhan, Ping; Lv, Tangfeng; Song, Yong

    2015-12-01

    BIM deletion polymorphism is a germline that might lead to little or no BH3 expression, which affects epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) related apoptosis. Recent studies show that BIM deletion polymorphism might be a critical factor leading to the resistance of EGFR-TKIs in EGFR mutation-positive non-small cell lung cancer (NSCLC) patients. Thus, a meta-analysis was conducted by combing seven original eligible studies including 778 NSCLC patients to investigate a steady and reliable conclusion. Our study indicated that BIM deletion polymorphism was significantly associated with the poor objective response rate (ORR) of EGFR-TKIs in EGFR-mutated NSCLC patients [odds ratios (OR) =0.55, 95% confidence interval (CI), 0.33-0.92]. And disease control rate (DCR) in EGFR-mutate NSCLC patients treated with EGFR-TKIs was significantly decreased in patients with BIM deletion polymorphism (OR=0.55, 95% CI, 0.27-1.12). Moreover, the progression-free survival (PFS) of patients with BIM deletion polymorphism is shorter. These findings suggested that BIM deletion polymorphism might be a genetic cause of intrinsic resistance to TKI therapy and it could be emerged as an independent predictor to identify patients who would benefit from TKI targeted therapy in EGFR-mutated NSCLC.

  1. Expression of platelet-derived growth factor BB, erythropoietin and erythropoietin receptor in canine and feline osteosarcoma

    PubMed Central

    Meyer, F.R.L.; Steinborn, R.; Grausgruber, H.; Wolfesberger, B.; Walter, I.

    2015-01-01

    The discovery of expression of the erythropoietin receptor (EPO-R) on neoplastic cells has led to concerns about the safety of treating anaemic cancer patients with EPO. In addition to its endocrine function, the receptor may play a role in tumour progression through an autocrine mechanism. In this study, the expression of EPO, EPO-R and platelet-derived growth factor BB (PDGF-BB) was analysed in five feline and 13 canine osteosarcomas using immunohistochemistry (IHC) and reverse transcription polymerase chain reaction (RT-PCR). EPO expression was positive in all tumours by IHC, but EPO mRNA was only detected in 38% of the canine and 40% of the feline samples. EPO-R was expressed in all samples by quantitative RT-PCR (RT-qPCR) and IHC. EPO-R mRNA was expressed at higher levels in all feline tumours, tumour cell lines, and kidney when compared to canine tissues. PDGF-BB expression was variable by IHC, but mRNA was detected in all samples. To assess the functionality of the EPO-R on tumour cells, the proliferation of canine and feline osteosarcoma cell lines was evaluated after EPO administration using an alamarBlue assay and Ki67 immunostaining. All primary cell lines responded to EPO treatment in at least one of the performed assays, but the effect on proliferation was very low indicating only a weak responsiveness of EPO-R. In conclusion, since EPO and its receptor are expressed by canine and feline osteosarcomas, an autocrine or paracrine tumour progression mechanism cannot be excluded, although in vitro data suggest a minimal role of EPO-R in osteosarcoma cell proliferation. PMID:26189892

  2. Association of Ovarian Tumor β2-Adrenergic Receptor Status with Ovarian Cancer Risk Factors and Survival.

    PubMed

    Huang, Tianyi; Tworoger, Shelley S; Hecht, Jonathan L; Rice, Megan S; Sood, Anil K; Kubzansky, Laura D; Poole, Elizabeth M

    2016-12-01

    The β 2 -adrenergic signaling pathway mediates the effects of chronic stress on ovarian cancer progression in mouse models. The relevance of this pathway to human ovarian cancer remains unknown. We assessed tumor expression of β 2 -adrenergic receptor (ADRB2) using tissue microarrays in 237 ovarian cancer cases from the Nurses' Health Studies (NHS/NHSII). Competing risks Cox regression was used to evaluate whether associations of reproductive, hormonal, and psychosocial factors with ovarian cancer risk differed by ADRB2. We also examined the association between tumor ADRB2 expression and ovarian cancer survival. Forty-five (19%) cases were positive for ADRB2 staining. High levels of anxiety symptoms were positively associated with ADRB2-positive tumors (HR, 2.59; 95% confidence interval [CI], 1.15-5.84) but not with ADRB2-negative tumors (HR, 1.16; 95% CI, 0.81-1.66; P heterogeneity = 0.07). We observed similar results for depression. No associations were observed for job strain, caregiving stress, or widowhood for either positive or negative ADRB2 status. Lifetime ovulatory years were more strongly associated with ADRB2-positive tumors (HR per 5 years, 1.60; 95% CI, 1.15-2.21) compared with ADRB2-negative tumors (HR, 1.11; 95% CI, 0.96-1.27; P heterogeneity = 0.04). Significant heterogeneity by ADRB2 was also observed for parity (P heterogeneity = 0.01), oral contraceptive use (P heterogeneity = 0.03), and age at menopause (P heterogeneity = 0.04). Tumor expression of ADRB2 was not associated with ovarian cancer mortality (HR, 1.05; 95% CI, 0.69-1.59). Several stress- and ovulation-related factors were differentially associated with ovarian tumors responsive to β 2 -adrenergic signaling. Replication in larger studies is warranted to confirm the role of β 2 -adrenergic signaling in ovarian cancer etiology. Cancer Epidemiol Biomarkers Prev; 25(12); 1587-94. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Palbociclib in Combination With Fulvestrant in Women With Hormone Receptor-Positive/HER2-Negative Advanced Metastatic Breast Cancer: Detailed Safety Analysis From a Multicenter, Randomized, Placebo-Controlled, Phase III Study (PALOMA-3).

    PubMed

    Verma, Sunil; Bartlett, Cynthia Huang; Schnell, Patrick; DeMichele, Angela M; Loi, Sherene; Ro, Jungsil; Colleoni, Marco; Iwata, Hiroji; Harbeck, Nadia; Cristofanilli, Massimo; Zhang, Ke; Thiele, Alexandra; Turner, Nicholas C; Rugo, Hope S

    2016-10-01

    Palbociclib enhances endocrine therapy and improves clinical outcomes in hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (MBC). Because this is a new target, it is clinically important to understand palbociclib's safety profile to effectively manage toxicity and optimize clinical benefit. Patients with endocrine-resistant, HR-positive/HER2-negative MBC (n = 521) were randomly assigned 2:1 to receive fulvestrant (500 mg intramuscular injection) with or without goserelin with oral palbociclib (125 mg daily; 3 weeks on/1 week off) or placebo. Safety assessments at baseline and day 1 of each cycle included blood counts on day 15 for the first 2 cycles. Hematologic toxicity was assessed by using laboratory data. A total of 517 patients were treated (palbociclib, n = 345; placebo, n = 172); median follow-up was 8.9 months. With palbociclib, neutropenia was the most common grade 3 (55%) and 4 (10%) adverse event; median times to onset and duration of grade ≥3 episodes were 16 and 7 days, respectively. Asian ethnicity and below-median neutrophil counts at baseline were significantly associated with an increased chance of developing grade 3-4 neutropenia with palbociclib. Dose modifications for grade 3-4 neutropenia had no adverse effect on progression-free survival. In the palbociclib arm, febrile neutropenia occurred in 3 (<1%) patients. The percentage of grade 1-2 infections was higher than in the placebo arm. Grade 1 stomatitis occurred in 8% of patients. Palbociclib plus fulvestrant treatment was well-tolerated, and the primary toxicity of asymptomatic neutropenia was effectively managed by dose modification without apparent loss of efficacy. This study appears at ClinicalTrials.gov, NCT01942135. Treatment with palbociclib in combination with fulvestrant was generally safe and well-tolerated in patients with hormone receptor (HR)-positive metastatic breast cancer. Consistent with the drug's proposed

  4. Palbociclib in Combination With Fulvestrant in Women With Hormone Receptor-Positive/HER2-Negative Advanced Metastatic Breast Cancer: Detailed Safety Analysis From a Multicenter, Randomized, Placebo-Controlled, Phase III Study (PALOMA-3)

    PubMed Central

    Bartlett, Cynthia Huang; Schnell, Patrick; DeMichele, Angela M.; Loi, Sherene; Ro, Jungsil; Colleoni, Marco; Iwata, Hiroji; Harbeck, Nadia; Cristofanilli, Massimo; Zhang, Ke; Thiele, Alexandra; Turner, Nicholas C.; Rugo, Hope S.

    2016-01-01

    Background. Palbociclib enhances endocrine therapy and improves clinical outcomes in hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (MBC). Because this is a new target, it is clinically important to understand palbociclib’s safety profile to effectively manage toxicity and optimize clinical benefit. Materials and Methods. Patients with endocrine-resistant, HR-positive/HER2-negative MBC (n = 521) were randomly assigned 2:1 to receive fulvestrant (500 mg intramuscular injection) with or without goserelin with oral palbociclib (125 mg daily; 3 weeks on/1 week off) or placebo. Safety assessments at baseline and day 1 of each cycle included blood counts on day 15 for the first 2 cycles. Hematologic toxicity was assessed by using laboratory data. Results. A total of 517 patients were treated (palbociclib, n = 345; placebo, n = 172); median follow-up was 8.9 months. With palbociclib, neutropenia was the most common grade 3 (55%) and 4 (10%) adverse event; median times to onset and duration of grade ≥3 episodes were 16 and 7 days, respectively. Asian ethnicity and below-median neutrophil counts at baseline were significantly associated with an increased chance of developing grade 3–4 neutropenia with palbociclib. Dose modifications for grade 3–4 neutropenia had no adverse effect on progression-free survival. In the palbociclib arm, febrile neutropenia occurred in 3 (<1%) patients. The percentage of grade 1–2 infections was higher than in the placebo arm. Grade 1 stomatitis occurred in 8% of patients. Conclusion. Palbociclib plus fulvestrant treatment was well-tolerated, and the primary toxicity of asymptomatic neutropenia was effectively managed by dose modification without apparent loss of efficacy. This study appears at ClinicalTrials.gov, NCT01942135. Implications for Practice: Treatment with palbociclib in combination with fulvestrant was generally safe and well-tolerated in patients with

  5. Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2.

    PubMed

    Krintel, Christian; Frydenvang, Karla; Olsen, Lars; Kristensen, Maria T; de Barrios, Oriol; Naur, Peter; Francotte, Pierre; Pirotte, Bernard; Gajhede, Michael; Kastrup, Jette S

    2012-01-01

    Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the LBD (ligand-binding domain) and stabilize the agonist-bound conformation slowing receptor desensitization and/or deactivation. In the present study, we employ isothermal titration calorimetry to determine binding affinities and thermodynamic details of binding of modulators of GluA2. A mutant of the LBD of GluA2 (LBD-L483Y-N754S) that forms a stable dimer in solution was used. The potent GluA2 modulator BPAM-97 was used as a reference compound. Evidence that BPAM-97 binds in the same pocket as the well-known GluA2 modulator cyclothiazide was obtained from X-ray structures. The LBD-L483Y-N754S:BPAM-97 complex has a Kd of 5.6 μM (ΔH=-4.9 kcal/mol, -TΔS=-2.3 kcal/mol; where 1 kcal≈4.187 kJ). BPAM-97 was used in a displacement assay to determine a Kd of 0.46 mM (ΔH=-1.2 kcal/mol, -TΔS=-3.3 kcal/mol) for the LBD-L483Y-N754S:IDRA-21 complex. The major structural factors increasing the potency of BPAM-97 over IDRA-21 are the increased van der Waals contacts to, primarily, Met496 in GluA2 imposed by the ethyl substituent of BPAM-97. These results add important information on binding affinities and thermodynamic details, and provide a new tool in the development of drugs against cognitive disorders.

  6. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    PubMed

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  7. Functionality of intrinsic disorder in tumor necrosis factor-α and its receptors.

    PubMed

    Uversky, Vladimir N; El-Baky, Nawal Abd; El-Fakharany, Esmail M; Sabry, Amira; Mattar, Ehab H; Uversky, Alexey V; Redwan, Elrashdy M

    2017-11-01

    Tumor necrosis factor-α (TNF-α) is a pleiotropic inflammatory cytokine that exerts potent cytotoxic effects on solid tumor cells, while not affecting their normal counterparts. It is also known that TNF-α exerts many of its biological functions via interaction with specific receptors. To understand the potential roles of intrinsic disorder in the functioning of this important cytokine, we explored the peculiarities of intrinsic disorder distribution in human TNF-α and its homologs from various species, ranging from zebrafish to chimpanzee. We also studied the peculiarities of intrinsic disorder distribution in human TNF-α receptors, TNFR1 and TNFR2. Analysis revealed that cytoplasmic domains of TNF-α and its receptors are expected to be highly disordered. Furthermore, although the sequence identities of analyzed TNF-α homologs range from 99.57% (between human and chimpanzee proteins) to 22.33% (between frog and fish proteins), their intrinsic disorder profiles are characterized by a remarkable similarity. These observations indicate that the peculiarities of distribution of the intrinsic disorder propensity within the amino acid sequences are evolutionary conserved, and therefore could be of functional importance for this family of proteins. We also show that disordered and flexible regions of human TNF-α and its TNFR1 and TNFR2 receptors are crucial for some of their biological activities. © 2017 Federation of European Biochemical Societies.

  8. Specific receptors for epidermal growth factor in rat intestinal microvillus membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.F.

    Epidermal growth factor (EGF) is present in high concentrations in milk, salivary, and pancreaticobiliary secretions. EGF, delivered to the intestinal lumen by these fluids, appears to influence intestinal proliferation. Because EGF exerts its mitogenic effect through binding to specific membrane-bound receptors, binding studies of {sup 125}I-labeled EGF to purified microvillus membrane (MVM) preparations fetal, newborn, and adult rat small intestine were performed. Using the membrane filter technique, binding of {sup 125}I-EGF to adult MVM was specific, saturable, and reversible. Adult and fetal MVM binding was rapid and reached a plateau after 30 min at both 20 and 37{degree}C. No bindingmore » was detected at 4{degree}C. Specific binding increased linearly from 0 to 75 {mu}g MVM protein. Scatchard analysis revealed a single class of receptors in fetal and adult MVM with an association constant of 1.0 {+-} 0.35 {times} 10{sup 9} and 2.3 {+-} 1.6 {times} 10{sup 9} M{sup {minus}1}, respectively. Binding capacity was 435.0 {+-} 89 and 97.7 {+-} 41.3 fmol {sup 125}I-EGF bound/mg MVM protein for fetal and adult MVM, respectively. Newborn MVM binding was negligible. After binding, cross-linking utilizing disuccinimidyl suberate, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography revealed a 170-kDa receptor. These data demonstrate specific receptors for EGF on MVM of rat small intestine and, thus, suggest a mechanism for the intraluminal regulation of enterocyte proliferation by EGF.« less

  9. GABAA receptor positive allosteric modulators modify the abuse-related behavioral and neurochemical effects of methamphetamine in rhesus monkeys.

    PubMed

    Berro, Laís F; Andersen, Monica L; Tufik, Sergio; Howell, Leonard L

    2017-09-01

    GABA A receptor positive allosteric modulators (GABA A receptor modulators) are commonly used for the treatment of insomnia. Nevertheless, the effects of these compounds on psychostimulant-induced sleep impairment are poorly understood. Because GABA A receptor modulators have been shown to decrease the abuse-related effects of psychostimulants, the aim of the present study was to evaluate the effects of temazepam (0.3, 1.0 or 3.0 mg/kg) and eszopiclone (0.3, 1.0 or 3.0 mg/kg), two GABA A receptor modulators, on the behavioral neuropharmacology of methamphetamine in adult rhesus macaques (n = 5). Sleep-like measures and general daytime activity were evaluated with Actiwatch monitors. Methamphetamine self-administration (0.03 mg/kg/inf) was evaluated during morning sessions. Methamphetamine-induced dopamine overflow was assessed through in vivo microdialysis targeting the nucleus accumbens. Nighttime treatment with either temazepam or eszopiclone was ineffective in improving sleep-like measures disrupted by methamphetamine self-administration. Acute pretreatment with a low dose of temazepam before self-administration sessions increased methamphetamine self-administration without affecting normal daytime home-cage activity. At a high dose, acute temazepam pretreatment decreased methamphetamine self-administration and attenuated methamphetamine-induced increases in dopamine in the nucleus accumbens, without decreasing general daytime activity. Acute eszopiclone treatment exerted no effects on methamphetamine intake or drug-induced increases in dopamine. Our study suggests that treatments based on GABA A receptor modulators are not effective for the treatment of sleep disruption in the context of psychostimulant use. In addition, distinct GABA A receptor modulators differentially modulated the abuse-related effects of methamphetamine, with acute treatment with the high efficacy GABA A receptor modulator temazepam decreasing the behavioral and neurochemical effects

  10. Increased tumor necrosis factor receptor 1 expression in human colorectal adenomas

    PubMed Central

    Hosono, Kunihiro; Yamada, Eiji; Endo, Hiroki; Takahashi, Hirokazu; Inamori, Masahiko; Hippo, Yoshitaka; Nakagama, Hitoshi; Nakajima, Atsushi

    2012-01-01

    AIM: To determine the expression statuses of tumor necrosis factor (TNF)-α, its receptors (TNF-R) and downstream effector molecules in human colorectal adenomas. METHODS: We measured the serum concentrations of TNF-α and its receptors in 62 colorectal adenoma patients and 34 healthy controls. The protein expression of TNF-α, TNF-R1, TNF-R2 and downstream signals of the TNF receptors, such as c-Jun N-terminal kinase (JNK), nuclear factor-κ B and caspase-3, were also investigated in human colorectal adenomas and in normal colorectal mucosal tissues by immunohistochemistry. Immunofluorescence confocal microscopy was used to investigate the consistency of expression of TNF-R1 and phospho-JNK (p-JNK). RESULTS: The serum levels of soluble TNF-R1 (sTNF-R1) in adenoma patients were significantly higher than in the control group (3.67 ± 0.86 ng/mL vs 1.57 ± 0.72 ng/mL, P < 0.001). Receiver operating characteristic analysis revealed the high diagnostic sensitivity of TNF-R1 measurements (AUC was 0.928) for the diagnosis of adenoma, and the best cut-off level of TNF-R1 was 2.08 ng/mL, with a sensitivity of 93.4% and a specificity of 82.4%. There were no significant differences in the serum levels of TNF-α or sTNF-R2 between the two groups. Immunohistochemistry showed high levels of TNF-R1 and p-JNK expression in the epithelial cells of adenomas. Furthermore, a high incidence of co-localization of TNF-R1 and p-JNK was identified in adenoma tissue. CONCLUSION: TNF-R1 may be a promising biomarker of colorectal adenoma, and it may also play an important role in the very early stages of colorectal carcinogenesis. PMID:23082052

  11. Epidermal growth factor receptor expression in primary cultured human colorectal carcinoma cells.

    PubMed Central

    Tong, W. M.; Ellinger, A.; Sheinin, Y.; Cross, H. S.

    1998-01-01

    In situ hybridization on human colon tissue demonstrates that epidermal growth factor receptor (EGFR) mRNA expression is strongly increased during tumour progression. To obtain test systems to evaluate the relevance of growth factor action during carcinogenesis, primary cultures from human colorectal carcinomas were established. EGFR distribution was determined in 2 of the 27 primary cultures and was compared with that in well-defined subclones derived from the Caco-2 cell line, which has the unique property to differentiate spontaneously in vitro in a manner similar to normal enterocytes. The primary carcinoma-derived cells had up to three-fold higher total EGFR levels than the Caco-2 subclones and a basal mitotic rate at least fourfold higher. The EGFR affinity constant is 0.26 nmol l(-1), which is similar to that reported in Caco-2 cells. The proliferation rate of Caco-2 cells is mainly induced by EGF from the basolateral cell surface where the majority of receptors are located, whereas primary cultures are strongly stimulated from the apical side also. This corresponds to a three- to fivefold higher level of EGFR at the apical cell surface. This redistribution of EGFR to apical plasma membranes in advanced colon carcinoma cells suggests that autocrine growth factors in the colon lumen may play a significant role during tumour progression. Images Figure 1 Figure 2 PMID:9667648

  12. Suppression of transient receptor potential melastatin 4 expression promotes conversion of endothelial cells into fibroblasts via transforming growth factor/activin receptor-like kinase 5 pathway.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Cabello-Verrugio, Claudio; Armisén, Ricardo; Varela, Diego; Simon, Felipe

    2015-05-01

    To study whether transient receptor potential melastatin 4 (TRPM4) participates in endothelial fibrosis and to investigate the underlying mechanism. Primary human endothelial cells were used and pharmacological and short interfering RNA-based approaches were used to test the transforming growth factor beta (TGF-β)/activin receptor-like kinase 5 (ALK5) pathway participation and contribution of TRPM7 ion channel. Suppression of TRPM4 expression leads to decreased endothelial protein expression and increased expression of fibrotic and extracellular matrix markers. Furthermore, TRPM4 downregulation increases intracellular Ca levels as a potential condition for fibrosis. The underlying mechanism of endothelial fibrosis shows that inhibition of TRPM4 expression induces TGF-β1 and TGF-β2 expression, which act through their receptor, ALK5, and the nuclear translocation of the profibrotic transcription factor smad4. TRPM4 acts to maintain endothelial features and its loss promotes fibrotic conversion via TGF-β production. The regulation of TRPM4 levels could be a target for preserving endothelial function during inflammatory diseases.

  13. Factors that positively influence breastfeeding duration to 6 months: a literature review.

    PubMed

    Meedya, Shahla; Fahy, Kathleen; Kable, Ashley

    2010-12-01

    What modifiable factors positively influence breastfeeding duration to 6 months postpartum? This question was posed in order to be able to develop a midwifery intervention aimed at prolonging breastfeeding. An online literature search was conducted in Medline, CINAHL, Maternity and Infant Care, and Cochrane Database of systematic reviews. The search strategy included the following keywords: breastfeeding, duration, initiation, cessation, factors, intervention, education, partner, intention, confidence, self-efficacy and support. Additional studies were located and extracted from online publications of New South Wales Department of Health, Australia. Bio-psycho-social factors that are positively associated with breastfeeding duration were identified. Modifiable factors that influence women's breastfeeding decisions are: breastfeeding intention, breastfeeding self-efficacy and social support. Existing midwifery breastfeeding promotion strategies often include social support but do not adequately address attempts to modify breastfeeding intention and self-efficacy. The modifiable factors that are positively associated with breastfeeding duration are the woman's breastfeeding intention, her breastfeeding self-efficacy and her social support. Intervention studies to date have focussed on modifying these factors individually with variable results. No interventional studies have been conducted with the aim of positively modifying all three factors simultaneously. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  14. Neurotrophin receptor structure and interactions.

    PubMed

    Yano, H; Chao, M V

    2000-03-01

    Although ligand-induced dimerization or oligomerization of receptors is a well established mechanism of growth factor signaling, increasing evidence indicates that biological responses are often mediated by receptor trans-signaling mechanisms involving two or more receptor systems. These include G protein-coupled receptors, cytokine, growth factor and trophic factor receptors. Greater flexibility is provided when different signaling pathways are merged through multiple receptor signaling systems. Trophic factors exemplified by NGF and its family members, ciliary neurotrophic factor (CNTF) and glial derived neurotrophic factor (GDNF) all utilize increased tyrosine phosphorylation of cellular substrates to mediate neuronal cell survival. Actions of the NGF family of neurotrophins are not only dictated by ras activation through the Trk family of receptor tyrosine kinases, but also a survival pathway defined by phosphatidylinositol-3-kinase activity (Yao and Cooper, 1995), which gives rise to phosphoinositide intermediates that activate the serine/threonine kinase Akt/PKB (Dudek et al., 1997). Induction of the serine-threonine kinase activity is critical for cell survival, as well as cell proliferation. Hence, for many trophic factors, multiple proteins constitute a functional multisubunit receptor complex that activates ras-dependent and ras-independent intracellular signaling. The NGF receptors provide an example of bidirectional crosstalk. In the presence of TrkA receptors, p75 can participate in the formation of high affinity binding sites and enhanced neurotrophin responsiveness leading to a survival or differentiation signal. In the absence of TrkA receptors, p75 can generate, in only specific cell populations, a death signal. These activities include the induction of NF kappa B (Carter et al., 1996); the hydrolysis of sphingomyelin to ceramide (Dobrowsky et al., 1995); and the pro-apoptotic functions attributed to p75. Receptors are generally drawn and viewed as

  15. Structural Basis for Activation of the Receptor Tyrosine Kinase KIT by Stem Cell Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuzawa,S.; Opatowsky, Y.; Zhang, Z.

    2007-01-01

    Stem Cell Factor (SCF) initiates its multiple cellular responses by binding to the ectodomain of KIT, resulting in tyrosine kinase activation. We describe the crystal structure of the entire ectodomain of KIT before and after SCF stimulation. The structures show that KIT dimerization is driven by SCF binding whose sole role is to bring two KIT molecules together. Receptor dimerization is followed by conformational changes that enable lateral interactions between membrane proximal Ig-like domains D4 and D5 of two KIT molecules. Experiments with cultured cells show that KIT activation is compromised by point mutations in amino acids critical for D4-D4more » interaction. Moreover, a variety of oncogenic mutations are mapped to the D5-D5 interface. Since key hallmarks of KIT structures, ligand-induced receptor dimerization, and the critical residues in the D4-D4 interface, are conserved in other receptors, the mechanism of KIT stimulation unveiled in this report may apply for other receptor activation.« less

  16. De-Escalation Strategies in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Early Breast Cancer (BC): Final Analysis of the West German Study Group Adjuvant Dynamic Marker-Adjusted Personalized Therapy Trial Optimizing Risk Assessment and Therapy Response Prediction in Early BC HER2- and Hormone Receptor-Positive Phase II Randomized Trial-Efficacy, Safety, and Predictive Markers for 12 Weeks of Neoadjuvant Trastuzumab Emtansine With or Without Endocrine Therapy (ET) Versus Trastuzumab Plus ET.

    PubMed

    Harbeck, Nadia; Gluz, Oleg; Christgen, Matthias; Kates, Ronald Ernest; Braun, Michael; Küemmel, Sherko; Schumacher, Claudia; Potenberg, Jochem; Kraemer, Stefan; Kleine-Tebbe, Anke; Augustin, Doris; Aktas, Bahriye; Forstbauer, Helmut; Tio, Joke; von Schumann, Raquel; Liedtke, Cornelia; Grischke, Eva-Maria; Schumacher, Johannes; Wuerstlein, Rachel; Kreipe, Hans Heinrich; Nitz, Ulrike Anneliese

    2017-09-10

    Purpose Human epidermal growth factor receptor 2 (HER2)-positive/hormone receptor (HR)-positive breast cancer is a distinct subgroup associated with lower chemotherapy sensitivity and slightly better outcome than HER2-positive/HR-negative disease. Little is known about the efficacy of the combination of endocrine therapy (ET) with trastuzumab or with the potent antibody-cytotoxic, anti-HER2 compound trastuzumab emtansine (T-DM1) with or without ET for this subgroup. The West German Study Group trial, ADAPT (Adjuvant Dynamic Marker-Adjusted Personalized Therapy Trial Optimizing Risk Assessment and Therapy Response Prediction in Early Breast Cancer) compares pathologic complete response (pCR) rates of T-DM1 versus trastuzumab with ET in early HER2-positive/HR-positive breast cancer. Patients and Methods In this prospective, neoadjuvant, phase II trial, 375 patients with early breast cancer with HER2-positive and HR-positive status (n = 463 screened) were randomly assigned to 12 weeks of T-DM1 with or without ET or to trastuzumab with ET. The primary end point was pCR (ypT0/is/ypN0). Early response was assessed in 3-week post-therapeutic core biopsies (proliferation decrease ≥ 30% Ki-67 or cellularity response). Secondary end points included safety and predictive impact of early response on pCR. Adjuvant therapy followed national standards. Results Baseline characteristics were well balanced among the arms. More than 90% of patients completed the therapy per protocol. pCR was observed in 41.0% of patients treated with T-DM1, 41.5% of patients treated with T-DM1 and ET, and 15.1% with trastuzumab and ET ( P < .001). Early responders (67% of patients with assessable response) achieved pCR in 35.7% compared with 19.8% in nonresponders (odds ratio, 2.2; 95% CI, 1.24 to 4.19). T-DM1 was associated with a significantly higher prevalence of grade 1 to 2 toxicities, especially thrombocytopenia, nausea, and elevation of liver enzymes. Overall toxicity was low; seventeen

  17. The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells.

    PubMed

    Eierhoff, Thorsten; Hrincius, Eike R; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina

    2010-09-09

    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake.

  18. The Epidermal Growth Factor Receptor (EGFR) Promotes Uptake of Influenza A Viruses (IAV) into Host Cells

    PubMed Central

    Eierhoff, Thorsten; Hrincius, Eike R.; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina

    2010-01-01

    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake. PMID:20844577

  19. Expression of nerve growth factor and its receptor, tyrosine kinase receptor A, in rooster testes.

    PubMed

    Ma, Wei; Wang, Chunqiang; Su, Yuhong; Tian, Yumin; Zhu, Hongyan

    2015-10-01

    Nerve growth factor (NGF), which is required for the survival and differentiation of the nervous system, is also thought to play an important role in the development of mammalian reproductive tissues. To explore the function of NGF in the male reproductive system of non-mammalian animals, we determined the presence of NGF and its receptor, tyrosine kinase receptor A (TrkA), in rooster testes and investigated the regulation of NGF and TrkA expression by follicle-stimulating hormone (FSH). The mRNA and protein levels of NGF and TrkA in 6-week-old rooster testes were lower than those in 12-, 16- or 20-week age groups; levels were highest in the 16-week group. Immunohistochemistry showed that NGF and TrkA were both detected in spermatogonia, spermatocytes and spermatids. NGF immunoreactivity was observed in Leydig cells and strong TrkA signals were present in Sertoli cells. Meanwhile, FSH increased TrkA transcript levels in rooster testes in a dose-dependent manner. We present novel evidence for the developmental and FSH-regulated expression of the NGF/TrkA system, and our findings suggest that the NGF/TrkA system may play a prominent role in chicken spermatogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Opposite Role of Tumor Necrosis Factor Receptors in Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Wang, Yi; Liu, Guijun; Wang, Renxi; Xiao, He; Li, Xinying; Hou, Chunmei; Shen, Beifen; Guo, Renfeng; Li, Yan; Shi, Yanchun; Chen, Guojiang

    2012-01-01

    Tumor necrosis factor-α (TNF-α) is a key factor for the pathogenesis of inflammatory bowel diseases (IBD), whose function is known to be mediated by TNF receptor 1 (TNFR1) or 2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, acute colitis was induced by dextran sulfate sodium (DSS) instillation in TNFR1 or 2−/− mice. TNFR1 ablation led to exacerbation of signs of colitis, including more weight loss, increased mortality, colon shortening and oedema, severe intestinal damage, and higher levels of myeloperoxidase compared to wild-type counterparts. While, TNFR2 deficiency had opposite effects. This discrepancy was reflected by alteration of proinflammatory cytokine and chemokine production in the colons. Importantly, TNFR1 ablation rendered enhanced apoptosis of colonic epithelial cells and TNFR2 deficiency conferred pro-apoptotic effects of lamina propria (LP)-immune cells, as shown by the decreased ratio of Bcl-2/Bax and enhanced nuclear factor (NF)-κB activity. PMID:23285227

  1. The selective positive allosteric M1 muscarinic receptor modulator PQCA attenuates learning and memory deficits in the Tg2576 Alzheimer's disease mouse model.

    PubMed

    Puri, Vanita; Wang, Xiaohai; Vardigan, Joshua D; Kuduk, Scott D; Uslaner, Jason M

    2015-01-01

    We have recently shown that the M1 muscarinic receptor positive allosteric modulator, PQCA, improves cognitive performance in rodents and non-human primates administered the muscarinic receptor antagonist scopolamine. The purpose of the present experiments was to characterize the effects of PQCA in a model more relevant to the disease pathology of Alzheimer's disease. Tg2576 transgenic mice that have elevated Aβ were tested in the novel object recognition task to characterize recognition memory as a function of age and treatment with the PQCA. The effects of PQCA were compared to the acetylcholinesterase inhibitor donepezil, the standard of care for Alzheimer's disease. In addition, the effect of co-administering PQCA and donepezil was evaluated. Aged Tg2576 mice demonstrated a deficit in recognition memory that was significantly attenuated by PQCA. The positive control donepezil also reversed the deficit. Furthermore, doses of PQCA and donepezil that were inactive on their own were found to improve recognition memory when given together. These studies suggest that M1 muscarinic receptor positive allosteric modulation can ameliorate memory deficits in disease relevant models of Alzheimer's disease. These data, combined with our previous findings demonstrating PQCA improves scopolamine-induced cognitive deficits in both rodents and non-human primates, suggest that M1 positive allosteric modulators have therapeutic potential for the treatment of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Li-Juan; Liao, Lan; Yang, Li

    MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and blockmore » of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis.« less

  3. Vascular endothelial growth factor c/vascular endothelial growth factor receptor 3 signaling regulates chemokine gradients and lymphocyte migration from tissues to lymphatics.

    PubMed

    Iwami, Daiki; Brinkman, C Colin; Bromberg, Jonathan S

    2015-04-01

    Circulation of leukocytes via blood, tissue and lymph is integral to adaptive immunity. Afferent lymphatics form CCL21 gradients to guide dendritic cells and T cells to lymphatics and then to draining lymph nodes (dLN). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 (VEGFR-3) are the major lymphatic growth factor and receptor. We hypothesized these molecules also regulate chemokine gradients and lymphatic migration. CD4 T cells were injected into the foot pad or ear pinnae, and migration to afferent lymphatics and dLN quantified by flow cytometry or whole mount immunohistochemistry. Vascular endothelial growth factor receptor 3 or its signaling or downstream actions were modified with blocking monoclonal antibodies (mAbs) or other reagents. Anti-VEGFR-3 prevented migration of CD4 T cells into lymphatic lumen and significantly decreased the number that migrated to dLN. Anti-VEGFR-3 abolished CCL21 gradients around lymphatics, although CCL21 production was not inhibited. Heparan sulfate (HS), critical to establish CCL21 gradients, was down-regulated around lymphatics by anti-VEGFR-3 and this was dependent on heparanase-mediated degradation. Moreover, a Phosphoinositide 3-kinase (PI3K)α inhibitor disrupted HS and CCL21 gradients, whereas a PI3K activator prevented the effects of anti-VEGFR-3. During contact hypersensitivity, VEGFR-3, CCL21, and HS expression were all attenuated, and anti-heparanase or PI3K activator reversed these effects. Vascular endothelial growth factor C/VEGFR-3 signaling through PI3Kα regulates the activity of heparanase, which modifies HS and CCL21 gradients around lymphatics. The functional and physical linkages of these molecules regulate lymphatic migration from tissues to dLN. These represent new therapeutic targets to influence immunity and inflammation.

  4. Identification of amino acids in the transmembrane and juxtamembrane domains of the platelet-derived growth factor receptor required for productive interaction with the bovine papillomavirus E5 protein.

    PubMed

    Petti, L M; Reddy, V; Smith, S O; DiMaio, D

    1997-10-01

    The bovine papillomavirus E5 protein forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in receptor activation and cell transformation. Amino acids in both the putative transmembrane domain and extracytoplasmic carboxyl-terminal domain of the E5 protein appear important for PDGF receptor binding and activation. Previous analysis indicated that the transmembrane domain of the receptor was also required for complex formation and receptor activation. Here we analyzed receptor chimeras and point mutants to identify specific amino acids in the PDGF beta receptor required for productive interaction with the E5 protein. These receptor mutants were analyzed in murine Ba/F3 cells, which do not express endogenous receptor. Our results confirmed the importance of the transmembrane domain of the receptor for complex formation, receptor tyrosine phosphorylation, and mitogenic signaling in response to the E5 protein and established that the threonine residue in this domain is required for these activities. In addition, a positive charge in the extracellular juxtamembrane domain of the receptor was required for E5 interaction and signaling, whereas replacement of the wild-type lysine with either a neutral or acidic amino acid inhibited E5-induced receptor activation and transformation. All of the receptor mutants defective for activation by the E5 protein responded to acute treatment with PDGF and to stable expression of v-Sis, a form of PDGF. The required juxtamembrane lysine and transmembrane threonine are predicted to align precisely on the same face of an alpha helix packed in a left-handed coiled-coil geometry. These results establish that the E5 protein and v-Sis recognize distinct binding sites on the PDGF beta receptor and further clarify the nature of the interaction between the viral transforming protein and its cellular target.

  5. Epidermal growth factor receptor mutations in 510 Finnish non--small-cell lung cancer patients.

    PubMed

    Mäki-Nevala, Satu; Rönty, Mikko; Morel, Mike; Gomez, Maria; Dawson, Zoe; Sarhadi, Virinder Kaur; Telaranta-Keerie, Aino; Knuuttila, Aija; Knuutila, Sakari

    2014-06-01

    Among the driver gene mutations in non-small-cell lung cancer, mutations in epidermal growth factor receptor (EGFR) are the most important because of their predictive role in selecting patients eligible for targeted therapy. Our aim was to study EGFR mutations in a Finnish non-small-cell lung cancer cohort of 528 patients. Mutation testing was conducted on DNA extracted from paraffin-embedded, formalin-fixed tumor material using the following real-time polymerase chain reaction-based kits: Therascreen EGFR PCR Kit and cobas EGFR Mutation Test. EGFR mutation frequency was 11.4% and all positive cases were adenocarcinomas, of which a majority had an acinar predominant pattern. Mutations were seen significantly more often in females and never-smokers than in males and smokers. The most frequent mutations were L858R in exon 21 and deletions in exon 19. Overall survival of the patients, not treated with EGFR inhibitor, did not differ between EGFR mutation-positive and EGFR mutation-negative patients. EGFR mutation profile in this Finnish non-small-cell lung cancer cohort resembles in many respect with that of other Western European cohorts, even though the overall frequency of mutations is slightly higher. We show the occurrence of EGFR mutations in patients with occupational asbestos exposure and also in those diagnosed with chronic obstructive pulmonary disease who have not been often investigated before.

  6. Proliferation of NS0 cells in protein-free medium: the role of cell-derived proteins, known growth factors and cellular receptors.

    PubMed

    Spens, Erika; Häggström, Lena

    2009-05-20

    NS0 cells proliferate without external supply of growth factors in protein-free media. We hypothesize that the cells produce their own factors to support proliferation. Understanding the mechanisms behind this autocrine regulation of proliferation may open for the novel approaches to improve animal cell processes. The following proteins were identified in NS0 conditioned medium (CM): cyclophilin A, cyclophilin B (CypB), cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerase, macrophage migration inhibitory factor (MIF), beta(2)-microglobulin, Niemann pick type C2, secretory leukocyte protease inhibitor, thioredoxin-1, TNF-alpha, tumour protein translationally controlled 1 and ubiquitin. Further, cDNA microarray analysis indicated that the genes for IL-11, TNF receptor 6, TGF-beta receptor 1 and the IFN-gamma receptor were transcribed. CypB, IFN-alpha/beta/gamma, IL-11, IL-25, MIF, TGF-beta and TNF-alpha as well as the known growth factors EGF, IGF-I/II, IL-6, leukaemia inhibitory factor and oncostatin M (OSM) were excluded as involved in autocrine regulation of NS0 cell proliferation. The receptors for TGF-beta, IGF and OSM are however present in NS0 cell membranes since TGF-beta(1) caused cell death, and IGF-I/II and OSM improved cell growth. Even though no ligand was found, the receptor subunit gp130, active in signal transduction of the IL-6 like proteins, was shown to be essential for NS0 cells as demonstrated by siRNA gene silencing.

  7. Regulation of atrial natriuretic peptide clearance receptors in mesangial cells by growth factors.

    PubMed

    Paul, R V; Wackym, P S; Budisavljevic, M; Everett, E; Norris, J S

    1993-08-25

    Rat mesangial cells can express both 130-kDa guanylyl cyclase-coupled and 66-kDa non-coupled atrial natriuretic peptide (ANP) receptors (ANPR-A and ANPR-C, respectively). Exposure of mesangial cells, grown in 20% fetal calf serum, to 0.1% serum for 24 h increased total ANP receptor density more than 2-fold (Bmax = 87 versus 37 fmol/mg of cell protein) without changing binding affinity (Kd = 94 versus 88 pM). Radioligand binding and cross-linking studies demonstrated that up-regulation of ANP binding after serum deprivation was entirely due to an increase in ANPR-C, with little or no change in ANPR-A. Inhibition of protein synthesis with cycloheximide blocked up-regulation after serum deprivation. Steady-state ANPR-C mRNA level was increased 15-fold by serum deprivation, as judged by Northern blotting. There was no change in ANPR-A mRNA. Platelet-derived growth factor and phorbol myristate acetate, when added to low serum medium, blocked or reversed the effect of serum deprivation on ANPR-C. We conclude that synthesis and expression of ANPR-C but not ANPR-A is suppressed by serum, platelet-derived growth factor, and phorbol myristate acetate. Suppression of ANPR-C in vivo could contribute to mesangial cell proliferative responses to growth factors.

  8. HER2-positive male breast cancer: an update

    PubMed Central

    Ottini, Laura; Capalbo, Carlo; Rizzolo, Piera; Silvestri, Valentina; Bronte, Giuseppe; Rizzo, Sergio; Russo, Antonio

    2010-01-01

    Although rare, male breast cancer (MBC) remains a substantial cause for morbidity and mortality in men. Based on age frequency distribution, age-specific incidence rate pattern, and prognostic factor profiles, MBC is considered similar to postmenopausal breast cancer (BC). Compared with female BC (FBC), MBC cases are more often hormonal receptor (estrogen receptor/progesterone receptor [ER/PR]) positive and human epidermal growth factor receptor 2 (HER2) negative. Treatment of MBC patients follows the same indications as female postmenopausal with surgery, systemic therapy, and radiotherapy. To date, ER/PR and HER2 status provides baseline predictive information used in selecting optimal adjuvant/neoadjuvant therapy and in the selection of therapy for recurrent or metastatic disease. HER2 represents a very interesting molecular target and a number of compounds (trastuzumab [Herceptin®; F. Hoffmann-La Roche, Basel, Switzerland] and lapatinib [Tykerb®, GlaxoSmithKline, London, UK]) are currently under clinical evaluation. Particularly, trastuzumab, a monoclonal antibody which selectively binds the extracellular domain of HER2, has become an important therapeutic agent for women with HER2-positive (HER2+) BC. Currently, data regarding the use of trastuzumab in MBC patients is limited and only few case reports exist. In all cases, MBC patients received trastuzumab concomitantly with other drugs and no severe toxicity above grade 3 was observed. However, MBC patients that would be candidate for trastuzumab therapy (ie, HER2+/ER+ or HER2+/ER− MBCs) represent only a very small percentage of MBC cases. This is noteworthy, when taking into account that trastuzumab is an important and expensive component of systemic BC therapy. Since there is no data supporting the fact that response to therapy is different for men or women, we concluded that systemic therapy in MBC should be considered on the same basis as for FBC. Particularly in male patients, trastuzumab should be

  9. Coupling chemical transport model source attributions with positive matrix factorization: application to two IMPROVE sites impacted by wildfires.

    PubMed

    Sturtz, Timothy M; Schichtel, Bret A; Larson, Timothy V

    2014-10-07

    Source contributions to total fine particle carbon predicted by a chemical transport model (CTM) were incorporated into the positive matrix factorization (PMF) receptor model to form a receptor-oriented hybrid model. The level of influence of the CTM versus traditional PMF was varied using a weighting parameter applied to an object function as implemented in the Multilinear Engine (ME-2). The methodology provides the ability to separate features that would not be identified using PMF alone, without sacrificing fit to observations. The hybrid model was applied to IMPROVE data taken from 2006 through 2008 at Monture and Sula Peak, Montana. It was able to separately identify major contributions of total carbon (TC) from wildfires and minor contributions from biogenic sources. The predictions of TC had a lower cross-validated RMSE than those from either PMF or CTM alone. Two unconstrained, minor features were identified at each site, a soil derived feature with elevated summer impacts and a feature enriched in sulfate and nitrate with significant, but sporadic contributions across the sampling period. The respective mean TC contributions from wildfires, biogenic emissions, and other sources were 1.18, 0.12, and 0.12 ugC/m(3) at Monture and 1.60, 0.44, and 0.06 ugC/m(3) at Sula Peak.

  10. Targeting mutant fibroblast growth factor receptors in cancer.

    PubMed

    Greulich, Heidi; Pollock, Pamela M

    2011-05-01

    Fibroblast growth factor receptors (FGFRs) play diverse roles in the control of cell proliferation, cell differentiation, angiogenesis and development. Activating the mutations of FGFRs in the germline has long been known to cause a variety of skeletal developmental disorders, but it is only recently that a similar spectrum of somatic FGFR mutations has been associated with human cancers. Many of these somatic mutations are gain-of-function and oncogenic and create dependencies in tumor cell lines harboring such mutations. A combination of knockdown studies and pharmaceutical inhibition in preclinical models has further substantiated genomically altered FGFR as a therapeutic target in cancer, and the oncology community is responding with clinical trials evaluating multikinase inhibitors with anti-FGFR activity and a new generation of specific pan-FGFR inhibitors. Copyright © 2011. Published by Elsevier Ltd.

  11. Cloning, expression of, and evidence of positive selection for, the prolactin receptor gene in Chinese giant salamander (Andrias davidianus).

    PubMed

    Hu, Qiaomu; Meng, Yan; Tian, Haifeng; Chen, Songlin; Xiao, Hanbing

    2015-12-01

    Prolactin receptor (PRLR) is a protein associated with reproduction in mammals and with osmoregulation in fish. In this study, the complete length of Chinese giant salamander Andrias davidianus prolactin receptor (AD-prlr) was cloned. Andrias davidianus prlr expression was high in the kidney, pituitary, and ovary and low in other examined tissues. The AD-prlr levels were higher in ovary than in testis, and increased in ovaries with age from 1 to 6 years. To determine effect of exogenous androgen and aromatase inhibitor on AD-prlr expression, methyltestosterone (MT) and letrozole (LE) were injected, resulting in decreased AD-prlr in both brain and ovary, with MT repressing prlr transcription more rapidly than did LE. The molecular evolution of prlr was assessed, and found to have undergone a complex evolution process. The obranch-site test detected four positively selected sites in ancestral lineages prior to the separation of mammals and birds. Fourteen sites underwent positive selection in ancestral lineages of birds and six were positively selected in amphibians. The site model showed that 16, 7, and 30 sites underwent positive selection in extant mammals, amphibians, and birds, respectively. The positively selected sites in amphibians were located outside the transmembrane domain, with four in the extracellular and three in the intracellular domain, indicating that the transmembrane region might be conserved and essential for protein function. Our findings provide a basis for further studies of AD-prlr function and molecular evolution in Chinese giant salamander. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 707-719, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. SERUM LEVELS OF FIBROBLAST GROWTH FACTOR-23, OSTEOPROTEGERIN, AND RECEPTOR ACTIVATOR OF NUCLEAR FACTOR KAPPA B LIGAND IN PATIENTS WITH PROLACTINOMA.

    PubMed

    Arslan, Muyesser Sayki; Sahin, Mustafa; Karakose, Melia; Tutal, Esra; Topaloglu, Oya; Ucan, Bekir; Demirci, Taner; Caliskan, Mustafa; Ozdemir, Seyda; Ozbek, Mustafa; Cakal, Erman

    2017-03-01

    The aim of this study to was to evaluate the effect of fibroblast growth factor-23 (FGF-23), osteoprotegerin (OPG), receptor activator nuclear κB ligand (RANKL), and vitamin D hormones on bone loss in patients with hyperprolactinemia due to pituitary prolactinoma. We recruited 46 premenopausal female patients with prolactinoma and age and sex-matched healthy controls (Group 3, n = 20) for this cross-sectional study. Prolactinoma patients were divided into 2 groups as patients newly diagnosed (Group 1, n = 26) and those under cabergoline treatment (Group 2, n = 20). Anthropometric and metabolic variables; hormonal profiles; and osteocalcin, deoxypyridinoline (DOP), and bone mineral density measurements were performed for all participants. FGF-23, OPG, and RANKL levels were analyzed in all groups. FGF-23, OPG, calcium, phosphorus, and parathormone levels were similar between all groups despite significantly higher levels in the control group in terms of vitamin D and RANKL levels than in patients. Bone loss was found more in Group 2, particularly observed in Z scores of femur and spinal bone (P<.05). Correlation analysis revealed a negative correlation between FGF-23 and femur neck T score (r = -0.0433, P = .05) in patients with active prolactinoma. A positive correlation was also observed between parameters of DOP and OPG (r = 0.673, P = .02). In patients with remission there were a negative correlation between prolactin and luteinizing hormone (r = -600, P = .08). Additionally, a negative correlation was found between osteocalcin and osteoprotegerin in patients in remission (r = -0.73, P = .01). Our data indicated that FGF-23 and OPG levels do not play a critical role on the development of bone decrease in patients with hyperprolactinemia. However, further prospective studies in larger numbers of participants should be designed to clarify this issue. BFP = body fat percentage BMD = bone mineral density BMI = body mass index CV = coefficient of variation DOP

  13. Nitric oxide donor restores lung growth factor and receptor expression in hyperoxia-exposed rat pups.

    PubMed

    Lopez, Emmanuel; Boucherat, Olivier; Franco-Montoya, Marie-Laure; Bourbon, Jacques R; Delacourt, Christophe; Jarreau, Pierre-Henri

    2006-06-01

    Exposure of newborn rats to hyperoxia impairs alveolarization. Nitric oxide (NO) may prevent this evolution. Angiogenesis and factors involved in this process, but also other growth factors (GFs) involved in alveolar development, are likely potential therapeutic targets for NO. We studied the effects of the NO donor, [Z]-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)aminio]diazen-1-ium-1, 2-diolate, also termed DETANONOate (D-NO), on hyperoxia-induced changes in key regulatory factors of alveolar development in neonatal rats, and its possible preventive effect on the physiologic consequences of hyperoxia. Newborn rat pups were randomized at birth to hyperoxia (> 95% O2) or room air exposure for 6 or 10 d, while receiving D-NO or its diluent. On Day 6, several GFs and their receptors were studied at pre- and/or post-translational levels. Elastin transcript determination on Day 6, and elastin deposition in tissue and morphometric analysis of the lungs on Day 10, were also performed. Hyperoxia decreased the expression of vascular endothelial growth factor (VEGF) receptor (VEGFR) 2, fibroblast growth factor (FGF)-18, and FGF receptors (FGFRs) FGFR3 and FGFR4, increased mortality, and impaired alveolarization and capillary growth. D-NO treatment of hyperoxia-exposed pups restored the expression level of FGF18 and FGFR4, induced an increase of both VEGF mRNA and protein, enhanced elastin expression, and partially restored elastin deposition in alveolar walls. Although, under the present conditions, D-NO failed to prevent the physiologic consequences of hyperoxia in terms of survival and lung alveolarization, our findings demonstrate molecular effects of NO on GFs involved in alveolar development that may have contributed to the protective effects previously reported for NO.

  14. HPLC-Based Activity Profiling: Discovery of Piperine as a Positive GABAA Receptor Modulator Targeting a Benzodiazepine-Independent Binding Site

    PubMed Central

    Zaugg, Janine; Baburin, Igor; Strommer, Barbara; Kim, Hyun-Jung; Hering, Steffen; Hamburger, Matthias

    2011-01-01

    A plant extract library was screened for GABAA receptor activity making use of a two-microelectrode voltage clamp assay on Xenopus laevis oocytes. An ethyl acetate extract of black pepper fruits [Piper nigrum L. (Piperaceae) 100 μg/mL] potentiated GABA-induced chloride currents through GABAA receptors (composed of α1, β2, and γ2S subunits) by 169.1 ± 2.4%. With the aid of an HPLC-based activity profiling approach, piperine (5) was identified as the main active compound, together with 12 structurally related less active or inactive piperamides (1–4, 6–13). Identification was achieved by on-line high-resolution mass spectrometry and off-line microprobe 1D and 2D NMR spectroscopy, using only milligram amounts of extract. Compound 5 induced a maximum potentiation of the chloride currents by 301.9 ± 26.5% with an EC50 of 52.4 ± 9.4 μM. A comparison of the modulatory activity of 5 and other naturally occurring piperamides enabled insights into structural features critical for GABAA receptor modulation. The stimulation of chloride currents through GABAA receptors by compound 5 was not antagonized by flumazenil (10 μM). These data show that piperine (5) represents a new scaffold of positive allosteric GABAA receptor modulators targeting a benzodiazepine-independent binding site. PMID:20085307

  15. Role of σ1 Receptors in Learning and Memory and Alzheimer's Disease-Type Dementia.

    PubMed

    Maurice, Tangui; Goguadze, Nino

    2017-01-01

    The present chapter will review the role of σ 1 receptor in learning and memory and neuroprotection , against Alzheimer's type dementia. σ 1 Receptor agonists have been tested in a variety of pharmacological and pathological models of learning impairments in rodents these last past 20 years. Their anti-amnesic effects have been explained by the wide-range modulatory role of σ 1 receptors on Ca 2+ mobilizations, neurotransmitter responses, and particularly glutamate and acetylcholine systems, and neurotrophic factors. Recent observations from genetic and pharmacological studies have shown that σ 1 receptor can also be targeted in neurodegenerative diseases, and particularly Alzheimer's disease . Several compounds, acting partly through the σ 1 receptor, have showed effective neuroprotection in transgenic mouse models of Alzheimer's disease . We will review the data and discuss the possible mechanisms of action, particularly focusing on oxidative stress and mitochondrial integrity, trophic factors and a novel hypothesis suggesting a functional interaction between the σ 1 receptor and α 7 nicotinic acetylcholine receptor. Finally, we will discuss the pharmacological peculiarities of non-selective σ 1 receptor ligands, now developed as neuroprotectants in Alzheimer's disease , and positive modulators, recently described and that showed efficacy against learning and memory deficits.

  16. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    PubMed

    Smits, A; Funa, K; Vassbotn, F S; Beausang-Linder, M; af Ekenstam, F; Heldin, C H; Westermark, B; Nistér, M

    1992-03-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions.

  17. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    PubMed Central

    Smits, A.; Funa, K.; Vassbotn, F. S.; Beausang-Linder, M.; af Ekenstam, F.; Heldin, C. H.; Westermark, B.; Nistér, M.

    1992-01-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1372158

  18. N-methyl-N'-nitro-N-nitrosoguanidine interferes with the epidermal growth factor receptor-mediated signaling pathway.

    PubMed

    Gao, Zhihua; Yang, Jun; Huang, Yun; Yu, Yingnian

    2005-03-01

    Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.

  19. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.

    PubMed

    Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas

    2011-03-09

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.

  20. Steroid receptor coactivator-3 regulates glucose metabolism in bladder cancer cells through coactivation of hypoxia inducible factor 1α.

    PubMed

    Zhao, Wei; Chang, Cunjie; Cui, Yangyan; Zhao, Xiaozhi; Yang, Jun; Shen, Lan; Zhou, Ji; Hou, Zhibo; Zhang, Zhen; Ye, Changxiao; Hasenmayer, Donald; Perkins, Robert; Huang, Xiaojing; Yao, Xin; Yu, Like; Huang, Ruimin; Zhang, Dianzheng; Guo, Hongqian; Yan, Jun

    2014-04-18

    Cancer cell proliferation is a metabolically demanding process, requiring high glycolysis, which is known as "Warburg effect," to support anabolic growth. Steroid receptor coactivator-3 (SRC-3), a steroid receptor coactivator, is overexpressed and/or amplified in multiple cancer types, including non-steroid targeted cancers, such as urinary bladder cancer (UBC). However, whether SRC-3 regulates the metabolic reprogramming for cancer cell growth is unknown. Here, we reported that overexpression of SRC-3 accelerated UBC cell growth, accompanied by the increased expression of genes involved in glycolysis. Knockdown of SRC-3 reduced the UBC cell glycolytic rate under hypoxia, decreased tumor growth in nude mice, with reduction of proliferating cell nuclear antigen and lactate dehydrogenase expression levels. We further revealed that SRC-3 could interact with hypoxia inducible factor 1α (HIF1α), which is a key transcription factor required for glycolysis, and coactivate its transcriptional activity. SRC-3 was recruited to the promoters of HIF1α-target genes, such as glut1 and pgk1. The positive correlation of expression levels between SRC-3 and Glut1 proteins was demonstrated in human UBC patient samples. Inhibition of glycolysis through targeting HK2 or LDHA decelerated SRC-3 overexpression-induced cell growth. In summary, overexpression of SRC-3 promoted glycolysis in bladder cancer cells through HIF1α to facilitate tumorigenesis, which may be an intriguing drug target for bladder cancer therapy.