Sample records for factor ref mrna

  1. Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1

    PubMed Central

    Hung, Ming-Lung; Hautbergue, Guillaume M.; Snijders, Ambrosius P. L.; Dickman, Mark J.; Wilson, Stuart A.

    2010-01-01

    The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA–protein interaction can be readily disrupted by export factors further down the pathway. PMID:20129943

  2. An oxidative DNA “damage” and repair mechanism localized in the VEGF promoter is important for hypoxia-induced VEGF mRNA expression

    PubMed Central

    Pastukh, Viktor; Roberts, Justin T.; Clark, David W.; Bardwell, Gina C.; Patel, Mita; Al-Mehdi, Abu-Bakr; Borchert, Glen M.

    2015-01-01

    In hypoxia, mitochondria-generated reactive oxygen species not only stimulate accumulation of the transcriptional regulator of hypoxic gene expression, hypoxia inducible factor-1 (Hif-1), but also cause oxidative base modifications in hypoxic response elements (HREs) of hypoxia-inducible genes. When the hypoxia-induced base modifications are suppressed, Hif-1 fails to associate with the HRE of the VEGF promoter, and VEGF mRNA accumulation is blunted. The mechanism linking base modifications to transcription is unknown. Here we determined whether recruitment of base excision DNA repair (BER) enzymes in response to hypoxia-induced promoter modifications was required for transcription complex assembly and VEGF mRNA expression. Using chromatin immunoprecipitation analyses in pulmonary artery endothelial cells, we found that hypoxia-mediated formation of the base oxidation product 8-oxoguanine (8-oxoG) in VEGF HREs was temporally associated with binding of Hif-1α and the BER enzymes 8-oxoguanine glycosylase 1 (Ogg1) and redox effector factor-1 (Ref-1)/apurinic/apyrimidinic endonuclease 1 (Ape1) and introduction of DNA strand breaks. Hif-1α colocalized with HRE sequences harboring Ref-1/Ape1, but not Ogg1. Inhibition of BER by small interfering RNA-mediated reduction in Ogg1 augmented hypoxia-induced 8-oxoG accumulation and attenuated Hif-1α and Ref-1/Ape1 binding to VEGF HRE sequences and blunted VEGF mRNA expression. Chromatin immunoprecipitation-sequence analysis of 8-oxoG distribution in hypoxic pulmonary artery endothelial cells showed that most of the oxidized base was localized to promoters with virtually no overlap between normoxic and hypoxic data sets. Transcription of genes whose promoters lost 8-oxoG during hypoxia was reduced, while those gaining 8-oxoG was elevated. Collectively, these findings suggest that the BER pathway links hypoxia-induced introduction of oxidative DNA modifications in promoters of hypoxia-inducible genes to transcriptional activation. PMID:26432868

  3. Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers.

    PubMed

    Domínguez-Sánchez, María S; Sáez, Carmen; Japón, Miguel A; Aguilera, Andrés; Luna, Rosa

    2011-02-17

    One key step in gene expression is the biogenesis of mRNA ribonucleoparticle complexes (mRNPs). Formation of the mRNP requires the participation of a number of conserved factors such as the THO complex. THO interacts physically and functionally with the Sub2/UAP56 RNA-dependent ATPase, and the Yra1/REF1/ALY RNA-binding protein linking transcription, mRNA export and genome integrity. Given the link between genome instability and cancer, we have performed a comparative analysis of the expression patterns of THOC1, a THO complex subunit, and ALY in tumor samples. The mRNA levels were measured by quantitative real-time PCR and hybridization of a tumor tissue cDNA array; and the protein levels and distribution by immunostaining of a custom tissue array containing a set of paraffin-embedded samples of different tumor and normal tissues followed by statistical analysis. We show that the expression of two mRNP factors, THOC1 and ALY are altered in several tumor tissues. THOC1 mRNA and protein levels are up-regulated in ovarian and lung tumors and down-regulated in those of testis and skin, whereas ALY is altered in a wide variety of tumors. In contrast to THOC1, ALY protein is highly detected in normal proliferative cells, but poorly in high-grade cancers. These results suggest a differential connection between tumorogenesis and the expression levels of human THO and ALY. This study opens the possibility of defining mRNP biogenesis factors as putative players in cell proliferation that could contribute to tumor development.

  4. Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers

    PubMed Central

    2011-01-01

    Background One key step in gene expression is the biogenesis of mRNA ribonucleoparticle complexes (mRNPs). Formation of the mRNP requires the participation of a number of conserved factors such as the THO complex. THO interacts physically and functionally with the Sub2/UAP56 RNA-dependent ATPase, and the Yra1/REF1/ALY RNA-binding protein linking transcription, mRNA export and genome integrity. Given the link between genome instability and cancer, we have performed a comparative analysis of the expression patterns of THOC1, a THO complex subunit, and ALY in tumor samples. Methods The mRNA levels were measured by quantitative real-time PCR and hybridization of a tumor tissue cDNA array; and the protein levels and distribution by immunostaining of a custom tissue array containing a set of paraffin-embedded samples of different tumor and normal tissues followed by statistical analysis. Results We show that the expression of two mRNP factors, THOC1 and ALY are altered in several tumor tissues. THOC1 mRNA and protein levels are up-regulated in ovarian and lung tumors and down-regulated in those of testis and skin, whereas ALY is altered in a wide variety of tumors. In contrast to THOC1, ALY protein is highly detected in normal proliferative cells, but poorly in high-grade cancers. Conclusions These results suggest a differential connection between tumorogenesis and the expression levels of human THO and ALY. This study opens the possibility of defining mRNP biogenesis factors as putative players in cell proliferation that could contribute to tumor development. PMID:21329510

  5. Persistent induction of c-fos and c-jun expression by asbestos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heintz, N.H.; Mossman, B.T.; Janssen, Y.M.

    To investigate the mechanisms of asbestos-induced carcinogenesis, expression of c-fos and c-jun protooncogenes was examined in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. In contrast to phorbol 12-myristate 13-acetate, which induces rapid and transient increases in c-fos and c-jun mRNA, asbestos causes 2- to 5-fold increases in c-fos and c-jun mRNA that persist for at least 24 hr in mesothelial cells. The induction of c-fos and c-jun mRNA by asbestos in mesothelial cells is dose-dependent and is most pronounced with crocidolite, the type of asbestos most pathogenic in the causation ofmore » pleural mesothelioma. Induction of c-jun gene expression by asbestos occurs in tracheal epithelial cells but is not accompanied by a corresponding induction of c-fos gene expression. In both cell types, asbestos induces increases in protein factors that bind specifically to the DNA sites that mediate gene expression by the AP-1 family of transcription factors. The persistent induction of AP-1 transcription factors by asbestos suggests a model of asbestos-induced carcinogenesis involving chronic stimulation of cell proliferation through activation of the early response gene pathway that includes c-jun and/or c-fos. 30 refs., 5 figs.« less

  6. Transterm—extended search facilities and improved integration with other databases

    PubMed Central

    Jacobs, Grant H.; Stockwell, Peter A.; Tate, Warren P.; Brown, Chris M.

    2006-01-01

    Transterm has now been publicly available for >10 years. Major changes have been made since its last description in this database issue in 2002. The current database provides data for key regions of mRNA sequences, a curated database of mRNA motifs and tools to allow users to investigate their own motifs or mRNA sequences. The key mRNA regions database is derived computationally from Genbank. It contains 3′ and 5′ flanking regions, the initiation and termination signal context and coding sequence for annotated CDS features from Genbank and RefSeq. The database is non-redundant, enabling summary files and statistics to be prepared for each species. Advances include providing extended search facilities, the database may now be searched by BLAST in addition to regular expressions (patterns) allowing users to search for motifs such as known miRNA sequences, and the inclusion of RefSeq data. The database contains >40 motifs or structural patterns important for translational control. In this release, patterns from UTRsite and Rfam are also incorporated with cross-referencing. Users may search their sequence data with Transterm or user-defined patterns. The system is accessible at . PMID:16381889

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Ze; Shuldiner, A.R.; Zenilman, M.E.

    There are two insulin receptor (IR) isoforms (designated type A and type B), derived from alternative splicing of exon 11 of the IR gene. Recently, we reported that an increase in the exon 11- (i.e. lacking exon 11) (type A) IR messenger RNA (mRNA) variant in muscle is associated with hyperinsulinemia, an early risk factor for noninsulin-dependent diabetes mellitus (NIDDM), in the spontaneously obese, diabetic rhesus monkey. To explore further the role of IR mRNA splicing in insulin resistance of NIDDM, we studied liver, another target organ that is resistant to insulin action in NIDDM. The relative amounts of themore » two IR mRNA-splicing variants in liver were quantitated by RT-PCR in normal, prediabetic, and diabetic (NIDDM) monkeys. The percentage of the exon 11- mRNA variant in liver (n = 24) was significantly correlated with fasting plasma glucose (r = 0.55, P < 0.01) and intravenous glucose disappearance rate (r = -0.45, P < 0.05). The exon 11- mRNA variant was increased significantly from 29.8 {+-} 1.6% in monkeys with normal fasting glucose to 39.2 {+-} 2.9% in monkeys with elevated fasting glucose (P < 0.01). These studies provide the first direct evidence in vivo that the relative expression of the two IR mRNA-splicing variants is altered in liver and suggest that increased expression of the exon 11- IR isoform may contribute to hepatic insulin resistance and NIDDM or may compensate for some yet unidentified defect. 33 refs., 3 figs., 1 tab.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression ofmore » GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.« less

  9. Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1.

    PubMed

    Ederle, Helena; Funk, Christina; Abou-Ajram, Claudia; Hutten, Saskia; Funk, Eva B E; Kehlenbach, Ralph H; Bailer, Susanne M; Dormann, Dorothee

    2018-05-04

    TDP-43 and FUS are nuclear proteins with multiple functions in mRNA processing. They play key roles in ALS (amyotrophic lateral sclerosis) and FTD (frontotemporal dementia), where they are partially lost from the nucleus and aggregate in the cytoplasm of neurons and glial cells. Defects in nucleocytoplasmic transport contribute to this pathology, hence nuclear import of both proteins has been studied in detail. However, their nuclear export routes remain poorly characterized and it is unclear whether aberrant nuclear export contributes to TDP-43 or FUS pathology. Here we show that predicted nuclear export signals in TDP-43 and FUS are non-functional and that both proteins are exported independently of the export receptor CRM1/Exportin-1. Silencing of Exportin-5 or the mRNA export factor Aly/REF, as well as mutations that abrogate RNA-binding do not impair export of TDP-43 and FUS. However, artificially enlarging TDP-43 or FUS impairs their nuclear egress, suggesting that they could leave the nucleus by passive diffusion. Finally, we found that inhibition of transcription causes accelerated nuclear egress of TDP-43, suggesting that newly synthesized RNA retains TDP-43 in the nucleus, limiting its egress into the cytoplasm. Our findings implicate reduced nuclear retention as a possible factor contributing to mislocalization of TDP-43 in ALS/FTD.

  10. Prognostic Significance of Human Apurinic/Apyrimidinic Endonuclease (APE/Ref-1) Expression in Rectal Cancer Treated With Preoperative Radiochemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jun-Sang, E-mail: k423j@cnu.ac.kr; Cancer Research Institute, Chungnam National University, Daejeon; Kim, Jin-Man

    Purpose: Human apurinic endonuclease/redox factor 1 (APE/Ref-1) mediates repair of radiation-induced DNA lesions and regulates transcription via redox-based activation. We investigated the predictive and prognostic significance of APE/Ref-1 expression in pretreatment biopsy specimens in locally advanced rectal cancer (LARC) (cT3-T4 or N+). Methods and Materials: APE/Ref-1 expression was analyzed by immunohistochemistry in pretreatment biopsy specimens obtained from 83 patients with LARC. Patients received preoperative radiotherapy of 50.4 Gy in 28 fractions, combined with oral capecitabine and leucovorin chemotherapy, followed by curative surgery. The prognostic significance of various clinicopathologic characteristics, including APE/Ref-1 protein expression, was evaluated. Results: APE/Ref-1 was expressed inmore » 97% of patient samples. Exclusive APE/Ref-1 nuclear staining was observed in 49 of 83 samples (59%), and mixed nuclear and cytoplasmic staining was observed in 31 samples (37%). APE/Ref-1 nuclear expression levels were low in 49 patients (59%) and high in 34 patients (41%). The level of APE/Ref-1 nuclear expression was not a prognostic factor for overall and disease-free survival. Cytoplasmic expression of APE/Ref-1 was a borderline-significant predictive factor for pathologic tumor response (p = 0.08) and a significant prognostic factor for disease-free survival, as shown by univariate analysis (p = 0.037). Multivariate analysis confirmed that cytoplasmic localization of APE/Ref-1 is a significant predictor of disease-free survival (hazard ratio, 0.45; p = 0.046). Conclusions: APE/Ref-1 was expressed in a majority of pretreatment biopsy specimens from patients with LARC. The level of APE/Ref-1 nuclear expression was not a significant predictive and prognostic factor; however, cytoplasmic localization of the protein was negatively associated with disease-free survival. These results indicate that cytoplasmic expression of APE/Ref-1 represents an adverse prognostic factor for LARC patients who receive preoperative radiochemotherapy.« less

  11. The RNA Exosome Adaptor ZFC3H1 Functionally Competes with Nuclear Export Activity to Retain Target Transcripts.

    PubMed

    Silla, Toomas; Karadoulama, Evdoxia; Mąkosa, Dawid; Lubas, Michal; Jensen, Torben Heick

    2018-05-15

    Mammalian genomes are promiscuously transcribed, yielding protein-coding and non-coding products. Many transcripts are short lived due to their nuclear degradation by the ribonucleolytic RNA exosome. Here, we show that abolished nuclear exosome function causes the formation of distinct nuclear foci, containing polyadenylated (pA + ) RNA secluded from nucleocytoplasmic export. We asked whether exosome co-factors could serve such nuclear retention. Co-localization studies revealed the enrichment of pA + RNA foci with "pA-tail exosome targeting (PAXT) connection" components MTR4, ZFC3H1, and PABPN1 but no overlap with known nuclear structures such as Cajal bodies, speckles, paraspeckles, or nucleoli. Interestingly, ZFC3H1 is required for foci formation, and in its absence, selected pA + RNAs, including coding and non-coding transcripts, are exported to the cytoplasm in a process dependent on the mRNA export factor AlyREF. Our results establish ZFC3H1 as a central nuclear pA + RNA retention factor, counteracting nuclear export activity. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression in primary cultures of normal rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraud, B.; Balavoine, S.; Feldmann, G.

    1996-04-01

    While the effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression have been investigated in various hepatoma cell lines, the individual and combined effects of these components on the expression of this gene have been rarely studied in cultured normal rat hepatocytes. In this cell model, we have shown that mRNA levels of {alpha}{sub 1}-acid glycoprotein were not decreased at least during the first 24 h of culture under basal conditions. During these short-term cultures, the expression of {alpha}{sub 1}-acid glycoprotein in normal hepatocytes showed a high degree of responsiveness to dexamethasone alone (20-fold increase) and tomore » dexamethasone associated with various cytokines (interleukin-1{beta}, interleukin-6 and tumor necrosis factor {alpha}) with a 40 to 100-fold increase depending on the cytokine. Insulin alone did not modify {alpha}{sub 1}-acid glycoprotein mRNA; however, this hormone exerted a positive effect (about 50% increase) in the presence of dexamethasone or dexamethasone with cytokines. These results indicate that the regulation of {alpha}{sub 1}-acid glycoprotein in cultured normal rat hepatocytes presents major differences when compared to reported observations in rat hepatoma cell lines. 49 refs., 2 figs., 2 tabs.« less

  13. Redox factor-1 in muscle biopsies of patients with inclusion-body myositis.

    PubMed

    Broccolini, A; Engel, W K; Alvarez, R B; Askanas, V

    2000-06-16

    To determine whether redox factor-1 (Ref-1) participates in the pathogenesis of inclusion-body myositis (IBM), we immunolocalized Ref-1 in muscle biopsies of IBM patients by light- and electron-microscopy. Approximately 70-80% of the IBM vacuolated muscle fibers had focal inclusions strongly immunoreactive for Ref-1. By immunoelectronmicroscopy, Ref-1 was localized to paired-helical filaments, 6-10 nm amyloid-like fibrils and amorphous material. Virtually all regenerating and necrotic muscle fibers in various muscle biopsies had diffusely strong Ref-1 immunoreactivity. At all neuromuscular junctions, postsynaptically there was strong Ref-1 immunoreactivity. Our study suggests that Ref-1 plays a role in IBM pathogenesis, and in other pathologic and normal processes of human muscle.

  14. A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811 + 1.6kbA {yields} G, produces a new exon: High frequency in spanish cystic fibrosis chromosomes and association with severe phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chillon, M.; Casals, T.; Gimenez, J.

    1995-03-01

    mRNA analysis of the cystic fibrosis transmembrane regulator (CFTR) gene in tissues of cystic fibrosis (CF) patients has allowed us to detect a cryptic exon. The new exon involves 49 base pairs between exons 11 and 12 and is due to a point mutation (1811+1.6bA{yields}G) that creates a new donor splice site in intron 11. Semiquantitative mRNA analysis showed that 1811+1.6kbA{r_arrow}G-mRNA was 5-10-fold less abundant than {triangle}F508 mRNA. Mutations 1811+1.6kbA{yields}G was found in 21 Spanish and 1 German CF chromosome(s), making it the fourth-most-frequent mutation (2%) in the Spanish population. Individuals with genotype {triangle}F508/1811+1.6kbA{yields}G have only 1%-3% of normal CFTRmore » mRNA. This loss of 97% of normal CFTR mRNA must be responsible for the pancreatic insufficiency and for the severe CF phenotype in these patients. 30 refs., 3 figs., 2 tabs.« less

  15. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions

    PubMed Central

    Thakur, Shweta; Sarkar, Bibekananda; Cholia, Ravi P; Gautam, Nandini; Dhiman, Monisha; Mantha, Anil K

    2014-01-01

    Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed. PMID:25033834

  16. Human HOXA5 homeodomain enhances protein transduction and its application to vascular inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji Young; Park, Kyoung sook; Cho, Eun Jung

    2011-07-01

    Highlights: {yields} We have developed an E. coli protein expression vector including human specific gene sequences for protein cellular delivery. {yields} The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence. {yields} HOXA5-APE1/Ref-1 inhibited TNF-alpha-induced monocyte adhesion to endothelial cells. {yields} Human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins. -- Abstract: Cellular protein delivery is an emerging technique by which exogenous recombinant proteins are delivered into mammalian cells across the membrane. We have developed an Escherichia coli expression vector including humanmore » specific gene sequences for protein cellular delivery. The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence which was matched with protein transduction domain (PTD) of homeodomain protein A5 (HOXA5) into pET expression vector. The cellular uptake of HOXA5-PTD-EGFP was detected in 1 min and its transduction reached a maximum at 1 h within cell lysates. The cellular uptake of HOXA5-EGFP at 37 {sup o}C was greater than in 4 {sup o}C. For study for the functional role of human HOXA5-PTD, we purified HOXA5-APE1/Ref-1 and applied it on monocyte adhesion. Pretreatment with HOXA5-APE1/Ref-1 (100 nM) inhibited TNF-{alpha}-induced monocyte adhesion to endothelial cells, compared with HOXA5-EGFP. Taken together, our data suggested that human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins.« less

  17. Exploring Valid Reference Genes for Quantitative Real-time PCR Analysis in Plutella xylostella (Lepidoptera: Plutellidae)

    PubMed Central

    Fu, Wei; Xie, Wen; Zhang, Zhuo; Wang, Shaoli; Wu, Qingjun; Liu, Yong; Zhou, Xiaomao; Zhou, Xuguo; Zhang, Youjun

    2013-01-01

    Abstract: Quantitative real-time PCR (qRT-PCR), a primary tool in gene expression analysis, requires an appropriate normalization strategy to control for variation among samples. The best option is to compare the mRNA level of a target gene with that of reference gene(s) whose expression level is stable across various experimental conditions. In this study, expression profiles of eight candidate reference genes from the diamondback moth, Plutella xylostella, were evaluated under diverse experimental conditions. RefFinder, a web-based analysis tool, integrates four major computational programs including geNorm, Normfinder, BestKeeper, and the comparative ΔCt method to comprehensively rank the tested candidate genes. Elongation factor 1 (EF1) was the most suited reference gene for the biotic factors (development stage, tissue, and strain). In contrast, although appropriate reference gene(s) do exist for several abiotic factors (temperature, photoperiod, insecticide, and mechanical injury), we were not able to identify a single universal reference gene. Nevertheless, a suite of candidate reference genes were specifically recommended for selected experimental conditions. Our finding is the first step toward establishing a standardized qRT-PCR analysis of this agriculturally important insect pest. PMID:23983612

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glick, R.E.; Schlagnhaufer, C.D.; Arteca, R.N.

    The relationships among O{sub 3}-induced accelerated senescence, induction of ethylene, and changes in specific mRNA and protein levels were investigated in potato (Solanum tuberosum L. cv Norland) plants. When plants were exposed to 0.08 {mu}L L{sup -1} O{sub 3} for 5 h d{sup -1}, steady-state levels of rbcS mRNA declined at least 5-fold in expanding leaves after 3 d of O{sub 3} exposure and ethylene levels increased 6- to 10-fold. The expression of OIP-1, a 1-aminocyclo-propane-1-carboxylate synthase cDNA from potato, correlated with increased production of ethylene and decreased levels of rbcS mRNA in foliage of plants treated with O{sub 3}.more » In plants exposed to 0.30 {mu}L L{sup -1} O{sub 3} for 4 h, rbcS transcript levels were reduced 4-fold, whereas nuclear run-on experiments revealed that rbcS mRNA may be due, in part, to posttranscriptional regulation. The levels of transcripts for other chloroplast proteins, glyceraldehyde-3-phosphate dehydrogenase, and a photosystem II chlorophyll a/b-binding protein decreased in O{sub 3}-treated plants, in parallel with the decrease in rbcS mRNA. The steady-state mRNA level of a cytosolic glyceraldehyde-3-phosphate dehydrogenase increased in O{sub 3}-treated plants. The induction of ethylene and changes in transcript levels preceded visible leaf damage and decreases in ribulose-1,5-biphosphate carboxylase/oxygenase protein levels. 40 refs., 6 figs.« less

  19. Membrane-association of mRNA decapping factors is independent of stress in budding yeast

    PubMed Central

    Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy

    2016-01-01

    Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation. PMID:27146487

  20. Membrane-association of mRNA decapping factors is independent of stress in budding yeast.

    PubMed

    Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy

    2016-05-05

    Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation.

  1. Tat-APE1/ref-1 protein inhibits TNF-{alpha}-induced endothelial cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yun Jeong; Lee, Ji Young; Joo, Hee Kyoung

    2008-03-28

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/ref-1) is a multifunctional protein involved both in DNA base excision repair and redox regulation. In this study we evaluated the protective role of Tat-mediated APE1/ref-1 transduction on the tumor necrosis factor (TNF)-{alpha}-activated endothelial activation in cultured human umbilical vein endothelial cells. To construct Tat-APE1/ref-1 fusion protein, human full length of APE1/ref-1 was fused with Tat-protein transduction domain. Purified Tat-APE1/ref-1 fusion protein efficiently transduced cultured endothelial cells in a dose-dependent manner and reached maximum expression at 1 h after incubation. Transduced Tat-APE1/ref-1 showed inhibitory activity on the TNF-{alpha}-induced monocyte adhesion and vascular cell adhesion molecule-1 expressionmore » in cultured endothelial cells. These results suggest Tat-APE1/ref-1 might be useful to reduce vascular endothelial activation or vascular inflammatory disorders.« less

  2. Low-level lasers alter mRNA levels from traditional reference genes used in breast cancer cells

    NASA Astrophysics Data System (ADS)

    Teixeira, A. F.; Canuto, K. S.; Rodrigues, J. A.; Fonseca, A. S.; Mencalha, A. L.

    2017-07-01

    Cancer is among the leading causes of mortality worldwide, increasing the importance of treatment development. Low-level lasers are used in several diseases, but some concerns remains on cancers. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a technique used to understand cellular behavior through quantification of mRNA levels. Output data from target genes are commonly relative to a reference that cannot vary according to treatment. This study evaluated reference genes levels from MDA-MB-231 cells exposed to red or infrared lasers at different fluences. Cultures were exposed to red and infrared lasers, incubated (4 h, 37 °C), total RNA was extracted and cDNA synthesis was performed to evaluate mRNA levels from ACTB, GUSB and TRFC genes by RT-qPCR. Specific amplification was verified by melting curves and agarose gel electrophoresis. RefFinder enabled data analysis by geNorm, NormFinder and BestKeeper. Specific amplifications were obtained and, although mRNA levels from ACTB, GUSB or TRFC genes presented no significant variation through traditional statistical analysis, Excel-based tools revealed that the use of these reference genes are dependent of laser characteristics. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from ACTB, GUSB and TRFC in MDA-MB-231 cells.

  3. Consumption of Sugar-Sweetened Beverages in Mississippi: Is There A Disparity? Behavioral Risk Factor Surveillance System, 2012.

    PubMed

    Qobadi, Mina; Payton, Marinelle

    2017-02-24

    Although consumption of sugar-sweetened beverages (SSBs) is a key contributor to epidemic obesity and has dramatically increased over the past decade in the United States, little is known about its prevalence and associated factors. Data from the 2012 Behavior Risk Factor Surveillance System (BRFSS) were used to estimate the prevalence of SSB consumption and to explore the associations between socio-demographic characteristics, behavioral factors and SSB intake in Mississippi ( n = 7220). Descriptive statistics, Chi-square tests and logistic regressions were conducted using SAS Proc Survey procedures, to account for the BRFSS's multistage complex survey design and sample weights. Overall prevalence of self-reported daily SSB intake was 41.1%. Our findings showed that males (aOR = 1.4, 95% CI: 1.2-1.7, ref = female), blacks (aOR = 1.7, 95% CI: 1.4-2.1, ref = whites), adults aged 18-24 years (aOR = 5.0, 95% CI: 3.4-7.5, ref = 65 years or older), those with less than high school education (aOR = 1.9, 95% CI: 1.4-2.6, ref = college graduate), annual income <$25,000 (aOR = 1.3, 95% CI: 1.1-1.7, ref ≥ $50,000) and $25,000-49,999 (aOR = 1.3, 95% CI: 1.1-1.6, ref ≥ $50,000), those with no physical activity (OR = 1.3, 95% CI: 1.1-1.6, ref = physically active), daily smokers (aOR = 2.2, 95% CI: 1.7-2.7, ref = non-smokers), and those who reported eating at fast food or chain restaurants (aOR = 1.8, 95% CI: 1.2-2.5, ref = do not eat at fast food or chain restaurants) were more likely to consume SSBs, raising concerns about overweight and obesity in Mississippi.

  4. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  5. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation.

    PubMed

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2008-08-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches.

  6. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation

    PubMed Central

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2009-01-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches. PMID:18617267

  7. Impact of fasting followed by short-term exposure to interleukin-6 on cytochrome P450 mRNA in mice.

    PubMed

    Rasmussen, Martin Krøyer; Bertholdt, Lærke; Gudiksen, Anders; Pilegaard, Henriette; Knudsen, Jakob G

    2018-01-05

    The gene expression of the cytochrome P450 (CYP) enzyme family is regulated by numerous factors. Fasting has been shown to induce increased hepatic CYP mRNA in both humans and animals. However, the coordinated regulation of CYP, CYP-regulating transcription factors, and transcriptional co-factors in the liver linking energy metabolism to detoxification has never been investigated. Interleukin-6 (IL-6) has been suggested to be released during fasting and has been shown to regulate CYP expression. The present study investigated the hepatic mRNA content of selected CYP, AhR, CAR, PXR and PPARα in mice fasted for 18h and subsequently exposed to IL-6. Furthermore, the impact of fasting on PGC-1α, HNF-4α, SIRT1 and SIRT3 mRNA was examined. Fasting induced a marked increase in Cyp2b10, Cyp2e1 and Cyp4a10 mRNA, while CYP1a1, Cyp1a2, Cyp2a4 and Cyp3a11 mRNA levels remained unchanged. In accordance, the mRNA levels of CAR and PPARα were also increased with fasting. The PGC-1α, SIRT1 and SIRT3 mRNA levels were also increased after fasting, while the HNF-4α mRNA levels remained unchanged. In mice subjected to IL-6 injection, the fasting-induced PXR, PPARα and PGC-1α mRNA responses were lower than after saline injection. In conclusion, fasting was demonstrated to be a strong inducer of hepatic CYP mRNA as well as selected transcription factors controlling the expression of the investigated CYP. Moreover, the mRNA levels of transcriptional co-factors acting as energy sensors and co-factors for CYP regulation was also increased in the liver, suggesting crosstalk at the molecular level between regulation of energy metabolism and detoxification. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export

    PubMed Central

    Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P.; Forst, Christian V.; Roth, Michael G.; Levy, David E.; García-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A.

    2012-01-01

    The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. PMID:22312003

  9. The Effect of Repeated Electroacupuncture Analgesia on Neurotrophic and Cytokine Factors in Neuropathic Pain Rats

    PubMed Central

    Wang, Junying; Duanmu, Chenlin; Feng, Xiumei; Yan, Yaxia

    2016-01-01

    Chronic pain is a common disability influencing quality of life. Results of previous studies showed that acupuncture has a cumulative analgesic effect, but the relationship with spinal cytokines neurotrophic factors released by astrocytes remains unknown. The present study was designed to observe the effect of electroacupuncture (EA) treatment on spinal cytokines neurotrophic factors in chronic neuropathic pain rats. The chronic neuropathic pain was established by chronic constrictive injury (CCI). EA treatment was applied at Zusanli (ST36) and Yanglingquan (GB34) (both bilateral) once a day, for 30 min. IL-1β mRNA, TNF-α mRNA, and IL-1 mRNA were detected by quantitative real-time PCR, and the proteins of BDNF, NGF, and NT3/4 were detected by Western blot. The expression levels of cytokines such as IL-1β mRNA, TNF-α mRNA, IL-6 mRNA, and neurotrophic factors such as BDNF, NGF, and NT3/4 in the spinal cord were increased significantly after CCI. The astrocytes released more IL-1β and BDNF after CCI. Repeated EA treatment could suppress the elevated expression of IL-1β mRNA, TNFα mRNA, and BDNF, NGF, and NT3/4 but had no effect on IL-6 mRNA. It is suggested that cytokines and neurotrophic factors which may be closely associated with astrocytes participated in the process of EA relieving chronic pain. PMID:27800006

  10. Consumption of Sugar-Sweetened Beverages in Mississippi: Is There A Disparity? Behavioral Risk Factor Surveillance System, 2012

    PubMed Central

    Qobadi, Mina; Payton, Marinelle

    2017-01-01

    Although consumption of sugar-sweetened beverages (SSBs) is a key contributor to epidemic obesity and has dramatically increased over the past decade in the United States, little is known about its prevalence and associated factors. Data from the 2012 Behavior Risk Factor Surveillance System (BRFSS) were used to estimate the prevalence of SSB consumption and to explore the associations between socio-demographic characteristics, behavioral factors and SSB intake in Mississippi (n = 7220). Descriptive statistics, Chi-square tests and logistic regressions were conducted using SAS Proc Survey procedures, to account for the BRFSS′s multistage complex survey design and sample weights. Overall prevalence of self-reported daily SSB intake was 41.1%. Our findings showed that males (aOR = 1.4, 95% CI: 1.2–1.7, ref = female), blacks (aOR = 1.7, 95% CI: 1.4–2.1, ref = whites), adults aged 18–24 years (aOR = 5.0, 95% CI: 3.4–7.5, ref = 65 years or older), those with less than high school education (aOR = 1.9, 95% CI: 1.4–2.6, ref = college graduate), annual income <$25,000 (aOR = 1.3, 95% CI: 1.1–1.7, ref ≥ $50,000) and $25,000–49,999 (aOR = 1.3, 95% CI: 1.1–1.6, ref ≥ $50,000), those with no physical activity (OR = 1.3, 95% CI: 1.1–1.6, ref = physically active), daily smokers (aOR = 2.2, 95% CI: 1.7–2.7, ref = non-smokers), and those who reported eating at fast food or chain restaurants (aOR = 1.8, 95% CI: 1.2–2.5, ref = do not eat at fast food or chain restaurants) were more likely to consume SSBs, raising concerns about overweight and obesity in Mississippi. PMID:28245580

  11. Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones.

    PubMed

    Tong, Zheng; Wang, Dan; Sun, Yong; Yang, Qian; Meng, Xueru; Wang, Limin; Feng, Weiqiang; Li, Ling; Wurtele, Eve Syrkin; Wang, Xuchu

    2017-05-02

    Rubber elongation factor (REF) and small rubber particle protein (SRPP) are two key factors for natural rubber biosynthesis. To further understand the roles of these proteins in rubber formation, six different genes for latex abundant REF or SRPP proteins, including REF 138,175,258 and SRPP 117,204,243 , were characterized from Hevea brasiliensis Reyan (RY) 7-33-97. Sequence analysis showed that REFs have a variable and long N-terminal, whereas SRPPs have a variable and long C-terminal beyond the REF domain, and REF 258 has a β subunit of ATPase in its N-terminal. Through two-dimensional electrophoresis (2-DE), each REF/SRPP protein was separated into multiple protein spots on 2-DE gels, indicating they have multiple protein species. The abundance of REF/SRPP proteins was compared between ethylene and control treatments or among rubber tree clones with different levels of latex productivity by analyzing 2-DE gels. The total abundance of each REF/SRPP protein decreased or changed a little upon ethylene stimulation, whereas the abundance of multiple protein species of the same REF/SRPP changed diversely. Among the three rubber tree clones, the abundance of the protein species also differed significantly. Especially, two protein species of REF 175 or REF 258 were ethylene-responsive only in the high latex productivity clone RY 8-79 instead of in RY 7-33-97 and PR 107. Some individual protein species were positively related to ethylene stimulation and latex productivity. These results suggested that the specific protein species could be more important than others for rubber production and post-translational modifications might play important roles in rubber biosynthesis.

  12. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1).

    PubMed

    Laev, Sergey S; Salakhutdinov, Nariman F; Lavrik, Olga I

    2017-05-01

    Human apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein which is essential in the base excision repair (BER) pathway of DNA lesions caused by oxidation and alkylation. This protein hydrolyzes DNA adjacent to the 5'-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3'-hydroxyl group and a 5'-deoxyribose phosphate moiety or activates the DNA-binding activity of certain transcription factors through its redox function. Studies have indicated a role for APE1/Ref-1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs. Thus, this protein has potential as a target in cancer treatment. As a result, major efforts have been directed to identify small molecule inhibitors against APE1/Ref-1 activities. These agents have the potential to become anticancer drugs. The aim of this review is to present recent progress in studies of all published small molecule APE1/Ref-1 inhibitors. The structures and activities of APE1/Ref-1 inhibitors, that target both DNA repair and redox activities, are presented and discussed. To date, there is an urgent need for further development of the design and synthesis of APE1/Ref-1 inhibitors due to high importance of this protein target. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Macrophage migration inhibitory factor as an incriminating agent in vitiligo.

    PubMed

    Farag, Azza Gaber Antar; Hammam, Mostafa Ahmed; Habib, Mona SalahEldeen; Elnaidany, Nada Farag; Kamh, Mona Eaid

    2018-03-01

    Vitiligo is an autoimmune skin disorder in which the loss of melanocytes is mainly attributed to defective autoimmune mechanisms and, lately, there has been more emphasis on autoinflammatory mediators. Among these is the macrophage migration inhibitory factor, which is involved in many autoimmune skin diseases. However, little is known about the contribution of this factor to vitiligo vulgaris. To determine the hypothesized role of migration inhibitory factor in vitiligo via estimation of serum migration inhibitory factor levels and migration inhibitory factor mRNA concentrations in patients with vitiligo compared with healthy controls. We also aimed to assess whether there is a relationship between the values of serum migration inhibitory factor and/or migration inhibitory factor mRNA with disease duration, clinical type and severity in vitiligo patients. Evaluation of migration inhibitory factor serum level and migration inhibitory factor mRNA expression by ELISA and real-time PCR, respectively, were performed for 50 patients with different degrees of vitiligo severity and compared to 15 age- and gender-matched healthy volunteers as controls. There was a highly significant increase in serum migration inhibitory factor and migration inhibitory factor mRNA levels in vitiligo cases when compared to controls (p<0.001). There was a significant positive correlation between both serum migration inhibitory factor and migration inhibitory factor mRNA concentrations in vitiligo patients, and each of them with duration and severity of vitiligo. In addition, patients with generalized vitiligo have significantly elevated serum migration inhibitory factor and mRNA levels than control subjects. Small number of investigated subjects. Migration inhibitory factor may have an active role in the development of vitiligo, and it may also be a useful index of disease severity. Consequently, migration inhibitory factor may be a new treatment target for vitiligo patients.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, M.K.; Baskaran, K.; Molteni, A.

    The angiotensin-converting enzyme (ACE) inhibitor captopril inhibits mitosis in several cell types that contain ACE and renin activity. In the present study, we evaluated the effect of the ACE inhibitors captopril and CGS 13945 (10{sup {minus}8} to 10{sup {minus}2}M) on proliferation and gene expression in hamster pancreatic duct carcinoma cells in culture. These cells lack renin and ACE activity. Both ACE inhibitors produced a dose-dependent reduction in tumor cell proliferation within 24 hr. Captopril at a concentration of 0.36 mM and CGS 13945 at 150 {mu}M decreased cellular growth rate to approximately half that of the control. Neither drug influencedmore » the viability or the cell cycle distribution of the tumor cells. Slot blot analysis of mRNA for four genes, proliferation associated cell nuclear antigen (PCNA), K-ras, protein kinase C-{Beta} (PKC-{Beta}) and carbonic anhydrase II (CA II) was performed. Both ACE inhibitors increased K-ras expression by a factor of 2, and had no effect on CA II mRNA levels. Captopril also lowered PCNA by 40% and CGS 13945 lowered PKC-{Beta} gene expression to 30% of the control level. The data demonstrate that ACE inhibitors exhibit antimitotic activity and differential gene modulation in hamster pancreatic duct carcinoma cells. The absence of renin and ACE activity in these cells suggests that the antimitotic action of captopril and CGS 13945 is independent of renin-angiotensin regulation. The growth inhibition may occur through downregulation of growth-related gene expression. 27 refs., 5 figs.« less

  15. Overcoming Drug Resistant Prostate Cancer with APE1/Ref-1 Blockade

    DTIC Science & Technology

    2015-10-01

    cells avoid being killed by chemotherapy: Apurinic/apyrimidinic endonuclease/ redox -factor 1, or simply, Ref-1, for short. In this report, we...survivin signaling in human prostate cancer specimens. Genetic knockdown of APE1/Ref-1 disrupts prostate cancer cell growth and survival in cell culture...In addition, inhibition of the redox function selectively of Ref-1 results in cell growth inhibition, with this therapy preferentially inhibiting

  16. Overcoming Drug Resistant Prostate Cancer with APE1/Ref 1 Blockade

    DTIC Science & Technology

    2015-10-01

    cells avoid being killed by chemotherapy: Apurinic/apyrimidinic endonuclease/ redox -factor 1, or simply, Ref-1, for short. In this report, we...survivin signaling in human prostate cancer specimens. Genetic knockdown of APE1/Ref-1 disrupts prostate cancer cell growth and survival in cell culture...In addition, inhibition of the redox function selectively of Ref-1 results in cell growth inhibition, with this therapy preferentially inhibiting

  17. Preliminary Design Code for an Axial Stage Compressor

    DTIC Science & Technology

    2001-09-01

    8217 incidence angle correction factor for thickness Public dkt (3, 3) As Double ’ deviation angle correction factor for thickness Public i0ref(3, 3) As...202775.302703857 dkit(4) = 25013.8597869873 dkit(3) = -1269.01561832427 dkit(2) = 41.3428950682282 dkit(1) = 7.56794627627824 dkt (i, j) = CurveFit2...ikit(1), ikit(2), ikit(3), ikit(4), ikit(5), ikit(6), tc(i, j)) d0ref(i, j) = ksh * dkt (i, j) * d010(i, j) dref(i, j) = d0ref(i, j) + dm(i, j

  18. Protein-disulfide Isomerase Regulates the Thyroid Hormone Receptor-mediated Gene Expression via Redox Factor-1 through Thiol Reduction-Oxidation*

    PubMed Central

    Hashimoto, Shoko; Imaoka, Susumu

    2013-01-01

    Protein-disulfide isomerase (PDI) is a dithiol/disulfide oxidoreductase that regulates the redox state of proteins. We previously found that overexpression of PDI in rat pituitary tumor (GH3) cells suppresses 3,3′,5-triiodothyronine (T3)-stimulated growth hormone (GH) expression, suggesting the contribution of PDI to the T3-mediated gene expression via thyroid hormone receptor (TR). In the present study, we have clarified the mechanism of regulation by which TR function is regulated by PDI. Overexpression of wild-type but not redox-inactive mutant PDI suppressed the T3-induced GH expression, suggesting that the redox activity of PDI contributes to the suppression of GH. We considered that PDI regulates the redox state of the TR and focused on redox factor-1 (Ref-1) as a mediator of the redox regulation of TR by PDI. Interaction between Ref-1 and TRβ1 was detected. Overexpression of wild-type but not C64S Ref-1 facilitated the GH expression, suggesting that redox activity of Cys-64 in Ref-1 is involved in the TR-mediated gene expression. Moreover, PDI interacted with Ref-1 and changed the redox state of Ref-1, suggesting that PDI controls the redox state of Ref-1. Our studies suggested that Ref-1 contributes to TR-mediated gene expression and that the redox state of Ref-1 is regulated by PDI. Redox regulation of PDI via Ref-1 is a new aspect of PDI function. PMID:23148211

  19. Stress-Intensity Factors for Three-Point Bend Specimens by Boundary Collocation

    DTIC Science & Technology

    1965-12-01

    ref. 5) and by Kies, Smith, Romine, and Bernstein (ref. 6). Limited results of an analytical study by H. F. Bueckner have been published by Wundt (ref...Weldments. Fracture Toughness Testing and Its Applications, STP No. 381, ASTM, 1965, pp. 328-356. 7. Wundt , B. M.: A Unified Interpretation of Room

  20. A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue

    PubMed Central

    Rönn, Tina; Volkov, Petr; Davegårdh, Cajsa; Dayeh, Tasnim; Hall, Elin; Olsson, Anders H.; Nilsson, Emma; Tornberg, Åsa; Dekker Nitert, Marloes; Eriksson, Karl-Fredrik; Jones, Helena A.; Groop, Leif; Ling, Charlotte

    2013-01-01

    Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism. PMID:23825961

  1. Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿

    PubMed Central

    Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850

  2. Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer.

    PubMed

    Anan, K; Morisaki, T; Katano, M; Ikubo, A; Kitsuki, H; Uchiyama, A; Kuroki, S; Tanaka, M; Torisu, M

    1996-03-01

    Angiogenesis is a prerequisite for tumor growth and metastasis. Tumor angiogenesis may be mediated by several angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha, and basic fibroblast growth factor. Differential mRNA expressions of VEGF, PDGF (A chain), transforming growth factor-alpha and basic fibroblast growth factor in 32 primary invasive breast tumors were examined by reverse transcriptase-polymerase chain reaction. We analyzed relationships between mRNA expressions of these angiogenic factors and the degree of angiogenesis, tumor size, and metastasis. Quantification of angiogenesis was achieved by the immunohistochemical staining of endothelial cells with antibody to CD31. VEGF and PDGF-A mRNAs were expressed more frequently in breast tumors than in nontumor breast tissues, whereas no difference was found in expression frequency of either transforming growth factor-alpha or basic fibroblast growth factor mRNA. Vascular counts in tumors correlated with each expression frequency of VEGF and PDGF-A mRNA. PDGF-A mRNA was expressed more frequently in tumors with lymph node metastasis than in those without metastasis. Expression of VEGF and PDGF mRNAs detected by reverse transcriptase-polymerase chain reaction in breast tumors correlates with tumor-related characteristics of angiogenesis and metastatic potential. Analysis of these mRNAs by reverse transcriptase-polymerase chain reaction may be useful for assessing the biologic behavior of a breast tumor before surgical treatment.

  3. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    PubMed Central

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  4. Thymidylate synthase (TS) protein expression as a prognostic factor in advanced colorectal cancer: a comparison with TS mRNA expression.

    PubMed

    Nakagawa, Tateo; Shimada, Mitsuo; Kurita, Nobuhiro; Iwata, Takashi; Nishioka, Masanori; Yoshikawa, Kozo; Higashijima, Jun; Utsunomiya, Tohru

    2012-06-01

    The role of intratumoral thymidylate synthase (TS) mRNA or protein expression is still controversial and little has been reported regarding relation of them in colorectal cancer. Forty-six patients with advanced colorectal cancer who underwent surgical resection were included. TS mRNA expression was determined by the Danenberg tumor profile method based on laser-captured micro-dissection of the tumor cells. TS protein expression was evaluated using immunohistochemical staining. TS mRNA expression tended to relate TS protein expression. Statistical significance was not found in overall survival between the TS mRNA high group and low group regardless of performing adjuvant chemotherapy. The overall survival in the TS protein negative group was significantly higher than that in positive group in all and the patients without adjuvant chemotherapy. Multivariate analysis showed TS protein expression was as an independent prognostic factor. TS protein expression tends to be related TS mRNA expression and is an independent prognostic factor in advanced colorectal cancer.

  5. The gene for human U2 snRNP auxiliary factor small 35-kDa subunit (U2AF1) maps to the progressive myoclonus epilepsy (EPM1) critical region on chromosome 21q22.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalioti, M.D.; Rossier, C.; Antonarakis, S.E.

    1996-04-15

    We used targeted exon trapping to clone portions of genes from human chromosome 21q22.3. One trapped sequence showed complete homology with the cDNA of human U2AF{sup 35} (M96982; HGM-approved nomenclature U2AF1), which encodes for the small 35-kDa subunit of the U2 snRNP auxiliary factor. Using the U2AF1 cDNA as a probe, we mapped this gene to cosmid Q15D2, a P1, and YAC 350F7 of the Chumakov et al. contig, close to the cystathionine-{beta}-synthase gene (CBS) on 21q22.3. This localization was confirmed by PCR using oligonucleotides from the 3{prime} UTR and by FISH. As U2AF1 associated with a number of differentmore » factors during mRNA splicing, overexpression in trisomy 21 individuals could contribute to some Down syndrome phenotypes by interfering with the splicing process. Furthermore, because this gene maps in the critical region for the progressive myoclonus epilepsy I locus (EPM1), mutation analysis will be carried out in patients to evaluate the potential role of U2AF1 as a candidate for EPM1. 24 refs., 1 fig.« less

  6. Nuclear Export of Messenger RNA

    PubMed Central

    Katahira, Jun

    2015-01-01

    Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex. PMID:25836925

  7. mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma.

    PubMed

    Bache, Matthias; Rot, Swetlana; Keßler, Jacqueline; Güttler, Antje; Wichmann, Henri; Greither, Thomas; Wach, Sven; Taubert, Helge; Söling, Ariane; Bilkenroth, Udo; Kappler, Matthias; Vordermark, Dirk

    2015-06-01

    The roles of hypoxia-induced and stem cell-associated genes in the development of malignancy and tumour progression are well known. However, there are a limited number of studies analysing the impact of mRNA expression levels of hypoxia-induced and stem cell-associated genes in the tissues of brain tumours and glioblastoma patients. In this study, tumour tissues from patients with glioblastoma multiforme and tumour adjacent tissues were analysed. We investigated mRNA expression levels of hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), carbonic anhydrase 9 (CA9), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT-1) and osteopontin (OPN), and stem cell-associated genes survivin, epidermal growth factor receptor (EGFR), human telomerase reverse transcriptase (hTERT), Nanog and octamer binding transcription factor 4 (OCT4) using quantitative real-time polymerase chain reaction (qRT-PCR). Our data revealed higher mRNA expression levels of hypoxia-induced and stem cell-associated genes in tumour tissue than levels in the tumour adjacent tissues in patients with glioblastoma multiforme. A strong positive correlation between the mRNA expression levels of HIF-2α, CA9, VEGF, GLUT-1 and OPN suggests a specific hypoxia-associated profile of mRNA expression in glioblastoma multiforme. Additionally, the results indicate the role of stem-cell-related genes in tumour hypoxia. Kaplan-Maier analysis revealed that high mRNA expression levels of hypoxia-induced markers showed a trend towards shorter overall survival in glioblastoma patients (P=0.061). Our data suggest that mRNA expression levels of hypoxia-induced genes are important tumour markers in patients with glioblastoma multiforme.

  8. Aiding and Abetting Cancer: mRNA export and the nuclear pore

    PubMed Central

    Culjkovic-Kraljacic, Biljana; Borden, Katherine L.B

    2013-01-01

    mRNA export is a critical step in gene expression. Export of transcripts can be modulated in response to cellular signaling or stress. Consistently, mRNA export is dysregulated in primary human specimens derived from many different forms of cancer. Aberrant expression of export factors can alter export of specific transcripts encoding proteins involved in proliferation, survival and oncogenesis. These specific factors, which are not used for bulk mRNA export, are obvious therapeutic targets. Indeed, given the emerging role of mRNA export in cancer, it is not surprising that efforts to target different aspects of this pathway have reached the clinical trial stage. Thus, like transcription and translation, mRNA export may also play a critical role in cancer genesis and maintenance. PMID:23582887

  9. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm-2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  10. Regulation of Bovine Leukemia Virus tax and pol mRNA Levels by Interleukin-2 and -10

    PubMed Central

    Pyeon, Dohun; Splitter, Gary A.

    1999-01-01

    Recently, particular cytokines have been identified to affect progression of a variety of diseases and retrovirus infections. Previously, we demonstrated that interleukin-2 (IL-2), IL-12, and gamma interferon increased in peripheral blood mononuclear cells (PBMCs) from animals with early disease and decreased in PBMCs from animals with late disease stages of bovine leukemia virus (BLV) infection. In contrast, IL-10 increased with disease progression. To examine the effects of these cytokines on BLV expression, BLV tax and pol mRNA and p24 protein were quantified by competitive PCR and immunoblotting, respectively. IL-10 inhibited BLV tax and pol mRNA levels in BLV-infected PBMCs; however, the inhibitory effect of IL-10 was prevented in PBMCs depleted of monocytes and/or macrophages (monocyte/macrophages). To determine whether these factors were secreted or monocyte/macrophage associated, monocyte/macrophage-depleted PBMCs were cultured with isolated monocyte/macrophages in transwells where contact between monocyte/macrophages and nonadherent PBMCs was blocked. BLV tax and pol mRNA levels increased in transwell cultures similar to cultures containing nonseparated cells, and IL-10 addition inhibited the increase of BLV tax and pol mRNA. These results suggest that monocyte/macrophages secrete soluble factor(s) that increases BLV mRNA levels and that secretion of these soluble factor(s) could be inhibited by IL-10. In contrast, IL-2 increased BLV tax and pol mRNA and p24 protein production. Thus, IL-10 production by BLV-infected animals with late stage disease may serve to control BLV mRNA levels, while IL-2 may increase BLV mRNA in the early disease stage. To determine a correlation between cell proliferation and BLV expression, the effect of IL-2 and IL-10 on PBMC proliferation was tested. As anticipated, IL-2 stimulated while IL-10 suppressed antigen-specific PBMC proliferation. The present study, combined with our previous findings, suggests that increased IL-10 production in late disease stages suppresses BLV mRNA levels, while IL-2-activated immune responses stimulate BLV expression by BLV-infected B cells. PMID:10482594

  11. Structure of the human myelin/oligodendrocyte glycoprotein gene and multiple alternative spliced isoforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham-Dinh, D.; Gaspera, D.B.; Dautigny, A.

    1995-09-20

    Myelin/oligodendrocyte glycoprotein (MOG), a special component of the central nervous system localization on the outermost lamellae of mature myelin, is a member of the immunoglobulin superfamily. We report here the organization of the human MOG gene, which spans approximately 17 kb, and the characterization of six MOG mRNA splicing variants. The intron/exon structure of the human MOG gene confirmed the splicing pattern, supporting the hypothesis that mRNA isoforms could arise by alternative splicing of a single gene. In addition to the eight exons coding for the major MOG isoform, the human MOG gene also contains 3` region, a previously unknownmore » alternatively spliced coding exon, VIA. Alternative utilization of two acceptor splicing sites for exon VIII could produce two different C-termini. The nucleotide sequences presented here may be a useful tool to study further possible involvement if the MOG gene in hereditary neurological disorders. 23 refs., 5 figs.« less

  12. p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB.

    PubMed

    Jain, Ashish; Rusten, Tor Erik; Katheder, Nadja; Elvenes, Julianne; Bruun, Jack-Ansgar; Sjøttem, Eva; Lamark, Trond; Johansen, Terje

    2015-06-12

    The selective autophagy receptor p62/sequestosome 1 (SQSTM1) interacts directly with LC3 and is involved in oxidative stress signaling in two ways in mammals. First, p62 is transcriptionally induced upon oxidative stress by the NF-E2-related factor 2 (NRF2) by direct binding to an antioxidant response element in the p62 promoter. Second, p62 accumulation, occurring when autophagy is impaired, leads to increased p62 binding to the NRF2 inhibitor KEAP1, resulting in reduced proteasomal turnover of NRF2. This gives chronic oxidative stress signaling through a feed forward loop. Here, we show that the Drosophila p62/SQSTM1 orthologue, Ref(2)P, interacts directly with DmAtg8a via an LC3-interacting region motif, supporting a role for Ref(2)P in selective autophagy. The ref(2)P promoter also contains a functional antioxidant response element that is directly bound by the NRF2 orthologue, CncC, which can induce ref(2)P expression along with the oxidative stress-associated gene gstD1. However, distinct from the situation in mammals, Ref(2)P does not interact directly with DmKeap1 via a KEAP1-interacting region motif; nor does ectopically expressed Ref(2)P or autophagy deficiency activate the oxidative stress response. Instead, DmAtg8a interacts directly with DmKeap1, and DmKeap1 is removed upon programmed autophagy in Drosophila gut cells. Strikingly, CncC induced increased Atg8a levels and autophagy independent of TFEB/MitF in fat body and larval gut tissues. Thus, these results extend the intimate relationship between oxidative stress-sensing NRF2/CncC transcription factors and autophagy and suggest that NRF2/CncC may regulate autophagic activity in other organisms too. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Multiple Transcript Properties Related to Translation Affect mRNA Degradation Rates in Saccharomyces cerevisiae

    PubMed Central

    Neymotin, Benjamin; Ettorre, Victoria; Gresham, David

    2016-01-01

    Degradation of mRNA contributes to variation in transcript abundance. Studies of individual mRNAs have shown that both cis and trans factors affect mRNA degradation rates. However, the factors underlying transcriptome-wide variation in mRNA degradation rates are poorly understood. We investigated the contribution of different transcript properties to transcriptome-wide degradation rate variation in the budding yeast, Saccharomyces cerevisiae, using multiple regression analysis. We find that multiple transcript properties are significantly associated with variation in mRNA degradation rates, and that a model incorporating these properties explains ∼50% of the genome-wide variance. Predictors of mRNA degradation rates include transcript length, ribosome density, biased codon usage, and GC content of the third position in codons. To experimentally validate these factors, we studied individual transcripts expressed from identical promoters. We find that decreasing ribosome density by mutating the first translational start site of a transcript increases its degradation rate. Using coding sequence variants of green fluorescent protein (GFP) that differ only at synonymous sites, we show that increased GC content of the third position of codons results in decreased rates of mRNA degradation. Thus, in steady-state conditions, a large fraction of genome-wide variation in mRNA degradation rates is determined by inherent properties of transcripts, many of which are related to translation, rather than specific regulatory mechanisms. PMID:27633789

  14. Expression of transforming growth factor alpha and epidermal growth factor receptor messenger RNA in neoplastic and nonneoplastic human kidney tissue.

    PubMed

    Mydlo, J H; Michaeli, J; Cordon-Cardo, C; Goldenberg, A S; Heston, W D; Fair, W R

    1989-06-15

    Using Northern blot analysis, we have demonstrated that mRNA for transforming growth factor alpha (TGF-alpha) was expressed in five malignant kidney tissue specimens but was not detected in their autologous nonneoplastic homologues. In addition, the expression of epidermal growth factor (EGF) receptor mRNA in these malignant tissues was 2- to 3-fold greater than in nontransformed tissues. In two cases examined using immunohistochemistry, we were able to correlate the increased expression of the mRNA with an increase in protein expression. Since TGF-alpha is known to bind to the EGF receptor, the finding of an increased expression of both TGF-alpha and EGF receptor mRNA in kidney tumor tissue suggests that interaction between TGF-alpha and the EGF receptor may play a role in promoting transformation and/or proliferation of kidney neoplasms, perhaps by an autocrine mechanism.

  15. Depletion of mRNA export regulator DBP5/DDX19, GLE1 or IPPK that is a key enzyme for the production of IP6, resulting in differentially altered cytoplasmic mRNA expression and specific cell defect

    PubMed Central

    Okamura, Masumi; Yamanaka, Yasutaka; Shigemoto, Maki; Kitadani, Yuya; Kobayashi, Yuhko; Kambe, Taiho; Nagao, Masaya; Kobayashi, Issei; Okumura, Katsuzumi

    2018-01-01

    DBP5, also known as DDX19, GLE1 and inositol hexakisphosphate (IP6) function in messenger RNA (mRNA) export at the cytoplasmic surface of the nuclear pore complex in eukaryotic cells. DBP5 is a DEAD-box RNA helicase, and its activity is stimulated by interactions with GLE1 and IP6. In addition, these three factors also have unique role(s). To investigate how these factors influenced the cytoplasmic mRNA expression and cell phenotype change, we performed RNA microarray analysis to detect the effect and function of DBP5, GLE1 and IP6 on the cytoplasmic mRNA expression. The expression of some cytoplasmic mRNA subsets (e.g. cell cycle, DNA replication) was commonly suppressed by the knock-down of DBP5, GLE1 and IPPK (IP6 synthetic enzyme). The GLE1 knock-down selectively reduced the cytoplasmic mRNA expression required for mitotic progression, results in an abnormal spindle phenotype and caused the delay of mitotic process. Meanwhile, G1/S cell cycle arrest was observed in DBP5 and IPPK knock-down cells. Several factors that function in immune response were also down-regulated in DBP5 or IPPK knock-down cells. Thereby, IFNβ-1 mRNA transcription evoked by poly(I:C) treatment was suppressed. These results imply that DBP5, GLE1 and IP6 have a conserved and individual function in the cytoplasmic mRNA expression. Variations in phenotype are due to the difference in each function of DBP5, GLE1 and IPPK in intracellular mRNA metabolism. PMID:29746542

  16. The Effect of Simvastatin on mRNA Expression of Transforming Growth Factor-β1, Bone Morphogenetic Protein-2 and Vascular Endothelial Growth Factor in Tooth Extraction Socket

    PubMed Central

    Liu, Chang; Wu, Zhe; Sun, Hong-chen

    2009-01-01

    Aim To determine the effect of local simvastatin application on the mRNA expression level of transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) in the tooth sockets of rat. Methodology Forty-eight male Wistar rats were randomly divided into experimental and control groups (n=24). Polylactic acid/polyglycolic acid copolymer carriers, with or without simvastatin, were implanted into extraction sockets of right mandibular incisors. The expression of TGF-β1, BMP-2 and VEGF mRNA was determined by in situ hybridization in the tooth extraction socket at five days, one week, two weeks and four weeks after implantation. Results The fusiform stroma cells in the tooth extraction socket began to express TGF-β1, BMP-2 and VEGF mRNA in both experimental and control groups from one week after tooth extraction until the end of experiment. The expression of TGF-β1 and BMP-2 mRNA in the experimental group was significantly up-regulated after one, two and four weeks, and expression of VEGF mRNA was significantly increased after one and two weeks compared with that in the control group. Conclusion The findings indicate that local administration of simvastatin can influence alveolar bone remodeling by regulating the expression of a school of growth factors which are crucial to osteogenesis in the tooth extraction socket. PMID:20687301

  17. Increase of CTGF mRNA expression by respiratory syncytial virus infection is abrogated by caffeine in lung epithelial cells.

    PubMed

    Kunzmann, Steffen; Krempl, Christine; Seidenspinner, Silvia; Glaser, Kirsten; Speer, Christian P; Fehrholz, Markus

    2018-04-16

    Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infection in early childhood. Underlying pathomechanisms of elevated pulmonary morbidity in later infancy are largely unknown. We found that RSV-infected H441 cells showed increased mRNA expression of connective tissue growth factor (CTGF), a key factor in airway remodeling. Additional dexamethasone treatment led to further elevated mRNA levels, indicating additive effects. Caffeine treatment prevented RSV-mediated increase of CTGF mRNA. RSV may be involved in airway remodeling processes by increasing CTGF mRNA expression. Caffeine might abrogate these negative effects and thereby help to restore lung homeostasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Effects of Intermittent Alcohol Exposure on Emotion and Cognition: A Potential Role for the Endogenous Cannabinoid System and Neuroinflammation

    PubMed Central

    Sanchez-Marin, Laura; Pavon, Francisco J.; Decara, Juan; Suarez, Juan; Gavito, Ana; Castilla-Ortega, Estela; Rodriguez de Fonseca, Fernando; Serrano, Antonia

    2017-01-01

    Intermittent alcohol exposure is a common pattern of adolescent alcohol use that can lead to binge drinking episodes. Alcohol use is known to modulate the endocannabinoid system (ECS), which is involved in neuronal communication, neuroplasticity, neuroinflammation and behavior. Adolescent male Wistar rats were exposed to 4-week intermittent alcohol intoxication (3 g/kg injections for 4 days/week) or saline (N = 12 per group). After alcohol deprivation, adult rats were assessed for emotionality and cognition and the gene expression of the ECS and other factors related to behavior and neuroinflammation was examined in the brain. Alcohol-exposed rats exhibited anxiogenic-like responses and impaired recognition memory but no motor alterations. There were brain region-dependent changes in the mRNA levels of the ECS and molecular signals compared with control rats. Thus, overall, alcohol-exposed rats expressed higher mRNA levels of endocannabinoid synthetic enzymes (N-acyl-phosphatidylethanolamine phospholipase D and diacylglycerol lipases) in the medial-prefrontal cortex (mPFC) but lower mRNA levels in the amygdala. Furthermore, we observed lower mRNA levels of receptors CB1 CB2 and peroxisome proliferator-activated receptor-α in the striatum. Regarding neuropeptide signaling, alcohol-exposed rats displayed lower mRNA levels of the neuropeptide Y signaling, particularly NPY receptor-2, in the amygdala and hippocampus and higher mRNA levels of corticotropin-releasing factor in the hippocampus. Additionally, we observed changes of several neuroinflammation-related factors. Whereas, the mRNA levels of toll-like receptor-4, tumor necrosis factor-α, cyclooxygenase-2 and glial fibrillary acidic protein were significantly increased in the mPFC, the mRNA levels of cyclooxygenase-2 and glial fibrillary acidic protein were decreased in the striatum and hippocampus. However, nuclear factor-κβ mRNA levels were lower in the mPFC and striatum and allograft inflammatory factor-1 levels were differentially expressed in the amygdala and hippocampus. In conclusion, rats exposed to adolescent intermittent alcohol displayed anxiety-like behavior and cognitive deficits in adulthood and these alterations were accompanied by brain region-dependent changes in the gene expression of the ECS and other signals associated with neuroinflammation and behavior. An intermittent adolescent alcohol exposure has behavioral and molecular consequences in the adult brain, which might be linked to higher vulnerability to addictive behaviors and psychopathologies. PMID:28223925

  19. Stimulation of nuclear receptor REV-ERBs regulates tumor necrosis factor-induced expression of proinflammatory molecules in C6 astroglial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morioka, Norimitsu, E-mail: mnori@hiroshima-u.ac.jp; Tomori, Mizuki; Zhang, Fang Fang

    Under physiological conditions, astrocytes maintain homeostasis in the CNS. Following inflammation and injury to the CNS, however, activated astrocytes produce neurotoxic molecules such as cytokines and chemokines, amplifying the initial molecular-cellular events evoked by inflammation and injury. Nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammation- and metabolism-related gene transcription. The current study sought to elucidate a role of REV-ERBs in rat C6 astroglial cells on the expression of inflammatory molecules following stimulation with the neuroinflammatory cytokine tumor necrosis factor (TNF). Stimulation of C6 cells with TNF (10 ng/ml) significantly increased the mRNA expression of CCL2, interleukin-6more » (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloprotease (MMP)-9, but not fibroblast growth factor-2 (FGF-2), cyclooxygenase-2 (COX-2) and MMP-2. Treatment with either REV-ERB agonists GSK4112 or SR9009 significantly blocked TNF-induced upregulation of CCL2 mRNA and MMP-9 mRNA, but not IL-6 mRNA and iNOS mRNA expression. Furthermore, treatment with RGFP966, a selective histone deacetylase 3 (HDAC3) inhibitor, potently reversed the inhibitory effects of GSK4112 on TNF-induced expression of MMP-9 mRNA, but not CCL2 mRNA. Expression of Rev-erbs mRNA in C6 astroglial cells, primary cultured rat cortical and spinal astrocytes was confirmed by reverse transcription polymerase chain reaction. Together, the findings demonstrate an anti-inflammatory effect, downregulating of MMP-9 and CCL2 transcription, of astroglial REV-ERBs activation through HDAC3-dependent and HDAC3-independent mechanisms. - Highlights: • Rev-erbα mRNA and Rev-erbβ mRNA are expressed in C6 astroglial cells. • TNF increases the expression of CCL2, IL-6, MMP-9 and iNOS mRNA. • REV-ERB activation inhibits CCL2 mRNA and MMP-9 mRNA expression. • HDAC3 activity is involved in the inhibitory effect of REV-ERB on MMP-9 induction.« less

  20. Identification of a Taraxacum brevicorniculatum rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis.

    PubMed

    Laibach, Natalie; Hillebrand, Andrea; Twyman, Richard M; Prüfer, Dirk; Schulze Gronover, Christian

    2015-05-01

    Two protein families required for rubber biosynthesis in Taraxacum brevicorniculatum have recently been characterized, namely the cis-prenyltransferases (TbCPTs) and the small rubber particle proteins (TbSRPPs). The latter were shown to be the most abundant proteins on rubber particles, where rubber biosynthesis takes place. Here we identified a protein designated T. brevicorniculatum rubber elongation factor (TbREF) by using mass spectrometry to analyze rubber particle proteins. TbREF is homologous to the TbSRPPs but has a molecular mass that is atypical for the family. The promoter was shown to be active in laticifers, and the protein itself was localized on the rubber particle surface. In TbREF-silenced plants generated by RNA interference, the rubber content was significantly reduced, correlating with lower TbCPT protein levels and less TbCPT activity in the latex. However, the molecular mass of the rubber was not affected by TbREF silencing. The colloidal stability of rubber particles isolated from TbREF-silenced plants was also unchanged. This was not surprising because TbREF depletion did not affect the abundance of TbSRPPs, which are required for rubber particle stability. Our findings suggest that TbREF is an important component of the rubber biosynthesis machinery in T. brevicorniculatum, and may play a role in rubber particle biogenesis and influence rubber production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  1. Asporin and transforming growth factor-beta gene expression in osteoblasts from subchondral bone and osteophytes in osteoarthritis.

    PubMed

    Sakao, Kei; Takahashi, Kenji A; Arai, Yuji; Saito, Masazumi; Honjyo, Kuniaki; Hiraoka, Nobuyuki; Kishida, Tsunao; Mazda, Osam; Imanishi, Jiro; Kubo, Toshikazu

    2009-11-01

    To clarify the significance of subchondral bone and osteophytes in the pathology of osteoarthritis (OA), we investigated the expression of asporin (ASPN), transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, and runt-related transcription factor-2 (Runx2) genes involved in bone metabolism. Osteoblasts were isolated from 19 patients diagnosed with knee OA and from 4 patients diagnosed with femoral neck fracture. Osteoblast expression of mRNA encoding ASPN, TGF-beta1, TGF-beta2, TGF-beta3, and Runx2 was analyzed using real-time RT-PCR. Expression of ASPN, TGF-beta1, and TGF-beta3 mRNA in the subchondral bone and osteophytes of OA patients increased compared with that of non-OA patients. The ratio of ASPN to TGF-beta1 mRNA in patients with severe cartilage damage was higher than that in patients with mild cartilage damage. The increased ratio of ASPN mRNA to TGF-beta1 mRNA in patients with severe relative to mild cartilage damage indicates that increased ASPN mRNA expression was significantly associated with the severity of cartilage degeneration. This finding suggests that ASPN may regulate TGF-beta1-mediated factors in the development of OA, which may provide clues as to the underlying pathology of OA.

  2. Regulation of IGF-1 but not TGF-β1 by NGF in the smooth muscle of the inflamed urinary bladder

    PubMed Central

    Zhang, Qing L.; Qiao, Li-Ya

    2012-01-01

    Intraperitoneal injection of cyclophosphamide (CYP) causes haemorrhagic cystitis with excess growth of muscular layer leading to bladder hypertrophy; this could be attributable to changes in the expression profiles of growth factors in the inflamed urinary bladder. The growth factors characterized in the current study include nerve growth factor (NGF), insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-β1. We found that following CYP injection for 8h and 48h, the mRNA levels of all three factors were increased in the inflamed bladder when compared to control. The level of NGF mRNA was mainly increased in the urothelium layer while the levels of IGF-1 mRNA and TGF-β1 mRNA were increased in the smooth muscle layer. The level of NGF high affinity receptor TrkA mRNA was also increased in both the urothelium and the smooth muscle layers during bladder inflammation. When we blocked NGF action with NGF neutralizing antibody in vivo, we found that the up-regulation of IGF-1 in the inflamed bladder was reversed while the up-regulation of TGF-β1 was not affected by NGF neutralization. The effect of NGF on regulating IGF-1 expression was further confirmed in bladder smooth muscle culture showing that exogenous NGF increased the mRNA level of IGF-1 after 30 min to 1h stimulation. These results suggest that bladder inflammation induced region-specific changes in the expression profiles of NGF, IGF-1 and TGF-β1. The up-regulation of NGF in the urothelium may have a role in affecting bladder smooth muscle cell physiology by regulating IGF-1 expression. PMID:22579999

  3. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid.

    PubMed

    Widenfalk, J; Lundströmer, K; Jubran, M; Brene, S; Olson, L

    2001-05-15

    Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.

  4. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway.

    PubMed

    Yan, Xiaodong; Liu, Juanfang; Zhang, Zhengping; Li, Wenhao; Sun, Siguo; Zhao, Jian; Dong, Xin; Qian, Jixian; Sun, Honghui

    2017-01-01

    Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca 2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca 2+ ] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca 2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca 2+ ) stores. Blockade of Ca 2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca 2+ -ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca 2+ -dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.

  5. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae.

    PubMed

    Huch, Susanne; Müller, Maren; Muppavarapu, Mridula; Gommlich, Jessie; Balagopal, Vidya; Nissan, Tracy

    2016-10-15

    The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC) reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization. © 2016. Published by The Company of Biologists Ltd.

  6. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae

    PubMed Central

    Huch, Susanne; Müller, Maren; Muppavarapu, Mridula; Gommlich, Jessie; Balagopal, Vidya; Nissan, Tracy

    2016-01-01

    ABSTRACT The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC) reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization. PMID:27543059

  7. A Sub-Element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18

    PubMed Central

    Chi, Binkai; Wang, Ke; Du, Yanhua; Gui, Bin; Chang, Xingya; Wang, Lantian; Fan, Jing; Chen, She; Wu, Xudong; Li, Guohui; Cheng, Hong

    2014-01-01

    Viral RNA elements that facilitate mRNA export are useful tools for identifying cellular RNA export factors. Here we show that hepatitis B virus post-transcriptional element (PRE) is one such element, and using PRE several new cellular mRNA export factors were identified. We found that PRE drastically enhances the cytoplasmic accumulation of cDNA transcripts independent of any viral protein. Systematic deletion analysis revealed the existence of a 116 nt functional Sub-Element of PRE (SEP1). The RNP that forms on the SEP1 RNA was affinity purified, in which TREX components as well as several other proteins were identified. TREX components and the SEP1-associating protein ZC3H18 are required for SEP1-mediated mRNA export. Significantly, ZC3H18 directly binds to the SEP1 RNA, interacts with TREX and is required for stable association of TREX with the SEP1-containing mRNA. Requirements for SEP1-mediated mRNA export are similar to those for splicing-dependent mRNA export. Consistent with these similarities, several SEP1-interacting proteins, including ZC3H18, ARS2, Acinus and Brr2, are required for efficient nuclear export of polyA RNAs. Together, our data indicate that SEP1 enhances mRNA export by recruiting TREX via ZC3H18. The new mRNA export factors that we identified might be involved in cap- and splicing-dependent TREX recruitment to cellular mRNAs. PMID:24782531

  8. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement*

    PubMed Central

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-01-01

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. PMID:26887951

  9. Nucleotide sequence and regulatory studies of VGF, a nervous system-specific mRNA that is rapidly and relatively selectively induced by nerve growth factor.

    PubMed

    Salton, S R

    1991-09-01

    A nervous system-specific mRNA that is rapidly induced in PC12 cells to a greater extent by nerve growth factor (NGF) than by epidermal growth factor treatment has been cloned. The polypeptide deduced from the nucleic acid sequence of the NGF33.1 cDNA clone contains regions of amino acid sequence identity with that predicted by the cDNA clone VGF, and further analysis suggests that both NGF33.1 and VGF cDNA clones very likely correspond to the same mRNA (VGF). In this report both the nucleic acid sequence that corresponds to VGF mRNA and the polypeptide predicted by the NGF33.1 cDNA clone are presented. Genomic Southern analysis and database comparison did not detect additional sequences with high homology to the VGF gene. Induction of VGF mRNA by depolarization and phorbol 12-myristate 13-acetate treatment was greater than by serum stimulation or protein kinase A pathway activation. These studies suggest that VGF mRNA is induced to the greatest extent by NGF treatment and that VGF is one of the most rapidly regulated neuronal mRNAs identified in PC12 cells.

  10. Developmental changes in the hypothalamic mRNA expression levels of brain-derived neurotrophic factor and serum leptin levels: Their responses to fasting in male and female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Yano, Kiyohito; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Yiliyasi, Maira; Kuwahara, Akira; Irahara, Minoru

    2016-11-01

    The actions and responses of hypothalamic appetite regulatory factors change markedly during the neonatal to pre-pubertal period in order to maintain appropriate metabolic and nutritional conditions. In this study, we examined the developmental changes in the hypothalamic mRNA levels of brain-derived neurotrophic factor (BDNF), which is a potent anorectic factor and the changes in the sensitivity of the hypothalamic expression of this factor to fasting during the neonatal to pre-pubertal period. Under fed conditions, hypothalamic BDNF mRNA expression decreased during development in both male and female rats. Similarly, the serum levels of leptin, which is a positive regulator of hypothalamic BDNF expression, also tended to fall during the developmental period. The serum leptin level and the hypothalamic BDNF mRNA level were found to be positively correlated in both sexes under the fed conditions. Hypothalamic BDNF mRNA expression was decreased by 24h fasting (separating the rats from their mothers) in the early neonatal period (postnatal day 10) in both males and females, but no such changes were seen at postnatal day 20. Twenty-four hours' fasting (food deprivation) did not affect hypothalamic BDNF mRNA expression in the pre-pubertal period (postnatal day 30). On the other hand, the rats' serum leptin levels were decreased by 24h fasting (separating the rats from their mothers at postnatal day 10 and 20, and food deprivation at postnatal day 30) throughout the early neonatal to pre-pubertal period. The correlation between serum leptin and hypothalamic BDNF mRNA levels was not significant under the fasted conditions. It can be speculated that leptin partially regulates hypothalamic BDNF mRNA levels, but only in fed conditions. Such changes in hypothalamic BDNF expression might play a role in maintaining appropriate metabolic and nutritional conditions and promoting normal physical development. In addition, because maternal separation induces a negative energy balance and short- and long-term stress responses, it is also possible that reductions in hypothalamic BDNF mRNA levels in the early neonatal period (postnatal day 10) may be partially induced by stress responses of the maternal deprivation. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Insulin-like growth factor and fibroblast growth factor expression profiles in growth-restricted fetal sheep pancreas.

    PubMed

    Chen, Xiaochuan; Rozance, Paul J; Hay, William W; Limesand, Sean W

    2012-05-01

    Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.

  12. Natural antioxidants exhibit chemopreventive characteristics through the regulation of CNC b-Zip transcription factors in estrogen-induced breast carcinogenesis.

    PubMed

    Chatterjee, Anwesha; Ronghe, Amruta; Singh, Bhupendra; Bhat, Nimee K; Chen, Jie; Bhat, Hari K

    2014-12-01

    The objective of the present study was to characterize the role of resveratrol (Res) and vitamin C (VC) in prevention of estrogen-induced breast cancer through regulation of cap "n"collar (CNC) b-zip transcription factors. Human breast epithelial cell line MCF-10A was treated with 17β-estradiol (E2) and VC or Res with or without E2. mRNA and protein expression levels of CNC b-zip transcription factors nuclear factor erythroid 2-related factor 1 (Nrf1), nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor erythroid 2 related factor 3 (Nrf3), and Nrf2-regulated antioxidant enzymes superoxide dismutase 3 (SOD3) and quinone oxidoreductase 1 (NQO1) were quantified. The treatment with E2 suppressed, whereas VC and Res prevented E2-mediated decrease in the expression levels of SOD3, NQO1, Nrf2 mRNA, and protein in MCF-10A cells. The treatment with E2, Res, or VC significantly increased mRNA and protein expression levels of Nrf1. 17β-Estradiol treatment significantly increased but VC or Res decreased Nrf3 mRNA and protein expression levels. Our studies demonstrate that estrogen-induced breast cancer might be prevented through upregulation of antioxidant enzymes via Nrf-dependent pathways. © 2014 Wiley Periodicals, Inc.

  13. UAP56 is a conserved crucial component of a divergent mRNA export pathway in Toxoplasma gondii.

    PubMed

    Serpeloni, Mariana; Jiménez-Ruiz, Elena; Vidal, Newton Medeiros; Kroeber, Constanze; Andenmatten, Nicole; Lemgruber, Leandro; Mörking, Patricia; Pall, Gurman S; Meissner, Markus; Ávila, Andréa R

    2016-11-01

    Nucleo-cytoplasmic RNA export is an essential post-transcriptional step to control gene expression in eukaryotic cells and is poorly understood in apicomplexan parasites. With the exception of UAP56, a component of TREX (Transcription Export) complex, other components of mRNA export machinery are not well conserved in divergent supergroups. Here, we use Toxoplasma gondii as a model system to functionally characterize TgUAP56 and its potential interaction factors. We demonstrate that TgUAP56 is crucial for mRNA export and that functional interference leads to significant accumulation of mRNA in the nucleus. It was necessary to employ bioinformatics and phylogenetic analysis to identify orthologs related to mRNA export, which show a remarkable low level of conservation in T. gondii. We adapted a conditional Cas9/CRISPR system to carry out a genetic screen to verify if these factors were involved in mRNA export in T. gondii. Only the disruption of TgRRM_1330 caused accumulation of mRNA in the nucleus as found with TgUAP56. This protein is potentially a divergent partner of TgUAP56, and provides insight into a divergent mRNA export pathway in apicomplexans. © 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  14. UAP56 is a conserved crucial component of a divergent mRNA export pathway in Toxoplasma gondii

    PubMed Central

    Serpeloni, Mariana; Jiménez‐Ruiz, Elena; Vidal, Newton Medeiros; Kroeber, Constanze; Andenmatten, Nicole; Lemgruber, Leandro; Mörking, Patricia; Pall, Gurman S.

    2016-01-01

    Summary Nucleo‐cytoplasmic RNA export is an essential post‐transcriptional step to control gene expression in eukaryotic cells and is poorly understood in apicomplexan parasites. With the exception of UAP56, a component of TREX (Transcription Export) complex, other components of mRNA export machinery are not well conserved in divergent supergroups. Here, we use Toxoplasma gondii as a model system to functionally characterize TgUAP56 and its potential interaction factors. We demonstrate that TgUAP56 is crucial for mRNA export and that functional interference leads to significant accumulation of mRNA in the nucleus. It was necessary to employ bioinformatics and phylogenetic analysis to identify orthologs related to mRNA export, which show a remarkable low level of conservation in T. gondii. We adapted a conditional Cas9/CRISPR system to carry out a genetic screen to verify if these factors were involved in mRNA export in T. gondii. Only the disruption of TgRRM_1330 caused accumulation of mRNA in the nucleus as found with TgUAP56. This protein is potentially a divergent partner of TgUAP56, and provides insight into a divergent mRNA export pathway in apicomplexans. PMID:27542978

  15. Stimulation by thyroid-stimulating hormone and Grave's immunoglobulin G of vascular endothelial growth factor mRNA expression in human thyroid follicles in vitro and flt mRNA expression in the rat thyroid in vivo.

    PubMed

    Sato, K; Yamazaki, K; Shizume, K; Kanaji, Y; Obara, T; Ohsumi, K; Demura, H; Yamaguchi, S; Shibuya, M

    1995-09-01

    To elucidate the pathogenesis of thyroid gland hypervascularity in patients with Graves' disease, we studied the expression of mRNAs for vascular endothelial growth factor (VEGF) and its receptor, Flt family, using human thyroid follicles in vitro and thiouracil-fed rats in vivo. Human thyroid follicles, cultured in the absence of endothelial cells, secreted de novo-synthesized thyroid hormone in response to thyroid-stimulating hormone (TSH) and Graves' IgG. The thyroid follicles produced VEGF mRNA but not flt-1 mRNA. The expression of VEGF mRNA was enhanced by insulin, tumor-promoting phorbol ester, calcium ionophore, dibutyryl cAMP, TSH, and Graves' IgG. When rats were fed thiouracil for 4 wk, their serum levels of TSH were increased at day 3. VEGF mRNA was also increased on day 3, accompanied by an increase in flt family (flt-1 and KDR/ flk-1) mRNA expression. These in vitro and in vivo findings suggest that VEGF is produced by thyroid follicles in response to stimulators of TSH receptors, via the protein kinase A and C pathways. VEGF, a secretable angiogenesis factor, subsequently stimulates Flt receptors on endothelial cells in a paracrine manner, leading to their proliferation and producing hypervascularity of the thyroid gland, as seen in patients with Graves' disease.

  16. Differential mRNA expression of neuroinflammatory modulators in the spinal cord and thalamus of type 2 diabetic monkeys.

    PubMed

    Ding, Huiping; Kiguchi, Norikazu; Kishioka, Shiroh; Ma, Tao; Peters, Christopher M; Ko, Mei-Chuan

    2018-05-11

    Given that diabetes-associated complications are closely associated with neuroinflammation, it is imperative to study potential changes in neuroinflammatory modulators in the central nervous system of diabetic primates. The mRNA levels of pro- and anti-inflammatory cytokines, toll-like receptors (TLRs), growth factors, and cannabinoid receptors were compared in the spinal dorsal horn (SDH) and thalamus of naturally occurring type 2 diabetic monkeys and an age-matched control group using reverse transcription and quantitative real-time polymerase chain reaction. In the SDH of diabetic monkeys, mRNA levels of proinflammatory cytokines (i.e. interleukin [IL]-1β and tumor necrosis factor [TNF] α), TLR1, and TLR2 were increased, whereas mRNA levels of IL-10, an anti-inflammatory cytokine, were decreased. No changes were observed in the mRNA levels of growth factors and cannabinoid receptors. In line with the mRNA data, TNFα immunoreactivity was significantly increased in diabetic monkeys. Moreover, mRNA expression levels of IL-1β, TNFα, TLR1, and TLR2 in the SDH were positively correlated with plasma glucose concentrations in all monkeys. Several ligands and receptors involved in neuroinflammation are simultaneously dysregulated in the spinal cord of diabetic monkeys. This primate disease model will facilitate the design of novel treatment approaches to ameliorate neuroinflammation-driven adverse effects in diabetic patients. © 2018 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  17. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells.

    PubMed

    Lachgar, S; Charveron, M; Gall, Y; Bonafe, J L

    1998-03-01

    The hair follicle dermal papilla which controls hair growth, is characterized in the anagen phase by a highly developed vascular network. We have demonstrated in a previous study that the expression of an angiogenic growth factor called vascular endothelial growth factor (VEGF) mRNA varied during the hair cycle. VEGF mRNA is strongly expressed in dermal papilla cells (DPC) in the anagen phase, but during the catagen and telogen phases. VEGF mRNA is less strongly expressed. This involvement of VEGF during the hair cycle allowed us to determine whether VEGF mRNA expression by DPC was regulated by minoxidil. In addition, the effect of minoxidil on VEGF protein synthesis in both cell extracts and DPC-conditioned medium, was investigated immunoenzymatically. Both VEGF mRNA and protein were significantly elevated in treated DPC compared with controls. DPC incubated with increasing minoxidil concentrations (0.2, 2, 6, 12 and 24 mumol/L) induced a dose-dependent expression of VEGF mRNA. Quantification of transcripts showed that DPC stimulated with 24 mumol/L minoxidil express six times more VEGF mRNA than controls. Similarly, VEGF protein production increases in cell extracts and conditioned media following minoxidil stimulation. These studies strongly support the likely involvement of minoxidil in the development of dermal papilla vascularization via a stimulation of VEGF expression, and support the hypothesis that minoxidil has a physiological role in maintaining a good vascularization of hair follicles in androgenetic alopecia.

  18. Tristetraprolin Inhibits Ras-dependent Tumor Vascularization by Inducing Vascular Endothelial Growth Factor mRNA Degradation

    PubMed Central

    Essafi-Benkhadir, Khadija; Onesto, Cercina; Stebe, Emmanuelle; Moroni, Christoph

    2007-01-01

    Vascular endothelial growth factor (VEGF) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway and overexpression of VEGF are common denominators of tumors from different origins. We have established a new link between these two fundamental observations converging on VEGF mRNA stability. In this complex phenomenon, tristetraprolin (TTP), an adenylate and uridylate-rich element-associated protein that binds to VEGF mRNA 3′-untranslated region, plays a key role by inducing VEGF mRNA degradation, thus maintaining basal VEGF mRNA amounts in normal cells. ERKs activation results in the accumulation of TTP mRNA. However, ERKs reduce the VEGF mRNA-destabilizing effect of TTP, leading to an increase in VEGF expression that favors the angiogenic switch. Moreover, TTP decreases RasVal12-dependent VEGF expression and development of vascularized tumors in nude mice. As a consequence, TTP might represent a novel antiangiogenic and antitumor agent acting through its destabilizing activity on VEGF mRNA. Determination of TTP and ERKs status would provide useful information for the evaluation of the angiogenic potential in human tumors. PMID:17855506

  19. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won

    2016-02-01

    A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1  ×  1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.

  20. Increased expression of cyclin B1 mRNA coincides with diminished G{sub 2}-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhard, E.J.; Maity, A.; McKenna, W.G.

    1994-12-01

    The irradiation of cells results in delayed progression through the G{sub 2} phase of the cell cycle. Treatment of irradiated HeLa cells with caffeine greatly reduces the G{sub 2}-phase delay, while caffeine does not alter progression of cells through the cell cycle in unirradiated cells. In this report we demonstrate that treatment of HeLa cells with the kinase inhibitor staurosporine, but not with the inhibitor H7, also results in a reduction of the G{sub 2}-phase arrest after irradiation. Cell cycle progression in unirradiated cells is unaffected by 4.4 nM (2ng/ml) staurosporine, which releases the radiation-induced G{sub 2}-phase arrest. In HeLamore » cells, the G{sub 2}-phase delay after irradiation in S phase is accompanied by decreased expression of cyclin B1 mRNA. Coincident with the reduction in G{sub 2}-phase delay, we observed an increase in cyclin B1 mRNA accumulation in irradiated, staurosporine-treated cells compared to cells treated with irradiation alone. Caffeine treatment of irradiated HeLa cells also resulted in an elevation in the levels of cyclin B1 message. These results support the hypothesis that diminished cyclin B1 mRNA levels influence G{sub 2}-phase arrest to some degree. The findings that both staurosporine and caffeine treatments reverse the depression in cyclin B1 expression suggest that these two compounds may act on a common pathway of cell cycle control in response to radiation injury. 33 refs., 6 figs.« less

  1. [Transcription factors NF-kB, HIF-1, HIF-2, growth factor VEGF, VEGFR2 and carboanhydrase IX mRNA and protein level in the development of kidney cancer metastasis].

    PubMed

    Spirina, L V; Usynin, Y A; Yurmazov, Z A; Slonimskaya, E M; Kolegova, E S; Kondakova, I V

    2017-01-01

    Here, we have investigated the participation of nuclear factors NF-kB, HIF-1 and HIF-2, VEGF, VEGFR2, and carboanhydrase IX in clear-cell renal cancer. We have determined the expression and protein level of transcription factors, VEGF, VEGFR2, and carboanhydrase IX in tumor and normal tissues of 30 patients with kidney cancer. The Real-Time PCR and ELISA were used in the study. The low levels of HIF-1 mRNA expression associated with high levels of HIF-1 protein were also associated with metastasis. The expression levels of VEGF, VEGFR2, and their protein levels are increased in primary tumors of patients with disseminated kidney cancer compared to nonmetastatic cancer. No correlation was revealed between the content of mRNA and encoded proteins in the kidney cancer tissues. The changes in the ratios of mRNA levels and the respective proteins (HIF-1α, HIF-2, NF-kB, VEGF, VEGFR2, and carboanhydrase IX) may contribute to kidney-cancer metastasis.

  2. The Antagonistic Effect of Selenium on Cadmium-Induced Damage and mRNA Levels of Selenoprotein Genes and Inflammatory Factors in Chicken Kidney Tissue.

    PubMed

    Wang, Xinyue; Bao, Rongkun; Fu, Jing

    2018-02-01

    Selenium (Se) is a necessary trace mineral in the diet of humans and animals. Cadmium (Cd) is a toxic heavy metal that can damage animal organs, especially the kidneys. Antagonistic interactions between Se and Cd have been reported in previous studies. However, little is known about the effects of Se against Cd toxicity and on the mRNA levels of 25 selenoprotein genes and inflammatory factors in chicken kidneys. In the current study, we fed chickens with a Se-treated, Cd-treated, or Se/Cd treated diet for 90 days. We then analyzed the mRNA expression of inflammatory factors (including prostaglandin E synthase (PTGES), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2)) and 25 selenoprotein genes (Gpx1, Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, Dio3, SPS2, Sepp1, SelPb, Sep15, Selh, Seli, Selm, Selo, Sels, Sepx1, Selu, Selk, Selw, Seln, Selt). The results demonstrated that Cd exposure increased the Cd content in the chicken kidneys, renal tubular epithelial cells underwent denaturation and necrosis, and the tubules became narrow or disappeared. However, Se supplementation reduced the Cd content in chicken kidneys and induced normal development of renal tubular epithelial cells. In addition, we also observed that Se alleviated the Cd-induced increase in the mRNA levels of inflammatory factors and ameliorated the Cd-induced downtrend in the mRNA levels of 25 selenoprotein genes in chicken kidneys.

  3. High-level mRNA quantification of proliferation marker pKi-67 is correlated with favorable prognosis in colorectal carcinoma.

    PubMed

    Ihmann, Thomas; Liu, Jian; Schwabe, Wolfgang; Häusler, Peter; Behnke, Detlev; Bruch, Hans-Peter; Broll, Rainer; Windhövel, Ute; Duchrow, Michael

    2004-12-01

    The present study retrospectively examines the expression of pKi-67 mRNA and protein in colorectal carcinoma and their correlation to the outcome of patients. Immunohistochemistry and quantitative RT-PCR were used to analyze the expression of pKi-67 in 43 archival specimens of patients with curatively resected primary colorectal carcinoma, who were not treated with neo-adjuvant therapy. We determined a median pKi-67 (MIB-1) labeling index of 31.3% (range 10.3-66.4%), and a mean mRNA level of 0.1769 (DeltaC(T): range 0.01-0.69); indices and levels did not correlate. High pKi-67 mRNA DeltaC(T) values were associated with a significantly favorable prognosis, while pKi-67 labeling indices were not correlated to prognostic outcome. A multivariate analysis of clinical and biological factors indicated that tumor stage (UICC) and pKi-67 mRNA expression level were independent prognostic factors. Quantitatively determined pKi-67 mRNA can be a good and new prognostic indicator for primary resected colorectal carcinoma.

  4. An Anacardiaceae preparation reduces the expression of inflammation-related genes in murine macrophages.

    PubMed

    Leiro, J; García, D; Arranz, J A; Delgado, R; Sanmartín, M L; Orallo, F

    2004-08-01

    This study investigated the effects of an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae; Vimang), which contains a defined mixture of components including polyphenols (principally mangiferin, MA), triterpenes, phytosteroids, fatty acids and microelements, on expression of inflammation mediators in inflammatory murine macrophages after stimulation in vitro with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). In vitro treatment with Vimang at 4 microg/ml reduced levels of NOS-2 mRNA and NOS-2, while treatment at 40 microg/ml also reduced levels of COX-2 mRNA, COX-2, and prostaglandin E2 (PGE2). Results suggested that MA is involved in these effects. In vitro treatment with Vimang at 40 microg/ml also inhibited mRNA levels of the proinflammatory cytokines interleukin 1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha) and colony-stimulating factor (GM-CSF), but did not affect mRNA levels of IL-6 or tumor growth factor-beta (TGF-beta). Extracellular release of TNF-alpha by inflammatory macrophages was inhibited by in vitro treatment with Vimang at the same concentrations that showed inhibition of TNF-alpha mRNA levels. The inhibition of TNF-alpha production appears to be at least partially attributable to MA. Vimang at 4 microg/ml decreased mRNA levels of nuclear factor-kappaB (NF-kappaB) but did not affect expression of the NF-kappaB inhibitor (IkappaB). These data indicate that the potent anti-inflammatory effects of Vimang are due to selective modulation of the expression of inflammation-related genes, leading to attenuation of macrophage activation.

  5. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement.

    PubMed

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-04-15

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) in mammary tissue of Holstein cows during the periparturient period is associated with mRNA abundance of antioxidant gene networks.

    PubMed

    Han, L Q; Zhou, Z; Ma, Y; Batistel, F; Osorio, J S; Loor, J J

    2018-04-18

    Changes in the production of reactive oxygen species in the mammary gland of dairy cows during the periparturient period could lead to oxidative stress and potentially impair mammary function. Phosphorylation of the transcription factor nuclear factor erythroid 2-like 2 (NFE2L2), also known as nuclear factor-E2-related factor 2, controls mRNA abundance of genes encoding antioxidant proteins and enzymes. The hypothesis was that NFE2L2 phosphorylation status and target gene mRNA abundance in the mammary gland of dairy cows is altered around parturition. Total NFE2L2 protein, phosphorylated protein (p-NFE2L2), and ratio of p-NFE2L2 to NFE2L2 along with mRNA abundance of 24 genes related to the NFE2L2 signaling pathway, apoptosis, and cell proliferation were measured in mammary tissue samples from Holstein cows at -30, 1, 15, and 30 d relative to parturition. Although total NFE2L2 protein abundance did not differ, p-NFE2L2 and p-NFE2L2-to-NFE2L2 ratio were greater after parturition. The upregulation of DNA damage inducible transcript 3 (DDIT3) postpartum indicated a localized oxidative stress state. Among genes evaluated, thioredoxin (TXN), glutathione peroxidase 1 (GPX1), and glutathione S-transferase mu 1 (GSTM1) had the highest (37.1, 15.1, and 4.8% of total mRNA measured, respectively) abundance. The mRNA abundance of various target genes with detoxifying enzymatic functions and free radical scavenging activities [glutamate-cysteine ligase catalytic subunit (GCLC); glutathione reductase (GSR); ferrochelatase (FECH); TXN; thioredoxin reductase 1 (TXNRD1); and NAD(P)H quinone dehydrogenase 1 (NQO1)] were consistently upregulated (linear effect of time) as parturition approached and lactation began. Among the transcription regulators, NFE2L2 had the highest mRNA abundance (7.3% of total mRNA measured). Abundance of NFE2L2 and other transcription factors [nuclear factor kappa B subunit 1 (NFKB1), retinoid X receptor α (RXRA), and mitogen-activated protein kinase 14 (MAPK14)] were upregulated (linear effect of time) from -30 d to 30 d relative to parturition. Overall, NFE2L2 phosphorylation and downstream signaling leading to postpartal upregulation of genes associated with oxidative stress and inflammation in the mammary gland seem to be key components of normal cellular function to maintain proper redox homeostasis. However, if the longitudinal increases in mRNA and protein abundance of these antioxidant mechanisms are a reflection of cellular oxidative stress, then the likelihood of protein and DNA damage would be greater and might be one factor compromising cell viability and potentially lactation persistency. The actual cues coordinating these molecular responses remain to be determined. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. hnRNP L binds to CA repeats in the 3'UTR of bcl-2 mRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Hyoung; Lim, Mi-Hyun; Youn, Dong-Ye

    We previously reported that the CA-repeat sequence in the 3'-untranslated region (3'UTR) of bcl-2 mRNA is involved in the decay of bcl-2 mRNA. However, the trans-acting factor for the CA element in bcl-2 mRNA remains unidentified. The heterogeneous nuclear ribonucleoprotein L (hnRNP L), an intron splicing factor, has been reported to bind to CA repeats and CA clusters in the 3'UTR of several genes. We reported herein that the CA repeats of bcl-2 mRNA have the potential to form a distinct ribonuclear protein complex in cytoplasmic extracts of MCF-7 cells, as evidenced by RNA electrophoretic mobility shift assays (REMSA). Amore » super-shift assay using the hnRNP L antibody completely shifted the complex. Immunoprecipitation with the hnRNP L antibody and MCF-7 cells followed by RT-PCR revealed that hnRNP L interacts with endogenous bcl-2 mRNA in vivo. Furthermore, the suppression of hnRNP L in MCF-7 cells by the transfection of siRNA for hnRNP L resulted in a delay in the degradation of RNA transcripts including CA repeats of bcl-2 mRNA in vitro, suggesting that the interaction between hnRNPL and CA repeats of bcl-2 mRNA participates in destabilizing bcl-2 mRNA.« less

  8. Growth Cone Localization of the mRNA Encoding the Chromatin Regulator HMGN5 Modulates Neurite Outgrowth

    PubMed Central

    Moretti, Francesca; Rolando, Chiara; Winker, Moritz; Ivanek, Robert; Rodriguez, Javier; Von Kriegsheim, Alex; Taylor, Verdon; Bustin, Michael

    2015-01-01

    Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus. PMID:25825524

  9. Regulation of LPS-induced tissue factor expression in human monocytic THP-1 cells by curcumin

    USDA-ARS?s Scientific Manuscript database

    Tissue factor (TF) is a transmembrane receptor, which initiates thrombotic episodes associated with various diseases. In addition to membrane-bound TF, we have discovered an alternatively spliced form of human TF mRNA. It was later confirmed that this form of TF mRNA expresses a soluble protein circ...

  10. Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex

    PubMed Central

    Aitken, Colin Echeverría; Beznosková, Petra; Vlčkova, Vladislava; Chiu, Wen-Ling; Zhou, Fujun; Valášek, Leoš Shivaya; Hinnebusch, Alan G; Lorsch, Jon R

    2016-01-01

    Eukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2•GTP•Met-tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, we uncovered a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD. These functions are redundant: defects at each channel can be rescued by filling the other channel with mRNA. DOI: http://dx.doi.org/10.7554/eLife.20934.001 PMID:27782884

  11. Induction of cysteine-rich motor neuron 1 mRNA expression in vascular endothelial cells.

    PubMed

    Nakashima, Yukiko; Takahashi, Satoru

    2014-08-22

    Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Coupled Evolution of Transcription and mRNA Degradation

    PubMed Central

    Dori-Bachash, Mally; Shema, Efrat; Tirosh, Itay

    2011-01-01

    mRNA levels are determined by the balance between transcription and mRNA degradation, and while transcription has been extensively studied, very little is known regarding the regulation of mRNA degradation and its coordination with transcription. Here we examine the evolution of mRNA degradation rates between two closely related yeast species. Surprisingly, we find that around half of the evolutionary changes in mRNA degradation were coupled to transcriptional changes that exert opposite effects on mRNA levels. Analysis of mRNA degradation rates in an interspecific hybrid further suggests that opposite evolutionary changes in transcription and in mRNA degradation are mechanistically coupled and were generated by the same individual mutations. Coupled changes are associated with divergence of two complexes that were previously implicated both in transcription and in mRNA degradation (Rpb4/7 and Ccr4-Not), as well as with sequence divergence of transcription factor binding motifs. These results suggest that an opposite coupling between the regulation of transcription and that of mRNA degradation has shaped the evolution of gene regulation in yeast. PMID:21811398

  13. Overexpression of early growth response-1 as a metastasis-regulatory factor in gastric cancer.

    PubMed

    Kobayashi, Daisuke; Yamada, Mikako; Kamagata, Chinatsu; Kaneko, Reiko; Tsuji, Naoki; Nakamura, Masashi; Yagihashi, Atsuhito; Watanabe, Naoki

    2002-01-01

    To investigate the potential role of a nuclear transcription factor, early growth response-1 (Egr-1), in formation and progression of gastric cancer, we compared its expression in gastric cancers with that in non-cancerous tissues. Egr-1 mRNA expression was measured using TaqMan RT-PCR. The corresponding protein expression was examined immunohistochemically. Egr-1 mRNA expression was significantly higher in gastric cancer tissues than in normal mucosa (p < 0.0005). These differences were also reflected by protein product expression. Moreover, Egr-1 mRNA expression was higher in cases with metastasis to lymph nodes or remote organs. In cultured gastric cancer cells known to have a high metastatic potential, expression of this mRNA was higher than that of parental cells. It was suggested that Egr-1 has a significant role in carcinogenesis and in cancer progression, especially metastasis. Measurement of this mRNA should be useful for evaluation of the metastatic potential of gastric cancer.

  14. Role of the mRNA export factor Sus1 in oxidative stress tolerance in Candida albicans.

    PubMed

    Xiao, Chenpeng; Yu, Qilin; Zhang, Bing; Li, Jianrong; Zhang, Dan; Li, Mingchun

    2018-02-05

    In eukaryotes, the nuclear export of mRNAs is essential for gene expression. However, little is known about the role of mRNA nuclear export in the important fungal pathogen, Candida albicans. In this study, we identified C. albicans Sus1, a nucleus-localized protein that is required for mRNA export. Interestingly, the sus1Δ/Δ displayed hyper-sensitivity to extracellular oxidative stress, enhanced ROS accumulation and severe oxidative stress-related cell death. More strikingly, although the mutant exhibited normal activation of the expression of oxidative stress response (OSR) genes, it had attenuated activity of ROS scavenging system, which may be attributed to the defect in OSR mRNA export in this mutant. In addition, the virulence of the sus1Δ/Δ was seriously attenuated. Taken together, our findings provide evidence that the mRNA export factor Sus1 plays an important role in oxidative stress tolerance and pathogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Multiple cis-acting signals, some weak by necessity, collectively direct robust transport of oskar mRNA to the oocyte.

    PubMed

    Ryu, Young Hee; Kenny, Andrew; Gim, Youme; Snee, Mark; Macdonald, Paul M

    2017-09-15

    Localization of mRNAs can involve multiple steps, each with its own cis -acting localization signals and transport factors. How is the transition between different steps orchestrated? We show that the initial step in localization of Drosophila oskar mRNA - transport from nurse cells to the oocyte - relies on multiple cis -acting signals. Some of these are binding sites for the translational control factor Bruno, suggesting that Bruno plays an additional role in mRNA transport. Although transport of oskar mRNA is essential and robust, the localization activity of individual transport signals is weak. Notably, increasing the strength of individual transport signals, or adding a strong transport signal, disrupts the later stages of oskar mRNA localization. We propose that the oskar transport signals are weak by necessity; their weakness facilitates transfer of the oskar mRNA from the oocyte transport machinery to the machinery for posterior localization. © 2017. Published by The Company of Biologists Ltd.

  16. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells.

    PubMed

    Ochnik, Aleksandra M; Peterson, Mark S; Avdulov, Svetlana V; Oh, Annabell S; Bitterman, Peter B; Yee, Douglas

    2016-02-01

    Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)(+) (MCF-7L) and ERα(-) (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. AIB1 positively regulated IGF-I-induced mRNA translation in both ERα(+) and ERα(-) cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα(+) and ERα(-) knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Periapical cytokine expression in sickle cell disease.

    PubMed

    Ferreira, Shirlene Barbosa Pimentel; de Brito, Luciana Carla Neves; Oliveira, Michelle Pimenta; Maciel, Kamilla Faria; Martelli Júnior, Hercílio; Vieira, Leda Quercia; Sobrinho, Antônio Paulino Ribeiro

    2015-03-01

    Sickle cell anemia (SCA) is the most prevalent genetic disease worldwide. Patients with SCA exhibit increased levels of proinflammatory mediators as part of a permanently activated immunoinflammatory status. The aim of this study was to evaluate the mRNA expression levels of the cytokines interferon (IFN-γ), tumor necrosis factor, interleukin (IL-1β, IL-17A, IL-10), receptor activator for nuclear factor kappa B ligand, and the chemokines CCL2/MCP-1 and CCL5 in the periapical interstitial fluid from SCA individuals compared with healthy individuals. Samples were collected from 12 teeth of SCA patients and 12 non-SCA patients with apical periodontitis. In addition, 12 teeth were sampled from the periapical region of healthy patients with vital pulp (control). The expression of cytokine mRNA was detected by using real-time polymerase chain reaction. The expression of mRNA for the Th1-associated cytokines IFN-γ, tumor necrosis factor-α, and IL-1β were significantly higher in SCA individuals than in the control individuals (P < .05). Among Th1-associated cytokines, only IFN-γ was significantly increased in non-SCA compared with control patients (vital pulp). The expression of IL-17A mRNA was significant higher in SCA cases than in control samples (P < .05), whereas the IL-10 mRNA expression was significantly increased in SCA and non-SCA individuals when compared with the control group. Similar levels of receptor activator for nuclear factor kappa B ligand, CCL2, and CCL5 mRNA expression were observed in all samples. However, no significant differences were observed in the expression of cytokine or chemokine mRNA between SCA and non-SCA individuals (P > .05). The results were able to demonstrate that SCA patients presented prone proinflammatory ability, despite the fact that any differences in periapical immune responses between SCA and non-SCA individuals were not observed. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Distinct Roles for Somatically and Dendritically Synthesized Brain-Derived Neurotrophic Factor in Morphogenesis of Dendritic Spines

    PubMed Central

    Orefice, Lauren L.; Waterhouse, Emily G.; Partridge, John G.; Lalchandani, Rupa R.; Vicini, Stefano

    2013-01-01

    Dendritic spines undergo the processes of formation, maturation, and pruning during development. Molecular mechanisms controlling spine maturation and pruning remain largely unknown. The gene for brain-derived neurotrophic factor (BDNF) produces two pools of mRNA, with either a short or long 3′ untranslated region (3′ UTR). Our previous results show that short 3′ UTR Bdnf mRNA is restricted to cell bodies, whereas long 3′ UTR Bdnf mRNA is also trafficked to dendrites for local translation. Mutant mice lacking long 3′ UTR Bdnf mRNA display normal spines at 3 weeks of age, but thinner and denser spines in adults compared to wild-type littermates. These observations suggest that BDNF translated from long 3′ UTR Bdnf mRNA, likely in dendrites, is required for spine maturation and pruning. In this study, using rat hippocampal neuronal cultures, we found that knocking down long 3′ UTR Bdnf mRNA blocked spine head enlargement and spine elimination, whereas overexpressing long 3′ UTR Bdnf mRNA had the opposite effect. The effect of long 3′ UTR Bdnf mRNA on spine head enlargement and spine elimination was diminished by a human single-nucleotide polymorphism (SNP, rs712442) in its 3′ UTR that inhibited dendritic localization of Bdnf mRNA. Furthermore, we found that overexpression of either Bdnf mRNA increased spine density at earlier time points. Spine morphological alterations were associated with corresponding changes in density, size, and function of synapses. These results indicate that somatically synthesized BDNF promotes spine formation, whereas dendritically synthesized BDNF is a key regulator of spine head growth and spine pruning. PMID:23843530

  19. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals

    USGS Publications Warehouse

    Mars, J.C.; Rowan, L.C.

    2010-01-01

    ASTER reflectance spectra from Cuprite, Nevada, and Mountain Pass, California, were compared to spectra of field samples and to ASTER-resampled AVIRIS reflectance data to determine spectral accuracy and spectroscopic mapping potential of two new ASTER SWIR reflectance datasets: RefL1b and AST_07XT. RefL1b is a new reflectance dataset produced for this study using ASTER Level 1B data, crosstalk correction, radiance correction factors, and concurrently acquired level 2 MODIS water vapor data. The AST_07XT data product, available from EDC and ERSDAC, incorporates crosstalk correction and non-concurrently acquired MODIS water vapor data for atmospheric correction. Spectral accuracy was determined using difference values which were compiled from ASTER band 5/6 and 9/8 ratios of AST_07XT or RefL1b data subtracted from similar ratios calculated for field sample and AVIRIS reflectance data. In addition, Spectral Analyst, a statistical program that utilizes a Spectral Feature Fitting algorithm, was used to quantitatively assess spectral accuracy of AST_07XT and RefL1b data.Spectral Analyst matched more minerals correctly and had higher scores for the RefL1b data than for AST_07XT data. The radiance correction factors used in the RefL1b data corrected a low band 5 reflectance anomaly observed in the AST_07XT and AST_07 data but also produced anomalously high band 5 reflectance in RefL1b spectra with strong band 5 absorption for minerals, such as alunite. Thus, the band 5 anomaly seen in the RefL1b data cannot be corrected using additional gain adjustments. In addition, the use of concurrent MODIS water vapor data in the atmospheric correction of the RefL1b data produced datasets that had lower band 9 reflectance anomalies than the AST_07XT data. Although assessment of spectral data suggests that RefL1b data are more consistent and spectrally more correct than AST_07XT data, the Spectral Analyst results indicate that spectral discrimination between some minerals, such as alunite and kaolinite, are still not possible unless additional spectral calibration using site specific spectral data are performed. ?? 2010.

  20. Single-Factor SOX2 Mediates Direct Neural Reprogramming of Human Mesenchymal Stem Cells via Transfection of In Vitro Transcribed mRNA.

    PubMed

    Kim, Bo-Eun; Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Kang, Insung; Lee, Byung-Chul; Lee, Jin Young; Kook, Myoung Geun; Kang, Kyung-Sun

    2018-01-01

    Neural stem cells (NSCs) are a prominent cell source for understanding neural pathogenesis and for developing therapeutic applications to treat neurodegenerative disease because of their regenerative capacity and multipotency. Recently, a variety of cellular reprogramming technologies have been developed to facilitate in vitro generation of NSCs, called induced NSCs (iNSCs). However, the genetic safety aspects of established virus-based reprogramming methods have been considered, and non-integrating reprogramming methods have been developed. Reprogramming with in vitro transcribed (IVT) mRNA is one of the genetically safe reprogramming methods because exogenous mRNA temporally exists in the cell and is not integrated into the chromosome. Here, we successfully generated expandable iNSCs from human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via transfection with IVT mRNA encoding SOX2 (SOX2 mRNA) with properly optimized conditions. We confirmed that generated human UCB-MSC-derived iNSCs (UM-iNSCs) possess characteristics of NSCs, including multipotency and self-renewal capacity. Additionally, we transfected human dermal fibroblasts (HDFs) with SOX2 mRNA. Compared with human embryonic stem cell-derived NSCs, HDFs transfected with SOX2 mRNA exhibited neural reprogramming with similar morphologies and NSC-enriched mRNA levels, but they showed limited proliferation ability. Our results demonstrated that human UCB-MSCs can be used for direct reprogramming into NSCs through transfection with IVT mRNA encoding a single factor, which provides an integration-free reprogramming tool for future therapeutic application.

  1. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export

    PubMed Central

    Neumann, Bettina; Wu, Haijia; Hackmann, Alexandra; Krebber, Heike

    2016-01-01

    The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms. PMID:26872259

  2. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export.

    PubMed

    Neumann, Bettina; Wu, Haijia; Hackmann, Alexandra; Krebber, Heike

    2016-01-01

    The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms.

  3. Expression of early growth response factor-1 in rats with cerulein-induced acute pancreatitis and its significance

    PubMed Central

    Gong, Lan-Bo; He, Li; Liu, Yang; Chen, Xue-Qing; Jiang, Bo

    2005-01-01

    AIM: To observe the expressions of early growth response factor-1 (Egr-1) and tissue factor (TF) in rats with cerulein-induced acute pancreatitis and to explore its significance. METHODS: A large dose of cerulein was used to create the experimental acute pancreatitis model in rats. The changes of Egr-1 mRNA and protein in rats were observed during 30 min to 4 h after the treatment and immunohistochemical method was used to observe the localized expression of Egr-1 in tissues. In addition to the mRNA expression of Egr-1 target gene, TF was also observed. A blank control group, and a bombesin-administered group were used for comparison. RESULTS: After the stimulation of a large dose of cerulein, the rats showed typical inflammatory changes of acute pancreatitis. Thirty minutes after the stimulation, the mRNA expression of Egr-1 in the pancreatic tissue reached its peak and then declined, while the expression of Egr-1 protein reached its peak 2 h after the stimulation. Histologically, 2 h after the stimulation, almost all pancreatic acinar cells had the expression of Egr-1 protein, which was focused in the nuclei. The mRNA expression of TF occurred 1 h after the stimulation and gradually increased within 4 h. However, a large dose of bombesin only stimulated the pancreatic tissue to produce a little mRNA expression of Egr-1 and no mRNA expression of Egr-1 protein and TF. CONCLUSION: Egr-1 as a pro-inflammatory transcription factor may play an important role in the pathogenesis of acute pancreatitis by modulating the expression of TF. PMID:16124058

  4. Expression and regulation of CNTF receptor-alpha in the in situ and in oculo grafted adult rat adrenal medulla.

    PubMed

    Förander, P; Brené, S; Strömberg, I

    2000-02-28

    Cultured and transplanted adrenal medullary cells respond to ciliary neurotrophic factor (CNTF) with neurite formation and improved cell survival although the presence of the CNTF receptor-alpha (CNTFRalpha) has been unclear. This study show that CNTFRalpha mRNA was expressed in the postnatal day 1 as well as in the adult rat adrenal medulla. The highest CNTFRalpha mRNA signal was found in the ganglion cells of the adrenal medulla. After transplantation of adrenal medullary tissue the CNTFRalpha mRNA levels were down-regulated in the chromaffin cells. CNTF treatment of grafts did not normalize the receptor levels, but treatment with nerve growth factor (NGF) did. Thus, we demonstrate that CNTFRalpha mRNA is expressed in adrenal medulla, the levels becomes down-regulated after transplantation, but normalized after treatment with NGF.

  5. Neurotrophins and their receptors in the rat pituitary gland: regulation of BDNF and trkB mRNA levels by adrenal hormones.

    PubMed

    Kononen, J; Soinila, S; Persson, H; Honkaniemi, J; Hökfelt, T; Pelto-Huikko, M

    1994-12-01

    We studied the expression of messenger ribonucleic acids (mRNAs) for neurotrophins and neurotrophin receptors in the rat pituitary gland and examined the influence of adrenal hormones on their mRNA levels, using in situ hybridization and Northern blot analysis. The only neurotrophin present at detectable levels in the pituitary was brain-derived neurotrophic factor (BDNF), which was observed in the anterior and intermediate lobes. Several transcripts of the putative receptor for BDNF, trkB, were present in the anterior and posterior lobes of the pituitary. A low amount of trkC mRNA was found in both the anterior and the intermediate lobe. Dexamethasone treatment decreased both BDNF and trkB mRNA levels in the anterior lobe of the pituitary. Adrenalectomy had no effect on trkB expression, but it decreased BDNF mRNA levels in comparison to the control animals. This effect could not be reversed by dexamethasone substitution, suggesting that BDNF, mRNA levels may be regulated not only by glucocorticoids but also by other adrenal hormones. These results demonstrate that BDNF, trkB and trkC are expressed in the pituitary gland and that glucocorticoids and possibly other adrenal hormones may modulate pituitary functions by regulating the expression of neurotrophic factors and their receptors. Whether BDNF acts as a secreted hormone, a trophic factor, or has autocrine/paracrine functions within the pituitary through its receptor, trkB, remains to be studied.

  6. La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region

    PubMed Central

    Philippe, Lucas; Vasseur, Jean-Jacques; Debart, Françoise

    2018-01-01

    Abstract Cell growth is a complex process shaped by extensive and coordinated changes in gene expression. Among these is the tightly regulated translation of a family of growth-related mRNAs defined by a 5′ terminal oligopyrimidine (TOP) motif. TOP mRNA translation is partly controlled via the eukaryotic initiation factor 4F (eIF4F), a translation factor that recognizes the mRNA 5′ cap structure. Recent studies have also implicated La-related protein 1 (LARP1), which competes with eIF4F for binding to mRNA 5′ ends. However, it has remained controversial whether LARP1 represses TOP mRNA translation directly and, if so, what features define its mRNA targets. Here, we show that the C-terminal half of LARP1 is necessary and sufficient to control TOP mRNA translation in cells. This fragment contains the DM15 cap-binding domain as well as an adjacent regulatory region that we identified. We further demonstrate that purified LARP1 represses TOP mRNA translation in vitro through the combined recognition of both the TOP sequence and cap structure, and that its intrinsic repressive activity and affinity for these features are subject to regulation. These results support a model whereby the translation of TOP mRNAs is controlled by a growth-regulated competition between eIF4F and LARP1 for their 5′ ends. PMID:29244122

  7. The MTL1 Pentatricopeptide Repeat Protein Is Required for Both Translation and Splicing of the Mitochondrial NADH DEHYDROGENASE SUBUNIT7 mRNA in Arabidopsis.

    PubMed

    Haïli, Nawel; Planchard, Noelya; Arnal, Nadège; Quadrado, Martine; Vrielynck, Nathalie; Dahan, Jennifer; des Francs-Small, Catherine Colas; Mireau, Hakim

    2016-01-01

    Mitochondrial translation involves a complex interplay of ancient bacteria-like features and host-derived functionalities. Although the basic components of the mitochondrial translation apparatus have been recognized, very few protein factors aiding in recruiting ribosomes on mitochondria-encoded messenger RNA (mRNAs) have been identified in higher plants. In this study, we describe the identification of the Arabidopsis (Arabidopsis thaliana) MITOCHONDRIAL TRANSLATION FACTOR1 (MTL1) protein, a new member of the Pentatricopeptide Repeat family, and show that it is essential for the translation of the mitochondrial NADH dehydrogenase subunit7 (nad7) mRNA. We demonstrate that mtl1 mutant plants fail to accumulate the Nad7 protein, even though the nad7 mature mRNA is produced and bears the same 5' and 3' extremities as in wild-type plants. We next observed that polysome association of nad7 mature mRNA is specifically disrupted in mtl1 mutants, indicating that the absence of Nad7 results from a lack of translation of nad7 mRNA. These findings illustrate that mitochondrial translation requires the intervention of gene-specific nucleus-encoded PPR trans-factors and that their action does not necessarily involve the 5' processing of their target mRNA, as observed previously. Interestingly, a partial decrease in nad7 intron 2 splicing was also detected in mtl1 mutants, suggesting that MTL1 is also involved in group II intron splicing. However, this second function appears to be less essential for nad7 expression than its role in translation. MTL1 will be instrumental to understand the multifunctionality of PPR proteins and the mechanisms governing mRNA translation and intron splicing in plant mitochondria. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    PubMed

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  9. Disturbed expression of type 1 iodothyronine deiodinase splice variants in human renal cancer.

    PubMed

    Piekielko-Witkowska, Agnieszka; Master, Adam; Wojcicka, Anna; Boguslawska, Joanna; Brozda, Izabela; Tanski, Zbigniew; Nauman, Alicja

    2009-10-01

    Alternative splicing, one of the sources of protein diversity, is often disturbed in cancer. Type 1 iodothyronine deiodinase (DIO1) catalyzes deiodination of thyroxine generating triiodothyronine, an important regulator of cell proliferation and differentiation. The expression of DIO1 is disturbed in different types of cancer. The aim of the study was to analyze the alternative splicing of DIO1 and its possible disturbance in renal cancer. Using real-time PCR, we analyzed 19 tissue samples (T) of renal cancer and 19 matched control samples (C) of the opposite pole of the kidney, not infiltrated by tumor, and 6 control samples (N) (nonneoplastic kidney abnormalities). Cloning of DIO1 mRNA isoforms revealed 11 different transcripts, among them 7 new splice variants, not previously reported. The expression of all variants of DIO1 was dramatically (>90%) and significantly (p < or = 0.0003) lowered in samples T compared to control samples C. The ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center was lowered in samples T compared with control samples C, suggesting disturbed alternative splicing of DIO1. The expression of mRNA of splicing factors SF2/ASF (splicing factor-2/alternative-splicing factor) and hnRNPA1 (heterogeneous ribonucleoprotein A1), regulating 5'-splice site selection, was significantly but not proportionally lowered in samples T compared to samples C. The mRNA ratio of splicing factors SF2/ASF and hnRNPA1 correlated with the ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center in controls C but not in samples T. Our results show that the expression and alternative splicing of DIO1 mRNA is disturbed in renal cancer, possibly due to changes in expression of splicing factors SF2/ASF and hnRNPA1.

  10. Structure of the gene encoding VGF, a nervous system-specific mRNA that is rapidly and selectively induced by nerve growth factor in PC12 cells.

    PubMed

    Salton, S R; Fischberg, D J; Dong, K W

    1991-05-01

    Nerve growth factor (NGF) plays a critical role in the development and survival of neurons in the peripheral nervous system. Following treatment with NGF but not epidermal growth factor, rat pheochromocytoma (PC12) cells undergo neural differentiation. We have cloned a nervous system-specific mRNA, NGF33.1, that is rapidly and relatively selectively induced by treatment of PC12 cells with NGF and basic fibroblast growth factor in comparison with epidermal growth factor. Analysis of the nucleic acid and predicted amino acid sequences of the NGF33.1 cDNA clone suggested that this clone corresponded to the NGF-inducible mRNA called VGF (A. Levi, J. D. Eldridge, and B. M. Paterson, Science 229:393-395, 1985; R. Possenti, J. D. Eldridge, B. M. Paterson, A. Grasso, and A. Levi, EMBO J. 8:2217-2223, 1989). We have used the NGF33.1 cDNA clone to isolate and characterize the VGF gene, and in this paper we report the complete sequence of the VGF gene, including 853 bases of 5' flank revealed TATAA and CCAAT elements, several GC boxes, and a consensus cyclic AMP response element-binding protein binding site. The VGF promoter contains sequences homologous to other NGF-inducible, neuronal promoters. We further show that VGF mRNA is induced in PC12 cells to a greater extent by depolarization and by phorbol-12-myristate-13-acetate treatment than by 8-bromo-cyclic AMP treatment. By Northern (RNA) and RNase protection analysis, VGF mRNA is detectable in embryonic and postnatal central and peripheral nervous tissues but not in a number of nonneural tissues. In the cascade of events which ultimately leads to the neural differentiation of NGF-treated PC12 cells, the VGF gene encodes the most rapidly and selectively regulated, nervous-system specific mRNA yet identified.

  11. Selenium Deficiency Affects the mRNA Expression of Inflammatory Factors and Selenoprotein Genes in the Kidneys of Broiler Chicks.

    PubMed

    Zhang, Jiu-Li; Xu, Bo; Huang, Xiao-Dan; Gao, Yu-Hong; Chen, Yu; Shan, An-Shan

    2016-05-01

    The aim of this study was to investigate the influence of Se deficiency on the transcription of inflammatory factors and selenoprotein genes in the kidneys of broiler chicks. One hundred fifty 1-day-old broiler chicks were randomly assigned to two groups fed with either a low-Se diet (L group, 0.033 mg/kg Se) or an adequate Se diet (C group, 0.2 mg/kg Se). The levels of uric acid (UA) and creatinine (Cr) in the serum and the mRNA levels of 6 inflammatory factors and 25 selenoprotein genes in the kidneys were measured as the clinical signs of Se deficiency occurred at 20 days old. The results indicated that the contents of UA and Cr in the serum increased in L group (p < 0.05), and the mRNA levels of the inflammatory factors (NF-κB, iNOS, COX-2, and TNF-α) increased in L group (p < 0.05). Meanwhile, the mRNA levels of PTGEs and HO-1 were not changed. In addition, 25 selenoprotein transcripts displayed ubiquitous expression in the kidneys of the chicks. The mRNA levels of 14 selenoprotein genes (Dio1, Dio2, GPx3, Sepp1, SelH, SelI, SelK, Sepn1, SelO, SelW, Sep15, SelT, SelU, and SelS) decreased, and 9 selenoprotein genes (GPx1, GPx2, GPx4, SelPb, Txnrd1, Txnrd2, Txnrd3, SPS2, and SelM) increased in L group (p < 0.05), but the Dio3 and Sepx1 mRNA levels did not change. The results indicated that Se deficiency resulted in kidney dysfunction, activation of the NF-κB pathway, and a change in selenoprotein gene expression. The changes of inflammatory factor and selenoprotein gene expression levels were directly related to the abnormal renal functions induced by Se deficiency.

  12. APE/Ref-1 is increased in nuclear fractions of human thyroid hyperfunctioning nodules.

    PubMed

    Russo, D; Celano, M; Bulotta, S; Bruno, R; Arturi, F; Giannasio, P; Filetti, S; Damante, G; Tell, G

    2002-08-30

    Apurinic/apyrimidinic endonuclease APE/Ref-1 is a multifunctional protein provided with DNA repair, transcription-factor regulation and anti-apoptotic activities. We have previously reported that, in thyroid cells, TSH regulates both the synthesis and nuclear translocation of APE/Ref-1. We have also shown that nuclear levels of this protein are reduced both in thyroid carcinoma tissues and cell lines. In the present study, APE/Ref-1 expression and cellular localization were analysed by Western blot in hyperfunctioning thyroid nodules from patients with toxic adenoma and/or toxic multinodular goiter. The total content of APE/Ref-1 protein was increased in the majority of the hyperfunctioning tissues with respect to normal adjacent tissue. There was also an increase in the nuclear levels of APE/Ref-1, suggesting enhanced cytoplasm-to-nucleus translocation of the protein in addition to its increased rate of synthesis. These results demonstrate that the phenomenon of nuclear translocation of APE/Ref-1 hypothesized on the basis of cell culture experiments does actually occur in vivo. Together with previous observations in thyroid carcinomas and tumoral cell lines, our findings suggest a two-stage model of APE/Ref-1 behaviour during malignant thyrocyte transformation: an early stage characterized by simple hyperplasia and upregulation of APE/Ref-1 in the nuclear compartment of the cell and a later stage in which nuclear levels of the protein drop to below-normal levels as the cell becomes progressively undifferentiated.

  13. Gill structural integrity changes in fish deficient or excessive in dietary isoleucine: Towards the modulation of tight junction protein, inflammation, apoptosis and antioxidant defense via NF-κB, TOR and Nrf2 signaling pathways.

    PubMed

    Feng, Lin; Gan, Lu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Tang, Ling; Kuang, Sheng-Yao; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2017-04-01

    This study firstly aimed to test the impact of dietary isoleucine (Ile) on tight junction protein, inflammation, apoptosis, antioxidant defense and related signaling molecule gene expression in the gill of fish. Young grass carp (Ctenopharyngodon idella) (weighing 256.8 ± 3.5 g) were fed six diets containing graded levels of Ile, namely, 3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg diet for 8 weeks. The results firstly revealed that Ile deficiency down-regulated the mRNA expressions of claudin-3, claudin-b, claudin-c, occludin and zonula occludens-1 (ZO-1) and up-regulated the mRNA expression of claudin-12, which led to the intercellular structure damage of fish gill. These effects were partially ascribed to the up-regulation of pro-inflammatory cytokines [interleukin 1β (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor-α (TNF-α)] mRNA expressions that referring to up-regulated nuclear factor κB P65 (NF-κB P65) mRNA expression and down-regulated inhibitor factor κBα (IκBα) mRNA expression, and the down-regulation of anti-inflammatory cytokines [interleukin 10 (IL-10) and transforming growth factor β1 (TGF-β1)] mRNA expressions that referring to the down-regulated TOR and S6K1 mRNA expression. Interestingly, no change in claudin 15 mRNA level was observed among every treatment. At the same time, the results firstly indicated that Ile deficiency also resulted in the cellular structure damage of fish gill: (1) DNA fragmentation partially due to the up-regulation of caspase-3, caspase-8 and caspase-9 mRNA expression; (2) increase in protein carbonyl (PC), malondialdehyde (MDA) and ROS contents, which may be partially attributed to the impaired antioxidant defense [indicated by decreased glutathione (GSH) level and depressed anti-superoxide anion (ASA), anti-hydroxyl radical (a-HR), copper/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and glutathione peroxidase (GPx) activities] that referring to the down-regulation of corresponding antioxidant enzyme mRNA expressions and the related signaling molecules Nrf2 mRNA expression. Ile excess caused similar negative effects that observed in Ile-deficient group, whereas these negative effects were reversed with appropriate Ile supplementation. In conclusion, our results indicated that Ile deficiency or excess disrupted the structural integrity of fish gill, partially due to the trigger of apoptosis, the impairment of antioxidant defense, and the regulation of tight junction protein, inflammatory cytokines, apoptosis-related, antioxidant enzymes and related signaling molecules mRNA expressions in the fish gill. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Induction of the plasticity-associated immediate early gene Arc by stress and hallucinogens: role of brain-derived neurotrophic factor.

    PubMed

    Benekareddy, Madhurima; Nair, Amrita R; Dias, Brian G; Suri, Deepika; Autry, Anita E; Monteggia, Lisa M; Vaidya, Vidita A

    2013-03-01

    Exposure to stress and hallucinogens in adulthood evokes persistent alterations in neurocircuitry and emotional behaviour. The structural and functional changes induced by stress and hallucinogen exposure are thought to involve transcriptional alterations in specific effector immediate early genes. The immediate early gene, activity regulated cytoskeletal-associated protein (Arc), is important for both activity and experience dependent plasticity. We sought to examine whether trophic factor signalling through brain-derived neurotrophic factor (BDNF) contributes to the neocortical regulation of Arc mRNA in response to distinct stimuli such as immobilization stress and the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Acute exposure to either immobilization stress or DOI induced Arc mRNA levels within the neocortex. BDNF infusion into the neocortex led to a robust up-regulation of local Arc transcript expression. Further, baseline Arc mRNA expression in the neocortex was significantly decreased in inducible BDNF knockout mice with an adult-onset, forebrain specific BDNF loss. The induction of Arc mRNA levels in response to both acute immobilization stress or a single administration of DOI was significantly attenuated in the inducible BDNF knockout mice. Taken together, our results implicate trophic factor signalling through BDNF in the regulation of cortical Arc mRNA expression, both under baseline conditions and following stress and hallucinogen exposure. These findings suggest the possibility that the regulation of Arc expression via BDNF provides a molecular substrate for the structural and synaptic plasticity observed following stimuli such as stress and hallucinogens.

  15. Interleukin-1β induces tumor necrosis factor-α secretion from rat hepatocytes.

    PubMed

    Yoshigai, Emi; Hara, Takafumi; Inaba, Hiroyuki; Hashimoto, Iwao; Tanaka, Yoshito; Kaibori, Masaki; Kimura, Tominori; Okumura, Tadayoshi; Kwon, A-Hon; Nishizawa, Mikio

    2014-05-01

    Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine involved in various inflammatory diseases. The only production of TNF-α in the liver is thought to be from hepatic macrophages known as Kupffer cells, predominantly in response to bacterial lipopolysaccharide (LPS). Primary cultured rat hepatocytes were used to analyze TNF-α expression in response to the pro-inflammatory cytokine, interleukin-1β (IL-1β). Livers of rats subjected to LPS-induced endotoxemia were analyzed. Immunocytochemistry and enzyme-linked immunosorbent assays demonstrated that IL-1β-treated rat hepatocytes secreted TNF-α, and RNA analyses indicated that TNF-α mRNA was induced specifically by IL-1β. Northern blot analysis showed that not only mRNA, but also a natural antisense transcript (asRNA), was transcribed from the rat Tnf gene in IL-1β-treated hepatocytes. TNF-α was detected in the hepatocytes of LPS-treated rats. Both TNF-α mRNA and asRNA were expressed in the hepatocytes of LPS-treated rats, human hepatocellular carcinoma and human monocyte/macrophage cells. To disrupt the interaction between TNF-α asRNA and TNF-α mRNA, sense oligonucleotides corresponding to TNF-α mRNA were introduced into rat hepatocytes resulting in significantly increased levels of TNF-α mRNA. One of these sense oligonucleotides increased a half-life of TNF-α mRNA, suggesting that the TNF-α asRNA may reduce the stability of TNF-α mRNA. IL-1β-stimulated rat hepatocytes are a newly identified source of TNF-α in the liver. TNF-α mRNA and asRNA are expressed in rats and humans, and the TNF-α asRNA reduces the stability of the TNF-α mRNA. Hepatocytes and TNF-α asRNA may be therapeutic targets to regulate levels of TNF-α mRNA. © 2013 The Japan Society of Hepatology.

  16. Loss of p53 protein during radiation transformation of primary human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wazer, D.E.; Chu, Qiuming; Liu, Xiao Long

    1994-04-01

    The causative factors leading to breast cancer are largely unknown. Increased incidence of breast cancer following diagnostic or therapeutic radiation suggests that radiation may contribute to mammary oncogenesis. This report describes the in vitro neoplastic transformation of a normal human mammary epithelial cell strain, 76N, by fractionated [gamma]-irradiation at a clinically used dose (30 Gy). The transformed cells (76R-30) were immortal, had reduced growth factor requirements, and produced tumors in nude mice. Remarkably, the 76R-30 cells completely lacked the p53 tumor suppressor protein. Loss of p53 was due to deletion of the gene on one allele and a 26-bp deletionmore » within the third intron on the second allele which resulted in abnormal splicing out of either the third or fourth exon from the mRNA. PCR with a mutation-specific primer showed that intron 3 mutation was present in irradiated cells before selection for immortal phenotype. 76R-30 cells did not exhibit G[sub 1] arrest in response to radiation, indicating a loss of p53-mediated function. Expression of the wild-type p53 gene in 76R-30 cells led to their growth inhibition. Thus, loss of p53 protein appears to have contributed to neoplastic transformation of these cells. This unique model should facilitate analyses of molecular mechanisms of radiation-induced breast cancer and allow identification of p53-regulated cellular genes in breast cells. 44 refs., 8 figs., 1 tab.« less

  17. Chaperone Hsp27 Modulates AUF1 Proteolysis and AU-Rich Element-Mediated mRNA Degradation▿

    PubMed Central

    Knapinska, Anna M.; Gratacós, Frances M.; Krause, Christopher D.; Hernandez, Kristina; Jensen, Amber G.; Bradley, Jacquelyn J.; Wu, Xiangyue; Pestka, Sidney; Brewer, Gary

    2011-01-01

    AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues—Ser15, Ser78, and Ser82—by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2–Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization. PMID:21245386

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, Chad A.; Smith, Harold C., E-mail: harold.smith@rochester.edu

    Apolipoprotein B mRNA is edited at cytidine 6666 in the enterocytes lining the small intestine of all mammals; converting a CAA codon to a UAA stop codon. The conversion is {approx}80% efficient in this tissue and leads to the expression of the truncated protein, ApoB48, essential for secretion of dietary lipid as chylomicrons. Caco-2 cell raft cultures have been used as an in vitro model for the induction of editing activity during human small intestinal cell differentiation. This induction of apoB mRNA editing has been ascribed to the expression of APOBEC-1. In agreement our data demonstrated differentiation-dependent induction of expressionmore » of the editing enzyme APOBEC-1 and in addition we show alternative splicing of the essential auxiliary factor ACF. However, transfection of these editing factors in undifferentiated proliferating Caco-2 cells was not sufficient to induce robust apoB mRNA editing activity. Only differentiation of Caco-2 cells could induce more physiological like levels of apoB mRNA editing. The data suggested that additional regulatory mechanism(s) were induced by differentiation that controlled the functional activity of editing factors.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haubenwallner, S.; Hoerl, G.; Hoefler, G.

    A previously undescribed single missense mutation (C[yields]G) was detected within exon 5 of the LPL gene in two members of an Italian family affected with type I hyperlipoproteinemia. This mutation causes a highly conservative amino acid replacement (Asp[yields]Glu) at position 180 of the mature LPL protein resulting in a virtual absence of LPL enzyme activity and LPL enzyme mass in postheparin plasma. Adipose tissue mRNA concentrations and mRNA sizes were not affected. Both patients were homozygous for the mutation, whereas the parents were heterozygous. Comparison of the expression of the mutated cDNA and the wildtype cDNA in cos-7 cells revealedmore » proper transcription and translation of the mutated clone into an immunologically detectable protein. The mutated LPL protein was secreted from the cells in a manner similar to that of wild-type LPL and bound to heparin-Sepharose with identical properties. However, the mutated enzyme, in contrast to wildtype LPL, exhibited no detectable lipolytic activity against a triglyceride substrate. The results demonstrate that even a highly conservative amino acid replacement outside the proposed active site of LPL is incompatible with proper enzyme function. 16 refs., 3 figs.« less

  20. Genetics of bacteria that utilize one carbon compounds: Final report, March 1, 1982-February 29, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, R.S.

    Broad host range plasmid vectors useful for cloning genes from bacteria that grow on methane and methanol were constructed. We have cloned and mapped nineteen genes required for the growth of Methylobacterium organophilum strain XX on methanol. Nineteen genes were found in seven linkage groups on the M. organophilum genome and were separated by 40 kb or more. Eleven genes were required for the synthesis of methanol dehydrogenase (MDH) and were located in three unlinked gene clusters. The MDH structural gene was localized on a 2.5 kb DNA fragment. The gene was sequenced and contains a 175 bp untranslated leadermore » sequence, a signal sequence and the structural gene. MDH messenger RNA (mRNA) has a half life of approximately 20 min. and is present at approximately 2% of the cellular mRNA. The structural gene for the ..gamma.. subunit of methane monoxygenases has been cloned from Methylosporovibrio. Methane monooxygenase subunits have been purified by Prof. J. Lipscomb's laboratory and are being sequenced to construct DNA probes to identify cloned subunit genes. New facultative methylotrophic bacteria were isolated and characterized. Several amino acid auxotrophs have been isolated. 11 refs.« less

  1. Transcription factors Mix1 and VegT, relocalization of vegt mRNA, and conserved endoderm and dorsal specification in frogs

    PubMed Central

    Sudou, Norihiro; Garcés-Vásconez, Andrés; López-Latorre, María A.; Taira, Masanori

    2016-01-01

    Protein expression of the transcription factor genes mix1 and vegt characterized the presumptive endoderm in embryos of the frogs Engystomops randi, Epipedobates machalilla, Gastrotheca riobambae, and Eleutherodactylus coqui, as in Xenopus laevis embryos. Protein VegT was detected in the animal hemisphere of the early blastula in all frogs, and only the animal pole was VegT-negative. This finding stimulated a vegt mRNA analysis in X. laevis eggs and embryos. vegt mRNA was detected in the animal region of X. laevis eggs and early embryos, in agreement with the VegT localization observed in the analyzed frogs. Moreover, a dorso-animal relocalization of vegt mRNA occurred in the egg at fertilization. Thus, the comparative analysis indicated that vegt may participate in dorsal development besides its known roles in endoderm development, and germ-layer specification. Zygotic vegt (zvegt) mRNA was detected as a minor isoform besides the major maternal (mvegt) isoform of the X. laevis egg. In addition, α-amanitin–insensitive vegt transcripts were detected around vegetal nuclei of the blastula. Thus, accumulation of vegt mRNA around vegetal nuclei was caused by relocalization rather than new mRNA synthesis. The localization of vegt mRNA around vegetal nuclei may contribute to the identity of vegetal blastomeres. These and previously reportedly localization features of vegt mRNA and protein derive from the master role of vegt in the development of frogs. The comparative analysis indicated that the strategies for endoderm, and dorsal specification, involving vegt and mix1, have been evolutionary conserved in frogs. PMID:27140624

  2. The Extent of mRNA Editing Is Limited in Chicken Liver and Adipose, but Impacted by Tissular Context, Genotype, Age, and Feeding as Exemplified with a Conserved Edited Site in COG3.

    PubMed

    Roux, Pierre-François; Frésard, Laure; Boutin, Morgane; Leroux, Sophie; Klopp, Christophe; Djari, Anis; Esquerré, Diane; Martin, Pascal G P; Zerjal, Tatiana; Gourichon, David; Pitel, Frédérique; Lagarrigue, Sandrine

    2015-12-04

    RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors. Copyright © 2016 Roux et al.

  3. The Extent of mRNA Editing Is Limited in Chicken Liver and Adipose, but Impacted by Tissular Context, Genotype, Age, and Feeding as Exemplified with a Conserved Edited Site in COG3

    PubMed Central

    Roux, Pierre-François; Frésard, Laure; Boutin, Morgane; Leroux, Sophie; Klopp, Christophe; Djari, Anis; Esquerré, Diane; Martin, Pascal GP; Zerjal, Tatiana; Gourichon, David; Pitel, Frédérique; Lagarrigue, Sandrine

    2015-01-01

    RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors. PMID:26637431

  4. Growth hormone and Pit-1 expression in bovine fetal lymphoid cells.

    PubMed

    Chen, H T; Schuler, L A; Schultz, R D

    1997-11-01

    Bovine fetal lymphoid cells were examined for growth hormone (GH) and the transcription factor Pit-1/GHF-1 mRNA. GH and Pit-1/GHF-1 transcripts were detected in thymocytes and splenocytes from fetuses at 60, 90, 120, and 270 d of gestation using reverse transcription-polymerase chain reaction (RT-PCR). Northern analysis indicated that the lymphoid GH mRNA was approximately 350 nucleotides larger than in the pituitary. RT-PCR analysis demonstrated that the coding regions as well as 3' untranslated region of the lymphocyte GH and pituitary transcripts were the same. Analysis of the 5'-untranslated region of the lymphocyte GH mRNA showed that transcription began upstream from the start site in the pituitary gland, suggesting differences in regulation in these tissues. Fetal thymocytes and splenocytes expressed Pit-1/GHF-1 mRNA; however, they contained only the 2.5-kb transcript. The GH and Pit-1/GHF-1 mRNA in fetal lymphoid cells supports the hypothesis that lymphocyte-derived GH may function as an autocrine and/or paracrine factor during the development and maturation of the bovine fetal immune system.

  5. REF4 and RFR1, Subunits of the Transcriptional Coregulatory Complex Mediator, Are Required for Phenylpropanoid Homeostasis in Arabidopsis*

    PubMed Central

    Bonawitz, Nicholas D.; Soltau, Whitney L.; Blatchley, Michael R.; Powers, Brendan L.; Hurlock, Anna K.; Seals, Leslie A.; Weng, Jing-Ke; Stout, Jake; Chapple, Clint

    2012-01-01

    The plant phenylpropanoid pathway produces an array of metabolites that impact human health and the utility of feed and fiber crops. We previously characterized several Arabidopsis thaliana mutants with dominant mutations in REDUCED EPIDERMAL FLUORESCENCE 4 (REF4) that cause dwarfing and decreased accumulation of phenylpropanoids. In contrast, ref4 null plants are of normal stature and have no apparent defect in phenylpropanoid biosynthesis. Here we show that disruption of both REF4 and its paralog, REF4-RELATED 1 (RFR1), results in enhanced expression of multiple phenylpropanoid biosynthetic genes, as well as increased accumulation of numerous downstream products. We also show that the dominant ref4-3 mutant protein interferes with the ability of the PAP1/MYB75 transcription factor to induce the expression of PAL1 and drive anthocyanin accumulation. Consistent with our experimental results, both REF4 and RFR1 have been shown to physically associate with the conserved transcriptional coregulatory complex, Mediator, which transduces information from cis-acting DNA elements to RNA polymerase II at the core promoter. Taken together, our data provide critical genetic support for a functional role of REF4 and RFR1 in the Mediator complex, and for Mediator in the maintenance of phenylpropanoid homeostasis. Finally, we show that wild-type RFR1 substantially mitigates the phenotype of the dominant ref4-3 mutant, suggesting that REF4 and RFR1 may compete with one another for common binding partners or for occupancy in Mediator. Determining the functions of diverse Mediator subunits is essential to understand eukaryotic gene regulation, and to facilitate rational manipulation of plant metabolic pathways to better suit human needs. PMID:22167189

  6. REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis.

    PubMed

    Bonawitz, Nicholas D; Soltau, Whitney L; Blatchley, Michael R; Powers, Brendan L; Hurlock, Anna K; Seals, Leslie A; Weng, Jing-Ke; Stout, Jake; Chapple, Clint

    2012-02-17

    The plant phenylpropanoid pathway produces an array of metabolites that impact human health and the utility of feed and fiber crops. We previously characterized several Arabidopsis thaliana mutants with dominant mutations in REDUCED EPIDERMAL FLUORESCENCE 4 (REF4) that cause dwarfing and decreased accumulation of phenylpropanoids. In contrast, ref4 null plants are of normal stature and have no apparent defect in phenylpropanoid biosynthesis. Here we show that disruption of both REF4 and its paralog, REF4-RELATED 1 (RFR1), results in enhanced expression of multiple phenylpropanoid biosynthetic genes, as well as increased accumulation of numerous downstream products. We also show that the dominant ref4-3 mutant protein interferes with the ability of the PAP1/MYB75 transcription factor to induce the expression of PAL1 and drive anthocyanin accumulation. Consistent with our experimental results, both REF4 and RFR1 have been shown to physically associate with the conserved transcriptional coregulatory complex, Mediator, which transduces information from cis-acting DNA elements to RNA polymerase II at the core promoter. Taken together, our data provide critical genetic support for a functional role of REF4 and RFR1 in the Mediator complex, and for Mediator in the maintenance of phenylpropanoid homeostasis. Finally, we show that wild-type RFR1 substantially mitigates the phenotype of the dominant ref4-3 mutant, suggesting that REF4 and RFR1 may compete with one another for common binding partners or for occupancy in Mediator. Determining the functions of diverse Mediator subunits is essential to understand eukaryotic gene regulation, and to facilitate rational manipulation of plant metabolic pathways to better suit human needs.

  7. In utero and lactational exposure to low-dose genistein-vinclozolin mixture affects the development and growth factor mRNA expression of the submandibular salivary gland in immature female rats.

    PubMed

    Kouidhi, Wided; Desmetz, Catherine; Nahdi, Afef; Bergès, Raymond; Cravedi, Jean-Pierre; Auger, Jacques; El May, Michèle; Canivenc-Lavier, Marie Chantal

    2012-06-01

    It has been suggested that hormonally controlled submandibular salivary gland (SSG) development and secretions may be affected by endocrine disruptor compounds. We investigated the effects of oral gestation-lactation exposure to 1 mg/kg body weight daily dose of the estrogenic soy-isoflavone genistein and/or the anti-androgenic food contaminant vinclozolin in female rats. The SSGs of female offspring were collected at postnatal day 35 to study gland morphogenesis and mRNA expression of sex-hormone receptors and endocrine growth factors as sex-dependent biomarkers. Because of high expression in neonatal SSG, mRNA expression of transforming growth factor α was also studied. Exposure to genistein, vinclozolin, or a genistein+vinclozolin mixture resulted in significantly lower numbers of striated ducts linked to an increase in their area and lower acinar proliferation (Ki-67-positive nuclei). Exposure to the mixture had the highest significant effects, which were particularly associated with repression of epidermal growth factor, nerve growth factor, and transforming growth factor α expression. In conclusion, early exposure to low doses of genistein and vinclozolin can affect glandular structure and endocrine gene mRNA expression in prepubertal SSG in female rats, and the effects are potentialized by the genistein+vinclozolin mixture. Our study provides the first evidence that SSG are targeted by both estrogenic and anti-androgenic disrupting compounds and are more sensitive to mixtures.

  8. Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes.

    PubMed

    Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S; Kopp, Jeffrey B

    2010-10-01

    We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo.

  9. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.

    PubMed

    Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter

    2017-10-01

    Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Epidermal growth factor (EGF) receptor-ligand based molecular staging predicts prognosis in head and neck squamous cell carcinoma partly due to deregulated EGF- induced amphiregulin expression.

    PubMed

    Gao, Jian; Ulekleiv, Camilla H; Halstensen, Trond S

    2016-09-26

    Increased expression of epidermal growth factor receptor (EGFR) and its ligands is associated with poor prognosis and chemoresistance in many carcinoma types, but its role in head and neck squamous cell carcinoma (HNSCC) is unclear. Our aim was to clarify whether mRNA expression of EGFR-ligands was linked to prognosis and cisplatin resistance, and if so, which ligand was most important and how was the expression regulated. To examine the prognostic effect of EGFR-ligand expression, we analyzed tumorous mRNA expression in 399 HNSCC patients. The intracellular signaling pathways controlling epidermal growth factor (EGF)-induced amphiregulin (AREG) expression were examined in three oral squamous cell carcinoma (OSCC) cell lines. Effect of AREG on cisplatin resistance was examined by viability assays in four-, and by association in 11 OSCC cell lines. The patients were divided into five groups according to the median mRNA expression levels of four EGFR ligands, i.e. AREG, EGF, heparin-binding EGF-like growth factor (HBEGF) and beta-cellulin (BTC). The number of increased-expressed EGFR-ligands were progressively correlated to five-year survival, even in advanced TNM-stage IV patients, where five-year mortality increased from 26 % if tumor expressed none to one EGFR-ligand, to 45 % in three to four ligand expressing tumors. Thus, staging the tumor according to these EGFR-ligand mRNA expression pattern completely out performed TNM staging in predicting prognosis. Multivariate analysis identified AREG as the dominating predictor, and AREG was overexpressed in OSCC compared to tumors from other sites. Both EGF and HBEGF stimulation induced strong AREG increase in OSCC cell lines, which was partially mediated by the extracellular signal-regulated kinase 1/2 pathway, and negatively regulated by p38, c-Jun N-terminal kinase, and phosphoinositide-3 kinase. Although increased AREG mRNA expression predicted unfavorable prognosis in platinum treated HNSCC patients, AREG did not mediate cisplatin resistance in the OSCC cell lines. Increased tumorous mRNA expression of four EGFR ligands was progressively associated with poor prognosis in HNSCC. Thus, EGFR-ligands mRNA expression pattern may be a new prognostic biomarker. The tightly regulated EGF-induced AREG mRNA expression was partly lost in the OSCC cell lines and restoring its regulation may be a new target in cancer treatment. Not applicable as the clinical data of the 498 HNSCC patients and their mRNA expression profiles were collected from the open TCGA database: http://cancergenome.nih.gov/cancersselected/headandneck .

  11. Comparison of the canine and human acid {beta}-galactosidase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahern-Rindell, A.J.; Kretz, K.A.; O`Brien, J.S.

    Several canine cDNA libraries were screened with human {beta}-galactosidase cDNA as probe. Seven positive clones were isolated and sequenced yielding a partial (2060 bp) canine {beta}-galactosidase cDNA with 86% identity to the human {beta}-galactosidase cDNA. Preliminary analysis of a canine genomic library indicated conservation of exon number and size. Analysis by Northern blotting disclosed a single mRNA of 2.4 kb in fibroblasts and liver from normal dogs and dogs affected with GM1 gangliosidosis. Although incomplete, these results indicate canine GM1 gangliosidosis is a suitable animal model of the human disease and should further efforts to devise a gene therapy strategymore » for its treatment. 20 refs., 2 figs., 1 tab.« less

  12. Cytokine dysregulation in AIDS: in vivo overexpression of mRNA of tumor necrosis factor-alpha and its correlation with that of the inflammatory cytokine GRO.

    PubMed

    Dezube, B J; Pardee, A B; Beckett, L A; Ahlers, C M; Ecto, L; Allen-Ryan, J; Anisowicz, A; Sager, R; Crumpacker, C S

    1992-01-01

    The human immunodeficiency virus establishes an intimate interaction with the immune system. The virus can use cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (Il-1), to regulate its own expression by modifying the normal immunoregulatory network. We demonstrate that mRNA of the cytokine TNF-alpha from peripheral blood mononuclear cells is overexpressed in virtually all patients with AIDS who do not have active opportunistic infections compared with uninfected volunteers (p < 0.0001). This overexpression correlates with elevated mRNA levels of the recently discovered GRO (p < 0.05), a cytokine involved in the inflammatory response.

  13. Expression of the genes for insulin-like growth factors and their receptors in bone during skeletal growth

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.

    1994-01-01

    Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.

  14. Clinical values of AFP, GPC3 mRNA in peripheral blood for prediction of hepatocellular carcinoma recurrence following OLT: AFP, GPC3 mRNA for prediction of HCC.

    PubMed

    Wang, Yuliang; Shen, Zhongyang; Zhu, Zhijun; Han, Ruifa; Huai, Mingsheng

    2011-03-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Annually, about 200,000 patients died of HCC in China. Liver transplantation (LT) holds great theoretical appeal in treating HCC. However, the high recurrence rate after transplantation is the most important limiting factor for long-term survival. To assess the value of alpha-fetoprotein (AFP) messenger RNA (mRNA), Glypican-3 (GPC3) mRNA-expressing cells in the peripheral blood (PB) for prediction of HCC recurrence following orthotopic liver transplantation (OLT). 29 patients with HCC who underwent OLT with a minimum clinical follow-up of 12 months were included in this retrospective study. We detected AFP mRNA, GPC3 mRNA-expressing cells in the PB by TaqMan real-time reverse transcriptase-polymerase chain reaction (RT-PCR), pre-, intra- and post-operatively. The early recurrence of patients was evaluated. 8 (28%), 15 (52%), and 9 (31%) patients had AFP mRNA detected pre-, intra-, and post-operatively, respectively. With 12 months of follow-up, HCC recurred in 7 (24%) patients. Univariate analysis revealed that positive pre- and post-operative AFP mRNA, TNM stage as well as vascular invasion were significant predictors for the HCC recurrence. Multivariate analysis revealed that being positive for AFP mRNA pre-operatively remained a significant risk factor for HCC recurrence after OLT. GPC3 mRNA was expressed in all PB samples. There was no significant difference in the expression levels of GPC3 mRNA between the HCC and control groups. There were no significant differences in GPC3 mRNA expression values between those patients with and without tumor recurrence. The pre-operative detection of circulating AFP mRNA-expressing cells could be a useful predictor for HCC recurrence following OLT. GPC3 mRNA-expressing cells in PB seem to have no diagnostic value.

  15. Promotion of mouse fibroblast collagen gene expression by mast cells stimulated via the Fc epsilon RI. Role for mast cell-derived transforming growth factor beta and tumor necrosis factor alpha

    PubMed Central

    1994-01-01

    Chronic allergic diseases and other disorders associated with mast cell activation can also be associated with tissue fibrosis, but a direct link between mast cell mediator release and fibroblast collagen gene expression has not been established. Using in situ hybridization, we show that the elicitation of an IgE-dependent passive cutaneous anaphylaxis (PCA) reaction in mice results in a transient, but marked augmentation of steady state levels of type alpha-1 (I) collagen mRNA in the dermis. While peak levels of collagen mRNA expression in the skin are observed 16-24 h after mast cell activation, substantial numbers of dermal cells are strongly positive for collagen mRNA at 1 and 2 h after antigen challenge, before circulating inflammatory cells are recruited into the tissues. Furthermore, experiments in mast cell- reconstituted or genetically mast cell-deficient WBB6F1-W/Wv mice demonstrate that the increased expression of collagen mRNA at sites of PCA reactions is entirely mast cell dependent. In vitro studies show that the supernatants of mouse serosal mast cells activated via the Fc epsilon RI markedly increase type alpha-1 (I) collagen mRNA levels in mouse embryonic skin fibroblasts, and also upregulate collagen secretion by these cells. The ability of mast cell supernatants to induce increased steady state levels of collagen mRNA in mouse skin fibroblasts is markedly diminished by absorption with antibodies specific for either of two mast cell-derived cytokines, transforming growth factor beta (TGF-beta 1) or tumor necrosis factor alpha (TNF- alpha), and is eliminated entirely by absorption with antibodies against both cytokines. Taken together, these findings demonstrate that IgE-dependent mouse mast cell activation can induce a transient and marked increase in steady state levels of type alpha-1 (I) collagen mRNA in dermal fibroblasts and that mast cell-derived TGF-beta 1 and TNF-alpha importantly contribute to this effect. PMID:7964480

  16. Effect of peritoneal dialysis on expression of vascular endothelial growth factor, basic fibroblast growth factor and endostatin of the peritoneum in peritoneal dialysis patients.

    PubMed

    Gao, Dan; Zhao, Zhan-Zheng; Liang, Xian-Hui; Li, Yan; Cao, Ying; Liu, Zhang-Suo

    2011-11-01

    The aim of this study is to investigate the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and endostatin (ES) in human peritoneum and investigate the relationship between them and peritoneum neoangiogensis in the patients with uraemia and peritoneal dialysis (PD). Peritoneal biopsies were obtained from normal subjects (n = 8), uraemic predialysis patients (n = 12) and PD patients (n = 10). The mRNA expression of VEGF, bFGF and ES in peritoneal tissues were measured through real-time polymerase chain reaction. The protein expression of VEGF, bFGF and ES in peritoneal tissues were determined through western blot. Microvessel density (MVD) of peritoneal tissue was assessed using immunohistochemistry with CD34 monoclonal antibody. The mRNA and protein of VEGF, bFGF and ES were expressed in all peritoneal samples. Compared with the normal control group, the mRNA and protein expression of VEGF and bFGF in peritoneal tissues were all significantly upregulated in the uraemic predialysis and PD group (all P < 0.05). Compared with the normal control group, the protein expression of ES were significantly upregulated in the uraemic predialysis and PD group (all (P < 0.05), but the mRNA expression of ES did not have obvious differences in the uraemic predialysis and PD group as compared to the normal control group (P > 0.05). MVD of peritoneal tissue were increased in the uraemic predialysis and PD group compared with the normal group (all P < 0.05). A significant positive correlation was found between VEGF mRNA expression and MVD, bFGF mRNA expression and MVD. The mRNA expression of VEGF and bFGF, the protein expression of VEGF, bFGF, and ES and microvessel density (MVD) are increased both in the uraemic predialysis and PD patients. These results show that uraemia circumstances and non-physiological compatibility of peritoneal dialysis solution might increase VEGF, bFGF and ES expression and MVD, which might participate in the increment of the peritoneum neoangiogensis and ultrafiltration failure in PD patients. © 2011 The Authors. Nephrology © 2011 Asian Pacific Society of Nephrology.

  17. Induction of Chemoresistance by All-Trans Retinoic Acid via a Noncanonical Signaling in Multiple Myeloma Cells

    PubMed Central

    Jiang, Kesheng; Huang, Qiaoli; Chen, Yicheng; Qian, Feng

    2014-01-01

    Despite the successful application of all-trans retinoic acid (ATRA) in multiple myeloma treatment, ATRA-induced chemoresistance in the myeloma patients is very common in clinic. In this study, we evaluated the effect of ATRA on the expression of apurinic endonuclease/redox factor-1 (Ape/Ref-1) in the U266 and RPMI-8226 myeloma cells to explore the chemoresistance mechanism involved. ATRA treatment induced upregulation of Ape/Ref-1 via a noncanonical signaling pathway, leading to enhanced pro-survival activity counteracting melphalan (an alkylating agent). ATRA rapidly activated p38-MSK (mitogen- and stress activated protein kinase) cascade to phosphorylate cAMP response element-binding protein (CREB). Phosphorylated CREB was recruited to the Ape/Ref-1 promoter to evoke the gene expression. The stimulation of ATRA on Ape/Ref-1 expression was attenuated by either p38-MSK inhibitors or overexpression of dominant-negative MSK1 mutants. Moreover, ATRA-mediated Ape/Ref-1 upregulation was correlated with histone modification and activation of CBP/p300, an important cofactors for CREB transcriptional activity. C646, a competitive CBP/p300 inhibitor, abolished the upregulation of Ape/Ref-1 induced by ATRA. Intriguingly, CBP rather than p300 played a dominant role in the expression of Ape/Ref-1. Hence, our study suggests the existence of a noncanonical mechanism involving p38-MSK-CREB cascade and CBP induction to mediate ATRA-induced Ape/Ref-1 expression and acquired chemoresistance in myeloma cells. PMID:24416428

  18. A U-Rich Element in the 5′ Untranslated Region Is Necessary for the Translation of p27 mRNA

    PubMed Central

    Millard, S. Sean; Vidal, Anxo; Markus, Maurice; Koff, Andrew

    2000-01-01

    Increased translation of p27 mRNA correlates with withdrawal of cells from the cell cycle. This raised the possibility that antimitogenic signals might mediate their effects on p27 expression by altering complexes that formed on p27 mRNA, regulating its translation. In this report, we identify a U-rich sequence in the 5′ untranslated region (5′UTR) of p27 mRNA that is necessary for efficient translation in proliferating and nonproliferating cells. We show that a number of factors bind to the 5′UTR in vitro in a manner dependent on the U-rich element, and their availability in the cytosol is controlled in a growth- and cell cycle-dependent fashion. One of these factors is HuR, a protein previously implicated in mRNA stability, transport, and translation. Another is hnRNP C1 and C2, proteins implicated in mRNA processing and the translation of a specific subset of mRNAs expressed in differentiated cells. In lovastatin-treated MDA468 cells, the mobility of the associated hnRNP C1 and C2 proteins changed, and this correlated with increased p27 expression. Together, these data suggest that the U-rich dependent RNP complex on the 5′UTR may regulate the translation of p27 mRNA and may be a target of antimitogenic signals. PMID:10913178

  19. Transcription factor Brn-3α mRNA in cancers, relationship with AR, ER receptors and AKT/m-TOR pathway components

    NASA Astrophysics Data System (ADS)

    Spirina, L. V.; Gorbunov, A. K.; Chigevskaya, S. Y.; Usynin, Y. A.; Kondakova, I. V.; Slonimskaya, E. M.; Usynin, E. A.; Choinzonov, E. L.; Zaitseva, O. S.

    2017-09-01

    Transcription factors POU4F1 (neurogenic factor Brn-3α) play a pivotal role in cancers development. The aim of the study was to reveal the Brn-3α expression, AR, ER expression in cancers development, association with AKT/mTOR pathway activation. 30 patients with locally advanced prostate cancer, 20 patients with papillary thyroid cancer, T2-3N0-1M0 stages and 40 patients with renal cell cancer T2-3N0M0-1 were involved into the study. The expressions of Brn-3α, AR, ERα, components of AKT/m-TOR signaling pathway genes were performed by real-time PCR. The dependence of Brn-3α expression on mRNA levels of steroid hormone receptors and components of AKT/m-TOR signaling pathway in studied cancers were shown. High levels of mRNA of nuclear factor, steroid hormone receptors were found followed by the activation of this signaling pathway in prostate cancer tissue. The reduction of transcription factor Brn-3α was accompanied with tumor invasive growth with increasing rates of AR, ER and 4E-BP1 mRNA. Thyroid cancer development happened in a case of a Brn-3α and steroid hormone receptors decrease. The activation of AKT/m-TOR signaling pathway was established in the metastatic renal cancers, accompanied with the increase of ER mRNA. But there was no correlation between the steroid receptor and Brn-3α. One-direction changes of Brn-3α were observed in the development of prostate and thyroid cancer due to its effect on the steroid hormone receptors and the activation of AKT/m-TOR signaling pathway components. The influence of this factor on the development of the kidney cancer was mediated through m-TOR activity modifications, the key enzyme of oncogenesis.

  20. Short-term ethanol exposure causes imbalanced neurotrophic factor allocation in the basal forebrain cholinergic system: a novel insight into understanding the initial processes of alcohol addiction.

    PubMed

    Miki, Takanori; Kusaka, Takashi; Yokoyama, Toshifumi; Ohta, Ken-ichi; Suzuki, Shingo; Warita, Katsuhiko; Jamal, Mostofa; Wang, Zhi-Yu; Ueki, Masaaki; Liu, Jun-Qian; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki

    2014-02-01

    Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.

  1. Testicular Lumicrine Factors Regulate ERK, STAT, and NFKB Pathways in the Initial Segment of the Rat Epididymis to Prevent Apoptosis1

    PubMed Central

    Xu, Bingfang; Abdel-Fattah, Rana; Yang, Ling; Crenshaw, Sallie A.; Black, Michael B.; Hinton, Barry T.

    2011-01-01

    The initial segment of the epididymis is vital for male fertility; therefore, it is important to understand the mechanisms that regulate this important region. Deprival of testicular luminal fluid factors/lumicrine factors from the epididymis results in a wave of apoptosis in the initial segment. In this study, a combination of protein array and microarray analyses was used to examine the early changes in downstream signal transduction pathways following loss of lumicrine factors. We discovered the following cascade of events leading to the loss of protection and eventual apoptosis: in the first 6 h after loss of lumicrine factors, down-regulation of the ERK pathway components was observed at the mRNA expression and protein activity levels. Microarray analysis revealed that mRNA levels of several key components of the ERK pathway, Dusp6, Dusp5, and Etv5, decreased sharply, while the analysis from the protein array revealed a decline in the activities of MAP2K1/2 and MAPK1. Immunostaining of phospho-MAPK3/1 indicated that down-regulation of the ERK pathway was specific to the epithelial cells of the initial segment. Subsequently, after 12 h of loss of lumicrine factors, levels of mRNA expression of STAT and NFKB pathway components increased, mRNA levels of several genes encoding cell cycle inhibitors increased, and levels of protein expression of several proapoptotic phosphatases increased. Finally, after 18 h of loss of protection from lumicrine factors, apoptosis was observed. In conclusion, testicular lumicrine factors protect the cells of the initial segment by activating the ERK pathway, repressing STAT and NFKB pathways, and thereby preventing apoptosis. PMID:21311037

  2. Bilirubin modulated cytokines, growth factors and angiogenesis to improve cutaneous wound healing process in diabetic rats.

    PubMed

    Ram, Mahendra; Singh, Vishakha; Kumawat, Sanjay; Kant, Vinay; Tandan, Surendra Kumar; Kumar, Dinesh

    2016-01-01

    Bilirubin has shown cutaneous wound healing potential in some preliminary studies. Here we hypothesize that bilirubin facilitates wound healing in diabetic rats by modulating important healing factors/candidates and antioxidant parameters in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin. In all diabetic rats wounds were created under pentobarbitone anesthesia. All the rats were divided into two groups, of which one (control) was treated with ointment base and other with bilirubin ointment (0.3%). Wound closer measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 alpha (SDF-1α), transforming growth factor- beta1 (TGF-β1()), tumor necrosis factor-α (TNF-α) and interlukin-10 (IL-10) mRNA and proteins and the mRNA of interlukin-1 beta (IL-1β) and matrix metalloprteinase-9 (MMP-9) were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histopathological changes were assessed by H&E staining. The per cent wound closer was significantly higher from day 7 onwards in bilirubin-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and protein levels were significantly higher on days 3, 7 and 14 in bilirubin-treated rats. The mRNA expression and protein level of TNF-α and the mRNA of IL-1β and MMP-9 were progressively and markedly reduced in bilirubin-treated rats. The collagen deposition and formation of blood vessels were greater in bilirubin-treated rats. Bilirubin markedly facilitated cutaneous wound healing in diabetic rats by modulating growth factors, cytokines, neovasculogenesis and collagen contents to the wound site. Topical application of bilirubin ointment might be of great use in cutaneous wound healing in diabetic patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Osteogensis imperfecta type I is commonly due to a COLIAI null allel of type I collagen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, M.C.; Pruchno, C.J.; Atkinson, M.

    Dermal fibroblasts from most individuals with osteogenesis imperfecta (OI) type I produce about half the normal amount of type I procollagen, as a result of decreased synthesis of one of its constituent chains, pro[alpha](I). To test the hypothesis that decreased synthesis of pro[alpha](I) chains results from mutations in the COL1A1 gene, the authors used primer extension with nucleotide-specific chain termination to measure the contribution of individual COL1A1 alleles to the mRNA pool in fibroblasts from affected individuals. A polymorphic Mn/I restriction endonuclease site in the 3'-untranslated region of COL1A1 was used to distinguish the transcripts of the two alleles inmore » heterozygous individuals. Twenty-three individuals from 21 unrelated families were studied. In each case there was marked diminution in steady-state mRNA levels from one COL1A2 allele. Loss of an allele through deletion or rearrangement was not the cause of the diminished COL1A1 mRNA levels. Primer extension with nucleotide-specific chain termination allows identification of the mutant COL1A1 allele in cell strains that are heterozygous for an expressed polymorphism. It is applicable to sporadic cases, to small families, and to large families in whom key individuals are uninformative at the polymorphic sites used in linkage analysis, making it a useful adjunct to the biochemical screening of collagenous proteins for OI. 40 refs., 3 figs., 1 tab.« less

  4. [Changes of FoxP3, CD4(+)CD25(+) regulatory T cells, TLR2 and TLR9 in children with infectious mononucleosis].

    PubMed

    Wang, Qiang; Wang, Zuo-Feng; Cao, Mei; Wang, Zhi-Ying

    2013-04-01

    The aim of this study was to investigate the effects of TLR2, TLR9, CD4(+)CD25(+) regulatory T cells (Treg) and transcription factor FoxP3 in the pathogenesis of children with infectious mononucleosis (IM). Thirty-five acute IM patients admitted in our hospital from April 2010 to January 2011 were enrolled in this study. Thirty-five healthy subjects were taken as control. The thirty-five patients before treatment were considered as patients in acute stage, after treatment and without clinical symptom they were thought as patients in recovery stage. The expression levels of TLR2, TLR9 and FoxP3 mRNA were detected by real time PCR using SYBR Green I. The expression of T lymphocyte subset CD4(+)CD25(+) in peripheral blood mononuclear cells was detected by flow cytometry. The results showed that the relative levels of TLR2 mRNA (4.03 ± 0.56), TLR9 mRNA (8.88 ± 1.56) in peripheral blood mononuclear cells of IM patients in acute stage were significantly higher than those of the controls [TLR2 mRNA (2.22 ± 0.57), TLR9 mRNA (3.63 ± 1.30)] and IM patients in recovery stage [TLR2 mRNA (2.76 ± 0.83), TLR9 mRNA (5.34 ± 1.60)] (P < 0.01). The result of CD4(+)CD25(+) (2.38 ± 1.32%) and relative level of FoxP3 mRNA(2.82 ± 0.90) in peripheral blood mononuclear cells of IM patients in acute stage were lower than those of the control [CD4(+)CD25(+) (7.85 ± 1.97%), FoxP3 mRNA (4.65 ± 1.23) ] (P < 0.01). There was no significant difference in CD4(+)CD25(+) (6.81 ± 1.84%), FoxP3 mRNA(4.11 ± 1.37) levels between IM patients in recovery stage and the controls (P > 0.05). It is concluded that the expression of CD4(+)CD25(+)regulatory T cells is reduced, and its special transcription factor FoxP3 mRNA is down-regulated, but expression levels of TLR2 mRNA, TLR9 mRNA are up-regulated in IM patients of acute stage.

  5. Quantifying Extrinsic Noise in Gene Expression Using the Maximum Entropy Framework

    PubMed Central

    Dixit, Purushottam D.

    2013-01-01

    We present a maximum entropy framework to separate intrinsic and extrinsic contributions to noisy gene expression solely from the profile of expression. We express the experimentally accessible probability distribution of the copy number of the gene product (mRNA or protein) by accounting for possible variations in extrinsic factors. The distribution of extrinsic factors is estimated using the maximum entropy principle. Our results show that extrinsic factors qualitatively and quantitatively affect the probability distribution of the gene product. We work out, in detail, the transcription of mRNA from a constitutively expressed promoter in Escherichia coli. We suggest that the variation in extrinsic factors may account for the observed wider-than-Poisson distribution of mRNA copy numbers. We successfully test our framework on a numerical simulation of a simple gene expression scheme that accounts for the variation in extrinsic factors. We also make falsifiable predictions, some of which are tested on previous experiments in E. coli whereas others need verification. Application of the presented framework to more complex situations is also discussed. PMID:23790383

  6. Combinatorial programming of human neuronal progenitors using magnetically-guided stoichiometric mRNA delivery.

    PubMed

    Azimi, Sayyed M; Sheridan, Steven D; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatih

    2018-05-01

    Identification of optimal transcription-factor expression patterns to direct cellular differentiation along a desired pathway presents significant challenges. We demonstrate massively combinatorial screening of temporally-varying mRNA transcription factors to direct differentiation of neural progenitor cells using a dynamically-reconfigurable magnetically-guided spotting technology for localizing mRNA, enabling experiments on millimetre size spots. In addition, we present a time-interleaved delivery method that dramatically reduces fluctuations in the delivered transcription-factor copy-numbers per cell. We screened combinatorial and temporal delivery of a pool of midbrain-specific transcription factors to augment the generation of dopaminergic neurons. We show that the combinatorial delivery of LMX1A, FOXA2 and PITX3 is highly effective in generating dopaminergic neurons from midbrain progenitors. We show that LMX1A significantly increases TH -expression levels when delivered to neural progenitor cells either during proliferation or after induction of neural differentiation, while FOXA2 and PITX3 increase expression only when delivered prior to induction, demonstrating temporal dependence of factor addition. © 2018, Azimi et al.

  7. Quantifying extrinsic noise in gene expression using the maximum entropy framework.

    PubMed

    Dixit, Purushottam D

    2013-06-18

    We present a maximum entropy framework to separate intrinsic and extrinsic contributions to noisy gene expression solely from the profile of expression. We express the experimentally accessible probability distribution of the copy number of the gene product (mRNA or protein) by accounting for possible variations in extrinsic factors. The distribution of extrinsic factors is estimated using the maximum entropy principle. Our results show that extrinsic factors qualitatively and quantitatively affect the probability distribution of the gene product. We work out, in detail, the transcription of mRNA from a constitutively expressed promoter in Escherichia coli. We suggest that the variation in extrinsic factors may account for the observed wider-than-Poisson distribution of mRNA copy numbers. We successfully test our framework on a numerical simulation of a simple gene expression scheme that accounts for the variation in extrinsic factors. We also make falsifiable predictions, some of which are tested on previous experiments in E. coli whereas others need verification. Application of the presented framework to more complex situations is also discussed. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Heterogeneity in c-jun gene expression in normal and malignant cells exposed to either ionizing radiation or hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collart, F.R.; Horio, M.; Huberman, E.

    1995-05-01

    We investigated the role of reactive oxygen intermediates and protein kinase C in the induction of expression of the c-jun gene in human ML-2 leukemic cells and normal human DET-551 fibroblasts by comparing the effects of exposure to either ionizing radiation or H{sub 2}O{sub 2} in the presence or absence of appropriate inhibitors. In these cell types, the radiation-and H{sub 2}O{sub 2}-mediated increase in c-jun mRNA levels could be prevented by pretreatment of the cells with N-acetylcysteine, and antioxidant, or H7, an inhibitor of protein kinase C and protein kinase A, but not by HA1004, a specific inhibitor of proteinmore » kinase A and G. These results suggest a role for protein kinase C and reactive oxygen intermediates in the induction of c-jun gene expression in both normal and tumor cells. We also investigated potential differences in c-jun gene expression induced by radiation or H{sub 2}O{sub 2} in normal and tumor cells by examining steady-state c-jun mRNA levels in a number of human fibroblast, leukemia, melanoma, sarcoma and carcinoma cell types. We observed heterogeneity in the steady-state level of c-jun mRNA in both the untreated normal and tumor cells and in such cells exposed to ionizing radiation or to H{sub 2}O{sub 2}. Exposure to radiation produced a varied response which ranged from little or no induction to an increase in the steady-state level of the c-jun mRNA of more than two orders of magnitude. Exposure to H{sub 2}O{sub 2} gave a pattern similar to that of ionizing radiation. The basis for the differential induction in response to these agents may be attributable to either cell lineage or genetic heterogeneity or a combination of these two parameters. 30 refs., 7 figs., 1 tab.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhi; Huang, Ge; Sadanandam, Anguraj

    Introduction: HJURP (Holliday Junction Recognition Protein) is a newly discovered gene reported to function at centromeres and to interact with CENPA. However its role in tumor development remains largely unknown. The goal of this study was to investigate the clinical significance of HJURP in breast cancer and its correlation with radiotherapeutic outcome. Methods: We measured HJURP expression level in human breast cancer cell lines and primary breast cancers by Western blot and/or by Affymetrix Microarray; and determined its associations with clinical variables using standard statistical methods. Validation was performed with the use of published microarray data. We assessed cell growthmore » and apoptosis of breast cancer cells after radiation using high-content image analysis. Results: HJURP was expressed at higher level in breast cancer than in normal breast tissue. HJURP mRNA levels were significantly associated with estrogen receptor (ER), progesterone receptor (PR), Scarff-Bloom-Richardson (SBR) grade, age and Ki67 proliferation indices, but not with pathologic stage, ERBB2, tumor size, or lymph node status. Higher HJURP mRNA levels significantly decreased disease-free and overall survival. HJURP mRNA levels predicted the prognosis better than Ki67 proliferation indices. In a multivariate Cox proportional-hazard regression, including clinical variables as covariates, HJURP mRNA levels remained an independent prognostic factor for disease-free and overall survival. In addition HJURP mRNA levels were an independent prognostic factor over molecular subtypes (normal like, luminal, Erbb2 and basal). Poor clinical outcomes among patients with high HJURP expression werevalidated in five additional breast cancer cohorts. Furthermore, the patients with high HJURP levels were much more sensitive to radiotherapy. In vitro studies in breast cancer cell lines showed that cells with high HJURP levels were more sensitive to radiation treatment and had a higher rate of apoptosis than those with low levels. Knock down of HJURP in human breast cancer cells using shRNA reduced the sensitivity to radiation treatment. HJURP mRNA levels were significantly correlated with CENPA mRNA levels. Conclusions: HJURP mRNA level is a prognostic factor for disease-free and overall survival in patients with breast cancer and is a predictive biomarker for sensitivity to radiotherapy.« less

  10. Cell type-specific regulation of beta2-adrenoceptor mRNA by agonists.

    PubMed

    Danner, S; Lohse, M J

    1997-07-16

    Prolonged agonist stimulation of beta2-adrenoceptors results in receptor down-regulation which is often paralleled by a reduction of the corresponding mRNA. In this study, we investigated the agonist-dependent regulation of beta2-adrenoceptor mRNA in DDT1-MF2 smooth muscle cells and C6 glioma cells. In DDT1-MF2 cells the half-life of the mRNA was 12 h in monolayer compared to 2 h in suspension cultures. Under both conditions, the agonist isoproterenol reduced this half-life by a factor of 2. In contrast, in C6 glioma cells isoproterenol had no effect on the mRNA stability, even though it reduced mRNA levels by approximately 50%. Isoproterenol-induced downregulation of beta2-adrenoceptor mRNA was completely blocked in C6 cells by the presence of a protein synthesis inhibitor, while this was not so in DDT1-MF2-cells. These data show that beta2-adrenoceptor downregulation occurs via cell-type specific mechanisms.

  11. NGFI-B and nor1 mRNAs are upregulated in brain reward pathways by drugs of abuse: different effects in Fischer and Lewis rats.

    PubMed

    Werme, M; Olson, L; Brené, S

    2000-03-10

    The two inbred Fischer and Lewis rat strains display differences in acquisition of drug self-administration, suggesting genetic factors controlling the vulnerability to drugs of abuse. In this study, we analyzed the effects of acute and chronic cocaine and morphine on mRNAs encoding the NGFI-B/Nur77 family of nuclear orphan receptors in reward pathways in Fischer and Lewis rats. After a single injection of cocaine, a similar upregulation of NGFI-B mRNA in striatal subregions and cortex cinguli was seen in both Fischer and Lewis rats. In contrast, Nor1 mRNA was only significantly upregulated by cocaine in the Fischer rats. Morphine increased NGFI-B mRNA in medial caudate putamen and cortex cinguli in Lewis rats and Nor1 mRNA in medial caudate putamen in Fischer rats. Chronic cocaine upregulated NGFI-B mRNA in nucleus accumbens core, lateral caudate putamen and cingulate cortex in Fischer rats, whereas no effect was seen in Lewis rats. In contrast, Nor1 mRNA levels were upregulated in Lewis rats in medial caudate putamen and cingulate cortex after chronic cocaine and in cingulate cortex after chronic morphine. No effect on Nor1 mRNA levels was seen in Fischer rats after chronic treatments. Our results demonstrate different responses in addiction-prone Lewis rats as compared to the less addiction-prone Fischer rats with respect to NGFI-B and Nor1 mRNA regulation after acute and repeated administration of cocaine and morphine. Thus, we suggest that the transcription factors NGFI-B and Nor1 might be involved in the control of behaviors such as sensitized locomotor response, craving and aversion that appears after repeated administration of abused drugs.

  12. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1).

    PubMed

    Fonseca, Bruno D; Zakaria, Chadi; Jia, Jian-Jun; Graber, Tyson E; Svitkin, Yuri; Tahmasebi, Soroush; Healy, Danielle; Hoang, Huy-Dung; Jensen, Jacob M; Diao, Ilo T; Lussier, Alexandre; Dajadian, Christopher; Padmanabhan, Niranjan; Wang, Walter; Matta-Camacho, Edna; Hearnden, Jaclyn; Smith, Ewan M; Tsukumo, Yoshinori; Yanagiya, Akiko; Morita, Masahiro; Petroulakis, Emmanuel; González, Jose L; Hernández, Greco; Alain, Tommy; Damgaard, Christian K

    2015-06-26

    The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5'TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events.

    PubMed

    Sørensen, Brian B; Ehrnsberger, Hans F; Esposito, Silvia; Pfab, Alexander; Bruckmann, Astrid; Hauptmann, Judith; Meister, Gunter; Merkl, Rainer; Schubert, Thomas; Längst, Gernot; Melzer, Michael; Grasser, Marion; Grasser, Klaus D

    2017-02-01

    We identify proteins that associate with the THO core complex, and show that the TEX1 and MOS11 components functionally interact, affecting mRNA export and splicing as well as plant development. TREX (TRanscription-EXport) is a multiprotein complex that plays a central role in the coordination of synthesis, processing and nuclear export of mRNAs. Using targeted proteomics, we identified proteins that associate with the THO core complex of Arabidopsis TREX. In addition to the RNA helicase UAP56 and the mRNA export factors ALY2-4 and MOS11 we detected interactions with the mRNA export complex TREX-2 and multiple spliceosomal components. Plants defective in the THO component TEX1 or in the mRNA export factor MOS11 (orthologue of human CIP29) are mildly affected. However, tex1 mos11 double-mutant plants show marked defects in vegetative and reproductive development. In tex1 plants, the levels of tasiRNAs are reduced, while miR173 levels are decreased in mos11 mutants. In nuclei of mos11 cells increased mRNA accumulation was observed, while no mRNA export defect was detected with tex1 cells. Nevertheless, in tex1 mos11 double-mutants, the mRNA export defect was clearly enhanced relative to mos11. The subnuclear distribution of TEX1 substantially overlaps with that of splicing-related SR proteins and in tex1 plants the ratio of certain alternative splicing events is altered. Our results demonstrate that Arabidopsis TEX1 and MOS11 are involved in distinct steps of the biogenesis of mRNAs and small RNAs, and that they interact regarding some aspects, but act independently in others.

  14. The effect of dietary carbohydrate on genes for fatty acid synthase and inflammatory cytokines in adipose tissues from lean and obese subjects.

    PubMed

    Hudgins, Lisa C; Baday, Aline; Hellerstein, Marc K; Parker, Thomas S; Levine, Daniel M; Seidman, Cynthia E; Neese, Richard A; Tremaroli, Jolanta D; Hirsch, Jules

    2008-04-01

    Hepatic de novo lipogenesis (DNL) is markedly stimulated in humans by low-fat diets enriched in simple sugars. However, the dietary responsiveness of the key enzyme controlling DNL in human adipose tissue, fatty acid synthase (FAS), is uncertain. Adipose tissue mRNA for FAS is increased in lean and obese subjects when hepatic DNL is elevated by a eucaloric, low-fat, high-sugar diet. Twelve lean and seven obese volunteers were given two eucaloric diets (10% vs. 30% fat; 75% vs. 55% carbohydrate; sugar/starch 60/40) each for 2 weeks by a random-order cross-over design. FAS mRNA in abdominal and gluteal adipose tissues was compared to hepatic DNL measured in serum by isotopic and nonisotopic methods. Adipose tissue mRNA for tumor necrosis factor-alpha and IL-6, which are inflammatory cytokines that modulate DNL, was also assayed. The low-fat high-sugar diet induced a 4-fold increase in maximum hepatic DNL (P<.001) but only a 1.3-fold increase in adipose tissue FAS mRNA (P=.029) and no change in cytokine mRNA. There was a borderline significant positive correlation between changes in FAS mRNA and hepatic DNL (P=.039). Compared to lean subjects, obese subjects had lower levels of FAS mRNA and higher levels of cytokine mRNA (P<.001). The results suggest that key elements of human adipose tissue DNL are less responsive to dietary carbohydrate than is hepatic DNL and may be regulated by diet-independent factors. Irrespective of diet, there is reduced expression of the FAS gene and increased expression of cytokine genes in adipose tissues of obese subjects.

  15. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1)*

    PubMed Central

    Fonseca, Bruno D.; Zakaria, Chadi; Jia, Jian-Jun; Graber, Tyson E.; Svitkin, Yuri; Tahmasebi, Soroush; Healy, Danielle; Hoang, Huy-Dung; Jensen, Jacob M.; Diao, Ilo T.; Lussier, Alexandre; Dajadian, Christopher; Padmanabhan, Niranjan; Wang, Walter; Matta-Camacho, Edna; Hearnden, Jaclyn; Smith, Ewan M.; Tsukumo, Yoshinori; Yanagiya, Akiko; Morita, Masahiro; Petroulakis, Emmanuel; González, Jose L.; Hernández, Greco; Alain, Tommy; Damgaard, Christian K.

    2015-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5′TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1. PMID:25940091

  16. EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries

    PubMed Central

    Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P

    2008-01-01

    Background Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. Results We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. Conclusion EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects. PMID:18402700

  17. EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries.

    PubMed

    Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P

    2008-04-10

    Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.

  18. Effect of developmental exposure to chlorpyrifos on the expression of neurotrophin growth factors and cell-specific markers in neonatal rat brain.

    PubMed

    Betancourt, Angela M; Burgess, Shane C; Carr, Russell L

    2006-08-01

    Chlorpyrifos (CPS), a known neurotoxicant, is a widely used agricultural organophosphorus insecticide. The effects of postnatal exposure to CPS on the expression of mRNA for two factors critical to brain development, nerve growth factor (NGF) and reelin, were investigated in the forebrain of rats. In addition, the expression of mRNA for the muscarinic acetylcholine receptor (mAChR) M(1) subtype and cell-specific markers for developing neurons (beta-III tubulin), astrocytes (glial fibrillary acidic protein, GFAP), and oligodendrocytes (myelin-associated glycoprotein, MAG) was also investigated. Oral administration of CPS (1.5 or 3.0 mg/kg) or the corn oil vehicle was performed daily from postnatal days (PNDs) 1 through 6. No signs of overt toxicity or of cholinergic hyperstimulation were observed after CPS administration. Body weight was significantly different from controls on PND7 in both males and females exposed to 3.0 mg/kg CPS. Quantitative PCR was performed on the forebrain. The expression of NGF, reelin, and M(1) mAChR mRNA was significantly reduced with both dosages of CPS in both sexes. beta-III Tubulin mRNA expression remained unchanged after exposure, whereas MAG mRNA expression was significantly decreased with both dosages of CPS in both sexes, suggesting effects on the developing oligodendrocytes. In contrast, GFAP mRNA levels were significantly increased with both dosages of CPS in both sexes, suggesting increased astrocyte reactivity. Our findings indicate that dosages of CPS which cause significant cholinesterase inhibition but do not exert overt toxicity can adversely affect the expression levels of critical genes involved in brain development during the early postnatal period in the rat.

  19. The regulation of mitochondrial transcription factor A (Tfam) expression during skeletal muscle cell differentiation.

    PubMed

    Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A

    2015-05-19

    The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2-3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2-3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. © 2015 Authors.

  20. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver.

    PubMed

    Kudo, T; Akiyama, M; Kuriyama, K; Sudo, M; Moriya, T; Shibata, S

    2004-08-01

    An increase in PAI-1 activity is thought to be a key factor underlying myocardial infarction. Mouse Pai-1 (mPai-1) activity shows a daily rhythm in vivo, and its transcription seems to be controlled not only by clock genes but also by humoral factors such as insulin and triglycerides. Thus, we investigated daily clock genes and mPai-1 mRNA expression in the liver of db/db mice exhibiting high levels of glucose, insulin and triglycerides. Locomotor activity was measured using an infrared detection system. RT-PCR or in situ hybridisation methods were applied to measure gene expression. Humoral factors were measured using measurement kits. The db/ db mice showed attenuated locomotor activity rhythms. The rhythmic expression of mPer2 mRNA was severely diminished and the phase of mBmal1 oscillation was advanced in the db/db mouse liver, whereas mPai-1 mRNA was highly and constitutively expressed. Night-time restricted feeding led to a recovery not only from the diminished locomotor activity, but also from the diminished Per2 and advanced mBmal1 mRNA rhythms. Expression of mPai-1 mRNA in db/db mice was reduced to levels far below normal. Pioglitazone treatment slightly normalised glucose and insulin levels, with a slight reduction in mPai-1 gene expression. We demonstrated that Type 2 diabetes impairs the oscillation of the peripheral oscillator. Night-time restricted feeding rather than pioglitazone injection led to a recovery from the diminished locomotor activity, and altered oscillation of the peripheral clock and mPai-1 mRNA rhythm. Thus, we conclude that scheduled restricted food intake may be a useful form of treatment for diabetes.

  1. In vivo hair growth-promoting effect of rice bran extract prepared by supercritical carbon dioxide fluid.

    PubMed

    Choi, Jae-Suk; Jeon, Min-Hee; Moon, Woi-Sook; Moon, Jin-Nam; Cheon, Eun Jin; Kim, Joo-Wan; Jung, Sung Kyu; Ji, Yi-Hwa; Son, Sang Wook; Kim, Mi-Ryung

    2014-01-01

    The potential hair growth-promoting activity of rice bran supercritical CO2 extract (RB-SCE) and major components of RB-SCE, linoleic acid, policosanol, γ-oryzanol, and γ-tocotrienol, were evaluated with the histological morphology and mRNA expression levels of cell growth factors using real-time reverse transcriptase-polymerase chain reaction (PCR) in C57BL/6 mice. RB-SCE showed hair growth-promoting potential to a similar extent as 3% minoxidil, showing that the hair follicles were induced to be in the anagen stage. The numbers of the hair follicles were significantly increased. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and keratinocyte growth factor (KGF) were also significantly increased and that of transforming growth factor-β (TGF-β) decreased in RB-SCE-treated groups. Among the major components of RB-SCE, linoleic acid and γ-oryzanol induced the formation of hair follicles according to examination of histological morphology and mRNA expression levels of cell growth factors. In conclusion, our results demonstrate that RB-SCE, particularly linoleic acid and γ-oryzanol, promotes hair growth and suggests RB-SCE can be applied as hair loss treatment.

  2. Factors of transforming growth factor beta signalling are co-regulated in human hepatocellular carcinoma.

    PubMed

    Longerich, Thomas; Breuhahn, Kai; Odenthal, Margarete; Petmecky, Katharina; Schirmacher, Peter

    2004-12-01

    Transforming growth factor beta (TGFbeta) is a central mitoinhibitory factor for epithelial cells, and alterations of TGFbeta signalling have been demonstrated in many different human cancers. We have analysed human hepatocellular carcinomas (HCCs) for potential pro-tumourigenic alterations in regard to expression of Smad4 and mutations and expression changes of the pro-oncogenic transcriptional co-repressors Ski and SnoN, as well as mRNA levels of matrix metalloproteinase-2 (MMP2), which is transcriptionally regulated by TGFbeta. Smad4 mRNA was detected in all HCCs; while, using immunohistology, loss of Smad4 expression was found in 10% of HCCs. Neither mutations in the transformation-relevant sequences nor significant pro-tumourigenic expression changes of the Ski and SnoN genes were detected. In HCC cell lines, expression of both genes was regulated, potentially involving phosphorylation. Ski showed a distinct nuclear speckled pattern, indicating recruitment to active transcription complexes. MMP2 mRNA levels were increased in 19% of HCCs, whereas MMP2 mRNA was not detectable in HCC cell lines, suggesting that MMP2 was derived only from tumour stroma cells. Transcript levels of Smad4, Ski, SnoN and MMP2 correlated well. These data argue against a significant role of Ski and SnoN in human hepatocarcinogenesis and suggest that, in the majority of HCCs, the analysed factors are co-regulated by an upstream mechanism, potentially by TGFbeta itself.

  3. Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo.

    PubMed

    Limjeerajarus, Chalida Nakalekha; Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Pavasant, Prasit

    2014-07-01

    Prostacyclin (PGI2) is a biomolecule capable of enhancing angiogenesis and cellular proliferation. We investigated the influence of a PGI2 analogue (iloprost) on dental pulp revascularization in vitro and in vivo by using human dental pulp cells (HDPCs) and a rat tooth injury model, respectively. Iloprost stimulated the human dental pulp cell mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor (PDGF) in a significant dose-dependent manner. This mRNA up-regulation was significantly inhibited by pretreatment with a PGI2 receptor antagonist and forskolin (a protein kinase A activator). In contrast, a protein kinase A inhibitor significantly enhanced the iloprost-induced mRNA expression of VEGF, FGF-2, and PDGF. Pretreatment with a fibroblast growth factor receptor inhibitor attenuated the VEGF, FGF-2, and PDGF mRNA expression, indicating opposing regulatory mechanisms. The effect of iloprost on the dental pulp was investigated in vivo by using a rat molar pulp injury model. The iloprost-treated group exhibited a significant increase in pulpal blood flow at 72 hours compared with control. The present study indicates that iloprost may be a candidate agent to promote neovascularization in dental pulp tissue, suggesting the potential clinical use of iloprost in vital pulp therapy. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription.

    PubMed

    Varshney, Dhaval; Lombardi, Olivia; Schweikert, Gabriele; Dunn, Sianadh; Suska, Olga; Cowling, Victoria H

    2018-05-01

    mRNA cap addition occurs early during RNA Pol II-dependent transcription, facilitating pre-mRNA processing and translation. We report that the mammalian mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II transcription independent of mRNA capping and translation. In cells, sublethal suppression of RNMT-RAM reduces RNA Pol II occupancy, net mRNA synthesis, and pre-mRNA levels. Conversely, expression of RNMT-RAM increases transcription independent of cap methyltransferase activity. In isolated nuclei, recombinant RNMT-RAM stimulates transcriptional output; this requires the RAM RNA binding domain. RNMT-RAM interacts with nascent transcripts along their entire length and with transcription-associated factors including the RNA Pol II subunits SPT4, SPT6, and PAFc. Suppression of RNMT-RAM inhibits transcriptional markers including histone H2BK120 ubiquitination, H3K4 and H3K36 methylation, RNA Pol II CTD S5 and S2 phosphorylation, and PAFc recruitment. These findings suggest that multiple interactions among RNMT-RAM, RNA Pol II factors, and RNA along the transcription unit stimulate transcription. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Translational efficiency of poliovirus mRNA: mapping inhibitory cis-acting elements within the 5' noncoding region.

    PubMed Central

    Pelletier, J; Kaplan, G; Racaniello, V R; Sonenberg, N

    1988-01-01

    Poliovirus mRNA contains a long 5' noncoding region of about 750 nucleotides (the exact number varies among the three virus serotypes), which contains several AUG codons upstream of the major initiator AUG. Unlike most eucaryotic mRNAs, poliovirus does not contain a m7GpppX (where X is any nucleotide) cap structure at its 5' end and is translated by a cap-independent mechanism. To study the manner by which poliovirus mRNA is expressed, we examined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. In this paper we report striking translation system-specific differences in the ability of the altered mRNAs to be translated. The results suggest the existence of an inhibitory cis-acting element(s) within the 5' noncoding region of poliovirus (between nucleotides 70 and 381) which restricts mRNA translation in reticulocyte lysate, wheat germ extract, and Xenopus oocytes, but not in HeLa cell extracts. In addition, we show that HeLa cell extracts contain a trans-acting factor(s) that overcomes this restriction. Images PMID:2836606

  6. Final report: FASEB Summer Research Conference on ''Post-transcriptional control of gene expression: Effectors of mRNA decay'' [agenda and attendees list

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maquat, Lynne

    2002-12-01

    The goal of this meeting was to provide an interactive forum for scientists working on prokaryotic and eukaryotic mRNA decay. A special seminar presented by a leader in the field of mRNA decay in S. cerevisiae focused on what is known and what needs to be determined, not only for yeast but for other organisms. The large attendance (110 participants) reflects the awareness that mRNA decay is a key player in gene regulation in a way that is affected by the many steps that precede mRNA formation. Sessions were held on the following topics: mRNA transport and mRNP; multicomponent eukaryoticmore » nucleases; nonsense-mediated mRNA decay and nonsense-associated altered splicing; Cis-acting sequences/Trans-acting factors of mRNA decay; translational accuracy; multicomponent bacterial nucleases; interplay between mRNA polyadenylation, translation and decay in prokaryotes and prokaryotic organelles; and RNA interference and other RNA mediators of gene expression. In addition to the talks and two poster sessions, there were three round tables: (1) Does translation occur in the nucleus? (2) Differences and similarities in the mechanisms of mRNA decay in different eukaryotes, and (3) RNA surveillance in bacteria?« less

  7. Dietary vitamin C deficiency depressed the gill physical barriers and immune barriers referring to Nrf2, apoptosis, MLCK, NF-κB and TOR signaling in grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare.

    PubMed

    Xu, Hui-Jun; Jiang, Wei-Dan; Feng, Lin; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-11-01

    This study explored the effects of vitamin C on the physical barriers and immune barriers, and relative mRNA levels of signaling molecules in the gill of grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) (1) increased reactive oxygen species, malondialdehyde and protein carbonyl (PC) contents (P < 0.05), decreased the copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities and mRNA levels (P < 0.05), and glutathione and vitamin C contents (P < 0.05), down-regulated NF-E2-related factor 2 mRNA level (P < 0.05), and up-regulated Kelch-like ECH-associating protein (Keap) 1a (rather than Keap1b) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency induced oxidative injury in fish gill; (2) up-regulated caspase-3, -7, -8, -9, Fas ligand, B-cell lymphoma protein 2 associated X protein, apoptotic protease activating factor-1 mRNA levels (P < 0.05), and down-regulated inhibitor of apoptosis protein and B-cell lymphoma-2 (rather than myeloid cell leukemia-1) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated cell apoptosis in fish gill; (3) up-regulated pore-forming TJs Claudin-12, 15a, -15b, and related signaling molecules myosin light chain kinase, p38 mitogen-activated protein kinase (rather than c-Jun N-terminal kinases) mRNA levels (P < 0.05), and down-regulated barrier-forming TJs Occludin, zonula occludens (ZO) 1, ZO-2, Claudin-c, -3c, -7a, -7b mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency disrupted tight junctional complexes in fish gill; (4) decreased lysozyme and acid phosphatase (ACP) activities, and complement 3 (C3), C4 and IgM contents (P < 0.05), down-regulated the mRNA levels of antimicrobial peptides liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, Hepcidin, β-defensin mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency decrease fish gill immune function; (5) down-regulated the mRNA levels of anti-inflammatory cytokines-related factors interleukin 10 (IL-10), IL-11, transforming growth factor (TGF) β1, TGF-β2, inhibitor of κBa and eIF4E-binding protein 1 (4E-BP1) (rather than 4E-BP2) (P < 0.05), and up-regulated pro-inflammatory cytokines-related factors interferon γ2, IL-1β, IL-6, IL-8, IL-12 P35, IL-12 P40, nuclear factor κB (NF-κB) p65 (rather than NF-κB p52), IκB kinases (IKK) (only IKKα and IKKγ), target of rapamycin and ribosomal protein S6 kinase 1 mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated fish gill inflammation. In conclusion, vitamin C deficiency disrupted physical barriers and immune barriers, and regulated relative mRNA levels of signaling molecules in fish gill. The vitamin C requirement for against gill rot morbidity of grass carp (264-1031 g) was estimated to be 156.0 mg/kg diet. In addition, based on the gill biochemical indices (antioxidant indices MDA, PC and vitamin C contents, and immune indices LA and ACP activity) the vitamin C requirements for grass carp (264-1031 g) were estimated to be 116.8, 156.6, 110.8, 57.8 and 134.9 mg/kg diet, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Factors affecting the frequency of infection by the sigma virus in experimental populations of Drosophila melanogaster.

    PubMed

    Fleuriet, A

    1982-01-01

    The experiments reported in this paper deal with the maintenance of the non contagious, hereditary virus sigma in populations of its host, Drosophila melanogaster. Evidence was previously provided of the existence of two viral Types I and II, depending on their sensitivity to the ref(2)Pp allele (the ref(2)P locus interferes with the multiplication of the virus in the fly). The viral Type I which is the most sensitive to the ref(2)Pp allele, is eliminated in the presence of this allele, even when most of the flies were originally infected in the population. On the contrary, the presence of the ref(2)Pp allele does not prevent a viral Type II, introduced in a population, from infecting most of the flies. The possibility that a change has occurred recently in French natural populations of Drosophila melanogaster is discussed.

  9. CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients

    PubMed Central

    Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Kappler, Matthias

    2017-01-01

    The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (rs = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients’ disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression. PMID:29215551

  10. Dynein-Dependent Transport of nanos RNA in Drosophila Sensory Neurons Requires Rumpelstiltskin and the Germ Plasm Organizer Oskar

    PubMed Central

    Xu, Xin; Brechbiel, Jillian L.

    2013-01-01

    Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts. PMID:24027279

  11. Dynein-dependent transport of nanos RNA in Drosophila sensory neurons requires Rumpelstiltskin and the germ plasm organizer Oskar.

    PubMed

    Xu, Xin; Brechbiel, Jillian L; Gavis, Elizabeth R

    2013-09-11

    Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts.

  12. CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients.

    PubMed

    Greither, Thomas; Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Taubert, Helge; Kappler, Matthias

    2017-12-07

    The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (r s = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients' disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.

  13. Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases.

    PubMed

    Matsui, Akitsugu; Uchida, Satoshi; Ishii, Takehiko; Itaka, Keiji; Kataoka, Kazunori

    2015-10-28

    Gene therapy is a promising approach for treating diseases that are closely associated with excessive apoptosis, because the gene can effectively and sustainably introduce anti-apoptotic factors into cells. However, DNA delivery poses the risk of random genomic integration, leading to overexpression of the delivered gene and cancer development. Messenger RNA (mRNA) can evade integration events in target cells. We examined the use of mRNA-based therapeutics for introducing anti-apoptotic factors by using a mouse model of fulminant hepatitis. For introducing mRNA into the liver, a synthesised polymer-based carrier of polyplex nanomicelles was used for hydrodynamic intravenous injection. Using GFP as a reporter, we demonstrate that mRNA delivery induced efficient protein expression in almost 100% of liver cells, while plasmid DNA (pDNA) delivery provided a smaller percentage of GFP-positive cells. Analyses using Cy5-labelled mRNA and pDNA revealed that efficient expression by mRNA was attributed to a simple intracellular mechanism, without the need for nuclear entry. Consistent with this observation, Bcl-2 mRNA was more effective on reducing apoptosis in the liver of mice with fulminant hepatitis than Bcl-2 pDNA. Therefore, mRNA-based therapeutics combined with an effective delivery system such as polyplex nanomicelles is a promising treatment for intractable diseases associated with excessive apoptosis.

  14. Feeder-free reprogramming of human fibroblasts with messenger RNA.

    PubMed

    Warren, Luigi; Wang, Jiwu

    2013-11-13

    This unit describes a feeder-free protocol for deriving induced pluripotent stem cells (iPSCs) from human fibroblasts by transfection of synthetic mRNA. The reprogramming of somatic cells requires transient expression of a set of transcription factors that collectively activate an endogenous gene regulatory network specifying the pluripotent phenotype. The necessary ectopic factor expression was first effected using retroviruses; however, as viral integration into the genome is problematic for cell therapy applications, the use of footprint-free vectors such as mRNA is increasingly preferred. Strong points of the mRNA approach include high efficiency, rapid kinetics, and obviation of a clean-up phase to purge the vector. Still, the method is relatively laborious and has, up to now, involved the use of feeder cells, which brings drawbacks including poor applicability to clinically oriented iPSC derivation. Using the methods described here, mRNA reprogramming can be performed without feeders at much-reduced labor and material costs relative to established protocols. Copyright © 2013 John Wiley & Sons, Inc.

  15. Comparison between tocotrienol and omeprazole on gastric growth factors in stress-exposed rats.

    PubMed

    Nur Azlina, Mohd Fahami; Qodriyah, Hj Mohd Saad; Chua, Kien Hui; Kamisah, Yusof

    2017-08-28

    To investigate and compare the effects of tocotrienol and omeprazole on gastric growth factors in rats exposed to water-immersion restraint stress (WIRS). Twenty-eight male Wistar rats were randomly assigned to four groups of seven rats. The two control groups were administered vitamin-free palm oil (vehicle) and the two treatment groups were given omeprazole (20 mg/kg) or tocotrienol (60 mg/kg) by oral gavage. After 28 d of treatment, rats from one control group and both treated groups were subjected to WIRS one time for 3.5 h. Gastric lesions were measured and gastric tissues were obtained to measure vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and transforming growth factor-alpha (TGF-α) mRNA expression. Rats exposed to WIRS for 3.5 h demonstrated the presence of considerable ulcers in the form of gastric erosion. The lesion index in the stressed control (S) group was increased ( P < 0.001) compared to the tocotrienol treated and omeprazole treated groups. Stress led to a decrease in gastric VEGF ( P < 0.001), bFGF ( P < 0.001) and TGF-α ( P < 0.001) mRNA levels and caused an increase in EGF mRNA ( P < 0.001) that was statistically significant compared to the non-stressed control group. Although both treatment agents exerted similar ulcer reducing ability, only treatment with tocotrienol led to increased expression of VEGF ( P = 0.008), bFGF ( P = 0.001) and TGF-α ( P = 0.002) mRNA. Tocotrienol provides gastroprotective effects in WIRS-induced ulcers. Compared to omeprazole, tocotrienol exerts a similar protective effect, albeit through multiple mechanisms of protection, particularly through up-regulation of growth factors that assist in repair of gastric tissue injuries.

  16. Factors regulating collagen synthesis and degradation during second-intention healing of wounds in the thoracic region and the distal aspect of the forelimb of horses.

    PubMed

    Schwartz, Anne J; Wilson, David A; Keegan, Kevin G; Ganjam, Venkataseshu K; Sun, Yao; Weber, Karl T; Zhang, Jiakun

    2002-11-01

    To determine significant molecular and cellular factors responsible for differences in second-intention healing in thoracic and metacarpal wounds of horses. 6 adult mixed-breed horses. A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-beta1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with alpha-smooth muscle actin (alpha-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining. Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-beta1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds. Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA,TGF-beta1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue.

  17. Growth differentiation factor 3 is induced by bone morphogenetic protein 6 (BMP-6) and BMP-7 and increases luteinizing hormone receptor messenger RNA expression in human granulosa cells.

    PubMed

    Shi, Jia; Yoshino, Osamu; Osuga, Yutaka; Akiyama, Ikumi; Harada, Miyuki; Koga, Kaori; Fujimoto, Akihisa; Yano, Tetsu; Taketani, Yuji

    2012-04-01

    To examine the relevance of growth differentiation factor 3 (GDF-3) and bone morphogenetic protein (BMP) cytokines in human ovary. Molecular studies. Research laboratory. Eight women undergoing salpingo-oophorectomy and 30 women undergoing ovarian stimulation for in vitro fertilization. Localizing GDF-3 protein in human ovaries; granulosa cells (GC) cultured with GDF-3, BMP-6, or BMP-7 followed by RNA extraction. The localization of GDF-3 protein in normal human ovaries via immunohistochemical analysis, GDF-3 messenger RNA (mRNA) expression evaluation via quantitative real-time reverse transcription and polymerase chain reaction (RT-PCR), and evaluation of the effect of GDF-3 on leuteinizing hormone (LH) receptor mRNA expression via quantitative real-time RT-PCR. In the ovary, BMP cytokines, of the transforming growth factor beta (TGF-β) superfamily, are known as a luteinization inhibitor by suppressing LH receptor expression in GC. Growth differentiation factor 3, a TGF-β superfamily cytokine, is recognized as an inhibitor of BMP cytokines in other cells. Immunohistochemical analysis showed that GDF-3 was strongly detected in the GC of antral follicles. An in vitro assay revealed that BMP-6 or BMP-7 induced GDF-3 mRNA in GC. Also, GDF-3 increased LH receptor mRNA expression and inhibited the effect of BMP-7, which suppressed the LH receptor mRNA expression in GC. GDF-3, induced with BMP-6 and BMP-7, might play a role in folliculogenesis by inhibiting the effect of BMP cytokines. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.

    PubMed

    Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L

    2017-05-01

    Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

  19. Oxaloacetate activates brain mitochondrial biogenesis, enhances the insulin pathway, reduces inflammation and stimulates neurogenesis.

    PubMed

    Wilkins, Heather M; Harris, Janna L; Carl, Steven M; E, Lezi; Lu, Jianghua; Eva Selfridge, J; Roy, Nairita; Hutfles, Lewis; Koppel, Scott; Morris, Jill; Burns, Jeffrey M; Michaelis, Mary L; Michaelis, Elias K; Brooks, William M; Swerdlow, Russell H

    2014-12-15

    Brain bioenergetic function declines in some neurodegenerative diseases, this may influence other pathologies and administering bioenergetic intermediates could have therapeutic value. To test how one intermediate, oxaloacetate (OAA) affects brain bioenergetics, insulin signaling, inflammation and neurogenesis, we administered intraperitoneal OAA, 1-2 g/kg once per day for 1-2 weeks, to C57Bl/6 mice. OAA altered levels, distributions or post-translational modifications of mRNA and proteins (proliferator-activated receptor-gamma coactivator 1α, PGC1 related co-activator, nuclear respiratory factor 1, transcription factor A of the mitochondria, cytochrome oxidase subunit 4 isoform 1, cAMP-response element binding, p38 MAPK and adenosine monophosphate-activated protein kinase) in ways that should promote mitochondrial biogenesis. OAA increased Akt, mammalian target of rapamycin and P70S6K phosphorylation. OAA lowered nuclear factor κB nucleus-to-cytoplasm ratios and CCL11 mRNA. Hippocampal vascular endothelial growth factor mRNA, doublecortin mRNA, doublecortin protein, doublecortin-positive neuron counts and neurite length increased in OAA-treated mice. (1)H-MRS showed OAA increased brain lactate, GABA and glutathione thereby demonstrating metabolic changes are detectable in vivo. In mice, OAA promotes brain mitochondrial biogenesis, activates the insulin signaling pathway, reduces neuroinflammation and activates hippocampal neurogenesis. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein.

    PubMed

    Lyabin, D N; Ovchinnikov, L P

    2016-03-02

    The Y-box binding protein 1 (YB-1) is a key regulator of gene expression at the level of both translation and transcription. The mode of its action on cellular events depends on its subcellular distribution and the amount in the cell. So far, the regulatory mechanisms of YB-1 synthesis have not been adequately studied. Our previous finding was that selective inhibition of YB-1 mRNA translation was caused by suppression of activity of the mTOR signaling pathway. It was suggested that this event may be mediated by phosphorylation of the 4E-binding protein (4E-BP). Here, we report that 4E-BP alone can only slightly inhibit YB-1 synthesis both in the cell and in vitro, although it essentially decreases binding of the 4F-group translation initiation factors to mRNA. With inhibited mTOR kinase, the level of mRNA binding to the eIF4F-group factors was decreased, while that to 4E-BP1 was increased, as was observed for both mTOR kinase-sensitive mRNAs and those showing low sensitivity. This suggests that selective inhibition of translation of YB-1 mRNA, and probably some other mRNAs as well, by mTOR kinase inhibitors is not mediated by the action of the 4E-binding protein upon functions of the 4F-group translation initiation factors.

  1. Rapid changes in ovarian mRNA induced by brief photostimulation in Siberian hamsters (Phodopus sungorus)

    PubMed Central

    Shahed, Asha; McMichael, Carling F.; Young, Kelly A.

    2017-01-01

    This study sought to characterize the rapid intraovarian mRNA response of key folliculogenic factors that may contribute to the restoration of folliculogenesis during 2-10 days of photostimulation in Siberian hamsters. Adult hamsters were exposed to short photoperiod (8L:16D) for 14 weeks (SD). A subset were then transferred to long photoperiod (16L:8D) for 2(PT day-2), 4(PT day-4), or 10 days (PT day-10). Quantitative real-time PCR was used to measure intraovarian mRNA expression of: gonadotropin releasing hormone (GnRH), follicle stimulating hormone β-subunit (FSHβ-subunit), luteinizing hormone β-subunit (LHβ-subunit), FSH and LH receptors, estrogen receptorsα and β (Esr1 and Esr2), matrix metalloproteinase (MMP)-2 and -9, anti-Müllerian hormone (AMH), inhibin-α subunit, fibroblast growth factor-2 (FGF-2) and proliferating cell nuclear antigen (PCNA). Compared to SD, plasma FSH concentrations increased on PT day-4 and the number of antral follicles and corpora lutea increased on PT day-10. FSHR and inhibin-α mRNA expression also increased on PT day-4, whereas LHR and proliferation marker PCNA both increased on PT day-10 as compared to SD. Esr1 mRNA increased on PT day-2 and remained significantly increased as compared to SD, whereas Esr1 mRNA increased only on PT day-2, similar to FGF-2 and MMP-2 results. No differences were observed in mRNA expression in ovarian GnRH, FSHβ- and LHβ-subunits, AMH, and MMP-9 mRNA with 2-10 days of photostimulation. Rapid increases in intraovarian FSHR and inhibin-α mRNA and antral follicle/corpora lutea numbers suggest that the ovary is primed to react quickly to the FSH released in response to brief periods of photostimulation. PMID:26174001

  2. Diagnostic performance of HPV E6/E7 mRNA assay for detection of cervical high-grade intraepithelial neoplasia and cancer among women with ASCUS Papanicolaou smears.

    PubMed

    Ren, Chenchen; Zhu, Yuanhang; Yang, Li; Zhang, Xiaoan; Liu, Ling; Ren, Chunying

    2018-02-01

    The aim of this study was to investigate the clinical performance of high risk (HR) HPV E6/E7 mRNA assay in detecting cervical high-grade intraepithelial neoplasia and cancer among women with atypical squamous cells of undetermined significance (ASCUS) Papanicolaou (Pap) smears. A total of 160 patients with ASCUS who underwent HR-HPV DNA assay, HR-HPV E6/E7 mRNA assay and colposcopy biopsy at Third Affiliated Hospital of Zhengzhou University, China, from December 2015 to March 2017, were enrolled. Logistic regression analysis was used to evaluate the relationship between pathological results with clinical biologic factors. Univariate analysis showed that the qualitative results of HR-HPV DNA, qualitative results of HR-HPV E6/E7 mRNA and expression levels of HR-HPV E6/E7 mRNA were risk factors of high-grade cervical intraepithelial neoplasia (CIN) and cervical cancer (all P < 0.05). Multivariable analysis found that only the expression levels of HR-HPV E6/E7 mRNA was associated with high-grade CIN and cervical cancer (OR = 8.971, 95% CI = 2.572-31.289, P = 0.001). An optimal cut-off value of ≥ 558.26 copies/ml was determined using receiver operating characteristic curve, and specificity of cut-off value were higher than E6/E7 mRNA qualitative assay and DNA qualitative assay. HPV E6/E7 mRNA quantitative assay may be a valuable tool in triage of ASCUS pap smears. A high specificity of E6/E7 mRNA quantitative assay as a triage test in women with ASCUS can be translated into a low referral for colposcopy.

  3. Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats.

    PubMed

    Qin, Bolin; Polansky, Marilyn M; Harry, Dawson; Anderson, Richard A

    2010-05-01

    Epidemiological studies indicate that the consumption of green tea polyphenols (GTP) may reduce the risk of coronary artery disease. To explore the underlying mechanisms of action at the molecular level, we examined the effects of GTP on the cardiac mRNA and protein levels of genes involved in insulin and lipid metabolism and inflammation. In rats fed a high-fructose diet, supplementation with GTP (200 mg/kg BW daily dissolved in distilled water) for 6 wk, reduced systemic blood glucose, plasma insulin, retinol-binding protein 4, soluble CD36, cholesterol, triglycerides, free fatty acids and LDL-C levels, as well as the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and IL-6. GTP did not affect food intake, bodyweight and heart weight. In the myocardium, GTP also increased the insulin receptor (Ir), insulin receptor substrate 1 and 2 (Irs1 and Irs2), phosphoinositide-3-kinase (Pi3k), v-akt murine thymoma viral oncogene homolog 1 (Akt1), glucose transporter 1 and 4 (Glut1 and Glut4) and glycogen synthase 1 (Gys1) expression but inhibited phosphatase and tensin homolog deleted on chromosome ten (Pten) expression and decreased glycogen synthase kinase 3beta (Gsk3beta) mRNA expression. The sterol regulatory element-binding protein-1c (Srebp1c) mRNA, microsomal triglyceride transfer protein (Mttp) mRNA and protein, Cd36 mRNA and cluster of differentiation 36 protein levels were decreased and peroxisome proliferator-activated receptor (Ppar)gamma mRNA levels were increased. GTP also decreased the inflammatory factors: Tnf, Il1b and Il6 mRNA levels, and enhanced the anti-inflammatory protein, zinc-finger protein, protein and mRNA expression. In summary, consumption of GTP ameliorated the detrimental effects of high-fructose diet on insulin signaling, lipid metabolism and inflammation in the cardiac muscle of rats.

  4. Biosimilar versus patented erythropoietins: learning from 5 years of European and Japanese experience.

    PubMed

    Bocquet, François; Paubel, Pascal; Fusier, Isabelle; Cordonnier, Anne-Laure; Sinègre, Martine; Le Pen, Claude

    2015-02-01

    Patent expiries on leading biologics are creating new momentum in the market for biosimilars (copies of off-patent biologics), paving the way for their development. However, little is known about the factors influencing the competition between biosimilars and their reference products (REF). The aim of this study was to analyse key global erythropoietin (EPO) markets and factors affecting biosimilar EPO (BIOSIM-EPO) uptakes, and to identify countries where BIOSIM-EPOs have gained significant market shares. Inclusion criteria for countries in the study were a biosimilar regulatory framework similar to the EU framework, and biological market value higher than US$2.5 billion. Factors evaluated included EPO market size, EPO retail/hospital distribution mix, national incentives to use biosimilars and BIOSIM-EPO/REF price differences. IMS Health provided EPO consumption in volumes, values, and EPO ex-manufacturer prices from 2007 to 2012. Japan: large-sized market, mixed retail/hospital distribution, no incentives, low BIOSIM-EPO uptake (6.8 % in 2012). France: large-sized market, dominant retail distribution, no incentives, low BIOSIM-EPO uptake (5.8 %). Spain and Italy: medium-sized market, dominant hospital distribution, no incentives, moderate BIOSIM-EPO uptakes (11.5 and 8.6 %). Germany: small-sized market, dominant retail distribution, presence of incentives, high BIOSIM-EPO uptake (30.4 %). UK: small-sized market, mixed retail/hospital distribution, no incentives, low BIOSIM-EPO uptake (2.0 %). BIOSIM-EPO/REF price differences play no role at a global level (-10.8 % in Germany and -26.9 % in Japan). EPO markets have proven to be highly country-specific. EPO market sizes, EPO retail/hospital distribution mixes and BIOSIM-EPO/REF price differences may not be determining factors of BIOSIM-EPO uptakes. Prescription and substitution incentives to use BIOSIM-EPO appear to be determining factors in Germany. The heterogeneity of national EPO markets makes it impossible to outline country profile types with significant BIOSIM-EPO penetrations.

  5. Modulation of tumor necrosis factor (TNF) receptor expression during monocytic differentiation by glucocorticoids.

    PubMed

    Goppelt-Struebe, M; Reiser, C O; Schneider, N; Grell, M

    1996-10-01

    Regulation of tumor necrosis factor receptors by glucocorticoids was investigated during phorbol ester-induced monocytic differentiation. As model system the human monocytic cell lines U937 and THP-1, which express both types of TNF receptors (TNF-R60 and TNF-R80), were differentiated with tetradecanoyl phorbol-13-acetate (TPA, 5 x 10(-9) M) in the presence or absence of dexamethasone (10(-9) - 10(-6) M). Expression of TNF receptors was determined at the mRNA level by Northern blot analysis and at the protein level by FACS analysis. During differentiation, TNF-R60 mRNA was down-regulated, whereas TNF-R80 mRNA levels were increased. Dexamethasone had no effect on TNF-R60 mRNA expression but attenuated TNF-R80 mRNA expression in both cell lines. Cell surface expression of TNF-R60 protein remained essentially unchanged during differentiation of THP-1 cells, whereas a rapid down-regulation of TNF-R80 was observed that was followed by a slow recovery. Surface expression of TNF-R80 was not affected by dexamethasone, whereas TNF-R60 expression was reduced by about 25%. These results indicate differential regulation of the two types of TNF receptors at the mRNA and protein level during monocytic differentiation. Glucocorticoids interfered with mRNA expression of TNF-R80 and protein expression of TNF-R60, but the rather limited effect leaves the question of its functional relevance open. In contrast to other cytokine systems, TNF receptors do not appear to be major targets of glucocorticoid action.

  6. Acute Stress and Chronic Stress Change Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine Kinase-Coupled Receptor (TrkB) Expression in Both Young and Aged Rat Hippocampus

    PubMed Central

    Shi, Shou-Sen; Shao, Shu-hong; Yuan, Bang-ping; Pan, Fang

    2010-01-01

    Purpose The purpose of this study is to explore the dynamic change of brain-derived neurotrophic factor (BDNF) mRNA, protein, and tyrosine kinase-coupled receptor (TrkB) mRNA of the rat hippocampus under different stress conditions and to explore the influence of senescence on the productions expression. Materials and Methods By using forced-swimming in 4℃ cold ice water and 25℃ warm water, young and aged male rats were randomly divided into acute stress (AS) and chronic mild repeated stress (CMRS) subgroups, respectively. BDNF productions and TrkB mRNA in the hippocampus were detected by using Western-blotting and reverse transcription-polymerase chain reaction (RT-PCR), separately, at 15, 30, 60, 180, and 720 min after the last stress session. Results The short AS induced a significant increase in BDNF mRNA and protein in both age groups, but the changes in the young group were substantially greater than those of the aged group (p < 0.005). The CMRS resulted in a decrease in BDNF mRNA and protein, but a significant increase in TrkB mRNA in both young and age groups. The expression of BDNF mRNA and protein in the AS groups were higher than in the CMRS groups at 15, 30, and 60 min after stress. Conclusion The results indicated that the up/down-regulation of BDNF and TrkB were affected by aging and the stimulus paradigm, which might reflect important mechanisms by which the hippocampus copes with stressful stimuli. PMID:20635439

  7. Rapid regulation of brain-derived neurotrophic factor mRNA within eye-specific circuits during ocular dominance column formation.

    PubMed

    Lein, E S; Shatz, C J

    2000-02-15

    The neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a candidate retrograde signaling molecule for geniculocortical axons during the formation of ocular dominance columns. Here we examined whether neuronal activity can regulate BDNF mRNA in eye-specific circuits in the developing cat visual system. Dark-rearing throughout the critical period for ocular dominance column formation decreases levels of BDNF mRNA within primary visual cortex, whereas short-term (2 d) binocular blockade of retinal activity with tetrodotoxin (TTX) downregulates BDNF mRNA within the lateral geniculate nucleus (LGN) and visual cortical areas. Brief (6 hr to 2 d) monocular TTX blockade during the critical period and also in adulthood causes downregulation in appropriate eye-specific laminae in the LGN and ocular dominance columns within primary visual cortex. Monocular TTX blockade at postnatal day 23 also downregulates BDNF mRNA in a periodic fashion, consistent with recent observations that ocular dominance columns can be detected at these early ages by physiological methods. In contrast, 10 d monocular TTX during the critical period does not cause a lasting decrease in BDNF mRNA expression in columns pertaining to the treated eye, consistent with the nearly complete shift in physiological response properties of cortical neurons in favor of the unmanipulated eye known to result from long-term monocular deprivation. These observations demonstrate that BDNF mRNA levels can provide an accurate "molecular readout" of the activity levels of cortical neurons and are consistent with a highly local action of BDNF in strengthening and maintaining active synapses during ocular dominance column formation.

  8. Effects of different dietary intake on mRNA levels of MSTN, IGF-I, and IGF-II in the skeletal muscle of Dorper and Hu sheep hybrid F1 rams.

    PubMed

    Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F

    2014-07-24

    MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep.

  9. [Influence of macrophages on the expression of vascular endothelial growth factor receptor mRNA, homeobox B2 mRNA, and integrin alpha nu beta3 in vascular endothelial strain].

    PubMed

    Liu, Liang; Liu, Chang; Zhang, Xiao-qi; Ming, Jia; Liu, Xu-sheng; Xu, Hui; Cheng, Tian-min

    2005-06-01

    To investigate the influence of macrophages on the expression of the vascular endothelial growth factor (VEGF) receptor (KDR) mRNA, homeobox B2 (HOXB2) mRNA, and integrin alpha nu beta3 in vitro in vascular endothelial strain. Human umbilical vein cells (ECV304) were cultured in vitro and divided into 4 groups, i.e. (1) ECV304 group, (2) ECV304 + conA group [with conA (25 microg/ml in culture) added to ECV304], (3) ECV304 + U937 group (with 1 x 10(5)/ml of U937 cells added to 1 x 10(5)/ml ECV 304), (4) ECV304 + U937 + conA group [with 1 x 10(5)/ml of U937 cells and conA (25 microg/ml in culture)] groups. Forty-eight hours after culturing, the expression of integrin receptor alpha nu beta3 and the changes in the expression of KDR mRNA and HOXB2 mRNA in each group were determined by immunofluorescent technique and RT-PCR, respectively. The expression of integrin receptor alpha nu beta3, KDR mRNA, and HOXB2 mRNA in ECV304 group were 6.7 +/- 1.5, 0.633 +/- 0.012, and 0.674 +/- 0.004, respectively, while those in ECV304 + U937 + conA group (10.2 +/- 1.7, 0.879 +/- 0.003, 0.947 +/- 0.003) were obviously more upregulated when compared with those in ECV304 group (P < 0.01). No difference in the above indices was found between ECV304 and ECV304 + conA, ECV304 + U937 groups (P > 0.05). Macrophages activated by ConA can accelerate the proliferation, migration and adhesion to the basement membrane matrix of vascular endothelial cells through the influence on the expression of KDR mRNA, HOXB2 mRNA and integrin alpha nu beta3, and through this pathway the angiogenesis is modulated.

  10. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophinmore » lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.« less

  11. A search for the primary abnormality in adult-onset type II citrullinemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Keiko; Shaheen, Nazma; Saheki, Takeyori

    1993-11-01

    Deficiency of argininosuccinate synthetase (ASS) causes citrullinemia in human beings. Type II citrullinemia is found in most patients with adult-onset citrullinemia in Japan, and ASS deficiency is found specifically in the liver. Previous studies have shown that the decrease of hepatic ASS activity is caused by a decrease in enzyme protein with normal kinetic properties and that there were no apparent abnormalities in the amount, translational activity, and gross structure of hepatic ASS mRNA. In the present work, the authors show by sequencing analysis that there was no mutation in the ASS mRNA from two patients with type II citrullinemia.more » The authors also report RFLP analysis of a consanguineous family with type II citrullinemia, by using three DNA polymorphisms located within the ASS gene locus. In spite of having consanguineous parents, the patient was not a homozygous haplotype for the ASS gene. The RFLP analysis of 16 affected patients from consanguineous parents showed that 5 of 16 patients had the heterozygous pattern for one of the three DNA probes and that the frequency of the heterozygous haplotype was not different from the control frequency. These results suggest that the primary defect of type II citrullinemia is not within the ASS gene locus. 29 refs., 1 fig., 3 tabs.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirst, M.; Grewal, P.; Flannery, A.

    Screening of families clinically ascertained for the fragile X syndrome phenotype revealed two mentally impaired males who were cytogenetically negative for the fragile X chromosome. In both cases, screening for the FMR1 trinucleotide expansion mutation revealed a rearrangement within the FMR1 gene. In the first case, a 660-bp deletion is present in 40% of peripheral lymphocytes. PCR and sequence analysis revealed it to include the CpG island and the CGG trinucleotide repeat, thus removing the FMR1 promoter region and putative mRNA start site. In the second case, PCR analysis demonstrated that a deletion extended from a point proximal to FMR1more » to 25 kb into the gene, removing all the region 5{prime} to exon 11. The distal breakpoint was confirmed by Southern blot analysis and localized to a 600-bp region, and FMR1-mRNA analysis in a cell line established from this individual confirmed the lack of a transcript. These deletion patients provide further confirmatory evidence that loss of FMR1 gene expression is indeed responsible for mental retardation. Additionally, these cases highlight the need for the careful examination of the FMR1 gene, even in the absence of cytogenetic expression, particularly when several fragile X-like clinical features are present. 31 refs., 6 figs.« less

  13. Identification of the Transformational Properties and Transcriptional Targets of the Oncogenic SRY Transcription Factor SOX4

    DTIC Science & Technology

    2009-01-01

    has also been implicated in tumorigenesis of multiple tumor types and has been shown by our lab to be upregulated in prostate cancer. However, the...mobility group (HMG) DNA-binding domain (DBD) related to the TCF/LEF family of transcription factors. Our lab has previously shown SOX4 mRNA and...protein to be overexpressed in prostate cancer, and this expression is correlated with increasing Gleason score. Other labs have shown SOX4 mRNA to be

  14. [Study of signal transduction pathway in the expression of inflammatory factors stimulated by lipopolysaccharides from Porphyromonas endodontalis in osteoblasts].

    PubMed

    Yang, Di; Qiu, Li-hong; Li, Ren; Li, Zi-mu; Li, Chen

    2010-04-01

    To quantify the interleukin (IL)-1beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides ([PS) extracted from Porphyromonoas endodontalis (P. endodontalis) in osteoblasts, and to relate P. endodontalis LPS to the bone resorptive pathogenesis in the lesions of chronic apical periodontitis. MG63 cells was pretreated with PD98059 or SB203580 for 1 h and then treated with P. endodontolis LPS for 6 h. The expression of IL-1beta mRNA and IL-6 mRNA were detected by reverse transcription polymerase chain reaction (RT-PCR) technique. The production of IL-1beta mRNA induced by P. endodontalis LPS decreased in osteoblasts pretreated with PD98059. Both of the production of IL-1beta mRNA and JL-6 mRNA induced by P. endodontalis LPS decreased in osteoblasts pretreated with SB203580. The synthesis of IL-1beta mRNA stimulated by Pendodontalis LPS in MG63 probably occur via extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen activated protein kinase (MAPK) signal transduction system. The synthesis of IL-6 mRNA stimulated by P.endodontalis LPS in MG63 probahly occur via p38MAPK signal transduction system.

  15. Glucocorticoid receptor interacts with PNRC2 in a ligand-dependent manner to recruit UPF1 for rapid mRNA degradation.

    PubMed

    Cho, Hana; Park, Ok Hyun; Park, Joori; Ryu, Incheol; Kim, Jeonghan; Ko, Jesang; Kim, Yoon Ki

    2015-03-31

    Glucocorticoid receptor (GR), which was originally known to function as a nuclear receptor, plays a role in rapid mRNA degradation by acting as an RNA-binding protein. The mechanism by which this process occurs remains unknown. Here, we demonstrate that GR, preloaded onto the 5'UTR of a target mRNA, recruits UPF1 through proline-rich nuclear receptor coregulatory protein 2 (PNRC2) in a ligand-dependent manner, so as to elicit rapid mRNA degradation. We call this process GR-mediated mRNA decay (GMD). Although GMD, nonsense-mediated mRNA decay (NMD), and staufen-mediated mRNA decay (SMD) share upstream frameshift 1 (UPF1) and PNRC2, we find that GMD is mechanistically distinct from NMD and SMD. We also identify de novo cellular GMD substrates using microarray analysis. Intriguingly, GMD functions in the chemotaxis of human monocytes by targeting chemokine (C-C motif) ligand 2 (CCL2) mRNA. Thus, our data provide molecular evidence of a posttranscriptional role of the well-studied nuclear hormone receptor, GR, which is traditionally considered a transcription factor.

  16. New insights into the interplay between the translation machinery and nonsense-mediated mRNA decay factors.

    PubMed

    Raimondeau, Etienne; Bufton, Joshua C; Schaffitzel, Christiane

    2018-06-19

    Faulty mRNAs with a premature stop codon (PTC) are recognized and degraded by nonsense-mediated mRNA decay (NMD). Recognition of a nonsense mRNA depends on translation and on the presence of NMD-enhancing or the absence of NMD-inhibiting factors in the 3'-untranslated region. Our review summarizes our current understanding of the molecular function of the conserved NMD factors UPF3B and UPF1, and of the anti-NMD factor Poly(A)-binding protein, and their interactions with ribosomes translating PTC-containing mRNAs. Our recent discovery that UPF3B interferes with human translation termination and enhances ribosome dissociation in vitro , whereas UPF1 is inactive in these assays, suggests a re-interpretation of previous experiments and modification of prevalent NMD models. Moreover, we discuss recent work suggesting new functions of the key NMD factor UPF1 in ribosome recycling, inhibition of translation re-initiation and nascent chain ubiquitylation. These new findings suggest that the interplay of UPF proteins with the translation machinery is more intricate than previously appreciated, and that this interplay quality-controls the efficiency of termination, ribosome recycling and translation re-initiation. © 2018 The Author(s).

  17. Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies.

    PubMed

    Hoyle, Nathaniel P; Castelli, Lydia M; Campbell, Susan G; Holmes, Leah E A; Ashe, Mark P

    2007-10-08

    Cytoplasmic RNA granules serve key functions in the control of messenger RNA (mRNA) fate in eukaryotic cells. For instance, in yeast, severe stress induces mRNA relocalization to sites of degradation or storage called processing bodies (P-bodies). In this study, we show that the translation repression associated with glucose starvation causes the key translational mediators of mRNA recognition, eIF4E, eIF4G, and Pab1p, to resediment away from ribosomal fractions. These mediators then accumulate in P-bodies and in previously unrecognized cytoplasmic bodies, which we define as EGP-bodies. Our kinetic studies highlight the fundamental difference between EGP- and P-bodies and reflect the complex dynamics surrounding reconfiguration of the mRNA pool under stress conditions. An absence of key mRNA decay factors from EGP-bodies points toward an mRNA storage function for these bodies. Overall, this study highlights new potential control points in both the regulation of mRNA fate and the global control of translation initiation.

  18. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin. I. Excisional wound model.

    PubMed

    Quaglino, D; Nanney, L B; Kennedy, R; Davidson, J M

    1990-09-01

    The effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix gene expression has been investigated during the process of wound repair, where the formation of new connective tissue represents a critical step in restoring tissue integrity. Split-thickness excisional wounds in the pig were studied by in situ hybridization in order to obtain subjective findings on the activity and location of cells involved in matrix gene expression after the administration of recombinant TGF-beta 1. Data focus on the stimulatory role of this growth factor in granulation tissue formation, on the enhanced mRNA content of collagen types I and III, fibronectin, TGF-beta 1 itself, and on the reduction in stromelysin mRNA, suggesting that increased matrix formation measured after treatment with TGF-beta 1 is due to fibroplasia regulated by the abundance of mRNAs for several different structural, matrix proteins as well as inhibition of proteolytic phenomena elicited by metalloproteinases. These studies reveal elastin mRNA early in the repair process, and elastin mRNA expression is enhanced by administration of TGF-beta 1. Moreover, we show that TGF-beta 1 was auto-stimulating in wounds, accounting, at least in part, for the persistent effects of single doses of this multipotential cytokine.

  19. How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation.

    PubMed

    Choi, Junhong; Grosely, Rosslyn; Prabhakar, Arjun; Lapointe, Christopher P; Wang, Jinfan; Puglisi, Joseph D

    2018-06-20

    Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.

  20. Changes in mRNA levels for brain-derived neurotrophic factor after wheel running in rats selectively bred for high- and low-aerobic capacity

    PubMed Central

    Groves-Chapman, Jessica L.; Murray, Patrick S.; Stevens, Kristin L.; Monroe, Derek; Koch, Lauren G.; Britton, Steven L.; Holmes, Philip V.

    2012-01-01

    We evaluated levels of exercise-induced brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) within the hippocampal formation in rats selectively bred for 1) high intrinsic (i.e., untrained) aerobic capacity (High Capacity Runners, HCR), 2) low intrinsic aerobic capacity (Low Capacity Runners, LCR), and 3) unselected Sprague-Dawley (SD) rats with or without free access to running wheels for three weeks. The specific aim of the study was to determine whether a dose-response relationship exists between cumulative running distance and levels of BDNF mRNA. No additional treatments or behavioral manipulations were used. HCR, LCR, and SD rats were grouped by strain and randomly assigned to sedentary or activity (voluntary access to activity wheel) conditions. Animals were killed after 21 days of exposure to the assigned conditions. Daily running distances (mean ± standard deviation meters/d) during week three were: HCR (4726 ± 3220), SD (2293 ± 3461), LCR (672 ± 323). Regardless of strain, levels of BDNF mRNA in CA1 were elevated in wheel runners compared to sedentary rats and this difference persisted after adjustment for age (p=0.040). BDNF mRNA was not affected by intrinsic aerobic capacity and was not related to total running distance. The results support that BDNF mRNA expression is increased by unlimited access to activity wheel running for 3 weeks but is not dependent upon accumulated running distance. PMID:22024546

  1. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing

    PubMed Central

    Muppavarapu, Mridula; Huch, Susanne; Nissan, Tracy

    2016-01-01

    ABSTRACT Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation. PMID:26918764

  2. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing.

    PubMed

    Muppavarapu, Mridula; Huch, Susanne; Nissan, Tracy

    2016-01-01

    Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation.

  3. The expression of Apoc3 mRNA is regulated by HNF4α and COUP-TFII, but not acute retinoid treatments, in primary rat hepatocytes and hepatoma cells.

    PubMed

    Howell, Meredith; Li, Rui; Zhang, Rui; Li, Yang; Chen, Wei; Chen, Guoxun

    2014-02-01

    Vitamin A status regulates obesity development, hyperlipidemia, and hepatic lipogenic gene expression in Zucker fatty (ZF) rats. The development of hyperlipidemia in acne patients treated with retinoic acid (RA) has been attributed to the induction of apolipoprotein C-III expression. To understand the role of retinoids in the development of hyperlipidemia in ZF rats, the expression levels of several selected RA-responsive genes in the liver and isolated hepatocytes from Zucker lean (ZL) and ZF rats were compared using real-time PCR. The Rarb and Srebp-1c mRNA levels are higher in the liver and isolated hepatocytes from ZF than ZL rats. The Apoc3 mRNA level is only higher in the isolated hepatocytes from ZF than ZL rats. To determine whether dynamic RA production acutely regulates Apoc3 expression, its mRNA levels in response to retinoid treatments or adenovirus-mediated overexpression of hepatocyte nuclear factor 4 alpha (HNF4α) and chicken ovalbumin upstream-transcription factor II (COUP-TFII) were analyzed. Retinoid treatments for 2-6 h did not induce the expression of Apoc3 mRNA. The overexpression of HNF4α or COUP-TFII induced or inhibited Apoc3 expression, respectively. We conclude that short-term retinoid treatments could not induce Apoc3 mRNA expression, which is regulated by HNF4α and COUP-TFII in hepatocytes.

  4. Stress- and Rho-activated ZO-1–associated nucleic acid binding protein binding to p21 mRNA mediates stabilization, translation, and cell survival

    PubMed Central

    Nie, Mei; Balda, Maria S.; Matter, Karl

    2012-01-01

    A central component of the cellular stress response is p21WAF1/CIP1, which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1–associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB’s activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3′-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival. PMID:22711822

  5. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    PubMed Central

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. PMID:25834424

  6. The effect of thyroid hormone and a long-acting somatostatin analogue on TtT-97 murine thyrotropic tumors.

    PubMed

    Woodmansee, W W; Gordon, D F; Dowding, J M; Stolz, B; Lloyd, R V; James, R A; Wood, W M; Ridgway, E C

    2000-07-01

    Thyroid hormone inhibits thyrotropin (TSH) production and thyrotrope growth. Somatostatin has been implicated as a synergistic factor in the inhibition of thyrotrope function. We have previously shown that pharmacological doses of thyroid hormone (levothyroxine [LT4]) inhibit growth of murine TtT-97 thyrotropic tumors in association with upregulation of somatostatin receptor type 5 (sst5) mRNA and somatostatin receptor binding. In the current study, we examined the effect of physiological thyroid hormone replacement alone or in combination with the long-acting somatostatin analogue, Sandostatin LAR, on thyrotropic tumor growth, thyrotropin growth factor-beta (TSH-beta), and sst5 mRNA expression, as well as somatostatin receptor binding sites. Physiological LT4 replacement therapy resulted in tumor shrinkage in association with increased sst5 mRNA levels, reduced TSH-beta mRNA levels and enhanced somatostatin receptor binding. Sandostatin LAR alone had no effect on any parameter measured. However, Sandostatin LAR combined with LT4 synergistically inhibited TSH-beta mRNA production and reduced final tumor weights to a greater degree. In this paradigm, Sandostatin LAR required a euthyroid status to alter thyrotrope parameters. These data suggest an important interaction between the somatostatinergic system and thyroid hormone in the regulation of thyrotrope cell structure and function.

  7. [Effects of Guilin Watermelon Frost on the mRNA expressions of basic fibroblast growth factor in patients with uterine cervical columnar ectopy].

    PubMed

    Qiu-Yan, Jiang; Jin-Ling, Song; Hai-Xia, Mo

    2012-01-01

    To study the molecular biological effects of Guilin Watermelon Frost (GWF) on the mRNA expressions of basic fibroblast growth factor (bFGF) in patients with uterine uterine cervical columnar ectopy. One hundred and sixty patients with uterine cervical columnar ectopy were assigned to two groups by the random digit table. Patients in the treatment group were treated with local spray of GWF, while those in the control group were local applied with bFGF-collagen sponge. The mRNA expressions of bFGF of the uterine tissue were detected in the two groups before and after treatment using RT-PCR. Before treatment the mRNA expression of bFGF in the uterine cervical columnar ectopy was 0.55 +/- 0.10 in the treatment group and 0.58 +/- 0.13 in the control group, without insignificant difference (P > 0.05). After treatment it significantly increased in the two groups, being 0.82 +/- 0.17 and 0.78 +/- 0.15 respectively, showing statistical difference from before treatment (P < 0.01). But no statistical difference existed between the two groups after treatment (P > 0.05). GWF showed enhancement on the mRNA expressions of bFGF in patients with uterine cervical columnar ectopy.

  8. Molecular signaling in intervertebral disk development.

    PubMed

    DiPaola, Christian P; Farmer, James C; Manova, Katia; Niswander, Lee A

    2005-09-01

    The purpose of this investigation is to identify and study the expression pattern of pertinent molecular factors involved in the differentiation of the intervertebral disk (IVD). It is likely that hedgehog genes and the BMP inhibitors are key factors involved in spinal joint formation. Radioactive in situ hybridization with mRNA probes for pax-1, SHH, IHH and Noggin gene was performed on mouse embryo and adult tissue. Immunohistochemistry was performed to localize hedgehog receptor, "patched" (ptc). From 14.5 dpc until birth pax-1 mRNA was expressed in the developing anulus fibrosus (AF). During the same developmental period Noggin mRNA is highly expressed throughout the spine, in the developing AF, while ptc protein and SHH mRNA were expressed in the developing nucleus pulposus (NP). IHH mRNA was expressed by condensing chondrocytes of the vertebral bodies and later becomes confined to the vertebral endplate. We show for the first time that pax-1 is expressed in the adult intervertebral disk. Ptc expression in the NP is an indicator of hedgehog protein signaling in the developing IVD. The expression pattern of the BMP inhibitor Noggin appears to be important for the normal formation of the IVD and may prove to play a role in its segmental pattern formation.

  9. MSX-1 gene expression and regulation in embryonic palatal tissue.

    PubMed

    Nugent, P; Greene, R M

    1998-01-01

    The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.

  10. Detection of carcinoembryonic antigen messenger RNA in blood using quantitative real-time reverse transcriptase-polymerase chain reaction to predict recurrence of gastric adenocarcinoma

    PubMed Central

    2010-01-01

    Background The existence of circulating tumor cells (CTCs) in peripheral blood as an indicator of tumor recurrence has not been clearly established, particularly for gastric cancer patients. We conducted a retrospective analysis of the relationship between CTCs in peripheral blood at initial diagnosis and clinicopathologic findings in patients with gastric carcinoma. Methods Blood samples were obtained from 123 gastric carcinoma patients at initial diagnosis. mRNA was extracted and amplified for carcinoembryonic antigen (CEA) mRNA detection using real-time RT-PCR. Periodic 3-month follow-up examinations included serum CEA measurements and imaging. Results The minimum threshold for corrected CEA mRNA score [(CEA mRNA/GAPDH mRNA) × 106] was set at 100. Forty-five of 123 patients (36.6%) were positive for CEA mRNA expression. CEA mRNA expression significantly correlated with T stage and postoperative recurrence status (P = 0.001). Recurrent disease was found in 44 of 123 cases (35.8%), and 25 of these (56.8%) were positive for CEA mRNA. Of these patients, CEA mRNA was more sensitive than serum CEA in indicating recurrence. Three-year disease-free survival of patients positive for CEA mRNA was significantly poorer than of patients negative for CEA mRNA (P < 0.001). Only histological grade and CEA mRNA positivity were independent factors for disease-free survival using multivariate analysis. Conclusions CEA mRNA copy number in peripheral blood at initial diagnosis was significantly associated with disease recurrence in gastric adenocarcinoma patients. Real-time RT-PCR detection of CEA mRNA levels at initial diagnosis appears to be a promising predictor for disease recurrence in gastric adenocarcinoma patients. PMID:21040522

  11. Detection of carcinoembryonic antigen messenger RNA in blood using quantitative real-time reverse transcriptase-polymerase chain reaction to predict recurrence of gastric adenocarcinoma.

    PubMed

    Qiu, Miao-Zhen; Li, Zhuang-Hua; Zhou, Zhi-Wei; Li, Yu-Hong; Wang, Zhi-Qiang; Wang, Feng-Hua; Huang, Peng; Aziz, Fahad; Wang, Dao-Yuan; Xu, Rui-Hua

    2010-10-31

    The existence of circulating tumor cells (CTCs) in peripheral blood as an indicator of tumor recurrence has not been clearly established, particularly for gastric cancer patients. We conducted a retrospective analysis of the relationship between CTCs in peripheral blood at initial diagnosis and clinicopathologic findings in patients with gastric carcinoma. Blood samples were obtained from 123 gastric carcinoma patients at initial diagnosis. mRNA was extracted and amplified for carcinoembryonic antigen (CEA) mRNA detection using real-time RT-PCR. Periodic 3-month follow-up examinations included serum CEA measurements and imaging. The minimum threshold for corrected CEA mRNA score [(CEA mRNA/GAPDH mRNA) × 106] was set at 100. Forty-five of 123 patients (36.6%) were positive for CEA mRNA expression. CEA mRNA expression significantly correlated with T stage and postoperative recurrence status (P = 0.001). Recurrent disease was found in 44 of 123 cases (35.8%), and 25 of these (56.8%) were positive for CEA mRNA. Of these patients, CEA mRNA was more sensitive than serum CEA in indicating recurrence. Three-year disease-free survival of patients positive for CEA mRNA was significantly poorer than of patients negative for CEA mRNA (P < 0.001). Only histological grade and CEA mRNA positivity were independent factors for disease-free survival using multivariate analysis. CEA mRNA copy number in peripheral blood at initial diagnosis was significantly associated with disease recurrence in gastric adenocarcinoma patients. Real-time RT-PCR detection of CEA mRNA levels at initial diagnosis appears to be a promising predictor for disease recurrence in gastric adenocarcinoma patients.

  12. mRNA–mRNA duplexes that auto-elicit Staufen1-mediated mRNA decay

    PubMed Central

    Gong, Chenguang; Tang, Yalan; Maquat, Lynne E.

    2013-01-01

    We report a new mechanism by which human mRNAs crosstalk: an Alu element in the 3'-untranslated region (3' UTR) of one mRNA can base-pair with a partially complementary Alu element in the 3' UTR of a different mRNA thereby creating a Staufen1 (STAU1)-binding site (SBS). STAU1 binding to a 3' UTR SBS was previously shown to trigger STAU1-mediated mRNA decay (SMD) by directly recruiting the ATP-dependent RNA helicase UPF1, which is also a key factor in the mechanistically related nonsense-mediated mRNA decay (NMD) pathway. In the case of a 3' UTR SBS created via mRNA–mRNA base-pairing, we show that SMD targets both mRNAs in the duplex provided that both mRNAs are translated. If only one mRNA is translated, then it alone is targeted for SMD. We demonstrate the importance of mRNA–mRNA-triggered SMD to the processes of cell migration and invasion. PMID:24056942

  13. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

    PubMed

    Choi, Junhong; Indrisiunaite, Gabriele; DeMirci, Hasan; Ieong, Ka-Weng; Wang, Jinfan; Petrov, Alexey; Prabhakar, Arjun; Rechavi, Gideon; Dominissini, Dan; He, Chuan; Ehrenberg, Måns; Puglisi, Joseph D

    2018-03-01

    Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.

  14. ATBF1-a messenger RNA expression is correlated with better prognosis in breast cancer.

    PubMed

    Zhang, Zhenhuan; Yamashita, Hiroko; Toyama, Tatsuya; Sugiura, Hiroshi; Ando, Yoshiaki; Mita, Keiko; Hamaguchi, Maho; Kawaguchi, Makoto; Miura, Yutaka; Iwase, Hirotaka

    2005-01-01

    The AT motif-binding factor 1 (ATBF1) gene was first identified as a suppressor of the alpha-fetoprotein (AFP) gene through its binding to an AT-rich enhancer element of this gene. The gene is located at chromosome 16q22.3-q23.1 where loss of heterozygosity has been observed in various malignant tumors, especially in breast cancer. It was also found that in highly malignant AFP-producing gastric cancer cells the expression of AFP is inhibited by ATBF1-A. This led us to hypothesize that there was a link between levels of ATBF1 expression and the metastatic potential of breast cancer and also, therefore, the prognosis of these patients. In the present study, the level of ATBF1-A mRNA expression was analyzed using quantitative real-time reverse transcriptase-PCR, in 153 female patients with invasive carcinoma of the breast. ATBF1-A protein expression was also determined by immunohistochemistry from available 90 cases of paired tissues. An association was sought between ATBF1-A expression and various clinicopathologic factors. ATBF1-A mRNA was expressed at significantly higher levels in breast cancer patients with no axillary lymph node involvement, with small tumors measuring <2 cm and in estrogen receptor-alpha-positive tumors. By contrast, no relationship was found between ATBF1-A mRNA expression and ATBF1-A protein expression, and also no relationship was found between ATBF1-A protein expression and any of the other clinicopathologic factors. Patients expressing high levels of ATBF1-A mRNA tended to have a better prognosis than those expressing low levels. Univariate and multivariate prognostic analyses showed that ATBF1-A mRNA expression is an independent prognostic factor for disease-free survival. In breast cancer, levels of ATBF1-A mRNA may serve as a predictive indicator of lymph node metastasis. The results of this study also imply that ATBF1-A gene expression may have potential both as a marker of endocrine responsiveness and also as a prognostic indicator for breast cancer progression.

  15. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is released by female mouse bladder urothelial cells and expressed by the urothelium as an early response to lipopolysaccharides (LPS).

    PubMed

    Li, Yan; Lu, Ming; Alvarez-Lugo, Lery; Chen, Gang; Chai, Toby C

    2017-04-01

    We studied in vitro and in vivo response of primary mouse bladder urothelial cells (mBUC) and bladder urothelium to lipopolysaccharides (LPS), focusing on granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. Female C57BL/6 mBUC were exposed for 12 hr to differing concentrations of LPS (100 ng/ml to 10 µg/ml). mBUC were also exposed to a single dose of LPS (1 µg/ml) for 3, 6, 12 hr. Neutralizing GM-CSF antibody (0.1 μg/ml) was used block GM-CSF activity in vitro. In vivo experiments were performed, whereby, LPS (1 mg/ml) was instilled intravesically and left to dwell for 30 min followed by harvest of bladder urothelium 3 to 18 hr later. ELISA measured GM-CSF. qPCR quantitated mRNA for GM-CSF, vascular endothelial growth factor-A (VEGF-A), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α). RT-PCR was used to detect mRNA for GM-CSF, GM-CSFRα, and β in bladder tissues. Immunohistofluorescence and Western blots for GM-CSFRα were performed on bladder tissues. LPS induced a dose-dependent release of GM-CSF by mBUC. Mouse bladder urothelium did not express GM-CSF mRNA at baseline, but expressed GM-CSF mRNA 3 hr after in vivo LPS exposure, with GM-CSF mRNA expression disappearing 18 hr later. GM-CSFRα expression was confirmed in bladder urothelium. GM-CSF neutralizing antibody significantly diminished LPS-induced increases of VEGF and COX-2 mRNA expression. Urothelium and mBUC secreted GM-CSF as an early response to LPS. GM-CSF mediated downstream expression of VEGF and COX-2. Urothelial GM-CSF may function as a signaling mediator for both inflammation and pain transduction. Neurourol. Urodynam. 36:1020-1025, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. The expression analysis of Sfrs10 and Celf4 during mouse retinal development

    PubMed Central

    Karunakaran, Devi Krishna Priya; Congdon, Sean; Guerrette, Thomas; Banday, Abdul Rouf; Lemoine, Christopher; Chhaya, Nisarg; Kanadia, Rahul

    2013-01-01

    Processing of mRNAs including, alternative splicing (AS), mRNA transport and translation regulation are crucial to eukaryotic gene expression. For example, >90% of the gene in the human genome are known to undergo alternative splicing thereby expanding the proteome production capacity of a limited number of genes. Similarly, mRNA export and translation regulation plays a vital role in regulating protein production. Thus, it is important to understand how these RNA binding proteins including alternative splicing factors (ASFs) and mRNA transport and translation factors regulate these processes. Here we report the expression of an ASF, Serine-arginine rich splicing factor 10 (Sfrs10) and a mRNA translation regulation factor, CUGBP, elav like family member 4 (Celf4) in the developing mouse retina. Sfrs10 was expressed throughout postnatal (P) retinal development and was observed progressively in newly differentiating neurons. Immunofluorescence (IF) showed Sfrs10 in retinal ganglion cells (RGCs) at P0, followed by amacrine and bipolar cells, and at P8 it was enriched in red/green cone photoreceptor cells. By P22, Sfrs10 was observed in rod photoreceptors in a peri-nuclear pattern. Like Sfrs10, Celf4 was also observed in the developing retina, but with two distinct retinal isoforms. In situ hybridization (ISH) showed progressive expression of Celf4 in differentiating neurons, which was confirmed by IF that showed a dynamic shift in Celf4 localization. Early in development Celf4 expression was restricted to the nuclei of newly differentiating RGCs and later (E16 onwards) it was observed in the initial segments of RGC axons. Later, during postnatal development, Celf4 was observed in amacrine and bipolar cells, but here it was predominantly cytoplasmic and enriched in the two synaptic layers. Specifically, at P14, Celf4 was observed in the synaptic boutons of rod bipolar cells marked by Pkc-α. Thus, Celf4 might be regulating AS early in development besides its known role of regulating mRNA localization/translation. In all, our data suggests an important role for AS and mRNA localization/translation in retinal neuron differentiation. PMID:23932931

  17. Postnatal handling does not normalize hypothalamic corticotropin-releasing factor mRNA levels in animals prenatally exposed to ethanol.

    PubMed

    Gabriel, Kara I; Glavas, Maria M; Ellis, Linda; Weinberg, Joanne

    2005-06-09

    Postnatal handling has been shown to attenuate some of the deficits in developmental outcome observed following prenatal ethanol exposure (E) although it appears to be ineffective at ameliorating the hypothalamic-pituitary-adrenal (HPA) hyperresponsiveness to stressors that has been observed in adult E animals. However, the effects of postnatal handling on central regulation of HPA activity in E animals, particularly with regard to alterations in steady-state hypothalamic corticotropin-releasing factor (CRF) activity, have not been examined. In the present study, offspring from E, pair-fed (PF), and ad-libitum-fed control (C) groups were exposed to daily handling during the first 2 weeks of life (H) or were left entirely undisturbed until weaning (NH). Basal CRF and arginine vasopressin (AVP) mRNA in the parvocellular portion of the paraventricular nucleus (pPVN) of the hypothalamus were assessed at 90-110 days of age. Prenatal ethanol exposure resulted in elevated basal pPVN CRF mRNA levels compared to those in ad-libitum-fed controls. Handling altered CRF mRNA levels in a sex-specific and prenatal treatment-specific manner. Females showed no significant effects of handling. In contrast, handling decreased CRF mRNA levels in PF and C but not E males compared to their NH counterparts. There were no effects of prenatal ethanol or postnatal handling on AVP mRNA levels. These findings indicate that prenatal ethanol exposure results in elevated basal CRF mRNA levels in adulthood and that handling appears to be ineffective in normalizing those elevations, supporting the suggestion that altered basal HPA regulation in E animals may, at least in part, underlie their HPA hyperresponsiveness to stressors.

  18. Evaluation of 5-fluorouracil metabolic enzymes as predictors of response to adjuvant chemotherapy outcomes in patients with stage II/III colorectal cancer: a decision-curve analysis.

    PubMed

    Shigeta, Kohei; Ishii, Yoshiyuki; Hasegawa, Hirotoshi; Okabayashi, Koji; Kitagawa, Yuko

    2014-12-01

    The effectiveness of 5-fluorouracil (5-FU)-based adjuvant chemotherapy is reported in patients with colorectal cancer (CRC), but the usefulness of 5-FU metabolic enzymes as predictive biomarkers of the efficacy of this chemotherapy remains unclear. This study aims to verify whether 5-FU metabolic enzymes are predictive biomarkers in the clinical setting of adjuvant chemotherapy for stage II/III CRC. In total, 179 patients with stage II/III CRC who were treated at our institute between 2000 and 2010 were enrolled. Messenger RNA (mRNA) expression of major 5-FU metabolic enzymes, namely thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase (TP), orotate phosphoribosyl transferase, and β-actin (control) was evaluated using the Danenberg Tumor Profile method. mRNA expression and other clinicopathological data were investigated with regard to CRC relapse. A total of 78 patients underwent surgery alone, while 101 underwent adjuvant chemotherapy (5-FU plus leucovorin [LV] or tegafur plus uracil /LV) following surgery. Relapse-free survival was longer and risk of recurrence was lower in association with high TP mRNA expression than in association with low TP mRNA expression in the adjuvant chemotherapy group (hazard ratio 0.66; 95 % confidence interval 0.47-0.92; p = 0.016), but not in the surgery alone group. mRNA expression of no other enzymes was associated with relapse in both groups. In decision-curve analyses, the predictive efficiency of TP mRNA expression plus clinicopathological factors was slightly better than that of clinicopathological factors only. TP mRNA expression in tumors predicted the effects of adjuvant chemotherapy for stage II/III CRC, although the beneficial effects were marginal.

  19. mRNA expression of corticotropin-releasing factor and urocortin 1 after restraint and foot shock together with alprazolam administration.

    PubMed

    Cespedes, Isabel C; de Oliveira, Amanda R; da Silva, Joelcimar M; da Silva, André V; Sita, Luciane V; Bittencourt, Jackson C

    2010-12-01

    Corticotropin-releasing factor (CRF) is expressed in the paraventricular nucleus of the hypothalamus (PVN), and act centrally to provoke stress-like autonomic and behavioral responses. Urocortins 1-3 are additional ligands to the CRF receptors 1 and 2. Ucn 1 neurons are primarily concentrated in the Edinger-Westphal (EW) nucleus and also have been associated with stress responses. It is also known that UCN 1 respond in different ways depending on the stressor presented. Benzodiazepines can act via the CRF peptidergic system and chronic administration of alprazolam does not interfere with CRF mRNA expression in the PVN, but significantly increase Ucn 1 mRNA expression in the EW. The aim of our study was to investigate the relationship between different stressor stimuli, foot shock (FS) and restraint (R), and the mRNA expression of CRF and Ucn 1 in the PVN and EW using alprazolam (A). We employed fos activation and in situ hybridization. Restraint group presented increased fos-ir and CRF mRNA expression in the PVN compared to FS group. The stress responses of R group were prevented by A. In the EW, fos-ir was higher in the FS group than in the R group, whereas Ucn 1 mRNA expression was higher in the R group than in the FS group. Alprazolam significantly increased fos-ir and Ucn 1 mRNA expression in both groups. Our results show that PVN and EW respond in different ways to the same stressors. Furthermore, EW of stressed animals replies in a complementary way comparing to PVN with the use of Alprazolam. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Quantitative studies of mRNA recruitment to the eukaryotic ribosome.

    PubMed

    Fraser, Christopher S

    2015-07-01

    The process of peptide bond synthesis by ribosomes is conserved between species, but the initiation step differs greatly between the three kingdoms of life. This is illustrated by the evolution of roughly an order of magnitude more initiation factor mass found in humans compared with bacteria. Eukaryotic initiation of translation is comprised of a number of sub-steps: (i) recruitment of an mRNA and initiator methionyl-tRNA to the 40S ribosomal subunit; (ii) migration of the 40S subunit along the 5' UTR to locate the initiation codon; and (iii) recruitment of the 60S subunit to form the 80S initiation complex. Although the mechanism and regulation of initiation has been studied for decades, many aspects of the pathway remain unclear. In this review, I will focus discussion on what is known about the mechanism of mRNA selection and its recruitment to the 40S subunit. I will summarize how the 43S preinitiation complex (PIC) is formed and stabilized by interactions between its components. I will discuss what is known about the mechanism of mRNA selection by the eukaryotic initiation factor 4F (eIF4F) complex and how the selected mRNA is recruited to the 43S PIC. The regulation of this process by secondary structure located in the 5' UTR of an mRNA will also be discussed. Finally, I present a possible kinetic model with which to explain the process of mRNA selection and recruitment to the eukaryotic ribosome. Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  1. Ventilation-induced increases in EGFR ligand mRNA are not altered by intra-amniotic LPS or ureaplasma in preterm lambs.

    PubMed

    Hillman, Noah H; Gisslen, Tate; Polglase, Graeme R; Kallapur, Suhas G; Jobe, Alan H

    2014-01-01

    Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD) in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA) LPS or Ureaplasma parvum (UP). Epidermal growth factor receptor (EGFR) ligands participate in lung development, and angiotensin converting enzyme (ACE) 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG), epiregulin (EREG), heparin binding epidermal growth factor (HB-EGF), and betacellulin (BTC) mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.

  2. Region-specific effects of developmental exposure to cocaine on fibroblast growth factor-2 expression in the rat brain.

    PubMed

    Giannotti, Giuseppe; Caffino, Lucia; Mottarlini, Francesca; Racagni, Giorgio; Fumagalli, Fabio

    2016-07-01

    Adolescence is a period of high vulnerability to drugs of abuse and alterations of the proper developmental trajectory via psychostimulant exposure might change the physiological brain homeostasis. By microdissection of brain areas via punching, we investigated whether repeated exposure to cocaine during adolescence (from postnatal day 28 [PND28] to PND42) has altered fibroblast growth factor-2 (FGF-2) messenger RNA (mRNA) levels in selected brain subregions critical for the action of cocaine. We found a reduction of FGF-2 mRNA levels in ventral tegmental area (VTA), where mesocortical and mesolimbic pathways originate. The analysis of the trophic factor levels in the distal projecting regions revealed a selective reduction of FGF-2 mRNA levels in infralimbic (IL) subregion of the medial prefrontal cortex (the terminal region of the mesocortical pathway) and in the nucleus accumbens core (cNAc) (the terminal region of the mesolimbic pathway). Last, we found reduced FGF-2 mRNA levels also in brain regions which, although in a different manner, contribute to the reward system, i.e., the central nucleus of amygdala (cAmy) and the ventral portion of hippocampus (vHip). The widespread and coordinated reduction of FGF-2 mRNA levels across the brain's reward neurocircuitry might represent a defensive strategy set in motion to oppose to the psychostimulant properties of cocaine. Moreover, given the role of FGF-2 in modulating mood disorders, the reduced trophic support here observed might sustain the negative emotional state set in motion by repeated exposure to cocaine.

  3. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Lymphotoxin β receptor activation promotes mRNA expression of RelA and pro-inflammatory cytokines TNFα and IL-1β in bladder cancer cells.

    PubMed

    Shen, Mo; Zhou, Lianlian; Zhou, Ping; Zhou, Wu; Lin, Xiangyang

    2017-07-01

    The role of inflammation in tumorigenesis and development is currently well established. Lymphotoxin β receptor (LTβR) activation induces canonical and noncanonical nuclear factor (NF)‑κB signaling pathways, which are linked to inflammation‑induced carcinogenesis. In the present study, 5,637 bladder cancer cells were cultured and the activation of LTβR was induced by functional ligand, lymphotoxin (LT) α1β2, and silencing with shRNA. Reverse transcription‑quantitative polymerase chain reaction was utilized to detect the mRNA expression levels of NF‑κB family members RelA and RelB, cytokines including LTα, LTβ, tumor necrosis factor (TNF)α, TNF superfamily member 14, interleukin (IL)‑6 and IL‑1β, and proliferation‑related genes including CyclinD1 and Survivin. The expression of phospho‑p65 was determined by western blotting. Activation of LTβR on bladder cancer 5,637 cells was demonstrated to upregulate the mRNA expression levels of the RELA proto‑oncogene, RelA, by 2.5‑fold compared with unstimulated cells, while no significant change was observed in the RELB proto‑oncogene NF‑κB member mRNA levels. Expression of pro‑inflammatory cytokines tumor necrosis factor (TNF)α and interleukin (IL)‑1β mRNA levels were significantly increased nearly 5‑fold and 1.5‑fold, respectively, following LTβR activation compared with unstimulated cells. The LTβR‑induced upregulation of RelA, TNFα and IL‑1β was decreased by ~33, 27, and 26% respectively when LTβR was silenced via short hairpin RNA. Activation of LTβR had no effect on 5,637 cell growth, despite CyclinD1 and Survivin mRNA levels increasing by ~2.7 and 1.3‑fold, respectively, compared with unstimulated cells. In conclusion, activation of LTβR induced the expression of RelA mRNA levels. LTβR activation might be an important mediator in promoting an inflammatory microenvironment in bladder cancer, via the upregulation of TNFα and IL‑1β mRNA levels. LTβR may be a potential therapeutic target for bladder cancer.

  5. Advanced Glycation End-Products Induce Connective Tissue Growth Factor-Mediated Renal Fibrosis Predominantly through Transforming Growth Factor β-Independent Pathway

    PubMed Central

    Zhou, Guihua; Li, Cai; Cai, Lu

    2004-01-01

    Advanced glycation end-products (AGEs) play a critical role in diabetic nephropathy by stimulating extracellular matrix (ECM) synthesis. Connective tissue growth factor (CTGF) is a potent inducer of ECM synthesis and increases in the diabetic kidneys. To determine the critical role of CTGF in AGE-induced ECM accumulation leading to diabetic nephropathy, rats were given AGEs by intravenous injection for 6 weeks. AGE treatment induced a significant renal ECM accumulation, as shown by increases in periodic acid-Schiff-positive materials, fibronectin, and type IV collagen (Col IV) accumulation in glomeruli, and a mild renal dysfunction, as shown by increases in urinary volume and protein content. AGE treatment also caused significant increases in renal CTGF and transforming growth factor (TGF)-β1 mRNA and protein expression. Direct exposure of rat mesangial cells to AGEs in vitro significantly induced increases in fibronectin and Col IV production, which could be completely prevented by pretreatment with anti-CTGF antibody. AGE treatment also significantly increased both TGF-β1 and CTGF mRNA expression; however, inhibition of TGF-β1 mRNA expression by shRNA or neutralization of TGF-β1 protein by anti-TGF-β1 antibody did not significantly prevent AGE-increased expression of CTGF mRNA and protein. These results suggest that AGE-induced CTGF expression, predominantly through a TGF-β1-independent pathway, plays a critical role in renal ECM accumulation leading to diabetic nephropathy. PMID:15579446

  6. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    PubMed

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  7. The orphan nuclear receptor Nur77 regulates decidual prolactin expression in human endometrial stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yue; Hu, Yali; Zhao, Jing

    2011-01-14

    Research highlights: {yields} Decidually produced PRL plays a key role during pregnancy. {yields} Overexpression of Nur77 increased PRL mRNA expression and enhanced decidual PRL promoter activity. {yields} Knockdown of Nur77 decreased decidual PRL secretion induced by 8-Br-cAMP and MPA. {yields} Nur77 is a novel transcription factor that plays an active role in decidual prolactin expression. -- Abstract: Prolactin (PRL) is synthesized and released by several extrapituitary tissues, including decidualized stromal cells. Despite the important role of decidual PRL during pregnancy, little is understood about the factors involved in the proper regulation of decidual PRL expression. Here we present evidence thatmore » the transcription factor Nur77 plays an active role in decidual prolactin expression in human endometrial stromal cells (hESCs). Nur77 mRNA expression in hESCs was significantly increased after decidualization stimulated by 8-Br-cAMP and medroxyprogesterone acetate (MPA). Adenovirus-mediated overexpression of Nur77 in hESCs markedly increased PRL mRNA expression and enhanced decidual PRL promoter (dPRL/-332Luc) activity in a concentration-dependent manner. Furthermore, knockdown of Nur77 in hESCs significantly decreased decidual PRL promoter activation and substantially attenuated PRL mRNA expression and PRL secretion (P < 0.01) induced by 8-Br-cAMP and MPA. These results demonstrate that Nur77 is a novel transcription factor that contributes significantly to the regulation of prolactin gene expression in human endometrial stromal cells.« less

  8. Molar loss and powder diet leads to memory deficit and modifies the mRNA expression of brain-derived neurotrophic factor in the hippocampus of adult mice.

    PubMed

    Takeda, Yosuke; Oue, Hiroshi; Okada, Shinsuke; Kawano, Akira; Koretake, Katsunori; Michikawa, Makoto; Akagawa, Yasumasa; Tsuga, Kazuhiro

    2016-12-05

    It is known that tooth loss is known to be a risk factor for Alzheimer's disease and soft diet feeding induces memory impairment. Recent studies have shown that brain-derived neurotrophic factor (BDNF) is associated with tooth loss or soft diet in young animal model, and that BDNF expression is decreased in patients with Alzheimer's disease. However, single or combined effect of tooth loss and/or soft diet on brain function has not fully understood. Here we examined the effect of molar loss and powder diet on memory ability and the expression of BDNF mRNA in the hippocampus of adult C57BL/6J mice. Twenty eight-weeks-old C57BL/6J mice were divided into intact molar group and extracted molar group. They were randomly divided into the I/S group (Intact upper molar teeth/Solid diet feeding), the E/S group (Extracted upper molar teeth/Solid diet feeding), the I/P group (Intact upper molar teeth/Powder diet feeding), and the E/P group (Extracted upper molar teeth/Powder diet feeding). The observation periods were 4 and 16-week. To analyze the memory ability, the step-through passive avoidance test was conducted. BDNF-related mRNA in the hippocampus was analyzed by real-time polymerase chain reaction (RT-PCR). At 4 weeks later, we performed memory test and isolated brains to analyze. There were no differences in memory function and BDNF mRNA level between these four groups. However, at 16 weeks later, E/S and E/P group showed memory impairment, and decreased level of BDNF mRNA. Whereas, the powder diet had no effect on memory function and BDNF mRNA level even at 16 weeks later. These results suggest that the effect of molar loss and powder diet on memory function and BDNF mRNA levels were different, molar loss may have a greater long-term effect on memory ability than powder diet does.

  9. An ‘environment to nucleus’ signaling system operates in B lymphocytes: redox status modulates BSAP/Pax-5 activation through Ref-1 nuclear translocation

    PubMed Central

    Tell, Gianluca; Zecca, Alessandro; Pellizzari, Lucia; Spessotto, Paola; Colombatti, Alfonso; Kelley, Mark R.; Damante, Giuseppe; Pucillo, Carlo

    2000-01-01

    The Ref-1 (also called APE or HAP1) protein is a bifunctional enzyme impacting on a wide variety of important cellular functions. It acts as a major member of the DNA base excision repair pathway. Moreover, Ref-1 stimulates the DNA-binding activity of several transcription factors (TFs) through the reduction of highly reactive cysteine residues. Therefore, it represents a mechanism that regulates eukaryotic gene expression in a fast way. However, it has been demonstrated that external stimuli directly act on Ref-1 by increasing its expression levels, a time-consuming mechanism representing a paradox in terms of rapidity of TF regulation. In this paper we demonstrate that this is only an apparent paradox. Exposure of B lymphocytes to H2O2 induced a rapid and sustained increase in Ref-1 protein levels in the nucleus as evaluated by both western blot analysis and by pulse–chase experiments. A time course, two color in situ immunocytochemistry indicated that the up-regulation of Ref-1 in the nucleus at <30 min was primarily the consequence of translocation of its cytoplasmic form. This early nuclear accumulation is effective in modulating the DNA-binding activity of the B cell-specific activator protein BSAP/Pax-5. In fact, EMSA experiments demonstrate that a transient interaction with Ref-1 up-regulates the DNA-binding activity of BSAP/Pax-5. Moreover, in a co-transfection experiment, Ref-1 increased the BSAP/Pax-5 activating effect on an oligomerized BSAP/Pax-5 binding site of the CD19 promoter by 5- to 8-fold. Thus, Ref-1 mediates its effect by up-regulating the DNA-binding activity of BSAP/Pax-5, accounting for a new and fast outside/inside pathway of signaling in B cells. PMID:10666449

  10. Distribution-centric 3-parameter thermodynamic models of partition gas chromatography.

    PubMed

    Blumberg, Leonid M

    2017-03-31

    If both parameters (the entropy, ΔS, and the enthalpy, ΔH) of the classic van't Hoff model of dependence of distribution coefficients (K) of analytes on temperature (T) are treated as the temperature-independent constants then the accuracy of the model is known to be insufficient for the needed accuracy of retention time prediction. A more accurate 3-parameter Clarke-Glew model offers a way to treat ΔS and ΔH as functions, ΔS(T) and ΔH(T), of T. A known T-centric construction of these functions is based on relating them to the reference values (ΔS ref and ΔH ref ) corresponding to a predetermined reference temperature (T ref ). Choosing a single T ref for all analytes in a complex sample or in a large database might lead to practically irrelevant values of ΔS ref and ΔH ref for those analytes that have too small or too large retention factors at T ref . Breaking all analytes in several subsets each with its own T ref leads to discontinuities in the analyte parameters. These problems are avoided in the K-centric modeling where ΔS(T) and ΔS(T) and other analyte parameters are described in relation to their values corresponding to a predetermined reference distribution coefficient (K Ref ) - the same for all analytes. In this report, the mathematics of the K-centric modeling are described and the properties of several types of K-centric parameters are discussed. It has been shown that the earlier introduced characteristic parameters of the analyte-column interaction (the characteristic temperature, T char , and the characteristic thermal constant, θ char ) are a special chromatographically convenient case of the K-centric parameters. Transformations of T-centric parameters into K-centric ones and vice-versa as well as the transformations of one set of K-centric parameters into another set and vice-versa are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterization of an in vitro system for the synthesis of mRNA from human parainfluenza virus type 3.

    PubMed

    De, B P; Galinski, M S; Banerjee, A K

    1990-03-01

    A cell extract derived from human parainfluenza virus type 3-infected human lung carcinoma (HLC) cells synthesized mRNA in vitro. Under optimal conditions, the extract was able to support transcription of all virus-encoded genes as determined by hybridization analyses. The RNA products contained full-length poly(A)-containing mRNA species similar to those observed in acutely infected cells. Further purification of the viral nucleocapsids from the infected HLC cell extract resulted in total loss of the capacity of the extract to synthesize mRNA in vitro. However, the addition of cytoplasmic extracts from uninfected HLC cells to the nucleocapsid preparations restored transcription to levels observed in the infected cell lysates, indicating requirement of a host factor(s) in the human parainfluenza virus type 3 transcription process. In distinction to the abundant transcription observed in the cell extract from HLC cells, cell extract prepared from CV-1 cells failed to support transcription in vitro. High levels of RNase activity in the cell extract from CV-1 cells appears to be the principal reason for this difference.

  12. Prediction of Fetal Growth Restriction by Analyzing the Messenger RNAs of Angiogenic Factor in the Plasma of Pregnant Women.

    PubMed

    Takenaka, Shin; Ventura, Walter; Sterrantino, Anna Freni; Kawashima, Akihiro; Koide, Keiko; Hori, Kyoko; Farina, Antonio; Sekizawa, Akihiko

    2015-06-01

    To predict the occurrence of fetal growth restriction (FGR) by analyzing messenger RNA (mRNA) expression levels of vascular endothelial growth factor receptor 1 (fms-like tyrosine kinase 1 [Flt-1]) in maternal blood. Eleven women with FGR were matched with 88 controls. Plasma samples were obtained during each trimester. The Flt-1 mRNA expression levels were compared between groups. Predicted probabilities were calculated, and sensitivity-specificity (receiver-operating characteristic [ROC]) curves were assessed based on regression models for each trimester measurement and possible combinations of measurements. The mRNA levels of the FGR group during all trimesters were significantly higher than those of the control group. The ROC curve of combined first and second trimester data yielded a detection rate of 60% at a 10% false-positive rate, with an area under curve of 0.79. The Flt-1 mRNA expression in maternal blood can be used as a marker to predict the development of FGR, long before a clinical diagnosis is made. © The Author(s) 2014.

  13. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    PubMed

    Smits, A; Funa, K; Vassbotn, F S; Beausang-Linder, M; af Ekenstam, F; Heldin, C H; Westermark, B; Nistér, M

    1992-03-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions.

  14. Abundance of mRNA of growth hormone receptor and insulin-like growth factors-1 and -2 in duodenal and colonic biopsies of dogs with chronic enteropathies*.

    PubMed

    Spichiger, A C; Allenspach, K; Ontsouka, E; Gaschen, F; Morel, C; Blum, J W; Sauter, S N

    2005-12-01

    Repair processes of the inflamed intestine are very important for dissolution of chronic enteropathies (CE). Therefore, we examined the mRNA abundance of growth hormone receptor (GHR), insulin-like growth factors (IGF)-1 and -2 in duodenal and colonic biopsies of dogs with CE such as food-responsive diarrhoea (FRD) and inflammatory bowel disease (IBD) before and after treatment as compared with each other and healthy dogs. A clinical score (Canine IBD Activity Index = CIBDAI) was applied to judge the severity of CE. Biopsies of duodenum and colon from client-owned dogs with CE were sampled before (FRD(bef), n = 5; IBD(bef), n = 5) and after treatment (FRD(aft), n = 5; IBD(aft), n = 5). Intestinal control samples were available from a homogenous control population (n = 15; C). Intestinal samples were homogenized, total RNA was extracted, reverse transcribed and analysed by real-time polymerase chain reaction to measure mRNA levels of GHR, IGF-1 and IGF-2. Results were normalized with glyceraldehyde phosphate dehydrogenase as housekeeping gene. The CIBDAI decreased during the treatment period in FRD and IBD (P < 0.01). In duodenum, GHR mRNA levels were higher in all groups than in C (P < 0.001). Duodenal IGF-1 mRNA levels in FRD(aft) and IBD(aft) tended to be higher than in C (P < 0.1). The IGF-2 mRNA abundance in FRD(aft) was higher than in C (P < 0.05) in duodenum. In colon, mRNA levels of IGF-1 in IBD(aft) were higher than in FRD(aft) (P < 0.05) and levels differed between IBD(aft) and C (P < 0.05). In conclusion, mRNA levels of GHR, IGF-1 and IGF-2 in the gastrointestinal tract were increased during CE when compared with gastrointestinally healthy dogs. The data suggest that GHR, IGF-1 and IGF-2 are involved in gastrointestinal repair processes.

  15. Coordinate tropic hormone regulation of mRNAs for insulin-like growth factor II and the cholesterol side-chain-cleavage enzyme, P450scc [corrected], in human steroidogenic tissues.

    PubMed Central

    Voutilainen, R; Miller, W L

    1987-01-01

    Insulin-like growth factors (IGFs) are single-chain polypeptides important for cell proliferation and growth. IGFs are produced in several tissues, suggesting that they function in a paracrine or autocrine fashion as well as functioning as endocrine hormones. We studied the hormonal regulation of IGF-I and IGF-II mRNA in human steroidogenic tissues. In cultured human ovarian granulosa cells, follicle-stimulating hormone, human chorionic gonadotropin, and dibutyryl cAMP increased IGF-II mRNA, but corticotropin [adrenocorticotropic hormone (ACTH)], chorionic somatomammotropin, growth hormone, prolactin, dexamethasone, estradiol, and progesterone had no effect. In cultured human fetal adrenal cells, ACTH and dibutyryl cAMP increased IGF-II mRNA accumulation, but human chorionic gonadotropin and angiotensin II did not. The same five size species of IGF-II mRNA were detected in transfer blots of RNA from granulosa cells and fetal adrenal cells, and all of these increased after hormonal stimuli. Dibutyryl cAMP also increased IGF-II mRNA accumulation in cultured human placental cells. Accumulation of mRNA for the cholesterol side-chain-cleavage monooxygenase [P450scc [corrected]; cholesterol, reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving), EC 1.14.15.6] was regulated in parallel with IGF-II mRNA in all these steroidogenic tissues. IGF-I mRNA was not detected in transfer blots of these RNAs, and the minimal amounts detected in dot blots showed no detectable change after any of the hormonal stimuli studied. The data indicate that the IGF-II gene is expressed in human steroidogenic tissues and is regulated by cAMP. These data suggest that IGF-II may act in an autocrine or paracrine fashion to stimulate the adrenal and gonadal growth stimulated by ACTH and gonadotropins, respectively. Images PMID:3031644

  16. Effect of tocopherol supplementation during last trimester of pregnancy on mRNA abundances of interleukins and angiogenesis in ovine placenta and uterus.

    PubMed

    Kasimanickam, Ramanathan K; Kasimanickam, Vanmathy R; Haldorson, Gary J; Tibary, Ahmed

    2012-01-23

    Interleukins (IL) play an important role in angiogenesis. Tocopherol possesses immunomodulating effect in addition to antioxidant property. The objective of this study was to determine whether gamma tocopherol's (gT) angiogenic activity in placental network is enhanced via promoting interleukins. Pregnant ewes (N=18) were supplemented, orally, with 500 mg of alpha tocopherol (aT; N=6) or 1,000 mg of gT (N=7) or placebo (CON; N=5) once daily from 107 to 137 days post breeding. Uterine and placental tissue samples were obtained at the end of supplementation to evaluate relative mRNA expressions of IL-1b, IL-6, IL-8, Tumor Necrosis Factor (TNF) alpha, Vascular Endothelial Growth Factor (VEGF), kinase insert domain receptor (KDR; VGFR2; a type III receptor tyrosine kinase), and soluble fms-like tyrosine kniase-1 (sFlt1 or sVEGFR1) in uterus, caruncle and cotyledon. Oral supplementation of gT increased IL-6, IL-8, KDR and VEGF mRNA abundances whereas sFlt1 mRNA abundance was suppressed in uterus, caruncle and cotyledon, compared to aT and placebo treated ewes (P<0.05). The TNF alpha and IL-1b mRNA abundances were suppressed in uterus, caruncle and cotyledon but TNF alpha is higher in gT group compared to aT group (P<0.05), whereas IL-1b was similar between treatment groups (P>0.1). Gamma tocopherol supplementation increased IL-6, IL-8, and KDR mRNA abundances and suppressed sFlt1 and TNFalpha mRNA abundances thereby increased VEGF mRNA expression and angiogenesis in placental vascular network during late gestation. It is plausible that the angiogenic effect of gamma tocopherol in placental vascular network is exerted via an alternate path by enhancing IL-6 and IL-8.

  17. Effect of tocopherol supplementation during last trimester of pregnancy on mRNA abundances of interleukins and angiogenesis in ovine placenta and uterus

    PubMed Central

    2012-01-01

    Background Interleukins (IL) play an important role in angiogenesis. Tocopherol possesses immunomodulating effect in addition to antioxidant property. The objective of this study was to determine whether gamma tocopherol's (gT) angiogenic activity in placental network is enhanced via promoting interleukins. Methods Pregnant ewes (N = 18) were supplemented, orally, with 500 mg of alpha tocopherol (aT; N = 6) or 1,000 mg of gT (N = 7) or placebo (CON; N = 5) once daily from 107 to 137 days post breeding. Uterine and placental tissue samples were obtained at the end of supplementation to evaluate relative mRNA expressions of IL-1b, IL-6, IL-8, Tumor Necrosis Factor (TNF) alpha, Vascular Endothelial Growth Factor (VEGF), kinase insert domain receptor (KDR; VGFR2; a type III receptor tyrosine kinase), and soluble fms-like tyrosine kniase-1 (sFlt1 or sVEGFR1) in uterus, caruncle and cotyledon. Results Oral supplementation of gT increased IL-6, IL-8, KDR and VEGF mRNA abundances whereas sFlt1 mRNA abundance was suppressed in uterus, caruncle and cotyledon, compared to aT and placebo treated ewes (P < 0.05). The TNF alpha and IL-1b mRNA abundances were suppressed in uterus, caruncle and cotyledon but TNF alpha is higher in gT group compared to aT group (P < 0.05), whereas IL-1b was similar between treatment groups (P > 0.1). Conclusions Gamma tocopherol supplementation increased IL-6, IL-8, and KDR mRNA abundances and suppressed sFlt1 and TNFalpha mRNA abundances thereby increased VEGF mRNA expression and angiogenesis in placental vascular network during late gestation. It is plausible that the angiogenic effect of gamma tocopherol in placental vascular network is exerted via an alternate path by enhancing IL-6 and IL-8. PMID:22269218

  18. Activation of the growth hormone/insulin-like growth factor axis by treatment with 17 alpha-methyltestosterone and seawater rearing in the tilapia, Oreochromis mossambicus.

    PubMed

    Riley, Larry G; Richman, Nurney H; Hirano, Tetsuya; Gordon Grau, E

    2002-07-01

    Effects of 17 alpha-methyltestosterone (MT) treatment and environmental salinity on the growth hormone (GH)/insulin-like growth factor (IGF) axis were examined in the euryhaline tilapia, Oreochromis mossambicus. Yolk-sac fry were collected from brood stock in fresh water (FW). After yolk-sac absorption, they were assigned randomly to 1 of 4 groups: FW, MT treatment in FW, SW, and MT treatment in seawater (SW). After 147 days, FW controls had the lowest levels of GH mRNA followed by FW fish treated with MT and SW control fish. Seawater fish fed with a diet containing MT, which grew the fastest, had significantly higher levels of GH mRNA than all the other groups. A significant correlation was observed between GH mRNA and the size of the individual fish. By contrast, plasma GH levels did not vary significantly among the groups. Pituitary GH mRNA levels, plasma IGF-I levels, and fish size varied in a correlated pattern, i.e., SW+MT>FW+MT=SW control>FW control. The tilapia pituitary produces two prolactins (PRLs), PRL(177) and PRL(188). Prolactin(177), but not PRL(188), exhibits growth-promoting actions in FW tilapia. Pituitary mRNA levels of both PRLs were significantly higher in fish reared in FW than those reared in SW. Treatment with MT significantly increased mRNA levels of both PRLs in FW, but had no effect on SW fish. No correlation was seen between plasma PRL levels and growth or between PRL mRNA levels and growth. These results indicate that SW rearing and MT treatment stimulate the GH/IGF-I axis, and suggest that pituitary GH mRNA at this stage of development is a better indicator of growth than plasma levels of GH and IGF-I.

  19. Differential expression of chicken dimerization cofactor of hepatocyte nuclear factor-1 (DcoH) and its novel counterpart, DcoHalpha.

    PubMed Central

    Kim, H; You, S; Foster, L K; Farris, J; Choi, Y J; Foster, D N

    2001-01-01

    We have used differential display PCR to study altered gene expression in immortalized chicken embryo fibroblasts (CEFs) that have been established in our laboratory. This technique resulted in the cloning of a novel counterpart of the previously cloned chicken dimerization cofactor of hepatocyte nuclear factor (HNF)-1 (cDcoH), which was identified as cDcoHalpha. The steady-state mRNA levels of cDcoHalpha were up-regulated in all immortal CEFs tested compared with primary CEF cells. cDcoH and cDcoHalpha showed opposite patterns of mRNA expression due to differential regulation of transcription rates, but not mRNA half-lives, in primary and immortal CEFs. Expression of cDcoHalpha increased in the late G1 and early S phases of the cell cycle, while cDcoH mRNA increased in the late S and G2/M phases. In contrast with consistent expression of both genes in primary quiescent cells, cDcoH mRNA, but not cDcoHalpha mRNA, was dramatically decreased in primary senescent cells. The highest levels of cDcoHalpha mRNA were found in the kidney, liver, heart and ovarian follicles, while the major tissues expressing cDcoH were hypothalamus, kidney and liver. cDcoH and cDcoHalpha probes did not cross-hybridize to human hepatocyte mRNA. When transfected into human HepG2 cells, both cDcoH and cDcoHalpha showed similar functional activity as measured by increased expression of a reporter gene, as well as alpha-fetoprotein and albumin genes that both contain HNF-1 binding elements in their promoters. Our results suggest that the novel chicken DcoHalpha might function as a transcriptional cofactor for HNF-1 in specific cellular-environmental states. PMID:11237869

  20. The association of the placental Hypoxia-inducible factor1-α polymorphisms and HIF1-α mRNA expression with preeclampsia.

    PubMed

    Harati-Sadegh, Mahdiyeh; Kohan, Leila; Teimoori, Batool; Mehrabani, Mehrnaz; Salimi, Saeedeh

    2018-07-01

    Evidence has confirmed that placental/fetal hypoxia plays a key role in both endothelial cell dysfunction and PE pathogenesis. The aim of the present study was to investigate whether maternal/placental hypoxia-inducible factor1-α (HIF1-α) C1772T (rs11549465) and/or G1790A (rs11549467) polymorphisms and HIF1-α mRNA expression are associated with PE development. The blood samples of 203 PE and 202 control women and the placenta of 86 PE and 84 control women were collected after delivery. The HIF1-α polymorphisms were genotyped using PCR- RFLP method. The mRNA expression levels were measured by Quantitative Real -Time PCR. The present study found no association between maternal HIF1-α rs11549465 and rs11549467 and placental rs11549467 polymorphisms and PE. However, the placental rs11549465 polymorphism was associated with PE in the dominant model. The CT/GG combined genotypes and TG haplotype of placental rs11549465 and rs11549467 polymorphisms were associated with higher risk of PE. The HIF1-α mRNA expression was 3-fold higher in the PE women. The rs11549465 TT genotype was associated with higher HIF1-α mRNA expression in PE women and in total population and rs11549467 GA genotype was associated with higher mRNA expression in total population. The relative mRNA expression of HIF1-α gene was higher in presence of CC/GA, TT/GG and TT/GA combined genotypes. This study found an association between placental but not maternal HIF1-α rs11549465 polymorphism and PE in the dominant model. The HIF1-α mRNA expression was higher in the placenta of PE women and was associated with rs11549465 and rs11549467 polymorphisms. Copyright © 2018. Published by Elsevier Ltd.

  1. Replenishment of RANTES mRNA expression in activated eosinophils fromatopic asthmatics

    PubMed Central

    Velazquez, J R; Lacy, P; Moqbel, R

    2000-01-01

    Eosinophils have been shown to express the gene encoding regulated upon activation, normal T‐cell expressed and secreted (RANTES), a potent eosinophilotactic chemokine. RANTES protein expression in eosinophils has previously been shown to be up‐regulated by a number of agonists, including complement‐dependent factors (C3b/iC3b) and interferon‐γ (IFN‐γ). We hypothesized that gene expression of RANTES is regulated in these cells by eosinophil‐specific agonists. We analysed RANTES mRNA expression by reverse‐transcription polymerase chain reaction (RT‐PCR) in human peripheral blood eosinophils obtained from mild atopic asthmatics following stimulation over time. In resting eosinophils, a low level of RANTES mRNA was found to be constitutively expressed in all the atopic donors tested in this study (n = 6). Following stimulation with C3b/iC3b (serum‐coated surfaces), eosinophils released measurable levels of RANTES, while sustained transcript expression was detected for up to 24 hr of stimulation. In contrast, IFN‐γ (5 ng/ml) transiently and significantly (P < 0·05, n = 3) depleted relative amounts of RANTES PCR product (compared with β2‐microglobulin) after 1–4 hr of stimulation. RANTES transcript was again detectable after 24 hr of IFN‐γ incubation, suggesting that the pool of RANTES mRNA had been replenished. Other eosinophil‐active cytokines, interleukin‐3 (IL‐3), IL‐4, IL‐5 and granulocyte–macrophage colony‐stimulating factor, did not appear to modulate RANTES mRNA expression after 1 hr of incubation. The effect of IFN‐γ on RANTES mRNA was reversed by cycloheximide, suggesting that IFN‐γ may act by increasing the rate of translation of RANTES mRNA. These findings indicate that IFN‐γ may induce a rapid and transient effect on the translation and replenishment of RANTES mRNA in eosinophils. This novel observation supports the notion that eosinophils have the potential to replenish their stored and released bioactive proteins. PMID:10792507

  2. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  3. Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes.

    PubMed

    Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Zhendre, Vanessa; Henry, Sarah; Thévenot, Julie; Dufourc, Erick J; Alves, Isabel D; Peruch, Frédéric

    2014-01-01

    The biomembrane surrounding rubber particles from the hevea latex is well known for its content of numerous allergen proteins. HbREF (Hevb1) and HbSRPP (Hevb3) are major components, linked on rubber particles, and they have been shown to be involved in rubber synthesis or quality (mass regulation), but their exact function is still to be determined. In this study we highlighted the different modes of interactions of both recombinant proteins with various membrane models (lipid monolayers, liposomes or supported bilayers, and multilamellar vesicles) to mimic the latex particle membrane. We combined various biophysical methods (polarization-modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS)/ellipsometry, attenuated-total reflectance Fourier-transform infrared (ATR-FTIR), solid-state nuclear magnetic resonance (NMR), plasmon waveguide resonance (PWR), fluorescence spectroscopy) to elucidate their interactions. Small rubber particle protein (SRPP) shows less affinity than rubber elongation factor (REF) for the membranes but displays a kind of "covering" effect on the lipid headgroups without disturbing the membrane integrity. Its structure is conserved in the presence of lipids. Contrarily, REF demonstrates higher membrane affinity with changes in its aggregation properties, the amyloid nature of REF, which we previously reported, is not favored in the presence of lipids. REF binds and inserts into membranes. The membrane integrity is highly perturbed, and we suspect that REF is even able to remove lipids from the membrane leading to the formation of mixed micelles. These two homologous proteins show affinity to all membrane models tested but neatly differ in their interacting features. This could imply differential roles on the surface of rubber particles. © 2013.

  4. Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa).

    PubMed

    Chakrabarty, Romit; Qu, Yang; Ro, Dae-Kyun

    2015-05-01

    Natural rubber, cis-1,4-polyisoprene, is an important raw material in chemical industries, but its biosynthetic mechanism remains elusive. Natural rubber is known to be synthesized in rubber particles suspended in laticifer cells in the Brazilian rubber tree (Hevea brasiliensis). In the rubber tree, rubber elongation factor (REF) and its homolog, small rubber particle protein (SRPP), were found to be the most abundant proteins in rubber particles, and they have been implicated in natural rubber biosynthesis. As lettuce (Lactuca sativa) can synthesize natural rubber, we utilized this annual, transformable plant to examine in planta roles of the lettuce REF/SRPP homologs by RNA interference. Among eight lettuce REF/SRPP homologs identified, transcripts of two genes (LsSRPP4 and LsSRPP8) accounted for more than 90% of total transcripts of REF/SRPP homologs in lettuce latex. LsSRPP4 displays a typical primary protein sequence as other REF/SRPP, while LsSRPP8 is twice as long as LsSRPP4. These two major LsSRPP transcripts were individually and simultaneously silenced by RNA interference, and relative abundance, polymer molecular weight, and polydispersity of natural rubber were analyzed from the LsSRPP4- and LsSRPP8-silenced transgenic lettuce. Despite previous data suggesting the implications of REF/SRPP in natural rubber biosynthesis, qualitative and quantitative alterations of natural rubber could not be observed in transgenic lettuce lines. It is concluded that lettuce REF/SRPP homologs are not critically important proteins in natural rubber biosynthesis in lettuce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Identification and validation of suitable reference genes for RT-qPCR analysis in mouse testis development.

    PubMed

    Gong, Zu-Kang; Wang, Shuang-Jie; Huang, Yong-Qi; Zhao, Rui-Qiang; Zhu, Qi-Fang; Lin, Wen-Zhen

    2014-12-01

    RT-qPCR is a commonly used method for evaluating gene expression; however, its accuracy and reliability are dependent upon the choice of appropriate reference gene(s), and there is limited information available on suitable reference gene(s) that can be used in mouse testis at different stages. In this study, using the RT-qPCR method, we investigated the expression variations of six reference genes representing different functional classes (Actb, Gapdh, Ppia, Tbp, Rps29, Hprt1) in mice testis during embryonic and postnatal development. The expression stabilities of putative reference genes were evaluated using five algorithms: geNorm, NormFinder, Bestkeeper, the comparative delta C(t) method and integrated tool RefFinder. Analysis of the results showed that Ppia, Gapdh and Actb were identified as the most stable genes and the geometric mean of Ppia, Gapdh and Actb constitutes an appropriate normalization factor for gene expression studies. The mRNA expression of AT1 as a test gene of interest varied depending upon which of the reference gene(s) was used as an internal control(s). This study suggested that Ppia, Gapdh and Actb are suitable reference genes among the six genes used for RT-qPCR normalization and provide crucial information for transcriptional analyses in future studies of gene expression in the developing mouse testis.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schriner, J.E.; Yi, W.; Hofmann, S.L.

    Palmitoyl-protein thioesterase (PPT) is a small glycoprotein that removes palmitate groups from cysteine residues in lipid-modified proteins. We recently reported mutations in PPT in patients with infantile neuronal ceroid lipofuscinosis (INCL), a severe neurodegenerative disorder. INCL is characterized by the accumulation of proteolipid storage material in brain and other tissues, suggesting that the disease is a consequence of abnormal catabolism of acylated proteins. In the current paper, we report the sequence of the human PPT cDNA and the structure of the human PPT gene. The cDNA predicts a protein of 306 amino acids that contains a 25-amino-acid signal peptide, threemore » N-linked glycosylation sites, and consensus motifs characteristic of thioesterases. Northern analysis of a human tissue blot revealed ubiquitous expression of a single 2.5-kb mRNA, with highest expression in lung, brain, and heart. The human PPT gene spans 25 kb and is composed of seven coding exons and a large eighth exon, containing the entire 3{prime}-untranslated region of 1388 bp. An Alu repeat and promoter elements corresponding to putative binding sites for several general transcription factors were identified in the 1060 nucleotides upstream of the transcription start site. The human PPT cDNA sequence and gene structure will provide the means for the identification of further causative mutations in INCL and facilitate genetic screening in selected high-risk populations. 31 refs., 5 figs., 1 tab.« less

  7. An mRNA decapping mutant deficient in P body assembly limits mRNA stabilization in response to osmotic stress.

    PubMed

    Huch, Susanne; Nissan, Tracy

    2017-03-14

    Yeast is exposed to changing environmental conditions and must adapt its genetic program to provide a homeostatic intracellular environment. An important stress for yeast in the wild is high osmolarity. A key response to this stress is increased mRNA stability primarily by the inhibition of deadenylation. We previously demonstrated that mutations in decapping activators (edc3∆ lsm4∆C), which result in defects in P body assembly, can destabilize mRNA under unstressed conditions. We wished to examine whether mRNA would be destabilized in the edc3∆ lsm4∆C mutant as compared to the wild-type in response to osmotic stress, when P bodies are intense and numerous. Our results show that the edc3∆ lsm4∆C mutant limits the mRNA stability in response to osmotic stress, while the magnitude of stabilization was similar as compared to the wild-type. The reduced mRNA stability in the edc3∆ lsm4∆C mutant was correlated with a shorter PGK1 poly(A) tail. Similarly, the MFA2 mRNA was more rapidly deadenylated as well as significantly stabilized in the ccr4∆ deadenylation mutant in the edc3∆ lsm4∆C background. These results suggest a role for these decapping factors in stabilizing mRNA and may implicate P bodies as sites of reduced mRNA degradation.

  8. Visualization of RNA–protein interactions in living cells: FMRP and IMP1 interact on mRNAs

    PubMed Central

    Rackham, Oliver; Brown, Chris M

    2004-01-01

    Protein expression depends significantly on the stability, translation efficiency and localization of mRNA. These qualities are largely dictated by the RNA-binding proteins associated with an mRNA. Here, we report a method to visualize and localize RNA–protein interactions in living mammalian cells. Using this method, we found that the fragile X mental retardation protein (FMRP) isoform 18 and the human zipcode-binding protein 1 ortholog IMP1, an RNA transport factor, were present on common mRNAs. These interactions occurred predominantly in the cytoplasm, in granular structures. In addition, FMRP and IMP1 interacted independently of RNA. Tethering of FMRP to an mRNA caused IMP1 to be recruited to the same mRNA and resulted in granule formation. The intimate association of FMRP and IMP1 suggests a link between mRNA transport and translational repression in mammalian cells. PMID:15282548

  9. Current Status of Messenger RNA Delivery Systems.

    PubMed

    Stanton, Matthew G

    2018-06-01

    Messenger RNA is emerging as a highly versatile biological construct for creation of impactful medicines. mRNA vaccines directed toward infectious disease and cancer are in clinical development with encouraging early reads on tolerability and efficacy. The use of mRNA to direct intense but transient expression of paracrine factors is finding utility in reprogramming progenitor cells for wound healing and cardiac regeneration and for stimulation of antitumor immune responses, at least preclinically as we await clinical results. The use of mRNA for prolonged and repeated expression of proteins and enzymes to treat rare, typically monogenic disease is nearing clinical entry. These uses of mRNA require delivery solutions, and the application of and improvement to existing nanoparticle nucleic acid delivery systems have jump started the pace of development and reenergized the field of particle based nucleic acid delivery. The current status of mRNA delivery is reviewed in this article with an eye toward clinical tractability.

  10. Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver

    PubMed Central

    Wang, Jingkui; Yeung, Jake; Gobet, Cédric; Sobel, Jonathan; Lück, Sarah; Molina, Nacho; Naef, Felix

    2018-01-01

    The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1−/− animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver. PMID:29432155

  11. Control of leptin by metabolic state and its regulatory interactions with pituitary growth hormone and hepatic growth hormone receptors and insulin like growth factors in the tilapia (Oreochromis mossambicus).

    PubMed

    Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J

    2017-01-01

    Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings indicate LepA gene expression and secretion increases with fasting, consistent with the hormones function in promoting energy expenditure during catabolic stress. It would also appear that LepA might play an important role in stimulating GHR and IGFs to potentially spare declines in these factors during catabolism. Evidence also suggests for the first time in teleosts that GH may exert important regulatory effects on hepatic LepA production, insofar as physiological levels (0.05-1 nM) suppresse lepa mRNA accumulation. Leptin A, may in turn exert negative feedback effects on basal GH mRNA abundance, but not secretion. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities

    PubMed Central

    Castells-Roca, Laia; García-Martínez, José; Moreno, Joaquín; Herrero, Enrique; Bellí, Gemma; Pérez-Ortín, José E.

    2011-01-01

    We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25°C to 37°C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins. PMID:21364882

  13. A 11.7-kb deletion triggers intersexuality and polledness in goats.

    PubMed

    Pailhoux, E; Vigier, B; Chaffaux, S; Servel, N; Taourit, S; Furet, J P; Fellous, M; Grosclaude, F; Cribiu, E P; Cotinot, C; Vaiman, D

    2001-12-01

    Mammalian sex determination is governed by the presence of the sex determining region Y gene (SRY) on the Y chromosome. Familial cases of SRY-negative XX sex reversal are rare in humans, often hampering the discovery of new sex-determining genes. The mouse model is also insufficient to correctly apprehend the sex-determination cascade, as the human pathway is much more sensitive to gene dosage. Other species might therefore be considered in this respect. In goats, the polled intersex syndrome (PIS) mutation associates polledness and intersexuality. The sex reversal affects exclusively the XX individuals in a recessive manner, whereas the absence of horns is dominant in both sexes. The syndrome is caused by an autosomal gene located at chromosome band 1q43 (ref. 9), shown to be homologous to human chromosome band 3q23 (ref. 10). Through a positional cloning approach, we demonstrate that the mutation underlying PIS is the deletion of a critical 11.7-kb DNA element containing mainly repetitive sequences. This deletion affects the transcription of at least two genes: PISRT1, encoding a 1.5-kb mRNA devoid of open reading frame (ORF), and FOXL2, recently shown to be responsible for blepharophimosis ptosis epicanthus inversus syndrome (BPES) in humans. These two genes are located 20 and 200 kb telomeric from the deletion, respectively.

  14. Polymorphism at the ref(2)P locus in Drosophila melanogaster: preliminary experiments concerning the selection mechanisms involved in its maintenance.

    PubMed

    Fleuriet, A

    1981-02-01

    It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition.

  15. Stage of perinatal development regulates skeletal muscle mitochondrial biogenesis and myogenic regulatory factor genes with little impact of growth restriction or cross-fostering.

    PubMed

    Laker, R C; Wadley, G D; McConell, G K; Wlodek, M E

    2012-02-01

    Foetal growth restriction impairs skeletal muscle development and adult muscle mitochondrial biogenesis. We hypothesized that key genes involved in muscle development and mitochondrial biogenesis would be altered following uteroplacental insufficiency in rat pups, and improving postnatal nutrition by cross-fostering would ameliorate these deficits. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed on day 18 of gestation. Males and females were investigated at day 20 of gestation (E20), 1 (PN1), 7 (PN7) and 35 (PN35) days postnatally. A separate cohort of Control and Restricted pups were cross-fostered onto a different Control or Restricted mother and examined at PN7. In both sexes, peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), cytochrome c oxidase subunits 3 and 4 (COX III and IV) and myogenic regulatory factor 4 expression increased from late gestation to postnatal life, whereas mitochondrial transcription factor A, myogenic differentiation 1 (MyoD), myogenin and insulin-like growth factor I (IGF-I) decreased. Foetal growth restriction increased MyoD mRNA in females at PN7, whereas in males IGF-I mRNA was higher at E20 and PN1. Cross-fostering Restricted pups onto a Control mother significantly increased COX III mRNA in males and COX IV mRNA in both sexes above controls with little effect on other genes. Developmental age appears to be a major factor regulating skeletal muscle mitochondrial and developmental genes, with growth restriction and cross-fostering having only subtle effects. It therefore appears that reductions in adult mitochondrial biogenesis markers likely develop after weaning.

  16. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  17. Luteal function during the estrous cycle in arginine-treated ewes fed different planes of nutrition.

    PubMed

    Bass, Casie S; Redmer, Dale A; Kaminski, Samantha L; Grazul-Bilska, Anna T

    2017-03-01

    Functions of corpus luteum (CL) are influenced by numerous factors including hormones, growth and angiogenic factors, nutritional plane and dietary supplements such as arginine (Arg), a semi-essential amino acid and precursor for proteins, polyamines and nitric oxide (NO). The aim of this study was to determine if Arg supplementation to ewes fed different planes of nutrition influences: (1) progesterone (P4) concentrations in serum and luteal tissue, (2) luteal vascularity, cell proliferation, endothelial NO synthase (eNOS) and receptor (R) soluble guanylate cyclase β protein and mRNA expression and (3) luteal mRNA expression for selected angiogenic factors during the estrous cycle. Ewes (n = 111) were categorized by weight and randomly assigned to one of three nutritional planes: maintenance control (C), overfed (2× C) and underfed (0.6× C) beginning 60 days prior to onset of estrus. After estrus synchronization, ewes from each nutritional plane were assigned randomly to one of two treatments: Arg or saline. Serum and CL were collected at the early, mid and late luteal phases. The results demonstrated that: (1) nutritional plane affected ovulation rates, luteal vascularity, cell proliferation and NOS3, GUCY1B3, vascular endothelial growth factor (VEGF) and VEGFR2 mRNA expression, (2) Arg affected luteal vascularity, cell proliferation and NOS3, GUCY1B3, VEGF and VEGFR2 mRNA expression and (3) luteal vascularity, cell proliferation and the VEGF and NO systems depend on the stage of the estrous cycle. These data indicate that plane of nutrition and/or Arg supplementation can alter vascularization and expression of selected angiogenic factors in luteal tissue during the estrous cycle in sheep. © 2017 Society for Reproduction and Fertility.

  18. Hydrogen sulfide upregulated mRNA expressions of sodium bicarbonate cotransporter1, trefoil factor1 and trefoil factor2 in gastric mucosa in rats.

    PubMed

    Cheraghi, Parisa; Mard, Seyyed Ali; Nagi, Tahereh

    2016-01-01

    Hydrogen sulfide (H 2 S) has been shown to protect the gastric mucosa through several protective mechanisms but till now its effect on mRNA expression of sodium bicarbonate cotransporter 1 (NBC1), trefoil factor1 (TFF1) and trefoil factor2 (TFF2) was not investigated. This study was aimed to evaluate the effect of H 2 S on mRNA expression of NBC1, TFF1 and TFF2 in rat gastric mucosa in response to gastric distention. Thirty two rats were randomly assigned into four equal groups. They were control (C), distention (D), propargylglycine (PAG)-, and NaHS-treated groups. To evaluate the effect of exogenous and endogenous H 2 S on gene expression of NBC1, TFF1 and TFF2, two groups of rats were received H 2 S donor, intra-peritoneal NaHS (80 µg Kg -1 ), and PAG (50 mg kg -1 ), accompanied to stimulate the gastric acid secretion, respectively. Under general anesthesia and laparotomy, a catheter was inserted into the stomach through duodenum for instillation of isotonic saline for gastric distention. Ninety min after beginning the experiment, animals were sacrificed and the gastric mucosa was collected to determine total acid content of gastric effluents and to quantify the mRNA expression of studied genes by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that A) gastric distention increased the level of mRNA expressions of NBC1, TFF1 and TFF2; B) these levels in NaHS-treated rats were significantly higher than those in Distention group; and C) PAG decreased the expression levels of NBC1 and TFF1. The Findings showed H 2 S upregulated gene expression of NBC1, TFF1 and TFF2 in gastric mucosa.

  19. Stimulation of EphB2/ephrin-B1 signalling by tumour necrosis factor alpha in human dental pulp stem cells.

    PubMed

    Zhu, Lifang; Dissanayaka, Waruna Lakmal; Green, David William; Zhang, Chengfei

    2015-04-01

    The aim of this study was to investigate whether in vitro stimulation of dental pulp stem cells (DPSCs) by tumour necrosis factor alpha (TNF-α) would induce secretion of EphB2/ephrin-B1 signalling. Dental pulp stem cells isolated from human dental pulp were treated with TNF-α (5-100 ng/ml) over 2-48 h. EphB2/ephrin-B1 mRNA and protein levels were measured by real-time polymerase chain reaction (RT-PCR) and western blot analysis respectively. Additionally, DPSCs were pre-incubated with TNF-α receptor neutralizing antibodies or infected with nuclear factor-kappa B (NF-ĸB) inhibitor, p38 MAPK inhibitor, Jun N-terminal kinase (JNK) inhibitor and MEK inhibitor before TNF-α treatment. Results were analysed by one-way ANOVA. Tumour necrosis factor alpha increased EphB2 mRNA expression in DPSCs at concentrations up to 20 ng/ml and ephrin-B1 at concentrations up to 40 ng/ml (P < 0.05). Its mRNA expression reached maximum at 24 h when treated with TNF-α at 20 ng/ml (P < 0.05). EphB2/ephrin-B1 protein expression levels were high at 16 and 24 h as shown by western blotting. Neutralizing antibodies for TNFR1/2 receptors down-regulated EphB2/ephrin-B1 mRNA expression (P < 0.05) and ephrin-B1 protein expression, but not EphB2 protein expression. JNK-inhibitor inhibited EphB2 mRNA expression only (P < 0.05). EphB2/ephrin-B1 were invoked in DPSCs with TNF-α treatment via the JNK-dependent pathway, but not NF-ĸB, p38 MAPK or MEK signalling. © 2015 John Wiley & Sons Ltd.

  20. The suppressive effect of immune stress on LH secretion is absent in the early neonatal period in rats.

    PubMed

    Munkhzaya, Munkhsaikhan; Matsuzaki, Toshiya; Iwasa, Takeshi; Tungalagsuvd, Altankhuu; Kawami, Takako; Kato, Takeshi; Kuwahara, Akira; Irahara, Minoru

    2015-11-01

    Some physiological functions display weak responses to stress in the early neonatal period; i.e., they exhibit stress hyporesponse periods. In this study, we evaluated whether gonadotropin regulatory factors exhibit stress hyporesponsive periods in male and female rats. Rats were intraperitoneally injected with lipopolysaccharide (100μg/kg) (LPS group) or saline (control group) on postnatal day (PND) 5, 10, 15, or 25. Then, their serum luteinizing hormone (LH) concentrations and hypothalamic mRNA levels of gonadotropin regulatory factors; i.e., kisspeptin (Kiss1), the kisspeptin receptor (Kiss1r), and gonadotropin-releasing hormone (GnRH), were measured at 2h after the injection. The hypothalamic mRNA levels of pro-inflammatory cytokines were also measured because they suppress gonadotropin secretion. The serum LH concentration of the LPS group was lower than that of the control group at PND25 in both sexes, but no such difference was seen at PND5, 10, or 15 in either sex. In both sexes, the hypothalamic tumor necrosis factor (TNF)α and interleukin (IL)-6 mRNA expression levels of the LPS group were higher than those of the control group at PND25, but not at PND5 or 10. The hypothalamic IL-1β mRNA expression level of the LPS group was higher than that of the control group at all time points. The hypothalamic Kiss1, Kiss1r, and GnRH mRNA expression levels of the LPS and control groups did not differ at any time point in either sex. These findings suggest that gonadotropin regulatory factors exhibit stress hyporesponse periods. The hypothalamic-pituitary-gonadal axis (HPG) might become responsive to immune stress between PND15 and 25, which could be related to enhanced hypothalamic cytokine expression. The avoidance of infectious stress during the early neonatal period might be important for normal development of the HPG axis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Wang, Huaxi; Yang, Yan

    Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was tomore » examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful information for developing new potential therapies for PADAM (Partial Androgen Deficiency in the Aging Male)« less

  2. Absolute Measurements of Macrophage Migration Inhibitory Factor and Interleukin-1-β mRNA Levels Accurately Predict Treatment Response in Depressed Patients.

    PubMed

    Cattaneo, Annamaria; Ferrari, Clarissa; Uher, Rudolf; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine M

    2016-10-01

    Increased levels of inflammation have been associated with a poorer response to antidepressants in several clinical samples, but these findings have had been limited by low reproducibility of biomarker assays across laboratories, difficulty in predicting response probability on an individual basis, and unclear molecular mechanisms. Here we measured absolute mRNA values (a reliable quantitation of number of molecules) of Macrophage Migration Inhibitory Factor and interleukin-1β in a previously published sample from a randomized controlled trial comparing escitalopram vs nortriptyline (GENDEP) as well as in an independent, naturalistic replication sample. We then used linear discriminant analysis to calculate mRNA values cutoffs that best discriminated between responders and nonresponders after 12 weeks of antidepressants. As Macrophage Migration Inhibitory Factor and interleukin-1β might be involved in different pathways, we constructed a protein-protein interaction network by the Search Tool for the Retrieval of Interacting Genes/Proteins. We identified cutoff values for the absolute mRNA measures that accurately predicted response probability on an individual basis, with positive predictive values and specificity for nonresponders of 100% in both samples (negative predictive value=82% to 85%, sensitivity=52% to 61%). Using network analysis, we identified different clusters of targets for these 2 cytokines, with Macrophage Migration Inhibitory Factor interacting predominantly with pathways involved in neurogenesis, neuroplasticity, and cell proliferation, and interleukin-1β interacting predominantly with pathways involved in the inflammasome complex, oxidative stress, and neurodegeneration. We believe that these data provide a clinically suitable approach to the personalization of antidepressant therapy: patients who have absolute mRNA values above the suggested cutoffs could be directed toward earlier access to more assertive antidepressant strategies, including the addition of other antidepressants or antiinflammatory drugs. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  3. Behavior of Tumor Necrosis Factor-α and Tumor Necrosis Factor Receptor 1/Tumor Necrosis Factor Receptor 2 System in Mononuclear Cells Recovered From Peritoneal Fluid of Women With Endometriosis at Different Stages

    PubMed Central

    Salmeri, Francesca M.; Sofo, Vincenza; Triolo, Onofrio; Sturlese, Emanuele; Retto, Giovanni; Pizzo, Alfonsa; D'Ascola, Angela; Campo, Salvatore

    2015-01-01

    During endometriosis, a breakdown occurs in endometrial and peritoneal homeostasis caused by cytokine-induced cell proliferation and dysregulation of apoptosis. We studied tumor necrosis factor (TNF)-α, TNF receptor (TNFR) 1, and TNFR2 gene expression at both messenger RNA (mRNA) and protein levels in peritoneal fluid (PF) mononuclear cells (PFMCs), the percentages of these cells bearing the same markers, and soluble TNF-α (sTNF-α) values in PF of 80 women with endometriosis. We found that TNFR1 mRNA and protein levels, the percentages of TNFR1-bearing PFMCs, and sTNF-α values decreased from minimal to severe stages of the disease. Instead, TNF-α and TNFR2 mRNA and protein levels, the percentages of membrane TNF-α (mTNF-α)- and TNFR2-bearing PFMCs increased as the disease worsened. These data allow us to hypothesize that, in early stages, the high percentages of TNFR1-bearing PFMCs and the high levels of sTNF-α could address signal toward complex I pathway, favoring the inflammatory response. With the worsening of the disease, the low percentages of TNFR1-bearing PFMCs are probably due to decreased TNFR1 mRNA transcription and protein translation rate. In early stages (minimal and mild), the percentages of both TNFR2- and mTNF-α–bearing PFMCs are so low, due to decreased mRNA transcription and protein translation rate, that subsequent cellular events may depend minimally by this interaction. The high levels of sTNF-α may be rerouted to bind TNFR1. In contrast, in the moderate and severe stages, the high percentages of TNFR2-bearing PFMCs may be saturated by high percentages of mTNF-α–bearing PFMCs, triggering death process. So, in endometriosis, each component of the TNF-α/TNFRs system may trigger opposite cellular fate. PMID:24844917

  4. Expression Levels of Myostatin and Matrix Metalloproteinase 14 mRNAs in Uterine Leiomyoma are Correlated With Dysmenorrhea.

    PubMed

    Tsigkou, Anastasia; Reis, Fernando M; Ciarmela, Pasquapina; Lee, Meng H; Jiang, Bingjie; Tosti, Claudia; Shen, Fang-Rong; Shi, Zhendan; Chen, You-Guo; Petraglia, Felice

    2015-12-01

    Uterine leiomyoma is the most common benign neoplasm of female reproductive system, found in about 50% of women in reproductive age. The mechanisms of leiomyoma growth include cell proliferation, which is modulated by growth factors, and deposition of extracellular matrix (ECM). Activin A and myostatin are growth factors that play a role in proliferation of leiomyoma cells. Matrix metalloproteinases (MMPs) are known for their ability to remodel the ECM in different biological systems. The aim of this study was to evaluate the expression levels of activin βA-subunit, myostatin, and MMP14 messenger RNAs (mRNAs) in uterine leiomyomas and the possible correlation of these factors with clinical features of the disease. Matrix metalloproteinase 14 was highly expressed in uterine leiomyoma and correlated with myostatin and activin A mRNA expression. Moreover, MMP14 and myostatin mRNA expression correlated significantly and directly with the intensity of dysmenorrhea. Overall, the present findings showed that MMP14 mRNA is highly expressed in uterine leiomyoma, where it correlates with the molecular expression of growth factors and is further increased in cases of intense dysmenorrhea. © The Author(s) 2015.

  5. Intact coding region of the serotonin transporter gene in obsessive-compulsive disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altemus, M.; Murphy, D.L.; Greenberg, B.

    1996-07-26

    Epidemiologic studies indicate that obsessive-compulsive disorder is genetically transmitted in some families, although no genetic abnormalities have been identified in individuals with this disorder. The selective response of obsessive-compulsive disorder to treatment with agents which block serotonin reuptake suggests the gene coding for the serotonin transporter as a candidate gene. The primary structure of the serotonin-transporter coding region was sequenced in 22 patients with obsessive-compulsive disorder, using direct PCR sequencing of cDNA synthesized from platelet serotonin-transporter mRNA. No variations in amino acid sequence were found among the obsessive-compulsive disorder patients or healthy controls. These results do not support a rolemore » for alteration in the primary structure of the coding region of the serotonin-transporter gene in the pathogenesis of obsessive-compulsive disorder. 27 refs.« less

  6. Granulocyte colony-stimulating factor (G-CSF) production in hemorrhagic shock requires both the ischemic and resuscitation phase.

    PubMed

    Hierholzer, C; Kelly, E; Billiar, T R; Tweardy, D J

    1997-01-01

    Granulocyte colony-stimulating factor (G-CSF) is the cytokine that is critical for polymorphonuclear neutrophilic granulocyte (PMN) production as well as being a potent agonist of PMN activation. We have recently reported that in the lung and the liver of rats resuscitated after hemorrhagic shock (HS) G-CSF mRNA expression is induced. It is not known if both phases of HS, the ischemic and the reperfusion phase, are required for G-CSF mRNA induction. The present study was designed to test the hypothesis that the upregulation of G-CSF mRNA expression is the consequence of HS followed by resuscitation and that ischemia alone is insufficient to induce G-CSF mRNA expression in the affected organs. Male Sprague-Dawley rats were subjected to resuscitated and unresuscitated shock protocols of varying severity. Control animals were subjected to anesthesia and all surgical preparations except for hemorrhage. Lungs and livers were isolated and their RNA extracted. Using semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we demonstrated that G-CSF mRNA was induced in the lung and liver of shock animals above the level observed in control animals. Upregulation of G-CSF mRNA relative to controls occurred only in animals undergoing resuscitated HS and not in ones subjected to unresuscitated HS. These results indicate that G-CSF production specific for the hemorrhage component of shock is dependent on resuscitation. As a consequence, the production of this cytokine may be decreased through modifications in the resuscitation protocols.

  7. Chitosan nanoparticle carrying small interfering RNA to platelet-derived growth factor B mRNA inhibits proliferation of smooth muscle cells in rabbit injured arteries.

    PubMed

    Xia, He; Jun, Ji; Wen-Ping, Ling; Yi-Feng, Pan; Xiao-Ling, Chen

    2013-10-01

    The purpose of this study was to elucidate the transfection of chitosan nanoparticle carrying small interfering RNA against platelet-derived growth factor B (PDGF-B) to inhibit the expression of PDGF-B mRNA and proliferation of smooth muscle cells. A rabbit iliac artery injury model was constructed. A small interfering RNA (siRNA) against PDGF-B mRNA expression vector was constructed and packaged by chitosan nanoparticle to transfect into the vascular smooth muscle cells (vSMCs) of balloon catheter-injured rabbit iliac artery wall, using a therapeutic ultrasound for the gene delivery. The experiment was divided into two groups: experimental group, denudation and nano-PDGF-B siRNA treated, and only single denudation as control. Effects of the siRNA on the expressions of proliferating cell nuclear antigen (PCNA) and PDGF-B mRNA by vSMCs and the proliferation of vSMCs were observed with the methods of routine pathological, immunohistochemical staining, in situ hybridization and morphometry. The nano siRNA against PDGF-B was successfully transfected. The nano siRNA significantly inhibited the expressions of PCNA and PDGF-B mRNA in intimal vSMCs. The local intimal thickness and area were also reduced remarkably. In conclusion, transfection of chitosan nanoparticle carrying siRNA against PDGF-B mRNA could inhibit proliferation of vSMCs in the rabbit iliac artery injury model. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    PubMed

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Targeted Gene Silencing of Tumor Necrosis Factor Attenuates the Negative Inotropic Effects of Lipopolysaccharide in Isolated Contracting Cardiac Myocytes

    PubMed Central

    Ramabadran, R. S.; Chancey, Amanda; Vallejo, Jesus G.; Barger, Philip M.; Sivasubramanian, Natarajan; Mann, Douglas L.

    2008-01-01

    Bacterial endotoxin (lipopolysaccharide) depresses cardiovascular function; however, the mediators and signaling pathways that are responsible for the negative inotropic effects of lipopolysaccharide are not fully known. We used RNA interference to determine the relative role of tumor necrosis factor with respect to mediating the negative inotropic effects of lipopolysaccharide in isolated cardiac myocytes. Cardiac myocyte cultures were treated with lipopolysaccharide in the presence or absence of small interfering RNAs (siRNA) for tumor necrosis factor. We examined the effects of tumor necrosis factor siRNA on lipopolysaccharide-induced tumor necrosis factor messenger RNA (mRNA) and protein biosynthesis, as well as the negative inotropic effects of lipopolysaccharide in isolated contracting cardiac myocytes. Treatment of adult cardiac myocyte cultures with tumor necrosis factor siRNA significantly attenuated lipopolysaccharide-induced tumor necrosis factor mRNA and protein biosynthesis, whereas transfection with a double-stranded RNA that does not target mammalian mRNA had no effect. Pretreatment with tumor necrosis factor siRNA significantly attenuated, but did not abrogate, the lipopolysaccharide-induced decrease in sarcomere shortening in isolated contracting cardiac myocytes. In contrast, tumor necrosis factor siRNA had a comparatively smaller effect on improving sarcomere shortening once the negative inotropic effects of lipopolysaccharide were fully established. These results suggest that tumor necrosis factor plays an important upstream role in lipopolysaccharide-induced negative inotropic effects in isolated contracting cardiac myocytes and that other molecular mechanisms are responsible for the decrease in sarcomere shortening after sustained lipopolysaccharide signaling. PMID:18427645

  10. Modification of tissue-factor mRNA and protein response to thrombin and interleukin 1 by high glucose in cultured human endothelial cells.

    PubMed

    Boeri, D; Almus, F E; Maiello, M; Cagliero, E; Rao, L V; Lorenzi, M

    1989-02-01

    Because diabetic vascular disease is accompanied by a state of hypercoagulability, manifested by increased thrombin activity and foci of intravascular coagulation, we investigated whether a specific procoagulant property of the endothelium--production and surface expression of tissue factor--is modified by elevated glucose concentrations. In unperturbed human vascular endothelial cells, tissue factor mRNA and expression of the functional protein were undetectable and were not induced by 10-12 days of exposure to 30 mM glucose. In thrombin-stimulated cultures, tissue-factor expression was related inversely to cellular density, with confluent cultures producing (per 10(5) cells) half the amount of tissue factor measured in sparse cultures. Cells exposed to high glucose and studied when cell number and thymidine incorporation were identical to control cells manifested increased tissue-factor mRNA level and functional protein production in response to thrombin (P = .002). This effect was not attributable to hypertonicity and was not observed after short exposure to high glucose. In contrast, the tissue-factor response to interleukin 1, a modulator of endothelial function in the context of host defense, was decreased in cells cultured in high glucose (P = .04). These findings indicate that exposure to high glucose can alter tissue-factor gene expression in perturbed vascular endothelium. The reciprocal effects of high glucose on the tissue-factor response to thrombin and interleukin 1 points to different pathways of tissue-factor stimulation by the two agents and suggests functional consequences pertinent to the increased thrombin activity and compromised host-defense mechanisms observed in diabetes.

  11. Perinatal xenohormone exposure impacts sweet preference and submandibular development in male rats.

    PubMed

    Kouidhi, W; Bergès, R; Tiffon, C; Desmetz, C; El May, M; Auger, J; Canivenc-Lavier, Mc

    2013-11-01

    To determine the effect of perinatal exposure to low doses of genistein and/or vinclozolin on submandibular salivary gland (SSG) development in juvenile and adult male rats and to establish a link with sweet preference. Female rats received orally (1 mg kg(-1) body weight/day) genistein and vinclozolin, alone or in combination, from the first gestational day up to weaning. Sweet preference was assessed at weaning and in adulthood in male offspring; submandibular glands were then collected to study the morphogenesis and mRNA expression of steroid receptors, growth factors and taste related proteins. Exposure to genistein and/or vinclozolin resulted in a higher saccharin intake on postnatal day 25 (P < 0.05) linked to a higher number of pro-acinar cells (P < 0.01) and mRNA expression of progesterone receptor, growth factors and gustine (P < 0.01). These increases disappeared in adulthood, but mRNA expressions of sex hormone receptors and growth factors were strongly repressed in all treated groups (P < 0.01). Our findings confirm that the SSG are target for xenohormones and provide evidence that perinatal exposure to low doses of genistein and/or vinclozolin could simultaneously disrupt not only the salivary gland prepubertal development and sweet intake but also endocrine gene mRNA expression later in life. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization framework with prior information from mRNA expression patterns and interaction network.

    PubMed

    Xi, Jianing; Wang, Minghui; Li, Ao

    2018-06-05

    Discovery of mutated driver genes is one of the primary objective for studying tumorigenesis. To discover some relatively low frequently mutated driver genes from somatic mutation data, many existing methods incorporate interaction network as prior information. However, the prior information of mRNA expression patterns are not exploited by these existing network-based methods, which is also proven to be highly informative of cancer progressions. To incorporate prior information from both interaction network and mRNA expressions, we propose a robust and sparse co-regularized nonnegative matrix factorization to discover driver genes from mutation data. Furthermore, our framework also conducts Frobenius norm regularization to overcome overfitting issue. Sparsity-inducing penalty is employed to obtain sparse scores in gene representations, of which the top scored genes are selected as driver candidates. Evaluation experiments by known benchmarking genes indicate that the performance of our method benefits from the two type of prior information. Our method also outperforms the existing network-based methods, and detect some driver genes that are not predicted by the competing methods. In summary, our proposed method can improve the performance of driver gene discovery by effectively incorporating prior information from interaction network and mRNA expression patterns into a robust and sparse co-regularized matrix factorization framework.

  13. Quality Evaluation of Human Bone Marrow Mesenchymal Stem Cells for Cartilage Repair

    PubMed Central

    Shiraishi, Katsunori; Takeuchi, Shunsuke; Yanada, Shinobu; Mera, Hisashi; Wakitani, Shigeyuki; Adachi, Nobuo

    2017-01-01

    Quality evaluation of mesenchymal stem cells (MSCs) based on efficacy would be helpful for their clinical application. In this study, we aimed to find the factors of human bone marrow MSCs relating to cartilage repair. The expression profiles of humoral factors, messenger RNAs (mRNAs), and microRNAs (miRNAs) were analyzed in human bone marrow MSCs from five different donors. We investigated the correlations of these expression profiles with the capacity of the MSCs for proliferation, chondrogenic differentiation, and cartilage repair in vivo. The mRNA expression of MYBL1 was positively correlated with proliferation and cartilage differentiation. By contrast, the mRNA expression of RCAN2 and the protein expression of TIMP-1 and VEGF were negatively correlated with proliferation and cartilage differentiation. However, MSCs from all five donors had the capacity to promote cartilage repair in vivo regardless of their capacity for proliferation and cartilage differentiation. The mRNA expression of HLA-DRB1 was positively correlated with cartilage repair in vivo. Meanwhile, the mRNA expression of TMEM155 and expression of miR-486-3p, miR-148b, miR-93, and miR-320B were negatively correlated with cartilage repair. The expression analysis of these factors might help to predict the ability of bone marrow MSCs to promote cartilage repair. PMID:28835756

  14. Expression of CD30 mRNA, CD30L mRNA and a variant form of CD30 mRNA in restimulated peripheral blood mononuclear cells (PBMC) of patients with helminthic infections resembling a Th2 disease

    PubMed Central

    Kilwinski, J; Berger, T; Mpalaskas, J; Reuter, S; Flick, W; Kern, P

    1999-01-01

    It has been proposed that CD30, a member of the tumour necrosis factor (TNF) receptor superfamily, is preferentially up-regulated on Th2-type human T cells. In order to investigate a correlation between infection with Echinococcus multilocularis and CD30 expression, we analysed regulation of CD30 mRNA, a variant form of CD30 mRNA (CD30v) and CD30 ligand (CD30L) mRNA expression on PBMC from patients with alveolar echinococcosis (AE) using reverse transcriptase-polymerase chain reaction (RT-PCR). In PBMC of patients with AE as well as healthy donors, spontaneous expression of CD30L mRNA and the CD30v mRNA could be detected. However, the intact form of CD30 mRNA could be detected neither in freshly isolated PBMC of patients nor in PBMC of healthy individuals. Expression of CD30L mRNA and the variant form of CD30 mRNA was frequently detected at individual time points during 72 h of culture of PBMC stimulated with crude Echinococcus antigen. In contrast to CD30v or CD30L mRNA expression, induction of CD30 mRNA expression was detected only in three out of six (50%) healthy donors and in 10 out of 21 (48%) patients with alveolar echinococcosis after 72 h of incubation. As a control, mitogenic stimulation of PBMC of both healthy individuals and infected patients led to expression of intact CD30 mRNA within 24 h of culture. These data demonstrate the different expression of two different forms of CD30 mRNA in PBMC of human individuals. The specific induction of CD30 expression is correlated only in rare cases with the clinical status of patients with AE, indicating the lack of a general induction of CD30 mRNA in this Th2-type-dominated helminthic disease. The data provide further evidence that the CD30 receptor is not an exclusive marker for a Th2-type response. PMID:9933429

  15. Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc

    PubMed Central

    Richardson, Stephen M; Doyle, Paul; Minogue, Ben M; Gnanalingham, Kanna; Hoyland, Judith A

    2009-01-01

    Introduction Matrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP). Methods Human NP tissue was obtained at postmortem (PM) from patients without a history of back pain and graded as histologically normal or degenerate. Symptomatic degenerate NP samples were also obtained at surgery for LBP. Expression of MMP-10 mRNA and protein was analysed using real-time polymerase chain reaction and immunohistochemistry. Gene expression for pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-α), nerve growth factor (NGF) and the pain-associated neuropeptide substance P were also analysed. Correlations between MMP-10 and IL-1, TNF-α and NGF were assessed along with NGF with substance P. Results MMP-10 mRNA was significantly increased in surgical degenerate NP when compared to PM normal and PM degenerate samples. MMP-10 protein was also significantly higher in degenerate surgical NP samples compared to PM normal. IL-1 and MMP-10 mRNA demonstrated a significant correlation in surgical degenerate samples, while TNF-α was not correlated with MMP-10 mRNA. NGF was significantly correlated with both MMP-10 and substance P mRNA in surgical degenerate NP samples. Conclusions MMP-10 expression is increased in the symptomatic degenerate IVD, where it may contribute to matrix degradation and initiation of nociception. Importantly, this study suggests differences in the pathways involved in matrix degradation between painful and pain-free IVD degeneration. PMID:19695094

  16. Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc.

    PubMed

    Richardson, Stephen M; Doyle, Paul; Minogue, Ben M; Gnanalingham, Kanna; Hoyland, Judith A

    2009-01-01

    Matrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP). Human NP tissue was obtained at postmortem (PM) from patients without a history of back pain and graded as histologically normal or degenerate. Symptomatic degenerate NP samples were also obtained at surgery for LBP. Expression of MMP-10 mRNA and protein was analysed using real-time polymerase chain reaction and immunohistochemistry. Gene expression for pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-alpha), nerve growth factor (NGF) and the pain-associated neuropeptide substance P were also analysed. Correlations between MMP-10 and IL-1, TNF-alpha and NGF were assessed along with NGF with substance P. MMP-10 mRNA was significantly increased in surgical degenerate NP when compared to PM normal and PM degenerate samples. MMP-10 protein was also significantly higher in degenerate surgical NP samples compared to PM normal. IL-1 and MMP-10 mRNA demonstrated a significant correlation in surgical degenerate samples, while TNF-alpha was not correlated with MMP-10 mRNA. NGF was significantly correlated with both MMP-10 and substance P mRNA in surgical degenerate NP samples. MMP-10 expression is increased in the symptomatic degenerate IVD, where it may contribute to matrix degradation and initiation of nociception. Importantly, this study suggests differences in the pathways involved in matrix degradation between painful and pain-free IVD degeneration.

  17. Mechanistic Role for a Novel Glucocorticoid-KLF11 (TIEG2) Protein Pathway in Stress-induced Monoamine Oxidase A Expression*

    PubMed Central

    Grunewald, Matthew; Johnson, Shakevia; Lu, Deyin; Wang, Zhe; Lomberk, Gwen; Albert, Paul R.; Stockmeier, Craig A.; Meyer, Jeffrey H.; Urrutia, Raul; Miczek, Klaus A.; Austin, Mark C.; Wang, Junming; Paul, Ian A.; Woolverton, William L.; Seo, Seungmae; Sittman, Donald B.; Ou, Xiao-Ming

    2012-01-01

    Chronic stress is a risk factor for psychiatric illnesses, including depressive disorders, and is characterized by increased blood glucocorticoids and brain monoamine oxidase A (MAO A, which degrades monoamine neurotransmitters). This study elucidates the relationship between stress-induced MAO A and the transcription factor Kruppel-like factor 11 (KLF11, also called TIEG2, a member of the Sp/KLF- family), which inhibits cell growth. We report that 1) a glucocorticoid (dexamethasone) increases KLF11 mRNA and protein levels in cultured neuronal cells; 2) overexpressing KLF11 increases levels of MAO A mRNA and enzymatic activity, which is further enhanced by glucocorticoids; in contrast, siRNA-mediated KLF11 knockdown reduces glucocorticoid-induced MAO A expression in cultured neurons; 3) induction of KLF11 and translocation of KLF11 from the cytoplasm to the nucleus are key regulatory mechanisms leading to increased MAO A catalytic activity and mRNA levels because of direct activation of the MAO A promoter via Sp/KLF-binding sites; 4) KLF11 knockout mice show reduced MAO A mRNA and catalytic activity in the brain cortex compared with wild-type mice; and 5) exposure to chronic social defeat stress induces blood glucocorticoids and activates the KLF11 pathway in the rat brain, which results in increased MAO A mRNA and enzymatic activity. Thus, this study reveals for the first time that KLF11 is an MAO A regulator and is produced in response to neuronal stress, which transcriptionally activates MAO A. The novel glucocorticoid-KLF11-MAO A pathway may play a crucial role in modulating distinct pathophysiological steps in stress-related disorders. PMID:22628545

  18. Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression.

    PubMed

    Grunewald, Matthew; Johnson, Shakevia; Lu, Deyin; Wang, Zhe; Lomberk, Gwen; Albert, Paul R; Stockmeier, Craig A; Meyer, Jeffrey H; Urrutia, Raul; Miczek, Klaus A; Austin, Mark C; Wang, Junming; Paul, Ian A; Woolverton, William L; Seo, Seungmae; Sittman, Donald B; Ou, Xiao-Ming

    2012-07-13

    Chronic stress is a risk factor for psychiatric illnesses, including depressive disorders, and is characterized by increased blood glucocorticoids and brain monoamine oxidase A (MAO A, which degrades monoamine neurotransmitters). This study elucidates the relationship between stress-induced MAO A and the transcription factor Kruppel-like factor 11 (KLF11, also called TIEG2, a member of the Sp/KLF- family), which inhibits cell growth. We report that 1) a glucocorticoid (dexamethasone) increases KLF11 mRNA and protein levels in cultured neuronal cells; 2) overexpressing KLF11 increases levels of MAO A mRNA and enzymatic activity, which is further enhanced by glucocorticoids; in contrast, siRNA-mediated KLF11 knockdown reduces glucocorticoid-induced MAO A expression in cultured neurons; 3) induction of KLF11 and translocation of KLF11 from the cytoplasm to the nucleus are key regulatory mechanisms leading to increased MAO A catalytic activity and mRNA levels because of direct activation of the MAO A promoter via Sp/KLF-binding sites; 4) KLF11 knockout mice show reduced MAO A mRNA and catalytic activity in the brain cortex compared with wild-type mice; and 5) exposure to chronic social defeat stress induces blood glucocorticoids and activates the KLF11 pathway in the rat brain, which results in increased MAO A mRNA and enzymatic activity. Thus, this study reveals for the first time that KLF11 is an MAO A regulator and is produced in response to neuronal stress, which transcriptionally activates MAO A. The novel glucocorticoid-KLF11-MAO A pathway may play a crucial role in modulating distinct pathophysiological steps in stress-related disorders.

  19. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.

    PubMed Central

    Méthot, N; Song, M S; Sonenberg, N

    1996-01-01

    The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3. PMID:8816444

  20. In vivo characterization of the Drosophila mRNA 3′ end processing core cleavage complex

    PubMed Central

    Michalski, Daniel; Steiniger, Mindy

    2015-01-01

    A core cleavage complex (CCC) consisting of CPSF73, CPSF100, and Symplekin is required for cotranscriptional 3′ end processing of all metazoan pre-mRNAs, yet little is known about the in vivo molecular interactions within this complex. The CCC is a component of two distinct complexes, the cleavage/polyadenylation complex and the complex that processes nonpolyadenylated histone pre-mRNAs. RNAi-depletion of CCC factors in Drosophila culture cells causes reduction of CCC processing activity on histone mRNAs, resulting in read through transcription. In contrast, RNAi-depletion of factors only required for histone mRNA processing allows use of downstream cryptic polyadenylation signals to produce polyadenylated histone mRNAs. We used Dmel-2 tissue culture cells stably expressing tagged CCC components to determine that amino acids 272–1080 of Symplekin and the C-terminal approximately 200 amino acids of both CPSF73 and CPSF100 are required for efficient CCC formation in vivo. Additional experiments reveal that the C-terminal 241 amino acids of CPSF100 are sufficient for histone mRNA processing indicating that the first 524 amino acids of CPSF100 are dispensable for both CCC formation and histone mRNA 3′ end processing. CCCs containing deletions of Symplekin lacking the first 271 amino acids resulted in dramatic increased use of downstream polyadenylation sites for histone mRNA 3′ end processing similar to RNAi-depletion of histone-specific 3′ end processing factors FLASH, SLBP, and U7 snRNA. We propose a model in which CCC formation is mediated by CPSF73, CPSF100, and Symplekin C-termini, and the N-terminal region of Symplekin facilitates cotranscriptional 3′ end processing of histone mRNAs. PMID:26081560

  1. AtLa1 protein initiates IRES-dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards.

    PubMed

    Cui, Yuchao; Rao, Shaofei; Chang, Beibei; Wang, Xiaoshuang; Zhang, Kaidian; Hou, Xueliang; Zhu, Xueyi; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong; Yang, Chengwei; Huang, Tao

    2015-10-01

    Plant stem cells are hypersensitive to environmental hazards throughout their life cycle, but the mechanism by which plants safeguard stem cell homeostasis in response to environmental hazards is largely unknown. The homeodomain transcription factor WUSCHEL (WUS) protein maintains the stem cell pool in the shoot apical meristem of Arabidopsis. Here, we demonstrate that the translation of WUS mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region. The AtLa1 protein, an RNA-binding factor, binds to the 5'-untranslated region and initiates the IRES-dependent translation of WUS mRNA. Knockdown of AtLa1 expression represses the WUS IRES-dependent translation and leads to the arrest of growth and development. The AtLa1 protein is mainly located in the nucleoplasm. However, environmental hazards promote the nuclear-to-cytoplasmic translocation of the AtLa1 protein, which further enhances the IRES-dependent translation of WUS mRNA. Genetic evidence indicates that the WUS protein increases the tolerance of the shoot apical meristem to environmental hazards. Based on these results, we conclude that the stem cell niche in Arabidopsis copes with environmental hazards by enhancing the IRES-dependent translation of WUS mRNA under the control of the AtLa1 protein. © 2015 John Wiley & Sons Ltd.

  2. Characterizing the Effects of Inorganic Acid and Alkaline Shock on the Staphylococcus aureus Transcriptome and Messenger RNA Turnover

    PubMed Central

    Anderson, Kelsi L.; Roux, Christelle M.; Olson, Matthew W.; Luong, Thanh T.; Lee, Chia Y.; Olson, Robert; Dunman, Paul M.

    2010-01-01

    Staphylococcus aureus pathogenesis can be partially attributed to its ability to adapt to otherwise deleterious host-associated stresses. Here, Affymetrix GeneChips® were used to examine the S. aureus responses to inorganic acid and alkaline shock and to assess whether stress dependent changes in mRNA turnover are likely to facilitate the organism’s ability to tolerate pH challenge. Results indicate that S. aureus adapts to pH shock by eliciting responses expected of cells coping with pH alteration, including neutralizing cellular pH, DNA repair, amino acid biosynthesis and virulence factor expression. Further, the S. aureus response to alkaline conditions is strikingly similar to that of stringent response induced cells. Indeed, we show that alkaline shock stimulates accumulation of the stringent response activator (p)ppGpp. Results also revealed that pH shock significantly alters the mRNA properties of the cell. A comparison of the mRNA degradation properties of transcripts whose titers either increased or decreased in response to sudden pH change revealed that alterations in mRNA degradation may, in part, account for the changes in the mRNA levels of factors predicted to mediate pH tolerance. A set of small stable RNA molecules were induced in response to acid or alkaline shock conditions and may mediate adaptation to pH stress. PMID:21039920

  3. Clomiphene citrate versus letrozole: molecular analysis of the endometrium in women with polycystic ovary syndrome.

    PubMed

    Wallace, Kedra L; Johnson, Venessia; Sopelak, Victoria; Hines, Randall

    2011-10-01

    To compare the effect of clomiphene citrate (CC) and letrozole on endometrial receptivity in women with polycystic ovary syndrome (PCOS). A randomized controlled trial. University teaching hospital. Ten anovulatory women with PCOS and 5 fertile ovulatory women. Patients received 2.5 mg of letrozole on cycle days 3-7 (5 patients, 1 cycle) or 50 mg of CC on cycle days 5-9 (5 patients, 1 cycle). Serum estrogen (E) and progesterone (P) endometrial protein and messenger RNA (mRNA) expression of leukemia inhibitory factor (LIF), dickkhopf homolog 1 (DKK-1), fibroblast growth factor 22 (FGF-22), and endometrial mRNA expression of LIF/GP130 receptor (LIFR). No statistically significant differences were observed between groups compared with fertile ovulatory women when serum E and P were examined, or between body mass index (BMI), and cycle day at time of biopsy. Letrozole increased mRNA expression of LIF, DKK1, LIFR, and FGF-22, whereas CC only increased endometrial mRNA expression of LIF. Letrozole mRNA expression directly translated into increased protein expression of like genes in the endometrium. The CC protein expression of DKK-1 was significantly decreased compared with controls. Letrozole positively influences a number of markers of endometrial receptivity compared with CC. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. LC3-mediated fibronectin mRNA translation induces fibrosarcoma growth by increasing connective tissue growth factor

    PubMed Central

    Ying, Lihua; Lau, Agatha; Alvira, Cristina M.; West, Robert; Cann, Gordon M.; Zhou, Bin; Kinnear, Caroline; Jan, Eric; Sarnow, Peter; Van de Rijn, Matt; Rabinovitch, Marlene

    2009-01-01

    Summary Previously, we related fibronectin (Fn1) mRNA translation to an interaction between an AU-rich element in the Fn1 3′ UTR and light chain 3 (LC3) of microtubule-associated proteins 1A and 1B. Since human fibrosarcoma (HT1080) cells produce little fibronectin and LC3, we used these cells to investigate how LC3-mediated Fn1 mRNA translation might alter tumor growth. Transfection of HT1080 cells with LC3 enhanced fibronectin mRNA translation. Using polysome analysis and RNA-binding assays, we show that elevated levels of translation depend on an interaction between a triple arginine motif in LC3 and the AU-rich element in Fn1 mRNA. Wild-type but not mutant LC3 accelerated HT1080 cell growth in culture and when implanted in SCID mice. Comparison of WT LC3 with vector-transfected HT1080 cells revealed increased fibronectin-dependent proliferation, adhesion and invasion. Microarray analysis of genes differentially expressed in WT and vector-transfected control cells indicated enhanced expression of connective tissue growth factor (CTGF). Using siRNA, we show that enhanced expression of CTGF is fibronectin dependent and that LC3-mediated adhesion, invasion and proliferation are CTGF dependent. Expression profiling of soft tissue tumors revealed increased expression of both LC3 and CTGF in some locally invasive tumor types. PMID:19366727

  5. Effect of eosinophils activated with Alternaria on the production of extracellular matrix from nasal fibroblasts.

    PubMed

    Shin, Seung-Heon; Ye, Mi-Kyung; Choi, Sung-Yong; Kim, Yee-Hyuk

    2016-06-01

    Eosinophils and fibroblasts are known to play major roles in the pathogenesis of nasal polyps. Fungi are commonly found in nasal secretion and are associated with airway inflammation. To investigate whether activated eosinophils by airborne fungi can influence the production of extracellular matrix (ECM) from nasal fibroblasts. Inferior turbinate and nasal polyp fibroblasts were stimulated with Alternaria or Aspergillus, respectively, for 24 hours and ECM messenger RNA (mRNA) and protein expressions were measured. Eosinophils isolated from healthy volunteers were stimulated with Alternaria or Aspergillus for 4 hours then superoxide, eosinophil peroxidase, and transforming growth factor β1 were measured. Then activated eosinophils were cocultured with nasal fibroblasts for 24 hours, and ECM mRNA expressions were measured. Alternaria strongly enhanced ECM mRNA expression and protein production from nasal fibroblasts. Alternaria also induced the production of superoxide, eosinophil peroxidase, and transforming growth factor β1 from eosinophils, and activated eosinophils enhanced ECM mRNA expression when they were cocultured without the Transwell insert system. Eosinophils activated with Alternaria enhanced ECM mRNA expression from nasal polyp fibroblasts. Alternaria plays an important role in tissue fibrosis in the pathogenesis of nasal polyps by directly or indirectly influencing the production of ECM from nasal fibroblasts. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Rational Manipulation of mRNA Folding Free Energy Allows Rheostat Control of Pneumolysin Production by Streptococcus pneumoniae

    PubMed Central

    Amaral, Fábio E.; Parker, Dane; Randis, Tara M.; Kulkarni, Ritwij; Prince, Alice S.; Shirasu-Hiza, Mimi M.; Ratner, Adam J.

    2015-01-01

    The contribution of specific factors to bacterial virulence is generally investigated through creation of genetic “knockouts” that are then compared to wild-type strains or complemented mutants. This paradigm is useful to understand the effect of presence vs. absence of a specific gene product but cannot account for concentration-dependent effects, such as may occur with some bacterial toxins. In order to assess threshold and dose-response effects of virulence factors, robust systems for tunable expression are required. Recent evidence suggests that the folding free energy (ΔG) of the 5’ end of mRNA transcripts can have a significant effect on translation efficiency and overall protein abundance. Here we demonstrate that rational alteration of 5’ mRNA folding free energy by introduction of synonymous mutations allows for predictable changes in pneumolysin (PLY) expression by Streptococcus pneumoniae without the need for chemical inducers or heterologous promoters. We created a panel of isogenic S. pneumoniae strains, differing only in synonymous (silent) mutations at the 5’ end of the PLY mRNA that are predicted to alter ΔG. Such manipulation allows rheostat-like control of PLY production and alters the cytotoxicity of whole S. pneumoniae on primary and immortalized human cells. These studies provide proof-of-principle for further investigation of mRNA ΔG manipulation as a tool in studies of bacterial pathogenesis. PMID:25798590

  7. Keratinocyte growth factor is a growth factor for mammary epithelium in vivo. The mammary epithelium of lactating rats is resistant to the proliferative action of keratinocyte growth factor.

    PubMed Central

    Ulich, T. R.; Yi, E. S.; Cardiff, R.; Yin, S.; Bikhazi, N.; Biltz, R.; Morris, C. F.; Pierce, G. F.

    1994-01-01

    Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. KGF is secreted by stromal cells and affects epithelial but not mesenchymal cell proliferation. KGF injected intravenously was found to cause dramatic proliferation of mammary epithelium in the mammary glands of rats. KGF causes ductal neogenesis and intraductal epithelial hyperplasia but not lobular differentiation in nulliparous female rats. KGF causes ductal and lobular epithelial hyperplasia in male rats. KGF causes proliferation of ductal and acinar cells in the mammary glands of pregnant rats. On the other hand, the ductal epithelium of lactating postpartum rats is resistant to the proliferative action of KGF. The mammary glands of lactating rats did not express less KGF receptor mRNA than the glands of pregnant rats, suggesting that the resistance of the ductal epithelium to KGF during lactation is not related to KGF receptor mRNA down-regulation. The mammary glands of both pregnant and postpartum lactating rats express KGF mRNA with more KGF present in the glands of lactating rats. In conclusion, the KGF and KGF receptor genes are expressed in rat mammary glands and recombinant KGF is a potent growth factor for mammary epithelium. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8178937

  8. Comparative Sigma Factor-mRNA Levels in Mycobacterium marinum under Stress Conditions and during Host Infection

    PubMed Central

    Pettersson, B. M. Fredrik; Das, Sarbashis; Behra, Phani Rama Krishna; Jordan, Heather R.; Ramesh, Malavika; Mallick, Amrita; Root, Kate M.; Cheramie, Martin N.; de la Cruz Melara, Irma; Small, Pamela L. C.; Dasgupta, Santanu; Ennis, Don G.; Kirsebom, Leif A.

    2015-01-01

    We have used RNASeq and qRT-PCR to study mRNA levels for all σ-factors in different Mycobacterium marinum strains under various growth and stress conditions. We also studied their levels in M. marinum from infected fish and mosquito larvae. The annotated σ-factors were expressed and transcripts varied in relation to growth and stress conditions. Some were highly abundant such as sigA, sigB, sigC, sigD, sigE and sigH while others were not. The σ-factor mRNA profiles were similar after heat stress, during infection of fish and mosquito larvae. The similarity also applies to some of the known heat shock genes such as the α-crystallin gene. Therefore, it seems probable that the physiological state of M. marinum is similar when exposed to these different conditions. Moreover, the mosquito larvae data suggest that this is the state that the fish encounter when infected, at least with respect to σ-factor mRNA levels. Comparative genomic analysis of σ-factor gene localizations in three M. marinum strains and Mycobacterium tuberculosis H37Rv revealed chromosomal rearrangements that changed the localization of especially sigA, sigB, sigD, sigE, sigF and sigJ after the divergence of these two species. This may explain the variation in species-specific expression upon exposure to different growth conditions. PMID:26445268

  9. Promoter-dependent and -independent activation of insulin-like growth factor binding protein-5 gene expression by prostaglandin E2 in primary rat osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Casinghino, S.; Mittanck, D. W.; Ji, C. H.; Centrella, M.; Rotwein, P.

    1996-01-01

    Insulin-like growth factor (IGF) action is mediated by high affinity cell surface IGF receptors and modulated by a family of secreted IGF binding proteins (IGFBPs). IGFBP-5, the most conserved of six IGFBPs characterized to date, uniquely potentiates the anabolic actions of IGF-I for skeletal cells. In osteoblasts, IGFBP-5 production is stimulated by prostaglandin E2 (PGE2), a local factor that mediates certain effects induced by parathyroid hormone, cytokines such as interleukin-1 and transforming growth factor-beta, and mechanical strain. In this study, we show that transcriptional and post-transcriptional events initiated by PGE2 collaborate to enhance IGFBP-5 gene expression in primary fetal rat osteoblast cultures. PGE2 treatment stimulated up to a 7-fold rise in steady-state levels of IGFBP-5 mRNA throughout 32 h of incubation. Analysis of nascent IGFBP-5 mRNA suggested that PGE2 had only a modest stimulatory effect on IGFBP-5 gene transcription, and transient transfection studies with IGFBP-5 promoter-reporter genes confirmed that PGE2 enhanced promoter activity by approximately 2-fold. Similar stimulatory effects were seen with forskolin. A DNA fragment with only 51 base pairs of the 5'-flanking sequence retained hormonal responsiveness, which may be mediated by a binding site for transcription factor AP-2 located at positions -44 to -36 in the proximal IGFBP-5 promoter. Incubation of osteoblasts with the mRNA transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that PGE2 enhanced IGFBP-5 mRNA stability by 2-fold, increasing the t1/2 from 9 to 18 h. The effects of PGE2 on steady-state IGFBP-5 transcripts were abrogated by preincubating cells with cycloheximide, indicating that the effects of PGE2 on both gene transcription and mRNA stability required ongoing protein synthesis. Therefore, both promoter-dependent and -independent pathways converge to enhance IGFBP-5 gene expression in response to PGE2 in osteoblasts.

  10. Patterns of mRNA and protein expression during minus-lens compensation and recovery in tree shrew sclera.

    PubMed

    Gao, Hong; Frost, Michael R; Siegwart, John T; Norton, Thomas T

    2011-04-12

    To increase our understanding of the mechanisms that remodel the sclera during the development of lens-induced myopia, when the sclera responds to putative "go" signals of retinal origin, and during recovery from lens-induced myopia, when the sclera responds to retinally-derived "stop" signals. Seven groups of tree shrews were used to examine mRNA levels during minus lens compensation and recovery. Starting 24 days after eye opening (days of visual experience [VE]) lens compensation animals wore a monocular -5D lens for 1, 4, or 11 days. Recovery animals wore the -5D lens for 11 days, which was then removed for 1 or 4 days. Normal animals were examined at 24 and 38 days of VE. All groups contained 8 animals. Scleral mRNA levels were examined in the treated and contralateral control eyes with quantitative real-time polymerase chain reaction (qPCR) for 27 genes divided into four categories: 1) signaling molecules, 2) matricellular proteins, 3) metalloproteinases (MPs) and tissue inhibitors of metalloproteinases (TIMPs), and 4) cell adhesion and other proteins. Four groups (n=5 per group) were used to examine protein levels. One group wore a -5D lens for 4 days. A second group recovered for 4 days after 11 days of -5D lens treatment. Two groups were used to examine age-matched normal protein levels at 28 and 39 days of VE. The levels of six scleral proteins that showed differential mRNA expression were examined with quantitative western blots. Nineteen of the genes showed differential (treated eye versus control eye) expression of mRNA levels in at least one group of animals. Which genes showed differential expression differed after 1 and 4 days of compensation and after 1 or 4 days of recovery. The mRNA level for one gene, a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), was upregulated in the treated eyes after 1 day of compensation. After 4 days, transforming growth factor beta receptor 3 (TGFBR3), transforming growth factor-beta-induced protein ig-h3 (TGFBI), and matrix metalloproteinase 14 (MMP14) mRNA levels were upregulated. Downregulated were mRNA levels for transforming growth factor beta-1 (TGFB1), transforming growth factor beta-2 (TGFB2), thrombospondin 1 (THBS1), tenascin (TNC), osteonectin (SPARC), osteopontin (SPP1), tissue inhibitor of metalloproteinases 3 (TIMP3), and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5). After 11 days of lens wear, there was no differential expression. During recovery, after 1 day, treated-eye mRNA downregulation was found for TGFB2, TGFBR1, TGFBR2, TGFBR3, SPARC, ADAMTS1, ADAMTS5, syndecan 4 (SDC4), and collagen type VI, alpha 1 (COL6A1). After 4 days, TGFB1, TGFB2, TGFB3, THBS2, and TIMP3 mRNA levels were upregulated in the recovering eye. Significant downregulation, relative to normal eyes, was found in both the control and treated eyes for most genes after 1 day of compensation; a similar decrease was found, compared to lens-compensated eyes, after one day of recovery. Protein levels for THBS1 showed positive correlation with the differential mRNA levels and TGFBR3 showed a negative correlation. No differential protein expression was found for TGFB2, TGFBI, MMP14, and TIMP3. The different patterns of differential mRNA expression during minus lens compensation (hyperopia) and recovery (myopia) show that scleral fibroblasts distinguish between "go" and "stop" conditions. There is evidence of binocular global downregulation of genes at the start of both lens wear and recovery. As additional information accumulates about changes in gene expression that occur during compensation and recovery the "signature" of differential changes may help us to understand in more detail how the sclera responds in "go" and "stop" conditions.

  11. Identification and expression analysis of leptin-regulated immediate early response and late target genes.

    PubMed

    Waelput, W; Verhee, A; Broekaert, D; Eyckerman, S; Vandekerckhove, J; Beattie, J H; Tavernier, J

    2000-05-15

    Using PC12 cells as an in vitro model system, we have identified a series of transcripts induced through activation of the leptin receptor. On the basis of kinetic studies, two distinct gene sets could be discerned: signal transducer and activator of transciption-3 (STAT-3), suppressor of cytokine signalling-3 (SOCS-3), MT-II (metallothionein-II), the serine/threonine kinase fibroblast-growth-factor-inducible kinase (Fnk) and modulator recognition factor (MRF-1), which are immediate early response genes, and pancreatitis-associated protein I (PAP I), squalene epoxidase, uridine diphosphate glucuronosyltransferase and annexin VIII, which are late induced target genes. At late time points a strong co-stimulation with beta-nerve growth factor or with the adenylate cyclase activator forskolin was observed. To assess the validity of the PC12-cell model system, we examined the effect of leptin administration on the gene transcription of STAT-3, MT-II, Fnk and PAP I in vivo. Leptin treatment of leptin-deficient ob/ob mice increased the STAT-3, SOCS-3, MT-II and Fnk mRNA, and MT-I protein levels in liver, whereas, in jejunum, expression of PAP I mRNA was down-regulated. Furthermore, administration of leptin to starved wild-type mice enhanced the expression of MT-II and Fnk mRNA in liver, but decreased MT-II and PAP I mRNA expression in jejunum. These findings may help to explain the obese phenotype observed in some colonies of MT-I- and MT-II-null mice and/or the observation that leptin protects against tumour-necrosis-factor toxicity in vivo.

  12. Evidences for involvement of growth hormone and insulin-like growth factor in ovarian development of starry flounder (Platichthys stellatus).

    PubMed

    Xu, Yongjiang; Wang, Bin; Liu, Xuezhou; Shi, Bao; Zang, Kun

    2017-04-01

    Although gonadotrophins are major regulators of ovarian function in teleosts and other vertebrates, accumulating evidence indicates that the growth hormone (GH)-insulin-like growth factor (IGF) axis also plays an important role in fish reproduction. As a first step to understand the physiological role of the GH-IGF system in the ovarian development of starry flounder (Platichthys stellatus), the expression profiles of GH and IGF messenger RNAs (mRNAs) and plasma GH, IGF-I, estradiol-17β (E2), and testosterone (T) levels during the ovarian development were investigated. The developmental stages of ovaries were divided into five stages (II, III, IV, V, and VI) by histological analysis. The hepatosomatic index (HSI) and gonadosomatic index (GSI) values increased and peaked at stage IV and stage V, respectively, and then declined at stage VI. Pituitary GH mRNA levels decreased sharply at stage III and raised to top level at stage VI. The hepatic IGF-I mRNA levels ascended to maximum value at stage V and then declined significantly at stage VI. However, the hepatic IGF-II mRNA levels remained stable and increased significantly at stage VI. In contrast, the ovarian IGF-I mRNA levels increased gradually and peaked at stage VI. The ovarian IGF-II mRNA levels were initially stable and increased significantly at stage V until the top level at stage VI. Consistent with the pituitary GH mRNA levels, plasma GH levels reduced sharply at stage III and remained depressed until stage V and then raised remarkably at stage VI. Plasma IGF-I level peaked at stage V and then declined to initial level. Plasma E2 level peaked at stage IV and then dramatically descended to the basal level. Plasma T level peaked at stage V and then declined significantly back to the basal level. Based on statistical analysis, significant positive correlations between hepatic IGF-I mRNA and GSI, ovarian IGF-II mRNA and hepatic IGF-II mRNA, ovarian IGF-I mRNA and ovarian IGF-II mRNA, and plasma IGF-I and plasma T were observed, respectively. These results suggest that the GH-IGF system may be involved in the ovarian development of starry flounder; GH and IGFs appear to play distinct roles in the regulation of the ovarian development in paracrine/autocrine manners. These findings extend our knowledge of the roles of the GH-IGF axis on reproduction regulation in fish.

  13. Expression and localization of insulin-like growth factor system in corpus luteum during different stages of estrous cycle in water buffaloes (Bubalus bubalis) and the effect of insulin-like growth factor I on production of vascular endothelial growth factor and progesterone in luteal cells cultured in vitro.

    PubMed

    Uniyal, S; Panda, R P; Chouhan, V S; Yadav, V P; Hyder, I; Dangi, S S; Gupta, M; Khan, F A; Sharma, G T; Bag, S; Sarkar, M

    2015-01-01

    This study investigated the expression and localization of insulin-like growth factor (IGF) system at different stages of buffalo CL and the role of IGF-I in stimulating vascular endothelial growth factor (VEGF) and progesterone (P4) production in cultured luteal cells. The mRNA expression of IGF system, VEGF, steroidogenic acute regulatory protein, P450scc, and hydroxysteroid dehydrogenase (HSD) was investigated by quantitative real-time polymerase chain reaction (PCR). Protein expression of IGF was demonstrated by Western blot and localization by immunohistochemistry. Progesterone and VEGF production was assayed using RIA and ELISA. A relatively high mRNA expression of IGF-I and IGF-II in early, mid- and late luteal phases with immunoreactivity mostly restricted to cytoplasm of large luteal cells indicates their autocrine role, whereas very weak immunoreactivity in endothelial cells during the mid-luteal phase indicates their paracrine role. Insulin-like growth factor receptors, IGF-IR and IGF-IIR, were restricted to large luteal cells with high mRNA and protein expressions in the mid-luteal phase. The significantly higher expression of insulin-like growth factor binding protein (IGFBP)-1, -3, -5, and -6 in the early or mid-luteal phase suggested their stimulatory role, whereas that of IGFBP-2 and -4 in mid-, late, and regressive luteal stages implied their inhibitory role. The mRNA expressions of key steroidogenic factors and VEGF were significantly higher (P < 0.05) when the culture medium was supplemented with 100 ng/mL of IGF-I for 72 hours. Moreover, IGF-I at a dose of 100 ng/mL increased P4 and VEGF production (P < 0.05). It can be concluded that IGF family members via their autocrine and paracrine effect play significant roles in promoting angiogenesis through the production of VEGF in luteal cells and steroid synthesis through the production of key steroidogenic factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Notch and Delta mRNAs in early-stage and mid-stage Drosophila embryos exhibit complementary patterns of protein producing potentials

    PubMed Central

    Shepherd, Andrew; Wesley, Uma; Wesley, Cedric

    2010-01-01

    Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3′ processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early-stage and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3′ UTR and mRNA 3′ processing factors. PMID:20201103

  15. MYC Mediates mRNA Cap Methylation of Canonical Wnt/β-catenin Signaling Transcripts by Recruiting CDK7 and RNA Methyltransferase

    PubMed Central

    Posternak, Valeriya; Ung, Matthew H.; Cheng, Chao; Cole, Michael D.

    2016-01-01

    MYC is a pleiotropic transcription factor that activates and represses a wide range of target genes and is frequently deregulated in human tumors. While much is known about the role of MYC in transcriptional activation and repression, MYC can also regulate mRNA cap methylation through a mechanism that has remained poorly understood. Here it is reported that MYC enhances mRNA cap methylation of transcripts globally, specifically increasing mRNA cap methylation of genes involved in Wnt/β-catenin signaling. Elevated mRNA cap methylation of Wnt signaling transcripts in response to MYC leads to augmented translational capacity, elevated protein levels, and enhanced Wnt signaling activity. Mechanistic evidence indicates that MYC promotes recruitment of RNA methyltransferase (RNMT) to Wnt signaling gene promoters by enhancing phosphorylation of serine 5 on the RNA Polymerase II Carboxy-Terminal Domain, mediated in part through an interaction between the TIP60 acetyltransferase complex and TFIIH. Implications MYC enhances mRNA cap methylation above and beyond transcriptional induction. PMID:27899423

  16. Learning-induced expression of meningeal ependymin mRNA and demonstration of ependymin in neurons and glial cells.

    PubMed

    Rother, S; Schmidt, R; Brysch, W; Schlingensiepen, K H

    1995-10-01

    The turnover of a CNS-specific cell adhesion glycoprotein, ependymin, has earlier been found to increase during periods of neuronal plasticity. Here, ependymin mRNA expression was analyzed by semiquantitative in situ hybridization in goldfish. Learning of an active avoidance response resulted in a significant increase in ependymin mRNA expression 20 min to 4 h after acquisition of the task. In contrast, yoked control animals that were exposed to the same numbers of conditioned and unconditioned stimuli in a random, unpaired manner exhibited a strong down-regulation of ependymin mRNA. Hybridization signals were also increased by injection of anti-ependymin antiserum into brain ventricles. Ependymin mRNA was exclusively localized to reticular-shaped fibroblasts of the inner endomeningeal cell layer. Immunoelectron microscopic investigation, however, revealed ependymin also in distinct neuronal and glial cell populations in which no ependymin mRNA had been detected. Uptake of meningeal protein factors into glial and neuronal cells may therefore be of functional importance for plastic adaptations of the CNS.

  17. Effects of fasting on growth hormone, growth hormone receptor, and insulin-like growth factor-I axis in seawater-acclimated tilapia, Oreochromis mossambicus.

    PubMed

    Fox, B K; Riley, L G; Hirano, T; Grau, E G

    2006-09-15

    Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.

  18. Effect of interferon-gamma on complement gene expression in different cell types.

    PubMed

    Lappin, D F; Guc, D; Hill, A; McShane, T; Whaley, K

    1992-01-15

    We have studied the expression of the complement components C2, C3, factor B, C1 inhibitor (C1-inh), C4-binding protein (C4-bp) and factor H in human peripheral blood monocytes, skin fibroblasts, umbilical vein endothelial cells (HUVEC) and the human hepatoma cell line G2 (Hep G2) in the absence and the presence of interferon-gamma (IFN-gamma). E.l.i.s.a. performed on culture fluids, run-on transcription assays, Northern blot and double-dilution dot-blot techniques confirmed that monocytes expressed all six components, whereas fibroblasts, HUVEC and HepG2 each expressed five of the six components. Fibroblasts and HUVEC did not synthesize C4-bp, and Hep G2 did not produce factor H. In addition to these differences, the synthesis rates of C3, C1-inh and factor H were not the same in all cell types. However, the synthesis rates of C2 and factor B were similar in all four cell types. The half-lives of the mRNAs were shorter in monocytes than in other cell types. Monocyte factor H mRNA had a half-life of 12 min in monocytes, compared with over 3 h in fibroblasts and HUVEC. The instability of factor H mRNA in monocytes may contribute to their low factor H secretion rate. IFN-gamma produced dose-dependent stimulation of C2, factor B, C1-inh, C4-bp and factor H synthesis by all cell types expressing these proteins, but decreased C3 synthesis in all four cell types. Cell-specific differences in the response to IFN-gamma were observed. The increased rates of transcription of the C1-inh and factor H genes in HUVEC were greater than in other cell types, while the increased rate of transcription of the C2, factor B and C1-inh genes in Hep G2 cells was less than in other cell types. IFN-gamma did not affect the stability of C3, factor H or C4 bp mRNAs, but increased the stability of factor B and C1-inh mRNAs and decreased the stability of C2 mRNA. Although these changes occurred in all four cell types studied, the half-life of C1-inh mRNA in monocytes was increased almost 4-fold, whereas the increases in the other cell types were less than 30%. These data show that the constitutive synthesis rates of complement components may vary in the different cell types. They also show that the degree of change in synthesis rates in response to IFN-gamma in each of the cell types often varies due to differences in transcriptional response, sometimes in association with changes in mRNA stability.

  19. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal

    PubMed Central

    Lackford, Brad; Yao, Chengguo; Charles, Georgette M; Weng, Lingjie; Zheng, Xiaofeng; Choi, Eun-A; Xie, Xiaohui; Wan, Ji; Xing, Yi; Freudenberg, Johannes M; Yang, Pengyi; Jothi, Raja; Hu, Guang; Shi, Yongsheng

    2014-01-01

    mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3′ processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification. PMID:24596251

  20. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  1. [In vitro generation of insulin-producing cells from the neonatal rat bone marrow mesenchymal stem cells].

    PubMed

    Li, Xiaohu; Huang, Haiyan; Liu, Xirong; Xia, Hongxia; Li, Mincai

    2015-03-01

    To observe the differentiation of the neonatal rat bone marrow mesenchymal stem cells (MSCs) into insulin-producing cells and detect the expressions of insulin, pancreatic duodenal homebox-1 (PDX-1) and nestin. MSCs were isolated from the neonatal rats and cultured in the modified medium composed of 10 μg/L human epidermal growth factor (EGF), 10 μg/L basic fibroblast growth factor (bFGF), 10 μg/L hepatocyte growth factor (HGF), 10 μg/L human B cell regulin, 20 mmol/L nicotinamide and 20 g/L B27. After the induction, the mRNA expressions of insulin, PDX-1 and nestin were examined by reverse transcription-PCR, and the insulin, PDX-1 and nestin protein levels were detected by immunocytochemistry. The insulin and PDX-1 mRNA expressions increased and the nestin mRNA expression decreased in the differentiation of the neonatal rat MSCs into insulin-producing cells. The nestin, PDX-1 and insulin proteins were co-expressed in insulin-producing cells. MSCs can be induced to differentiate into insulin-producing cells.

  2. Integrative comparison of mRNA expression patterns in breast cancers from Caucasian and Asian Americans with implications for precision medicine

    PubMed Central

    Wang, Jianan; He, Max M; Li, Liren; Zhang, Jinfeng

    2016-01-01

    Asian Americans (AS) have significantly lower incidence and mortality rates of breast cancer (BRCA) than Caucasian Americans (CA). While this racial disparity has been documented the underlying pathogenetic factors explaining it are obscure. We addressed this issue by an integrative genomics approach to compare mRNA expression between AS and CA cases of BRCA. RNA-seq data from the Cancer Genome Atlas showed that mRNA expression revealed significant differences at gene and pathway levels. Increased susceptibility and severity in CA patients were likely the result of synergistic environmental and genetic risk factors, with arachidonic acid metabolism and PPAR signaling pathways implicated in linking environmental and genetic factors. An analysis that also added eQTL data from the Genotype-Tissue Expression Project and single nucleotide polymorphism (SNP) data from the 1000 Genomes Project identified several SNPs associated with differentially expressed genes. Overall, the associations we identified may enable a more focused study of genotypic differences that may help explain the disparity in BRCA incidence and mortality rates in CA and AS populations and inform precision medicine. PMID:28069798

  3. Effects of Ghrelin miRNA on Inflammation and Calcium Pathway in Pancreatic Acinar Cells of Acute Pancreatitis.

    PubMed

    Tang, Xiping; Tang, Guodu; Liang, Zhihai; Qin, Mengbin; Fang, Chunyun; Zhang, Luyi

    The study investigated the effects of endogenous targeted inhibition of ghrelin gene on inflammation and calcium pathway in an in vitro pancreatic acinar cell model of acute pancreatitis. Lentiviral expression vector against ghrelin gene was constructed and transfected into AR42J cells. The mRNA and protein expression of each gene were detected by reverse transcription polymerase chain reaction, Western blotting, or enzyme-linked immunosorbent assay. The concentration of intracellular calcium ([Ca]i) was determined by calcium fluorescence mark probe combined with laser scanning confocal microscopy. Compared with the control group, cerulein could upregulate mRNA and protein expression of inflammatory factors, calcium pathway, ghrelin, and [Ca]i. mRNA and protein expression of inflammatory factors increased significantly in cells transfected with ghrelin miRNA compared with the other groups. Intracellular calcium and expression of some calcium pathway proteins decreased significantly in cells transfected with ghrelin miRNA compared with the other groups. Targeted inhibition of ghrelin gene in pancreatic acinar cells of acute pancreatitis can upregulate the expression of the intracellular inflammatory factors and alleviate the intracellular calcium overload.

  4. Regulation of c-Myc mRNA by L11 in Response to UV and Gamma Irradiation

    DTIC Science & Technology

    2014-12-01

    function of miRNAs. For example, TTP promotes tumor ne- crosis factor alpha (TNF-") mRNA decay caused by miR-16 (29) and HuR facilitates the targeting of c...experiments would demonstrate an important function of L11 in regulating c-myc mRNA in response to DNA damage, offer useful information for developing...24 (Figure 1). We also tested an array of miRNAs possessing tumor suppressor functions for L11 binding miR-16 miR-1248 miR-3944 (-) miR-191 miR

  5. [Effect of lipopolysaccharides from Porphyromonas endodontalis on the expression of macrophage colony stimulating factor in mouse osteoblasts].

    PubMed

    Yu, Yaqiong; Qiu, Lihong; Guo, Jiajie; Qu, Liu; Xu, Liya; Zhong, Ming

    2014-09-01

    To investigate the effects of lipopolysaccharides (LPS) extracted from Porphyromonas endodontalis (Pe) on the expression of macrophage colony stimulating factor (M-CSF) mRNA and protein in MC3T3-E1 cells and the role of nucler factor-κB (NF-κB) in the process. MC3T3-E1 cells were treated with different concentrations of Pe-LPS (0-50 mg/L) and 10 mg/L Pe-LPS for different hours (0-24 h). The expression of M-CSF mRNA and protein was detected by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunoadsordent assay (ELISA). The cells untreated by Pe-LPS served as control. The expression of M- CSF mRNA and protein was also detected in 10 mg/L Pe- LPS treated MC3T3-E1 cells after pretreated with BAY 11-7082 for 1 h, a special NF-κB inhibitor. The groups were divided as follows, control group, BAY group (10 µmol/L BAY 11-7082 treated alone MC3T3-E1 cells), Pe-LPS group (10 mg/L Pe-LPS stimulated MC3T3-E1 cells for 6 h), BAY combine with Pe-LPS group (10 µmol/L BAY 11-7082 pretreated cells for 1 h and 10 mg/L of Pe-LPS stimulated MC3T3-E1 cells for 6 h). The level of M- CSF mRNA and protein increased significantly after treatment with different concentrations of Pe-LPS (0-50 mg/L), which indicated that Pe-LPS induced osteoblasts to express M-CSF mRNA and protein in dose dependent manners. The expression of M-CSF protein increased from (35 ± 2) ng/L (control group) to (170 ± 8) ng/L (50 mg/L group). Maximal induction of M-CSF mRNA expression was found in the MC3T3- E1 cells treated with 10 mg/L Pe-LPS for 6 h. After 6 h, the expression of M-CSF mRNA decreased gradually. The expression of M-CSF protein also increased with the treatment of 10 mg/L Pe-LPS for 10 h [(122 ± 4) ng/L]. After 10 h, the expression of M-CSF protein decreased gradually. The mRNA and proteins of M-CSF decreased significantly after pretreatment with 10 µmol/L BAY 11-7082 for 1 h. There was no significant difference between BAY group and the control. Pe-LPS may induce the expression of M-CSF mRNA and protein in MC3T3-E1 cells through the signaling of NF-κB.

  6. The effects of estradiol and selective estrogen receptor modulators on gene expression and messenger RNA stability in immortalized sheep endometrial stromal cells and human endometrial adenocarcinoma cells.

    PubMed

    Farnell, Yuhua Z; Ing, Nancy H

    2003-03-01

    The purpose of this study was to identify an endometrial cell line that maintained the E2 up-regulation of estrogen receptor (ER) mRNA by enhanced message stability and to assess its dependence on ER protein. Estradiol (E2) effects on gene expression were measured in three cell lines: one immortalized from sheep endometrial stroma (ST) and two from human endometrial adenocarcinomas (Ishikawa and ECC-1). E2 up-regulated ER mRNA levels in ST and Ishikawa cells, but down-regulated ER mRNA levels in ECC-1 cells. E2 up-regulated progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and transforming growth factor-alpha (TGF-alpha) in both Ishikawa and ECC-1 cells. The selective estrogen receptor modulator ICI 182,780 antagonized the E2-induced up-regulation of ER and/or PR mRNA levels in all three cells, while another, GW 5638, antagonized the up-regulation of PR mRNA in Ishikawa and ECC-1 cells. In mechanistic studies, E2 had no effect on ER mRNA stability in ST cells and it destabilized ER mRNA in ECC-1 cells. Thus, Ishikawa cells appear to be the most physiologically relevant cell line in which to study the up-regulation of ER mRNA levels by enhanced mRNA stability. Its antagonism by ICI 182,780 reveals that ER protein is involved in this E2 response.

  7. Bioinspired Nanocomplex for Spatiotemporal Imaging of Sequential mRNA Expression in Differentiating Neural Stem Cells

    PubMed Central

    2015-01-01

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492

  8. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    PubMed

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  9. HuR (Elavl1) and HuB (Elavl2) Stabilize Matrix Metalloproteinase-9 mRNA During Seizure-Induced Mmp-9 Expression in Neurons

    PubMed Central

    Zybura-Broda, Katarzyna; Wolder-Gontarek, Malgorzata; Ambrozek-Latecka, Magdalena; Choros, Artur; Bogusz, Agnieszka; Wilemska-Dziaduszycka, Joanna; Rylski, Marcin

    2018-01-01

    Matrix metalloproteinase-9 (Mmp-9) is involved in different general and cell-type–specific processes, both in neuronal and non-neuronal cells. Moreover, it is implicated in an induction or progression of various human disorders, including diseases of the central nervous system. Mechanisms regulating activity-driven Mmp-9 expression in neurons are still not fully understood. Here, we show that stabilization of Mmp-9 mRNA is one of the factors responsible for the neuronal activity-evoked upregulation of Mmp-9 mRNA expression in hippocampal neurons. Furthermore, we demonstrate that the molecular mechanism related to this stabilization is dependent on the neuronal seizure-triggered transiently increased binding of the mRNA stability-inducing protein, HuR, to ARE1 and ARE4 motifs of the 3′UTR for Mmp-9 mRNA as well as the stably augmented association of another mRNA-stabilizing protein, HuB, to the ARE1 element of the 3′UTR. Intriguingly, we demonstrate further that both HuR and HuB are crucial for an incidence of Mmp-9 mRNA stabilization after neuronal activation. This study identifies Mmp-9 mRNA as the first HuB target regulated by mRNA stabilization in neurons. Moreover, these results are the first to describe an existence of HuR-dependent mRNA stabilization in neurons of the brain. PMID:29686606

  10. Rubber Elongation Factor (REF), a Major Allergen Component in Hevea brasiliensis Latex Has Amyloid Properties

    PubMed Central

    Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Coulary-Salin, Bénédicte; Bentaleb, Ahmed; Cullin, Christophe; Deffieux, Alain; Peruch, Frédéric

    2012-01-01

    REF (Hevb1) and SRPP (Hevb3) are two major components of Hevea brasiliensis latex, well known for their allergenic properties. They are obviously taking part in the biosynthesis of natural rubber, but their exact function is still unclear. They could be involved in defense/stress mechanisms after tapping or directly acting on the isoprenoid biosynthetic pathway. The structure of these two proteins is still not described. In this work, it was discovered that REF has amyloid properties, contrary to SRPP. We investigated their structure by CD, TEM, ATR-FTIR and WAXS and neatly showed the presence of β-sheet organized aggregates for REF, whereas SRPP mainly fold as a helical protein. Both proteins are highly hydrophobic but differ in their interaction with lipid monolayers used to mimic the monomembrane surrounding the rubber particles. Ellipsometry experiments showed that REF seems to penetrate deeply into the monolayer and SRPP only binds to the lipid surface. These results could therefore clarify the role of these two paralogous proteins in latex production, either in the coagulation of natural rubber or in stress-related responses. To our knowledge, this is the first report of an amyloid formed from a plant protein. This suggests also the presence of functional amyloid in the plant kingdom. PMID:23133547

  11. Rubber elongation factor (REF), a major allergen component in Hevea brasiliensis latex has amyloid properties.

    PubMed

    Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Coulary-Salin, Bénédicte; Bentaleb, Ahmed; Cullin, Christophe; Deffieux, Alain; Peruch, Frédéric

    2012-01-01

    REF (Hevb1) and SRPP (Hevb3) are two major components of Hevea brasiliensis latex, well known for their allergenic properties. They are obviously taking part in the biosynthesis of natural rubber, but their exact function is still unclear. They could be involved in defense/stress mechanisms after tapping or directly acting on the isoprenoid biosynthetic pathway. The structure of these two proteins is still not described. In this work, it was discovered that REF has amyloid properties, contrary to SRPP. We investigated their structure by CD, TEM, ATR-FTIR and WAXS and neatly showed the presence of β-sheet organized aggregates for REF, whereas SRPP mainly fold as a helical protein. Both proteins are highly hydrophobic but differ in their interaction with lipid monolayers used to mimic the monomembrane surrounding the rubber particles. Ellipsometry experiments showed that REF seems to penetrate deeply into the monolayer and SRPP only binds to the lipid surface. These results could therefore clarify the role of these two paralogous proteins in latex production, either in the coagulation of natural rubber or in stress-related responses. To our knowledge, this is the first report of an amyloid formed from a plant protein. This suggests also the presence of functional amyloid in the plant kingdom.

  12. Postage for the messenger: Designating routes for Nuclear mRNA Export

    PubMed Central

    Natalizio, Barbara J.; Wente, Susan R.

    2013-01-01

    Transcription of messenger(m) RNA occurs in the nucleus, making the translocation of mRNA across the nuclear envelope (NE) boundary a critical determinant of proper gene expression and cell survival. A major mRNA export route occurs via the NXF1-dependent pathway through the nuclear pore complexes (NPCs) embedded in the NE. However, recent findings have discovered new evidence supporting the existence of multiple mechanisms for crossing the NE, including both NPC-mediated and NE budding-mediated pathways. An analysis of the trans-acting factors and cis components that define these pathways reveals shared elements as well as mechanistic differences. We review here the current understanding of the mechanisms that characterize each pathway and highlight the determinants that influence mRNA transport fate. PMID:23583578

  13. Prognostic significance of anaemia in patients with heart failure with preserved and reduced ejection fraction: results from the MAGGIC individual patient data meta-analysis.

    PubMed

    Berry, C; Poppe, K K; Gamble, G D; Earle, N J; Ezekowitz, J A; Squire, I B; McMurray, J J V; McAlister, F A; Komajda, M; Swedberg, K; Maggioni, A P; Ahmed, A; Whalley, G A; Doughty, R N; Tarantini, L

    2016-06-01

    Anaemia is common among patients with heart failure (HF) and is an important prognostic marker. We sought to determine the prognostic importance of anaemia in a large multinational pooled dataset of prospectively enrolled HF patients, with the specific aim to determine the prognostic role of anaemia in HF with preserved and reduced ejection fraction (HF-PEF and HF-REF, respectively). Individual person data meta-analysis. Patients with haemoglobin (Hb) data from the MAGGIC dataset were used. Anaemia was defined as Hb < 120 g/l in women and <130 g/l in men. HF-PEF was defined as EF ≥ 50%; HF-REF was EF < 50%. Cox proportional hazard modelling, with adjustment for clinically relevant variables, was undertaken to investigate factors associated with 3-year all-cause mortality. Thirteen thousand two hundred and ninety-five patients with HF from 19 studies (9887 with HF-REF and 3408 with HF-PEF). The prevalence of anaemia was similar among those with HF-REF and HF-PEF (42.8 and 41.6% respectively). Compared with patients with normal Hb values, those with anaemia were older, were more likely to have diabetes, ischaemic aetiology, New York Heart Association class IV symptoms, lower estimated glomerular filtration rate and were more likely to be taking diuretic and less likely to be taking a beta-blocker. Patients with anaemia had higher all-cause mortality (adjusted hazard ratio [aHR] 1.38, 95% confidence interval [CI] 1.25-1.51), independent of EF group: aHR 1.67 (1.39-1.99) in HF-PEF and aHR 2.49 (2.13-2.90) in HF-REF. Anaemia is an adverse prognostic factor in HF irrespective of EF. The prognostic importance of anaemia was greatest in patients with HF-REF. © The Author 2015. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Increased abundance of aromatase and follicle stimulating hormone receptor mRNA and decreased insulin-like growth factor-2 receptor mRNA in small ovarian follicles of cattle selected for twin births

    USDA-ARS?s Scientific Manuscript database

    Cattle genetically selected for twin ovulations and births (Twinner) exhibit increased ovarian follicular development, increased ovulation rate, and greater blood and follicular fluid IGF 1 concentrations compared with contemporary cattle not selected for twins (Control). Experimental objectives wer...

  15. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    PubMed Central

    Smits, A.; Funa, K.; Vassbotn, F. S.; Beausang-Linder, M.; af Ekenstam, F.; Heldin, C. H.; Westermark, B.; Nistér, M.

    1992-01-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1372158

  16. Digital quantification of gene expression using emulsion PCR.

    PubMed

    Shi, Xiaolong; Tang, Chao; Wang, Wei; Zhou, Dequan; Lu, Zuhong

    2010-01-01

    Here we describe a single-molecule quantitative assay of mRNA levels based on mRNA mediate-ligation and BEAMing (beads, emulsion, amplification, and magnetics) technique, which allows accurate and parallel measurement of multiple genes from a small amount of cells. In this method, a pair of oligos complementary target mRNA was used to probe transcripts for each gene of interest. The ligated products of oligos pair were clonally amplified on beads in millions of parallel compartmentalized droplets in a water-in-oil emulsion. The levels of each transcript within a sample were measured by counting the number of the correspondingly amplified beads which were immobilized on a glass surface. To demonstrate its utility, this method has been applied to the quantitation of the mRNA levels for two transcription factors, Klf4 and Sox5, and a housekeeping gene, Gapdh, in human leukemia K562 cells before and after induction with phorbol 12-myristate 13-acetate. Interestingly, we found a significant downregulation of the mRNA level of Sox5 after phorbol 12-myristate 13-acetate treatment. The mRNA mediate-ligation and BEAMing technique provides an accurate and sensitive way to quantify the amount of multiple specific mRNA in a very small number of cells, which may be valuable in the studies requiring precise and parallel quantization of multiple mRNA in the defined cell populations.

  17. Molecular basis of maple syrup urine disease: Novel mutations at the E1[alpha] locus that impair E1([alpha][sub 2][beta][sub 2]) assembly or decrease steady-state E1[alpha] mRNA levels of branched-chain [alpha]-keto acid dehydrogenase complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, J.L.; Fisher, C.R.; Chuang, D.T.

    1994-08-01

    The authors report the occurrence of three novel mutations in the E1[alpha] (BCKDHA) locus of the branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1[alpha] gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1[alpha] subunit. Both the 8-bp deletion and the single C insertionmore » generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1[alpha] mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1[alpha] subunit impairs its proper assembly with the normal E1[beta]. Unassembled as well as misassembled E1[alpha] and E1[beta] subunits are degraded in the cell. 32 refs., 8 figs.« less

  18. Laser-induced thermotherapy (LITT) elevates mRNA expression of connective tissue growth factor (CTGF) associated with reduced tumor growth of liver metastases compared to hepatic resection.

    PubMed

    Isbert, Christoph; Ritz, Jörg-Peter; Roggan, André; Schuppan, Detlef; Ajubi, Navid; Buhr, Heinz Johannes; Hohenberger, Werner; Germer, Christoph-Thomas

    2007-01-01

    Proliferation and synthesis of hepatocellular tissue after tissue damage are promoted by specific growth factors such as hepatic tissue growth factor (HGF) and connective growth factor (CTGF). Laser-induced thermotherapy (LITT) for the treatment of liver metastases is deemed to be a parenchyma-saving procedure compared to hepatic resection. The aim of this study was to compare the impact of LITT and hepatic resection on intrahepatic residual tumor tissue and expression levels of mRNA HGF/CTGF within liver and tumor tissue. Two independent adenocarcinomas (CC531) were implanted into 75 WAG rats, one in the right (untreated tumor) and one in the left liver lobe (treated tumor). The left lobe tumor was treated either by LITT or partial hepatectomy. The control tumor was submitted to in-situ hybridization of HGF and CTGF 24-96 hours and 14 days after intervention. Volumes of the untreated tumors prior to intervention were 38+/-8 mm(3) in group I (laser), 39 +/- 7 mm(3) in group II (resection), and 42 +/- 12 mm(3) in group III (control) and did not differ significantly (P > 0.05). Fourteen days after the intervention the mean tumor+/-SEM volume of untreated tumor in group I (laser) [223 +/- 36] was smaller than in group II (resection) [1233.28 +/- 181.52; P < 0.001], and in group III (control) [978.92 +/- 87.57; P < 0.003]. Forty-eight hours after the intervention intrahepatic mRNA expression level of HGF in group II (resection) was almost twofold higher than in group I (laser) [7.2 +/- 1.0 c/mf vs. 3.9 +/- 0.4 c/mf; P<0.01]. Fourteen days after the intervention intrahepatic mRNA expression level of CTGF in group I (laser) was higher than in group II (resection) [13.89 +/- 0.77 c/mf vs. 9.09 +/- 0.78 c/mf; P < 0.003]. LITT leads to a decrease of residual tumor growth in comparison to hepatic resection. Accelerated tumor growth after hepatic resection is associated with higher mRNA level of HGF and reduced tumor growth after LITT with higher mRNA level of CTGF. The increased CTGF-mediated regulation of ECM may cause reduced residual tumor growth after LITT. (c) 2006 Wiley-Liss, Inc.

  19. Expression of hypoxia-inducible factor 1α mRNA in hearts and lungs of broiler chickens with ascites syndrome induced by excess salt in drinking water.

    PubMed

    Zhang, Jianjun; Feng, Xuejian; Zhao, Lihong; Wang, Wei; Gao, Mingyu; Wu, Boning; Qiao, Jian

    2013-08-01

    Hypoxia-inducible factor 1 (HIF-1) is a ubiquitously expressed heterodimeric transcription factor that mediates adaptive responses to hypoxia in all nucleated cells of metazoan organisms. Hypoxia-inducible factor 1α is involved in the pathogenesis of pulmonary hypertension in humans and animals, but whether HIF-1α is associated with the development of pulmonary hypertension syndrome (also known as ascites syndrome, AS) in broiler chickens has not been determined. In the present paper we addressed this issue by measuring the expression of HIF-1α mRNA in hearts and lungs of broiler chickens with AS induced by excess salt in drinking water. We conducted 2 experiments. The first experiment was used to observe the effects of excess salt on AS incidence. The results indicated that total incidence (20%) of AS in excess salt group (receiving 0.3% NaCl in drinking water) was much higher compared with the control group (receiving tap water) over a 43-d time course (P < 0.05). In the second experiment, we determined mean pulmonary arterial pressure (mPAP), ascites heart index (AHI), and expression of HIF-1α mRNA in lungs and hearts of broiler chickens after the excess salt treatment. Our results showed that excess salt induced pulmonary hypertension (indicated by higher mPAP) and right ventricular hypertrophy (greater ascites heart index) in broiler chickens. Meanwhile, the expression levels of HIF-1α mRNA in lungs and hearts were significantly increased at different time points in the excess salt group compared with the control group. Linear correlation analysis showed that the expression of HIF-1α mRNA in lungs was significantly positively correlated with mPAP (correlation coefficient = 0.79, P < 0.001), demonstrating that expression of HIF-1α mRNA was gradually increased in the excess salt group with the increase of pulmonary arterial pressure. In addition, the ascitic chickens showed significantly higher transcriptional levels of HIF-1α in hearts and lungs, compared with the age-matched healthy chickens, respectively. Our findings hinted that HIF-1α might be associated with the development of AS induced by excess salt in drinking water in broiler chickens.

  20. New Insights into Disease-Specific Absence of Complement Factor H Related Protein C in Mouse Models of Spontaneous Autoimmune Diseases

    PubMed Central

    Mehta, Gaurav; Ferreira, Viviana P.; Pickering, Matthew C.; Skerka, Christine; Zipfel, Peter F.; Banda, Nirmal K.

    2014-01-01

    Complement factor H (CFH) protein is an inhibitor of the alternative pathway of complement (AP) both in the fluid phase and on the surface of host cells. Mouse and human complement factor H-related (CFHR) proteins also belong to the fH family of plasma glycoproteins. The main goal of the current study was to compare the presence of mRNA for two mCFHR proteins in spontaneously developing autoimmune diseases in mice such as dense deposit disease (DDD), diabetes mellitus (DM), basal laminar deposits (BLD), collagen antibody-induced arthrits (CAIA) and systemic lupus erythematosus (SLE). Here we report for the first time that the CFHR-C mRNA was universally absent in the liver from three strains of lupus-prone mice and in a diabetic-prone mouse strain. The mRNA levels (pg/ng) for CFH and CFHR-B in MRL-lpr/lpr, at 9 wks and 23 wks were 707.2 ± 44.4, 54.5 ± 5.75 and 729 ± 252.9, 74.04 ± 22.76 respectively. The mRNA levels for CFH and CFHR-B in NZB/NZW mice, at 9 wks and 54 wks were 579.9 ± 23.8, 58.8 ± 1.41 and 890.3 ± 135.2, 63.30 ± 9.2 respectively. CFHR-C protein was absent in the circulation of MRL-lpr/lpr and NZB/NZW mice before and after the development of lupus. Similarly, mRNA and protein for CFHR-C was universally absent in liver and other organs and in the circulation of NOD mice before and after the development of DM. In contrast, the mRNAs for CFH, CFHR-B and CFHR-C were universally present in the liver from mice with and without DDD, BLD and CAIA. The levels of mRNA for CFHR-B in mice with and without BLD were ~4 times higher than the mice with lupus. The complete absence of mRNA for CFHR-C in lupus and diabetic-prone strains indicates that polymorphic variation within the mouse CFHR family exists and raises the possibility that such variation contributes to lupus and diabetic phenotypes. PMID:25033230

  1. Skeletal muscle deiodinase type 2 regulation during illness in mice.

    PubMed

    Kwakkel, J; van Beeren, H C; Ackermans, M T; Platvoet-Ter Schiphorst, M C; Fliers, E; Wiersinga, W M; Boelen, A

    2009-11-01

    We have previously shown that skeletal muscle deiodinase type 2 (D2) mRNA (listed as Dio2 in MGI Database) is upregulated in an animal model of acute illness. However, human studies on the expression of muscle D2 during illness report conflicting data. Therefore, we evaluated the expression of skeletal muscle D2 and D2-regulating factors in two mouse models of illness that differ in timing and severity of illness: 1) turpentine-induced inflammation, and 2) Streptococcus pneumoniae infection. During turpentine-induced inflammation, D2 mRNA and activity increased compared to pair-fed controls, most prominently at day 1 and 2, whereas after S. pneumoniae infection D2 mRNA decreased. We evaluated the association of D2 expression with serum thyroid hormones, (de-)ubiquitinating enzymes ubiquitin-specific peptidase 33 and WD repeat and SOCS box-containing 1 (Wsb1), cytokine expression and activation of inflammatory pathways and cAMP pathway. During chronic inflammation the increased muscle D2 expression is associated with the activation of the cAMP pathway. The normalization of D2 5 days after turpentine injection coincides with increased Wsb1 and tumor necrosis factor alpha expression. Muscle interleukin-1beta (Il1b) expression correlated with decreased D2 mRNA expression after S. pneumoniae infection. In conclusion, muscle D2 expression is differentially regulated during illness, probably related to differences in the inflammatory response and type of pathology. D2 mRNA and activity increases in skeletal muscle during the acute phase of chronic inflammation compared to pair-fed controls probably due to activation of the cAMP pathway. In contrast, muscle D2 mRNA decreases 48 h after a severe bacterial infection, which is associated with local Il1b mRNA expression and might also be due to diminished food-intake.

  2. Regulation of Kruppel-like factor 4, 9, and 13 genes and the steroidogenic genes LDLR, StAR, and CYP11A in ovarian granulosa cells.

    PubMed

    Natesampillai, Sekar; Kerkvliet, Jason; Leung, Peter C K; Veldhuis, Johannes D

    2008-02-01

    Kruppel-like factors (KLFs) are important Sp1-like eukaryotic transcriptional proteins. The LDLR, StAR, and CYP11A genes exhibit GC-rich Sp1-like sites, which have the potential to bind KLFs in multiprotein complexes. We now report that KLF4, KLF9, and KLF13 transcripts are expressed in and regulate ovarian cells. KLF4 and 13, but not KLF9, mRNA expression was induced and then repressed over time (P < 0.001). Combined LH and IGF-I stimulation increased KLF4 mRNA at 2 h (P < 0.01), whereas LH decreased KLF13 mRNA at 6 h (P < 0.05), and IGF-I reduced KLF13 at 24 h (P < 0.01) compared with untreated control. KLF9 was not regulated by either hormone. Transient transfection of KLF4, KLF9, and KLF13 suppressed LDLR/luc, StAR/luc, and CYP11A/luc by 80-90% (P < 0.001). Histone-deacetylase (HDAC) inhibitors stimulated LDLR/luc five- to sixfold and StAR/luc and CYP11A/luc activity twofold (P < 0.001) and partially reversed suppression by all three KLFs (P < 0.001). Deletion of the zinc finger domain of KLF13 abrogated repression of LDLR/luc. Lentiviral overexpression of the KLF13 gene suppressed LDLR mRNA (P < 0.001) and CYP11A mRNA (P = 0.003) but increased StAR mRNA (P = 0.007). Collectively, these data suggest that KLFs may recruit inhibitory complexes containing HDAC corepressors, thereby repressing LDLR and CYP11A transcription. Conversely, KLF13 may recruit unknown coactivators or stabilize StAR mRNA, thereby explaining enhancement of in situ StAR gene expression. These data introduce new potent gonadal transregulators of genes encoding proteins that mediate sterol uptake and steroid biosynthesis.

  3. Gene Expression Analysis Implicates a Death Receptor Pathway in Schizophrenia Pathology

    PubMed Central

    Catts, Vibeke Sørensen; Shannon Weickert, Cynthia

    2012-01-01

    An increase in apoptotic events may underlie neuropathology in schizophrenia. By data-mining approaches, we identified significant expression changes in death receptor signaling pathways in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia, particularly implicating the Tumor Necrosis Factor Superfamily member 6 (FAS) receptor and the Tumor Necrosis Factor [ligand] Superfamily member 13 (TNFSF13) in schizophrenia. We sought to confirm and replicate in an independent tissue collection the noted mRNA changes with quantitative real-time RT-PCR. To test for regional and diagnostic specificity, tissue from orbital frontal cortex (OFC) was examined and a bipolar disorder group included. In schizophrenia, we confirmed and replicated significantly increased expression of TNFSF13 mRNA in the DLPFC. Also, a significantly larger proportion of subjects in the schizophrenia group had elevated FAS receptor expression in the DLPFC relative to unaffected controls. These changes were not observed in the bipolar disorder group. In the OFC, there were no significant differences in TNFSF13 or FAS receptor mRNA expression. Decreases in BH3 interacting domain death agonist (BID) mRNA transcript levels were found in the schizophrenia and bipolar disorder groups affecting both the DLPFC and the OFC. We tested if TNFSF13 mRNA expression correlated with neuronal mRNAs in the DLPFC, and found significant negative correlations with interneuron markers, parvalbumin and somatostatin, and a positive correlation with PPP1R9B (spinophilin), but not DLG4 (PSD-95). The expression of TNFSF13 mRNA in DLPFC correlated negatively with tissue pH, but decreasing pH in cultured cells did not cause increased TNFSF13 mRNA nor did exogenous TNFSF13 decrease pH. We concluded that increased TNFSF13 expression may be one of several cell-death cytokine abnormalities that contribute to the observed brain pathology in schizophrenia, and while increased TNFSF13 may be associated with lower brain pH, the change is not necessarily causally related to brain pH. PMID:22545112

  4. One-Week Exposure to a Free-Choice High-Fat High-Sugar Diet Does Not Interfere With the Lipopolysaccharide-Induced Acute Phase Response in the Hypothalamus of Male Rats.

    PubMed

    Belegri, Evita; Eggels, Leslie; la Fleur, Susanne E; Boelen, Anita

    2018-01-01

    Obesity has been associated with increased susceptibility to infection in humans and rodents. Obesity is also associated with low-grade hypothalamic inflammation that depends not only on body weight but also on diet. In the present study, we investigated if the bacterial endotoxin [lipopolysaccharide (LPS)]-induced acute phase response is aggravated in rats on a 1-week free-choice high-fat high-sugar (fcHFHS) diet and explained by diet-induced hypothalamic inflammation. Male Wistar rats were on an fcHFHS diet or chow for 1 week and afterwards intraperitoneally injected with LPS or saline. Hypothalamic inflammatory intermediates and plasma cytokines were measured after LPS. Both LPS and the fcHFHS diet altered hypothalamic Nfkbia mRNA and nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha (NFKBIA) protein levels, whereas Il1 β, Il6 , and Tnf α mRNA expression was solely induced upon LPS. We observed an interaction in hypothalamic Nfkbia and suppressor of cytokine signaling (SOCS) 3 mRNA upon LPS; both were higher in rats on a fcHFHS diet compared with chow animals. Despite this, plasma cytokine levels between fcHFHS diet-fed and chow-fed rats were similar after LPS administration. Consuming a fcHFHS diet but not LPS injections increased hypothalamic Atf4 (a cellular stress marker) mRNA expression, whereas Tlr4 mRNA was decreased only upon LPS. Our study does not support a role for diet-induced mild hypothalamic inflammation in the increased susceptibility to infection despite altered Nfkbia and Socs3 mRNA expression after the diet. Additional factors, related to increased fat mass, might be involved.

  5. Nitric Oxide Increases the Decay of Matrix Metalloproteinase 9 mRNA by Inhibiting the Expression of mRNA-Stabilizing Factor HuR

    PubMed Central

    Akool, El-Sayed; Kleinert, Hartmut; Hamada, Farid M. A.; Abdelwahab, Mohamed H.; Förstermann, Ulrich; Pfeilschifter, Josef; Eberhardt, Wolfgang

    2003-01-01

    Dysregulation of extracellular matrix turnover is an important feature of many inflammatory processes. Rat renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin-1 beta. We demonstrate that NO does strongly destabilize MMP-9 mRNA, since different luciferase reporter gene constructs containing the MMP-9 3′ untranslated region (UTR) displayed significant reduced luciferase activity in response to the presence of NO. Moreover, by use of an in vitro degradation assay we found that the cytoplasmic fractions of NO-treated cells contained a higher capacity to degrade MMP-9 transcripts than those obtained from control cells. An RNA electrophoretic mobility shift assay demonstrated that three of four putative AU-rich elements present in the 3′ UTR of MMP-9 were constitutively occupied by the mRNA-stabilizing factor HuR and that the RNA binding was strongly attenuated by the presence of NO. The addition of recombinant glutathione transferase-HuR prevented the rapid decay of MMP-9 mRNA, whereas the addition of a neutralizing anti-HuR antibody caused an acceleration of MMP-9 mRNA degradation. Furthermore, the expression of HuR mRNA and protein was significantly reduced by exogenously and endogenously produced NO. These inhibitory effects were mimicked by the cGMP analog 8-bromo-cGMP and reversed by LY-83583, an inhibitor of soluble guanylyl cyclase. These results demonstrate that NO acts in a cGMP-dependent mechanism to inhibit the expression level of HuR, thereby reducing the stability of MMP-9 mRNA. PMID:12832476

  6. Changes in the responsiveness of hypothalamic PK2 and PKR1 gene expression to fasting in developing male rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Tungalagsuvd, Altankhuu; Munkhzaya, Munkhsaikhan; Kawami, Takako; Yamasaki, Mikio; Murakami, Masahiro; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2014-11-01

    Prokineticin (PK2) and its receptors (PKRs) are expressed in several regions of the central nervous system, including the hypothalamus. It has been reported that PK2 inhibits food intake via PKR1 and that the hypothalamic PK2 mRNA levels of adult rodents were reduced by food deprivation. However, some hypothalamic factors do not exhibit sensitivity to undernutrition in the early neonatal period, but subsequently become sensitive to it during the neonatal to pre-pubertal period. In this study, we investigated the changes in the sensitivity of hypothalamic PK2 and PKR1 mRNA expression to fasting during the developmental period in male rats. Under the fed conditions, the rats' hypothalamic PK2 and/or PKR1 mRNA levels were higher on postnatal day (PND) 10 than on PND20 or PND30. In addition, the hypothalamic PK2 and/or PKR1 mRNA levels of the male rats were higher than those of the females at all examined ages (PND10, 20, and 30). Hypothalamic PK2 mRNA expression was decreased by 24h fasting at PND10 and 30, but not at PND20. In addition, hypothalamic PKR1 mRNA expression was decreased by 24h fasting at PND10, but not at PND20 or 30. These results indicate that both PK2 and PKR1 are sensitive to nutritional status in male rats and that this sensitivity has already been established by the early neonatal period. It can be speculated that the PK2 system might compensate for the immaturity of other appetite regulatory factors in the early neonatal period. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  7. Aryl Hydrocarbon Receptor-Dependent Retention of Nuclear HuR Suppresses Cigarette Smoke-Induced Cyclooxygenase-2 Expression Independent of DNA-Binding

    PubMed Central

    Zago, Michela; Sheridan, Jared A.; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR−/−) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR−/− mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR−/− mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target. PMID:24086407

  8. Effect of electroacupuncture on brain-derived neurotrophic factor mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury.

    PubMed

    Zhao, Jianxin; Xu, Huazhou; Tian, Yuanxiang; Hu, Manxiang; Xiao, Hongling

    2013-04-01

    This work aims to observe the effects of electroacupuncture on brain-derived neurotrophic factor (BDNF) mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury. The models of mouse cerebral ischemia-reperfusion injury were established. A total of 96 healthy mice were randomly assigned into 4 groups, namely, the sham surgery, model, model + electroacupuncture, and mode + hydergine groups. Mice in the model + electroacupuncture group were treated through electroacupuncture at the Shenshu (BL 23), Geshu (BL 17), and Baihui (GV 20) acupoints. Mice in the model+hydergine group were intragastrically administered with hydergine (0.77 mg/kg(-1) x day(-1)). The levels of BDNF mRNA expressions in the hippocampus were ana lyzed through a semi-quantitative reverse transcription-polymerase chain reaction assay on days 1 and 7 after the surgeries. BDNF mRNA expressions in the mouse hippocampus of the model group on days 1 and 7 after the surgery were higher than those of the sham surgery group (both P < 0.01). On days 1 and 7 of the electroacupuncture treatment, BDNF mRNA expression in the mouse hippocampus of the model + electroacupuncture group was significantly elevated compared with the model group (both P < 0.01) or the model + hydergine group (both P < 0.01). On days 1 and 7 of the hydergine treatment, BDNF mRNA expression in the mouse hippocampus of the model + hydergine group tended to increase compared with the model group; however, statistical significance was not achieved (both P > 0.05). Electroacupuncture treatment enhances endogenous BDNF expression, which may improve the survival environment for intracerebral neurons and inhibit the apoptosis of hippocampal cells.

  9. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis

    PubMed Central

    Natsuizaka, Mitsuteru; Naganuma, Seiji; Kagawa, Shingo; Ohashi, Shinya; Ahmadi, Azal; Subramanian, Harry; Chang, Sanders; Nakagawa, Kei J.; Ji, Xinjun; Liebhaber, Stephen A.; Klein-Szanto, Andres J.; Nakagawa, Hiroshi

    2012-01-01

    Insulin-like growth factor binding protein (IGFBP)-3 regulates cell proliferation and apoptosis in esophageal squamous cell carcinoma (ESCC) cells. We have investigated how the hypoxic tumor microenvironment in ESCC fosters the induction of IGFBP3. RNA interference experiments revealed that hypoxia-inducible factor (HIF)-1α, but not HIF-2α, regulates IGFBP3 mRNA induction. By chromatin immunoprecipitation and transfection assays, HIF-1α was found to transactivate IGFBP3 through a novel hypoxia responsive element (HRE) located at 57 kb upstream from the transcription start site. Metabolic labeling experiments demonstrated hypoxia-mediated inhibition of global protein synthesis. 7-Methyl GTP-cap binding assays suggested that hypoxia suppresses cap-dependent translation. Experiments using pharmacological inhibitors for mammalian target of rapamycin (mTOR) suggested that a relatively weak mTOR activity may be sufficient for cap-dependent translation of IGFBP3 under hypoxic conditions. Bicistronic RNA reporter transfection assays did not validate the possibility of an internal ribosome entry site as a potential mechanism for cap-independent translation for IGFBP3 mRNA. Finally, IGFBP3 mRNA was found enriched to the polysomes. In aggregate, our study establishes IGFBP3 as a direct HIF-1α target gene and that polysome enrichment of IGFBP3 mRNA may permit continuous translation under hypoxic conditions.—Natsuizaka, M., Naganuma, S., Kagawa, S., Ohashi, S., Ahmadi, A., Subramanian, H., Chang, S., Nakagawa, K. J., Ji, X., Liebhaber, S. A., Klein-Szanto, A. J., Nakagawa, H. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis. PMID:22415309

  10. Aryl hydrocarbon receptor-dependent retention of nuclear HuR suppresses cigarette smoke-induced cyclooxygenase-2 expression independent of DNA-binding.

    PubMed

    Zago, Michela; Sheridan, Jared A; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR(-/-) ) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR(-/-) mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR(-/-) mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.

  11. Structure of a human cap-dependent 48S translation pre-initiation complex

    PubMed Central

    Eliseev, Boris; Yeramala, Lahari; Leitner, Alexander; Karuppasamy, Manikandan; Raimondeau, Etienne; Huard, Karine; Alkalaeva, Elena; Aebersold, Ruedi

    2018-01-01

    Abstract Eukaryotic translation initiation is tightly regulated, requiring a set of conserved initiation factors (eIFs). Translation of a capped mRNA depends on the trimeric eIF4F complex and eIF4B to load the mRNA onto the 43S pre-initiation complex comprising 40S and initiation factors 1, 1A, 2, 3 and 5 as well as initiator-tRNA. Binding of the mRNA is followed by mRNA scanning in the 48S pre-initiation complex, until a start codon is recognised. Here, we use a reconstituted system to prepare human 48S complexes assembled on capped mRNA in the presence of eIF4B and eIF4F. The highly purified h-48S complexes are used for cross-linking/mass spectrometry, revealing the protein interaction network in this complex. We report the electron cryo-microscopy structure of the h-48S complex at 6.3 Å resolution. While the majority of eIF4B and eIF4F appear to be flexible with respect to the ribosome, additional density is detected at the entrance of the 40S mRNA channel which we attribute to the RNA-recognition motif of eIF4B. The eight core subunits of eIF3 are bound at the 40S solvent-exposed side, as well as the subunits eIF3d, eIF3b and eIF3i. elF2 and initiator-tRNA bound to the start codon are present at the 40S intersubunit side. This cryo-EM structure represents a molecular snap-shot revealing the h-48S complex following start codon recognition. PMID:29401259

  12. Molecular ontogenesis of digestive capability and associated endocrine control in Atlantic cod (Gadus morhua) larvae.

    PubMed

    Kortner, Trond M; Overrein, Ingrid; Oie, Gunvor; Kjørsvik, Elin; Bardal, Tora; Wold, Per-Arvid; Arukwe, Augustine

    2011-10-01

    We have profiled the expression of twelve genes, in order to provide an overview on the molecular ontogeny of digestive capability with the associated endocrine control during Atlantic cod (Gadus morhua) larval development. Enzyme activity levels for the key digestive enzyme, trypsin, was also measured. Specifically, transcripts for trypsin, amylase, lipolytic enzymes: bile salt activated lipase (BAL), phospholipase A2 (PLA2) and Acyl CoA dehydrogenase (ACADM), regulatory peptides: neuropeptide Y (NPY), orexin (OX) cholecystokinin (CCK) and cocaine and amphetamine-related transcript (CART), the somatotropic factors: growth hormone (GH), preprosomatostatin 1 (PPSS1) and thyroid hormone receptors (TRα and TRβ) were analyzed using quatitative (real-time) polymerase chain reaction (qPCR). Trypsin and BAL mRNA levels peaked at approximately day 17 and 25 post-hatch, respectively, and thereafter displayed a decreasing pattern until metamorphosis. GH mRNA levels decreased moderately from 3 to 33dph, and thereafter, an increase was observed until 46dph. TRα mRNA levels showed a fluctuating pattern peaking at day 39 post-hatch. TRβ mRNA levels were too low to obtain quantitative measurements. Amylase mRNA slightly increased from day 3 to 17 post-hatch, and thereafter showed a steady decrease until day 60. Interestingly, PLA2 mRNA expression showed a consistent increase throughout the study period, indicating an increasingly important role during larval development. Overall, data from this study indicate that cod larvae show differential developmental mode of expression patterns for key genes and endocrine factors that regulate digestive capability, growth and development. These data are discussed in relation to larval trypsin enzyme activity and previous reports for other teleost species. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Clinical significance of serum circulating insulin-like growth factor-1 (IGF-1) mRNA in hepatocellular carcinoma.

    PubMed

    Karabulut, S; Duranyıldız, D; Tas, F; Gezer, U; Akyüz, F; Serilmez, M; Ozgür, E; Yasasever, C T; Vatansever, S; Aykan, N F

    2014-03-01

    The principal aim of our study was to investigate the usefulness of serum protein and circulating mRNA of insulin-like growth factor-1 (IGF-1) as a diagnostic and prognostic tool in hepatocellular carcinoma (HCC). Fifty-four HCC patients and age- and sex-matched 20 healthy controls were enrolled into this study. Pretreatment serum IGF-1 and IGF-1 mRNA were determined by the solid-phase sandwich ELISA and quantitative RT-PCR method, respectively. The median age at diagnosis was 60 years, range 36-77 years; where majority of group were male (n = 48, 88.8%). All patients had cirrhotic history. Forty-six percent (n = 25) of patients had Child-Pugh score A, 30% (n = 16) had score B or C. All of the patients were treated with local therapies and none of them received sorafenib. The baseline serum IGF-1 mRNA levels were significantly higher in HCC patients than in the control group (p = 0.04), whereas no significant difference was observed for IGF-1 protein levels between the two group (p = 0.18). Patients with history of HBV infection, who were not treated, and who received multiple palliative treatment for HCC had higher serum IGF-1 mRNA levels (p = 0.03, 0.03, and 0.05, respectively). Poor performance status (p < 0.001), viral etiology of cirrhosis (p = 0.03), larger tumor size (p = 0.01), lower serum hemoglobin levels (p = 0.03), and not be treated for HCC (p = 0.001) related to worse survival. However, neither serum IGF-1 nor serum IGF-1 mRNA had significantly adverse effect on survival (p = 0.53 and 0.42, respectively).

  14. Neurotensin expression and release in human colon cancers.

    PubMed Central

    Evers, B M; Ishizuka, J; Chung, D H; Townsend, C M; Thompson, J C

    1992-01-01

    Neurotensin (NT), a distal gut peptide released by intraluminal fats, is trophic for normal small bowel and colonic mucosa. In addition, NT stimulates growth of certain colon cancers; the mechanism for this effect is not known. The purpose of this study was to determine whether human colon cancers (HCC) (1) express the mRNA for NT/neuromedin N (N), (2) produce NT peptide, and (3) express the mRNA for a functional NT receptor (NTR). RNA was extracted from four HCC cell lines in culture, nine HCC lines established in athymic nude mice, and from six HCC and adjacent normal mucosa from freshly resected operative specimens; the RNA was analyzed for NT/N mRNA by Northern hybridization with a complementary DNA probe. Neurotensin peptide content, NTR expression, and intracellular Ca++ ([Ca++]i) mobilization in response to NT were evaluated in three HCC cell lines (LoVo, HT29, HCT116). Neurotensin/N mRNA transcripts were identified in all four of the HCC cell lines and in one of nine HCC in nude mice. Neurotensin expression was found in two of six freshly resected HCC and in none of the six corresponding samples of normal mucosa. Neurotensin peptide was identified by RIA in LoVo, HT29, and HCT116. In addition, NTR mRNA was found in HT29 and HCT116. Neurotensin stimulated [Ca++]i mobilization in HCT116 (without serum) and in LoVo (with 0.25% serum). These findings demonstrate the presence of NT/N mRNA and NT peptide and the presence of a functional NTR in certain HCC. Neurotensin, a potent trophic factor for normal gut mucosa, may function as an autocrine growth factor in certain human colon cancers. Images FIG. 1. FIG. 4. PMID:1329682

  15. The presence of HBV mRNA in the fertilized in vitro embryo of HBV patients confirms vertical transmission of HBV via the ovum.

    PubMed

    Ye, F; Jin, Y; Kong, Y; Shi, J Z; Qiu, H T; Zhang, X; Zhang, S L; Lin, S M

    2013-05-01

    This study aimed to confirm that vertical transmission of hepatitis B virus (HBV) can occur via the infected ovum. Specimens studied were obtained from discarded test-tube embryos from mothers with chronic HBV infection who had received in vitro fertilization treatment. Single-cell reverse transcriptase-polymerase chain reaction was used to detect HBV mRNA in the embryos. HBV mRNA was detected in the cleavage embryos of patients with chronic HBV infection, with a detection rate of 13.2% (5/38). The level of serum HBV DNA was not related to the HBV mRNA positivity rates in embryos. In this study, HBV mRNA was detected in test-tube embryos from HBV-infected mothers who had received in vitro fertilization treatment. This confirms the theory of vertical transmission of HBV via the ovum, thereby providing an important theoretical basis for further study on the mechanism of HBV vertical transmission, influencing factors and blocking measures.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyoung Mi; Cho, Hana; Kim, Yoon Ki, E-mail: yk-kim@korea.ac.kr

    Highlights: Black-Right-Pointing-Pointer CDKN1A mRNA is a bona fide NMD substrate. Black-Right-Pointing-Pointer The uORF of CDKN1A mRNA is efficiently translated. Black-Right-Pointing-Pointer Translation of downstream main ORF is negatively regulated by translation of uORF in CDKN1A mRNA. -- Abstract: The first round of translation occurs on mRNAs bound by nuclear cap-binding complex (CBC), which is composed of nuclear cap-binding protein 80 and 20 (CBP80/20). During this round of translation, aberrant mRNAs are recognized and downregulated in abundance by nonsense-mediated mRNA decay (NMD), which is one of the mRNA quality control mechanisms. Here, our microarray analysis reveals that the level of cyclin-dependent kinasemore » inhibitor 1A (CDKN1A; also known as Waf1/p21) mRNAs increases in cells depleted of cellular NMD factors. Intriguingly, CDKN1A mRNA contains an upstream open reading frame (uORF), which is a NMD-inducing feature. Using chimeric reporter constructs, we find that the uORF of CDKN1A mRNA negatively modulates translation of the main downstream ORF. These findings provide biological insights into the possible role of NMD in diverse biological pathways mediated by CDKN1A.« less

  17. Identification of Relationships Between Interleukin 15 mRNA and Brain-Derived Neurotrophic Factor II mRNA Levels With Formal Components of Temperament in Asthmatic Patients.

    PubMed

    Panek, Michał; Jonakowski, Mateusz; Zioło, Jan; Pietras, Tadeusz; Wieteska, Łukasz; Małachowska, Beata; Mokros, Łukasz; Szemraj, Janusz; Kuna, Piotr

    2017-04-01

    Asthma is a chronic inflammatory and heterogeneous disease developing mostly through allergic inflammation, which modifies the expression of various cytokines and neurotrophins. Previous studies suggest the involvement of interleukin (IL)-15 in the regulation of immune response in asthma. Brain-derived neurotrophic factor (BDNF) II plays an important role as a regulator of development and survival of neurons as well as maintenance of their physiological activity. Chronic stress associated with asthma and elevated IL-15 mRNA and BDNFII mRNA levels may affect the mood and a subjective sensation of dyspnoea-inducing anxiety. Psychopathological variables and numerous cytokine/neurotrophin interactions influence the formation of temperament and strategies of coping with stress. The aim of the study was to identify the role of IL-15 mRNA and BDNFII mRNA expressions and their effect on components of temperament and strategies of coping with stress in asthmatics. A total of 352 subjects (176 healthy volunteers and 176 asthmatic patients) participated in the study. The Formal Characteristic of Behaviour-Temperament Inventory (FCB-TI), Coping Inventory for Stressful Situations (CISS), Beck Depression Inventory, State-Trait Anxiety Inventory, and Borg Rating of Perceived Exertion (RPE) Scale were applied in all the subjects. The expression of IL-15 and BDNFII gene was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Different levels of IL-15 and BDNFII expressions between healthy volunteers and patients were revealed in the study. IL-15 enhanced the BDNFII mRNA expression among patients with bronchial asthma. The depression level negatively correlated with the BDNFII mRNA expression. This neurotrophin modified the temperament variable. BDNFII significantly affected (proportional relationship) the level of briskness in asthmatic patients. BDNFII might influence the level and style of coping with stress (emotion-oriented style). This hypothesis requires further studies on protein functional models. The obtained data confirms the role of IL-15 and BDNFII in the pathomechanisms of depression and formation of selected traits defining the temperament in asthmatics.

  18. Relationship between serum IGF-1 and skeletal muscle IGF-1 mRNA expression to phosphocreatine recovery after exercise in obese men with reduced GH.

    PubMed

    Hamarneh, Sulaiman R; Murphy, Caitlin A; Shih, Cynthia W; Frontera, Walter; Torriani, Martin; Irazoqui, Javier E; Makimura, Hideo

    2015-02-01

    GH and IGF-1 are believed to be physiological regulators of skeletal muscle mitochondria. The objective of this study was to examine the relationship between GH/IGF-1 and skeletal muscle mitochondria in obese subjects with reduced GH secretion in more detail. Fifteen abdominally obese men with reduced GH secretion were treated for 12 weeks with recombinant human GH. Subjects underwent (31)P-magnetic resonance spectroscopy to assess phosphocreatine (PCr) recovery as an in vivo measure of skeletal muscle mitochondrial function and percutaneous muscle biopsies to assess mRNA expression of IGF-1 and mitochondrial-related genes at baseline and 12 weeks. At baseline, skeletal muscle IGF-1 mRNA expression was significantly associated with PCr recovery (r = 0.79; P = .01) and nuclear respiratory factor-1 (r = 0.87; P = .001), mitochondrial transcription factor A (r = 0.86; P = .001), peroxisome proliferator-activated receptor (PPAR)γ (r = 0.72; P = .02), and PPARα (r = 0.75; P = .01) mRNA expression, and trended to an association with PPARγ coactivator 1-α (r = 0.59; P = .07) mRNA expression. However, serum IGF-1 concentration was not associated with PCr recovery or any mitochondrial gene expression (all P > .10). Administration of recombinant human GH increased both serum IGF-1 (change, 218 ± 29 μg/L; P < .0001) and IGF-1 mRNA in muscle (fold change, 2.1 ± 0.3; P = .002). Increases in serum IGF-1 were associated with improvements in total body fat (r = -0.53; P = .04), trunk fat (r = -0.55; P = .03), and lean mass (r = 0.58; P = .02), but not with PCr recovery (P > .10). Conversely, increase in muscle IGF-1 mRNA was associated with improvements in PCr recovery (r = 0.74; P = .02), but not with body composition parameters (P > .10). These data demonstrate a novel association of skeletal muscle mitochondria with muscle IGF-1 mRNA expression, but independent of serum IGF-1 concentrations.

  19. Relationship Between Serum IGF-1 and Skeletal Muscle IGF-1 mRNA Expression to Phosphocreatine Recovery After Exercise in Obese Men With Reduced GH

    PubMed Central

    Hamarneh, Sulaiman R.; Murphy, Caitlin A.; Shih, Cynthia W.; Frontera, Walter; Torriani, Martin; Irazoqui, Javier E.

    2015-01-01

    Context: GH and IGF-1 are believed to be physiological regulators of skeletal muscle mitochondria. Objective: The objective of this study was to examine the relationship between GH/IGF-1 and skeletal muscle mitochondria in obese subjects with reduced GH secretion in more detail. Design: Fifteen abdominally obese men with reduced GH secretion were treated for 12 weeks with recombinant human GH. Subjects underwent 31P-magnetic resonance spectroscopy to assess phosphocreatine (PCr) recovery as an in vivo measure of skeletal muscle mitochondrial function and percutaneous muscle biopsies to assess mRNA expression of IGF-1 and mitochondrial-related genes at baseline and 12 weeks. Results: At baseline, skeletal muscle IGF-1 mRNA expression was significantly associated with PCr recovery (r = 0.79; P = .01) and nuclear respiratory factor-1 (r = 0.87; P = .001), mitochondrial transcription factor A (r = 0.86; P = .001), peroxisome proliferator-activated receptor (PPAR)γ (r = 0.72; P = .02), and PPARα (r = 0.75; P = .01) mRNA expression, and trended to an association with PPARγ coactivator 1-α (r = 0.59; P = .07) mRNA expression. However, serum IGF-1 concentration was not associated with PCr recovery or any mitochondrial gene expression (all P > .10). Administration of recombinant human GH increased both serum IGF-1 (change, 218 ± 29 μg/L; P < .0001) and IGF-1 mRNA in muscle (fold change, 2.1 ± 0.3; P = .002). Increases in serum IGF-1 were associated with improvements in total body fat (r = −0.53; P = .04), trunk fat (r = −0.55; P = .03), and lean mass (r = 0.58; P = .02), but not with PCr recovery (P > .10). Conversely, increase in muscle IGF-1 mRNA was associated with improvements in PCr recovery (r = 0.74; P = .02), but not with body composition parameters (P > .10). Conclusion: These data demonstrate a novel association of skeletal muscle mitochondria with muscle IGF-1 mRNA expression, but independent of serum IGF-1 concentrations. PMID:25375982

  20. Polymorphism at the REF(2)P Locus in DROSOPHILA MELANOGASTER: Preliminary Experiments concerning the Selection Mechanisms Involved in Its Maintenance

    PubMed Central

    Fleuriet, Annie

    1981-01-01

    It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition. PMID:6791986

  1. Air Pollution, Climate, and Heart Disease

    MedlinePlus

    ... CJ , Ezzati M , AlMazroa MA , Memish ZA . A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet . 2012 ; 380 : 2224 – 2260 . OpenUrl CrossRef ...

  2. SEIZURE ACTIVITY INVOLVED IN THE UP-REGULATION OF BDNF mRNA EXPRESSION BY ACTIVATION OF CENTRAL MU OPIOID RECEPTORS

    PubMed Central

    ZHANG, H. N.; KO, M. C.

    2009-01-01

    Chemical-induced seizures up-regulated brain-derived neurotrophic factor (BDNF) mRNA expression. Intracerebroventricular (i.c.v.) administration of endogenous opioids preferentially activating μ opioid receptor (MOR) could also increase BDNF mRNA expression. The aim of this study was to determine to what extent i.c.v. administration of synthetic MOR-selective agonists in rats can modulate both seizure activity and up-regulation of BDNF mRNA expression. Effects and potencies of i.c.v. administration of morphine and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), were directly investigated by scoring behavioral seizures and measuring BDNF mRNA expression. In addition, effects of the opioid receptor antagonist naloxone and antiepileptic drugs, diazepam, phenobarbital, and valproate, on i.c.v. MOR agonist-induced behavioral seizures and up-regulation of BDNF mRNA expression were determined. A single i.c.v. administration of morphine (10–100 μg) or DAMGO (0.15–1.5 μg) dose-dependently elicited behavioral seizures and increased BDNF mRNA expression in the widespread brain regions. However, subcutaneous administration of MOR agonists neither produced behavioral seizures nor increased BDNF mRNA expression. Pretreatment with naloxone 1 mg/kg significantly reduced behavioral seizure scores and the up-regulation of BDNF mRNA expression elicited by i.c.v. morphine or DAMGO. Similarly, diazepam 10 mg/kg and phenobarbital 40 mg/kg significantly blocked i.c.v. MOR agonist-induced actions. Pretreatment with valproate 300 mg/kg only attenuated behavioral seizures, but it did not affect morphine-induced increase of BDNF mRNA expression. This study provides supporting evidence that seizure activity plays an important role in the up-regulation of BDNF mRNA expression elicited by central MOR activation and that decreased inhibitory action of GABAergic system through the modulation on GABA receptor synaptic function by central MOR activation is involved in its regulation of BDNF mRNA expression. PMID:19303919

  3. Platelet-derived growth factor A mRNA in platelets is associated with the degree of hepatic fibrosis in chronic hepatitis C.

    PubMed

    Tanikawa, Aline Aki; Grotto, Rejane Maria Tommasini; Silva, Giovanni Faria; Ferrasi, Adriana Camargo; Sarnighausen, Valéria Cristina Rodrigues; Pardini, Maria Inês de Moura Campos

    2017-01-01

    Transforming growth factor beta 1 (TGFB1) and platelet-derived growth factor (PDGF) are the main cytokines related to hepatic fibrogenesis. RNA isolated from the platelets and hepatic tissue of 43 HCV carriers was used for quantitative polymerase chain reaction to determine TGFB1, PDGFA, and PDGFB RNA expression. The mRNA expression of PDGFA in platelets was significantly lower in the group with advanced fibrosis than in the group with early-stage fibrosis. TGFB1 was more frequently expressed in platelets than in hepatic tissue, which was different from PDGFB. A pathway mediated by overexpression of TGFB1 via PDGFA in megakaryocytes could be involved in the development of fibrosis.

  4. Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro.

    PubMed

    Miyanishi, Keita; Trindade, Michael C D; Lindsey, Derek P; Beaupré, Gary S; Carter, Dennis R; Goodman, Stuart B; Schurman, David J; Smith, R Lane

    2006-06-01

    This study examined the effects of intermittent hydrostatic pressure (IHP) and transforming growth factor-beta 3 on chondrogenesis of adult human mesenchymal stem cells (hMSCs) in vitro. Chondrogenic gene expression was determined by quantifying mRNA signal levels for SOX9, a transcription factor critical for cartilage development and the cartilage matrix proteins, aggrecan and type II collagen. Extracellular matrix production was determined by weight and histology. IHP was applied to hMSCs in pellet culture at a level of 10 MPa and a frequency of 1 Hz for 4 h per day for periods of 3, 7, and 14 days. hMSCs responded to addition of TGF-beta 3 (10 ng/mL) with a greater than 10-fold increase (p < 0.01) in mRNA levels for each, SOX9, type II collagen, and aggrecan during a 14-day culture period. Applying IHP in the presence of TGF-beta 3 further increased the mRNA levels for these proteins by 1.9-, 3.3-, and 1.6-fold, respectively, by day 14. Chondrogenic mRNA levels were increased with just exposure to IHP. Extracellular matrix deposition of type II collagen and aggrecan increased in the pellets as a function of treatment conditions and time of culture. This study demonstrated adjunctive effects of IHP on TGF-beta 3-induced chondrogenesis and suggests that mechanical loading can facilitate articular cartilage tissue engineering.

  5. Factors influencing alternative splice site utilization in vivo.

    PubMed Central

    Fu, X Y; Manley, J L

    1987-01-01

    To study factors that influence the choice of alternative pre-mRNA splicing pathways, we introduced plasmids expressing either wild-type or mutated simian virus 40 (SV40) early regions into tissue culture cells and then measured the quantities of small-t and large-T RNAs produced. One important element controlling splice site selection was found to be the size of the intron removed in the production of small-t mRNA; expansion of this intron (from 66 to 77 or more nucleotides) resulted in a substantial increase in the amount of small-t mRNA produced relative to large-T mRNA. This suggests that in the normal course of SV40 early pre-mRNA processing, large-T splicing is at a competitive advantage relative to small-t splicing because of the small size of the latter intron. Several additional features of the pre-mRNA that can influence splice site selection were also identified by analyzing the effects of mutations containing splice site duplications. These include the strengths of competing 5' splice sites and the relative positions of splice sites in the pre-mRNA. Finally, we showed that the ratio of small-t to large-T mRNA was 10 to 15-fold greater in human 293 cells than in HeLa cells or other mammalian cell types. These results suggest the existence of cell-specific trans-acting factors that can dramatically alter the pattern of splice site selection in a pre-mRNA. Images PMID:3029566

  6. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients

    PubMed Central

    Rao, Jagadeesh Sridhara; Kim, Hyung-Wook; Harry, Gaylia Jean; Rapoport, Stanley Isaac; Reese, Edmund Arthur

    2013-01-01

    Schizophrenia (SZ) is a progressive, neuropsychiatric disorder associated with cognitive impairment. A number of brain alterations have been linked to cognitive impairment, including neuroinflammation, excitotoxicity, increased arachidonic acid (AA) signaling and reduced synaptic protein. On this basis, we tested the hypothesis that SZ pathology is associated with these pathological brain changes. To do this, we examined postmortem frontal cortex from 10 SZ patients and 10 controls and measured protein and mRNA levels of cytokines, and astroglial, microglial, neuroinflammatory excitotoxic, AA cascade, apoptotic and synaptic markers. Mean protein and mRNA levels of interleukin-1β, tumor necrosis factor-α, glial acidic fibrillary protein (GFAP), a microglial marker CD11b, and nuclear factor kappa B subunits were significantly increased in SZ compared with control brain. Protein and mRNA levels of cytosolic and secretory phospholipase A2 and cyclooxygenase were significantly elevated in postmortem brains from SZ patients. N-methyl-D-aspartate receptor subunits 1 and 2B, inducible nitric oxide synthase and c-FOS were not significantly different. In addition, reduced protein and mRNA levels of brain-derived neurotrophic factor, synaptophysin and drebrin were found in SZ compared with control frontal cortex. Increased neuroinflammation and AA cascade enzyme markers with synaptic protein loss could promote disease progression and cognitive defects in SZ patients. Drugs that downregulate these changes might be considered for new therapies in SZ. PMID:23566496

  7. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toki, Yasumichi; Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp; Tanaka, Hiroki

    2016-08-05

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncatedmore » peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.« less

  8. Effect of iron on accumulation of exotoxin A-specific mRNA in Pseudomonas aeruginosa.

    PubMed Central

    Lory, S

    1986-01-01

    A DNA probe from an internal fragment of the exotoxin A structural gene was used to study the effects of selected culture conditions on steady-state levels of exotoxin-specific mRNA in Pseudomonas aeruginosa. Cells grown under conditions of iron deprivation began to synthesize and excrete the exotoxin A polypeptide during the late exponential phase of growth and throughout the stationary phase of growth, concomitant with a sharp increase in exotoxin A mRNA pools in P. aeruginosa cells. The addition of iron to the medium resulted in the failure of these cells to synthesize exotoxin A mRNA, despite significantly enhanced growth. The inhibition of the production of exotoxin A and the accumulation of its mRNA by iron was dose dependent, with a half-maximal inhibitory concentration of FeSO4 of 5 to 10 microM. A blockade of the initiation of transcription by rifampin resulted in the decay of exotoxin A mRNA, with a half-life of approximately 8 to 10 min, depending on the media used for growth. The addition of iron to cells actively engaged in exotoxin A synthesis also resulted in a gradual decrease in the amount of this mRNA in bacteria. However, the rate of decline of mRNA induced by iron was relatively slow (half-life, 90 min), with a considerable lag time between the iron addition and the first detectable effect on mRNA. While iron clearly appears to influence the production of exotoxin A at the transcriptional level, the molecular basis of this effect may involve several interacting factors affecting the initiation of transcription and perhaps mRNA turnover. Images PMID:2430950

  9. Low ABCB1 and high OCT1 levels play a favorable role in the molecular response to imatinib in CML patients in the community clinical practice.

    PubMed

    da Cunha Vasconcelos, Flavia; Mauricio Scheiner, Marcos Antonio; Moellman-Coelho, Arthur; Mencalha, André Luiz; Renault, Ilana Zalcberg; Rumjanek, Vivian Mary; Maia, Raquel Ciuvalschi

    2016-12-01

    Despite the favorable clinical evolution of patients with chronic myeloid leukemia (CML), resistance or intolerance to imatinib is present in approximately 35% of patients. Sokal score is a widely used risk factor, however efflux and influx transporters are provisional risk factors implicated in imatinib resistance. This study analyzed Sokal score, ABCB1, ABCG2 and OCT1 mRNA transporter expression levels as well as P-glycoprotein expression and efflux transporters activity to seek a possible correlation between these factors and the molecular response at 12 months from imatinib start as well as 8-year overall survival (OS). Low plus intermediate Sokal score correlated to optimal imatinib responses, as well as OS at 8-years, thus confirming the established role of Sokal score as a prognostic factor in CML patients. Low ABCB1 and high OCT1 mRNA levels were associated with an optimal molecular response, while the inverse levels were associated with non-responders (warning and failure) patients. Our results suggest that ABCB1 and OCT1 mRNA expressions may present biological relevance to identify responder and non-responder patients to imatinib treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Efficacy of Omega Fatty Acid Supplementation on mRNA Expression Level of Tumor Necrosis Factor Alpha in Patients with Gastric Adenocarcinoma.

    PubMed

    Hosseinzadeh, Asghar; Ardebili, Seyed Mojtaba Mohaddes

    2016-09-01

    Tumor necrosis factor alpha (TNF-α), a multifunctional cytokine, is involved in apoptosis, cell proliferation, cell survival, and inflammation. It plays a dual role in cancer development and progression. It has been revealed that polyunsaturated fatty acids (PUFAs) modulate the production and activity of TNF family cytokines. The objective of the present study was to evaluate the effect of PUFAs on messenger RNA expression levels of TNF-α in patients with gastric adenocarcinoma. Thirty-four chemotherapy-naive patients diagnosed with gastric adenocarcinoma were randomly divided into two groups. The first group (17 individuals) received cisplatin without supplements and the second group (17 individuals) received cisplatin plus orally administered PUFA supplements for 3 weeks, based on treatment strategies. The gastric biopsy samples were obtained from all participants before and after treatment, and TNF-α mRNA expression levels were evaluated by quantitative real-time PCR procedure. Our findings revealed that TNF-α mRNA expression is downregulated in group II, after receiving cisplatin and omega fatty acid supplement for 3 weeks. However, this difference is not statistically significant (p > 0.05). TNF-α mRNA expression did not show significant alteration in group I, after receiving cisplatin alone. Taken together, we concluded that omega fatty acids reduce TNF-α expression at the mRNA level in patients with gastric adenocarcinoma. These data suggest that TNF-α may act as a potential target for the therapy of human gastric adenocarcinoma.

  11. The RNA helicase RHAU (DHX36) suppresses expression of the transcription factor PITX1.

    PubMed

    Booy, Evan P; Howard, Ryan; Marushchak, Oksana; Ariyo, Emmanuel O; Meier, Markus; Novakowski, Stefanie K; Deo, Soumya R; Dzananovic, Edis; Stetefeld, Jörg; McKenna, Sean A

    2014-03-01

    RNA Helicase associated with AU-rich element (RHAU) (DHX36) is a DEAH (Aspartic acid, Glumatic Acid, Alanine, Histidine)-box RNA helicase that can bind and unwind G4-quadruplexes in DNA and RNA. To detect novel RNA targets of RHAU, we performed an RNA co-immunoprecipitation screen and identified the PITX1 messenger RNA (mRNA) as specifically and highly enriched. PITX1 is a homeobox transcription factor with roles in both development and cancer. Primary sequence analysis identified three probable quadruplexes within the 3'-untranslated region of the PITX1 mRNA. Each of these sequences, when isolated, forms stable quadruplex structures that interact with RHAU. We provide evidence that these quadruplexes exist in the endogenous mRNA; however, we discovered that RHAU is tethered to the mRNA via an alternative non-quadruplex-forming region. RHAU knockdown by small interfering RNA results in significant increases in PITX1 protein levels with only marginal changes in mRNA, suggesting a role for RHAU in translational regulation. Involvement of components of the microRNA machinery is supported by similar and non-additive increases in PITX1 protein expression on Dicer and combined RHAU/Dicer knockdown. We also demonstrate a requirement of argonaute-2, a key RNA-induced silencing complex component, to mediate RHAU-dependent changes in PITX1 protein levels. These results demonstrate a novel role for RHAU in microRNA-mediated translational regulation at a quadruplex-containing 3'-untranslated region.

  12. Modulation expression of tumor necrosis factor α in the radiation-induced lung injury by glycyrrhizic acid.

    PubMed

    Refahi, Soheila; Pourissa, Masoud; Zirak, Mohammad Reza; Hadadi, GholamHassan

    2015-01-01

    To evaluate the ability of glycyrrhizic acid (GLA) to reduce the tumor necrosis factor α (TNF-α), release on messenger ribonucleic acid (mRNA) and protein production in the lungs using GLA in response to irradiation were studied. The animals were divided into four groups: No treatment (NT group), GLA treatment only (GLA group), irradiation only (XRT group), and GLA treatment plus irradiation (GLA/XRT group). Rats were killed at different time points. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expression of TNF-α in the lungs (compared with non-irradiated lungs). An enzyme-linked immunosorbant assay (ELISA) assay was used to measure the TNF-α protein level. The TNF-α mRNA expression in the lungs of the XRT rats was clearly higher at all-time points compared to the NT rats. The TNF-α mRNA expression in the lungs of the GLA/XRT rats was lower at all-time points compared to the XRT rats. Release of the TNF-α on protein level in the lungs of the XRT rats increased at all-time points compared to the NT rats. In contrast to the XRT rats, the lungs of the GLA/XRT rats revealed a reduction on TNF-α protein level at 6 h after irradiation. This study has clearly showed the immediate down-regulation of the TNF-α mRNA and protein production in the lungs using GLA in response to irradiation.

  13. Modulation expression of tumor necrosis factor α in the radiation-induced lung injury by glycyrrhizic acid

    PubMed Central

    Refahi, Soheila; Pourissa, Masoud; Zirak, Mohammad Reza; Hadadi, GholamHassan

    2015-01-01

    To evaluate the ability of glycyrrhizic acid (GLA) to reduce the tumor necrosis factor α (TNF-α), release on messenger ribonucleic acid (mRNA) and protein production in the lungs using GLA in response to irradiation were studied. The animals were divided into four groups: No treatment (NT group), GLA treatment only (GLA group), irradiation only (XRT group), and GLA treatment plus irradiation (GLA/XRT group). Rats were killed at different time points. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expression of TNF-α in the lungs (compared with non-irradiated lungs). An enzyme-linked immunosorbant assay (ELISA) assay was used to measure the TNF-α protein level. The TNF-α mRNA expression in the lungs of the XRT rats was clearly higher at all-time points compared to the NT rats. The TNF-α mRNA expression in the lungs of the GLA/XRT rats was lower at all-time points compared to the XRT rats. Release of the TNF-α on protein level in the lungs of the XRT rats increased at all-time points compared to the NT rats. In contrast to the XRT rats, the lungs of the GLA/XRT rats revealed a reduction on TNF-α protein level at 6 h after irradiation. This study has clearly showed the immediate down-regulation of the TNF-α mRNA and protein production in the lungs using GLA in response to irradiation. PMID:26170556

  14. Characterizing the effects of inorganic acid and alkaline shock on the Staphylococcus aureus transcriptome and messenger RNA turnover.

    PubMed

    Anderson, Kelsi L; Roux, Christelle M; Olson, Matthew W; Luong, Thanh T; Lee, Chia Y; Olson, Robert; Dunman, Paul M

    2010-12-01

    Staphylococcus aureus pathogenesis can be attributed partially to its ability to adapt to otherwise deleterious host-associated stresses. Here, Affymetrix GeneChips® were used to examine the S. aureus responses to inorganic acid and alkaline shock and to assess whether stress-dependent changes in mRNA turnover are likely to facilitate the organism's ability to tolerate a pH challenge. The results indicate that S. aureus adapts to pH shock by eliciting responses expected of cells coping with pH alteration, including neutralizing cellular pH, DNA repair, amino acid biosynthesis, and virulence factor expression. Further, the S. aureus response to alkaline conditions is strikingly similar to that of stringent response-induced cells. Indeed, we show that alkaline shock stimulates the accumulation of the stringent response activator (p)ppGpp. The results also revealed that pH shock significantly alters the mRNA properties of the cell. A comparison of the mRNA degradation properties of transcripts whose titers either increased or decreased in response to a sudden pH change revealed that alterations in mRNA degradation may, in part, account for the changes in the mRNA levels of factors predicted to mediate pH tolerance. A set of small stable RNA molecules were induced in response to acid- or alkaline-shock conditions and may mediate adaptation to pH stress. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Inflammatory airway responses by nasal inoculation of suspended particulate matter in NC/Nga mice.

    PubMed

    Ogino, Keiki; Takahashi, Noriko; Kubo, Masayuki; Takeuchi, Akihito; Nakagiri, Motoharu; Fujikura, Yoshihisa

    2014-06-01

    To evaluate the allergic effect of airborne particulate matter (PM) on the airway, separated soluble supernatant (Sup) and insoluble precipitate (Pre) in suspended PM were inoculated into NC/Nga mice with a high sensitivity for mite allergens. Sup, Pre, or both Sup and Pre with or without pronase treatment were inoculated via the nasal route five times for sensitization and a challenge inoculation on the 11th day in NC/Nga mice. On the 14th day, mice were examined for airway hyperresponsiveness (AHR), bronchoalveolar lavage fluid (BALF) cell count, mRNA expression of Th1 and Th2 cytokines in the lung tissue, and histopathology. Synergistic effects of Sup and Pre were observed as increases in AHR and a histopathological change of Periodic acid-Schiff (PAS) staining. Increases in neutrophils, macrophages, and lymphocytes of BALF cells were dependent on Pre. The expression of IL-4 mRNA was increased by Sup, and those of IL-5 mRNA and Il-13 mRNA was increased by Sup and Pre. Augmented AHR, mRNA expression of IL-4, peribronchial inflammation, and PAS staining by Sup plus Pre were attenuated by treatment of Sup with pronase to digest proteins. These results suggest that some proteins of ambient PM may be important environmental factors for AHR and airway inflammation with the aid of insoluble particulates, although some soluble factors such as endotoxins cannot be ruled out. Copyright © 2012 Wiley Periodicals, Inc.

  16. Conceptual Modeling in Systems Biology Fosters Empirical Findings: The mRNA Lifecycle

    PubMed Central

    Dori, Dov; Choder, Mordechai

    2007-01-01

    One of the main obstacles to understanding complex biological systems is the extent and rapid evolution of information, way beyond the capacity individuals to manage and comprehend. Current modeling approaches and tools lack adequate capacity to model concurrently structure and behavior of biological systems. Here we propose Object-Process Methodology (OPM), a holistic conceptual modeling paradigm, as a means to model both diagrammatically and textually biological systems formally and intuitively at any desired number of levels of detail. OPM combines objects, e.g., proteins, and processes, e.g., transcription, in a way that is simple and easily comprehensible to researchers and scholars. As a case in point, we modeled the yeast mRNA lifecycle. The mRNA lifecycle involves mRNA synthesis in the nucleus, mRNA transport to the cytoplasm, and its subsequent translation and degradation therein. Recent studies have identified specific cytoplasmic foci, termed processing bodies that contain large complexes of mRNAs and decay factors. Our OPM model of this cellular subsystem, presented here, led to the discovery of a new constituent of these complexes, the translation termination factor eRF3. Association of eRF3 with processing bodies is observed after a long-term starvation period. We suggest that OPM can eventually serve as a comprehensive evolvable model of the entire living cell system. The model would serve as a research and communication platform, highlighting unknown and uncertain aspects that can be addressed empirically and updated consequently while maintaining consistency. PMID:17849002

  17. Effects of massage on the expression of proangiogenic markers in rat skin.

    PubMed

    Ratajczak-Wielgomas, Katarzyna; Kassolik, Krzysztof; Grzegrzolka, Jedrzej; Halski, Tomasz; Piotrowska, Aleksandra; Mieszala, Katarzyna; Wilk, Iwona; Podhorska-Okolow, Marzenna; Dziegiel, Piotr; Andrzejewski, Waldemar

    2018-05-17

    Massage is a physiotherapeutic treatment, commonly used in both therapy and restoration of normal body functions. The aim of this work was to determine the effects of skin massage on stimulating the expression of angiogenesis-initiating factors, i.e. VEGF-A, FGF-2 (bFGF) and CD34 and on skin regeneration processes. The study was conducted on 48 Buffalo strain rats, randomly divided into two groups. In the first group (M, the massaged group), massage was applied five times a week for 7 weeks. In the second study group (C, the control group), the massage was omitted. Massage consisted of spiral movements at the plantar surface of skin for 5 min on each rear extremity. The gene expression of proangiogenic factors, including VEGF-A, FGF-2, CD34 at the mRNA level was determined using real-time PCR. Immunohistochemistry was performed on paraffin sections of rat skin to determine VEGF-A, FGF-2 CD34 and Ki-67expression. An increase in mRNA expression in the skin of the rat's rear extremity for VEGF-A and FGF-2 in the first week of the experiment was shown in the M group compared with the control rats. The upregulation of CD34 mRNA expression was also observed in the M group. We observed positive correlations between VEGF-A mRNA expression and the expression of mRNA for FGF-2 and CD34, as well as correlation between the expression of mRNA for FGF-2 and CD34. The immunohistochemical expression of VEGF-A, FGF-2 and CD34 was at a much lower level in the skin of control rats relative to the skin of massaged animals. Moreover, significantly higher immunoreactivity was shown for nuclear protein Ki-67 in epidermal cells in the M group compared with the C group. Rat skin massage increased the expression of the main angiogenesis-stimulating factors and the proliferative activity of epidermal cells, which can stimulate skin regeneration and tissue repairing processes.

  18. A disintegrin and metalloproteinase 17 mRNA and protein expression in esophageal squamous cell carcinoma, as well as its clinicopathological factors and prognosis

    PubMed Central

    LIU, HONG-BIN; YANG, QI-CHANG; SHEN, YI; ZHU, YAN; ZHANG, XIAO-JUAN; CHEN, HAO

    2015-01-01

    The aim of the present study was to explore a disintegrin and metalloproteinase 17 (ADAM17) mRNA and protein expression in esophageal squamous cell carcinoma and its association with clinicopathological factors and prognosis. Through semi-quantitative reverse transcription polymerase chain reaction, the ADAM17 mRNA expression in 50 cases of esophageal squamous cell carcinoma and corresponding normal esophageal mucosa were detected. Using streptavidin peroxidase conjugated immunohistochemistry, ADAM17 protein levels were detected in 80 cases of esophageal squamous cell carcinoma and corresponding normal esophageal mucosa. A log rank test and the Cox proportional hazards model were used for the esophageal cancer survival analysis. ADAM17 mRNA expression levels in esophageal squamous cell carcinoma and corresponding normal esophageal mucosa were 0.937±0.241 and 0.225±0.077, respectively (P<0.01). ADAM17 mRNA expression in esophageal squamous cell carcinoma was correlated with lymph node metastasis (P<0.01) and tumor, node and metastasis (TNM) staging (P<0.05), however, it was not correlated with gender, age or histological grade (P>0.05). ADAM17 protein expression rates in esophageal squamous cell carcinoma and corresponding normal esophageal mucosa were 66.25 and 6.25% respectively, a difference that was statistically significant (P<0.01). In addition, ADAM17 protein expression in esophageal squamous cells was correlated with lymph node metastasis and TNM stage (P<0.05), while it was not correlated with gender, age or histological grade (P>0.05). ADAM17 protein expression and epidermal growth factor receptor (EGFR) protein expression were positively correlated (P<0.01). Lymph node metastasis, TNM stage, ADAM17 and EGFR protein expression may be used as independent prognostic indicators of esophageal squamous cell carcinoma (all P<0.05). ADAM17 mRNA and protein were highly expressed in esophageal squamous cell carcinoma; they have important roles in invasion and metastasis and a certain value in judging the prognosis of patients with esophageal squamous cell carcinoma. PMID:25351873

  19. Early transcriptional changes of retinal and choroidal TGFbeta-2, RALDH-2, and ZENK following imposed positive and negative defocus in chickens.

    PubMed

    Simon, Perikles; Feldkaemper, Marita; Bitzer, Michaela; Ohngemach, Sibylle; Schaeffel, Frank

    2004-08-24

    Imposing defocus to the retina results in compensatory changes of axial eye growth. It is not clear which factors initially contribute to this process and whether they act on the post-translational, translational, or transcriptional level. We have measured early changes in mRNA levels, in response to imposed negative and positive defocus, of the transcription factor ZENK, the retinoic acid synthesis enzyme RALDH-2, and the growth factor TGFbeta-2. Chickens 11 days of age were unilaterally treated with positive or negative spectacle lenses of 7 D power. After 0, 15, 30, and 120 min, mRNA was extracted from retina and choroid, and the concentration of the mRNAs of the three candidates was measured by quantitative real time PCR in both eyes. ZENK in the retina and RALDH-2 in the choroid displayed parallel signs of defocus dependent changes in mRNA levels after 15 or 30 min, respectively. ZENK mRNA levels were reduced in the retina after 15 min with both types of lenses but were then up regulated at 30 min with positive lenses and down regulated with negative lenses, similar to the previously observed changes in ZENK protein levels. Changes of RALDH-2 and TGFbeta-2 mRNA levels were confined to the choroid. Treatment with negative lenses resulted in a rapid (15 min) and persistent decrease in TGFbeta-2 mRNA concentration in the choroid. Negative lenses provoked parallel but less pronounced alterations in the open fellow eyes. Imposed defocus triggers extensive transcriptional changes of ZENK in the retina, and of TGFbeta-2 and RALHD-2 in the choroid. Changes in retina and choroid are rapid, show no phase delay with respect to each other, and can be considered, in the case of RALDH-2 and ZENK, as specific for the sign of imposed defocus. They occur prior to any morphological changes. This is consistent with a role in causing or controlling later changes in eye growth.

  20. Role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of Dr+ Escherichia coli receptor protein Decay Accelerating Factor (DAF or CD55) by Nitric oxide

    PubMed Central

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2012-01-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr+). The epithelial invasion of Dr+ E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by down-regulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5′-untranslated region and mapped NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5′-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3′-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. The NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. PMID:23176121

  1. Role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of Dr+ Escherichia coli receptor protein decay accelerating factor (DAF or CD55) by nitric oxide.

    PubMed

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2013-02-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. © 2012 The Authors Journal compilation © 2012 FEBS.

  2. Zinc-α2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia

    PubMed Central

    Bing, Chen; Bao, Yi; Jenkins, John; Sanders, Paul; Manieri, Monia; Cinti, Saverio; Tisdale, Michael J.; Trayhurn, Paul

    2004-01-01

    Zinc-α2-glycoprotein (ZAG), a 43-kDa protein, is overexpressed in certain human malignant tumors and acts as a lipid-mobilizing factor to stimulate lipolysis in adipocytes leading to cachexia in mice implanted with ZAG-producing tumors. Because white adipose tissue (WAT) is an endocrine organ secreting a wide range of protein factors, including those involved in lipid metabolism, we have investigated whether ZAG is produced locally by adipocytes. ZAG mRNA was detected by RT-PCR in the mouse WAT depots examined (epididymal, perirenal, s.c., and mammary gland) and in interscapular brown fat. In WAT, ZAG gene expression was evident in mature adipocytes and in stromal-vascular cells. Using a ZAG Ab, ZAG protein was located in WAT by Western blotting and immunohistochemistry. Mice bearing the MAC16-tumor displayed substantial losses of body weight and fat mass, which was accompanied by major increases in ZAG mRNA and protein levels in WAT and brown fat. ZAG mRNA was detected in 3T3-L1 cells, before and after the induction of differentiation, with the level increasing progressively after differentiation with a peak at days 8–10. Both dexamethasone and a β3 agonist, BRL 37344, increased ZAG mRNA levels in 3T3-L1 adipocytes. ZAG gene expression and protein were also detected in human adipose tissue (visceral and s.c.). It is suggested that ZAG is a new adipose tissue protein factor, which may be involved in the modulation of lipolysis in adipocytes. Overexpression in WAT of tumor-bearing mice suggests a local role for adipocyte-derived ZAG in the substantial reduction of adiposity of cancer cachexia. PMID:14983038

  3. [Expression of connective tissue growth factor in colorectal cancer and its association with prognosis].

    PubMed

    Sun, Zheng; Yang, Ping; Liang, Li-yuan; Zhang, Tong; Zhang, Wei-jian; Cao, Jie

    2012-11-01

    To investigate the expression of connective tissue growth factor (CTGF) in colorectal cancer(CRC) and its association with clinicopathologic parameters and overall survival rate. Fresh tumor tissues and matched distal normal colon tissues were collected from 92 patients diagnosed as CRC by surgical operation. The expression level of CTGF mRNA was quantified by quantitative reverse transcription PCR. Thirty out of 92 pairs of tissue specimens were selected randomly to detect CTGF protein by immunohistochemistry. All the cases were followed up to identify prognostic factors for survival. CTGF mRNA expression was up-regulated in CRC. The positive rate of CTGF protein expression tissues (73.3%) was significantly higher than that in the corresponding normal tissues (23.3%, P<0.01). CTGF expression was lower in patients with lymphatic metastasis or stage III/IIII disease (all P<0.05). A negative association was also observed between the CTGF protein positive rate and tumor infiltration depth (P<0.05). The relative expression of CTGF mRNA in tumor tissues was classified into high and low expression groups. The 5-year cumulative survival rate was lower in patients with low CTGF expression (29.3%) as compared to those with high CTGF expressions (68.3%) (P<0.01). Cox regression analysis revealed that the relative expression level of CTGF was independent factor of overall survival (RR=2.960, 95%CI:1.491-1.587, P<0.01). ROC curve analysis showed that sensitivity and specificity of CTGF mRNA expression for prediction of 5-year survival were 64.9% and 74.5%, respectively. The aberrant expression of CTGF is associated with the malignant biological behaviors of CRC. Low expression of CTGF is associated with worse prognosis of CRC.

  4. Peripheral mRNA expression of pluripotency markers in bipolar disorder and the effect of long-term lithium treatment.

    PubMed

    Ferensztajn-Rochowiak, Ewa; Tarnowski, Maciej; Samochowiec, Jerzy; Michalak, Michal; Ratajczak, Mariusz Z; Rybakowski, Janusz K

    2016-10-01

    The aim was to evaluate the peripheral mRNA expression of pluripotency master transcriptional factors such as octamer-binding transcription factor 4 (Oct4), sex-determining region Y-box 2 (Sox2) and homeobox protein Nanog, in patients with bipolar disorder (BD), and the effect of long-term lithium treatment. Fifteen BD patients (aged 53±7years) not treated with lithium, with duration of illness>10years, 15 BD patients (aged 55±6years) treated with lithium for 8-40 years (mean 16years) and 15 control subjects (aged 50±5years) were included. Assessment of the mRNA levels of pluripotency markers (Oct-4, Sox 2 and Nanog) was performed, using the Real-time quantitative reverse transcription PCR (RQ-PCR) procedure, and the number of CD34+ very small embryonic-like stem cells (VSELs) was measured by flow cytometric analysis. In those BD patients not treated with lithium the expression of all three pluripotency genes was significantly higher than that in the control subjects. Oct-4, Sox2 and Nanog also positively correlated with the number of CD34+ VSELs/[ul] in this group. In the lithium-treated patients the mRNA levels of Nanog were significantly higher than in the control individuals and correlated with the number and % of CD34+ VSELs. The overexpression of the pluripotency master transcriptional factors in patients with a long duration of BD not treated with lithium, may contribute to the pathogenesis of the illness and make them potential biological markers of BD. Long-term lithium treatment may attenuate these excessive regenerative processes, especially in relation to the transcription factors Oct-4 and Sox2. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  5. Ethanol- and acetaldehyde-induced cholinergic imbalance in the hippocampus of Aldh2-knockout mice does not affect nerve growth factor or brain-derived neurotrophic factor.

    PubMed

    Jamal, Mostofa; Ameno, Kiyoshi; Ruby, Mostofa; Miki, Takanori; Tanaka, Naoko; Nakamura, Yu; Kinoshita, Hiroshi

    2013-11-20

    Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), play an important role in the maintenance of cholinergic-neuron function. The objective of this study was to investigate whether ethanol (EtOH)- and acetaldehyde (AcH)- induced cholinergic effects would cause neurotrophic alterations in the hippocampus of mice. We used Aldh2 knockout (Aldh2-KO) mice, a model of aldehyde dehydrogenase 2 (ALDH2)-deficiency in humans, to examine the effects of acute administration of EtOH and the role of AcH. Hippocampal slices were collected and the mRNA and protein levels of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), NGF and BDNF were analyzed 30 min after the i.p. administration of EtOH (0.5, 1.0, or 2.0 g/kg). We show that treatment with 2.0 g/kg of EtOH decreased ChAT mRNA and protein levels in Aldh2-KO mice but not in wild-type (WT) mice, which suggests a role for AcH in the mechanism of action of EtOH. The administration of 2.0 g/kg of EtOH increased AChE mRNA in both strains of mice. EtOH failed to change the levels of NGF or BDNF at any dose. Aldh2-KO mice exhibited a distinctly lower expression of ChAT and a higher expression of NGF both at mRNA and protein levels in the hippocampus compared with WT mice. Our observations suggest that administration of EtOH and elevated AcH can alter cholinergic markers in the hippocampus of mice, and this effect did not change the levels of NGF or BDNF. © 2013 Elsevier B.V. All rights reserved.

  6. Perturbation of Staphylococcus aureus Gene Expression by the Enoyl-Acyl Carrier Protein Reductase Inhibitor AFN-1252

    PubMed Central

    Parsons, Joshua B.; Kukula, Maciej; Jackson, Pamela; Pulse, Mark; Simecka, Jerry W.; Valtierra, David; Weiss, William J.; Kaplan, Nachum

    2013-01-01

    This study examines the alteration in Staphylococcus aureus gene expression following treatment with the type 2 fatty acid synthesis inhibitor AFN-1252. An Affymetrix array study showed that AFN-1252 rapidly increased the expression of fatty acid synthetic genes and repressed the expression of virulence genes controlled by the SaeRS 2-component regulator in exponentially growing cells. AFN-1252 did not alter virulence mRNA levels in a saeR deletion strain or in strain Newman expressing a constitutively active SaeS kinase. AFN-1252 caused a more pronounced increase in fabH mRNA levels in cells entering stationary phase, whereas the depression of virulence factor transcription was attenuated. The effect of AFN-1252 on gene expression in vivo was determined using a mouse subcutaneous granuloma infection model. AFN-1252 was therapeutically effective, and the exposure (area under the concentration-time curve from 0 to 48 h [AUC0–48]) of AFN-1252 in the pouch fluid was comparable to the plasma levels in orally dosed animals. The inhibition of fatty acid biosynthesis by AFN-1252 in the infected pouches was signified by the substantial and sustained increase in fabH mRNA levels in pouch-associated bacteria, whereas depression of virulence factor mRNA levels in the AFN-1252-treated pouch bacteria was not as evident as it was in exponentially growing cells in vitro. The trends in fabH and virulence factor gene expression in the animal were similar to those in slower-growing bacteria in vitro. These data indicate that the effects of AFN-1252 on virulence factor gene expression depend on the physiological state of the bacteria. PMID:23459481

  7. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation

    PubMed Central

    Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.

    2016-01-01

    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614

  8. Hypoperfusion induces overexpression of beta-amyloid precursor protein mRNA in a focal ischemic rodent model.

    PubMed

    Shi, J; Yang, S H; Stubley, L; Day, A L; Simpkins, J W

    2000-01-17

    Silent stroke is one of the risk factors of dementia. In the present study, we used a novel focal ischemic animal model to investigate the effects of comparatively small changes of cerebral blood flow (CBF) on the expression of beta-amyloid precursor protein (APP) mRNA. Focal ischemia was achieved by introducing a 4-0 monofilament to the bifurcation of anterior and middle cerebral arteries. Brain samples were harvested from ischemic core and penumbra of cortices at 1, 4 and 7 days following ischemia. The expression of APP mRNA was assessed by RT-PCR. The CBF was decreased to 50% for 1 day after stroke and recovered to 90% at the fourth day after stroke. The changes of CBF were accompanied by an increase in the expression of APP mRNA. APP mRNA increased to 208% and 152% in the penumbra and core ischemic regions, respectively, on the fourth day after MCAO and remained high through the seventh day of ischemia. This study suggests brain hypoperfusion enhances APP mRNA expression and may contribute to the progression of cognitive impairment after silent stroke.

  9. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    PubMed

    Williams, C M; Coleman, J W

    1995-10-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.

  10. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    PubMed Central

    Williams, C M; Coleman, J W

    1995-01-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs. Images Figure 1 Figure 2 Figure 3 PMID:7490125

  11. Chemical and structural characterization of a model Post-Termination Complex (PoTC) for the ribosome recycling reaction: Evidence for the release of the mRNA by RRF and EF-G

    PubMed Central

    Iwakura, Nobuhiro; Yokoyama, Takeshi; Quaglia, Fabio; Mitsuoka, Kaoru; Mio, Kazuhiro; Shigematsu, Hideki; Shirouzu, Mikako; Kaji, Akira; Kaji, Hideko

    2017-01-01

    A model Post-Termination Complex (PoTC) used for the discovery of Ribosome Recycling Factor (RRF) was purified and characterized by cryo-electron microscopic analysis and biochemical methods. We established that the model PoTC has mostly one tRNA, at the P/E or P/P position, together with one mRNA. The structural studies were supported by the biochemical measurement of bound tRNA and mRNA. Using this substrate, we establish that the release of tRNA, release of mRNA and splitting of ribosomal subunits occur during the recycling reaction. Order of these events is tRNA release first followed by mRNA release and splitting almost simultaneously. Moreover, we demonstrate that IF3 is not involved in any of the recycling reactions but simply prevents the re-association of split ribosomal subunits. Our finding demonstrates that the important function of RRF includes the release of mRNA, which is often missed by the use of a short ORF with the Shine-Dalgarno sequence near the termination site. PMID:28542628

  12. Targeting of cytosolic mRNA to mitochondria: naked RNA can bind to the mitochondrial surface.

    PubMed

    Michaud, Morgane; Maréchal-Drouard, Laurence; Duchêne, Anne-Marie

    2014-05-01

    Mitochondria contain hundreds of proteins but only a few are encoded by the mitochondrial genome. The other proteins are nuclear-encoded and imported into mitochondria. These proteins can be translated on free cytosolic polysomes, then targeted and imported into mitochondria. Nonetheless, numerous cytosolic mRNAs encoding mitochondrial proteins are detected at the surface of mitochondria in yeast, plants and animals. The localization of mRNAs to the vicinity of mitochondria would be a way for mitochondrial protein sorting. The mechanisms responsible for mRNA targeting to mitochondria are not clearly identified. Sequences within the mRNA molecules (cis-elements), as well as a few trans-acting factors, have been shown to be essential for targeting of some mRNAs. In order to identify receptors involved in mRNA docking to the mitochondrial surface, we have developed an in vitro mRNA binding assay with isolated plant mitochondria. We show that naked mRNAs are able to bind to isolated mitochondria, and our results strongly suggest that mRNA docking to the plant mitochondrial outer membrane requires at least one component of TOM complex. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Dexamethasone enhances agonist induction of tissue factor in monocytes but not in endothelial cells.

    PubMed

    Bottles, K D; Morrissey, J H

    1993-06-01

    Stimulation of monocytic cells by inflammatory agents such as bacterial lipopolysaccharide or tumour necrosis factor-alpha leads to the rapid and transient expression of tissue factor, the major cellular initiator of the extrinsic coagulation cascade in both haemostasis and tissue inflammation. In this study we investigated whether the synthetic anti-inflammatory glucocorticoid, dexamethasone, would inhibit agonist induction of tissue factor expression in both monocytes and endothelial cells. Surprisingly, dexamethasone significantly enhanced the induction of tissue factor expression by peripheral blood mononuclear cells and an established monocytic cell line, THP-1, in response to lipopolysaccharide or tumour necrosis factor-alpha. However, unlike monocytic cells, dexamethasone did not enhance agonist induction of tissue factor in endothelial cells. Synergistic enhancement of tissue factor expression by dexamethasone was also reflected in tissue factor mRNA levels in THP-1 cells, but was not the result of improved TF mRNA stability. Synergism between bacterial lipopolysaccharide and glucocorticoid in the induction of monocyte effector function is extremely unusual and may help to explain the variable outcome of glucocorticoid treatment of septic shock.

  14. Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.

    PubMed

    Mimida, Naozumi; Kidou, Shin-Ichiro; Iwanami, Hiroshi; Moriya, Shigeki; Abe, Kazuyuki; Voogd, Charlotte; Varkonyi-Gasic, Erika; Kotoda, Nobuhiro

    2011-05-01

    Understanding the flowering process in apple (Malus × domestica Borkh.) is essential for developing methods to shorten the breeding period and regulate fruit yield. It is known that FLOWERING LOCUS T (FT) acts as a transmissible floral inducer in the Arabidopsis flowering network system. To clarify the molecular network of two apple FT orthologues, MdFT1 and MdFT2, we performed a yeast two-hybrid screen to identify proteins that interact with MdFT1. We identified several transcription factors, including two members of the TCP (TEOSINTE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL FACTORs) family, designated MdTCP2 and MdTCP4, and an Arabidopsis thaliana VOZ1 (Vascular plant One Zinc finger protein1)-like protein, designated MdVOZ1. MdTCP2 and MdVOZ1 also interacted with MdFT2 in yeast. The expression domain of MdTCP2 and MdVOZ1 partially overlapped with that of MdFT1 and MdFT2, most strikingly in apple fruit tissue, further suggesting a potential interaction in vivo. Constitutive expression of MdTCP2, MdTCP4 and MdVOZ1 in Arabidopsis affected plant size, leaf morphology and the formation of leaf primordia on the adaxial side of cotyledons. On the other hand, chimeric MdTCP2, MdTCP4 and MdVOZ1 repressors that included the ethylene-responsive transcription factors (ERF)-associated amphiphilic repression (EAR) domain motif influenced reproduction and inflorescence architecture in transgenic Arabidopsis. These results suggest that MdFT1 and/or MdFT2 might be involved in the regulation of cellular proliferation and the formation of new tissues and that they might affect leaf and fruit development by interacting with TCP- and VOZ-family proteins. DDBJ accession nos. AB531019 (MdTCP2a mRNA), AB531020 (MdTCP2b mRNA), AB531021 (MdTCP4a mRNA), AB531022 (MdTCP4b mRNA) and AB531023 (MdVOZ1a mRNA). © The Author 2011. Published by Oxford University Press. All rights reserved.

  15. Fibroblast growth factor-2 expression in the preimplantation equine conceptus and endometrium of pregnant and cyclic mares.

    PubMed

    de Ruijter-Villani, Marta; van Boxtel, Paula R M; Stout, Tom A E

    2013-12-01

    Uterine-derived growth factors and cytokines play essential roles in regulating preimplantation conceptus development. In several species, fibroblast growth factor-2 (FGF2) promotes embryogenesis, trophoblast cell migration, and adhesion. This study investigated mRNA expression for FGF2, its receptors (FGFR1-4), the activating factor FGF binding protein (FGF-BP) in equine endometrium and trophectoderm during early pregnancy and the estrous cycle, and localized FGF2 protein in both endometrium and conceptus tissues. FGF2, FGFRs1-4, and FGFBP mRNAs were expressed in endometrium throughout the estrous cycle and early pregnancy, and in days 14 to 28 conceptus membranes. FGF2 transcription was higher during estrus than on days 7 or 14 of diestrus, suggesting estrogen dependency. Endometrial expression of FGF2 mRNA and protein increased as pregnancy progressed from days 21 and day 28; FGF2 protein was localized predominantly in the luminal and glandular epithelium. FGF2 mRNA was detectable in trophectoderm from as early as day 14, and transcription and translation increased in day 21 and 28 allantochorion. FGF2 protein was localized mainly in the trophectoderm up to day 21 but was present in both trophectoderm and endoderm of day 28 allantochorion. FGFR1 mRNA was down-regulated in the endometrium at day 7 of diestrus but increased again by day 14. Gene expression for all of the FGFR2 splice variants, including FGFR2IIIc, was up-regulated during estrus. During early pregnancy, endometrial FGFR1 expression decreased, whereas FGFR2IIIc expression did not change. Conceptus mRNA expression for all FGFRs increased as pregnancy progressed. FGFBP expression remained unchanged in endometrium, but increased in the conceptus between days 14 and 28, suggesting a role in regulating FGF2 activity in the developing conceptus. We conclude that during weeks 3 and 4 of pregnancy, the equine endometrial epithelium produces FGF2, which may play a role in trophoblast development and adhesion. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study).

    PubMed

    Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki; Ewis, Ashraf; Ishikawa, Mitsuru; Shinohara, Yasuo; Baba, Yoshinobu

    2004-07-16

    Short 21-mer double-stranded/small-interfering RNAs (ds/siRNAs) were designed to target bcr-abl mRNA in chronic myelogenous leukemia. The ds/siRNAs were transfected into bcr-abl-positive K-562 (derived from blast crisis chronic myelogenous leukemia), using lipofectamine. Penetrating of ds/siRNAs into the cells was detected by fluorescent confocal microscopy, using fluorescein-labeled ds/siRNAs. The cells were treated with mix of three siRNA sequences (3 x 60 nM) during 6 days with three repetitive transfections. The siRNA-treatment was accompanied with significant reduction of bcr-abl mRNA, p210, protein tyrosine kinase activity and cell proliferation index. Treatment of cells with Glivec (during 8 days with four repetitive doses, 180 nM single dose) resulted in analogous reduction of cell proliferation activity, stronger suppression of protein tyrosine kinase activity, and very low reduction of p210. siRNA-mix and Glivec did not affect significantly the viability of normal lymphocytes. Microarray analysis of siRNA- and Glivec-treated K-562 cells demonstrated that both pathways of bcr-abl suppression were accompanied with overexpression and suppression of many different oncogenes, apoptotic/antiapoptotic and cell proliferation factors. The following genes of interest were found to decrease in relatively equal degree in both siRNA- and Glivec-treated cells: Bcd orf1 and orf2 proto-oncogene, chromatin-specific transcription elongation factor FACT 140-kDa subunit mRNA, gene encoding splicing factor SF1, and mRNA for Tec protein tyrosine kinase. siRNA-mix and Glivec provoked overexpression of the following common genes: c-jun proto-oncogene, protein kinase C-alpha, pvt-1 oncogene homologue (myc activator), interleukin-6, 1-8D gene from interferon-inducible gene family, tumor necrosis factor receptor superfamily (10b), and STAT-induced STAT inhibitor.

  17. Neuropilin-1 and neuropilin-2 are differentially expressed in human proteinuric nephropathies and cytokine-stimulated proximal tubular cells.

    PubMed

    Schramek, Herbert; Sarközi, Rita; Lauterberg, Christina; Kronbichler, Andreas; Pirklbauer, Markus; Albrecht, Rudolf; Noppert, Susie-Jane; Perco, Paul; Rudnicki, Michael; Strutz, Frank M; Mayer, Gert

    2009-11-01

    Neuropilin-1 (NRP1) and neuropilin-2 (NRP2) are transmembrane glycoproteins with large extracellular domains that interact with class 3 semaphorins, vascular endothelial growth factor (VEGF) family members, and ligands, such as hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-beta1 (TGF-beta1), and fibroblast growth factor2 (FGF2). Neuropilins (NRPs) have been implicated in tumor growth and vascularization, as novel mediators of the primary immune response and in regeneration and repair; however, their role in renal pathophysiology is largely unknown. Here, we report upregulation of tubular and interstitial NRP2 protein expression in patients with focal segmental glomerulosclerosis (FSGS). In an additional cohort of patients with minimal change disease (MCD), membranous nephropathy (MN), and FSGS, elevated NRP2 mRNA expression in kidney biopsies inversely correlated with estimated glomerular filtration rate (eGFR) at the time of biopsy. Furthermore, upregulation of NRP2 mRNA correlated with post-bioptic decline of kidney function. Expression of NRP1 and NRP2 in human proximal tubular cells (PTCs) was differentially affected after stimulation with TGF-beta1, interleukin-1beta (IL-1beta), and oncostatin M (OSM). Although the pro-fibrotic mediators, TGF-beta1 and IL-1beta, induced upregulation of NRP2 expression but downregulation of NRP1 expression, OSM stimulated the expression of both NRP1 and NRP2. Basal and OSM-induced NRP1 mRNA expression, as well as TGF-beta1-induced NRP2 mRNA and protein expression were partially mediated by MEK1/2-ERK1/2 signaling. This is the first report suggesting a differential role of NRP1 and NRP2 in renal fibrogenesis, and TGF-beta1, IL-1beta, and OSM represent the first ligands known to stimulate NRP2 expression in mammalian cells.

  18. Age-dependent Impairment of HIF-1α̣Expression in Diabetic Mice: Correction with Electroporation-facilitated Gene Therapy Increases Wound Healing, Angiogenesis, and Circulating Angiogenic Cells

    PubMed Central

    Liu, Lixin; Marti, Guy P.; Wei, Xiaofei; Zhang, Xianjie; Zhang, Huafeng; Liu, Ye V.; Nastai, Manuel; Semenza, Gregg L.; Harmon, John W.

    2009-01-01

    Wound healing is impaired in elderly patients with diabetes mellitus. We hypothesized that age-dependent impairment of cutaneous wound healing in db/db diabetic mice: (a) would correlate with reduced expression of the transcription factor hypoxia-inducible factor 1α (HIF-1α) as well as its downstream target genes; and (b) could be overcome by HIF-1α replacement therapy. Wound closure, angiogenesis, and mRNA expression in excisional skin wounds were analyzed and circulating angiogenic cells were quantified in db/db mice that were untreated or received electroporation-facilitated HIF-1α gene therapy. HIF-1α mRNA levels in wound tissue were significantly reduced in older (4–6 months) as compared to younger (1.5–2 months) db/db mice. Expression of mRNAs encoding the angiogenic cytokines vascular endothelial growth factor (VEGF), angiopoietin 1 (ANGPT1), ANGPT2, platelet derived growth factor B (PDGF-B), and placental growth factor (PLGF) was also impaired in wounds of older db/db mice. Intradermal injection of plasmid gWIZ-CA5, which encodes a constitutively active form of HIF-1α, followed by electroporation, induced increased levels of HIF-1α mRNA at the injection site on day 3 and increased levels of VEGF, PLGF, PDGF-B, and ANGPT2 mRNA on day 7. Circulating angiogenic cells in peripheral blood increased 10-fold in mice treated with gWIZ-CA5. Wound closure was significantly accelerated in db/db mice treated with gWIZ-CA5 as compared to mice treated with empty vector. Thus, HIF-1α gene therapy corrects the age-dependent impairment of HIF-1α expression, angiogenic cytokine expression, and circulating angiogenic cells that contribute to the age-dependent impairment of wound healing in db/db mice. PMID:18506785

  19. Dietary choline regulates antibacterial activity, inflammatory response and barrier function in the gills of grass carp (Ctenopharyngodon idella).

    PubMed

    Zhao, Hua-Fu; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-05-01

    An 8-week feeding trial was conducted to determine the effects of graded levels of choline (197-1795 mg/kg) on antibacterial properties, inflammatory status and barrier function in the gills of grass carp. The results showed that optimal dietary choline supplementation significantly improved lysozyme and acid phosphatase activities, complement component 3 (C3) content, and the liver expressed antimicrobial peptide 2 and Hepcidin mRNA levels in the gills of fish (P < 0.05). In addition, appropriate dietary choline significantly decreased the oxidative damage, which might be partly due to increase copper, zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) activities and increased glutathione content in the gills of fish (P < 0.05). Moreover, appropriate dietary choline significantly up-regulated the mRNA levels of interleukin 10 and transforming growth factor β1, Zonula occludens 1, Occludin, Claudin-b, c, 3 and 12, inhibitor of κBα, target of rapamycin, Cu/Zn-SOD, CAT, GR, GPx, GST and NF-E2-related factor 2 in the gills of fish (P < 0.05). Conversely, appropriate dietary choline significantly down-regulated the mRNA levels of pro-inflammatory cytokines, tumor necrosis factor α, interleukin 8, interferon γ, interleukin 1β, and related signaling factors, nuclear factor kappa B p65, IκB kinase β, IκB kinase γ, myosin light chain kinase and Kelch-like-ECH-associated protein 1a (Keap1a) in the gills of fish (P < 0.05). However, choline did not have a significant effect on the mRNA levels of IκB kinase α, Claudin-15 and Keap1b in the gills of fish. Collectively, appropriate dietary choline levels improved gill antibacterial properties and relative gene expression levels of tight junction proteins, and decreased inflammatory status, as well as up-regulated the mRNA levels of related signaling molecules in the gills of fish. Based on gill C3 content and AHR activity, the dietary choline requirements for young grass carp (266.5-787.1 g) were estimated to be 1191.0 and 1555.0 mg/kg diet, respectively. Copyright © 2016. Published by Elsevier Ltd.

  20. [Regional differences in the level of ERK1/2 phosphorylation and expression of the myogenic regulatory factors following electrostimulation with different mechanic and metabolic action on the gastrocnemius muscle].

    PubMed

    Borzykh, A A; Kuz'min, I V; Lysenko, E A; Vinogradova, O L

    2014-01-01

    Effect of high-frequency electrical stimulation of the sciatic nerve on ERK1/2 kinase phosphorylation and mRNA expression in MyoD (myogenic regulation factor) and myogenin in the red (RGM) and white (WGM) parts of the medial head in rat's m. gastrocnemius was studied. Two stimulation regimes were equalized both lengthwise and in total effort but differed in duration and number of contractions and, therefore, in mechanic and metabolic effects on the muscle. It was shown that growth of the number of phosphorylated ERK1/2 was particularly high in WCM due to application of the protocol for multiple short-time contractions. Whatever the stimulation regime, MyoD mRNA expression in RGM and WGM increases to the same extent, whereas myogenin mRNA expression does not change. Consequently, the regime with the predominantly mechanic effect is favorable to activation of the ERK signaling pathway in glycolytic myofibers.

  1. Interdependence between transcription and mRNP processing and export, and its impact on genetic stability.

    PubMed

    Luna, Rosa; Jimeno, Sonia; Marín, Mercedes; Huertas, Pablo; García-Rubio, María; Aguilera, Andrés

    2005-06-10

    The conserved eukaryotic THO-TREX complex acts at the interface between transcription and mRNA export and affects transcription-associated recombination. To investigate the interdependence of nuclear mRNA processes and their impact on genomic integrity, we analyzed transcript accumulation and recombination of 40 selected mutants covering representative steps of the biogenesis and export of the messenger ribonucleoprotein particle (mRNP). None of the mutants analyzed shared the strong transcript-accumulation defect and hyperrecombination of THO mutants. Nevertheless, mutants in 3' end cleavage/polyadenylation, nuclear exosome, and mRNA export showed a weak but significant effect on recombination and transcript accumulation. Mutants of the nuclear exosome (rrp6) and 3' end processing factors (rna14 and rna15) showed inefficient transcription elongation and genetic interactions with THO. The results suggest a tight interdependence among mRNP biogenesis steps and transcription and an unexpected effect of the nuclear exosome and the cleavage/polyadenylation factors on transcription elongation and genetic integrity.

  2. mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway.

    PubMed

    Ávila, Andréa Rodrigues; Cabezas-Cruz, Alexjandro; Gissot, Mathieu

    2018-01-25

    Control of gene expression is crucial for parasite survival and is the result of a series of processes that are regulated to permit fine-tuning of gene expression in response to biological changes during the life-cycle of apicomplexan parasites. Control of mRNA nuclear export is a key process in eukaryotic cells but is poorly understood in apicomplexan parasites. Here, we review recent knowledge regarding this process with an emphasis on T. gondii. We describe the presence of divergent orthologs and discuss structural and functional differences in export factors between apicomplexans and other eukaryotic lineages. Undoubtedly, the use of the CRISPR/Cas9 system in high throughput screenings associated with the discovery of mRNA nuclear export complexes by proteomic analysis will contribute to identify these divergent factors. Ligand-based or structure-based strategies may be applied to investigate the potential use of these proteins as targets for new antiprotozoal agents.

  3. Effects of different magnitudes of mechanical strain on Osteoblasts in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Lin; Lin Zhu; Li Yongming

    2006-05-26

    In addition to systemic and local factors, mechanical strain plays a crucial role in bone remodeling during growth, development, and fracture healing, and especially in orthodontic tooth movement. Although many papers have been published on the effects of mechanical stress on osteoblasts or osteoblastic cells, little is known about the effects of different magnitudes of mechanical strain on such cells. In the present study, we investigated how different magnitudes of cyclic tensile strain affected osteoblasts. MC3T3-E1 osteoblastic cells were subjected to 0%, 6%, 12% or 18% elongation for 24 h using a Flexercell Strain Unit, and then the mRNA andmore » protein expressions of osteoprotegerin (OPG) and receptor activator of nuclear factor-{kappa}B ligand (RANKL) were examined. The results showed that cyclic tensile strain induced a magnitude-dependent increase (0%, 6%, 12%, and 18%) in OPG synthesis and a concomitant decrease in RANKL mRNA expression and sRANKL release from the osteoblasts. Furthermore, the induction of OPG mRNA expression by stretching was inhibited by indomethacin or genistein, and the stretch-induced reduction of RANKL mRNA was inhibited by PD098059. These results indicate that different magnitudes of cyclic tensile strain influence the biological behavior of osteoblasts, which profoundly affects bone remodeling.« less

  4. Cell-autonomous CCL5 transcription by memory CD8 T cells is regulated by IL-4.

    PubMed

    Marçais, Antoine; Coupet, Charles-Antoine; Walzer, Thierry; Tomkowiak, Martine; Ghittoni, Raffaella; Marvel, Jacqueline

    2006-10-01

    Immunological memory is associated with the display of improved effector functions. The maintenance by CD8 memory cells of high levels of untranslated CCL5 mRNA allows these cells to immediately secrete this chemokine upon Ag stimulation. Untranslated mRNA storage is a newly described process supporting the immediate display of an effector function by memory lymphocytes. We have tested the capacity of different cytokines to regulate the memorization of CCL5 by memory CD8 T cells. We found that IL-4 treatment of murine CD8 T cells impairs immediate CCL5 secretion capacity by inhibiting CCL5 mRNA transcription through a STAT6-dependent pathway. The inhibition by IL-4 is reversible, as memory CD8 T cells reconstitute their CCL5 mRNA stores and reacquire their immediate CCL5 secretion capacity when IL-4 is withdrawn. This recovery is cell autonomous because it proceeds in culture medium in the absence of exogenous growth factors, suggesting that CCL5 expression by memory CD8 T cells is a default process. Overall, these results indicate that the expression of CCL5 is an intrinsic property acquired by memory CD8 T cells that is regulated by environmental factors.

  5. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation.

    PubMed

    Chennupati, Vijaykumar; Veiga, Diogo Ft; Maslowski, Kendle M; Andina, Nicola; Tardivel, Aubry; Yu, Eric Chi-Wang; Stilinovic, Martina; Simillion, Cedric; Duchosal, Michel A; Quadroni, Manfredo; Roberts, Irene; Sankaran, Vijay G; MacDonald, H Robson; Fasel, Nicolas; Angelillo-Scherrer, Anne; Schneider, Pascal; Hoang, Trang; Allam, Ramanjaneyulu

    2018-04-02

    Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond-Blackfan anemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor 1 (RNH1) is a ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here, we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 and E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knockdown in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis.

  6. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha ) mRNA induction. Evidence for selective destabilization of TNF-alpha transcripts.

    PubMed

    Rutault, K; Hazzalin, C A; Mahadevan, L C

    2001-03-02

    Tumor necrosis factor-alpha (TNF-alpha) is a potent proinflammatory cytokine whose synthesis and secretion are implicated in diverse pathologies. Hence, inhibition of TNF-alpha transcription or translation and neutralization of its protein product represent major pharmaceutical strategies to control inflammation. We have studied the role of ERK and p38 mitogen-activated protein (MAP) kinase in controlling TNF-alpha mRNA levels in differentiated THP-1 cells and in freshly purified human monocytes. We show here that it is possible to produce virtually complete inhibition of lipopolysaccharide-stimulated TNF-alpha mRNA accumulation by using a combination of ERK and p38 MAP kinase inhibitors. Furthermore, substantial inhibition is achievable using combinations of 1 microm of each inhibitor, whereas inhibitors used individually are incapable of producing complete inhibition even at high concentrations. Finally, addressing mechanisms involved, we show that inhibition of p38 MAP kinase selectively destabilizes TNF-alpha transcripts but does not affect degradation of c-jun transcripts. These results impinge on the controversy in the literature surrounding the mode of action of MAP kinase inhibitors on TNF-alpha mRNA and suggest the use of combinations of MAP kinase inhibitors as an effective anti-inflammatory strategy.

  7. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  8. Mitotic inheritance of mRNA facilitates translational activation of the osteogenic-lineage commitment factor Runx2 in progeny of osteoblastic cells

    PubMed Central

    Varela, Nelson; Aranguiz, Alejandra; Lizama, Carlos; Sepulveda, Hugo; Antonelli, Marcelo; Thaler, Roman; Moreno, Ricardo D.; Montecino, Martin; Stein, Gary S.; van Wijnen, Andre J.; Galindo, Mario

    2017-01-01

    Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that ‘bookmark’ the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis. PMID:26381402

  9. [Polyadenylated RNA and mRNA export factors in extrachromosomal nuclear domains of vitellogenic oocytes of the insect Tenebrio molitor].

    PubMed

    Bogoliubov, D S; Kiselev, A M; Shabel'nikov, S V; Parfenov, V N

    2012-01-01

    The nucleus ofvitellogenic oocytes of the yellow mealworm, Tenebrio molitor, contains a karyosphere that consists of the condensed chromatin embedded in an extrachromosomal fibrogranular material. Numerous nuclear bodies located freely in the nucleoplasm are also observed. Amongst these bodies, counterparts of nuclear speckles (= interchromatin granule clusters, IGCs) can be identified by the presence of the marker protein SC35. Microinjections of fluorescently tagged methyloligoribonucleotide probes 2'-O-Me(U)22, complementary to poly(A) tails of RNAs, revealed poly(A)+ RNA in the vast majority of IGCs. We found that all T. molitor oocyte IGCs contain heterogeneous ribonucleoprotein (hnRNP) core protein Al that localizes to IGCs in an RNA-dependent manner. The extrachromosomal material of the karyosphere and a part of nucleoplasmic IGCs also contain the adapter protein Aly that is known to provide a link between pre-mRNA splicing and mRNA export. The essential mRNA export factor/receptor NXF1 was observed to colocalize with Aly. In nucleoplasmic IGCs, NXF1 was found to localize in an RNA-dependent manner whereas it is RNA-independently located in the extrachromosomal material of the karyosphere. We believe our data suggest on a role of the nucleoplasmic IGCs in mRNA biogenesis and retention in a road to nuclear export.

  10. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat

    PubMed Central

    Xiao, Jun; Xu, Shujuan; Li, Chunhua; Xu, Yunyuan; Xing, Lijing; Niu, Yuda; Huan, Qing; Tang, Yimiao; Zhao, Changping; Wagner, Doris; Gao, Caixia; Chong, Kang

    2014-01-01

    Vernalization, sensing of prolonged cold, is important for seasonal flowering in eudicots and monocots. While vernalization silences a repressor (FLC, MADS-box transcription factor) in eudicots, it induces an activator (TaVRN1, an AP1 clade MADS-box transcription factor) in monocots. The mechanism for TaVRN1 induction during vernalization is not well understood. Here we reveal a novel mechanism for controlling TaVRN1 mRNA accumulation in response to prolonged cold sensing in wheat. The carbohydrate-binding protein VER2, a jacalin lectin, promotes TaVRN1 upregulation by physically interacting with the RNA-binding protein TaGRP2. TaGRP2 binds to TaVRN1 pre-mRNA and inhibits TaVRN1 mRNA accumulation. The physical interaction between VER2 and TaGRP2 is controlled by TaGRP2 O-GlcNAc modification, which gradually increases during vernalization. The interaction between VER2 and O-GlcNAc-TaGRP2 reduces TaGRP2 protein accumulation in the nucleus and/or promotes TaGRP2 dissociation from TaVRN1, leading to TaVRN1 mRNA accumulation. Our data reveal a new mechanism for sensing prolonged cold in temperate cereals. PMID:25091017

  11. Variable liver fat concentration as a proxy for body fat mobilization postpartum has minor effects on insulin-induced changes in hepatic gene expression related to energy metabolism in dairy cows.

    PubMed

    Weber, C; Schäff, C T; Kautzsch, U; Börner, S; Erdmann, S; Bruckmaier, R M; Röntgen, M; Kuhla, B; Hammon, H M

    2017-02-01

    The liver plays a central role in adaptation for energy requirements around calving, and changes in the effects of insulin on hepatic energy metabolism contribute to metabolic adaptation in dairy cows. Hepatic insulin effects may depend on body fat mobilization. The objective of this study was to investigate the effects of insulin on the hepatic gene expression of enzymes involved in energy metabolism and factors related to nutrition partitioning in cows with high and low total liver fat concentration (LFC) after calving. Holstein cows were retrospectively grouped according to their LFC after calving as a proxy for body fat mobilization. Cows were classified as low (LLFC; LFC <24% fat/dry matter; n = 9) and high (HLFC; LFC >24.4% fat/dry matter; n = 10) fat-mobilizing after calving. Euglycemic-hyperinsulinemic clamps [6 mU/(kg × min) of insulin for 6 h] were performed in wk 5 antepartum (ap) and wk 3 postpartum (pp). Before and at the end of the euglycemic-hyperinsulinemic clamps, liver biopsies were taken to measure the mRNA abundance of enzymes involved in carbohydrate and lipid metabolism, expression related to the somatotropic axis, and adrenergic and glucocorticoid receptors. The mRNA abundance of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase (PEPCK; PCK1), acyl-CoA-dehydrogenase very long chain (ACADVL), and hydroxyl-methyl-glutaryl-CoA-synthase 1 increased, but the mRNA abundance of solute carrier family 2 (SLC2A2 and SLC2A4), growth hormone receptor 1A (GHR1A), insulin-like growth factor 1 (IGF1), sterol regulatory element binding factor 1, adrenoceptor α 1A, and glucocorticoid receptor decreased from ap to pp. Insulin treatment was associated with decreased PCK1, mitochondrial PEPCK, glucose-6-phosphatase, propionyl-CoA-carboxylase α, carnitine-palmitoyl-transferase 1A, ACADVL, and insulin receptor mRNA, but increased IGF1 and SLC2A4 mRNA ap and pp and GHR1A mRNA pp. The mRNA abundance of SLC2A4 was greater, and the mRNA abundance of GHR1A and IGF1 tended to be lower in LLFC than in HLFC. Administration of insulin, albeit at a supraphysiological dose, was associated with inhibition of gene expression related to glucose production and β-oxidation, but we observed variable effects in the degree of insulin depression of individual genes. Insulin status is important for regulation of nutrient partitioning, but different LFC pp had very little influence on changes in hepatic gene expression following administration of insulin. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export

    PubMed Central

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M.; Brandl, Holger; Schwich, Oliver D.; Steiner, Michaela C.; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M.

    2016-01-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends. PMID:26944680

  13. Hepcidin regulation in wild-type and Hfe knockout mice in response to alcohol consumption: evidence for an alcohol-induced hypoxic response.

    PubMed

    Heritage, Mandy L; Murphy, Therese L; Bridle, Kim R; Anderson, Gregory J; Crawford, Darrell H G; Fletcher, Linda M

    2009-08-01

    Expression of Hamp1, the gene encoding the iron regulatory peptide hepcidin, is inappropriately low in HFE-associated hereditary hemochromatosis and Hfe knockout mice (Hfe(-/-)). Since chronic alcohol consumption is also associated with disturbances in iron metabolism, we investigated the effects of alcohol consumption on hepcidin mRNA expression in Hfe(-/-) mice. Hfe(-/-) and C57BL/6 (wild-type) mice were pair-fed either an alcohol liquid diet or control diet for up to 8 weeks. The mRNA levels of hepcidin and ferroportin were measured at the mRNA level by RT-PCR and protein expression of hypoxia inducible factor-1 alpha (HIF-1alpha) was measured by western blot. Hamp1 mRNA expression was significantly decreased and duodenal ferroportin expression was increased in alcohol-fed wild-type mice at 8 weeks. Time course experiments showed that the decrease in hepcidin mRNA was not immediate, but was significant by 4 weeks. Consistent with the genetic defect, Hamp1 mRNA was decreased and duodenal ferroportin mRNA expression was increased in Hfe(-/-) mice fed on the control diet compared with wild-type animals and alcohol further exacerbated these effects. HIF-1alpha protein levels were elevated in alcohol-fed wild-type animals compared with controls. Alcohol may decrease Hamp1 gene expression independently of the HFE pathway possibly via alcohol-induced hypoxia.

  14. Metabolomic profiles delineate the potential role of glycine in gold nanorod-induced disruption of mitochondria and blood-testis barrier factors in TM-4 cells

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Chen, Minjian; Ji, Xiaoli; Mao, Zhilei; Zhang, Xuemei; Wang, Xinru; Xia, Yankai

    2014-06-01

    Gold nanorods (GNRs) are commonly used nanomaterials with potential harmful effects on male reproduction. However, the mechanism by which GNRs affect male reproduction remains largely undetermined. In this study, the metabolic changes in spermatocyte-derived cells GC-2 and Sertoli cell line TM-4 were analyzed after GNR treatment for 24 h. Metabolomic analysis revealed that glycine was highly decreased in TM-4 cells after GNR-10 nM treatment while there was no significant change in GC-2 cells. RT-PCR showed that the mRNA levels of glycine synthases in the mitochondrial pathway decreased after GNR treatment, while there was no significant difference in mRNA levels of glycine synthases in the cytoplasmic pathway. High content screening (HCS) showed that GNRs decreased membrane permeability and mitochondrial membrane potential of TM-4 cells, which was also confirmed by JC-1 staining. In addition, RT-PCR and Western blot indicated that the mRNA and protein levels of blood-testis barrier (BTB) factors (ZO-1, occludin, claudin-5, and connexin-43) in TM-4 cells were also disrupted by GNRs. After glycine was added into the medium, the GNR-induced harmful effects on mitochondria and BTB factors were recovered in TM-4 cells. Our results showed that even low doses of GNRs could induce significant toxic effects on mitochondria and BTB factors in TM-4 cells. Furthermore, we revealed that glycine was a potentially important metabolic intermediary for the changes of membrane permeability, mitochondrial membrane potential and BTB factors after GNR treatment in TM-4 cells.Gold nanorods (GNRs) are commonly used nanomaterials with potential harmful effects on male reproduction. However, the mechanism by which GNRs affect male reproduction remains largely undetermined. In this study, the metabolic changes in spermatocyte-derived cells GC-2 and Sertoli cell line TM-4 were analyzed after GNR treatment for 24 h. Metabolomic analysis revealed that glycine was highly decreased in TM-4 cells after GNR-10 nM treatment while there was no significant change in GC-2 cells. RT-PCR showed that the mRNA levels of glycine synthases in the mitochondrial pathway decreased after GNR treatment, while there was no significant difference in mRNA levels of glycine synthases in the cytoplasmic pathway. High content screening (HCS) showed that GNRs decreased membrane permeability and mitochondrial membrane potential of TM-4 cells, which was also confirmed by JC-1 staining. In addition, RT-PCR and Western blot indicated that the mRNA and protein levels of blood-testis barrier (BTB) factors (ZO-1, occludin, claudin-5, and connexin-43) in TM-4 cells were also disrupted by GNRs. After glycine was added into the medium, the GNR-induced harmful effects on mitochondria and BTB factors were recovered in TM-4 cells. Our results showed that even low doses of GNRs could induce significant toxic effects on mitochondria and BTB factors in TM-4 cells. Furthermore, we revealed that glycine was a potentially important metabolic intermediary for the changes of membrane permeability, mitochondrial membrane potential and BTB factors after GNR treatment in TM-4 cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01035c

  15. Food restriction in young Japanese quails: effects on growth, metabolism, plasma thyroid hormones and mRNA species in the thyroid hormone signalling pathway.

    PubMed

    Rønning, Bernt; Mortensen, Anne S; Moe, Børge; Chastel, Olivier; Arukwe, Augustine; Bech, Claus

    2009-10-01

    Young birds, in their post-natal growth period, may reduce their growth and metabolism when facing a food shortage. To examine how such responses can be mediated by endocrine-related factors, we exposed Japanese quail chicks to food restriction for either 2 days (age 6-8 days) or 5 days (age 6-11 days). We then measured growth and resting metabolic rate (RMR), and circulating 3,3',5-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) levels as well as expression patterns of genes involved in growth (insulin-like growth factor-I: IGF-I) and thyroid hormone signalling (thyroid-stimulating hormone-beta: TSHbeta, type II iodothyronine deiodinase: D2, thyroid hormone receptors isoforms: TRalpha and TRbeta). The food-restricted chicks receiving a weight-maintenance diet showed reductions in structural growth and RMR. Plasma levels of both T3 and T4 were reduced in the food-restricted birds, and within the 5 days food-restricted group there was a positive correlation between RMR and T3. IGF-I mRNA showed significantly higher abundance in the liver of ad libitum fed birds at day 8 compared with food-restricted birds. In the brain, TSHbeta mRNA level tended to be lower in food-restricted quails on day 8 compared with controls. Furthermore, TRalpha expression was lower in the brain of food-restricted birds at day 8 compared with birds fed ad libitum. Interestingly, brain D2 mRNA was negatively correlated with plasma T3 levels, tending to increase with the length of food restriction. Overall, our results show that food restriction produced significant effects on circulating thyroid hormones and differentially affected mRNA species in the thyroid hormone signalling pathway. Thus, we conclude that the effects of food restriction observed on growth and metabolism were partly mediated by changes in the endocrine-related factors investigated.

  16. The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction.

    PubMed

    Ferguson, Richard A; Hunt, Julie E A; Lewis, Mark P; Martin, Neil R W; Player, Darren J; Stangier, Carolin; Taylor, Conor W; Turner, Mark C

    2018-04-01

    This study investigated protein kinase activation and gene expression of angiogenic factors in response to low-load resistance exercise with or without blood flow restriction (BFR). In a repeated measures cross-over design, six males performed four sets of bilateral knee extension exercise at 20% 1RM (reps per set = 30:15:15:continued to fatigue) with BFR (110 mmHg) and without (CON). Muscle biopsies were obtained from the vastus lateralis before, 2 and 4 h post-exercise. mRNA expression was determined using real-time RT-PCR. Protein phosphorylation/expression was determined using Western blot. p38MAPK phosphorylation was greater (p = 0.05) at 2 h following BFR (1.3 ± 0.8) compared to CON (0.4 ± 0.3). AMPK phosphorylation remained unchanged. PGC-1α mRNA expression increased at 2 h (5.9 ± 1.3 vs. 2.1 ± 0.8; p = 0.03) and 4 h (3.2 ± 0.8 vs. 1.5 ± 0.4; p = 0.03) following BFR exercise with no change in CON. PGC-1α protein expression did not change following either exercise. BFR exercise enhanced mRNA expression of vascular endothelial growth factor (VEGF) at 2 h (5.2 ± 2.8 vs 1.7 ± 1.1; p = .02) and 4 h (6.8 ± 4.9 vs. 2.5 ± 2.7; p = .01) compared to CON. mRNA expression of VEGF-R2 and hypoxia-inducible factor 1α increased following BFR exercise but only eNOS were enhanced relative to CON. Matrix metalloproteinase-9 mRNA expression was not altered in response to either exercise. Acute low-load resistance exercise with BFR provides a targeted angiogenic response potentially mediated through enhanced ischaemic and shear stress stimuli.

  17. Chronic social stress in pigs impairs intestinal barrier and nutrient transporter function, and alters neuro-immune mediator and receptor expression

    PubMed Central

    Li, Yihang; Song, Zehe; Kerr, Katelyn A.; Moeser, Adam J.

    2017-01-01

    Psychosocial stress is a major factor driving gastrointestinal (GI) pathophysiology and disease susceptibility in humans and animals. The mechanisms governing susceptibility to stress-induced GI disease remain poorly understood. In the present study, we investigated the influence of chronic social stress (CSS) in pigs, induced by 7 d of chronic mixing/crowding stress, on intestinal barrier and nutrient transport function, corticotropin releasing factor (CRF) signaling and immunological responses. Results from this study showed that CSS resulted in a significant impairment of ileal and colonic barrier function indicated by reduced transepithelial electrical resistance (TER) in the ileum and increased FD4 flux in the ileum (by 0.8 fold) and colon (by 0.7 fold). Ileal sodium glucose linked transporter 1 (SGLT-1) function, measured as glucose-induced changes in short-circuit current (Isc), was diminished (by 52%) in CSS pigs, associated with reduced body weight gain and feed efficiency. Although reductions in SGLT-1 function were observed in CSS pigs, mRNA expression for SGLT-1, villus heights were increased in CSS pigs. Corticotropin releasing factor (CRF) mRNA was upregulated (by 0.9 fold) in the ileum of CSS pigs but not in the colon. Urocortin 2 (Ucn2) mRNA was upregulated (by 1.5 fold) in the colon of CSS pigs, but not in the ileum. In CSS pigs, a downregulation of pro-inflammatory cytokines mRNA (IL1B, TNFA, IL8, and IL6) was observed in both ileum and colon, compared with controls. In contrast CSS induced a marked upregulation of mRNA for IL10 and mast cell chymase gene (CMA1) in the ileum and colon. Together, these data demonstrate that chronic stress in pigs results in significant alterations in intestinal barrier and nutrient transport function and neuro-immune mediator and receptor expression. PMID:28170426

  18. TGF-β1 expression in wound healing is acutely affected by experimental malnutrition and early enteral feeding.

    PubMed

    Alves, Claudia Cristina; Torrinhas, Raquel Susana; Giorgi, Ricardo; Brentani, Maria Mitzi; Logullo, Angela Flavia; Waitzberg, Dan Linetzky

    2014-10-01

    Malnutrition is associated with the delay or failure of healing. We assessed the effect of experimental malnutrition and early enteral feeding with standard diet or diet supplemented with arginine and antioxidants on the levels of mRNA encoding growth factors in acute, open wound healing. Standardised cutaneous dorsal wounds and gastrostomies for enteral feeding were created in malnourished (M, n = 27) and eutrophic control (E, n = 30) Lewis male adult rats. Both M and E rats received isocaloric and isonitrogenous regimens with oral chow and saline (C), standard (S) or supplemented (A) enteral diets. On post-trauma day 7, mRNA levels of growth factor genes were analysed in wound granulation tissue by reverse transcription polymerase chain reaction (RT-PCR). M(C) rats had significantly lower transforming growth factor β(TGF-β1 ) mRNA levels than E(C) rats (2·58 ± 0·83 versus 3·53 ± 0·57, P < 0·01) and in comparison with M(S) and M(A) rats (4·66 ± 2·49 and 4·61 ± 2·11, respectively; P < 0·05). VEGF and KGF-7 mRNA levels were lower in M(A) rats than in E(A) rats (0·74 ± 0·16 versus 1·25 ± 0·66; and 1·07 ± 0·45 versus 1·79 ± 0·89, respectively; P≤ 0·04), but did not differ from levels in E(C) and M(C) animals. In experimental open acute wound healing, previous malnutrition decreased local mRNA levels of TGF-β1 genes, which was minimised by early enteral feeding with standard or supplemented diets. © 2012 The Authors. International Wound Journal © 2012 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  19. A high ratio of insulin-like growth factor II/insulin-like growth factor binding protein 2 messenger RNA as a marker for anaplasia in meningiomas.

    PubMed

    Nordqvist, A C; Peyrard, M; Pettersson, H; Mathiesen, T; Collins, V P; Dumanski, J P; Schalling, M

    1997-07-01

    Insulin-like growth factors (IGFs) I and II have been implicated as autocrine or paracrine growth promoters. These growth factors bind to specific receptors, and the response is modulated by interaction with IGF-binding proteins (IGFBPs). We observed a strong correlation between anaplastic/atypical histopathology and a high IGF-II/IGFBP-2 mRNA ratio in a set of 68 sporadic meningiomas. A strong correlation was also found between clinical outcome and IGF-II/IGFBP-2 ratio, whereas previously used histochemical markers were less correlated to outcome. We suggest that a high IGF-II/IGFBP-2 mRNA ratio may be a sign of biologically aggressive behavior in meningiomas that can influence treatment strategies. We propose that low IGFBP-2 levels in combination with increased levels of IGF-II would result in more free IGF-II and consequently greater stimulation of proliferation.

  20. Amicoumacin A inhibits translation by stabilizing mRNA interaction with the ribosome

    PubMed Central

    Polikanov, Yury S.; Osterman, Ilya A.; Szal, Teresa; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Kusochek, Pavel; Bulkley, David; Malanicheva, Irina A.; Efimenko, Tatyana A.; Efremenkova, Olga V.; Konevega, Andrey L.; Shaw, Karen J.; Bogdanov, Alexey A.; Rodnina, Marina V.; Dontsova, Olga A.; Mankin, Alexander S.; Steitz, Thomas A.; Sergiev, Petr V.

    2014-01-01

    SUMMARY We demonstrate that the antibiotic amicoumacin A (AMI) whose cellular target was unknown, is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G. PMID:25306919

  1. TSHB mRNA is linked to cholesterol metabolism in adipose tissue.

    PubMed

    Moreno-Navarrete, José María; Moreno, María; Ortega, Francisco; Xifra, Gemma; Hong, Shangyu; Asara, John M; Serrano, José C E; Jové, Mariona; Pissios, Pavlos; Blüher, Matthias; Ricart, Wifredo; Portero-Otin, Manuel; Fernández-Real, José Manuel

    2017-10-01

    Subclinical hypothyroidism is known to be associated with increased serum cholesterol. Since thyroid-stimulating hormone (TSH) exerts an inductor effect on cholesterol biosynthesis, we aimed to investigate the relationship between TSH mRNA and cholesterol metabolism in human adipose tissue (AT). Cross-sectionally, AT TSH-β ( TSHB ) mRNA was evaluated in 4 independent cohorts in association with serum total and LDL cholesterol, and AT lipidomics. Longitudinally, the effects of statins and of diet and exercise on AT TSHB mRNA were also examined. The bidirectional relationship between cholesterol and TSHB were studied in isolated human adipocytes. TSHB mRNA was consistently detected in AT from euthyroid subjects, and positively associated with serum total- and LDL-cholesterol, and with AT-specific cholesterol metabolism-associated lipids [arachidonoyl cholesteryl ester, C8-dihydroceramide, N -stearoyl-d-sphingosine, and GlcCer(18:0, 24:1)]. Reduction of cholesterol with statins and with diet and exercise interventions led to decreased TSHB mRNA in human AT, whereas excess cholesterol up-regulated TSHB mRNA in human adipocytes. In addition, recombinant human TSH α/β administration resulted in increased HMGCR mRNA levels in human adipocytes. In mice, subcutaneous AT Tshb expression levels correlated directly with circulating cholesterol levels. In summary, current results provide novel evidence of TSHB as a paracrine factor that is modulated in parallel with cholesterol metabolism in human AT.-Moreno-Navarrete, J. M., Moreno, M., Ortega, F., Xifra, G., Hong, S., Asara, J. M., Serrano, J. C. E., Jové, M., Pissios, P., Blüher, M., Ricart, W., Portero-Otin, M., Fernández-Real, J. M. TSHB mRNA is linked to cholesterol metabolism in adipose tissue. © FASEB.

  2. Maternally inherited npm2 mRNA is crucial for egg developmental competence in zebrafish.

    PubMed

    Bouleau, Aurélien; Desvignes, Thomas; Traverso, Juan Martin; Nguyen, Thaovi; Chesnel, Franck; Fauvel, Christian; Bobe, Julien

    2014-08-01

    The molecular mechanisms underlying and determining egg developmental competence remain poorly understood in vertebrates. Nucleoplasmin (Npm2) is one of the few known maternal effect genes in mammals, but this maternal effect has never been demonstrated in nonmammalian species. A link between developmental competence and the abundance of npm2 maternal mRNA in the egg was previously established using a teleost fish model for egg quality. The importance of maternal npm2 mRNA for egg developmental competence remains unknown in any vertebrate species. In the present study, we aimed to characterize the contribution of npm2 maternal mRNA to early developmental success in zebrafish using a knockdown strategy. We report here the oocyte-specific expression of npm2 and maternal inheritance of npm2 mRNA in zebrafish eggs. The knockdown of the protein translated from this maternal mRNA results in developmental arrest before the onset of epiboly and subsequent embryonic death, a phenotype also observed in embryos lacking zygotic transcription. Npm2 knockdown also results in impaired transcription of the first-wave zygotic genes. Our results show that npm2 is also a maternal effect gene in a nonmammalian vertebrate species and that maternally inherited npm2 mRNA is crucial for egg developmental competence. We also show that de novo protein synthesis from npm2 maternal mRNA is critical for developmental success beyond the blastula stage and required for zygotic genome activation. Finally, our results suggest that npm2 maternal mRNA is an important molecular factor of egg quality in fish and possibly in all vertebrates. © 2014 by the Society for the Study of Reproduction, Inc.

  3. Expression of three isoforms of Na-K-2Cl cotransporter (NKCC2) in the kidney and regulation by dehydration.

    PubMed

    Itoh, Kazuko; Izumi, Yuichiro; Inoue, Takeaki; Inoue, Hideki; Nakayama, Yushi; Uematsu, Takayuki; Fukuyama, Takashi; Yamazaki, Taiga; Yasuoka, Yukiko; Makino, Takeshi; Nagaba, Yasushi; Tomita, Kimio; Kobayashi, Noritada; Kawahara, Katsumasa; Mukoyama, Masashi; Nonoguchi, Hiroshi

    2014-10-24

    Sodium reabsorption via Na-K-2Cl cotransporter 2 (NKCC2) in the thick ascending limbs has a major role for medullary osmotic gradient and subsequent water reabsorption in the collecting ducts. We investigated intrarenal localization of three isoforms of NKCC2 mRNA expressions and the effects of dehydration on them in rats. To further examine the mechanisms of dehydration, the effects of hyperosmolality on NKCC2 mRNA expression in microdissected renal tubules was studied. RT-PCR and RT-competitive PCR were employed. The expressions of NKCC2a and b mRNA were observed in the cortical thick ascending limbs (CAL) and the distal convoluted tubules (DCT) but not in the medullary thick ascending limbs (MAL), whereas NKCC2f mRNA expression was seen in MAL and CAL. Two-day dehydration did not affect these mRNA expressions. In contrast, hyperosmolality increased NKCC2 mRNA expression in MAL in vitro. Bradykinin dose-dependently decreased NKCC2 mRNA expression in MAL. However, dehydration did not change NKCC2 protein expression in membrane fraction from cortex and outer medulla and in microdissected MAL. These data show that NKCC2a/b and f types are mainly present in CAL and MAL, respectively. Although NKCC2 mRNA expression was stimulated by hyperosmolality in vitro, NKCC2 mRNA and protein expressions were not stimulated by dehydration in vivo. These data suggest the presence of the inhibitory factors for NKCC2 expression in dehydration. Considering the role of NKCC2 for the countercurrent multiplier system, NKCC2f expressed in MAL might be more important than NKCC2a/b. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Altered PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression in ejaculated spermatozoa of men with impaired sperm characteristics.

    PubMed

    Giebler, Maria; Greither, Thomas; Müller, Lisa; Mösinger, Carina; Behre, Hermann M

    2018-01-01

    In about half the cases of involuntary childlessness, a male infertility factor is involved. The PIWI-LIKE genes, a subclade of the Argonaute protein family, are involved in RNA silencing and transposon control in the germline. Knockout of murine Piwi-like 1 and 2 homologs results in complete infertility in males. The aim of this study was to analyze whether the mRNA expression of human PIWI-LIKE 1-4 genes is altered in ejaculated spermatozoa of men with impaired sperm characteristics. Ninety male participants were included in the study, among which 47 were with normozoospermia, 36 with impaired semen characteristics according to the World Health Organization (WHO) manual, 5 th edition, and 7 with azoospermia serving as negative control for the PIWI-LIKE 1-4 mRNA expression in somatic cells in the ejaculate. PIWI-LIKE 1-4 mRNA expression in the ejaculated spermatozoa of the participants was measured by quantitative real-time PCR. In nonazoospermic men, PIWI-LIKE 1-4 mRNA was measurable in ejaculated spermatozoa in different proportions. PIWI-LIKE 1 (100.0%) and PIWI-LIKE 2 (49.4%) were more frequently expressed than PIWI-LIKE 3 (9.6%) and PIWI-LIKE 4 (15.7%). Furthermore, a decreased PIWI-LIKE 2 mRNA expression showed a significant correlation with a decreased sperm count (P = 0.022) and an increased PIWI-LIKE 1 mRNA expression with a decreased progressive motility (P = 0.048). PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression exhibited a significant association with impaired sperm characteristics and may be a useful candidate for the evaluation of the impact of PIWI-LIKE 1-4 mRNA expression on male infertility.

  5. Inactivation of parkin by promoter methylation correlated with lymph node metastasis and genomic instability in nasopharyngeal carcinoma.

    PubMed

    Ni, Haifeng; Zhou, Zhen; Jiang, Bo; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong

    2017-03-01

    This study aimed to investigate the inactivation of the parkin gene by promoter methylation and its relationship with genome instability in nasopharyngeal carcinoma. Parkin was considered as a tumor suppressor gene in various types of cancers. However, its role in nasopharyngeal carcinoma is unexplored. Genomic instabilities were detected in nasopharyngeal carcinoma tissues by the random amplified polymorphic DNA. The methylation-specific polymerase chain reaction, semi-quantitative reverse transcription polymerase chain reaction, and immunohistochemical analysis were used to detect methylation and mRNA and protein expression of parkin in 54 cases of nasopharyngeal carcinoma tissues and 16 cases of normal nasopharyngeal epithelia tissues, and in 5 nasopharyngeal carcinoma cell lines (CNE1, CNE2, TWO3, C666, and HONE1) and 1 normal nasopharyngeal epithelia cell line (NP69). mRNA expression of parkin in CNE1 and CNE2 was analyzed before and after methyltransferase inhibitor 5-aza-2-deoxycytidine treatment. The relationship between promoter methylation and mRNA expression, demethylation and mRNA expression, and mRNA and protein expression of the gene and clinical factors and genomic instabilities were analyzed. The mRNA and protein expression levels were significantly reduced in 54 cases of human nasopharyngeal carcinoma compared with 16 cases of normal nasopharyngeal epithelia. Parkin-methylated cases showed significantly lower mRNA and protein expression levels compared with unmethylated cases. After 5-aza-2-deoxycytidine treatment, parkin mRNA expression was restored in CNE1 and CNE2; 92.59% (50/54) of nasopharyngeal carcinoma demonstrated genomic instability. Parkin is frequently inactivated by promoter methylation, and its mRNA and protein expression correlate with lymph node metastasis and genomic instability. Parkin deficiency probably promotes tumorigenesis in nasopharyngeal carcinoma.

  6. The local expression and trafficking of tyrosine hydroxylase mRNA in the axons of sympathetic neurons.

    PubMed

    Gervasi, Noreen M; Scott, Shane S; Aschrafi, Armaz; Gale, Jenna; Vohra, Sanah N; MacGibeny, Margaret A; Kar, Amar N; Gioio, Anthony E; Kaplan, Barry B

    2016-06-01

    Synthesis and regulation of catecholamine neurotransmitters in the central nervous system are implicated in the pathogenesis of a number of neuropsychiatric disorders. To identify factors that regulate the presynaptic synthesis of catecholamines, we tested the hypothesis that the rate-limiting enzyme of the catecholamine biosynthetic pathway, tyrosine hydroxylase (TH), is locally synthesized in axons and presynaptic nerve terminals of noradrenergic neurons. To isolate pure axonal mRNA and protein, rat superior cervical ganglion sympathetic neurons were cultured in compartmentalized Campenot chambers. qRT-PCR and RNA in situ hybridization analyses showed that TH mRNA is present in distal axons. Colocalization experiments with nerve terminal marker proteins suggested that both TH mRNA and protein localize in regions of the axon that resemble nerve terminals (i.e., synaptic boutons). Analysis of polysome-bound RNA showed that TH mRNA is present in polysomes isolated from distal axons. Metabolic labeling of axonally synthesized proteins labeled with the methionine analog, L-azidohomoalanine, showed that TH is locally synthesized in axons. Moreover, the local transfection and translation of exogenous TH mRNA into distal axons facilitated axonal dopamine synthesis. Finally, using chimeric td-Tomato-tagged constructs, we identified a sequence element within the TH 3'UTR that is required for the axonal localization of the reporter mRNA. Taken together, our results provide the first direct evidence that TH mRNA is trafficked to the axon and that the mRNA is locally translated. These findings raise the interesting possibility that the biosynthesis of the catecholamine neurotransmitters is locally regulated in the axon and/or presynaptic nerve terminal. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Profiles of mRNA expression of related genes in the duck hypothalamus-pituitary growth axis during embryonic and early post-hatch development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Song, Chi; Xu, Wenjuan; Ji, Gaige; Zhu, Chunhong; Shu, Jingting; Li, Huifang

    2015-03-15

    In this study, the ontogeny of body and liver weight and the pattern of related gene mRNA expression in the hypothalamus-pituitary growth axis (HPGA) of two different duck breeds (Anas platyrhynchos domestica) were compared during embryonic and post-hatch development. Duck hypothalamic growth hormone release hormone (GHRH), somatostatin (SS), pituitary growth hormone (GH), liver growth hormone receptor (GHR) and insulin-like growth factor-I (IGF-1) mRNA were first detected on the 13th embryonic day. During early duck development, SS maintained a lower expression status, whereas the other four genes exhibited highly significant variations in an age-specific manner. Highly significant breed specificity was observed with respect to hepatic IGF-1 mRNA expression, which showed a significant breed-age interaction effect. Compared with previous studies on chickens, significant species differences were observed regarding the mRNA expression of bird embryonic HPGA-related genes. During early development, highly significant breed and age specificity were observed with respect to developmental changes in body and liver weight, and varying degrees of significant linear correlation were found between these performances and the mRNA expression of HPGA-related genes in the duck HPGA. These results suggest that different genetic backgrounds may lead to differences in duck growth and HPGA-related gene mRNA expression, and the differential mRNA expression of related genes in the duck HPGA may be particularly important in the early growth of ducks. Furthermore, hepatic IGF-1 mRNA expression presented highly significant breed specificity, and evidence suggests the involvement of hepatic IGF-1 in mediating genetic effects on embryo and offspring growth in ducks. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Skin blood flow response in the rat model of wound healing: expression of vasoactive factors.

    PubMed

    Rendell, Marc S; Johnson, Mark L; Smith, Denae; Finney, David; Capp, Christopher; Lammers, Rebecca; Lancaster, Scott

    2002-09-01

    Although the microvascular blood flow response to wounding is predominantly vasodilation at skin sites with nutritive capillary perfusion (NUTR), there is a significant vasoconstrictive response at sites with high arteriovenous perfusion (AV). There may be a difference between NUTR and AV sites in the vasoactive factors which mediate the blood flow response to wounding. We measured the levels of mRNA expression of several potential mediators of the blood flow response to assess this possible difference. We measured skin blood flow at wounds placed at the back, a NUTR site, and at the paw, an AV site, in 12 Wistar Kyoto rats. Measurements were performed at baseline and then at 7 days post wounding. There was a significant increase in blood flow at back wound sites, with a rise from 4.1 +/- 0.3 ml/min/100 g to 9.8 +/- 1.9 ml/min/100 g. At the undisturbed wound perimeter, outside the zone of granulation tissue, flow rose to 7.3 +/- 1.1 ml/min/100 g. At the paw wound site, Day 0 flow was 8.8 +/- 0.8 ml/min/100 g. At 7 days, there was a significant decrease in flow at wound center to 5.5 +/- 0.5 ml/min/100 g. We measured the levels of inducible nitric oxide synthetase (iNOS), endothelin, endothelin receptor, vascular endothelial growth factor (VEGF), and keratinocyte growth factor (KGF) gene mRNAs using reverse transcriptase PCR. There was a 10-fold increase in NOS mRNA in granulation tissue of both wounds on Day 7. There was a lesser but still substantial increase in the wound perimeter tissue. Levels of endothelin mRNA in the wound and wound perimeter were significantly lower at the paw than at the back. At baseline, the level of endothelin receptor B (ETrB) mRNA was greater at the back than at the paw. Wounding resulted in a substantial increase in EtrB mRNA levels in granulation tissue, reaching the same level at the back and paw wounds. There was also a substantial rise in EtrB mRNA levels at the paw wound perimeter, so that there was a reversal of the baseline condition, with paw levels actually surpassing the levels at the back perimeter. Thus, we have found significant changes in mediators both of vasoconstriction and vasodilation affecting the healing wound. These changes affect NUTR and AV sites in different ways. These results demonstrate the complexity of the regulatory processes controlling microvascular blood flow in wound healing.

  9. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yanlong; Department of Medicine, University of Louisville, Louisville, KY; Wang, Chunhong

    2012-10-15

    Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl{sub 2}), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physicalmore » hypoxia (1% oxygen) and CoCl{sub 2} treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl{sub 2} administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl{sub 2}-induced reactive oxygen species (ROS) formation and completely negated CoCl{sub 2}-induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl{sub 2} administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl{sub 2} increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl{sub 2}-induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and absorption. -- Graphical abstract: Physical and chemical hypoxia decrease FGF-21 expression, which is inhibited by antioxidant, N-acetyl cysteine (NAC), in Caco-2 cells. Highlights: ► Hypoxia down-regulates FGF21 expression in Caco-2 cells. ► FGF21 down-regulation is HIF-α independent. ► FGF21 down-regulation is modulated by oxidative stress-mediated mRNA stability. ► FGF21 is involved in hypoxia‐induced triglyceride accumulation in Caco-2 cells.« less

  10. Bisphenol A disrupts gene expression in human placental trophoblast cells.

    PubMed

    Rajakumar, Chandrew; Guan, Haiyan; Langlois, David; Cernea, Maria; Yang, Kaiping

    2015-06-01

    This study examined the effect of bisphenol A (BPA) on human placental gene expression using primary trophoblast cells as an in vitro model system. Trophoblast cells were isolated from human placentas at term, cultured and then exposed to environmentally relevant concentrations of BPA (0.1-2 μg/ml) for up to 24h, after which levels of 11β-HSD2 mRNA, protein and activity were determined by standard radiometric conversion assay, western blotting, and qRT-PCR, respectively. The mRNA levels of several other prominent placental hormones/factors were also assessed by qRT-PCR. BPA dramatically increased levels of 11β-HSD2 activity, protein and mRNA in a time- and concentration-dependent manner (> 4-fold). BPA also augmented aromatase, glucose transporter-1, CRH, and hCG mRNA levels while reducing the level of leptin mRNA. These findings demonstrate that BPA severely disrupts human placental gene expression in vitro, which suggests that exposure to BPA may contribute to altered placental function and consequent pregnancy complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts

    PubMed Central

    Eiring, Anna M.; Harb, Jason G.; Neviani, Paolo; Garton, Christopher; Oaks, Joshua J.; Spizzo, Riccardo; Liu, Shujun; Schwind, Sebastian; Santhanam, Ramasamy; Hickey, Christopher J.; Becker, Heiko; Chandler, Jason C.; Andino, Raul; Cortes, Jorge; Hokland, Peter; Huettner, Claudia S.; Bhatia, Ravi; Roy, Denis C.; Liebhaber, Stephen A.; Caligiuri, Michael A.; Marcucci, Guido; Garzon, Ramiro; Croce, Carlo M.; Calin, George A.; Perrotti, Danilo

    2010-01-01

    SUMMARY MicroRNAs and heterogeneous ribonucleoproteins (hnRNPs) are posttranscriptional gene regulators that bind mRNA in a sequence-specific manner. Here, we report that loss of miR-328 occurs in blast crisis chronic myelogenous leukemia (CML-BC) in a BCR/ABL dose- and kinase-dependent manner through the MAPK-hnRNP E2 pathway. Restoration of miR-328 expression rescues differentiation and impairs survival of leukemic blasts by simultaneously interacting with the translational regulator poly(rC)-binding protein hnRNP E2 and with the mRNA encoding the survival factor PIM1, respectively. The interaction with hnRNP E2 is independent of the microRNA’s seed sequence and it leads to release of CEBPA mRNA from hnRNP E2-mediated translational inhibition. Altogether, these data reveal the dual ability of a microRNA to control cell fate both through base pairing with mRNA targets and through a decoy activity that interferes with the function of regulatory proteins. PMID:20211135

  12. Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential

    PubMed Central

    Strenkowska, Malwina; Grzela, Renata; Majewski, Maciej; Wnek, Katarzyna; Kowalska, Joanna; Lukaszewicz, Maciej; Zuberek, Joanna; Darzynkiewicz, Edward; Kuhn, Andreas N.; Sahin, Ugur; Jemielity, Jacek

    2016-01-01

    Along with a growing interest in mRNA-based gene therapies, efforts are increasingly focused on reaching the full translational potential of mRNA, as a major obstacle for in vivo applications is sufficient expression of exogenously delivered mRNA. One method to overcome this limitation is chemically modifying the 7-methylguanosine cap at the 5′ end of mRNA (m7Gppp-RNA). We report a novel class of cap analogs designed as reagents for mRNA modification. The analogs carry a 1,2-dithiodiphosphate moiety at various positions along a tri- or tetraphosphate bridge, and thus are termed 2S analogs. These 2S analogs have high affinities for translation initiation factor 4E, and some exhibit remarkable resistance against the SpDcp1/2 decapping complex when introduced into RNA. mRNAs capped with 2S analogs combining these two features exhibit high translation efficiency in cultured human immature dendritic cells. These properties demonstrate that 2S analogs are potentially beneficial for mRNA-based therapies such as anti-cancer immunization. PMID:27903882

  13. Major histocompatibility complex class I expression on neurons in subacute sclerosing panencephalitis and experimental subacute measles encephalitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogate, N.; Yamabe, Toshio; Verma, L.

    1996-04-01

    Lack of major histocompatibility class I antigens on neurons has been implicated as a possible mechanism for viral persistence in the brain since these antigens are required for cytotoxic T-lymphocyte recognition of infected cells. In subacute sclerosing panencephalitis (SSPE), measles virus (MV) persists in neurons, resulting in a fatal chronic infection. MHC class I mRNA expression was examined in formalin-fixed brain tissue from 6 SSPE patients by in situ hybridization. In addition MHC class I protein expression in MV-infected neurons was examined in experimental Subacute Measles Encephalitis (SME) by double immunohistochemistry. MHC class I mRNA expression was found to bemore » upregulated in SSPE tissues studied, and in 5 out of 6 cases the expression was definitively seen on neurons. The percentage of neurons expressing MHC class I mRNA ranged between 20 to 84% in infected areas. There was no correlation between the degree of infection and expression of MHC class I molecules on neurons. Importantly, the number of neurons co-expressing MHC class I and MV antigens was markedly low, varying between 2 to 8%. Similar results were obtained in SME where 20 to 30% of the neurons expressed MHC class I but < 8% co-expressed MHC class I and MV antigens. Perivascular infiltrating cells in the infected regions in SME expressed IFN{gamma} immunoreactivity. The results suggest that MV may not be directly involved in the induction of MHC class I on neurons and that cytokines such as IFN{gamma} may play an important role. Furthermore, the paucity of neurons co-expressing MHC class I and MV antigens in SSPE and SME suggests that such cells are either rapidly cleared by cytotoxic T lymphocytes (CTL), or, alternatively, lack of co-expression of MHC class I on MV infected neurons favors MV persistence in these cells by escaping CTL recognition. 33 refs., 3 figs., 3 tabs.« less

  14. Characterization of the apolipoprotein AI and CIII genes in the domestic pig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birchbauer, A.; Knipping, G.; Juritsch, B.

    1993-03-01

    The apolipoproteins (apo) AI and CIII are important constituents of triglyceride-rich lipoproteins and high-density lipoproteins. In humans, apo AI is believed to play an important protective role in the pathogenesis of arteriosclerosis, whereas apo CIII might be involved in the development of hypertriglyceridemia. Both human genes are located within a gene cluster on chromosome 11. Although the domestic pig has been widely used as an animal model in arteriosclerosis and lipid research, the porcine apolipoproteins genes are poorly characterized. In this report, the complete nucleotide sequences of the porcine apo AI and CIII genes are presented and the authors demonstrate,more » for the first time, apo CIII expression in the pig. Both genes are composed of four exons and three introns and resemble closely their human counterparts with regard to the transcriptional start sites, exon sizes, intron sizes, exon-intron borders, and the size of the intergenic region. The predicted pig apo AI is a protein of 241 amino acids, which is 2 amino acids shorter than human apo AI. The protein sequence was found to be very homologous to apo AI sequences in other mammalian species. Apo AI expression was detected on the mRNA level in porcine liver and intestine. The apo CIII gene encodes a protein with 73 amino acids, which is 6 amino acids shorter than human apo CIII. In contrast to the three isoforms of apo CIII found in humans, only one major isoform was detected in the pig. Presumably this isoform is unglycosylated. In addition to apo CIII expression in the liver and the intestine, a truncated form of apo CIII mRNA was also found in porcine kidney. The studies demonstrate the presence of an apo CIII gene, an apo CIII mRNA, and an apo CIII protein in the pig and, therefore, exclude a hypothesized apo CIII deficiency in these animals. 53 refs., 5 figs.« less

  15. Expression of Leukemia/Lymphoma-Related Factor (LRF/POKEMON) in Human Breast Carcinoma and Other Cancers

    PubMed Central

    Aggarwal, Anshu; Hunter, William J.; Aggarwal, Himanshu; Silva, Edibaldo D.; Davey, Mary S.; Murphy, Richard F.; Agrawal, Devendra K.

    2010-01-01

    The POK family of proteins plays an important role in not only embryonic development and cell differentiation, but also in oncogenesis. Leukemia/lymphoma-related factor (LRF) belongs to the POK family of transcriptional repressors and is also known as POK erythroid myeloid ontogenic factor (POKEMON), which binds to short transcripts of HIV-1 (FBI-1) and TTF-1 interacting peptide (TIP21). Its oncogenic role is known only in lymphoma, non-small cell lung carcinoma, and malignant gliomas. The functional expression of LRF in human breast carcinoma has not yet been confirmed. The aim of this study was to investigate and compare the expression of LRF in human breast cancer tissues and other human tumors. The expression of LRF mRNA transcripts and protein was observed in twenty human benign and malignant breast biopsy tissues. Expression of LRF was observed in several formalin-fixed tissues by immunohistochemistry and immunofluorescence. All malignant breast tissues expressed mRNA transcripts and protein for LRF. However, 40% and 15% benign breast biopsy tissues expressed LRF mRNA transcripts and protein, respectively. The overall expression of LRF mRNA transcripts and total protein was significantly more in malignant breast tissues than the benign breast tissues. LRF expression was also observed in the nuclei of human colon, renal, lung, hepatocellular carcinomas and thymoma tumor cells. In general, a significantly higher expression of LRF was seen in malignant tissues than in the corresponding benign or normal tissue. Further studies are warranted to determine the malignant role of LRF in human breast carcinoma. PMID:20471975

  16. Left and right ventricle late remodeling following myocardial infarction in rats.

    PubMed

    Stefanon, Ivanita; Valero-Muñoz, María; Fernandes, Aurélia Araújo; Ribeiro, Rogério Faustino; Rodríguez, Cristina; Miana, Maria; Martínez-González, José; Spalenza, Jessica S; Lahera, Vicente; Vassallo, Paula F; Cachofeiro, Victoria

    2013-01-01

    The mechanisms involved in cardiac remodeling in left (LV) and right ventricles (RV) after myocardial infarction (MI) are still unclear. We assayed factors involved in collagen turnover in both ventricles following MI in rats either presenting signs of heart failure (pulmonary congestion and increased LVEDP) or not (INF-HF or INF, respectively). MI was induced in male rats by ligation of the left coronary artery. Four weeks after MI gene expression of collagen I, connective tissue growth factor (CTGF), transforming growth factor β (TGF-β) and lysyl oxidase (LOX), metalloproteinase-2 (MMP2) and tissue inhibitor metalloproteinase-2 (TIMP2) as well as cardiac hemodynamic in both ventricles were evaluated. Ventricular dilatation, hypertrophy and an increase in interstitial fibrosis and myocyte size were observed in the RV and LV from INF-HF animals, whereas only LV dilatation and fibrosis in RV was present in INF. The LV fibrosis in INF-HF was associated with higher mRNA of collagen I, CTGF, TGF-β and LOX expressions than in INF and SHAM animals, while MMP2/TIMP2 mRNA ratio did not change. RV fibrosis in INF and INF-HF groups was associated with an increase in LOX mRNA and a reduction in MMP2/TIMP2 ratio. CTGF mRNA was increased only in the INF-HF group. INF and INF-HF animals presented different patterns of remodeling in both ventricles. In the INF-HF group, fibrosis seems to be consequence of collagen production in LV, and by reductions in collagen degradation in RV of both INF and INF-HF animals.

  17. Potential down-regulation of salivary gland AQP5 by LPS via cross-coupling of NF-kappaB and p-c-Jun/c-Fos.

    PubMed

    Yao, Chenjuan; Purwanti, Nunuk; Karabasil, Mileva Ratko; Azlina, Ahmad; Javkhlan, Purevjav; Hasegawa, Takahiro; Akamatsu, Tetsuya; Hosoi, Toru; Ozawa, Koichiro; Hosoi, Kazuo

    2010-08-01

    The mRNA and protein levels of aquaporin (AQP)5 in the parotid gland were found to be potentially decreased by lipopolysaccharide (LPS) in vivo in C3H/HeN mice, but only weakly in C3H/HeJ, a TLR4 mutant mouse strain. In the LPS-injected mice, pilocarpine-stimulated saliva production was reduced by more than 50%. In a tissue culture system, the LPS-induced decrease in the AQP5 mRNA level was blocked completely by pyrrolidine dithiocarbamate, MG132, tyrphostin AG126, SP600125, and partially by SB203580, which are inhibitors for IkappaB kinase, 26S proteasome, ERK1/2, JNK, and p38 MAPK, respectively. In contrast, the expression of AQP1 mRNA was down-regulated by LPS and such down-regulation was blocked only by SP600125. The transcription factors NF-kappaB (p65 subunit), p-c-Jun, and c-Fos were increased by LPS given in vivo, whereas the protein-binding activities of the parotid gland extract toward the sequences for NF-kappaB but not AP-1-responsive elements present at the promoter region of the AQP5 gene were increased by LPS injection. Co-immunoprecipitation by using antibody columns suggested the physical association of the three transcription factors. These results suggest that LPS-induced potential down-regulation of expression of AQP5 mRNA in the parotid gland is mediated via a complex(es) of these two classes of transcription factors, NF-kappaB and p-c-Jun/c-Fos.

  18. Effects of RNAi-Mediated Knockdown of Histone Methyltransferases on the Sex-Specific mRNA Expression of Imp in the Silkworm Bombyx mori

    PubMed Central

    Suzuki, Masataka G.; Ito, Haruka; Aoki, Fugaku

    2014-01-01

    Sexual differentiation in Bombyx mori is controlled by sex-specific splicing of Bmdsx, which results in the omission of exons 3 and 4 in a male-specific manner. In B. mori, insulin-like growth factor II mRNA-binding protein (Imp) is a male-specific factor involved in male-specific splicing of Bmdsx. Male-specific Imp mRNA results from the male-specific inclusion of exon 8. To verify the link between histone methylation and alternative RNA processing in Imp, we examined the effects of RNAi-mediated knockdown of several histone methyltransferases on the sex-specific mRNA expression of Imp. As a result, male-specific expression of Imp mRNA was completely abolished when expression of the H3K79 methyltransferase DOT1L was repressed to <10% of that in control males. Chromatin immunoprecipitation-quantitative PCR analysis revealed a higher distribution of H3K79me2 in normal males than in normal females across Imp. RNA polymerase II (RNAP II) processivity assays indicated that RNAi knockdown of DOT1L in males caused a twofold decrease in RNAP II processivity compared to that in control males, with almost equivalent levels to those observed in normal females. Inhibition of RNAP II-mediated elongation in male cells repressed the male-specific splicing of Imp. Our data suggest the possibility that H3K79me2 accumulation along Imp is associated with the male-specific alternative processing of Imp mRNA that results from increased RNAP II processivity. PMID:24758924

  19. Decreased expression of FOXF2 as new predictor of poor prognosis in stage I non-small cell lung cancer.

    PubMed

    Kong, Peng-Zhou; Li, Guang-Ming; Tian, Yin; Song, Bin; Shi, RuYi

    2016-08-23

    Forkhead box F2 (FOXF2) is relatively limited to the adult lung, but its contribution to non-small cell lung cancer (NSCLC) prognosis is unclear. FOXF2 mRNA levels in NSCLC were lower than that in paired normal lung tissues (P = 0.012). The FOXF2low patients had shorter survival time than the FOXF2high patients (P = 0.024) especially in stage I (P = 0.002), chemotherapy (P = 0.018) and < 60 age groups (P = 0.002). Lower FOXF2 mRNA levels could independently predict poorer survival for patients with NSCLC (HR = 2.384, 95% CI = 1.241-4.577; P = 0.009), especially in stage I (HR =4.367, 95% CI =1.599-11.925; P = 0.004). The two independent datasets confirmed our findings. We examined FOXF2 mRNA levels in 84 primary NSCLC and 8 normal lung tissues using qRT-PCR. Rank-sum tests and chi-square tests were used to assess the differences among groups with various clinicopathological factors. Kaplan-Meier tests were used to compare survival status in patients with different FOXF2 mRNA levels. Cox proportional hazards regression model was used to evaluate the predictive value of FOXF2 mRNA level in NSCLC patients. Independent validation was performed using an independent dataset (98 samples) and an online survival analysis software Kaplan-Meier plotter (1928 samples). Our results demonstrated that decreased FOXF2 expression is an independent predictive factor for poor prognosis of patients with NSCLC, especially in stage I NSCLC.

  20. The GDNF System Is Altered in Diverticular Disease – Implications for Pathogenesis

    PubMed Central

    Böttner, Martina; Barrenschee, Martina; Hellwig, Ines; Harde, Jonas; Egberts, Jan-Hendrik; Becker, Thomas; Zorenkov, Dimitri; Schäfer, Karl-Herbert; Wedel, Thilo

    2013-01-01

    Background & Aims Absence of glial cell line-derived neurotrophic factor (GDNF) leads to intestinal aganglionosis. We recently demonstrated that patients with diverticular disease (DD) exhibit hypoganglionosis suggesting neurotrophic factor deprivation. Thus, we screened mRNA expression pattern of the GDNF system in DD and examined the effects of GDNF on cultured enteric neurons. Methods Colonic specimens obtained from patients with DD (n = 21) and controls (n = 20) were assessed for mRNA expression levels of the GDNF system (GDNF, GDNF receptors GFRα1 and RET). To identify the tissue source of GDNF and its receptors, laser-microdissected (LMD) samples of human myenteric ganglia and intestinal muscle layers were analyzed separately by qPCR. Furthermore, the effects of GDNF treatment on cultured enteric neurons (receptor expression, neuronal differentiation and plasticity) were monitored. Results mRNA expression of GDNF and its receptors was significantly down-regulated in the muscularis propria of patients with DD. LMD samples revealed high expression of GDNF in circular and longitudinal muscle layers, whereas GDNF receptors were also expressed in myenteric ganglia. GDNF treatment of cultured enteric neurons increased mRNA expression of its receptors and promoted neuronal differentiation and plasticity revealed by synaptophysin mRNA and protein expression. Conclusions Our results suggest that the GDNF system is compromised in DD. In vitro studies demonstrate that GDNF enhances expression of its receptors and promotes enteric neuronal differentiation and plasticity. Since patients with DD exhibit hypoganglionosis, we propose that the observed enteric neuronal loss in DD may be due to lacking neurotrophic support mediated by the GDNF system. PMID:23805210

  1. Rapamycin reduces renal hypoxia, interstitial inflammation and fibrosis in a rat model of unilateral ureteral obstruction.

    PubMed

    Liu, Chun-feng; Liu, Hing; Fang, Yi; Jiang, Su-hua; Zhu, Jia-ming; Ding, Xiao-qiang

    2014-06-01

    The purpose of this study was to explore effects of rapamycin on renal hypoxia, interstitial inflammation and fibrosis, and the expression of transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), Flk-1 and Flt-1 in a rat model of unilateral ureteral obstruction (UUO). Male Sprague-Dawley rats (n=36) were randomly divided into three groups (n=12 per group): sham surgery, UUO and UUO plus rapamycin (0.2 mg/kg/d). Serum creatinine (Scr), blood urea nitrogen, uric acid, triglycerides, cholesterol and 24-h urine protein levels were measured. The extent of interstitial fibrosis was determined by Masson's trichrome staining. ED-1 positive macrophages, type III collagen, hypoxia, TGF-1, VEGF, Flk-1, and Flt-1 mRNA and protein expressions were detected using immunohistochemical staining, real-time PCR and Western blot. UUO induced an elevation in Scr, renal hypoxia, inflammation, interstitial fibrosis, TGF-β1, VEGF, Flk-1, and Flt-1 mRNA and protein expression levels (P < 0.05). Rapamycin alleviated the UUO-induced renal hypoxia, infiltration of inflammatory cells and tubulointerstitial fibrosis (at days 3 and 7). Rapamycin also down-regulated the UUO-induced elevated expression levels of TGF-β1 and Flt-1 mRNA and protein (P < 0.05). Rapamycin decreased VEGF mRNA and protein expression at day 3, and increased Flk-1 mRNA and protein expression at day 7, compared with the UUO group (P < 0.05). Rapamycin shows beneficial effects by reducing UUO-induced renal hypoxia, inflammation and tubulointerstitial fibrosis.

  2. Local and systemic response to intramammary lipopolysaccharide challenge during long-term manipulated plasma glucose and insulin concentrations in dairy cows.

    PubMed

    Vernay, M C M B; Wellnitz, O; Kreipe, L; van Dorland, H A; Bruckmaier, R M

    2012-05-01

    The metabolic load during periods of high milk production in dairy cows causes a variety of changes of metabolite blood concentrations including dramatically decreased glucose levels. These changes supposedly impair the immune system. The goal of this study was, therefore, to evaluate adaptations of the cow's immune system in response to an intramammary lipopolysaccharide (LPS) stimulation during a 3-d modification of plasma glucose and insulin induced by different clamp infusions. Seventeen midlactating dairy cows received a hypoglycemic hyperinsulinemic clamp induced by insulin infusion (HypoG; n=5), a euglycemic hyperinsulinemic clamp induced by insulin and glucose infusion (EuG; n=6), or infusion of saline solution (NaCl; n=6) for 56 h. At 48 h of infusion, 2 udder quarters were challenged with 200 μg of Escherichia coli LPS. At 48 h of infusion (immediately before LPS challenge), tumor necrosis factor α, lactoferrin, and serum amyloid A (SAA) mRNA abundance was increased in HypoG and Il-1β mRNA abundance was decreased in EuG. After LPS challenge, plasma glucose concentration did not decrease, although plasma insulin increased simultaneously in all groups either due to enhanced endogenous release (NaCl) or due to increased insulin infusion rate (HypoG; EuG). Plasma cortisol, rectal temperatures, and milk somatic cell count of challenged quarters increased, whereas plasma nonesterified fatty acid concentrations were similarly decreased across treatments. In mammary biopsies, increased mRNA expression of tumor necrosis factor α, IL-1β, IL-8, and IL-10, and SAA were observed in LPS-treated quarters of all groups, with a more pronounced increase in IL-1β, IL-10, and SAA expression in EuG. Nuclear factor-κB mRNA expression was upregulated in NaCl and EuG but not in HypoG in response to LPS. Lactoferrin, toll-like receptor 4, and cyclooxygenase-2 mRNA expression was increased in LPS-treated quarters of EuG only, and 5-lipoxygenase mRNA expression was decreased in LPS-treated quarters only in treatments HypoG and NaCl. In conclusion, intramammary LPS induces local and systemic inflammatory responses, as well as systemic insulin resistance. The observed treatment differences of the mammary mRNA expression of several immune parameters both before and after LPS challenge indicate a direct influence of changed glucose and insulin concentrations during the course of lactation on the immune defense against mastitis pathogens. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.

    PubMed

    Hirose, Jun; Ryan, Lawrence M; Masuda, Ikuko

    2002-12-01

    Excess accumulation of extracellular inorganic pyrophosphate (ePPi) in aged human cartilage is crucial in calcium pyrophosphate dihydrate (CPPD) crystal formation in cartilage matrix. Two sources of ePPi are ePPi-generating ectoenzymes (NTPPPH) and extracellular transport of intracellular PPi by ANK. This study was undertaken to evaluate the role of NTPPPH and ANK in ePPi elaboration, by investigating expression of NTPPPH enzymes (cartilage intermediate-layer protein [CILP] and plasma cell membrane glycoprotein 1 [PC-1]) and ANK in human chondrocytes from osteoarthritic (OA) articular cartilage containing CPPD crystals and without crystals. Chondrocytes were harvested from knee cartilage at the time of arthroplasty (OA with CPPD crystals [CPPD], n = 8; OA without crystals [OA], n = 10). Normal adult human chondrocytes (n = 1) were used as a control. Chondrocytes were cultured with transforming growth factor beta1 (TGFbeta1), which stimulates ePPi elaboration, and/or insulin-like growth factor 1 (IGF-1), which inhibits ePPi elaboration. NTPPPH and ePPi were measured in the media at 48 hours. Media CILP, PC-1, and ANK were determined by dot-immunoblot analysis. Chondrocyte messenger RNA (mRNA) was extracted for reverse transcriptase-polymerase chain reaction to study expression of mRNA for CILP, PC-1, and ANK. NTPPPH and ANK mRNA and protein were also studied in fresh frozen cartilage. Basal ePPi elaboration and NTPPPH activity in conditioned media from CPPD chondrocytes were elevated compared with normal chondrocytes, and tended to be higher compared with OA chondrocytes. Basal expression of mRNA for CILP (chondrocytes) and ANK (cartilage) was higher in both CPPD chondrocytes and CPPD cartilage extract than in OA or normal samples. PC-1 mRNA was less abundant in CPPD chondrocytes and cartilage extract than in OA chondrocytes and extract, although the difference was not significant. CILP, PC-1, and ANK protein levels were similar in CPPD, OA, and normal chondrocytes or cartilage extracts. Both CILP and ANK mRNA expression and ePPi elaboration were stimulated by TGFbeta1 and inhibited by IGF-1 in chondrocytes from all sources. CILP and ANK mRNA expression correlates with chondrocyte ePPi accumulation around CPPD and OA chondrocytes, and all respond similarly to growth factor stimulation. These findings suggest that up-regulated CILP and ANK expression contributes to higher ePPi accumulation from CPPD crystal-forming cartilage.

  4. Predictors of Variation in CYP2A6 mRNA, Protein, and Enzyme Activity in a Human Liver Bank: Influence of Genetic and Nongenetic Factors.

    PubMed

    Tanner, Julie-Anne; Prasad, Bhagwat; Claw, Katrina G; Stapleton, Patricia; Chaudhry, Amarjit; Schuetz, Erin G; Thummel, Kenneth E; Tyndale, Rachel F

    2017-01-01

    Cytochrome P450 2A6 CYP2A6: metabolizes several clinically relevant substrates, including nicotine, the primary psychoactive component in cigarette smoke. Smokers vary widely in their rate of inactivation and clearance of nicotine, altering numerous smoking phenotypes. We aimed to characterize independent and shared impact of genetic and nongenetic sources of variation in CYP2A6 mRNA, protein, and enzyme activity in a human liver bank (n = 360). For the assessment of genetic factors, we quantified levels of CYP2A6, cytochrome P450 oxidoreductase (POR), and aldo-keto reductase 1D1 (AKR1D1) mRNA, and CYP2A6 and POR proteins. CYP2A6 enzyme activity was determined through measurement of cotinine formation from nicotine and 7-hydroxycoumarin formation from coumarin. Donor DNA was genotyped for CYP2A6, POR, and AKR1D1 genetic variants. Nongenetic factors assessed included gender, age, and liver disease. CYP2A6 phenotype measures were positively correlated to each other (r values ranging from 0.47-0.88, P < 0.001). Female donors exhibited higher CYP2A6 mRNA expression relative to males (P < 0.05). Donor age was weakly positively correlated with CYP2A6 protein (r = 0.12, P < 0.05) and activity (r = 0.20, P < 0.001). CYP2A6 reduced-function genotypes, but not POR or AKR1D1 genotypes, were associated with lower CYP2A6 protein (P < 0.001) and activity (P < 0.01). AKR1D1 mRNA was correlated with CYP2A6 mRNA (r = 0.57, P < 0.001), protein (r = 0.30, P < 0.001), and activity (r = 0.34, P < 0.001). POR protein was correlated with CYP2A6 activity (r = 0.45, P < 0.001). Through regression analyses, we accounted for 17% (P < 0.001), 37% (P < 0.001), and 77% (P < 0.001) of the variation in CYP2A6 mRNA, protein, and activity, respectively. Overall, several independent and shared sources of variation in CYP2A6 activity in vitro have been identified, which could translate to variable hepatic clearance of nicotine. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Alternative Polyadenylation in Human Diseases

    PubMed Central

    Chang, Jae-Woong; Yeh, Hsin-Sung

    2017-01-01

    Varying length of messenger RNA (mRNA) 3′-untranslated region is generated by alternating the usage of polyadenylation sites during pre-mRNA processing. It is prevalent through all eukaryotes and has emerged as a key mechanism for controlling gene expression. Alternative polyadenylation (APA) plays an important role for cell growth, proliferation, and differentiation. In this review, we discuss the functions of APA related with various physiological conditions including cellular metabolism, mRNA processing, and protein diversity in a variety of disease models. We also discuss the molecular mechanisms underlying APA regulation, such as variations in the concentration of mRNA processing factors and RNA-binding proteins, as well as global transcriptome changes under cellular signaling pathway. PMID:29271615

  6. Human Cytomegalovirus Strategies to Maintain and Promote mRNA Translation

    PubMed Central

    Vincent, Heather A.; Ziehr, Benjamin; Moorman, Nathaniel J.

    2016-01-01

    mRNA translation requires the ordered assembly of translation initiation factors and ribosomal subunits on a transcript. Host signaling pathways regulate each step in this process to match levels of protein synthesis to environmental cues. In response to infection, cells activate multiple defenses that limit viral protein synthesis, which viruses must counteract to successfully replicate. Human cytomegalovirus (HCMV) inhibits host defenses that limit viral protein expression and manipulates host signaling pathways to promote the expression of both host and viral proteins necessary for virus replication. Here we review key regulatory steps in mRNA translation, and the strategies used by HCMV to maintain protein synthesis in infected cells. PMID:27089357

  7. Tumor necrosis factor-alpha expression in peripheral blood mononuclear cells correlates with early childhood social interaction in autism spectrum disorder.

    PubMed

    Makinodan, Manabu; Iwata, Keiko; Ikawa, Daisuke; Yamashita, Yasunori; Yamamuro, Kazuhiko; Toritsuka, Michihiro; Kimoto, Sohei; Okumura, Kazuki; Yamauchi, Takahira; Yoshino, Hiroki; Tsujii, Masatsugu; Sugiyama, Toshiro; Tsuchiya, Kenji; Mori, Norio; Matsuzaki, Hideo; Kishimoto, Toshifumi

    2017-03-01

    Autism spectrum disorder is a neurodevelopmental disorder characterized by impaired social interaction, poor communication skills, and repetitive/restrictive behaviors. Elevated blood levels of pro-inflammatory cytokines have been reported in subjects with autism spectrum disorder. On the other hand, early childhood adverse experience also increases blood levels of these cytokines. Since social experience of children with autism spectrum disorder is generally unlike to typically developing children, we hypothesized that social interaction during childhood contribute to pro-inflammatory cytokine expression in subjects with autism spectrum disorder. We compared revised Autism Diagnostic Interview scores and expression levels of pro-inflammatory cytokines in peripheral blood mononuclear cells of subjects with autism spectrum disorder (n = 30). The score of domain A on the revised Autism Diagnostic Interview, indicating social interaction impairment in early childhood, was negatively correlated with tumor necrosis factor-α mRNA expression level in peripheral blood mononuclear cells but not interleukin-1β or -6. Consistently, tumor necrosis factor-α mRNA expression was markedly low in subjects with autism spectrum disorder compared to typically developing children who presumably experienced the regular levels of social interaction. These findings suggest that the low blood levels of tumor necrosis factor-α mRNA in subjects with autism spectrum disorder might be due to impaired social interaction in early childhood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Upregulation of innate antiviral restricting factor expression in the cord blood and decidual tissue of HIV-infected mothers.

    PubMed

    Pereira, Nátalli Zanete; Cardoso, Elaine Cristina; Oliveira, Luanda Mara da Silva; de Lima, Josenilson Feitosa; Branco, Anna Cláudia Calvielli Castelo; Ruocco, Rosa Maria de Souza Aveiro; Zugaib, Marcelo; de Oliveira Filho, João Bosco; Duarte, Alberto José da Silva; Sato, Maria Notomi

    2013-01-01

    Programs for the prevention of mother-to-child transmission of HIV have reduced the transmission rate of perinatal HIV infection and have thereby increased the number of HIV-exposed uninfected (HEU) infants. Natural immunity to HIV-1 infection in both mothers and newborns needs to be further explored. In this study, we compared the expression of antiviral restricting factors in HIV-infected pregnant mothers treated with antiretroviral therapy (ART) in pregnancy (n=23) and in cord blood (CB) (n=16), placental tissues (n=10-13) and colostrum (n=5-6) samples and compared them to expression in samples from uninfected (UN) pregnant mothers (n=21). Mononuclear cells (MNCs) were prepared from maternal and CB samples following deliveries by cesarean section. Maternal (decidua) and fetal (chorionic villus) placental tissues were obtained, and colostrum was collected 24 h after delivery. The mRNA and protein expression levels of antiviral factors were then evaluated. We observed a significant increase in the mRNA expression levels of antiviral factors in MNCs from HIV-infected mothers and CB, including the apolipoprotein B mRNA-editing enzyme 3G (A3G), A3F, tripartite motif family-5α (TRIM-5α), TRIM-22, myxovirus resistance protein A (MxA), stimulator of interferon (IFN) genes (STING) and IFN-β, compared with the levels detected in uninfected (UN) mother-CB pairs. Moreover, A3G transcript and protein levels and α-defensin transcript levels were decreased in the decidua of HIV-infected mothers. Decreased TRIM-5α protein levels in the villi and increased STING mRNA expression in both placental tissues were also observed in HIV-infected mothers compared with uninfected (UN) mothers. Additionally, colostrum cells from infected mothers showed increased tetherin and IFN-β mRNA levels and CXCL9 protein levels. The data presented here indicate that antiviral restricting factor expression can be induced in utero in HIV-infected mothers. Future studies are warranted to determine whether this upregulation of antiviral factors during the perinatal period has a protective effect against HIV-1 infection.

  9. Upregulation of Innate Antiviral Restricting Factor Expression in the Cord Blood and Decidual Tissue of HIV-Infected Mothers

    PubMed Central

    Pereira, Nátalli Zanete; Cardoso, Elaine Cristina; Oliveira, Luanda Mara da Silva; de Lima, Josenilson Feitosa; Branco, Anna Cláudia Calvielli Castelo; Ruocco, Rosa Maria de Souza Aveiro; Zugaib, Marcelo; de Oliveira Filho, João Bosco; Duarte, Alberto José da Silva; Sato, Maria Notomi

    2013-01-01

    Programs for the prevention of mother-to-child transmission of HIV have reduced the transmission rate of perinatal HIV infection and have thereby increased the number of HIV-exposed uninfected (HEU) infants. Natural immunity to HIV-1 infection in both mothers and newborns needs to be further explored. In this study, we compared the expression of antiviral restricting factors in HIV-infected pregnant mothers treated with antiretroviral therapy (ART) in pregnancy (n=23) and in cord blood (CB) (n=16), placental tissues (n=10-13) and colostrum (n=5-6) samples and compared them to expression in samples from uninfected (UN) pregnant mothers (n=21). Mononuclear cells (MNCs) were prepared from maternal and CB samples following deliveries by cesarean section. Maternal (decidua) and fetal (chorionic villus) placental tissues were obtained, and colostrum was collected 24 h after delivery. The mRNA and protein expression levels of antiviral factors were then evaluated. We observed a significant increase in the mRNA expression levels of antiviral factors in MNCs from HIV-infected mothers and CB, including the apolipoprotein B mRNA-editing enzyme 3G (A3G), A3F, tripartite motif family-5α (TRIM-5α), TRIM-22, myxovirus resistance protein A (MxA), stimulator of interferon (IFN) genes (STING) and IFN-β, compared with the levels detected in uninfected (UN) mother-CB pairs. Moreover, A3G transcript and protein levels and α-defensin transcript levels were decreased in the decidua of HIV-infected mothers. Decreased TRIM-5α protein levels in the villi and increased STING mRNA expression in both placental tissues were also observed in HIV-infected mothers compared with uninfected (UN) mothers. Additionally, colostrum cells from infected mothers showed increased tetherin and IFN-β mRNA levels and CXCL9 protein levels. The data presented here indicate that antiviral restricting factor expression can be induced in utero in HIV-infected mothers. Future studies are warranted to determine whether this upregulation of antiviral factors during the perinatal period has a protective effect against HIV-1 infection. PMID:24367701

  10. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    PubMed

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  11. THE M-RNA, EXPRESSION OF SERCA2 AND NCX1 IN THE PROCESS OF PHARMACOLOGICAL CELL PROTECTION IN EXPERIMENTAL ACUTE PANCREATITIS INDUCED BY TAUROCHOLATE.

    PubMed

    Vasques, Enio Rodrigues; Cunha, José Eduardo Monteiro; Kubrusly, Marcia Saldanha; Coelho, Ana Maria; Sanpietri, Sandra N; Nader, Helena B; Tersariol, Ivarne L S; Lima, Marcelo A; Chaib, Eleazar; D'Albuquerque, Luiz Augusto Carneiro

    2018-06-21

    Intracellular calcium overload is known to be a precipitating factor of pancreatic cell injury in acute pancreatitis (AP). Intracellular calcium homeostasis depends of Plasmatic Membrane Calcium ATPase (PMCA), Sarcoplasmic Endothelial Reticulum Calcium ATPase 2 (SERCA 2) and the Sodium Calcium Exchanger (NCX1). The antioxidant melatonin (Mel) and Trisulfate Disaccharide (TD) that accelerates NCX1 action could reduce the cell damage determined by the AP. To evaluate m-RNA expressions of SERCA2 and NCX1 in acute pancreatitis induced by sodium taurocholate in Wistar rats pre-treated with melatonin and/or TD. Wistar rats were divided in groups: 1) without AP; 2) AP without pre-treatment; 3) AP and Melatonin; 4) AP and TD; 5) AP and Melatonin associated to TD. Pancreatic tissue samples were collected for detection of SERCA2 and NCX1 m-R NA levels by polymerase chain reaction (PCR). Increased m-RNA expression of SERCA2 in the melatonin treated group, without increase of m-RNA expression of the NCX1. The TD did not affect levels of SERCA2 and NCX1 m-RNA expressions. The combined melatonin and TD treatment reduced the m-RNA expression of SERCA2. The effect of melatonin is restricted to increased m-RNA expression of SERCA2. Although TD does not affect gene expression, its action in accelerating calcium exchanger function can explain the slightest expression of SERCA2 m-RNA when associated with Melatonin, perhaps by a joint action of drugs with different and but possibly complementary mechanisms.

  12. Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast-to-slow transformation in rabbit skeletal muscle cell culture

    PubMed Central

    Meißner, Joachim D; Gros, Gerolf; Scheibe, Renate J; Scholz, Michael; Kubis, Hans-Peter

    2001-01-01

    The addition of cyclosporin A (500 ng ml−1) - an inhibitor of the Ca2+-calmodulin-regulated serine/threonine phosphatase calcineurin - to primary cultures of rabbit skeletal muscle cells had no influence on the expression of fast myosin heavy chain (MHC) isoforms MHCIIa and MHCIId at the level of protein and mRNA, but reduced the expression of slow MHCI mRNA. In addition, no influence of cyclosporin A on the expression of citrate synthase (CS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was found. The level of enzyme activity of CS was also not affected. When the Ca2+ ionophore A23187 (4 × 10−7m) was added to the medium, a partial fast-to-slow transformation occurred. The level of MHCI mRNA increased, and the level of MHCIId mRNA decreased. Cotreatment with cyclosporin A was able to prevent the upregulation of MHCI at the level of mRNA as well as protein, but did not reverse the decrease in MHCIId expression. The expression of MHCIIa was also not influenced by cyclosporin A. Cyclosporin A was not able to prevent the upregulation of CS mRNA under Ca2+ ionophore treatment and failed to reduce the increased enzyme activity of CS. The expression of GAPDH mRNA was reduced under Ca2+ ionophore treatment and was not altered under cotreatment with cyclosporin A. When the myotubes in the primary muscle culture were electrostimulated at 1 Hz for 15 min periods followed by pauses of 30 min, a partial fast-to-slow transformation was induced. Again, cotreatment with cyclosporin A prevented the upregulation of MHCI at the level of mRNA and protein without affecting MHCIId expression. The nuclear translocation of the calcineurin-regulated transcription factor nuclear factor of activated thymocytes (NFATc1) during treatment with Ca2+ ionophore, and the prevention of the translocation in the presence of cyclosporin A, were demonstrated immunocytochemically in the myotubes of the primary culture. The effects of cyclosporin A demonstrate the involvement of calcineurin-dependent signalling pathways in controlling the expression of MHCI, but not of MHCIIa, MHCIId, CS and GAPDH, during Ca2+ ionophore- and electrostimulation-induced fast-to-slow transformations. The data indicate a differential regulation of MHCI, of MHCII and of metabolism. Calcineurin alone is not sufficient to mediate the complete transformation. PMID:11351029

  13. Upregulation of Neurotrophic Factors Selectively in Frontal Cortex in Response to Olfactory Discrimination Learning

    PubMed Central

    Naimark, Ari; Barkai, Edi; Matar, Michael A.; Kaplan, Zeev; Kozlovsky, Nitzan; Cohen, Hagit

    2007-01-01

    We have previously shown that olfactory discrimination learning is accompanied by several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons selectively in the piriform cortex. This study sought to examine whether the previously demonstrated olfactory-learning-task-induced modifications are preceded by suitable changes in the expression of mRNA for neurotrophic factors and in which brain areas this occurs. Rats were trained to discriminate positive cues in pair of odors for a water reward. The relationship between the learning task and local levels of mRNA for brain-derived neurotrophic factor, tyrosine kinase B, nerve growth factor, and neurotrophin-3 in the frontal cortex, hippocampal subregions, and other regions were assessed 24 hours post olfactory learning. The olfactory discrimination learning activated production of endogenous neurotrophic factors and induced their signal transduction in the frontal cortex, but not in other brain areas. These findings suggest that different brain areas may be preferentially involved in different learning/memory tasks. PMID:17710248

  14. Differential restriction patterns of mRNA decay factor AUF1 during picornavirus infections.

    PubMed

    Cathcart, Andrea L; Semler, Bert L

    2014-07-01

    During infection by picornaviruses, the cellular environment is modified to favour virus replication. This includes the modification of specific host proteins, including the recently discovered viral proteinase cleavage of mRNA decay factor AU-rich binding factor 1 (AUF1). This cellular RNA-binding protein was shown previously to act as a restriction factor during poliovirus, rhinovirus and coxsackievirus infection. During infection by these viruses, AUF1 relocalizes to the cytoplasm and is cleaved by the viral 3C/3CD proteinase. In this study, we demonstrated that replication of encephalomyocarditis virus (EMCV), a picornavirus belonging to the genus Cardiovirus, is AUF1 independent. During EMCV infection, AUF1 relocalized to the cytoplasm; however, unlike what is seen during enterovirus infections, AUF1 was not cleaved to detectable levels, even at late times after infection. This suggests that AUF1 does not act broadly as an inhibitor of picornavirus infections but may instead act as a selective restriction factor targeting members of the genus Enterovirus. © 2014 The Authors.

  15. Vascular Endothelial Growth Factor (VEGF) mRNA Isoforms are Altered in Bovine Granulosa Cells (GC) by Circulating Progestin Concentrations (P4) and May Indicate Follicle Status and Oocyte Competence

    USDA-ARS?s Scientific Manuscript database

    Previously, Melengestrol Acetate (MGA) fed for 14 d (0.5mg/cow/d; < 1 ng/ml P4) resulted in persistent follicles with increased size, decreased number of GC/follicular fluid (FF) volume, and less fertile oocytes. An experiment was conducted to determine effects of circulating P4 on amount of mRNA fo...

  16. Nitric oxide-sensitive guanylyl cyclase is differentially regulated by nuclear and non-nuclear estrogen pathways in anterior pituitary gland.

    PubMed

    Cabilla, Jimena P; Nudler, Silvana I; Ronchetti, Sonia A; Quinteros, Fernanda A; Lasaga, Mercedes; Duvilanski, Beatriz H

    2011-01-01

    17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing α1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, α1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM) and E2-dendrimer conjugate (EDC, 1 nM) were unable to modify α1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h), 1 nM EDC causes a transient decrease of α1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway. © 2011 Cabilla et al.

  17. The Role of the Stem Cell Factor/c-kit Complex in Neurofibrormatosis.

    DTIC Science & Technology

    1997-10-01

    investigations of the Kit/ stem cell factor complex in hyperplasias of these cells. In the request for no-cost extension, several experiments were listed to be...soluble stem cell factor from the NF1 knockout Schwann cells. We also found that most neural tumors express mRNA for Kit, and also for stem cell factor.

  18. Differential activity of 2-methylene-19-nor vitamin D analogs on growth factor gene expression in rhino mouse skin and comparison to all-trans retinoic acid.

    PubMed

    Ahrens, Jamie M; Jones, James D; Nieves, Nirca J; Mitzey, Ann M; DeLuca, Hector F; Clagett-Dame, Margaret

    2017-01-01

    While all 2-methylene-19-nor analogs of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) tested produce an increase in epidermal thickness in the rhino mouse, only a subset reduce utricle size (comedolysis). All-trans retinoic acid (atRA) also causes epidermal thickening and a reduction in utricle size in the rhino mouse. We now report that 2-methylene-19-nor-(20S)-1α-hydroxybishomopregnacalciferol (2MbisP), a comedolytic analog, increases epidermal thickening more rapidly than does atRA, while both reduce utricle area at an equal rate. Whereas unlike atRA, 2MbisP does not alter the epidermal growth factor receptor ligand, heparin-binding epidermal growth factor-like growth factor, it does increase the expression of both amphiregulin and epigen mRNA, even after a single dose. In situ hybridization reveals an increase in these transcripts throughout the closing utricle as well as in the interfollicular epidermis. The mRNAs for other EGFR ligands including betacellulin and transforming growth factor-α, as well as the epidermal growth factor receptor are largely unaffected by 2MbisP. Another analog, 2-methylene-19-nor-(20S)-26,27-dimethylene-1α,25-dihydroxyvitamin D3 (CAGE-3), produces epidermal thickening but fails to reduce utricle size or increase AREG mRNA levels. CAGE-3 modestly increases epigen mRNA levels, but only after 5 days of dosing. Thus, 2-MbisP produces unique changes in epidermal growth factor receptor ligand mRNAs that may be responsible for both epidermal proliferation and a reduction in utricle size.

  19. Multiparametric in situ mRNA hybridization analysis to predict disease recurrence in patients with colon carcinoma.

    PubMed Central

    Kitadai, Y.; Ellis, L. M.; Tucker, S. L.; Greene, G. F.; Bucana, C. D.; Cleary, K. R.; Takahashi, Y.; Tahara, E.; Fidler, I. J.

    1996-01-01

    We examined the expression level of several genes that regulate different steps of metastasis in formalin-fixed, paraffin-embedded archival specimens of primary human colon carcinomas from patients with at least 5 years of follow-up. The expression of epidermal growth factor receptor, basic fibroblast growth factor, type IV collagenase, E-cadherin, and multidrug resistance (mdr-1) was examined by a colorimetric in situ mRNA hybridization technique concentrating on reactivity at the periphery of the neoplasms. The in situ hybridization technique revealed inter- and intratumor heterogeneity for expression of the metastasis-related genes. The expression of basic fibroblast growth factor, collagenase type IV, epidermal growth factor receptor, and mdr-1 mRNA was higher in Dukes's stage D than in Dukes' stage B tumors. Among the 22 Dukes' stage B neoplasms, 5 specimens exhibited a high expression level of epidermal growth factor receptor, basic fibroblast growth factor, and collagenase type IV. Clinical outcome data (5-year follow-up) revealed that all 5 patients with Dukes' stage B tumors developed distant metastasis (recurrent disease), whereas the other 17 patients with Dukes' stage B tumors expressing low levels of the metastasis-related genes were disease-free. Multivariate analysis identified high levels of expression of collagenase type IV and low levels of expression of E-cadherin as independent factors significantly associated with metastasis or recurrent disease. More specifically, metastatic or recurrent disease was associated with a high ratio (> 1.35) of expression of collagenase type IV to E-cadherin (specificity of 95%). Collectively, the data show that multiparametric in situ hybridization analysis for several metastasis-related genes may predict the metastatic potential, and hence the clinical outcome, of individual lymph-node-negative human colon cancers. Images Figure 1 Figure 2 PMID:8909244

  20. The effect of leptin and resveratrol on JAK/STAT pathways and Sirt-1 gene expression in the renal tissue of ischemia/reperfusion induced rats.

    PubMed

    Erkasap, S; Erkasap, N; Bradford, B; Mamedova, L; Uysal, O; Ozkurt, M; Ozyurt, R; Kutlay, O; Bayram, B

    2017-01-01

    Our study aimed to investigate the possible modifying effects of leptin and combined use of resveratrol on rat renal I/R injury and their relationship on signal pathways and apoptosis-related mechanisms. Renal ischemia-reperfusion (I/R) injury is an important cause of acute renal failure. Male Sprague Dawley rats were divided into 5 groups: Control, I/R, I/R+leptin, I/R+resveratrol and I/R+leptin+resveratrol. Leptin (10 μg/kg BW) was administered (i.p.) 30 min prior to I/R. Resveratrol was administered by gavage at 20 mg/kg BW per d for 12 d prior to I/R. The left renal artery was exposed to 1 h of ischemia and 1 h of reperfusion. Resveratrol treatment alone increased TNF-α, TNF-α R1, NF-κB, SIRT-1, STAT1 and STAT3 mRNA levels and decreased caspase 3 protein levels. Leptin treatment alone significantly decreased the caspase 3 protein levels. The combined use of resveratrol and leptin significantly increased STAT3, and caspase 3 mRNA levels, and decreased the caspase 3 protein levels. Apoptosis was significantly decreased especially in the leptin and leptin+resveratrol groups. The present study suggest that a combined use of resveratrol and leptin has preventive and regulatory effects on renal I/R injury; the mechanism involves decreasing apoptosis, likely by altering the JAK/STAT pathway and SIRT1 expression (Fig. 8, Ref. 24).

  1. Gravity and Skeletal Growth

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Turner, Russell T.

    1999-01-01

    Two simultaneous experiments were performed using 5-week-old male Sprague Dawley rats; in one study, the rats were flown in low earth orbit; in the other study, the hindlimbs of the growing rats were elevated to prevent weight bearing. Following 9 d of unloading, weight bearing was restored for 4, 28, and 76 hrs. Afterwards, additional hindlimb unloading experiments were performed to evaluate the skeletal response to 0, 2, 4, 6, 8, 10, 12, 16, and 24 hrs of restored weight bearing following 7 d of unloading. Cancellous and cortical bone histomorphometry were evaluated in the left tibia at the proximal metaphysis and in the left femur at mid-diaphysis, respectively. Steady-state mRNA levels for bone matrix proteins and skeletal signaling peptides were determined in total cellular RNA extracted from trabeculae from the right proximal tibiametaphysis and periosteum from the right femur. Spaceflight and hindlimb unloading each resulted in cancellous osteopenia, as well as a tendency towards decreased periosteal bone formation. Both models for skeletal unloading resulted in site specific reductions in mRNA levels for transforming growth factor-beta (sub 1) (TGF-beta) osteocalcin (OC), and prepro-alpha (I) subunit of type 1 collagen (collagen) and little or no changes in mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAP) and insulin-like growth factor I (IGF-I). Restoration of normal weight bearing resulted in transient increases in mRNA levels for the bone matrix proteins and TGF-beta in the proximal metaphysis and periosteum and no changes in either GAP or IGF-I mRNA levels. The timecourse for the response differed between the two skeletal compartments; the tibial metaphysis responded much more quickly to reloading. These results suggest that the skeletal adaptation to acute physiological changes in mechanical usage are mediated, in part, by changes in mRNA levels for bone matrix proteins and TGF-beta.

  2. Postnatal changes and sexual dimorphism in collagen expression in mouse skin

    PubMed Central

    Arai, Koji Y.; Hara, Takuya; Nagatsuka, Toyofumi; Kudo, Chikako; Tsuchiya, Sho; Nomura, Yoshihiro; Nishiyama, Toshio

    2017-01-01

    To investigate sexual dimorphism and postnatal changes in skin collagen expression, mRNA levels of collagens and their regulatory factors in male and female skin were examined during the first 120 days of age by quantitative realtime PCR. Levels of mRNAs encoding extracellular matrices did not show any differences between male and female mice until day 15. Col1a1 and Col1a2 mRNAs noticeably increased at day 30 and remained at high levels until day 120 in male mice, while those in female mice remained at low levels during the period. Consistent with the mRNA expression, pepsin-soluble type I collagen contents in skin was very high in mature male as compared to female. Col3a1 mRNA in male mice also showed significantly high level at day 120 as compared to female. On the other hand, expression of mRNAs encoding TGF-ßs and their receptors did not show apparent sexual dimorphism although small significant differences were observed at some points. Castration at 60 days of age resulted in a significant decrease in type I collagen mRNA expression within 3 days, and noticeably decreased expression of all fibril collagen mRNAs examined within 14 days, while administration of testosterone tube maintained the mRNA expression at high levels. Despite the in vivo effect of testosterone, administration of physiological concentrations of testosterone did not affect fibril collagen mRNA expression in either human or mouse skin fibroblasts in vitro, suggesting that testosterone does not directly affect collagen expression in fibroblasts. In summary, present study demonstrated dynamic postnatal changes in expression of collagens and their regulatory factors, and suggest that testosterone and its effects on collagen expression are responsible for the skin sexual dimorphism but the effects of testosterone is not due to direct action on dermal fibroblasts. PMID:28494009

  3. Inhibition of Growth and Metastasis of Ovarian Carcinoma by Administering a Drug Capable of Interfering with Vascular Endothelial Growth Factor Activity

    PubMed Central

    Mu, Jie; Abe, Yoshiko; Tsutsui, Tateki; Yamamoto, Norihiko; Tai, Xu‐Guang; Niwa, Ohtsura; Tsujimura, Takahiro; Sato, Bunzo; Terano, Hiroshi; Hamaoka, Toshiyuki

    1996-01-01

    The present study investigates the relationship between in vivo growth/metastasis of tumor cells and their capacity to produce the vascular endothelial growth factor (VEGF), as well as the regulation of tumor growth/metastasis using an angiogenesis‐inhibitory drug. Two cloned tumor cell lines designated OV‐LM and OV‐HM were isolated from a murine ovarian carcinoma OV2944. OV‐LM and OV‐HM cells grew in cultures at comparable rates. However, when transplanted s.c. into syngeneic mice, OV‐HM exhibited a faster growth rate and a much higher incidence of metastasis to lymph nodes and lung. Histologically, intense neovascularization was detected in sections of OV‐HM but not of OV‐LM tumor. OV‐HM and OV‐LM tumor cells obtained from in vitro cultures expressed high and low levels of VEGF mRNA, respectively. A difference in VEGF mRNA expression was much more clearly observed between RNAs prepared from fresh OV‐HM and OV‐LM tumor masses: RNA from OV‐HM contained larger amounts of VEGF mRNA, whereas RNA from OV‐LM exhibited only marginal levels of VEGF mRNA. An angiogenesis‐inhibitory drug, FR118487 inhibited the VEGF‐mediated in vitro growth of endothelial cells but did not affect the expression in vitro of VEGF mRNA by OV‐HM tumor cells. Intraperitoneal injections of FR118487 into mice bearing OV‐HM tumors resulted in: (i) a subsequent growth inhibition of primary tumors; (ii) a marked decrease in neovascularization inside tumor masses expressing comparable levels of VEGF mRNA to those detected in control OV‐HM masses; and (iii) almost complete inhibition of metastasis to lymph nodes and lung. These results indicate that growth/metastasis of tumor cells correlates with their VEGF‐producing capacity and that an angiogenesis inhibitor, FR118487, inhibits tumor growth and metastasis through mechanism(s) including the suppression of VEGF function in vivo. PMID:8878460

  4. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus.

    PubMed

    Mraz, M; Lacinova, Z; Drapalova, J; Haluzikova, D; Horinek, A; Matoulek, M; Trachta, P; Kavalkova, P; Svacina, S; Haluzik, M

    2011-04-01

    Low-grade inflammation links obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases. To explore the expression profile of genes involved in inflammatory pathways in adipose tissue and peripheral monocytes (PM) of obese patients with and without T2DM at baseline and after dietary intervention. Two-week intervention study with very-low-calorie diet (VLCD). University hospital. Twelve obese females with T2DM, 8 obese nondiabetic females (OB) and 15 healthy age-matched females. Two weeks of VLCD (2500 kJ/d). Metabolic parameters, circulating cytokines, hormones, and mRNA expression of 39 genes in sc adipose tissue (SCAT) and PM. Both T2DM and OB group had significantly increased serum concentrations of circulating proinflammatory factors (C-reactive protein, TNFα, IL-6, IL-8), mRNA expression of macrophage antigen CD68 and proinflammatory chemokines (CCL-2, -3, -7, -8, -17, -22) in SCAT and complementary chemokine receptors (CCR-1, -2, -3, -5) and other proinflammatory receptors (toll-like receptor 2 and 4, TNF receptor superfamily 1A and 1B, IL-6R) in PM, with OB group showing less pronounced chemoattracting and proinflammatory profile compared to T2DM group. In T2DM patients VLCD decreased body weight, improved metabolic profile, and decreased mRNA expression of up-regulated CCRs in PM and chemokines [CCL 8, chemokine (C-X-C motif) ligand 10] in SCAT. VLCD markedly increased mRNA expression of T-lymphocyte attracting chemokine CCL-17 in SCAT. Obese patients with and without T2DM have increased mRNA expression of chemotactic and proinflammatory factors in SCAT and expression of corresponding receptors in PM. Two weeks of VLCD significantly improved this profile in T2DM patients.

  5. Cytokine expression in response to root canal infection in gnotobiotic mice.

    PubMed

    Maciel, K F; Neves de Brito, L C; Tavares, W L F; Moreira, G; Nicoli, J R; Vieira, L Q; Ribeiro Sobrinho, A P

    2012-04-01

    To examine cytokine expression profiles during periapical lesion development in response to synergetic human pathogens in a gnotobiotic mouse model. Human strains of Fusobacterium nucleatum and Peptostreptococcus prevotii were inoculated into the root canals of germ-free mice in either mono- or bi-association. Animals were killed 7 and 14 days after infection, and periapical tissues were collected. mRNA expression of the cytokines IFN-γ, TNF-α, Receptor activator of nuclear factor kappa-B ligand (RANKL), IL-10, IL-4 and transforming growth factor β (TGF-β) was assessed using real-time PCR. Levene's test was used to assess the equality of variance of the data, whereas a t-test for independent samples was used to evaluate the significance of the differences between groups (P < 0.05). The mRNA expression of IFN-γ and TNF-α was up-regulated by F. nucleatum during the acute (day 7) and chronic phase (day 14) of periapical lesion development. However, in bi-infection the expression of IFN-γ and TNF-α were effectively absent at both time-points. RANKL mRNA expression was down-regulated during dual infection at the chronic phase. As IL-4 expression was similar at both time-points, IL-4 does not appear to be involved in the periapical response to these bacterial strains. IL-10 was up-regulated during the chronic phase by mono-infection with either F. nucleatum or P. prevotii. Dual infection increased TGF-β mRNA expression on day 7, which paralleled the decrease in IFN-γ and TNF-α mRNA levels at the same time-point. F. nucleatum increased TGF-β mRNA expression during the chronic phase. Cytokine profiles depend on the nature of the bacterial challenge. Both TGF-β and IL-10 appeared to be regulating the proinflammatory cytokine responses at both time-points of the periapical immune response. © 2012 International Endodontic Journal.

  6. Escalating Methamphetamine Regimen Induces Compensatory Mechanisms, Mitochondrial Biogenesis, and GDNF Expression, in Substantia Nigra.

    PubMed

    Valian, Neda; Ahmadiani, Abolhassan; Dargahi, Leila

    2017-06-01

    Methamphetamine (MA) produces long-lasting deficits in dopaminergic neurons in the long-term use via several neurotoxic mechanisms. The effects of MA on mitochondrial biogenesis is less studied currently. So, we evaluated the effects of repeated escalating MA regimen on transcriptional factors involved in mitochondrial biogenesis and glial-derived neurotrophic factor (GDNF) expression in substantia nigra (SN) and striatum of rat. In male Wistar rats, increasing doses of MA (1-14 mg/kg) were administrated twice a day for 14 days. At the 1st, 14th, 28th, and 60th days after MA discontinuation, we measured the PGC1α, TFAM and NRF1 mRNA levels, indicator of mitochondrial biogenesis, and GDNF expression in SN and striatum. Furthermore, we evaluated the glial fibrillary acidic protein (GFAP) and Iba1 mRNA levels, and the levels of tyrosine hydroxylase (TH) and α-synuclein (α-syn) using immunohistochemistry and real-time polymerase chain reaction (PCR). We detected increments in PGC1α and TFAM mRNA levels in SN, but not striatum, and elevations in GDNF levels in SN immediately after MA discontinuation. We also observed increases in GFAP and Iba1 mRNA levels in SN on day 1 and increases in Iba1 mRNA on days 1 and 14 in striatum. Data analysis revealed that the number of TH + cells in the SN did not reduce in any time points, though TH mRNA levels was increased on day 1 after MA discontinuation in SN. These data show that repeated escalating MA induces several compensatory mechanisms, such as mitochondrial biogenesis and elevation in GDNF in SN. These mechanisms can reverse MA-induced neuroinflammation and prevent TH-immunoreactivity reduction in nigrostriatal pathway. J. Cell. Biochem. 118: 1369-1378, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer.

    PubMed

    Merkin, Ross D; Vanner, Elizabeth A; Romeiser, Jamie L; Shroyer, A Laurie W; Escobar-Hoyos, Luisa F; Li, Jinyu; Powers, Robert S; Burke, Stephanie; Shroyer, Kenneth R

    2017-04-01

    Clinicopathological features of breast cancer have limited accuracy to predict survival. By immunohistochemistry (IHC), keratin 17 (K17) expression has been correlated with triple-negative status (estrogen receptor [ER]/progesterone receptor/human epidermal growth factor receptor-2 [HER2] negative) and decreased survival, but K17 messenger RNA (mRNA) expression has not been evaluated in breast cancer. K17 is a potential prognostic cancer biomarker, targeting p27, and driving cell cycle progression. This study compared K17 protein and mRNA expression to ER/progesterone receptor/HER2 receptor status and event-free survival. K17 IHC was performed on 164 invasive breast cancers and K17 mRNA was evaluated in 1097 breast cancers. The mRNA status of other keratins (16/14/9) was evaluated in 113 ER - /HER2 - ductal carcinomas. IHC demonstrated intense cytoplasmic and membranous K17 localization in myoepithelial cells of benign ducts and lobules and tumor cells of ductal carcinoma in situ. In ductal carcinomas, K17 protein was detected in most triple-negative tumors (28/34, 82%), some non-triple-negative tumors (52/112, 46%), but never in lobular carcinomas (0/15). In ductal carcinomas, high K17 mRNA was associated with reduced 5-year event-free survival in advanced tumor stage (n = 149, hazard ratio [HR] = 3.68, P = .018), and large (n = 73, HR = 3.95, P = .047), triple-negative (n = 103, HR = 2.73, P = .073), and ER - /HER2 - (n = 113, HR = 2.99, P = .049) tumors. There were significant correlations among keratins 17, 16, 14, and 9 mRNA levels suggesting these keratins (all encoded on chromosome 17) could be coordinately expressed in breast cancer. Thus, K17 is expressed in a subset of triple-negative breast cancers, and is a marker of poor prognosis in patients with advanced stage and ER - /HER2 - breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Captopril reduces cardiac inflammatory markers in spontaneously hypertensive rats by inactivation of NF-kB

    PubMed Central

    2010-01-01

    Background Captopril is an angiotensin-converting enzyme (ACE) inhibitor widely used in the treatment of arterial hypertension and cardiovascular diseases. Our objective was to study whether captopril is able to attenuate the cardiac inflammatory process associated with arterial hypertension. Methods Left ventricle mRNA expression and plasma levels of pro-inflammatory (interleukin-1β (IL-1β) and IL-6) and anti-inflammatory (IL-10) cytokines, were measured in spontaneously hypertensive rats (SHR) and their control normotensive, Wistar-Kyoto (WKY) rats, with or without a 12-week treatment with captopril (80 mg/Kg/day; n = six animals per group). To understand the mechanisms involved in the effect of captopril, mRNA expression of ACE, angiotensin II type I receptor (AT1R) and p22phox (a subunit of NADPH oxidase), as well as NF-κB activation and expression, were measured in the left ventricle of these animals. Results In SHR, the observed increases in blood pressures, heart rate, left ventricle relative weight, plasma levels and cardiac mRNA expression of IL-1β and IL-6, as well as the reductions in the plasma levels and in the cardiac mRNA expression of IL-10, were reversed after the treatment with captopril. Moreover, the mRNA expressions of ACE, AT1R and p22phox, which were enhanced in the left ventricle of SHR, were reduced to normal values after captopril treatment. Finally, SHR presented an elevated cardiac mRNA expression and activation of the transcription nuclear factor, NF-κB, accompanied by a reduced expression of its inhibitor, IκB; captopril administration corrected the observed changes in all these parameters. Conclusion These findings show that captopril decreases the inflammation process in the left ventricle of hypertensive rats and suggest that NF-κB-driven inflammatory reactivity might be responsible for this effect through an inactivation of NF-κB-dependent pro-inflammatory factors. PMID:20462420

  9. Enhancing Proprioceptive Input to Motoneurons Differentially Affects Expression of Neurotrophin 3 and Brain-Derived Neurotrophic Factor in Rat Hoffmann-Reflex Circuitry

    PubMed Central

    Gajewska-Woźniak, Olga; Skup, Małgorzata; Kasicki, Stefan; Ziemlińska, Ewelina; Czarkowska-Bauch, Julita

    2013-01-01

    The importance of neurotrophin 3 (NT-3) for motor control prompted us to ask the question whether direct electrical stimulation of low-threshold muscle afferents, strengthening the proprioceptive signaling, could effectively increase the endogenous pool of this neurotrophin and its receptor TrkC in the Hoffmann-reflex (H-reflex) circuitry. The effects were compared with those of brain-derived neurotrophic factor (BDNF) and its TrkB receptor. Continuous bursts of stimuli were delivered unilaterally for seven days, 80 min daily, by means of a cuff-electrode implanted over the tibial nerve in awake rats. The H-reflex was recorded in the soleus muscle to control the strength of stimulation. Stimulation aimed at activation of Ia fibers produced a strong increase of NT-3 protein, measured with ELISA, in the lumbar L3-6 segments of the spinal cord and in the soleus muscle. This stimulation exerted much weaker effect on BDNF protein level which slightly increased only in L3-6 segments of the spinal cord. Increased protein level of NT-3 and BDNF corresponded to the changes of NT-3 mRNA and BDNF mRNA expression in L3-6 segments but not in the soleus muscle. We disclosed tissue-specificity of TrkC mRNA and TrkB mRNA responses. In the spinal cord TrkC and TrkB transcripts tended to decrease, whereas in the soleus muscle TrkB mRNA decreased and TrkC mRNA expression strongly increased, suggesting that stimulation of Ia fibers leads to sensitization of the soleus muscle to NT-3 signaling. The possibility of increasing NT-3/TrkC signaling in the neuromuscular system, with minor effects on BDNF/TrkB signaling, by means of low-threshold electrical stimulation of peripheral nerves, which in humans might be applied in non-invasive way, offers an attractive therapeutic tool. PMID:23776573

  10. Enhancing proprioceptive input to motoneurons differentially affects expression of neurotrophin 3 and brain-derived neurotrophic factor in rat hoffmann-reflex circuitry.

    PubMed

    Gajewska-Woźniak, Olga; Skup, Małgorzata; Kasicki, Stefan; Ziemlińska, Ewelina; Czarkowska-Bauch, Julita

    2013-01-01

    The importance of neurotrophin 3 (NT-3) for motor control prompted us to ask the question whether direct electrical stimulation of low-threshold muscle afferents, strengthening the proprioceptive signaling, could effectively increase the endogenous pool of this neurotrophin and its receptor TrkC in the Hoffmann-reflex (H-reflex) circuitry. The effects were compared with those of brain-derived neurotrophic factor (BDNF) and its TrkB receptor. Continuous bursts of stimuli were delivered unilaterally for seven days, 80 min daily, by means of a cuff-electrode implanted over the tibial nerve in awake rats. The H-reflex was recorded in the soleus muscle to control the strength of stimulation. Stimulation aimed at activation of Ia fibers produced a strong increase of NT-3 protein, measured with ELISA, in the lumbar L3-6 segments of the spinal cord and in the soleus muscle. This stimulation exerted much weaker effect on BDNF protein level which slightly increased only in L3-6 segments of the spinal cord. Increased protein level of NT-3 and BDNF corresponded to the changes of NT-3 mRNA and BDNF mRNA expression in L3-6 segments but not in the soleus muscle. We disclosed tissue-specificity of TrkC mRNA and TrkB mRNA responses. In the spinal cord TrkC and TrkB transcripts tended to decrease, whereas in the soleus muscle TrkB mRNA decreased and TrkC mRNA expression strongly increased, suggesting that stimulation of Ia fibers leads to sensitization of the soleus muscle to NT-3 signaling. The possibility of increasing NT-3/TrkC signaling in the neuromuscular system, with minor effects on BDNF/TrkB signaling, by means of low-threshold electrical stimulation of peripheral nerves, which in humans might be applied in non-invasive way, offers an attractive therapeutic tool.

  11. Chorioamnionitis Occurring in Women With Preterm Rupture of the Fetal Membranes Is Associated With a Dynamic Increase in mRNAs Coding Cytokines in the Maternal Circulation

    PubMed Central

    Gordon, Lavinia; Kapoor, Jada; Walker, Susan P.; Whitehead, Clare; Kaitu’u-Lino, Tu’uhevaha J.; Pell, Gabrielle; Hannan, Natalie J.; Tong, Stephen

    2015-01-01

    Background: Preterm prelabor rupture of the fetal membranes (PPROM) is a significant contributor to the morbidity and mortality of preterm birth, particularly in the setting of chorioamnionitis. No sensitive or specific diagnostic or predictive test currently exists for the accurate diagnosis of chorioamnionitis. Our aim was to measure messenger RNA (mRNA) coding cytokines in the maternal blood and examine whether they were increased in association with chorioamnionitis at delivery. Methods/Results: We performed a prospective cohort study of women recruited with PPROM at a mean gestational age of 28.9 weeks at risk of developing chorioamnionitis. Blood was sampled from participants, and the expression of mRNA coding for proinflammatory genes was measured in women with and without chorioamnionitis at the time of delivery as well as gestation-matched healthy controls. Expression was measured using quantitative polymerase chain reaction (PCR) and also digital PCR. Interleukin 1β (IL1B) mRNA expression in maternal blood was elevated in women with chorioamnionitis compared to gestation-matched controls. Importantly, among women admitted with PPROM, digital PCR confirmed a significant increase in IL1B expression in maternal blood in women with chorioamnionitis compared to women without chorioamnionitis. Polymerase chain reaction array revealed that CD14, nuclear factor of κ light polypeptide gene enhancer in B-cells 1 (NFKB1), and tumor necrosis factor receptor super family-interacting serine–threonine kinase 1 mRNA were significantly increased in women with chorioamnionitis compared to controls. Digital PCR confirmed that NFKB1 mRNA was significantly increased in patients with chorioamnionitis compared to controls and that CD14 levels increased over time in patients with PPROM having chorioamnionitis. Conclusion: Measuring circulating proinflammatory mRNA in women with PPROM may distinguish those with chorioamnionitis from those without, in turn providing better targeted therapies and appropriate timing of delivery. PMID:25616398

  12. Smad4-Mediated Signaling Inhibits Intestinal Neoplasia by Inhibiting Expression of β-Catenin

    PubMed Central

    Freeman, Tanner J.; Smith, J. Joshua; Chen, Xi; Washington, M. Kay; Roland, Joseph T.; Means, Anna L.; Eschrich, Steven A.; Yeatman, Timothy J.; Deane, Natasha G.; Beauchamp, R. Daniel

    2012-01-01

    Background & Aims Mutational inactivation of APC is an early event in colorectal cancer (CRC) progression that affects the stability and increases the activity of β-catenin, a mediator of Wnt signaling. CRC progression also involves inactivation of signaling via transforming growth factor (TGF)β and bone morphenogenic protein (BMP), which are tumor suppressors. However, the interactions between these pathways are not clear. We investigated the effects of loss of the transcription factor Smad4 loss on levels of β-catenin mRNA and Wnt signaling. Methods We used microarray analysis to associate levels of Smad4 and β-catenin mRNA in colorectal tumor samples from 250 patients. We performed oligonucleotide-mediated knockdown of Smad4 in human embryonic kidney (HEK293T) and in HCT116 colon cancer cells and transgenically expressed Smad4 in SW480 colon cancer cells. We analyzed adenomas from (APCΔ1638/+) and (APCΔ1638/+)x(K19CreERT2Smad4lox/lox) mice using laser-capture microdissection. Results In human CRC samples, reduced levels of Smad4 correlated with increased levels of β-catenin mRNA. In Smad4-depleted cell lines, levels of β-catenin mRNA and Wnt signaling increased. Inhibition of BMP or depletion of Smad4 in HEK293T cells increased binding of RNA polymerase II to the β-catenin gene. Expression of Smad4 in SW480 cells reduced Wnt signaling and levels of β-catenin mRNA. In mice with heterozygous disruption of Apc(APCΔ1638/+), Smad4-deficient intestinal adenomas had increased levels of β-catenin mRNA and expression of Wnt target genes, compared with adenomas from APCΔ1638/+mice that expressed Smad4. Conclusions Transcription of β-catenin is inhibited by BMP signaling to Smad4. These findings provide important information about the interaction among TGF-β, BMP, and Wnt signaling pathways in CRC progression. PMID:22115830

  13. Notch-1 regulates pulmonary neuroendocrine cell differentiation in cell lines and in transgenic mice.

    PubMed

    Shan, Lin; Aster, Jon C; Sklar, Jeffrey; Sunday, Mary E

    2007-02-01

    The notch gene family encodes transmembrane receptors that regulate cell differentiation by interacting with surface ligands on adjacent cells. Previously, we demonstrated that tumor necrosis factor-alpha (TNF) induces neuroendocrine (NE) cell differentiation in H82, but not H526, undifferentiated small cell lung carcinoma lines. We now test the hypothesis that TNF mediates NE cell differentiation in part by altering Notch gene expression. First, using RT-PCR, we determined that TNF treatment of H82, but not H526, transiently decreases notch-1 mRNA in parallel with induction of gene expression for the NE-specific marker DOPA decarboxylase (DDC). Second, we treated H82 and H526 with notch-1 antisense vs. sense oligodeoxynucleotides. Using quantitative RT-PCR and Western analyses we demonstrate that DDC mRNA and protein are increased in H82 by notch-1 antisense, whereas notch-1 mRNA and activated Notch-1 protein are decreased. mRNA for Hes1, a transcription factor downstream from activated Notch, is also decreased by Notch-1 antisense in H82 but not H526. After 7 days of Notch-1 antisense treatment, neural cell adhesion molecule (NCAM) immunoreactivity is induced in H82 but not H526. Third, we generated transgenic mice bearing notch-1 driven by the neural/NE-specific calcitonin promoter, which express activated Notch-1 in developing lung epithelium. Newborn NotchCal mouse lungs have high levels of hes1 mRNA, reflecting increased activated Notch, compared with wild-type. NotchCal lungs have decreased CGRP-positive NE cells, decreased protein gene product 9.5 (PGP9.5)-positive NE cells, and decreased gastrin-releasing peptide (GRP), CGRP, and DDC mRNA levels compared with normal littermates. Cumulatively, these observations provide further support for a role for Notch-1 signaling in regulating pulmonary NE cell differentiation.

  14. [Influence of hepatocyte growth factor on iNOS, NO and IL-1β in the cerebrum during cerebral ischemia/reperfusion in rats].

    PubMed

    He, Fang; Ye, Bei; Chen, Jianzhen; Sun, Xiaoyan; Li, Chang

    2014-01-01

    To explore the effect of hepatocyte growth factor (HGF) on inducible nitric oxide synthase (iNOS), NO and interleukin-1β (IL-1β) in the cerebrum of rats subjected to cerebral ischemia/reperfusion (I/R). Sprague-Dawley rats were randomly divided into 5 groups: a sham group, an I/R group,an HGF1 group, an HGF2 group, and an HGF3 group. The latter 3 groups were respectively injected 15, 30 and 60 μg/kg HGF. The focal cerebral I/R model was established by sutureoccluded method. After 1.5 h ischemia followed by 24 h reperfusion, the iNOS activity and NO content in the ischemic cerebral tissue were assessed. The expression of iNOS mRNA and IL-1β mRNA was detected. The level of iNOS protein and IL-1β content were determined. In addition, cultured cerebral cortical neurons in vitro were exposed to I/R. Then the expression of iNOS and IL-1β protein in the neurons was detected, and NO content was assessed. The iNOS activity and NO content in the ischemic cerebral tissue were increased. The expression of iNOS mRNA and IL-1β mRNA was upregulated. The level of iNOS protein and IL- 1β content were increased. Administration of HGF decreased the iNOS activity and NO content, and downregulated the expression of iNOS mRNA, IL-1β mRNA, iNOS protein and IL-1β content in the ischemic cerebral tissue. HGF decreased the expression of IL-1β, iNOS protein and NO content in the cortical neurons exposed to I/R in vitro. HGF can inhibit the expression of IL-1β and decrease the expression of iNOS and content of NO, which is probably one of the mechanisms mediating the protection of HGF against cerebral ischemia injury.

  15. Selective ribosome profiling as a tool to study the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes

    PubMed Central

    Becker, Annemarie H.; Oh, Eugene; Weissman, Jonathan S.; Kramer, Günter; Bukau, Bernd

    2014-01-01

    A plethora of factors is involved in the maturation of newly synthesized proteins, including chaperones, membrane targeting factors, and enzymes. Many factors act cotranslationally through association with ribosome-nascent chain complexes (RNCs), but their target specificities and modes of action remain poorly understood. We developed selective ribosome profiling (SeRP) to identify substrate pools and points of RNC engagement of these factors. SeRP is based on sequencing mRNA fragments covered by translating ribosomes (general ribosome profiling, RP), combined with a procedure to selectively isolate RNCs whose nascent polypeptides are associated with the factor of interest. Factor–RNC interactions are stabilized by crosslinking, the resulting factor–RNC adducts are then nuclease-treated to generate monosomes, and affinity-purified. The ribosome-extracted mRNA footprints are converted to DNA libraries for deep sequencing. The protocol is specified for general RP and SeRP in bacteria. It was first applied to the chaperone trigger factor and is readily adaptable to other cotranslationally acting factors, including eukaryotic factors. Factor–RNC purification and sequencing library preparation takes 7–8 days, sequencing and data analysis can be completed in 5–6 days. PMID:24136347

  16. Myogenin, MyoD and IGF-I regulate muscle mass but not fiber-type conversion during resistance training in rats.

    PubMed

    Aguiar, A F; Vechetti-Júnior, I J; Alves de Souza, R W; Castan, E P; Milanezi-Aguiar, R C; Padovani, C R; Carvalho, R F; Silva, M D P

    2013-04-01

    The purpose of this study was to test the hypothesis that skeletal muscle adaptations induced by long-term resistance training (RT) are associated with increased myogenic regulatory factors (MRF) and insulin-like growth factor-I (IGF-I) mRNA expression in rats skeletal muscle. Male Wistar rats were divided into 4 groups: 8-week control (C8), 8-week trained (T8), 12-week control (C12) and 12-week trained (T12). Trained rats were submitted to a progressive RT program (4 sets of 10-12 repetitions at 65-75% of the 1RM, 3 day/week), using a squat-training apparatus with electric stimulation. Muscle hypertrophy was determined by measurement of muscle fiber cross-sectional area (CSA) of the muscle fibers, and myogenin, MyoD and IGF-I mRNA expression were measured by RT-qPCR. A hypertrophic stabilization occurred between 8 and 12 weeks of RT (control-relative % area increase, T8: 29% vs. T12: 35%; p>0.05) and was accompanied by the stabilization of myogenin (control-relative % increase, T8: 44.8% vs. T12: 37.7%, p>0.05) and MyoD (control-relative % increase, T8: 22.9% vs. T12: 22.3%, p>0.05) mRNA expression and the return of IGF-I mRNA levels to the baseline (control-relative % increase, T8: 30.1% vs. T12: 1.5%, p<0.05). Moreover, there were significant positive correlations between the muscle fiber CSA and mRNA expression for MyoD (r=0.85, p=0.0001), myogenin (r=0.87, p=0.0001), and IGF-I (r=0.88, p=0.0001). The significant (p<0.05) increase in myogenin, MyoD and IGF-I mRNA expression after 8 weeks was not associated with changes in the fiber-type frequency. In addition, there was a type IIX/D-to-IIA fiber conversion at 12 weeks, even with the stabilization of MyoD and myogenin expression and the return of IGF-I levels to baseline. These results indicate a possible interaction between MRFs and IGF-I in the control of muscle hypertrophy during long-term RT and suggest that these factors are involved more in the regulation of muscle mass than in fiber-type conversion. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    PubMed

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point after transfection. In addition, human VEGF gene transfection increased osteoblast cell proliferation after 3 days. These in vitro results suggest that cell-based human VEGF gene therapy is not only effective at causing human VEGF expression, but also enhances endogenous rat VEGF mRNA expression in both fibroblasts and osteoblasts, particularly the rat VEGF164 isoform.

  18. Maternal Factors Are Associated with the Expression of Placental Genes Involved in Amino Acid Metabolism and Transport

    PubMed Central

    Day, Pricilla E.; Ntani, Georgia; Crozier, Sarah R.; Mahon, Pam A.; Inskip, Hazel M.; Cooper, Cyrus; Harvey, Nicholas C.; Godfrey, Keith M.; Hanson, Mark A.; Lewis, Rohan M.; Cleal, Jane K.

    2015-01-01

    Introduction Maternal environment and lifestyle factors may modify placental function to match the mother’s capacity to support the demands of fetal growth. Much remains to be understood about maternal influences on placental metabolic and amino acid transporter gene expression. We investigated the influences of maternal lifestyle and body composition (e.g. fat and muscle content) on a selection of metabolic and amino acid transporter genes and their associations with fetal growth. Methods RNA was extracted from 102 term Southampton Women’s Survey placental samples. Expression of nine metabolic, seven exchange, eight accumulative and three facilitated transporter genes was analyzed using quantitative real-time PCR. Results Increased placental LAT2 (p = 0.01), y + LAT2 (p = 0.03), aspartate aminotransferase 2 (p = 0.02) and decreased aspartate aminotransferase 1 (p = 0.04) mRNA expression associated with pre-pregnancy maternal smoking. Placental mRNA expression of TAT1 (p = 0.01), ASCT1 (p = 0.03), mitochondrial branched chain aminotransferase (p = 0.02) and glutamine synthetase (p = 0.05) was positively associated with maternal strenuous exercise. Increased glutamine synthetase mRNA expression (r = 0.20, p = 0.05) associated with higher maternal diet quality (prudent dietary pattern) pre-pregnancy. Lower LAT4 (r = -0.25, p = 0.05) and aspartate aminotransferase 2 mRNA expression (r = -0.28, p = 0.01) associated with higher early pregnancy diet quality. Lower placental ASCT1 mRNA expression associated with measures of increased maternal fat mass, including pre-pregnancy BMI (r = -0.26, p = 0.01). Lower placental mRNA expression of alanine aminotransferase 2 associated with greater neonatal adiposity, for example neonatal subscapular skinfold thickness (r = -0.33, p = 0.001). Conclusion A number of maternal influences have been linked with outcomes in childhood, independently of neonatal size; our finding of associations between placental expression of transporter and metabolic genes and maternal smoking, physical activity and diet raises the possibility that their effects are mediated in part through alterations in placental function. The observed changes in placental gene expression in relation to modifiable maternal factors are important as they could form part of interventions aimed at maintaining a healthy lifestyle for the mother and for optimal fetal development. PMID:26657885

  19. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism

    PubMed Central

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K.; Lehtonen, Jukka Y.A.

    2016-01-01

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3′-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. PMID:26681690

  20. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    PubMed

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. © 2016 Müller-McNicoll et al.; Published by Cold Spring Harbor Laboratory Press.

  1. NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway

    PubMed Central

    Bühlmann, Melanie; Walrad, Pegine; Rico, Eva; Ivens, Alasdair; Capewell, Paul; Naguleswaran, Arunasalam; Roditi, Isabel; Matthews, Keith R.

    2015-01-01

    Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5′UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export. PMID:25873624

  2. Inactivation of MSH3 by promoter methylation correlates with primary tumor stage in nasopharyngeal carcinoma

    PubMed Central

    Ni, Haifeng; Jiang, Bo; Zhou, Zhen; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong

    2017-01-01

    The aim of this study was to investigate the inactivation of the MutS homolog human 3 (MSH3) gene by promoter methylation in nasopharyngeal carcinoma (NPC). Methylation-specific PCR, semi-quantitative reverse transcription PCR and immunohistochemical analysis were used to detect methylation and the mRNA and protein expression levels of MSH3 in 54 cases of NPC tissues and 16 cases of normal nasopharyngeal epithelial (NNE) tissues. The association between promoter methylation and mRNA expression, and the mRNA and protein expression of the gene and clinical factors was analyzed. The promoter methylation of MSH3 was detected in 50% (27/54) of the primary tumors, but not in the 16 NNE tissues. The mRNA and protein expression levels were significantly decreased in the 54 cases of human NPC as compared to the 16 NNE tissues (P<0.05). The MSH3-methylated cases exhibited significantly lower mRNA and protein expression levels than the unmethylated cases (P<0.05). The MSH3 mRNA and protein expression levels were significantly associated with the variable T stage (P<0.05); however, they did not correlate with the age and sex of the patients, or with the N stage, TNM classification or histopathological subtype (P>0.05). On the whole, MSH3 was frequently inactivated by promoter methylation and its mRNA and protein expression correlated with the primary tumor stage in NPC. PMID:28656302

  3. Applying Bayesian Neural Network to determine neutrino incoming direction in reactor neutrino experiments and supernova explosion location by scintillator detectors

    NASA Astrophysics Data System (ADS)

    Xu, W. W.; Xu, Y.; Meng, Y. X.; Wu, B.

    2009-01-01

    In the paper, it is discussed by using Monte-Carlo simulation that the Bayesian Neural Network (BNN) is applied to determine neutrino incoming direction in reactor neutrino experiments and supernova explosion location by scintillator detectors. As a result, compared to the method in ref. [1], the uncertainty on the measurement of the neutrino direction using BNN is significantly improved. The uncertainty on the measurement of the reactor neutrino direction is about 1.0° at the 68.3% C.L., and the one in the case of supernova neutrino is about 0.6° at the 68.3% C.L. . Compared to the method in ref. [1], the uncertainty attainable by using BNN reduces by a factor of about 20. And compared to the Super-Kamiokande experiment (SK), it reduces by a factor of about 8.

  4. Cykotine mRNA expression in mouse retina after laser injury by reverse transcriptase-polymerase chain reaction (RT-PCR)

    NASA Astrophysics Data System (ADS)

    Schuschereba, Steven T.; Bowman, Phillip D.; Ujimore, Veronica; Hoxie, Stephen W.; Pizarro, Jose M.; Cross, Michael E.; Lund, David J.

    1996-04-01

    The purpose of this study was to identify cytokines produced by the retina after laser injury. With the aid of a scanning laser ophthalmoscope (SLO), right eyes of mice received lesions from a continuous wave argon laser. Left eyes served as unirradiated controls. At 2, 4, 6, 12, 24, and 48 hr after laser irradiation groups of 3 mice were euthanized and retinas fixed for histology or isolated for RNA. Messenger RNA (mRNA) was reverse-transcribed into complementary DNA (cDNA) and subjected to polymerase chain reaction for the following cytokines: tumor necrosis factor-(alpha) (TNF-(alpha) ), interleukin-1(alpha) /(Beta) (IL- 1(alpha) /(Beta) ), interleukin-6 (IL-6), transforming growth factor-(Beta) 1 (TGF- (Beta) 1), macrophage colony stimulating factor (M-CSF), inducible nitric oxide synthase (iNOS), and glyceraldehyde 3-phosphate dehydrogenase (G3PDH). Histologically, lesions were confined to the photoreceptors, retinal pigment epithelium, and choroid. In laser-injured retinas, mRNA levels were elevated for IL-1(alpha) , TGF-(Beta) 1, iNOS, and G3PDH, but not TNF-(alpha) , IL-1(Beta) , or IL-6. It appears that the retina, in response to laser injury, upregulates a select number of cytokines in a time-course dependent fashion.

  5. PKD1 is a potential biomarker and therapeutic target in triple-negative breast cancer.

    PubMed

    Spasojevic, Caroline; Marangoni, Elisabetta; Vacher, Sophie; Assayag, Franck; Meseure, Didier; Château-Joubert, Sophie; Humbert, Martine; Karam, Manale; Ricort, Jean Marc; Auclair, Christian; Regairaz, Marie; Bièche, Ivan

    2018-05-01

    Protein Kinase D1 (PKD1) is a serine/threonine kinase encoded by the PRKD1 gene. PKD1 has been previously shown to be a prognostic factor in ERα+ tamoxifen-resistant breast tumors and PKD1 overexpression confers estrogen independence to ERα+ MCF7 cells. In the present study, our goal was to determine whether PKD1 is a prognostic factor and/or a relevant therapeutic target in breast cancer. We analyzed PRKD1 mRNA levels in 527 primary breast tumors. We found that high PRKD1 mRNA levels were significantly and independently associated with a low metastasis-free survival in the whole breast cancer population and in the triple-negative breast cancer (TNBC) subtype specifically. High PRKD1 mRNA levels were also associated with a low overall survival in TNBC. We identified novel PKD1 inhibitors and assessed their antitumor activity in vitro in TNBC cell lines and in vivo in a TNBC patient-derived xenograft (PDX) model. Pharmacological inhibition and siRNA-mediated depletion of PKD1 reduced colony formation in MDA-MB-436 TNBC cells. PKD1 inhibition also reduced tumor growth in vivo in a TNBC PDX model. Together, these results establish PKD1 as a poor prognostic factor and a potential therapeutic target in TNBC.

  6. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease

    PubMed Central

    Law, Amanda J.; Lipska, Barbara K.; Weickert, Cynthia Shannon; Hyde, Thomas M.; Straub, Richard E.; Hashimoto, Ryota; Harrison, Paul J.; Kleinman, Joel E.; Weinberger, Daniel R.

    2006-01-01

    Genetic variation in neuregulin 1 (NRG1) is associated with schizophrenia. The disease-associated SNPs are noncoding, and their functional implications remain unknown. We hypothesized that differential expression of the NRG1 gene explains its association to the disease. We examined four of the disease-associated SNPs that make up the original risk haplotype in the 5′ upstream region of the gene for their effects on mRNA abundance of NRG1 types I–IV in human postmortem hippocampus. Diagnostic comparisons revealed a 34% increase in type I mRNA in schizophrenia and an interaction of diagnosis and genotype (SNP8NRG221132) on this transcript. Of potentially greater interest, a single SNP within the risk haplotype (SNP8NRG243177) and a 22-kb block of this core haplotype are associated with mRNA expression for the novel type IV isoform in patients and controls. Bioinformatic promoter analyses indicate that both SNPs lead to a gain/loss of putative binding sites for three transcription factors, serum response factor, myelin transcription factor-1, and High Mobility Group Box Protein-1. These data implicate variation in isoform expression as a molecular mechanism for the genetic association of NRG1 with schizophrenia. PMID:16618933

  7. Downregulation in GATA4 and Downstream Structural and Contractile Genes in the db/db Mouse Heart

    PubMed Central

    Broderick, Tom L.; Jankowski, Marek; Wang, Donghao; Danalache, Bogdan A.; Parrott, Cassandra R.; Gutkowska, Jolanta

    2012-01-01

    Reduced expression of GATA4, a transcriptional factor for structural and cardioprotective genes, has been proposed as a factor contributing to the development of cardiomyopathy. We investigated whether the reduction of cardiac GATA4 expression reported in diabetes alters the expression of downstream genes, namely, atrial natriuretic peptide (ANP), B-type natriuretic, peptide (BNP), and α- and β-myosin heavy chain (MHC). db/db mice, a model of type 2 diabetes, with lean littermates serving as controls, were studied. db/db mice exhibited obesity, hyperglycemia, and reduced protein expression of cardiac GLUT4 and IRAP (insulin-regulated aminopeptidase), the structural protein cosecreted with GLUT4. Hearts from db/db mice had reduced protein expression of GATA4 (~35%) with accompanying reductions in mRNA expression of ANP (~40%), BNP (~85%), and α-MHC mRNA (~50%) whereas expression of β-MHC mRNA was increased by ~60%. Low GATA4 was not explained by an increased ligase or atrogin1 expression. CHIP protein content was modestly downregulated (27%) in db/db mice whereas mRNA and protein expression of the CHIP cochaperone HSP70 was significantly decreased in db/db hearts. Our results indicate that low GATA4 in db/db mouse heart is accompanied by reduced expression of GATA4-regulated cardioprotective and structural genes, which may explain the development of cardiomyopathy in diabetes. PMID:22474596

  8. Macrophages from Behcet's Disease Patients Express Decreased Level of Aryl Hydrocarbon Receptor (AHR) mRNA.

    PubMed

    Palizgir, Mohammad Taghi; Akhtari, Maryam; Mahmoudi, Mahdi; Mostafaei, Shayan; Rezaeimanesh, Alireza; Akhlaghi, Massoomeh; Shahram, Farhad

    2017-10-01

    Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, connecting environmental stimulators with the immune system. M1 macrophages are a part of immune system that contribute to the inflammatory events in the pathogenesis of Behcet's disease (BD). The effect of AHR on the macrophages in BD patients is still unclear. In this study, we investigated the mRNA expression of AHR in the monocyte-derived and M1 macrophages in active BD patients in comparison to healthy controls. Isolated monocytes from 10 healthy controls and 10 active BD patients were differentiated to macrophages by macrophage-colony stimulating factor (M-CSF) for 7 days. Cells were then polarized to M1 macrophages by lipopolysaccharide (LPS) and interferon-γ (IFNγ) for 24h. Monocyte purity and macrophage markers expression were analyzed by flow cytometry. Analysis of AHR mRNA expression was performed by SYBR Green real-time PCR. Our results showed that AHR expression is significantly down-regulated in M1 macrophages compare to monocyte-derived macrophages. It was shown that both monocyte-derived macrophages and M1 macrophages from BD patients significantly express lower level of AHR mRNA compared to healthy individuals. Our results demonstrate an anti-inflammatory role for AHR in macrophages, which suggest that decreased AHR expression is associated with pro-inflammatory M1 macrophage and BD susceptibility.

  9. Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium.

    PubMed

    Wagner, Diane R; Lindsey, Derek P; Li, Kelvin W; Tummala, Padmaja; Chandran, Sheena E; Smith, R Lane; Longaker, Michael T; Carter, Dennis R; Beaupre, Gary S

    2008-05-01

    This study demonstrated the chondrogenic effect of hydrostatic pressure on human bone marrow stromal cells (MSCs) cultured in a mixed medium containing osteogenic and chondrogenic factors. MSCs seeded in type I collagen sponges were exposed to 1 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for 4 h per day for 10 days, or remained in identical culture conditions but without exposure to pressure. Afterwards, we compared the proteoglycan content of loaded and control cell/scaffold constructs with Alcian blue staining. We also used real-time PCR to evaluate the change in mRNA expression of selected genes associated with chondrogenic and osteogenic differentiation (aggrecan, type I collagen, type II collagen, Runx2 (Cbfa-1), Sox9, and TGF-beta1). With the hydrostatic pressure loading regime, proteoglycan staining increased markedly. Correspondingly, the mRNA expression of chondrogenic genes such as aggrecan, type II collagen, and Sox9 increased significantly. We also saw a significant increase in the mRNA expression of type I collagen, but no change in the expression of Runx2 or TGF-beta1 mRNA. This study demonstrated that hydrostatic pressure enhanced differentiation of MSCs in the presence of multipotent differentiation factors in vitro, and suggests the critical role that this loading regime may play during cartilage development and regeneration in vivo.

  10. Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor

    PubMed Central

    Morita, Miyo Terao; Tanaka, Yoshiyuki; Kodama, Takashi S.; Kyogoku, Yoshimasa; Yanagi, Hideki; Yura, Takashi

    1999-01-01

    Induction of heat shock proteins in Escherichia coli is primarily caused by increased cellular levels of the heat shock σ-factor σ32 encoded by the rpoH gene. Increased σ32 levels result from both enhanced synthesis and stabilization. Previous work indicated that σ32 synthesis is induced at the translational level and is mediated by the mRNA secondary structure formed within the 5′-coding sequence of rpoH, including the translation initiation region. To understand the mechanism of heat induction of σ32 synthesis further, we analyzed expression of rpoH–lacZ gene fusions with altered stability of mRNA structure before and after heat shock. A clear correlation was found between the stability and expression or the extent of heat induction. Temperature-melting profiles of mRNAs with or without mutations correlated well with the expression patterns of fusion genes carrying the corresponding mutations in vivo. Furthermore, temperature dependence of mRNA–30S ribosome–tRNAfMet complex formation with wild-type or mutant mRNAs in vitro agreed well with that of the expression of gene fusions in vivo. Our results support a novel mechanism in which partial melting of mRNA secondary structure at high temperature enhances ribosome entry and translational initiation without involvement of other cellular components, that is, intrinsic mRNA stability controls synthesis of a transcriptional regulator. PMID:10090722

  11. Platelet-activating factor mediates monocyte chemoattractant protein-1 expression in glomerular immune injury.

    PubMed

    Jocks, T; Freudenberg, J; Zahner, G; Stahl, R A

    1998-01-01

    These studies were designed to determine the possible role of platelet-activating factor (PAF) in the production of monocyte chemoattractant protein-1 (MCP-1) in glomerular immune injury. The glomerular lesion was induced in isolated perfused rat kidneys by a rabbit anti-rat-thymocyte serum (ATS) and rat serum (RS) as a complement source. Perfusion of kidneys with ATS and RS results in the selective binding of the antiserum to the glomerular mesangium with consecutive intraglomerular activation of complement. Antibody binding and complement activation induced a significant increase in glomerular MCP-1 mRNA levels when assessed by Northern blotting or RT-PCR. Decomplemented RS or non antibody rabbit IgG had only moderate effects on glomerular MCP-1 mRNA levels. The PAF receptor antagonist WEB 2170 almost completely blocked the ATS and RS induced MCP-1 mRNA levels. Perfusion of control kidneys with PAF increased MCP-1 mRNA expression, an effect which was blocked by WEB 2170. Glomerular MCP-1 protein formation, assessed by Western blotting, was stimulated following ATS and RS and PAF, respectively, was blocked by WEB 2170. These data show that PAF, derived from glomerular resident cells following antibody and complement induced injury, stimulates MCP-1 expression. In addition to the direct effects on leukocyte adhesion and activation PAF may mediate inflammatory cell influx in glomerular injuries due to the release of MCP-1.

  12. Effect of dietary γ-aminobutyric acid on the nerve growth factor and the choline acetyltransferase in the cerebral cortex and hippocampus of ovariectomized female rats.

    PubMed

    Tujioka, Kazuyo; Thanapreedawat, Panicha; Yamada, Takashi; Yokogoshi, Hidehiko; Horie, Kenji; Kim, Mujo; Tsutsui, Kazumi; Hayase, Kazutoshi

    2014-01-01

    The brain protein synthesis and the plasma concentration of growth hormone (GH) is sensitive to the dietary γ-aminobutyric acid (GABA) in ovariectomized female rats; however, the role of dietary GABA on biomarkers including nerve growth factor (NGF) and choline acetyltransferase for the function of cholinergic neurons remains unknown in ovariectomized female rats. The purpose of this study was to determine whether the dietary GABA affects the concentration and mRNA level of NGF, and the activity of choline acetyltransferase in the brains of ovariectomized female rats. Experiments were done on two groups of 24-wk-old ovariectomized female rats given 0 or 0.5% GABA added to a 20% casein diet. The concentrations of NGF and activities of choline acetyltransferase in the cerebral cortex and hippocampus, and mRNA level of NGF in the hippocampus increased significantly with the 20% casein+0.5% GABA compared with the 20% casein diet alone. In the hippocampus, the mRNA level of NGF significantly correlated with the NGF concentration (r=0.714, p<0.01). These results suggest that the administration of GABA to ovariectomized female rats is likely to control the mRNA level and concentration of NGF and cause an increase in the activity of choline acetyltransferase in the brains.

  13. β-glucuronidase use as a single internal control gene may confound analysis in FMR1 mRNA toxicity studies.

    PubMed

    Kraan, Claudine M; Cornish, Kim M; Bui, Quang M; Li, Xin; Slater, Howard R; Godler, David E

    2018-01-01

    Relationships between Fragile X Mental Retardation 1 (FMR1) mRNA levels in blood and intragenic FMR1 CGG triplet expansions support the pathogenic role of RNA gain of function toxicity in premutation (PM: 55-199 CGGs) related disorders. Real-time PCR (RT-PCR) studies reporting these findings normalised FMR1 mRNA level to a single internal control gene called β-glucuronidase (GUS). This study evaluated FMR1 mRNA-CGG correlations in 33 PM and 33 age- and IQ-matched control females using three normalisation strategies in peripheral blood mononuclear cells (PBMCs): (i) GUS as a single internal control; (ii) the mean of GUS, Eukaryotic Translation Initiation Factor 4A2 (EIF4A2) and succinate dehydrogenase complex flavoprotein subunit A (SDHA); and (iii) the mean of EIF4A2 and SDHA (with no contribution from GUS). GUS mRNA levels normalised to the mean of EIF4A2 and SDHA mRNA levels and EIF4A2/SDHA ratio were also evaluated. FMR1mRNA level normalised to the mean of EIF4A2 and SDHA mRNA levels, with no contribution from GUS, showed the most significant correlation with CGG size and the greatest difference between PM and control groups (p = 10-11). Only 15% of FMR1 mRNA PM results exceeded the maximum control value when normalised to GUS, compared with over 42% when normalised to the mean of EIF4A2 and SDHA mRNA levels. Neither GUS mRNA level normalised to the mean RNA levels of EIF4A2 and SDHA, nor to the EIF4A2/SDHA ratio were correlated with CGG size. However, greater variability in GUS mRNA levels were observed for both PM and control females across the full range of CGG repeat as compared to the EIF4A2/SDHA ratio. In conclusion, normalisation with multiple control genes, excluding GUS, can improve assessment of the biological significance of FMR1 mRNA-CGG size relationships.

  14. ADAM-17 and TIMP3 protein and mRNA expression in spinal cord white matter of rats with acute experimental autoimmune encephalomyelitis.

    PubMed

    Plumb, Jonnie; Cross, Alison K; Surr, Jessica; Haddock, Gail; Smith, Terence; Bunning, Rowena A D; Woodroofe, M Nicola

    2005-07-01

    Tumour necrosis factor (TNF) is a major immunomodulatory and proinflammatory cytokine implicated in the pathogenesis of multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE). ADAM-17 cleaves membrane-bound TNF into its soluble form. The distribution and level of ADAM-17 expression within spinal cords of Lewis rats with EAE was investigated. ADAM-17 was associated with endothelial cells in the naïve and pre-disease spinal cords. In peak disease astrocytic and inflammatory cells expressed ADAM-17. Upregulation of ADAM-17 mRNA expression was coupled with a decrease in mRNA levels of its inhibitor TIMP3 suggesting a role for ADAM-17 in EAE pathogenesis.

  15. Bone morphogenetic protein 15 and growth differentiation factor 9 expression in the ovary of European sea bass (Dicentrarchus labrax): cellular localization, developmental profiles, and response to unilateral ovariectomy.

    PubMed

    García-López, Ángel; Sánchez-Amaya, María Isabel; Halm, Silke; Astola, Antonio; Prat, Francisco

    2011-12-01

    Vertebrate oocytes actively contribute to follicle development by secreting a variety of growth factors, among which bone morphogenetic protein 15 (BMP15/Bmp15) and growth differentiation factor 9 (GDF9/Gdf9) have been paid particular attention. In the present study, we describe the cellular localization, the developmental profiles, and the response to unilateral ovariectomy (a procedure implying the surgical removal of one of the ovaries) of protein and mRNA steady-state levels of Bmp15 and Gdf9 in the ovary of European sea bass, an important fish species for marine aquaculture industry. In situ hybridization and immunohistochemistry demonstrated that the oocyte is the main production site of Bmp15 and Gdf9 in European sea bass ovary. During oocyte development, Bmp15 protein expression started to be detected only from the lipid vesicle stage onwards but not in primary pre-vitellogenic (i.e. perinucleolar) oocytes as the bmp15 mRNA already did. Gdf9 protein and gdf9 mRNA expression were both detected in primary perinucleolar oocytes and followed similar decreasing patterns thereafter. Unilateral ovariectomy induced a full compensatory growth of the remaining ovary in the 2-month period following surgery (Á. García-López, M.I. Sánchez-Amaya, C.R. Tyler, F. Prat 2011). The compensatory growth elicited different changes in the expression levels of mRNA and protein of both factors, although the involvement of Bmp15 and Gdf9 in the regulatory network orchestrating such process remains unclear at present. Altogether, our results establish a solid base for further studies focused on elucidating the specific functions of Bmp15 and Gdf9 during primary and secondary oocyte growth in European sea bass. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Inhibition of the transcription factor c-Jun by the MAPK family, and not the NF-κB pathway, suggests that peanut extract has anti-inflammatory properties.

    PubMed

    Catalán, Úrsula; Fernández-Castillejo, Sara; Anglès, Neus; Morelló, Jose Ramón; Yebras, Martí; Solà, Rosa

    2012-10-01

    Tumor necrosis factor-α (TNF-α) is involved in inflammatory responses in atherosclerosis. We propose an in vitro cellular assay to evaluate the anti-inflammatory mechanisms of potential modifiers such as food extracts. In the current model we assessed an anti-inflammatory effect of polyphenol-rich peanut extract in lipopolysaccharide (LPS)-induced THP-1 monocytes. THP-1 monocytes were incubated with peanut extract (5, 25, 50 and 100 μg/mL) consisting of 39% flavonols, 37% flavanols and 24% phenolic acid (or BAY 11-7082 (5 μM) as experiment control) for 1 h and then stimulated with LPS (500 ng/mL) for 4 h. Cytotoxicity was measured as lactate dehydrogenase (LDH) activity release. NF-κB and MAPK family were determined by TransAm kit while TNF-α mRNA levels and its mRNA stability by RT-PCR. Intra- and extracellular TNF-α protein was measured by ELISA, and TNF-α converting enzyme (TACE) activity by a fluorimetric assay. Peanut extract inhibited the maximal LPS-induced extracellular TNF-α protein secretion by 18%, 29% and 47% at 25, 50 and 100 μg/mL, respectively (P<0.05). LPS stimulation revealed that 85% of TNF-α was released extracellularly while 15% remained intracellular. Peanut extract did not modify NF-κB but, instead, reduced c-Jun transcription factor activity (P<0.05), decreased TNF-α mRNA (albeit non-significantly) and had no effect on mRNA stability and TACE activity. Polyphenol-rich peanut extract reduces extracellular TNF-α protein by inhibiting c-Jun transcription factor from MAPK family, suggesting an anti-inflammatory effect. The proposed THP-1 monocyte model could be used to assess food extract impact (site and size effects) on the inflammation pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The genetic background of hypertensive, septic rats determines outcome improvement with antibiotic and G-CSF prophylaxis.

    PubMed

    Bauhofer, Artur; Tischer, Bjirn; Middeke, Martin; Plaul, Ulrike; Lorenz, Wilfried; Torossian, Alexander

    2003-10-01

    Hypertension is proposed as a risk factor among others (high age, diabetes mellitus, and pre- and intraoperative bleeding) for adverse outcomes, such as severe infections, leading to sepsis and to multiple organ failure as the most deleterious complication. Hypertension was modeled with spontaneous hypertensive rats (SHR) and Dahl salt-sensitive (DS) rats and the infective complication by polymicrobial, peritoneal contamination, and infection (PCI). The concept of clinic modeling randomized trials was used to simulate clinical complexity, including a relevant antibiotic prophylaxis in combination with granulocyte-colony stimulating factor (G-CSF) and clinical trial conditions. Outcome parameters were: survival, systemic cytokines (protein), and organ-specific cytokine levels (mRNA). With low complexity (no prophylaxis), 28% of the animals in the Wistar and 50% in the SHR group survived (P=0.17). Tumor necrosis factor-alpha levels were lower in the liver of SHR vs. Wistar rats with PCI (P<0.01). The anti-inflammatory cytokine interleukin (IL)-10 was expressed on a higher level in SHR with PCI compared with Wistar rats (P<0.01). With increased complexity (antibiotic and G-CSF prophylaxis) the survival rate was increased from 50% in Wistar rats to 89% in SHR (P<0.01) and the mRNA expression of IL-6 was decreased in the kidney of SHR (P<0.05). Survival rate was 44% in the DS rats vs. 67% of the Wistar rats (P=0.18). The mRNA expression of tumor necrosis factor-alpha and IL-10 was reduced (P<0.01) by pretreatment in the liver of DS rats with PCI. The hypertensive, genetically distinct SHR and DS rats express different patterns of pro- and anti-inflammatory cytokine levels after PCI. G-CSF and antibiotic prophylaxis increases only in SHR survival and decreases IL-6 mRNA expression in the kidney significantly.

  18. Control of transcription of the Bacillus subtilis spoIIIG gene, which codes for the forespore-specific transcription factor sigma G.

    PubMed

    Sun, D X; Cabrera-Martinez, R M; Setlow, P

    1991-05-01

    The Bacillus subtilis spoIIIG gene codes for a sigma factor termed sigma G which directs transcription of genes expressed only in the forespore compartment of the sporulating cell. Use of spoIIIG-lacZ transcriptional fusions showed that spoIIIG is cotranscribed with the spoIIG operon beginning at t0.5-1 of sporulation. However, this large mRNA produced little if any sigma G, and transferring the spoIIIG gene without the spoIIG promoter into the amyE locus resulted in a Spo+ phenotype. Significant translation of spoIIIG began at t2.5-3 with use of an mRNA whose 5' end is just upstream of the spoIIIG coding sequence. Synthesis of this spoIIIG-specific mRNA was not abolished by a deletion in spoIIIG itself. Similar results were obtained when a spoIIIG-lacZ translational fusion lacking the spoIIG promoter was integrated at the amyE locus. These data suggest that synthesis of sigma G is dependent neither on transcription from the spoIIG promoter nor on sigma G itself but can be due to another transcription factor. This transcription factor may be sigma F, the product of the spoIIAC locus, since a spoIIAC mutation blocked spoIIIG expression, and sequences upstream of the 5' end of the spoIIIG-specific mRNA agree well with the recognition sequence for sigma F. RNA polymerase containing sigma F (E sigma F) initiated transcription in vitro on a spoIIIG template at the 5' end found in vivo, as did E sigma G. However, E sigma F showed a greater than 20-fold preference for spoIIIG over a known sigma G-dependent gene compared with the activity of E sigma G.

  19. Adverse early life experience and social stress during adulthood interact to increase serotonin transporter mRNA expression

    PubMed Central

    Gardner, Katherine L.; Hale, Matthew W.; Lightman, Stafford L.; Plotsky, Paul M.; Lowry, Christopher A.

    2009-01-01

    Anxiety disorders, depression and animal models of vulnerability to a depression-like syndrome have been associated with dysregulation of serotonergic systems in the brain. To evaluate the effects of early life experience, adverse experiences during adulthood, and potential interactions between these factors on serotonin transporter (slc6a4) mRNA expression, we investigated in rats the effects of maternal separation (180 min/day from days 2–14 of life; MS180), neonatal handing (15 min/day from days 2–14 of life; MS15), or normal animal facility rearing control conditions (AFR) with or without subsequent exposure to adult social defeat on slc6a4 mRNA expression in the dorsal raphe nucleus (DR) and caudal linear nucleus. At the level of specific subdivisions of the DR, there were no differences in slc6a4 mRNA expression between MS15 and AFR rats. Among rats exposed to a novel cage control condition, increased slc6a4 mRNA expression was observed in the dorsal part of the DR in MS180 rats, relative to AFR control rats. In contrast, MS180 rats exposed to social defeat as adults had increased slc6a4 mRNA expression throughout the DR compared to both MS15 and AFR controls. Social defeat increased slc6a4 mRNA expression, but only in MS180 rats and only in the “lateral wings” of the DR. Overall these data demonstrate that early life experience and stressful experience during adulthood interact to determine slc6a4 mRNA expression. These data support the hypothesis that early life experience and major stressful life events contribute to dysregulation of serotonergic systems in stress-related neuropsychiatric disorders. PMID:19781533

  20. (+/-)-3-[4-(2-dimethylamino-1-methylethoxy)-phenyl]-1H-pyrazolo[3,4- B]pyridine-1-acetic acid (Y-25510) stimulates production of IL-1 beta and IL-6 at the level of messenger RNA expression in cultured human monocytes.

    PubMed

    Kusuhara, H; Komatsu, H; Hisadome, M; Ikeda, Y

    1996-12-01

    (+/-)-3-[4-(2-Dimethylamino-1-methylethoxy)phenyl]-1H-pyrazolo[3, 4-b]pyridine-1-acetic acid (Y-25510) stimulated the mRNA expression for interleukin-1 beta (IL-1 beta), and enhanced the expression induced by lipopolysaccharide (LPS) in cultured human peripheral blood mononuclear cells (PBMC) and THP-1 cells, a cell-line derived from human monocytic leukemia. Y-25510 also stimulated the mRNA expression for IL-6 in both types of the cells, however, the stimulation required the presence of LPS. In THP-1 cells, the stimulation of IL-1 beta mRNA expression by Y-25510 was suppressed by cycloheximide, an inhibitor of protein synthesis. This phenomenon indicates that the stimulation requires de norv protein synthesis. In contrast, the stimulation of mRNA expression for IL-6 by Y-25510 was not suppressed by cycloheximide but suppressed by N alpha-p-tosyl-L-phenylalanine chloromethyl ketone (TPCK), an inhibitor of nuclear transcription factor-kappa B (NF-kappa B) activation, in the presence of LPS, suggesting that the stimulation requires NF-kappa activation. These results demonstrate that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms. Dexamethasone suppressed the LPS-induced expression of mRNA for IL-1 beta and IL-6 in THP-1 cells, whereas the drug never suppressed the mRNA expression for these cytokines in the presence of Y-25510. The result indicates that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms from those of LPS.

  1. Expression of Leaf Nitrate Reductase Genes from Tomato and Tobacco in Relation to Light-Dark Regimes and Nitrate Supply

    PubMed Central

    Galangau, Fabienne; Daniel-Vedele, Françoise; Moureaux, Thérèse; Dorbe, Marie-France; Leydecker, Marie-Thérèse; Caboche, Michel

    1988-01-01

    The influence of light-dark cycles and nitrate supply on nitrate reductase (NR) mRNA levels was studied in two plant species, tobacco (Nicotiana tabacum) and tomato (Lycopersicon esculentum) using specific NR DNA probes. In the same series of experiments, changes in the levels of NR protein (NRP) by enzyme-linked immunosorbent assay and changes in the level of NADH-nitrate reductase activity (NRA) were also followed. During a light-dark cycle, it was found that in both tomato and tobacco, NR mRNA accumulation increased rapidly during the dark period and reached a maximum at the beginning of the day, while NRP reached a peak 2 and 4 hours after mRNA peaked, for tomato and tobacco, respectively. At the end of the day, the amount of mRNA was decreased by a factor of at least 100 compared to sunrise in both species. These results demonstrate that light is involved, although probably not directly, in the regulation of the NR gene expression at the mRNA level. The peak of NRA in tobacco coincided with the peak in NR mRNA accumulation (i.e. sunrise), whereas in tomato the peak of NRA was approximately 5 to 6 hours after sunrise. There is no obvious correlation between NRP and NRA levels during the day. In nitrogen starvation experiments, a rapid decrease of NRP and NRA was detected, while NR mRNA levels were not significantly altered. Upon nitrate replenishment, nitrogen-starved plants accumulated NR mRNA rapidly. These results suggest that the availability of nitrogen affects the expression of NR activity at the transcriptional as well as at the post-transcriptional levels. Images Fig. 3 Fig. 5 Fig. 6 PMID:16666313

  2. Comparative effects of low-level laser therapy pre- and post-injury on mRNA expression of MyoD, myogenin, and IL-6 during the skeletal muscle repair.

    PubMed

    Alves, Agnelo Neves; Ribeiro, Beatriz Guimarães; Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Rocha, Lília Alves; Nunes, Fabio Daumas; Bussadori, Sandra Kalil; Mesquita-Ferrari, Raquel Agnelli

    2016-05-01

    This study analyzed the effect of pre-injury and post-injury irradiation with low-level laser therapy (LLLT) on the mRNA expression of myogenic regulatory factors and interleukin 6 (IL-6) during the skeletal muscle repair. Male rats were divided into six groups: control group, sham group, LLLT group, injury group; pre-injury LLLT group, and post-injury LLLT group. LLLT was performed with a diode laser (wavelength 780 nm; output power 40 mW' and total energy 3.2 J). Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior (TA) muscle. After euthanasia, the TA muscle was removed for the isolation of total RNA and analysis of MyoD, myogenin, and IL-6 using real-time quantitative PCR. Significant increases were found in the expression of MyoD mRNA at 3 and 7 days as well as the expression of myogenin mRNA at 14 days in the post-injury LLLT group in comparison to injury group. A significant reduction was found in the expression of IL-6 mRNA at 3 and 7 days in the pre-injury LLLT and post-injury LLLT groups. A significant increase in IL-6 mRNA was found at 14 days in the post-injury LLLT group in comparison to the injury group. LLLT administered following muscle injury modulates the mRNA expression of MyoD and myogenin. Moreover, the both forms of LLLT administration were able to modulate the mRNA expression of IL-6 during the muscle repair process.

  3. RT-PCR amplification of RNA extracted from formalin-fixed, paraffin-embedded oral cancer sections: analysis of p53 pathway.

    PubMed

    Tachibana, Masatsugu; Shinagawa, Yasuhiro; Kawamata, Hitoshi; Omotehara, Fumie; Horiuchi, Hideki; Ohkura, Yasuo; Kubota, Keiichi; Imai, Yutaka; Fujibayashi, Takashi; Fujimori, Takahiro

    2003-01-01

    We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs.

  4. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k.

    PubMed

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos

    2004-11-01

    Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.

  5. Expressions of apoptosis-regulating factors in bovine retained placenta.

    PubMed

    Kamemori, Y; Wakamiya, K; Nishimura, R; Hosaka, Y; Ohtani, S; Okuda, K

    2011-01-01

    The aim of the present study was to evaluate the relationship between the retention of fetal membranes (RFM) and apoptosis of the cells in fetal membranes. The present study investigated mRNA and protein expressions of apoptosis-regulating factors: FAS, cellular FLICE-like inhibiting protein (cFLIP), BAX, BCL2, caspase-8 (CASP8), and CASP3 in fetal membranes. Placentomes were manually collected from the uterus immediately after parturition and classified into two groups (RFM; n = 8 and non-RFM; n = 8) according to whether placental membranes were expelled or not within 12 h after delivery. FAS mRNA expression in maternal placental tissue was less in RFM cows than in non-RFM cows (P < 0.05). cFLIP mRNA expression in maternal and fetal placental tissue was greater in RFM cows than in non-RFM cows (P < 0.05). CASP3 mRNA expression in maternal placental tissue was greater in RFM cows than in non-RFM cows (P < 0.05). However, the protein expressions of FAS, cFLIP and cleaved CASP3 were not significantly different between the two groups. mRNA and protein expressions of BAX, BCL2 and CASP8 were also not significantly different between the two groups. In the immunohistochemical study, single-stranded DNA, which appears specifically in the apoptotic cells, was mainly found in the maternal placenta of non-RFM cows. Together these results suggest that RFM occurs at least in part due to a dysfunctional apoptotic process caused by the inhibition of FAS expression in the maternal placenta, and the increase of cFLIP expression in the maternal and fetal placenta. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.

    PubMed

    Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph

    2010-07-01

    By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.

  7. Decreased heat tolerance is associated with hypothalamo-pituitary-adrenocortical axis impairment.

    PubMed

    Michel, V; Peinnequin, A; Alonso, A; Buguet, A; Cespuglio, R; Canini, F

    2007-06-29

    When rats are exposed to heat, they adapt themselves to the stressor with a wide inter-individual variability. Such differences in heat tolerance may be related to particularities in the hypothalamo-pituitary-adrenocortical (HPA) axis activation. To further this hypothesis, 80 rats instrumented with a telemetric device for abdominal temperature (Tabd) measurement were separated into two groups. Sixty-eight rats were exposed during 90 min at an ambient temperature of 40 degrees C, and 12 rats to an ambient temperature of 22 degrees C. Heat-exposed rats were then divided into three groups using the a posteriori k-means clustering method according to their Tabd level at the end of heat exposure. Heat tolerant rats (Tol, n=30) exhibiting the lowest Tabd showed a slight dehydration, a moderate triglyceride mobilization, but the highest plasma adrenocorticotropic-hormone (ACTH) and corticosterone levels. Conversely, heat exhausted rats (HE, n=14) presented the highest Tabd, a higher degree of dehydration, a greater metabolic imbalance with the lowest plasma triglyceride level and the highest lactate concentration, as well as a lowest plasma corticosterone and ACTH levels. The fact that the proopiomelanocortin (POMC) mRNA content within the pituitary was low despite of a high c-fos mRNA level is also relevant. Current inflammatory processes in HE rats were underlined by lower inhibitory factor kappaBalpha (IkappaBalpha) mRNA and higher tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) mRNA. In conclusion, data show that intolerance to heat exposure is associated to an HPA axis impairment, possibly related to changes occurring in the IkappaBalpha and TNF-alpha mRNA levels.

  8. Macrophage colony-stimulating factor induces prolactin expression in rat pituitary gland.

    PubMed

    Hoshino, Satoya; Kurotani, Reiko; Miyano, Yuki; Sakahara, Satoshi; Koike, Kanako; Maruyama, Minoru; Ishikawa, Fumio; Sakatai, Ichiro; Abe, Hiroyuki; Sakai, Takafumi

    2014-06-01

    We investigated the role of macrophage colony-stimulating factor (M-CSF) in the pituitary gland to understand the effect of M-CSF on pituitary hormones and the relationship between the endocrine and immune systems. When we attempted to establish pituitary cell lines from a thyrotropic pituitary tumor (TtT), a macrophage cell line, TtT/M-87, was established. We evaluated M-CSF-like activity in conditioned media (CM) from seven pituitary cell lines using TtT/M-87 cells. TtT/M-87 proliferation significantly increased in the presence of CM from TtT/GF cells, a pituitary folliculostellate (FS) cell line. M-CSF mRNA was detected in TtT/GF and MtT/E cells by reverse transcriptase-polymerase chain reaction (RT-PCR), and its expression in TtT/GF cells was increased in a lipopolysaccharide (LPS) dose-dependent manner. M-CSF mRNA expression was also increased in rat anterior pituitary glands by LPS. M-CSF receptor (M-CSFR) mRNA was only detected in TtT/ M-87 cells and increased in the LPS-stimulated rat pituitary glands. In rat pituitary glands, M-CSF and M-CSFR were found to be localized in FS cells and prolactin (PRL)-secreting cells, respectively, by immunohistochemistry. The PRL concentration in rat sera was significantly increased at 24 h after M-CSF administration, and mRNA levels significantly increased in primary culture cells of rat anterior pituitary glands. In addition, TNF-α mRNA was increased in the primary culture cells by M-CSF. These results revealed that M-CSF was secreted from FS cells and M-CSF regulated PRL expression in rat pituitary glands.

  9. The Staphylococcus aureus protein-coding gene gdpS modulates sarS expression via mRNA-mRNA interaction.

    PubMed

    Chen, Chuan; Zhang, Xu; Shang, Fei; Sun, Haipeng; Sun, Baolin; Xue, Ting

    2015-08-01

    Staphylococcus aureus is an important Gram-positive pathogen responsible for numerous diseases ranging from localized skin infections to life-threatening systemic infections. The virulence of S. aureus is essentially determined by a wide spectrum of factors, including cell wall-associated proteins and secreted toxins that are precisely controlled in response to environmental changes. GGDEF domain protein from Staphylococcus (GdpS) is the only conserved staphylococcal GGDEF domain protein that is involved not in c-di-GMP synthesis but in the virulence regulation of S. aureus NCTC8325. Our previous study showed that the inactivation of gdpS generates an extensive change of virulence factors together with, in particular, a major Spa (protein A) surface protein. As reported, sarS is a direct positive regulator of spa. The decreased transcript levels of sarS in the gdpS mutant compared with the parental NCTC8325 strain suggest that gdpS affects spa through interaction with sarS. In this study, site mutation and complementary experiments showed that the translation product of gdpS was not involved in the regulation of transcript levels of sarS. We found that gdpS functioned through direct RNA-RNA base pairing with the 5' untranslated region (5'UTR) of sarS mRNA and that a putative 18-nucleotide region played a significant role in the regulatory process. Furthermore, the mRNA half-life analysis of sarS in the gdpS mutant showed that gdpS positively regulates the mRNA levels of sarS by contributing to the stabilization of sarS mRNA, suggesting that gdpS mRNA may regulate spa expression in an RNA-dependent pathway. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. The relative expression levels of insulin-like growth factor 1 and myostatin mRNA in the asynchronous development of skeletal muscle in ducks during early development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang

    2015-08-10

    Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Molecular pathology of pulmonary surfactants and cytokines in drowning compared with other asphyxiation and fatal hypothermia.

    PubMed

    Miyazato, Takako; Ishikawa, Takaki; Michiue, Tomomi; Maeda, Hitoshi

    2012-07-01

    Drowning involves complex fatal factors, including asphyxiation and electrolyte/osmotic disturbances, as well as hypothermia in cold water. The present study investigated the molecular pathology of pulmonary injury due to drowning, using lung specimens from forensic autopsy cases of drowning (n = 21), acute mechanical asphyxia due to neck compression and smothering (n = 24), and hypothermia (cold exposure, n = 11), as well as those of injury (n = 23), intoxication (n = 13), fire fatality (n = 18), and acute cardiac death (n = 9) for comparison. TaqMan real-time reverse transcription polymerase chain reaction was used to quantify messenger RNA (mRNA) expressions of pulmonary surfactant-associated proteins A and D (SP-A and SP-D), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10. SP-A and SP-D mRNA levels were lower for drowning, mechanical asphyxiation, fire fatality, and acute cardiac deaths than for hypothermia and injury. TNF-α, IL-1β, and IL-10 mRNA levels were higher for drowning or for drowning and injury than for other groups; there was no significant difference between fire fatality, involving airway injury due to inhalation of hot/irritant gases, and other control groups. These observations suggest characteristic molecular biological patterns of pulmonary injury involving suppression of pulmonary surfactants and activation of early-phase mediators of inflammation in drowning, with high mRNA expression levels of pulmonary surfactants in fatal hypothermia; however, there was no significant difference among these markers in immunohistochemical detection, except for SP-A. These mRNA expressions can be used as markers of pulmonary injury to assist in investigations of the pathophysiology of drowning and fatal hypothermia in combination with other biochemical and biological markers.

  12. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    PubMed

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  13. Synovial chemokine expression and relationship with knee symptoms in patients with meniscal tears

    PubMed Central

    Nair, Anjali; Gan, Justin; Bush-Joseph, Charles; Verma, Nikhil; Tetreault, Matthew W.; Saha, Kanta; Margulis, Arkady; Fogg, Louis; Scanzello, Carla R.

    2015-01-01

    Objective In patients with knee OA, synovitis is associated with knee pain and symptoms. We previously identified synovial mRNA expression of a set of chemokines (CCL19, IL-8, CCL5, XCL-1, CCR7) associated with synovitis in patients with meniscal tears but without radiographic OA. CCL19 and CCR7 were also associated with knee symptoms. This study sought to validate expression of these chemokines and association with knee symptoms in more typical patients presenting for meniscal arthroscopy, many who have pre-existing OA. Design Synovial biopsies and fluid (SF) were collected from patients undergoing meniscal arthroscopy. Synovial mRNA expression was measured using quantitative RT-PCR. The Knee Injury and Osteoarthritis Outcome Score (KOOS) was administered preoperatively. Regression analyses determined if associations between chemokine mRNA levels and KOOS scores were independent of other factors including radiographic OA. CCL19 in SF was measured by ELISA, and compared to patients with advanced knee OA and asymptomatic organ donors. Results 90% of patients had intra-operative evidence of early cartilage degeneration. CCL19, IL-8, CCL5, XCL1, CCR7 transcripts were detected in all patients. Synovial CCL19 mRNA levels independently correlated with KOOS Activities of Daily Living scores (95% CI [-8.071, -0.331], p= 0.036), indicating higher expression was associated with more knee-related dysfunction. SF CCL19 was detected in 7 of 10 patients, compared to 4 of 10 asymptomatic donors. Conclusion In typical patients presenting for meniscal arthroscopy, synovial CCL19 mRNA expression was associated with knee-related difficulty with activities of daily living, independent of other factors including presence of radiographic knee OA. PMID:25724256

  14. Stimulation of synthesis and release of brain-derived neurotropic factor from intestinal smooth muscle cells by substance P and pituitary adenylate cyclase-activating peptide.

    PubMed

    Al-Qudah, M; Alkahtani, R; Akbarali, H I; Murthy, K S; Grider, J R

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin present in the intestine where it participates in survival and growth of enteric neurons, augmentation of enteric circuits, and stimulation of intestinal peristalsis and propulsion. Previous studies largely focused on the role of neural and mucosal BDNF. The expression and release of BDNF from intestinal smooth muscle and the interaction with enteric neuropeptides has not been studied in gut. The expression and secretion of BDNF from smooth muscle cultured from the rabbit intestinal longitudinal muscle layer in response to substance P (SP) and pituitary adenylate cyclase-activating peptide (PACAP) was measured by western blot and enzyme-linked immunosorbent assay. BDNF mRNA was measured by reverse-transcription polymerase chain reaction. The expression of BNDF protein and mRNA was greater in smooth muscle cells (SMCs) from the longitudinal muscle than from circular muscle layer. PACAP and SP increased the expression of BDNF protein and mRNA in cultured longitudinal SMCs. PACAP and SP also stimulated the secretion of BDNF from cultured longitudinal SMCs. Chelation of intracellular calcium with BAPTA (1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) prevented SP-induced increase in BDNF mRNA and protein expression and SP-induced secretion of BDNF. Neuropeptides known to be present in enteric neurons innervating the longitudinal layer increase the expression of BDNF mRNA and protein in SMCs and stimulate the release of BDNF. Considering the ability of BDNF to enhance smooth muscle contraction, this autocrine loop may partially explain the characteristic hypercontractility of longitudinal muscle in inflammatory bowel disease. © 2015 John Wiley & Sons Ltd.

  15. Low-level laser therapy (LLLT) attenuates RhoA mRNA expression in the rat bronchi smooth muscle exposed to tumor necrosis factor-alpha.

    PubMed

    de Lima, Flávia Mafra; Bjordal, Jan M; Albertini, Regiane; Santos, Fábio V; Aimbire, Flavio

    2010-09-01

    Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Bronchial smooth muscle (BSM) hyperreactivity is associated with increased Ca+2 sensitivity and increased RhoA mRNA expression. In the current study, we investigated if LLLT could reduce BSM contraction force and RhoA mRNA expression in tumor necrosis factor-alpha (TNF-alpha)-induced BSM hyperreactivity. In the study, 112 male Wistar rats were divided randomly into 16 groups, and BSM was harvested and suspended in TNF-alpha baths for 6 and 24 h, respectively. Irradiation with LLLT was performed with a wavelength of 660 nm for 42 s with a dose of 1.3 J/cm2. This LLLT dose was administered once in the 6-h group and twice in the 24-h group. LLLT significantly decreased contraction force in BSM at 6 h (TNF-alpha + LLLT: 11.65+/-1.10 g/100 mg of tissue) (F=3115) and at 24 h (TNF-alpha+ LLLT: 14.15+/-1.1 g/100 mg of tissue) (F=3245, p<0.05) after TNF-alpha, respectively, when compared to vehicle-bathed groups (control). LLLT also significantly decreased the expression of RhoA mRNA in BSM segments at 6 h (1.22+/-0.20) (F=2820, p<0.05) and 24 h (2.13+/-0.20) (F=3324, p<0.05) when compared to BSM segments incubated with TNF-alpha without LLLT irradiation. We conclude that LLLT administered with this protocol, reduces RhoA mRNA expression and BSM contraction force in TNF-alpha-induced BSM hyperreactivity.

  16. Insulin stimulates the expression of the SHARP-1 gene via multiple signaling pathways.

    PubMed

    Takagi, K; Asano, K; Haneishi, A; Ono, M; Komatsu, Y; Yamamoto, T; Tanaka, T; Ueno, H; Ogawa, W; Tomita, K; Noguchi, T; Yamada, K

    2014-06-01

    The rat enhancer of split- and hairy-related protein-1 (SHARP-1) is a basic helix-loop-helix transcription factor. An issue of whether SHARP-1 is an insulin-inducible transcription factor was examined. Insulin rapidly increased the level of SHARP-1 mRNA both in vivo and in vitro. Then, signaling pathways involved with the increase of SHARP-1 mRNA by insulin were determined in H4IIE rat hepatoma cells. Pretreatments with LY294002, wortmannin, and staurosporine completely blocked the induction effect, suggesting the involvement of both phosphoinositide 3-kinase (PI 3-K) and protein kinase C (PKC) pathways. In fact, overexpression of a dominant negative form of atypical protein kinase C lambda (aPKCλ) significantly decreased the induction of the SHARP-1 mRNA. In addition, inhibitors for the small GTPase Rac or Jun N-terminal kinase (JNK) also blocked the induction of SHARP-1 mRNA by insulin. Overexpression of a dominant negative form of Rac1 prevented the activation by insulin. Furthermore, actinomycin D and cycloheximide completely blocked the induction of SHARP-1 mRNA by insulin. Finally, when a SHARP-1 expression plasmid was transiently transfected with various reporter plasmids into H4IIE cells, the promoter activity of PEPCK reporter plasmid was specifically decreased. Thus, we conclude that insulin induces the SHARP-1 gene expression at the transcription level via a both PI 3-K/aPKCλ/JNK- and a PI 3-K/Rac/JNK-signaling pathway; protein synthesis is required for this induction; and that SHARP-1 is a potential repressor of the PEPCK gene expression. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Stimulation of Synthesis and Release of Brain-Derived Neurotropic Factor (BDNF) from Intestinal Smooth Muscle Cells by Substance P and Pituitary Adenylate Cyclase-Activating Peptide (PACAP)

    PubMed Central

    Al-Qudah, M.; Alkahtani, R.; Akbarali, H.I.; Murthy, K.S.; Grider, J.R.

    2015-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a neurotrophin present in the intestine where it participates in survival and growth of enteric neurons, augmentation of enteric circuits, and stimulation of intestinal peristalsis and propulsion. Previous studies largely focused on the role of neural and mucosal BDNF. The expression and release of BDNF from intestinal smooth muscle and the interaction with enteric neuropeptides has not been studied in gut. Methods The expression and secretion of BDNF from smooth muscle cultured from rabbit longitudinal intestinal muscle in response to substance P and pituitary adenylate cyclase activating peptide (PACAP) was measured by western blot and ELISA. BDNF mRNA was measured by rt-PCR. Key Results The expression of BNDF protein and mRNA was greater in smooth muscle cells from the longitudinal muscle than from circular muscle layer. PACAP and substance P increased the expression of BDNF protein and mRNA in cultured longitudinal smooth muscle cells. PACAP and substance P also stimulated the secretion of BDNF from cultured longitudinal smooth muscle cells. Chelation of intracellular calcium with BAPTA prevented substance P-induced increase in BDNF mRNA and protein expression as well as substance P-induced secretion of BDNF. Conclusions & Inferences Neuropeptides known to be present in enteric neurons innervating the longitudinal layer increase the expression of BDNF mRNA and protein in smooth muscle cells and stimulate the release of BDNF. Considering the ability of BDNF to enhance smooth muscle contraction, this autocrine loop may partially explain the characteristic hypercontractility of longitudinal muscle in inflammatory bowel disease. PMID:26088546

  18. Modeling corticosteroid effects in a rat model of rheumatoid arthritis II: mechanistic pharmacodynamic model for dexamethasone effects in Lewis rats with collagen-induced arthritis.

    PubMed

    Earp, Justin C; Dubois, Debra C; Molano, Diana S; Pyszczynski, Nancy A; Almon, Richard R; Jusko, William J

    2008-08-01

    A mechanism-based model for pharmacodynamic effects of dexamethasone (DEX) was incorporated into our model for arthritis disease progression in the rat to aid in identification of the primary factors responsible for edema and bone loss. Collagen-induced arthritis was produced in male Lewis rats after injection of type II porcine collagen. DEX was given subcutaneously in single doses of 0.225 or 2.25 mg/kg or 7-day multiple doses of 0.045 or 0.225 mg/kg at 21 days postdisease induction. Effects on disease progression were measured by paw swelling, bone mineral density (BMD), body weights, plasma corticosterone (CST), and tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, and glucocorticoid receptor (GR) mRNA expression in paw tissue. Lumbar and femur BMD was determined by PIXImus II dual-energy X-ray absorptiometry. Plasma CST was assayed by high-performance liquid chromatography. Cytokine and GR mRNA were assayed by quantitative real-time polymerase chain reaction. Indirect response models, drug interaction models, transduction processes, and the fifth-generation model of corticosteroid dynamics were integrated and applied using S-ADAPT software to describe how dexamethasone binding to GR can regulate diverse processes. Cytokine mRNA, GR mRNA, plasma CST, and paw edema were suppressed after DEX administration. TNF-alpha mRNA expression and BMD seemed to increase immediately after dosing but were ultimately reduced. Model parameters indicated that IL-6 and IL-1beta were most sensitive to inhibition by DEX. TNF-alpha seemed to primarily influence edema, whereas IL-6 contributed the most to bone loss. Lower doses of corticosteroids may be sufficient to suppress the cytokines most relevant to bone erosion.

  19. Allele-Selective Transcriptome Recruitment to Polysomes Primed for Translation: Protein-Coding and Noncoding RNAs, and RNA Isoforms.

    PubMed

    Mascarenhas, Roshan; Pietrzak, Maciej; Smith, Ryan M; Webb, Amy; Wang, Danxin; Papp, Audrey C; Pinsonneault, Julia K; Seweryn, Michal; Rempala, Grzegorz; Sadee, Wolfgang

    2015-01-01

    mRNA translation into proteins is highly regulated, but the role of mRNA isoforms, noncoding RNAs (ncRNAs), and genetic variants remains poorly understood. mRNA levels on polysomes have been shown to correlate well with expressed protein levels, pointing to polysomal loading as a critical factor. To study regulation and genetic factors of protein translation we measured levels and allelic ratios of mRNAs and ncRNAs (including microRNAs) in lymphoblast cell lines (LCL) and in polysomal fractions. We first used targeted assays to measure polysomal loading of mRNA alleles, confirming reported genetic effects on translation of OPRM1 and NAT1, and detecting no effect of rs1045642 (3435C>T) in ABCB1 (MDR1) on polysomal loading while supporting previous results showing increased mRNA turnover of the 3435T allele. Use of high-throughput sequencing of complete transcript profiles (RNA-Seq) in three LCLs revealed significant differences in polysomal loading of individual RNA classes and isoforms. Correlated polysomal distribution between protein-coding and non-coding RNAs suggests interactions between them. Allele-selective polysome recruitment revealed strong genetic influence for multiple RNAs, attributable either to differential expression of RNA isoforms or to differential loading onto polysomes, the latter defining a direct genetic effect on translation. Genes identified by different allelic RNA ratios between cytosol and polysomes were enriched with published expression quantitative trait loci (eQTLs) affecting RNA functions, and associations with clinical phenotypes. Polysomal RNA-Seq combined with allelic ratio analysis provides a powerful approach to study polysomal RNA recruitment and regulatory variants affecting protein translation.

  20. Epidermal growth factor receptor expression in gastric tumors and its relationship with the germline polymorphisms - 216 G>T, -191 C>A, (CA) n IVS1, and R521K.

    PubMed

    Torres-Jasso, J H; Bustos-Carpinteyro, A R; Garcia-Gonzalez, J R; Peregrina-Sandoval, J; Cruz-Ramos, J A; Santiago-Luna, E; Sanchez-Lopez, J Y

    2016-01-01

    Gastric cancer (GC) is the third worldwide leading cause of cancer-related death affecting both sexes. The aberrant expression of epidermal growth factor receptor (EGFR) gene has been detected in many human epithelial malignancies and linked to advanced disease, more aggressive phenotype, and poor prognosis. To analyze the relation that the expression of EGFR in gastric tumors holds with pathological characteristics and with the germline polymorphisms -216 G>T, -191 C>A, (CA) n IVS1, and R521K. We studied 22 biopsies from gastric tumors obtained by endoscopy. EGFR expression was determined by relative quantification real-time polymerase chain reaction with the glyceraldehyde-3-phosphate dehydrogenase reference gene (as for messenger RNA [mRNA]) and by immunohistochemistry (IHC) (as for protein). EGFR germline polymorphisms were analyzed by sequencing, GeneScan, and restriction fragment length polymorphisms. EGFR mRNA expression was increased (>2-fold) in 13.6% of GC cases, decreased (<0.5-fold) in 68.2%, and normal in 18.2%; overexpression was related to well-differentiated gastric tumors, whereas underexpression was linked to moderate or poorly differentiated gastric tumors (P < 0.001). EGFR protein expression was high (IHC 2+ and 3+) in 29.4% of gastric tumors and was normal or low (score 0 to 1+) in 70.6% cases. EGFR expression, in both mRNA and protein, was not related to any EGFR polymorphism (P > 0.05). Most gastric tumors showed low EGFR expression (mRNA and protein), whereas EGFR overexpression was related to well-differentiated gastric tumors. Furthermore, germinal polymorphisms -216, -191, (CA) n IVS1, and R521K were not related to EGFR expression (mRNA or protein).

Top