Sample records for factor regulating body

  1. Roles of interstitial fluid pH in diabetes mellitus: Glycolysis and mitochondrial function

    PubMed Central

    Marunaka, Yoshinori

    2015-01-01

    The pH of body fluids is one the most important key factors regulating various cell function such as enzyme activity and protein-protein interaction via modification of its binding affinity. Therefore, to keep cell function normal, the pH of body fluids is maintained constant by various systems. Insulin resistance is one of the most important, serious factors making the body condition worse in diabetes mellitus. I have recently found that the pH of body (interstitial) fluids is lower in diabetes mellitus than that in non-diabetic control, and that the lowered pH is one of the causes producing insulin resistance. In this review article, I introduce importance of body (interstitial) fluid pH in regulation of body function, evidence on abnormal regulation of body fluid pH in diabetes mellitus, and relationship between the body fluid pH and insulin resistance. Further, this review proposes perspective therapies on the basis of regulation of body fluid pH including propolis (honeybee product) diet. PMID:25685283

  2. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation

    PubMed Central

    Koyama, Takashi; Mirth, Christen K.

    2016-01-01

    In Drosophila, the fat body, functionally equivalent to the mammalian liver and adipocytes, plays a central role in regulating systemic growth in response to nutrition. The fat body senses intracellular amino acids through Target of Rapamycin (TOR) signaling, and produces an unidentified humoral factor(s) to regulate insulin-like peptide (ILP) synthesis and/or secretion in the insulin-producing cells. Here, we find that two peptides, Growth-Blocking Peptide (GBP1) and CG11395 (GBP2), are produced in the fat body in response to amino acids and TOR signaling. Reducing the expression of GBP1 and GBP2 (GBPs) specifically in the fat body results in smaller body size due to reduced growth rate. In addition, we found that GBPs stimulate ILP secretion from the insulin-producing cells, either directly or indirectly, thereby increasing insulin and insulin-like growth factor signaling activity throughout the body. Our findings fill an important gap in our understanding of how the fat body transmits nutritional information to the insulin producing cells to control body size. PMID:26928023

  3. Contribution of thermal and nonthermal factors to the regulation of body temperature in humans.

    PubMed

    Mekjavic, Igor B; Eiken, Ola

    2006-06-01

    The set point has been used to define the regulated level of body temperature, suggesting that displacements of core temperature from the set point initiate heat production (HP) and heat loss (HL) responses. Human and animal experiments have demonstrated that the responses of sweating and shivering do not coincide at a set point but rather establish a thermoeffector threshold zone. Neurophysiological studies have demonstrated that the sensor-to-effector pathways for HP and HL overlap and, in fact, mutually inhibit each other. This reciprocal inhibition theory, presumably reflecting the manner in which thermal factors contribute to homeothermy in humans, does not incorporate the effect of nonthermal factors on temperature regulation. The present review examines the actions of these nonthermal factors within the context of neuronal models of temperature regulation, suggesting that examination of these factors may provide further insights into the nature of temperature regulation. It is concluded that, although there is no evidence to doubt the existence of the HP and HL pathways reciprocally inhibiting one another, it appears that such a mechanism is of little consequence when comparing the effects of nonthermal factors on the thermoregulatory system, since most of these factors seem to exert their influence in the region after the reciprocal cross-inhibition. At any given moment, both thermal and several nonthermal factors will be acting on the thermoregulatory system. It may, therefore, not be appropriate to dismiss the contribution of either when discussing the regulation of body temperature in humans.

  4. [Differences of bi-directional regulative effects between acu-moxibustion and Chinese materia medica interventions].

    PubMed

    Cao, Xin; Yu, Zhi; Xu, Bin

    2012-10-01

    Bi-directional regulation is referred to a balancing effect of both acu-moxibustion and Chinese materia medica interventions when the human body is experiencing a hyperactivity or hypoactivity due to abnormal intrinsic or external factors. In the present paper, the authors analyze their identical and different characteristics from: 1) definition; 2) characters of regulative effects of acu-moxibustion therapy: A) differentiation of meridian and zangfu-organs being the basis of treatment, B) four factors (acupoint-location, body's functional state, acupoint-formula and needle-manipulation techniques) dependant, C) entirety regulation, and D) centrotaxis modulation; 3) characters of Chinese materia medica intervention: including a) correspondence between the drug property and the syndrome being the basis of the regulative effect, b) multi-factors [components (antagonist and agonist), combination, dosages and processing quality of Chinese materia medica, and functional state of the human body] dependant, c) entirety regulation, and d) both centrotaxis and deviation adjustment. In one word, the bi-directional regulation effect is one of the basic characteristics of both acu-moxibustion and Chinese materia medica in clinical practice, but their basis and modes for inducing effects are different.

  5. Psychosocial and behavioural factors in the regulation of weight: Self-regulation, self-efficacy and locus control.

    PubMed

    Menéndez-González, Lara; Orts-Cortés, María Isabel

    To identify the relationship and behaviour of the variables of self-control, self-efficacy and locus control in weight regulation of obese, overweight and normal weight adults. Transversal study undertaken in the Health Centre of El Coto (Gijón) from 1st April to 30th July 2015. Subjects between 18-65 years of age with a body mass index recording within the last two years. serious medical illness, eating disorders or pregnant women. Behavioural variables: self-regulation of body weight (Inventory of self-control of body weight), perceived self-efficacy in weight regulation (Inventory of perceived self-efficacy in weight regulation) and locus control in weight regulation (Inventory of locus control in weight regulation). Anthropometric variables: weight (kg) and height (m), body mass index. One hundred and six participants were included: 32 were obese, 28 overweight and 46 normal weight. Significant differences were found between the 3 study groups for total scale of self-efficacy (F=61.77; p<.01), total scale of self-regulation (F=45.97; p<.01), internal locus control (F=13.92; p=.019), other weighty influences of locus control (F=9.21; p<.01) and random locus control (F=3.50; p=.011). The relationship between body mass index and behavioural variables of self-efficacy, self-regulation and locus control, suggests the need for healthcare professionals to include psychological factors of behaviour in any preventive action and intervention directed at weight control. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  6. Regulation of body growth by microRNAs.

    PubMed

    Lui, Julian C

    2017-11-15

    Regulation of body growth remains a fascinating and unresolved biological mystery. One key component of body growth is skeletal and longitudinal bone growth. Children grow taller because their bones grew longer, and the predominant driver of longitudinal bone growth is a cartilaginous structure found near the ends of long bone named the growth plate. Numerous recent studies have started to unveil the importance of microRNAs in regulation of growth plate functions, therefore contributing to regulation of linear growth. In addition to longitudinal growth, other organs in our body need to increase in size and cell number as we grow, and the regulation of organ growth involves both systemic factors like hormones; and other intrinsic mechanisms, which we are just beginning to understand. This review aims to summarize some recent important findings on how microRNAs are involved in both of these processes: the regulation of longitudinal bone growth, and the regulation of organs and overall body growth. Published by Elsevier B.V.

  7. The Bartonella quintana Extracytoplasmic Function Sigma Factor RpoE Has a Role in Bacterial Adaptation to the Arthropod Vector Environment

    PubMed Central

    Abromaitis, Stephanie

    2013-01-01

    Bartonella quintana is a vector-borne bacterial pathogen that causes fatal disease in humans. During the infectious cycle, B. quintana transitions from the hemin-restricted human bloodstream to the hemin-rich body louse vector. Because extracytoplasmic function (ECF) sigma factors often regulate adaptation to environmental changes, we hypothesized that a previously unstudied B. quintana ECF sigma factor, RpoE, is involved in the transition from the human host to the body louse vector. The genomic context of B. quintana rpoE identified it as a member of the ECF15 family of sigma factors found only in alphaproteobacteria. ECF15 sigma factors are believed to be the master regulators of the general stress response in alphaproteobacteria. In this study, we examined the B. quintana RpoE response to two stressors that are encountered in the body louse vector environment, a decreased temperature and an increased hemin concentration. We determined that the expression of rpoE is significantly upregulated at the body louse (28°C) versus the human host (37°C) temperature. rpoE expression also was upregulated when B. quintana was exposed to high hemin concentrations. In vitro and in vivo analyses demonstrated that RpoE function is regulated by a mechanism involving the anti-sigma factor NepR and the response regulator PhyR. The ΔrpoE ΔnepR mutant strain of B. quintana established that RpoE-mediated transcription is important in mediating the tolerance of B. quintana to high hemin concentrations. We present the first analysis of an ECF15 sigma factor in a vector-borne human pathogen and conclude that RpoE has a role in the adaptation of B. quintana to the hemin-rich arthropod vector environment. PMID:23564167

  8. Constitutive gene expression and specification of tissue identity in adult planarian biology

    PubMed Central

    Reddien, Peter W.

    2011-01-01

    Planarians are flatworms that constitutively maintain adult tissues through cell turnover and can regenerate entire organisms from tiny body fragments. In addition to requiring new cells (from neoblasts), these feats require mechanisms that specify tissue identity in the adult. Critical roles for Wnt and BMP signaling in regeneration and maintenance of the body axes have been uncovered, among other regulatory factors. Available data indicate that genes involved in positional identity regulation at key embryonic stages in other animals display persisting regionalized expression in adult planarians. These expression patterns suggest that a constitutively active gene expression map exists for maintenance of the planarian body. Planarians therefore present a fertile ground for identification of factors regulating regionalization of the metazoan body plan and for study of the attributes of these factors that can lead to maintenance and regeneration of adult tissues. PMID:21680047

  9. Nutrigenomics of Body Weight Regulation: A Rationale for Careful Dissection of Individual Contributors

    PubMed Central

    Keijer, Jaap; Hoevenaars, Femke P. M.; Nieuwenhuizen, Arie; van Schothorst, Evert M.

    2014-01-01

    Body weight stability may imply active regulation towards a certain physiological condition, a body weight setpoint. This interpretation is ill at odds with the world-wide increase in overweight and obesity. Until now, a body weight setpoint has remained elusive and the setpoint theory did not provide practical clues for body weight reduction interventions. For this an alternative theoretical model is necessary, which is available as the settling point model. The settling point model postulates that there is little active regulation towards a predefined body weight, but that body weight settles based on the resultant of a number of contributors, represented by the individual’s genetic predisposition, in interaction with environmental and socioeconomic factors, such as diet and lifestyle. This review refines the settling point model and argues that by taking body weight regulation from a settling point perspective, the road will be opened to careful dissection of the various contributors to establishment of body weight and its regulation. This is both necessary and useful. Nutrigenomic technologies may help to delineate contributors to body weight settling. Understanding how and to which extent the different contributors influence body weight will allow the design of weight loss and weight maintenance interventions, which hopefully are more successful than those that are currently available. PMID:25338273

  10. Nutrigenomics of body weight regulation: a rationale for careful dissection of individual contributors.

    PubMed

    Keijer, Jaap; Hoevenaars, Femke P M; Nieuwenhuizen, Arie; van Schothorst, Evert M

    2014-10-21

    Body weight stability may imply active regulation towards a certain physiological condition, a body weight setpoint. This interpretation is ill at odds with the world-wide increase in overweight and obesity. Until now, a body weight setpoint has remained elusive and the setpoint theory did not provide practical clues for body weight reduction interventions. For this an alternative theoretical model is necessary, which is available as the settling point model. The settling point model postulates that there is little active regulation towards a predefined body weight, but that body weight settles based on the resultant of a number of contributors, represented by the individual's genetic predisposition, in interaction with environmental and socioeconomic factors, such as diet and lifestyle. This review refines the settling point model and argues that by taking body weight regulation from a settling point perspective, the road will be opened to careful dissection of the various contributors to establishment of body weight and its regulation. This is both necessary and useful. Nutrigenomic technologies may help to delineate contributors to body weight settling. Understanding how and to which extent the different contributors influence body weight will allow the design of weight loss and weight maintenance interventions, which hopefully are more successful than those that are currently available.

  11. Regulation of Ketone Body Metabolism and the Role of PPARα

    PubMed Central

    Grabacka, Maja; Pierzchalska, Malgorzata; Dean, Matthew; Reiss, Krzysztof

    2016-01-01

    Ketogenesis and ketolysis are central metabolic processes activated during the response to fasting. Ketogenesis is regulated in multiple stages, and a nuclear receptor peroxisome proliferator activated receptor α (PPARα) is one of the key transcription factors taking part in this regulation. PPARα is an important element in the metabolic network, where it participates in signaling driven by the main nutrient sensors, such as AMP-activated protein kinase (AMPK), PPARγ coactivator 1α (PGC-1α), and mammalian (mechanistic) target of rapamycin (mTOR) and induces hormonal mediators, such as fibroblast growth factor 21 (FGF21). This work describes the regulation of ketogenesis and ketolysis in normal and malignant cells and briefly summarizes the positive effects of ketone bodies in various neuropathologic conditions. PMID:27983603

  12. Linking cellular zinc status to body weight and fat mass: mapping quantitative trait loci in Znt7 knockout mice

    USDA-ARS?s Scientific Manuscript database

    Zinc transporter 7 (Znt7, Slc30a7) knockout (KO) mice display abnormalities in body weight gain and body adiposity. Regulation of body weight and fatness is complex, involving multiple genetic and environmental factors. To understand how zinc homeostasis influences body weight gain and fat deposit a...

  13. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    PubMed

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  14. P-body-induced inactivation of let-7a miRNP prevents the death of growth factor-deprived neuronal cells.

    PubMed

    Patranabis, Somi; Bhattacharyya, Suvendra Nath

    2018-03-01

    RNA processing bodies (P-bodies) are cytoplasmic RNA granules in eukaryotic cells that regulate gene expression by executing the translation suppression and degradation of mRNAs that are targeted to these bodies. P-bodies can also serve as storage sites for translationally repressed mRNAs both in mammalian cells and yeast cells. In this report, a unique role of mammalian P-bodies is documented. Depletion of P-body components dedifferentiate nerve growth factor-treated PC12 cells, whereas ectopic expression of P-body components induces the neuronal differentiation of precursor cells. Trophic factor withdrawal from differentiated cells induces a decrease in cellular P-body size and numbers that are coupled with dedifferentiation and cell death. Here, we report how the expression of P-body proteins-by ensuring the phosphorylation of argonaute protein 2 and the subsequent inactivation let-7a miRNPs-prevents the apoptotic death of growth factor-depleted neuronal cells.-Patranabis, S., Bhattacharyya, S. N. P-body-induced inactivation of let-7a miRNP prevents the death of growth factor-deprived neuronal cells.

  15. Body size evolution of a shell-brooding cichlid fish from Lake Tanganyika.

    PubMed

    Takahashi, T; Ota, K

    2016-12-01

    The substrate-brooding cichlid fish Telmatochromis temporalis in Lake Tanganyika demonstrates a simple example of ecological speciation between normal and dwarf morphs through divergent natural selection on body size. The dwarf morph most likely evolved from the ancestral normal morph; therefore, elucidating the evolution of its small body size is a key to understanding this ecological speciation event. Previous studies suggest that the small body size of the dwarf morph is an adaptation to the use of empty snail shells as shelters (males) and spawning sites (females), but this idea has not been fully evaluated. Combining original and previously published information, this study compared likelihood values to determine the primary factor that would be responsible for regulating the body size of the dwarf morph. Male body size is most likely regulated by the ability to turn within shells, which may influence the predation avoidance of adult fish. Females are smaller than males, and their body size is most likely regulated by the ability to lay eggs in the small spaces within shells close to the shell apices where predation risk on eggs is lower. This study provides new evidence supporting the hypothesis that different natural selection factors affected body size of the different sexes of the dwarf morph, which has not been reported in other animal species. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  16. C. elegans ADAMTS ADT-2 regulates body size by modulating TGFβ signaling and cuticle collagen organization

    PubMed Central

    Fernando, Thilini; Flibotte, Stephane; Xiong, Sheng; Yin, Jianghua; Yzeiraj, Edlira; Moerman, Donald G.; Meléndez, Alicia; Savage-Dunn, Cathy

    2011-01-01

    Organismal growth and body size are influenced by both genetic and environmental factors. We have utilized the strong molecular genetic techniques available in the nematode C. elegans to identify genetic determinants of body size. In C. elegans, DBL-1, a member of the conserved family of secreted growth factors known as the Transforming Growth Factor β superfamily, is known to play a major role in growth control. The mechanisms by which other determinants of body size function, however, is less well understood. To identify additional genes involved in body size regulation, a genetic screen for small mutants was previously performed. One of the genes identified in that screen was sma-21. We now demonstrate that sma-21 encodes ADT-2, a member of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of secreted metalloproteases. ADAMTS proteins are believed to remodel the extracellular matrix and may modulate the activity of extracellular signals. Genetic interactions suggest that ADT-2 acts in parallel with or in multiple size regulatory pathways. We demonstrate that ADT-2 is required for normal levels of expression of a DBL-1-responsive transcriptional reporter. We further demonstrate that adt-2 regulatory sequences drive expression in glial-like and vulval cells, and that ADT-2 activity is required for normal cuticle collagen fibril organization. We therefore propose that ADT-2 regulates body size both by modulating TGFβ signaling activity and by maintaining normal cuticle structure. PMID:21256840

  17. SF-1 in the ventral medial hypothalamic nucleus: A key regulator of homeostasis

    USDA-ARS?s Scientific Manuscript database

    The ventral medial hypothalamic nucleus (VMH) regulates food intake and body weight homeostasis. The nuclear receptor NR5A1 (steroidogenic factor 1; SF-1) is a transcription factor whose expression is highly restricted in the VMH and is required for the development of the nucleus. Neurons expressing...

  18. Is there evidence for a set point that regulates human body weight?

    PubMed

    Müller, Manfred J; Bosy-Westphal, Anja; Heymsfield, Steven B

    2010-08-09

    There is evidence for the idea that there is biological (active) control of body weight at a given set point. Body weight is the product of genetic effects (DNA), epigenetic effects (heritable traits that do not involve changes in DNA), and the environment. Regulation of body weight is asymmetric, being more effective in response to weight loss than to weight gain. However, regulation may be lost or camouflaged by Western diets, suggesting that the failure of biological control is due mainly to external factors. In this situation, the body's 'set point' (i.e., a constant 'body-inherent' weight regulated by a proportional feedback control system) is replaced by various 'settling points' that are influenced by energy and macronutrient intake in order for the body to achieve a zero energy balance. In a world of abundance, a prudent lifestyle and thus cognitive control are preconditions of effective biological control and a stable body weight. This idea also impacts future genetic research on body weight regulation. Searching for the genetic background of excess weight gain in a world of abundance is misleading since the possible biological control is widely overshadowed by the effect of the environment. In regard to clinical practice, dietary approaches to both weight loss and weight gain have to be reconsidered. In underweight patients (e.g., patients with anorexia nervosa), weight gain is supported by biological mechanisms that may or may not be suppressed by hyperalimentation. To overcome weight loss-induced counter-regulation in the overweight, biological signals have to be taken into account. Computational modeling of weight changes based on metabolic flux and its regulation will provide future strategies for clinical nutrition.

  19. Regulation of Carotid Body Oxygen Sensing by Hypoxia-Inducible Factors

    PubMed Central

    Prabhakar, Nanduri R.; Semenza, Gregg L.

    2015-01-01

    Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Carotid body responses to hypoxia are not uniform but instead exhibit remarkable inter-individual variations. The molecular mechanisms underlying variations in carotid body O2 sensing are not known. Hypoxia-inducible factor-1 (HIF-1) and HIF-2 mediate transcriptional responses to hypoxia. This article reviews the emerging evidence that proper expression of the HIF-α isoforms is a key molecular determinant for carotid body O2 sensing. HIF-1α deficiency leads to a blunted carotid body hypoxic response, which is due to increased abundance of HIF-2α, elevated anti-oxidant enzyme activity, and a reduced intracellular redox state. Conversely, HIF-2α deficiency results in augmented carotid body sensitivity to hypoxia, which is due to increased abundance of HIF-1α, elevated pro-oxidant enzyme activity, and an oxidized intracellular redox state. Double heterozygous mice with equally reduced HIF-1α and HIF-2α showed no abnormality in redox state or carotid body O2 sensing. Thus, mutual antagonism between HIF-α isoforms determines the redox state and thereby establishes the set point for hypoxic sensing by the carotid body. PMID:26265380

  20. A Regulatory Pathway, Ecdysone-Transcription Factor Relish-Cathepsin L, Is Involved in Insect Fat Body Dissociation

    PubMed Central

    Zhang, Yao; Lu, Yu-Xuan; Liu, Jian; Yang, Cui; Feng, Qi-Li; Xu, Wei-Hua

    2013-01-01

    Insect fat body is the organ for intermediary metabolism, comparable to vertebrate liver and adipose tissue. Larval fat body is disintegrated to individual fat body cells and then adult fat body is remodeled at the pupal stage. However, little is known about the dissociation mechanism. We find that the moth Helicoverpa armigera cathepsin L (Har-CL) is expressed heavily in the fat body and is released from fat body cells into the extracellular matrix. The inhibitor and RNAi experiments demonstrate that Har-CL functions in the fat body dissociation in H. armigera. Further, a nuclear protein is identified to be transcription factor Har-Relish, which was found in insect immune response and specifically binds to the promoter of Har-CL gene to regulate its activity. Har-Relish also responds to the steroid hormone ecdysone. Thus, the dissociation of the larval fat body is involved in the hormone (ecdysone)-transcription factor (Relish)-target gene (cathepsin L) regulatory pathway. PMID:23459255

  1. A pilot study: a descriptive correlational study of factors associated with weight in college nursing students.

    PubMed

    Singleton, Enrica Kinchen; Bienemy, Cynthia; Hutchinson, Sharon W; Dellinger, Amy; Rami, Janet S

    2011-01-01

    From a convenience sample consisting of junior level nursing students enrolled in a research class at a southern Historically Black College and University (HBCU), this pilot study investigated the percent of participants who were overweight as determined by Body Mass Index (BMI) measurements, and the percent satisfied with their body image as measured by the Strunkard Body Image Scale. BMI measurements were correlated with self esteem, body image, self care, and self efficacy in the regulation of eating habits and exercise regimens. The study found that students with greater BMIs had lower self efficacy beliefs about regulating their exercise habits. Self care, post the self directed intervention, significantly correlated with the pre and post intervention scores of self efficacy to regulate exercise, and with the post intervention scores of self efficacy to regulate eating habits. However, the study found that students' self care capacity was significantly different at the end of the study period.

  2. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila.

    PubMed

    Zheng, Huimei; Wang, Xuexiang; Guo, Pengfei; Ge, Wanzhong; Yan, Qinfeng; Gao, Weiqiang; Xi, Yongmei; Yang, Xiaohang

    2017-05-01

    In Drosophila, fat-body remodeling accompanied with fat mobilization is an ecdysone-induced dynamic process that only occurs during metamorphosis. Here, we show that the activated Drosophila platelet-derived growth factor/VEGF receptor (PVR) is sufficient to induce shape changes in the fat body, from thin layers of tightly conjugated polygonal cells to clusters of disaggregated round-shaped cells. These morphologic changes are reminiscent of those seen during early pupation upon initiation of fat-body remodeling. Activation of PVR also triggers an early onset of lipolysis and mobilization of internal storage, as revealed by the appearance of small lipid droplets and up-regulated lipolysis-related genes. We found that PVR displays a dynamic expression pattern in the fat body and peaks at the larval-prepupal transition under the control of ecdysone signaling. Removal of PVR, although it does not prevent ecdysone-induced fat-body remodeling, causes ecdysone signaling to be up-regulated. Our data reveal that PVR is active in a dual-secured mechanism that involves an ecdysone-induced fat-body remodeling pathway and a reinforced PVR pathway for effective lipid mobilization. Ectopic expression of activated c-kit-the mouse homolog of PVR in the Drosophila fat body-also results in a similar phenotype. This may suggest a novel function of c-kit as it relates to lipid metabolism in mammals.-Zheng, H., Wang, X., Guo, P., Ge, W., Yan, Q., Gao, W., Xi, Y., Yang, X. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila . © FASEB.

  3. DISCO interacting protein 2 determines direction of axon projection under the regulation of c-Jun N-terminal kinase in the Drosophila mushroom body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitta, Yohei; Brain Research Institute, Niigata University; Sugie, Atsushi

    Precisely controlled axon guidance for complex neuronal wiring is essential for appropriate neuronal function. c-Jun N-terminal kinase (JNK) was found to play a role in axon guidance recently as well as in cell proliferation, protection and apoptosis. In spite of many genetic and molecular studies on these biological processes regulated by JNK, how JNK regulates axon guidance accurately has not been fully explained thus far. To address this question, we use the Drosophila mushroom body (MB) as a model since the α/β axons project in two distinct directions. Here we show that DISCO interacting protein 2 (DIP2) is required formore » the accurate direction of axonal guidance. DIP2 expression is under the regulation of Basket (Bsk), the Drosophila homologue of JNK. We additionally found that the Bsk/DIP2 pathway is independent from the AP-1 transcriptional factor complex pathway, which is directly activated by Bsk. In conclusion, our findings revealed DIP2 as a novel effector downstream of Bsk modulating the direction of axon projection. - Highlights: • DIP2 is required for accurate direction of axon guidance in Drosophila mushroom body. • DIP2 is a downstream of JNK in the axon guidance of Drosophila mushroom body neuron. • JNK/DIP2 pathway is independent from JNK/AP-1 transcriptional factor complex pathway.« less

  4. Regulation of metabolism and body fat mass by leptin.

    PubMed

    Baile, C A; Della-Fera, M A; Martin, R J

    2000-01-01

    The relative stability of body weight over the long term and under a variety of environmental conditions that alter short-term energy intake and expenditure provides strong evidence for the regulation of body energy content. The lipostatic theory of energy balance regulation proposed 40 years ago that circulating factors, generated in proportion to body fat stores, acted as signals to the brain, eliciting changes in energy intake and expenditure. The discovery of leptin and its receptors has now provided a molecular basis for this theory. Leptin functions as much more than an adipocyte-derived signal of lipid stores, however. Although suppression of food intake is an important centrally mediated effect of leptin, considerable evidence indicates that leptin also functions both directly and indirectly, via the brain, to orchestrate complex metabolic changes in a number of organs and tissues, altering nutrient flux to favor energy expenditure over energy storage.

  5. Water metabolism regulating mechanisms in hypokinesia

    NASA Technical Reports Server (NTRS)

    Krotov, V. P.

    1980-01-01

    The range of daily fluctuations of the proportion of the amount of consumed water and its content in the body was evaluated by means of a water metabolism regulation factor. This index constitutes a relative measure of fluctuations of the constant of tritium water elimination from the body per 24 hours. It is established that under conditions of long term hypokinesia regulation of water metabolism is disturbed both in humans and in animals. Still more marked changes are observed 2 to 3 weeks after restoration of motor activity. The shifts noted are evidence of general biological regularity of disturbance of regulation systems in long term restriction of motor activity and in the early restoration period.

  6. GDF15 is a heart-derived hormone that regulates body growth.

    PubMed

    Wang, Ting; Liu, Jian; McDonald, Caitlin; Lupino, Katherine; Zhai, Xiandun; Wilkins, Benjamin J; Hakonarson, Hakon; Pei, Liming

    2017-08-01

    The endocrine system is crucial for maintaining whole-body homeostasis. Little is known regarding endocrine hormones secreted by the heart other than atrial/brain natriuretic peptides discovered over 30 years ago. Here, we identify growth differentiation factor 15 (GDF15) as a heart-derived hormone that regulates body growth. We show that pediatric heart disease induces GDF15 synthesis and secretion by cardiomyocytes. Circulating GDF15 in turn acts on the liver to inhibit growth hormone (GH) signaling and body growth. We demonstrate that blocking cardiomyocyte production of GDF15 normalizes circulating GDF15 level and restores liver GH signaling, establishing GDF15 as a bona fide heart-derived hormone that regulates pediatric body growth. Importantly, plasma GDF15 is further increased in children with concomitant heart disease and failure to thrive (FTT). Together these studies reveal a new endocrine mechanism by which the heart coordinates cardiac function and body growth. Our results also provide a potential mechanism for the well-established clinical observation that children with heart diseases often develop FTT. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Mediation of the relationship of behavioural treatment type and changes in psychological predictors of healthy eating by body satisfaction changes in women with obesity.

    PubMed

    Annesi, James J

    Psychological correlates of both short- and long-term weight loss are poorly understood. Changes in satisfaction with one's body might serve to motivate healthier eating by mediating treatments' effect on psychological factors previously suggested to be associated with weight loss. Women with obesity (age 48.6±7.1 years; BMI 35.4±3.3kg/m 2 ) were randomly assigned to social cognitive theory-based weight-management treatments that were either group sessions emphasizing physical activity-derived self-regulation (experimental; n=53) or review of a written manual and phone support (comparison; n=54). Changes in weight, physical activity, body satisfaction, negative mood, and self-efficacy and self-regulation for controlled eating were assessed over 3, 6, 12, and 24 months. The experimental treatment was associated with significantly more favourable changes across variables. Over 6, 12, and 24 months, body satisfaction change mediated relationships between treatment type and changes in each of the psychological predictors of healthier eating (mood, self-efficacy, self-regulation). Reciprocal, mutually reinforcing, relationships between changes in body satisfaction and those psychological predictors were also found. Increased physical activity was associated with improved body satisfaction, even after controlling for weight changes. Findings increased understandings of the role of body satisfaction in improving psychological predictors of healthier eating over both the short- and longer-term. Results also suggested that body satisfaction could be improved through increased physical activity, irrespective of change in weight. Although results were limited to women with class 1 and 2 obesity, findings on interactions of psychological factors associated with eating changes have implications for the architecture of improved behavioural treatments. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  8. Predicting Weight Outcomes in Preadolescence: The Role of Toddlers’ Self-regulation Skills and the Temperament Dimension of Pleasure

    PubMed Central

    Graziano, Paulo A.; Kelleher, Rachael; Calkins, Susan D.; Keane, Susan P.; Brien, Marion O

    2012-01-01

    Objective To investigate the role of toddlers’ self-regulation skills and temperament in predicting weight outcomes in preadolescence. Method Participants for this study included 195 children (114 girls) obtained from three different cohorts participating in a larger ongoing longitudinal study. At 2 years of age, participants participated in several laboratory tasks designed to assess their self-regulation abilities, including emotion regulation, sustained attention, and delay of gratification, while parents filled out a temperament questionnaire to assess toddlers’ pleasure expression. Height and weight measures were collected when children were 4, 5, 7, and 10 years of age. Children also filled out a body image and eating questionnaire at the 10 year visit. Results Self-regulation skills in toddlers were associated with both BMI development, pediatric obesity, and body image/eating concerns. The temperament dimension of pleasure was also associated with BMI development and pediatric obesity but not body image/eating concerns. Conclusion Self-regulation difficulties across domains as well as temperament based pleasure in toddlers represented significant individual risk factors for the development of pediatric obesity eight years later. Early self-regulation difficulties also contributed to body image and eating concerns that typically accompanied overweight children. The mechanisms by which early self-regulation skills and temperament based pleasure may contribute to the development of pediatric obesity and associated weight concerns are discussed. PMID:23044856

  9. Role of nuclear bodies in apoptosis signalling.

    PubMed

    Krieghoff-Henning, Eva; Hofmann, Thomas G

    2008-11-01

    Promyelocytic leukemia nuclear bodies (PML NBs) are dynamic macromolecular multiprotein complexes that recruit and release a plethora of proteins. A considerable number of PML NB components play vital roles in apoptosis, senescence regulation and tumour suppression. The molecular basis by which PML NBs control these cellular responses is still just beginning to be understood. In addition to PML itself, numerous further tumour suppressors including transcriptional regulator p53, acetyl transferase CBP (CREB binding protein) and protein kinase HIPK2 (homeodomain interacting protein kinase 2) are recruited to PML NBs in response to genotoxic stress or oncogenic transformation and drive the senescence and apoptosis response by regulating p53 activity. Moreover, in response to death-receptor activation, PML NBs may act as nuclear depots that release apoptotic factors, such as the FLASH (FLICE-associated huge) protein, to amplify the death signal. PML NBs are also associated with other nuclear domains including Cajal bodies and nucleoli and share apoptotic regulators with these domains, implying crosstalk between NBs in apoptosis regulation. In conclusion, PML NBs appear to regulate cell death decisions through different, pathway-specific molecular mechanisms.

  10. Effects of emotional acceptance and rumination on media-induced body dissatisfaction in anorexia and bulimia nervosa.

    PubMed

    Naumann, Eva; Tuschen-Caffier, Brunna; Voderholzer, Ulrich; Schäfer, Johanna; Svaldi, Jennifer

    2016-11-01

    Body dissatisfaction is an important risk and maintaining factor for eating disorders. The aim of the present study was to experimentally test the effects of two emotion regulation strategies - acceptance and rumination - on media-induced body dissatisfaction in eating disorders. After watching pictures of thin models, women with anorexia nervosa (AN; n = 39) and bulimia nervosa (BN; n = 39) were encouraged to either use emotional acceptance or rumination to cope with their feelings. Body dissatisfaction and mood were repeatedly assessed. Acceptance significantly improved body dissatisfaction in women with BN. Rumination led to a significant increase of body dissatisfaction in both eating disorder groups. Results were independent from mood changes. Findings highlight the importance ruminative thinking may have in the aggravation of dissatisfaction with the own body in AN and BN. Results suggest that emotional acceptance is a useful strategy to regulate body dissatisfaction after exposure to thin-ideal media in BN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body

    PubMed Central

    Duronio, Robert J.; Marzluff, William F.

    2017-01-01

    ABSTRACT Metazoan replication-dependent (RD) histone genes encode the only known cellular mRNAs that are not polyadenylated. These mRNAs end instead in a conserved stem-loop, which is formed by an endonucleolytic cleavage of the pre-mRNA. The genes for all 5 histone proteins are clustered in all metazoans and coordinately regulated with high levels of expression during S phase. Production of histone mRNAs occurs in a nuclear body called the Histone Locus Body (HLB), a subdomain of the nucleus defined by a concentration of factors necessary for histone gene transcription and pre-mRNA processing. These factors include the scaffolding protein NPAT, essential for histone gene transcription, and FLASH and U7 snRNP, both essential for histone pre-mRNA processing. Histone gene expression is activated by Cyclin E/Cdk2-mediated phosphorylation of NPAT at the G1-S transition. The concentration of factors within the HLB couples transcription with pre-mRNA processing, enhancing the efficiency of histone mRNA biosynthesis. PMID:28059623

  12. Energy metabolism, fuel selection and body weight regulation

    PubMed Central

    Galgani, J; Ravussin, E

    2010-01-01

    Energy homeostasis is critical for the survival of species. Therefore, multiple and complex mechanisms have evolved to regulate energy intake and expenditure to maintain body weight. For weight maintenance, not only does energy intake have to match energy expenditure, but also macronutrient intake must balance macronutrient oxidation. However, this equilibrium seems to be particularly difficult to achieve in individuals with low fat oxidation, low energy expenditure, low sympathetic activity or low levels of spontaneous physical activity, as in addition to excess energy intake, all of these factors explain the tendency of some people to gain weight. Additionally, large variability in weight change is observed when energy surplus is imposed experimentally or spontaneously. Clearly, the data suggest a strong genetic influence on body weight regulation implying a normal physiology in an ‘obesogenic’ environment. In this study, we also review evidence that carbohydrate balance may represent the potential signal that regulates energy homeostasis by impacting energy intake and body weight. Because of the small storage capacity for carbohydrate and its importance for metabolism in many tissues and organs, carbohydrate balance must be maintained at a given level. This drive for balance may in turn cause increased energy intake when consuming a diet high in fat and low in carbohydrate. If sustained over time, such an increase in energy intake cannot be detected by available methods, but may cause meaningful increases in body weight. The concept of metabolic flexibility and its impact on body weight regulation is also presented. PMID:19136979

  13. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis.

    PubMed

    Kohlgruber, Ayano C; Gal-Oz, Shani T; LaMarche, Nelson M; Shimazaki, Moto; Duquette, Danielle; Nguyen, Hung N; Mina, Amir I; Paras, Tyler; Tavakkoli, Ali; von Andrian, Ulrich; Banks, Alexander S; Shay, Tal; Brenner, Michael B; Lynch, Lydia

    2018-05-01

    γδ T cells are situated at barrier sites and guard the body from infection and damage. However, little is known about their roles outside of host defense in nonbarrier tissues. Here, we characterize a highly enriched tissue-resident population of γδ T cells in adipose tissue that regulate age-dependent regulatory T cell (T reg ) expansion and control core body temperature in response to environmental fluctuations. Mechanistically, innate PLZF + γδ T cells produced tumor necrosis factor and interleukin (IL) 17 A and determined PDGFRα + and Pdpn + stromal-cell production of IL-33 in adipose tissue. Mice lacking γδ T cells or IL-17A exhibited decreases in both ST2 + T reg cells and IL-33 abundance in visceral adipose tissue. Remarkably, these mice also lacked the ability to regulate core body temperature at thermoneutrality and after cold challenge. Together, these findings uncover important physiological roles for resident γδ T cells in adipose tissue immune homeostasis and body-temperature control.

  14. Comprehensive Genetic Analysis of Early Host Body Reactions to the Bioactive and Bio-Inert Porous Scaffolds

    PubMed Central

    Ehashi, Tomo; Takemura, Taro; Hanagata, Nobutaka; Minowa, Takashi; Kobayashi, Hisatoshi; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations. PMID:24454803

  15. Brd2 gene disruption causes ‘metabolically healthy’ obesity: Epigenetic and chromatin-based mechanisms that uncouple obesity from Type 2 diabetes

    PubMed Central

    Wang, Fangnian; Deeney, Jude T.; Denis, Gerald V.

    2014-01-01

    Disturbed body energy balance can lead to obesity and obesity-driven diseases such as Type 2 diabetes, which have reached an epidemic level. Evidence indicates that obesity induced inflammation is a major cause of insulin resistance and Type 2 diabetes. Environmental factors, such as nutrients, affect body energy balance through epigenetic or chromatin-based mechanisms. As a bromodomain and external domain family transcription regulator, Brd2 regulates expression of many genes through interpretation of chromatin codes, and participates in the regulation of body energy balance and immune function. In the severely obese state, Brd2 knockdown in mice prevented obesity-induced inflammatory responses, protected animals from Type 2 diabetes, and thus uncoupled obesity from diabetes. Brd2 provides an important model for investigation of the function of transcription regulators and the development of obesity and diabetes; it also provides a possible target to treat obesity and diabetes through modulation of the function of a chromatin code reader. PMID:23374712

  16. Epigenetic regulation of the expression of genes involved in steroid hormone biosynthesis and action

    PubMed Central

    Martinez-Arguelles, Daniel B.; Papadopoulos, Vassilios

    2010-01-01

    Steroid hormones participate in organ development, reproduction, body homeostasis, and stress responses. The steroid machinery is expressed in a development- and tissue-specific manner, with the expression of these factors being tightly regulated by an array of transcription factors (TFs). Epigenetics provides an additional layer of gene regulation through DNA methylation and histone tail modifications. Evidence of epigenetic regulation of key steroidogenic enzymes is increasing, though this does not seem to be a predominant regulatory pathway. Steroid hormones exert their action in target tissues through steroid nuclear receptors belonging to the NR3A and NR3C families. Nuclear receptor expression levels and post-translational modifications regulate their function and dictate their sensitivity to steroid ligands. Nuclear receptors and TFs are more likely to be epigenetically regulated than proteins involved in steroidogenesis and have secondary impact on the expression of these steroidogenic enzymes. Here we review evidence for epigenetic regulation of enzymes, transcription factors, and nuclear receptors related to steroid biogenesis and action. PMID:20156469

  17. Institutionalization versus Self-Regulation: A Contextual Analysis of Responsibility among Adolescent Sportsmen

    ERIC Educational Resources Information Center

    Long, Thierry; Pantaleon, Nathalie; Bruant, Gerard

    2008-01-01

    The present study, which sought to analyse adolescent sportsmen's representations of responsibility, was mainly guided by the philosophical literature on this topic. A body of literature suggests that the contextual factors of sport practice, particularly regarding the rules that regulate play, may have a key role in the building of such…

  18. Glucagon-receptor Signaling Regulates Energy Metabolism Via Hepatic Farnesoid X Receptor and Fibroblast Growth Factor 21.

    PubMed

    Kim, Teayoun; Nason, Shelly; Holleman, Cassie; Pepin, Mark; Wilson, Landon; Berryhill, Taylor F; Wende, Adam R; Steele, Chad; Young, Martin E; Barnes, Stephen; Drucker, Daniel J; Finan, Brian; DiMarchi, Richard; Perez-Tilve, Diego; Tschoep, Matthias; Habegger, Kirk M

    2018-06-20

    Glucagon, an essential regulator of glucose and lipid metabolism, also promotes weight loss, in part through potentiation of fibroblast-growth factor 21 (FGF21) secretion. However, FGF21 is only a partial mediator of metabolic actions ensuing from GcgR-activation, prompting us to search for additional pathways. Intriguingly, chronic GcgR agonism increases plasma bile acid levels. We hypothesized that GcgR agonism regulates energy metabolism, at least in part, through farnesoid X receptor (FXR). To test this hypothesis, we studied whole body and liver-specific FXR knockout ( Fxr ∆liver ) mice. Chronic GcgR agonist (IUB288) administration in diet-induced obese (DIO) Gcgr , Fgf21 and Fxr whole body or liver-specific knockout ( ∆liver ) mice failed to reduce body weight (BW) when compared to wildtype (WT) mice. IUB288 increased energy expenditure and respiration in DIO WT mice, but not FXR ∆liver mice. GcgR agonism increased [ 14 C]-palmitate oxidation in hepatocytes isolated from WT mice in a dose-dependent manner, an effect blunted in hepatocytes from Fxr ∆liver mice. Our data clearly demonstrate that control of whole body energy expenditure by GcgR agonism requires intact FXR signaling in the liver. This heretofore-unappreciated aspect of glucagon biology has implications for the use of GcgR agonism in the therapy of metabolic disorders. © 2018 by the American Diabetes Association.

  19. [Occupational microclimate. Results and prospects of research].

    PubMed

    Afanas'eva, R F; Bessonova, N A; Burmistrova, O V; Burmistrov, V M; Losik, T K

    2013-01-01

    The article covers results of studies conducted over last 15 years and aimed to elaboration of requirements to integral parameters of microclimate at workplace, its evaluation and regulation, prophylactic measures against body overcooling and overheating. The authors present methods to evaluate combined effects of physical factors (noise, vibration, microclimate) and to assess microclimate with consideration of factors determining body thermal load (energy expenditure, duration of stay at workplace, heat insulation of clothes and thermo-physical parameters of its materials). Mathematic models of forecasting cold and heat stress are presented, as well as requirements to heat insulation for individual protective means against cold and methods to calculate it. Regimens of work in heating and cooling conditions are specified. The authors set directions for further studies to define regulation requirements to microclimate on basis of studied patterns of body heat state formation, its evaluation criteria, epidemiologic studies results, specified prophylactic measures against overheating and overcooling with consideration of adaptation, sex, thermo-physical characteristics of individual protective means (special clothes, footwear, gauntlets, headwear).

  20. Body composition, adipokines, bone mineral density and bone remodeling markers in relation to IGF-1 levels in adults with Prader-Willi syndrome.

    PubMed

    van Nieuwpoort, I Caroline; Twisk, Jos W R; Curfs, Leopold M G; Lips, Paul; Drent, Madeleine L

    2018-01-01

    In patients with Prader-Willi syndrome (PWS) body composition is abnormal and alterations in appetite regulating factors, bone mineral density and insulin-like growth factor-1 (IGF-1) levels have been described. Studies in PWS adults are limited. In this study, we investigated body composition, appetite regulating peptides, bone mineral density and markers of bone remodeling in an adult PWS population. Furthermore, we investigated the association between these different parameters and IGF-1 levels because of the described similarities with growth hormone deficient patients. In this cross-sectional observational cohort study in a university hospital setting we studied fifteen adult PWS patients. Anthropometric and metabolic parameters, IGF-1 levels, bone mineral density and bone metabolism were evaluated. The homeostasis model assessment of insulin resistance (HOMA2-IR) was calculated. Fourteen healthy siblings served as a control group for part of the measurements. In the adult PWS patients, height, fat free mass, IGF-1 and bone mineral content were significantly lower when compared to controls; body mass index (BMI), waist, waist-to-hip ratio and fat mass were higher. There was a high prevalence of osteopenia and osteoporosis in the PWS patients. Also, appetite regulating peptides and bone remodelling markers were aberrant when compared to reference values. Measurements of body composition were significantly correlated to appetite regulating peptides and high-sensitive C-reactive protein (hs-CRP), furthermore HOMA was correlated to BMI and adipokines. In adults with Prader-Willi syndrome alterations in body composition, adipokines, hs-CRP and bone mineral density were demonstrated but these were not associated with IGF-1 levels. Further investigations are warranted to gain more insight into the exact pathophysiology and the role of these alterations in the metabolic and cardiovascular complications seen in PWS, so these complications can be prevented or treated as early as possible.

  1. A critical evaluation of the insect body size model and causes of metamorphosis in solitary bees

    USDA-ARS?s Scientific Manuscript database

    The insect body size model posits that adult size is determined by growth rate and the duration of growth during the larval stage of development. Within the model, growth rate is regulated by many mechanistic elements that are influenced by both internal and external factors. However, the duration o...

  2. Leptin, the ob gene product, in female health and disease.

    PubMed

    Schubring, C; Blum, W F; Kratzsch, J; Deutscher, J; Kiess, W

    2000-02-01

    Leptin is a recently discovered hormone which is involved in the regulation of body weight. It provides a molecular basis for the lipostatic theory of the regulation of energy balance. White adipose tissue is the main site of leptin synthesis and there is some evidence of ob gene expression in brown fat. Leptin seems to play a key role in the control of body fat stores by coordinated regulation of feeding behaviour, metabolic rate, autonomic nervous system regulation and body energy balance in rodents, primates and humans. Apart from the function of leptin in the central nervous system on the regulation of energy balance, it may well be one of the hormonal factors that signal the body's readiness for sexual maturation and reproduction to the brain. During late pregnancy and at birth when maternal fat stores have been developed leptin levels are high. Leptin could then be a messenger molecule signaling the adequacy of the fat stores for reproduction and maintenance of pregnancy. At later stages of gestation leptin could signal the expansion of fat stores in order to prepare the expectant mother for the energy requirements of full term gestation, labour and lactation. This overview focuses on those topics of leptin research which are of particular interest in reproductive medicine and gynecology.

  3. The relationship between skin function, barrier properties, and body-dependent factors.

    PubMed

    Dąbrowska, A K; Spano, F; Derler, S; Adlhart, C; Spencer, N D; Rossi, R M

    2018-05-01

    Skin is a multilayer interface between the body and the environment, responsible for many important functions, such as temperature regulation, water transport, sensation, and protection from external triggers. This paper provides an overview of principal factors that influence human skin and describes the diversity of skin characteristics, its causes and possible consequences. It also discusses limitations in the barrier function of the skin, describing mechanisms of absorption. There are a number of in vivo investigations focusing on the diversity of human skin characteristics with reference to barrier properties and body-dependent factors. Skin properties vary among individuals of different age, gender, ethnicity, and skin types. In addition, skin characteristics differ depending on the body site and can be influenced by the body-mass index and lifestyle. Although one of the main functions of the skin is to act as a barrier, absorption of some substances remains possible. Various factors can alter human skin properties, which can be reflected in skin function and the quality of everyday life. Skin properties and function are strongly interlinked. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.

    PubMed

    Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y

    2007-07-01

    Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.

  5. Glutathione S-transferase 4 is a putative DIF-binding protein that regulates the size of fruiting bodies in Dictyostelium discoideum.

    PubMed

    Kuwayama, Hidekazu; Kikuchi, Haruhisa; Oshima, Yoshiteru; Kubohara, Yuzuru

    2016-12-01

    In the development of the cellular slime mold Dictyostelium discoideum , two chlorinated compounds, the differentiation-inducing factors DIF-1 and DIF-2, play important roles in the regulation of both cell differentiation and chemotactic cell movement. However, the receptors of DIFs and the components of DIF signaling systems have not previously been elucidated. To identify the receptors for DIF-1 and DIF-2, we here performed DIF-conjugated affinity gel chromatography and liquid chromatography-tandem mass spectrometry and identified the glutathione S-transferase GST4 as a major DIF-binding protein. Knockout and overexpression mutants of gst4 ( gst4 - and gst4 OE , respectively) formed fruiting bodies, but the fruiting bodies of gst4 - cells were smaller than those of wild-type Ax2 cells, and those of gst4 OE cells were larger than those of Ax2 cells. Both chemotaxis regulation and in vitro stalk cell formation by DIFs in the gst4 mutants were similar to those of Ax2 cells. These results suggest that GST4 is a DIF-binding protein that regulates the sizes of cell aggregates and fruiting bodies in D. discoideum .

  6. Linking freshwater tidal hydrology to carbon cycling in bottomland hardwood wetlands

    Treesearch

    Carl C. Trettin; Brooke J. Czwartacki; Craig J. Allan; Devendra M. Amatya

    2016-01-01

    Hydrology is recognized as one of the principal factors regulating soil biogeochemical processes in forested wetlands. However, the consequences of tidally mediated hydrology are seldom considered within forested wetlands that occur along tidal water bodies. These tidal water bodies may be either fresh or brackish, and the tidal streams function as a reservoir to...

  7. DEAF-1 regulates immunity gene expression in Drosophila.

    PubMed

    Reed, Darien E; Huang, Xinhua M; Wohlschlegel, James A; Levine, Michael S; Senger, Kate

    2008-06-17

    Immunity genes are activated in the Drosophila fat body by Rel and GATA transcription factors. Here, we present evidence that an additional regulatory factor, deformed epidermal autoregulatory factor-1 (DEAF-1), also contributes to the immune response and is specifically important for the induction of two genes encoding antimicrobial peptides, Metchnikowin (Mtk) and Drosomycin (Drs). The systematic mutagenesis of a minimal Mtk 5' enhancer identified a sequence motif essential for both a response to LPS preparations in S2 cells and activation in the larval fat body in response to bacterial infection. Using affinity chromatography coupled to multidimensional protein identification technology (MudPIT), we identified DEAF-1 as a candidate regulator. DEAF-1 activates the expression of Mtk and Drs promoter-luciferase fusion genes in S2 cells. SELEX assays and footprinting data indicate that DEAF-1 binds to and activates Mtk and Drs regulatory DNAs via a TTCGGBT motif. The insertion of this motif into the Diptericin (Dpt) regulatory region confers DEAF-1 responsiveness to this normally DEAF-1-independent enhancer. The coexpression of DEAF-1 with Dorsal, Dif, and Relish results in the synergistic activation of transcription. We propose that DEAF-1 is a regulator of Drosophila immunity.

  8. Longevity and its regulation: centenarians and beyond.

    PubMed

    Robert, L; Fulop, T

    2014-01-01

    Regulation of longevity depends on genetic and environmental factors. According to Svanborg, a Swedish geriatrician, over the last decades human life expectancy increased as well as the age at onset of fatal diseases. Nevertheless, autopsies of centenarians revealed the presence of several severe pathologies which could have killed them much earlier. Therefore, the emphasis is on regulation of resistance dependent on the expression of genes such as Sirtuins, mTOR pathway and others controlling body resistance. Only a small fraction (<1%) of centenarians live to become supercentenarians (110 years), indicating a limit of performance and resistance of the body. This limit can be interpreted as 'tinkering' of nature instead of producing masterpieces as suggested by F. Jacob. These facts and theories are described in this chapter.

  9. Hepatic CREB3L3 controls whole-body energy homeostasis and improves obesity and diabetes.

    PubMed

    Nakagawa, Yoshimi; Satoh, Aoi; Yabe, Sachiko; Furusawa, Mika; Tokushige, Naoko; Tezuka, Hitomi; Mikami, Motoki; Iwata, Wakiko; Shingyouchi, Akiko; Matsuzaka, Takashi; Kiwata, Shiori; Fujimoto, Yuri; Shimizu, Hidehisa; Danno, Hirosuke; Yamamoto, Takashi; Ishii, Kiyoaki; Karasawa, Tadayoshi; Takeuchi, Yoshinori; Iwasaki, Hitoshi; Shimada, Masako; Kawakami, Yasushi; Urayama, Osamu; Sone, Hirohito; Takekoshi, Kazuhiro; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2014-12-01

    Transcriptional regulation of metabolic genes in the liver is the key to maintaining systemic energy homeostasis during starvation. The membrane-bound transcription factor cAMP-responsive element-binding protein 3-like 3 (CREB3L3) has been reported to be activated during fasting and to regulate triglyceride metabolism. Here, we show that CREB3L3 confers a wide spectrum of metabolic responses to starvation in vivo. Adenoviral and transgenic overexpression of nuclear CREB3L3 induced systemic lipolysis, hepatic ketogenesis, and insulin sensitivity with increased energy expenditure, leading to marked reduction in body weight, plasma lipid levels, and glucose levels. CREB3L3 overexpression activated gene expression levels and plasma levels of antidiabetic hormones, including fibroblast growth factor 21 and IGF-binding protein 2. Amelioration of diabetes by hepatic activation of CREB3L3 was also observed in several types of diabetic obese mice. Nuclear CREB3L3 mutually activates the peroxisome proliferator-activated receptor (PPAR) α promoter in an autoloop fashion and is crucial for the ligand transactivation of PPARα by interacting with its transcriptional regulator, peroxisome proliferator-activated receptor gamma coactivator-1α. CREB3L3 directly and indirectly controls fibroblast growth factor 21 expression and its plasma level, which contributes at least partially to the catabolic effects of CREB3L3 on systemic energy homeostasis in the entire body. Therefore, CREB3L3 is a therapeutic target for obesity and diabetes.

  10. Regulation of Energy Stores and Feeding by Neuronal and Peripheral CREB Activity in Drosophila

    PubMed Central

    Iijima, Koichi; Zhao, LiJuan; Shenton, Christopher; Iijima-Ando, Kanae

    2009-01-01

    The cAMP-responsive transcription factor CREB functions in adipose tissue and liver to regulate glycogen and lipid metabolism in mammals. While Drosophila has a homolog of mammalian CREB, dCREB2, its role in energy metabolism is not fully understood. Using tissue-specific expression of a dominant-negative form of CREB (DN-CREB), we have examined the effect of blocking CREB activity in neurons and in the fat body, the primary energy storage depot with functions of adipose tissue and the liver in flies, on energy balance, stress resistance and feeding behavior. We found that disruption of CREB function in neurons reduced glycogen and lipid stores and increased sensitivity to starvation. Expression of DN-CREB in the fat body also reduced glycogen levels, while it did not affect starvation sensitivity, presumably due to increased lipid levels in these flies. Interestingly, blocking CREB activity in the fat body increased food intake. These flies did not show a significant change in overall body size, suggesting that disruption of CREB activity in the fat body caused an obese-like phenotype. Using a transgenic CRE-luciferase reporter, we further demonstrated that disruption of the adipokinetic hormone receptor, which is functionally related to mammalian glucagon and β-adrenergic signaling, in the fat body reduced CRE-mediated transcription in flies. This study demonstrates that CREB activity in either neuronal or peripheral tissues regulates energy balance in Drosophila, and that the key signaling pathway regulating CREB activity in peripheral tissue is evolutionarily conserved. PMID:20041126

  11. Mammal population regulation, keystone processes and ecosystem dynamics.

    PubMed Central

    Sinclair, A R E

    2003-01-01

    The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management. PMID:14561329

  12. Mechanisms of stable lipid loss in a social insect

    PubMed Central

    Ament, Seth A.; Chan, Queenie W.; Wheeler, Marsha M.; Nixon, Scott E.; Johnson, S. Peir; Rodriguez-Zas, Sandra L.; Foster, Leonard J.; Robinson, Gene E.

    2011-01-01

    SUMMARY Worker honey bees undergo a socially regulated, highly stable lipid loss as part of their behavioral maturation. We used large-scale transcriptomic and proteomic experiments, physiological experiments and RNA interference to explore the mechanistic basis for this lipid loss. Lipid loss was associated with thousands of gene expression changes in abdominal fat bodies. Many of these genes were also regulated in young bees by nutrition during an initial period of lipid gain. Surprisingly, in older bees, which is when maximum lipid loss occurs, diet played less of a role in regulating fat body gene expression for components of evolutionarily conserved nutrition-related endocrine systems involving insulin and juvenile hormone signaling. By contrast, fat body gene expression in older bees was regulated more strongly by evolutionarily novel regulatory factors, queen mandibular pheromone (a honey bee-specific social signal) and vitellogenin (a conserved yolk protein that has evolved novel, maturation-related functions in the bee), independent of nutrition. These results demonstrate that conserved molecular pathways can be manipulated to achieve stable lipid loss through evolutionarily novel regulatory processes. PMID:22031746

  13. Mechanisms of stable lipid loss in a social insect.

    PubMed

    Ament, Seth A; Chan, Queenie W; Wheeler, Marsha M; Nixon, Scott E; Johnson, S Peir; Rodriguez-Zas, Sandra L; Foster, Leonard J; Robinson, Gene E

    2011-11-15

    Worker honey bees undergo a socially regulated, highly stable lipid loss as part of their behavioral maturation. We used large-scale transcriptomic and proteomic experiments, physiological experiments and RNA interference to explore the mechanistic basis for this lipid loss. Lipid loss was associated with thousands of gene expression changes in abdominal fat bodies. Many of these genes were also regulated in young bees by nutrition during an initial period of lipid gain. Surprisingly, in older bees, which is when maximum lipid loss occurs, diet played less of a role in regulating fat body gene expression for components of evolutionarily conserved nutrition-related endocrine systems involving insulin and juvenile hormone signaling. By contrast, fat body gene expression in older bees was regulated more strongly by evolutionarily novel regulatory factors, queen mandibular pheromone (a honey bee-specific social signal) and vitellogenin (a conserved yolk protein that has evolved novel, maturation-related functions in the bee), independent of nutrition. These results demonstrate that conserved molecular pathways can be manipulated to achieve stable lipid loss through evolutionarily novel regulatory processes.

  14. Fusel Alcohols Regulate Translation Initiation by Inhibiting eIF2B to Reduce Ternary Complex in a Mechanism That May Involve Altering the Integrity and Dynamics of the eIF2B Body

    PubMed Central

    Taylor, Eleanor J.; Campbell, Susan G.; Griffiths, Christian D.; Reid, Peter J.; Slaven, John W.; Harrison, Richard J.; Sims, Paul F.G.; Pavitt, Graham D.; Delneri, Daniela

    2010-01-01

    Recycling of eIF2-GDP to the GTP-bound form constitutes a core essential, regulated step in eukaryotic translation. This reaction is mediated by eIF2B, a heteropentameric factor with important links to human disease. eIF2 in the GTP-bound form binds to methionyl initiator tRNA to form a ternary complex, and the levels of this ternary complex can be a critical determinant of the rate of protein synthesis. Here we show that eIF2B serves as the target for translation inhibition by various fusel alcohols in yeast. Fusel alcohols are endpoint metabolites from amino acid catabolism, which signal nitrogen scarcity. We show that the inhibition of eIF2B leads to reduced ternary complex levels and that different eIF2B subunit mutants alter fusel alcohol sensitivity. A DNA tiling array strategy was developed that overcame difficulties in the identification of these mutants where the phenotypic distinctions were too subtle for classical complementation cloning. Fusel alcohols also lead to eIF2α dephosphorylation in a Sit4p-dependent manner. In yeast, eIF2B occupies a large cytoplasmic body where guanine nucleotide exchange on eIF2 can occur and be regulated. Fusel alcohols impact on both the movement and dynamics of this 2B body. Overall, these results confirm that the guanine nucleotide exchange factor, eIF2B, is targeted by fusel alcohols. Moreover, they highlight a potential connection between the movement or integrity of the 2B body and eIF2B regulation. PMID:20444979

  15. Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation.

    PubMed

    Takei, Y

    2000-04-01

    The origin of life took place in the ancient sea where the ionic concentration is thought to have been somewhat lower than that of the present day seas. This may partly explain why most vertebrate species have plasma ionic concentrations roughly one-third of seawater. Exceptions are primitive marine cyclostomes whose plasma is almost identical to seawater, and marine cartilaginous fishes that accumulate urea in plasma to increase osmolarity to a seawater level. The mechanisms for regulation of water and electrolyte balance should have evolved from these animals into those of more advanced ones in which plasma ions are regulated to one-third of seawater irrespective of the habitat. Although most extant terrestrial and aquatic animals maintain similar plasma osmolarity and ionic concentrations, the mechanisms of regulation differ greatly among different groups of animals according to their habitat. An outstanding difference is that while plasma Na(+) concentration is a primary factor of regulation in terrestrial mammals and birds, blood volume is most strictly regulated in aquatic teleost fishes. Consistently, while an increase in plasma osmolarity (cellular dehydration) is a major dipsogenic stimulus for birds and mammals, hypovolemia (extracellular dehydration) is a much stronger stimulus for elicitation of drinking in teleost fishes. Furthermore, fish cells in culture are tolerant to changes in environmental osmolarity compared with mammalian cells, further suggesting a secondary role of plasma osmolarity as a target of regulation in fishes. A secondary role of blood volume for body fluid regulation in birds is further assessed by the fact that volume receptors for thirst, salt gland secretion, and vasotocin secretion are localized in the extravascular, interstitial space in some species of birds. All terrestrial animals including mammals have derived from the fishes in phylogeny, during which the mechanisms for body fluid regulation underwent adaptive evolution in the course of transition from aquatic to terrestrial life. Therefore, much can be learned from comparative studies of body fluid regulation that reveals the diversity and uniformity of the mechanisms. In this review, important comparative studies that may contribute to an understanding of body fluid regulation throughout vertebrate species will be summarized.

  16. The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left–right patterning

    PubMed Central

    Beckers, Anja; Alten, Leonie; Viebahn, Christoph; Andre, Philipp; Gossler, Achim

    2007-01-01

    The mouse homeobox gene Noto represents the homologue of zebrafish floating head (flh) and is expressed in the organizer node and in the nascent notochord. Previous analyses suggested that Noto is required exclusively for the formation of the caudal part of the notochord. Here, we show that Noto is also essential for node morphogenesis, controlling ciliogenesis in the posterior notochord, and the establishment of laterality, whereas organizer functions in anterior–posterior patterning are apparently not compromised. In mutant embryos, left–right asymmetry of internal organs and expression of laterality markers was randomized. Mutant posterior notochord regions were variable in size and shape, cilia were shortened with highly irregular axonemal microtubuli, and basal bodies were, in part, located abnormally deep in the cytoplasm. The transcription factor Foxj1, which regulates the dynein gene Dnahc11 and is required for the correct anchoring of basal bodies in lung epithelial cells, was down-regulated in mutant nodes. Likewise, the transcription factor Rfx3, which regulates cilia growth, was not expressed in Noto mutants, and various other genes important for cilia function or assembly such as Dnahc5 and Nphp3 were down-regulated. Our results establish Noto as an essential regulator of node morphogenesis and ciliogenesis in the posterior notochord, and suggest Noto acts upstream of Foxj1 and Rfx3. PMID:17884984

  17. A global review of species-specific shark-fin-to-body-mass ratios and relevant legislation.

    PubMed

    Biery, L; Pauly, D

    2012-04-01

    In this review, shark-fin-to-body-mass ratios, which have been legislated by several countries as a means of regulating and monitoring shark fisheries, have been compiled and reviewed. Observed and legislated wet-fin-mass-to-round-mass (M(fw) :M(r) ) ratios have been collected for 50 species and eight countries. Wet to dry-fin mass conversion factors have also been reviewed. Existing shark fishery legislation was compiled by political entity and regional fishery management organizations (RFMO). The mean observed M(fw) :M(r) ratio for all species was 3·0%, but actual fin to body-mass ratios varied considerably by species and location. Species-specific mean ratios ranged from 1·1 to 10·9%, and estimated mean ratios ranged from 1·5 to 6·1% by country, depending on fin-cutting practices and the mix of exploited species. The mean conversion factor for wet to dry-fin mass was 0·43. Shark-related legislation was found to exist in 37 countries and the 22 maritime members of the European Union, and shark-related regulations have been designated by nine RFMOs. Results suggest that currently regulated ratios may not be appropriate for all species and fin-cutting practices, and regulations based on generalized ratios for all sharks may be inadequate. Alternative policies may be necessary for the effective management of global shark fisheries. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  18. Physiological adaptations to weight loss and factors favouring weight regain

    PubMed Central

    Greenway, F L

    2015-01-01

    Obesity is a major global health problem and predisposes individuals to several comorbidities that can affect life expectancy. Interventions based on lifestyle modification (for example, improved diet and exercise) are integral components in the management of obesity. However, although weight loss can be achieved through dietary restriction and/or increased physical activity, over the long term many individuals regain weight. The aim of this article is to review the research into the processes and mechanisms that underpin weight regain after weight loss and comment on future strategies to address them. Maintenance of body weight is regulated by the interaction of a number of processes, encompassing homoeostatic, environmental and behavioural factors. In homoeostatic regulation, the hypothalamus has a central role in integrating signals regarding food intake, energy balance and body weight, while an ‘obesogenic' environment and behavioural patterns exert effects on the amount and type of food intake and physical activity. The roles of other environmental factors are also now being considered, including sleep debt and iatrogenic effects of medications, many of which warrant further investigation. Unfortunately, physiological adaptations to weight loss favour weight regain. These changes include perturbations in the levels of circulating appetite-related hormones and energy homoeostasis, in addition to alterations in nutrient metabolism and subjective appetite. To maintain weight loss, individuals must adhere to behaviours that counteract physiological adaptations and other factors favouring weight regain. It is difficult to overcome physiology with behaviour. Weight loss medications and surgery change the physiology of body weight regulation and are the best chance for long-term success. An increased understanding of the physiology of weight loss and regain will underpin the development of future strategies to support overweight and obese individuals in their efforts to achieve and maintain weight loss. PMID:25896063

  19. bZIP transcription factor SmJLB1 regulates autophagy-related genes Smatg8 and Smatg4 and is required for fruiting-body development and vegetative growth in Sordaria macrospora.

    PubMed

    Voigt, Oliver; Herzog, Britta; Jakobshagen, Antonia; Pöggeler, Stefanie

    2013-12-01

    Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Sensing hypoxia: physiology, genetics and epigenetics

    PubMed Central

    Prabhakar, Nanduri R

    2013-01-01

    The carotid body is a sensory organ for detecting arterial blood O2 levels and reflexly mediates systemic cardiac, vascular and respiratory responses to hypoxia. This article presents a brief review of the roles of gaseous messengers in the sensory transduction at the carotid body, genetic and epigenetic influences on hypoxic sensing and the role of the carotid body chemoreflex in cardiorespiratory diseases. Type I (also called glomus) cells, the site of O2 sensing in the carotid body, express haem oxygenase-2 and cystathionine-γ-lyase, the enzymes which catalyse the generation of CO and H2S, respectively. Physiological studies have shown that CO is an inhibitory gas messenger, which contributes to the low sensory activity during normoxia, whereas H2S is excitatory and mediates sensory stimulation by hypoxia. Hypoxia-evoked H2S generation in the carotid body requires the interaction of cystathionine-γ-lyase with haem oxygenase-2, which generates CO. Hypoxia-inducible factors 1 and 2 constitute important components of the genetic make-up in the carotid body, which influence hypoxic sensing by regulating the intracellular redox state via transcriptional regulation of pro- and antioxidant enzymes. Recent studies suggest that developmental programming of the carotid body response to hypoxia involves epigenetic changes, e.g. DNA methylation of genes encoding redox-regulating enzymes. Emerging evidence implicates heightened carotid body chemoreflex in the progression of autonomic morbidities associated with cardiorespiratory diseases, such as sleep-disordered breathing with apnoea, congestive heart failure and essential hypertension. PMID:23459758

  1. Factors associated with psychological distress in women with breast cancer-related lymphoedema.

    PubMed

    Alcorso, Jessica; Sherman, Kerry A

    2016-07-01

    Previous research has shown that lymphoedema impacts negatively on an individual, including psychological distress and body image disturbance, particularly for younger women. This study identified psychological factors associated with distress in women with breast cancer-related lymphoedema and determined whether age moderated the specific relationship between body image disturbance and distress. Australian women (n = 166) diagnosed with breast cancer-related lymphoedema were recruited through a community-based breast cancer organisation and lymphoedema treatment clinics. Participants completed an online survey assessing lymphoedema-related cognitions (personal control, perceived treatment effectiveness, and consequences of lymphoedema), perceived ability to self-regulate lymphoedema-related negative affect, body image disturbance, psychological distress (depression, anxiety and stress), and demographic/medical information. Beliefs about the consequences, perceived effectiveness of treatment and controllability of lymphoedema, perceived ability to self-regulate negative affect, body image disturbance, and number of lymphoedema symptoms were correlated with depression, anxiety, and stress scores. Multivariate regression analyses indicated that body image disturbance was significantly associated with depression, anxiety, and stress, and perceived treatment effectiveness was associated with stress. Age was a significant moderator of the relationship between body image disturbance and depression and anxiety, with older women with greater body image disturbance more distressed. Health professionals need to be aware that women diagnosed with lymphoedema are at risk of experiencing psychological distress, particularly arising from body image disturbance and beliefs that treatment cannot control lymphoedema. Furthermore, older women may be at an increased risk of anxiety and depression arising from body image disturbance. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Effects of the comprehensive cardiac rehabilitation program on psychological factors and quality of life among coronary heart disease patients.

    PubMed

    Intarakamhang, Patrawut; Intarakamhang, Ungsinun

    2012-12-24

    The Comprehensive Lifestyle Intervention, which integrates psychological and educational intervention, is a program to improve self-efficacy, self-regulation, self-care, body mass index and quality of life of the patients with coronary heart disease during early stages following hospitalization. The purpose of this study was to investigate the effects of the Comprehensive Cardiac Rehabilitation Program affecting psychological factors including self-efficacy, self-regulation, self-care, quality of life (QoL), and body mass index (BMI). This study was a quasi-experimental research with a repeated one group design. Eighty patients with coronary artery disease were recruited from either the Medicine or Surgical Ward at the Phramongkutklao Hospital where the patients joined the Comprehensive Cardiac Rehabilitation Program, which included attending exercising practice and receiving face-to-face counseling while being admitted to the hospital. Telephone counseling was thereafter performed one week after being discharged from the hospital, followed by undergoing individual or group counseling at the Cardiac Rehabilitation Clinic the following week. The follow-up period was performed within six weeks after hospitalization. Data was collected on two occasions before discharging from the hospital (pretest) and six weeks after (post-test) by using the self-efficacy, self-regulation, and self-care questionnaires, as well as the Short Form(SF) -36 (Thai version). The results indicated that by six weeks, 50%, 58.80%, 46.20%, and 72.50% of patients, respectively, had experienced increases with self-efficacy, self-regulation, self-care, and quality of life scores, while 12.50% of patients had decreased their body mass index in comparison with the pretest score. From the paired t-test, the self-efficacy, self-regulation and quality of life scores were statistically significant, having increased to the p<0.01 level; self-care was statistically significant, having increased to the p<0.05 level along with body mass index, which was statistically significant having experienced a decrease to the p<0.01 level.

  3. Behavioural laterality as a factor in emotional regulation.

    PubMed

    Rempala, Daniel M

    2014-01-01

    Individuals who perform a variety of tasks using one side of their bodies (i.e., high-dominance people) are thought to differ from individuals who perform a variety of tasks with both sides of their body (i.e., low-dominance people) in several neurological and cognitive characteristics. We examined whether behavioural laterality predicted the efficacy of different emotional regulation strategies. Specifically, we thought that behavioural laterality would influence verbal strategies (associated with left hemisphere activation) when regulating anxiety (associated with right hemisphere activation). In three studies participants presented in front of small audiences. Behavioural laterality (as measured by a modified handedness inventory) positively correlated with presentation anxiety, such that "low-dominance" participants reported less anxiety than "high-dominance" participants, but only when using cognitive reappraisal (a verbal strategy), not attention deployment or response modulation (behavioural strategies). These results provide preliminary evidence that individual differences in behavioural laterality mediate the efficacy of certain emotional regulation strategies.

  4. The role of PDF neurons in setting the preferred temperature before dawn in Drosophila.

    PubMed

    Tang, Xin; Roessingh, Sanne; Hayley, Sean E; Chu, Michelle L; Tanaka, Nobuaki K; Wolfgang, Werner; Song, Seongho; Stanewsky, Ralf; Hamada, Fumika N

    2017-05-02

    Animals have sophisticated homeostatic controls. While mammalian body temperature fluctuates throughout the day, small ectotherms, such as Drosophila achieve a body temperature rhythm (BTR) through their preference of environmental temperature. Here, we demonstrate that pigment dispersing factor (PDF) neurons play an important role in setting preferred temperature before dawn. We show that small lateral ventral neurons (sLNvs), a subset of PDF neurons, activate the dorsal neurons 2 (DN2s), the main circadian clock cells that regulate temperature preference rhythm (TPR). The number of temporal contacts between sLNvs and DN2s peak before dawn. Our data suggest that the thermosensory anterior cells (ACs) likely contact sLNvs via serotonin signaling. Together, the ACs-sLNs-DN2s neural circuit regulates the proper setting of temperature preference before dawn. Given that sLNvs are important for sleep and that BTR and sleep have a close temporal relationship, our data highlight a possible neuronal interaction between body temperature and sleep regulation.

  5. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Jer-Yuan; Crawley, Suzanne; Chen, Michael

    Under homeostatic conditions, animals use well-defined hypothalamic neural circuits to help maintain stable body weight, by integrating metabolic and hormonal signals from the periphery to balance food consumption and energy expenditure1,2. In stressed or disease conditions, however, animals use alternative neuronal pathways to adapt to the metabolic challenges of altered energy demand3. Recent studies have identified brain areas outside the hypothalamus that are activated under these ‘non-homeostatic’ conditions4,5,6, but the molecular nature of the peripheral signals and brain-localized receptors that activate these circuits remains elusive. Here we identify glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as a brainstem-restricted receptormore » for growth and differentiation factor 15 (GDF15). GDF15 regulates food intake, energy expenditure and body weight in response to metabolic and toxin-induced stresses; we show that Gfral knockout mice are hyperphagic under stressed conditions and are resistant to chemotherapy-induced anorexia and body weight loss. GDF15 activates GFRAL-expressing neurons localized exclusively in the area postrema and nucleus tractus solitarius of the mouse brainstem. It then triggers the activation of neurons localized within the parabrachial nucleus and central amygdala, which constitute part of the ‘emergency circuit’ that shapes feeding responses to stressful conditions7. GDF15 levels increase in response to tissue stress and injury, and elevated levels are associated with body weight loss in numerous chronic human diseases8,9. By isolating GFRAL as the receptor for GDF15-induced anorexia and weight loss, we identify a mechanistic basis for the non-homeostatic regulation of neural circuitry by a peripheral signal associated with tissue damage and stress. These findings provide opportunities to develop therapeutic agents for the treatment of disorders with altered energy demand.« less

  6. Increased Body Weight Reduces Voluntary Movement to Maintain Energy Expenditure of Rats Exposed to Increases in Gravity

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Moran, M. M.; Stein, T. P.; Sin, Sidney (Technical Monitor)

    2001-01-01

    With the increase in obesity related diseases there is heightened interest in mechanisms regulating body weight. To assess the influence of increases in body weight on energy expenditure and intake in rats we employed variable levels of gravity. Our approach afforded the means to measure interactions of energy expenditure and intake in response to increases in body weight (body mass x gravity level). We found a dose relationship between rapid elevation of body weight and reduction of voluntary movement, such that the energy requirements for activity are unchanged, and total energy expenditure and intake maintained. Reduction of movement appears to be a response to increased body weight, rather than a contributing factor, suggesting a new regulatory pathway.

  7. Growth Hormone and Reproduction: A Review of Endocrine and Autocrine/Paracrine Interactions

    PubMed Central

    Hull, Kerry L.; Harvey, Steve

    2014-01-01

    The somatotropic axis, consisting of growth hormone (GH), hepatic insulin-like growth factor I (IGF-I), and assorted releasing factors, regulates growth and body composition. Axiomatically, since optimal body composition enhances reproductive function, general somatic actions of GH modulate reproductive function. A growing body of evidence supports the hypothesis that GH also modulates reproduction directly, exerting both gonadotropin-dependent and gonadotropin-independent actions in both males and females. Moreover, recent studies indicate GH produced within reproductive tissues differs from pituitary GH in terms of secretion and action. Accordingly, GH is increasingly used as a fertility adjunct in males and females, both humans and nonhumans. This review reconsiders reproductive actions of GH in vertebrates in respect to these new conceptual developments. PMID:25580121

  8. Endogenous TRIM5α Function Is Regulated by SUMOylation and Nuclear Sequestration for Efficient Innate Sensing in Dendritic Cells

    PubMed Central

    Portilho, Débora M.; Fernandez, Juliette; Ringeard, Mathieu; Machado, Anthony K.; Boulay, Aude; Mayer, Martha; Müller-Trutwin, Michaela; Beignon, Anne-Sophie; Kirchhoff, Frank; Nisole, Sébastien; Arhel, Nathalie J.

    2015-01-01

    Summary During retroviral infection, viral capsids are subject to restriction by the cellular factor TRIM5α. Here, we show that dendritic cells (DCs) derived from human and non-human primate species lack efficient TRIM5α-mediated retroviral restriction. In DCs, endogenous TRIM5α accumulates in nuclear bodies (NB) that partly co-localize with Cajal bodies in a SUMOylation-dependent manner. Nuclear sequestration of TRIM5α allowed potent induction of type I interferon (IFN) responses during infection, mediated by sensing of reverse transcribed DNA by cGAS. Overexpression of TRIM5α or treatment with the SUMOylation inhibitor ginkgolic acid (GA) resulted in enforced cytoplasmic TRIM5α expression and restored efficient viral restriction but abrogated type I IFN production following infection. Our results suggest that there is an evolutionary trade-off specific to DCs in which restriction is minimized to maximize sensing. TRIM5α regulation via SUMOylation-dependent nuclear sequestration adds to our understanding of how restriction factors are regulated. PMID:26748714

  9. Long-term regulation of carotid body function: acclimatization and adaptation--invited article.

    PubMed

    Prabhakar, N R; Peng, Y-J; Kumar, G K; Nanduri, J; Di Giulio, C; Lahiri, Sukhamay

    2009-01-01

    Physiological responses to hypoxia either continuous (CH) or intermittent (IH) depend on the O(2)-sensing ability of the peripheral arterial chemoreceptors, especially the carotid bodies, and the ensuing reflexes play important roles in maintaining homeostasis. The purpose of this article is to summarize the effects of CH and IH on carotid body function and the underlying mechanisms. CH increases baseline carotid body activity and sensitizes the response to acute hypoxia. These effects are associated with hyperplasia of glomus cells and neovascularization. Enhanced hypoxic sensitivity is due to alterations in ion current densities as well as changes in neurotransmitter dynamics and recruitment of additional neuromodulators (endothelin-1, ET-1) in glomus cells. Morphological alterations are in part due to up-regulation of growth factors (e.g. VEGF). Hypoxia-inducible factor-1 (HIF-1), a transcriptional activator might underlie the remodeling of carotid body structure and function by CH. Chronic IH, on the other hand, is associated with recurrent apneas in adults and premature infants. Two major effects of chronic IH on the adult carotid body are sensitization of the hypoxic sensory response and long-lasting increase in baseline activity i.e., sensory long-term facilitation (LTF) which involve reactive oxygen species (ROS) and HIF-1. In neonates, chronic IH leads to sensitization of the hypoxic response but does not induce sensory LTF. Chronic IH-induced sensitization of the carotid body response to hypoxia increases the likelihood of unstable breathing perpetuating in more number of apneas, whereas sensory LTF may contribute to increased sympathetic tone and systemic hypertension associated with recurrent apneas.

  10. Drosophila DH31 Neuropeptide and PDF Receptor Regulate Night-Onset Temperature Preference

    PubMed Central

    Goda, Tadahiro; Tang, Xin; Umezaki, Yujiro; Chu, Michelle L.

    2016-01-01

    Body temperature exhibits rhythmic fluctuations over a 24 h period (Refinetti and Menaker, 1992) and decreases during the night, which is associated with sleep initiation (Gilbert et al., 2004; Kräuchi, 2007a,b). However, the underlying mechanism of this temperature decrease is largely unknown. We have previously shown that Drosophila exhibit a daily temperature preference rhythm (TPR), in which their preferred temperatures increase during the daytime and then decrease at the transition from day to night (night-onset) (Kaneko et al., 2012). Because Drosophila are small ectotherms, their body temperature is very close to that of the ambient temperature (Stevenson, 1985), suggesting that their TPR generates their body temperature rhythm. Here, we demonstrate that the neuropeptide diuretic hormone 31 (DH31) and pigment-dispersing factor receptor (PDFR) contribute to regulate the preferred temperature decrease at night-onset. We show that PDFR and tethered-DH31 expression in dorsal neurons 2 (DN2s) restore the preferred temperature decrease at night-onset, suggesting that DH31 acts on PDFR in DN2s. Notably, we previously showed that the molecular clock in DN2s is important for TPR. Although PDF (another ligand of PDFR) is a critical factor for locomotor activity rhythms, Pdf mutants exhibit normal preferred temperature decreases at night-onset. This suggests that DH31-PDFR signaling specifically regulates a preferred temperature decrease at night-onset. Thus, we propose that night-onset TPR and locomotor activity rhythms are differentially controlled not only by clock neurons but also by neuropeptide signaling in the brain. SIGNIFICANCE STATEMENT Body temperature rhythm (BTR) is fundamental for the maintenance of functions essential for homeostasis, such as generating metabolic energy and sleep. One major unsolved question is how body temperature decreases dramatically during the night. Previously, we demonstrated that a BTR-like mechanism, referred to as temperature preference rhythm (TPR), exists in Drosophila. Here, we demonstrate that the diuretic hormone 31 (DH31) neuropeptide and pigment-dispersing factor receptor (PDFR) regulate preferred temperature decreases at night-onset via dorsal neurons 2. This is the first in vivo evidence that DH31 could function as a ligand of PDFR. Although both DH31 and PDF are ligands of PDFR, we show that DH31 regulates night-onset TPR, but PDF does not, suggesting that night-onset TPR and locomotor activity rhythms are controlled by different neuropeptides via different clock cells. PMID:27852781

  11. Drosophila DH31 Neuropeptide and PDF Receptor Regulate Night-Onset Temperature Preference.

    PubMed

    Goda, Tadahiro; Tang, Xin; Umezaki, Yujiro; Chu, Michelle L; Kunst, Michael; Nitabach, Michael N; Hamada, Fumika N

    2016-11-16

    Body temperature exhibits rhythmic fluctuations over a 24 h period (Refinetti and Menaker, 1992) and decreases during the night, which is associated with sleep initiation (Gilbert et al., 2004; Kräuchi, 2007a,b). However, the underlying mechanism of this temperature decrease is largely unknown. We have previously shown that Drosophila exhibit a daily temperature preference rhythm (TPR), in which their preferred temperatures increase during the daytime and then decrease at the transition from day to night (night-onset) (Kaneko et al., 2012). Because Drosophila are small ectotherms, their body temperature is very close to that of the ambient temperature (Stevenson, 1985), suggesting that their TPR generates their body temperature rhythm. Here, we demonstrate that the neuropeptide diuretic hormone 31 (DH31) and pigment-dispersing factor receptor (PDFR) contribute to regulate the preferred temperature decrease at night-onset. We show that PDFR and tethered-DH31 expression in dorsal neurons 2 (DN2s) restore the preferred temperature decrease at night-onset, suggesting that DH31 acts on PDFR in DN2s. Notably, we previously showed that the molecular clock in DN2s is important for TPR. Although PDF (another ligand of PDFR) is a critical factor for locomotor activity rhythms, Pdf mutants exhibit normal preferred temperature decreases at night-onset. This suggests that DH31-PDFR signaling specifically regulates a preferred temperature decrease at night-onset. Thus, we propose that night-onset TPR and locomotor activity rhythms are differentially controlled not only by clock neurons but also by neuropeptide signaling in the brain. Body temperature rhythm (BTR) is fundamental for the maintenance of functions essential for homeostasis, such as generating metabolic energy and sleep. One major unsolved question is how body temperature decreases dramatically during the night. Previously, we demonstrated that a BTR-like mechanism, referred to as temperature preference rhythm (TPR), exists in Drosophila Here, we demonstrate that the diuretic hormone 31 (DH31) neuropeptide and pigment-dispersing factor receptor (PDFR) regulate preferred temperature decreases at night-onset via dorsal neurons 2. This is the first in vivo evidence that DH31 could function as a ligand of PDFR. Although both DH31 and PDF are ligands of PDFR, we show that DH31 regulates night-onset TPR, but PDF does not, suggesting that night-onset TPR and locomotor activity rhythms are controlled by different neuropeptides via different clock cells. Copyright © 2016 the authors 0270-6474/16/3611739-16$15.00/0.

  12. Profiling ethanol-targeted transcription factors in human carcinoma cell-derived embryoid bodies.

    PubMed

    Mandal, Chanchal; Halder, Debasish; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-15

    Fetal alcohol spectrum disorder is a collective term that represents fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not yet understood. Few insights have been gained from genetic and epigenetic studies of fetal alcohol spectrum disorder. Our aim was to profile the important molecular regulators of ethanol-related alterations of the genome. For this purpose, we have analyzed the gene expression pattern of human carcinoma cell-derived embryoid bodies in the absence or presence of ethanol. A cDNA microarray analysis was used to profile mRNA expression in embryoid bodies at day 7 with or without ethanol treatment. A total of 493 differentially expressed genes were identified in response to 50 mM ethanol exposure. Of these, 111 genes were up-regulated, and 382 were down-regulated. Gene ontology term enrichment analysis revealed that these genes are involved in important biological processes: neurological system processes, cognition, behavior, sensory perception of smell, taste and chemical stimuli and synaptic transmission. Similarly, the enrichment of disease-related genes included relevant categories such as neurological diseases, developmental disorders, skeletal and muscular disorders, and connective tissue disorders. Furthermore, we have identified a group of 26 genes that encode transcription factors. We validated the relative gene expression of several transcription factors using quantitative real time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanisms underlying the pathology of alcohol-mediated anomalies and facilitates further research. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Insulin-like growth factor-1 (IGF-1) - structure and the role in the human body].

    PubMed

    Filus, Alicja; Zdrojewicz, Zygmunt

    2015-01-01

    In the recent years, managed to broadly explore the structure and role of insulin-like growth factors type 1 and 2 (IGF1 I 2). They belong to the structure of polypeptide hormones homologous to proinsulin. They are characterized by a wide range of activities. IGF-1 is a key mediator of most tissue effects of growth hormone (GH). In addition to effects on growth processes of the body, is also an important factor for cell homeostasis, is subject to both endocrine and tissue-specific auto- and paracrine regulation. In this paper, the current, general knowledge on the structure, function and mechanism of biological effects of IGF-1 in the human body was presented. Attention was also drawn to the directions of use of IGf-1 in the treatment of other diseases than the diseases of the hypothalamic-pituitary and growth disorders in children. © Polish Society for Pediatric Endocrinology and Diabetology.

  14. Hormonal control of aging in rodents: The somatotropic axis

    PubMed Central

    Brown-Borg, Holly M.

    2015-01-01

    There is a growing body of literature focusing on the somatotropic axis and regulation of aging and longevity. Many of these reports derive data from multiple endocrine mutants, those that exhibit both elevated growth hormone (GH) and insulin-like growth factor I (IGF-1) or deficiencies in one or both of these hormones. In general, both spontaneous and genetically engineered GH and IGF-1 deficiencies have lead to small body size, delayed development of sexual maturation and age-related pathology, and life span extension. In contrast, characteristics of high circulating GH included larger body sizes, early puberty and reproductive senescence, increased cancer incidence and reduced life span when compared to wild-type animals with normal plasma hormone concentrations. This information, along with that found in multiple other species, implicates this anabolic pathway as the major regulator of longevity in animals. PMID:18674587

  15. Association analyses of 249,796 individuals reveal eighteen new loci associated with body mass index

    PubMed Central

    Speliotes, Elizabeth K.; Willer, Cristen J.; Berndt, Sonja I.; Monda, Keri L.; Thorleifsson, Gudmar; Jackson, Anne U.; Allen, Hana Lango; Lindgren, Cecilia M.; Luan, Jian’an; Mägi, Reedik; Randall, Joshua C.; Vedantam, Sailaja; Winkler, Thomas W.; Qi, Lu; Workalemahu, Tsegaselassie; Heid, Iris M.; Steinthorsdottir, Valgerdur; Stringham, Heather M.; Weedon, Michael N.; Wheeler, Eleanor; Wood, Andrew R.; Ferreira, Teresa; Weyant, Robert J.; Segré, Ayellet V.; Estrada, Karol; Liang, Liming; Nemesh, James; Park, Ju-Hyun; Gustafsson, Stefan; Kilpeläinen, Tuomas O.; Yang, Jian; Bouatia-Naji, Nabila; Esko, Tõnu; Feitosa, Mary F.; Kutalik, Zoltán; Mangino, Massimo; Raychaudhuri, Soumya; Scherag, Andre; Smith, Albert Vernon; Welch, Ryan; Zhao, Jing Hua; Aben, Katja K.; Absher, Devin M.; Amin, Najaf; Dixon, Anna L.; Fisher, Eva; Glazer, Nicole L.; Goddard, Michael E.; Heard-Costa, Nancy L.; Hoesel, Volker; Hottenga, Jouke-Jan; Johansson, Åsa; Johnson, Toby; Ketkar, Shamika; Lamina, Claudia; Li, Shengxu; Moffatt, Miriam F.; Myers, Richard H.; Narisu, Narisu; Perry, John R.B.; Peters, Marjolein J.; Preuss, Michael; Ripatti, Samuli; Rivadeneira, Fernando; Sandholt, Camilla; Scott, Laura J.; Timpson, Nicholas J.; Tyrer, Jonathan P.; van Wingerden, Sophie; Watanabe, Richard M.; White, Charles C.; Wiklund, Fredrik; Barlassina, Christina; Chasman, Daniel I.; Cooper, Matthew N.; Jansson, John-Olov; Lawrence, Robert W.; Pellikka, Niina; Prokopenko, Inga; Shi, Jianxin; Thiering, Elisabeth; Alavere, Helene; Alibrandi, Maria T. S.; Almgren, Peter; Arnold, Alice M.; Aspelund, Thor; Atwood, Larry D.; Balkau, Beverley; Balmforth, Anthony J.; Bennett, Amanda J.; Ben-Shlomo, Yoav; Bergman, Richard N.; Bergmann, Sven; Biebermann, Heike; Blakemore, Alexandra I.F.; Boes, Tanja; Bonnycastle, Lori L.; Bornstein, Stefan R.; Brown, Morris J.; Buchanan, Thomas A.; Busonero, Fabio; Campbell, Harry; Cappuccio, Francesco P.; Cavalcanti-Proença, Christine; Chen, Yii-Der Ida; Chen, Chih-Mei; Chines, Peter S.; Clarke, Robert; Coin, Lachlan; Connell, John; Day, Ian N.M.; den Heijer, Martin; Duan, Jubao; Ebrahim, Shah; Elliott, Paul; Elosua, Roberto; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Facheris, Maurizio F.; Felix, Stephan B.; Fischer-Posovszky, Pamela; Folsom, Aaron R.; Friedrich, Nele; Freimer, Nelson B.; Fu, Mao; Gaget, Stefan; Gejman, Pablo V.; Geus, Eco J.C.; Gieger, Christian; Gjesing, Anette P.; Goel, Anuj; Goyette, Philippe; Grallert, Harald; Gräßler, Jürgen; Greenawalt, Danielle M.; Groves, Christopher J.; Gudnason, Vilmundur; Guiducci, Candace; Hartikainen, Anna-Liisa; Hassanali, Neelam; Hall, Alistair S.; Havulinna, Aki S.; Hayward, Caroline; Heath, Andrew C.; Hengstenberg, Christian; Hicks, Andrew A.; Hinney, Anke; Hofman, Albert; Homuth, Georg; Hui, Jennie; Igl, Wilmar; Iribarren, Carlos; Isomaa, Bo; Jacobs, Kevin B.; Jarick, Ivonne; Jewell, Elizabeth; John, Ulrich; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Kaakinen, Marika; Kajantie, Eero; Kaplan, Lee M.; Kathiresan, Sekar; Kettunen, Johannes; Kinnunen, Leena; Knowles, Joshua W.; Kolcic, Ivana; König, Inke R.; Koskinen, Seppo; Kovacs, Peter; Kuusisto, Johanna; Kraft, Peter; Kvaløy, Kirsti; Laitinen, Jaana; Lantieri, Olivier; Lanzani, Chiara; Launer, Lenore J.; Lecoeur, Cecile; Lehtimäki, Terho; Lettre, Guillaume; Liu, Jianjun; Lokki, Marja-Liisa; Lorentzon, Mattias; Luben, Robert N.; Ludwig, Barbara; Manunta, Paolo; Marek, Diana; Marre, Michel; Martin, Nicholas G.; McArdle, Wendy L.; McCarthy, Anne; McKnight, Barbara; Meitinger, Thomas; Melander, Olle; Meyre, David; Midthjell, Kristian; Montgomery, Grant W.; Morken, Mario A.; Morris, Andrew P.; Mulic, Rosanda; Ngwa, Julius S.; Nelis, Mari; Neville, Matt J.; Nyholt, Dale R.; O’Donnell, Christopher J.; O’Rahilly, Stephen; Ong, Ken K.; Oostra, Ben; Paré, Guillaume; Parker, Alex N.; Perola, Markus; Pichler, Irene; Pietiläinen, Kirsi H.; Platou, Carl G.P.; Polasek, Ozren; Pouta, Anneli; Rafelt, Suzanne; Raitakari, Olli; Rayner, Nigel W.; Ridderstråle, Martin; Rief, Winfried; Ruokonen, Aimo; Robertson, Neil R.; Rzehak, Peter; Salomaa, Veikko; Sanders, Alan R.; Sandhu, Manjinder S.; Sanna, Serena; Saramies, Jouko; Savolainen, Markku J.; Scherag, Susann; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Silander, Kaisa; Sinisalo, Juha; Siscovick, David S.; Smit, Jan H.; Soranzo, Nicole; Sovio, Ulla; Stephens, Jonathan; Surakka, Ida; Swift, Amy J.; Tammesoo, Mari-Liis; Tardif, Jean-Claude; Teder-Laving, Maris; Teslovich, Tanya M.; Thompson, John R.; Thomson, Brian; Tönjes, Anke; Tuomi, Tiinamaija; van Meurs, Joyce B.J.; van Ommen, Gert-Jan; Vatin, Vincent; Viikari, Jorma; Visvikis-Siest, Sophie; Vitart, Veronique; Vogel, Carla I. G.; Voight, Benjamin F.; Waite, Lindsay L.; Wallaschofski, Henri; Walters, G. Bragi; Widen, Elisabeth; Wiegand, Susanna; Wild, Sarah H.; Willemsen, Gonneke; Witte, Daniel R.; Witteman, Jacqueline C.; Xu, Jianfeng; Zhang, Qunyuan; Zgaga, Lina; Ziegler, Andreas; Zitting, Paavo; Beilby, John P.; Farooqi, I. Sadaf; Hebebrand, Johannes; Huikuri, Heikki V.; James, Alan L.; Kähönen, Mika; Levinson, Douglas F.; Macciardi, Fabio; Nieminen, Markku S.; Ohlsson, Claes; Palmer, Lyle J.; Ridker, Paul M.; Stumvoll, Michael; Beckmann, Jacques S.; Boeing, Heiner; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Collins, Francis S.; Cupples, L. Adrienne; Smith, George Davey; Erdmann, Jeanette; Froguel, Philippe; Grönberg, Henrik; Gyllensten, Ulf; Hall, Per; Hansen, Torben; Harris, Tamara B.; Hattersley, Andrew T.; Hayes, Richard B.; Heinrich, Joachim; Hu, Frank B.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Kaprio, Jaakko; Karpe, Fredrik; Khaw, Kay-Tee; Kiemeney, Lambertus A.; Krude, Heiko; Laakso, Markku; Lawlor, Debbie A.; Metspalu, Andres; Munroe, Patricia B.; Ouwehand, Willem H.; Pedersen, Oluf; Penninx, Brenda W.; Peters, Annette; Pramstaller, Peter P.; Quertermous, Thomas; Reinehr, Thomas; Rissanen, Aila; Rudan, Igor; Samani, Nilesh J.; Schwarz, Peter E.H.; Shuldiner, Alan R.; Spector, Timothy D.; Tuomilehto, Jaakko; Uda, Manuela; Uitterlinden, André; Valle, Timo T.; Wabitsch, Martin; Waeber, Gérard; Wareham, Nicholas J.; Watkins, Hugh; Wilson, James F.; Wright, Alan F.; Zillikens, M. Carola; Chatterjee, Nilanjan; McCarroll, Steven A.; Purcell, Shaun; Schadt, Eric E.; Visscher, Peter M.; Assimes, Themistocles L.; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Groop, Leif C.; Haritunians, Talin; Hunter, David J.; Kaplan, Robert C.; Mohlke, Karen L.; O’Connell, Jeffrey R.; Peltonen, Leena; Schlessinger, David; Strachan, David P.; van Duijn, Cornelia M.; Wichmann, H.-Erich; Frayling, Timothy M.; Thorsteinsdottir, Unnur; Abecasis, Gonçalo R.; Barroso, Inês; Boehnke, Michael; Stefansson, Kari; North, Kari E.; McCarthy, Mark I.; Hirschhorn, Joel N.; Ingelsson, Erik; Loos, Ruth J.F.

    2010-01-01

    Obesity is globally prevalent and highly heritable, but the underlying genetic factors remain largely elusive. To identify genetic loci for obesity-susceptibility, we examined associations between body mass index (BMI) and ~2.8 million SNPs in up to 123,865 individuals, with targeted follow-up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity-susceptibility loci and identified 18 new loci associated with BMI (P<5×10−8), one of which includes a copy number variant near GPRC5B. Some loci (MC4R, POMC, SH2B1, BDNF) map near key hypothalamic regulators of energy balance, and one is near GIPR, an incretin receptor. Furthermore, genes in other newly-associated loci may provide novel insights into human body weight regulation. PMID:20935630

  16. Muscle Mass and Weight Gain Nutritional Supplements

    NASA Astrophysics Data System (ADS)

    Campbell, Bill

    There are numerous sports supplements available that claim to increase lean body mass. However, for these sports supplements to exert any favorable changes in lean body mass, they must influence those factors regulating skeletal muscle hypertrophy (i.e., satellite cell activity, gene transcription, protein translation). If a given sports supplement does favorably influence one of these regulatory factors, the result is a positive net protein balance (in which protein synthesis exceeds protein breakdown). Sports supplement categories aimed at eliciting a positive net protein balance include anabolic hormone enhancers, nutrient timing pre- and postexercise workout supplements, anticatabolic supplements, and nitric oxide boosters. Of all the sports supplements available, only a few have been subject to multiple clinical trials with repeated favorable outcomes relative to increasing lean body mass. This chapter focuses on these supplements and others that have a sound theoretical rationale in relation to increasing lean body mass.

  17. Water as an essential nutrient: the physiological basis of hydration.

    PubMed

    Jéquier, E; Constant, F

    2010-02-01

    How much water we really need depends on water functions and the mechanisms of daily water balance regulation. The aim of this review is to describe the physiology of water balance and consequently to highlight the new recommendations with regard to water requirements. Water has numerous roles in the human body. It acts as a building material; as a solvent, reaction medium and reactant; as a carrier for nutrients and waste products; in thermoregulation; and as a lubricant and shock absorber. The regulation of water balance is very precise, as a loss of 1% of body water is usually compensated within 24 h. Both water intake and water losses are controlled to reach water balance. Minute changes in plasma osmolarity are the main factors that trigger these homeostatic mechanisms. Healthy adults regulate water balance with precision, but young infants and elderly people are at greater risk of dehydration. Dehydration can affect consciousness and can induce speech incoherence, extremity weakness, hypotonia of ocular globes, orthostatic hypotension and tachycardia. Human water requirements are not based on a minimal intake because it might lead to a water deficit due to numerous factors that modify water needs (climate, physical activity, diet and so on). Water needs are based on experimentally derived intake levels that are expected to meet the nutritional adequacy of a healthy population. The regulation of water balance is essential for the maintenance of health and life. On an average, a sedentary adult should drink 1.5 l of water per day, as water is the only liquid nutrient that is really essential for body hydration.

  18. Lipoprotein lipase in hypothalamus is a key regulator of body weight gain and glucose homeostasis in mice.

    PubMed

    Laperrousaz, Elise; Moullé, Valentine S; Denis, Raphaël G; Kassis, Nadim; Berland, Chloé; Colsch, Benoit; Fioramonti, Xavier; Philippe, Erwann; Lacombe, Amélie; Vanacker, Charlotte; Butin, Noémie; Bruce, Kimberley D; Wang, Hong; Wang, Yongping; Gao, Yuanqing; Garcia-Caceres, Cristina; Prévot, Vincent; Tschöp, Matthias H; Eckel, Robert H; Le Stunff, Hervé; Luquet, Serge; Magnan, Christophe; Cruciani-Guglielmacci, Céline

    2017-07-01

    Regulation of energy balance involves the participation of many factors, including nutrients, among which are circulating lipids, acting as peripheral signals informing the central nervous system of the energy status of the organism. It has been shown that neuronal lipoprotein lipase (LPL) participates in the control of energy balance by hydrolysing lipid particles enriched in triacylglycerols. Here, we tested the hypothesis that LPL in the mediobasal hypothalamus (MBH), a well-known nucleus implicated in the regulation of metabolic homeostasis, could also contribute to the regulation of body weight and glucose homeostasis. We injected an adeno-associated virus (AAV) expressing Cre-green fluorescent protein into the MBH of Lpl-floxed mice (and wild-type mice) to specifically decrease LPL activity in the MBH. In parallel, we injected an AAV overexpressing Lpl into the MBH of wild-type mice. We then studied energy homeostasis and hypothalamic ceramide content. The partial deletion of Lpl in the MBH in mice led to an increase in body weight compared with controls (37.72 ± 0.7 g vs 28.46 ± 0.12, p < 0.001) associated with a decrease in locomotor activity. These mice developed hyperinsulinaemia and glucose intolerance. This phenotype also displayed reduced expression of Cers1 in the hypothalamus as well as decreased concentration of several C18 species of ceramides and a 3-fold decrease in total ceramide intensity. Conversely, overexpression of Lpl specifically in the MBH induced a decrease in body weight. Our study shows that LPL in the MBH is an important regulator of body weight and glucose homeostasis.

  19. Regulated expression of Brachyury(T), Nkx1.1 and Pax genes in embryoid bodies.

    PubMed

    Yamada, G; Kioussi, C; Schubert, F R; Eto, Y; Chowdhury, K; Pituello, F; Gruss, P

    1994-03-15

    Embryonic stem cells (ES) can be exploited to analyze in vitro mechanisms of cellular differentiation. We have utilized ES-derived embryoid body formation in an attempt to study cell types resulting from in vitro differentiation. To this end, a variety of molecular markers, preferably those which have been associated with regulatory events during mouse embryogenesis, was employed. Specifically, Brachyury (T), Pax-3 and Pax-6 genes as well as Nkx-1.1 were used. We could demonstrate that the expression of these genes in vitro was regulated by growth factors such as activin A or bFGF. Implications of these findings and the possible applications for identifying new genes are discussed.

  20. Connective tissue growth factor (CTGF) and cancer progression.

    PubMed

    Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang

    2008-11-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

  1. Protective effects of nuclear factor erythroid 2-related factor 2 on whole body heat stress-induced oxidative damage in the mouse testis.

    PubMed

    Li, Yansen; Huang, Yi; Piao, Yuanguo; Nagaoka, Kentaro; Watanabe, Gen; Taya, Kazuyoshi; Li, ChunMei

    2013-03-21

    Whole body heat stress had detrimental effect on male reproductive function. It's known that the nuclear factor erythroid 2-related factor 2 (Nrf2) activates expression of cytoprotective genes to enable cell adaptation to protect against oxidative stress. However, it's still unclear about the exactly effects of Nrf2 on the testis. Here, we investigate the protective effect of Nrf2 on whole body heat stress-induced oxidative damage in mouse testis. Male mice were exposed to the elevated ambient temperature (42°C) daily for 2 h. During the period of twelve consecutive days, mice were sacrificed on days 1, 2, 4, 8 and 12 immediately following heat exposure. Testes weight, enzymatic antioxidant activities and concentrations of malondialdehyde (MDA) and glutathione (GSH) in the testes were determined and immunohistochemical detection of Nrf2 protein and mRNA expression of Nrf2-regulated genes were analyzed to assess the status of Nrf2-antioxidant system. Heat-exposed mice presented significant increases in rectal, scrotal surface and body surface temperature. The concentrations of cortisol and testosterone in serum fluctuated with the number of exposed days. There were significant decrease in testes weight and relative testes weight on day 12 compared with those on other days, but significant increases in catalase (CAT) activity on day 1 and GSH level on day 4 compared with control group. The activities of total superoxide dismutase (T-SOD) and copper-zinc SOD (CuZn-SOD) increased significantly on days 8 and 12. Moreover, prominent nuclear accumulation of Nrf2 protein was observed in Leydig cells on day 2, accompanying with up-regulated mRNA levels of Nrf2-regulated genes such as Nrf2, heme oxygenase 1 (HO-1), γ-Glutamylcysteine synthetase (GCLC) and NAD (P) H: quinone oxidoreductase 1 (NQO1)) in heat-treated groups. These results suggest that Nrf2 displayed nuclear accumulation and protective activity in the process of heat treated-induced oxidative stress in mouse testes, indicating that Nrf2 might be a potential target for new drugs designed to protect germ cell and Leydig cell from oxidative stress.

  2. Eco-Material Selection for Auto Bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayyas, Ahmad T; Omar, Mohammed; Hayajneh, Mohammed T.

    In the last decades, majority of automakers started to include lightweight materials in their vehicles to meet hard environmental regulations and to improve fuel efficiency of their vehicles. As a result, eco-material selection for vehicles emerged as a new discipline under design for environment. This chapter will summarize methods of eco-material selections for automotive applications with more emphasis into auto-bodies. A set of metrics for eco-material selection that takes into account all economic, environmental and social factors will be developed using numerical and qualitative methods. These metrics cover products' environmental impact, functionality and manufacturability, in addition to the economic andmore » societal factors.« less

  3. Inflammation, Self-Regulation, and Health: An Immunologic Model of Self-Regulatory Failure.

    PubMed

    Shields, Grant S; Moons, Wesley G; Slavich, George M

    2017-07-01

    Self-regulation is a fundamental human process that refers to multiple complex methods by which individuals pursue goals in the face of distractions. Whereas superior self-regulation predicts better academic achievement, relationship quality, financial and career success, and lifespan health, poor self-regulation increases a person's risk for negative outcomes in each of these domains and can ultimately presage early mortality. Given its centrality to understanding the human condition, a large body of research has examined cognitive, emotional, and behavioral aspects of self-regulation. In contrast, relatively little attention has been paid to specific biologic processes that may underlie self-regulation. We address this latter issue in the present review by examining the growing body of research showing that components of the immune system involved in inflammation can alter neural, cognitive, and motivational processes that lead to impaired self-regulation and poor health. Based on these findings, we propose an integrated, multilevel model that describes how inflammation may cause widespread biobehavioral alterations that promote self-regulatory failure. This immunologic model of self-regulatory failure has implications for understanding how biological and behavioral factors interact to influence self-regulation. The model also suggests new ways of reducing disease risk and enhancing human potential by targeting inflammatory processes that affect self-regulation.

  4. Effect of puberty on body composition.

    PubMed

    Loomba-Albrecht, Lindsey A; Styne, Dennis M

    2009-02-01

    Here we examine the effect of puberty on components of human body composition, including adiposity (total body fat, percentage body fat and fat distribution), lean body mass and bone mineral content and density. New methods and longitudinal studies have expended our knowledge of these remarkable changes. Human differences in adiposity, fat free mass and bone mass reflect differences in endocrine status (particularly with respect to estrogens, androgens, growth hormone and IGF-1), genetic factors, ethnicity and the environment. During puberty, males gain greater amounts of fat free mass and skeletal mass, whereas females acquire significantly more fat mass. Both genders reach peak bone accretion during the pubertal years, though males develop a greater skeletal mass. Body proportions and fat distribution change during the pubertal years as well, with males assuming a more android body shape and females assuming a more gynecoid shape. Pubertal body composition may predict adult body composition and affects both pubertal timing and future health. Sexual dimorphism exists to a small degree at birth, but striking differences develop during the pubertal years. The development of this dimorphism in body composition is largely regulated by endocrine factors, with critical roles played by growth hormone and gonadal steroids. It is important for clinicians and researchers to know the normal changes in order to address pathologic findings in disease states.

  5. The role of PDF neurons in setting the preferred temperature before dawn in Drosophila

    PubMed Central

    Tang, Xin; Roessingh, Sanne; Hayley, Sean E; Chu, Michelle L; Tanaka, Nobuaki K; Wolfgang, Werner; Song, Seongho; Stanewsky, Ralf; Hamada, Fumika N

    2017-01-01

    Animals have sophisticated homeostatic controls. While mammalian body temperature fluctuates throughout the day, small ectotherms, such as Drosophila achieve a body temperature rhythm (BTR) through their preference of environmental temperature. Here, we demonstrate that pigment dispersing factor (PDF) neurons play an important role in setting preferred temperature before dawn. We show that small lateral ventral neurons (sLNvs), a subset of PDF neurons, activate the dorsal neurons 2 (DN2s), the main circadian clock cells that regulate temperature preference rhythm (TPR). The number of temporal contacts between sLNvs and DN2s peak before dawn. Our data suggest that the thermosensory anterior cells (ACs) likely contact sLNvs via serotonin signaling. Together, the ACs-sLNs-DN2s neural circuit regulates the proper setting of temperature preference before dawn. Given that sLNvs are important for sleep and that BTR and sleep have a close temporal relationship, our data highlight a possible neuronal interaction between body temperature and sleep regulation. DOI: http://dx.doi.org/10.7554/eLife.23206.001 PMID:28463109

  6. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation.

    PubMed

    Barzantny, Helena; Schröder, Jasmin; Strotmeier, Jasmin; Fredrich, Eugenie; Brune, Iris; Tauch, Andreas

    2012-06-15

    Lipophilic corynebacteria are involved in the generation of volatile odorous products in the process of human body odor formation by degrading skin lipids and specific odor precursors. Therefore, these bacteria represent appropriate model systems for the cosmetic industry to examine axillary malodor formation on the molecular level. To understand the transcriptional control of metabolic pathways involved in this process, the transcriptional regulatory network of the lipophilic axilla isolate Corynebacterium jeikeium K411 was reconstructed from the complete genome sequence. This bioinformatic approach detected a gene-regulatory repertoire of 83 candidate proteins, including 56 DNA-binding transcriptional regulators, nine two-component systems, nine sigma factors, and nine regulators with diverse physiological functions. Furthermore, a cross-genome comparison among selected corynebacterial species of the taxonomic cluster 3 revealed a common gene-regulatory repertoire of 44 transcriptional regulators, including the MarR-like regulator Jk0257, which is exclusively encoded in the genomes of this taxonomical subline. The current network reconstruction comprises 48 transcriptional regulators and 674 gene-regulatory interactions that were assigned to five interconnected functional modules. Most genes involved in lipid degradation are under the combined control of the global cAMP-sensing transcriptional regulator GlxR and the LuxR-family regulator RamA, probably reflecting the essential role of lipid degradation in C. jeikeium. This study provides the first genome-scale in silico analysis of the transcriptional regulation of metabolism in a lipophilic bacterium involved in the formation of human body odor. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Changes in autonomic nervous system activity, body weight, and percentage fat mass in the first year postpartum and factors regulating the return to pre-pregnancy weight.

    PubMed

    Izumi, Mie; Manabe, Emiko; Uematsu, Sayo; Watanabe, Ayako; Moritani, Toshio

    2016-10-27

    Many women become obese during pregnancy and the postpartum period. Weight gain and obesity in the general population are often attributed to abnormalities of autonomic nervous system (ANS) activity. The aim of this study was to clarify change in ANS activity, body weight, percentage fat mass (%FM), and body mass index (BMI) and the factors regulating the return to the pre-pregnancy weight in the first year postpartum. This study was conducted from 2012 to 2016 at the University Hospital of the Kyoto Prefectural University of Medicine and a nearby obstetrics and gynecology clinic in Japan. Body weight and %FM were measured in 51 women using a dual-frequency body composition measuring device. Heart rate variability and R-R spectral transformation were used as indicators of ANS activity. All parameters were calculated at three postpartum time points. Repeated measure analysis of variance was used for comparisons between measurement times. A multivariable Cox proportional hazards model was conducted to determine factors associated with the return to pre-pregnancy weight. Mean body weight, %FM, and BMI decreased significantly over time after delivery (P < 0.001, P < 0.001, P < 0.001). However, ANS activity did not differ among subjects in the three time points. 25.5 % of subjects had still not returned to their pre-pregnancy body weight by 150-270 days postpartum, and 19.6 % had not by 270-360 days postpartum. Normal-weight obesity (NWO; BMI of 18.5-25 kg/m 2 and %FM of ≥30 %) was observed in several subjects at each measurement. The results of analysis using a multivariable Cox proportional hazards model suggest that ANS activity had no significant correlation with the return to pre-pregnancy weight. The management of body weight and %FM after delivery is considered important. These findings suggest that ANS activity is not associated with the return to pre-pregnancy weight, albeit that sample size was small.

  8. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death

    PubMed Central

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J.; Cheng, Qiang (Shawn); D’Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M.; Gonzalez Guzman, Michael J.; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K.; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Ryan, Elizabeth P.; Colacci, Anna Maria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K.; Woodrick, Jordan; Scovassi, A.Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H.; Lowe, Leroy; Park, Hyun Ho

    2015-01-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145

  9. Leptin dysfunction and Alzheimer’s disease: evidence from cellular, animal, and human studies

    PubMed Central

    McGuire, Matthew J.; Ishii, Makoto

    2016-01-01

    There is accumulating evidence from epidemiological studies that changes in body weight are associated with Alzheimer’s disease (AD) from mid-life obesity increasing the risk of developing AD to weight loss occurring at the earliest stages of AD. Therefore, factors that regulate body weight are likely to influence the development and progression of AD. The adipocyte-derived hormone leptin has emerged as a major regulator of body weight mainly by activating hypothalamic neural circuits. Leptin also has several pleotropic effects including regulating cognitive function and having neuroprotective effects, suggesting a potential link between leptin and AD. Here, we will examine the relationship between leptin and AD by reviewing the recent evidence from cellular and animal models to human studies. We present a model where leptin has a bidirectional role in AD. Not only can alterations in leptin levels and function worsen cognitive decline and progression of AD pathology, but AD pathology, in of itself, can disrupt leptin signaling, which together would lead to a downward spiral of progressive neurodegeneration and worsening body weight and systemic metabolic deficits. Collectively, these studies serve as a framework to highlight the importance of understanding the molecular mechanisms underlying the body weight and systemic metabolic deficits in AD, which has the potential to open new avenues that may ultimately lead to novel therapeutic targets and diagnostic tools. PMID:26993509

  10. Internal thermotopography and shifts in general thermal balance in man under special heat transfer conditions

    NASA Technical Reports Server (NTRS)

    Gorodinskiy, S. M.; Gramenitskiy, P. M.; Kuznets, Y. I.; Ozerov, O. Y.; Yakovleva, E. V.; Groza, P.; Kozlovskiy, S.; Naremski, Y.

    1974-01-01

    Thermal regulation for astronauts working in pressure suits in open space provides for protection by a system of artificial heat removal and compensation to counteract possible changes in the heat regulating function of the human body that occur under the complex effects of space flight conditions. Most important of these factors are prolonged weightlessness, prolonged limitation of motor activity, and possible deviations of microclimatic environmental parameters.

  11. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system.

    PubMed

    Schéle, Erik; Grahnemo, Louise; Anesten, Fredrik; Hallén, Anna; Bäckhed, Fredrik; Jansson, John-Olov

    2013-10-01

    The gut microbiota contributes to fat mass and the susceptibility to obesity. However, the underlying mechanisms are not completely understood. To investigate whether the gut microbiota affects hypothalamic and brainstem body fat-regulating circuits, we compared gene expression of food intake-regulating neuropeptides between germ-free and conventionally raised (CONV-R) mice. We found that CONV-R mice had decreased expression of the antiobesity neuropeptide glucagon-like peptide-1 (GLP-1) precursor proglucagon (Gcg) in the brainstem. Moreover, in both the hypothalamus and the brainstem, CONV-R mice had decreased expression of the antiobesity neuropeptide brain-derived neurotrophic factor (Bdnf). CONV-R mice had reduced expression of the pro-obesity peptides neuropeptide-Y (Npy) and agouti-related protein (Agrp), and increased expression of the antiobesity peptides proopiomelanocortin (Pomc) and cocaine- and amphetamine-regulated transcript (Cart) in the hypothalamus. The latter changes in neuropeptide expression could be secondary to elevated fat mass in CONV-R mice. Leptin treatment caused less weight reduction and less suppression of orexigenic Npy and Agrp expression in CONV-R mice compared with germ-free mice. The hypothalamic expression of leptin resistance-associated suppressor of cytokine signaling 3 (Socs-3) was increased in CONV-R mice. In conclusion, the gut microbiota reduces the expression of 2 genes coding for body fat-suppressing neuropeptides, Gcg and Bdnf, an alteration that may contribute to fat mass induction by the gut microbiota. Moreover, the presence of body fat-inducing gut microbiota is associated with hypothalamic signs of Socs-3-mediated leptin resistance, which may be linked to failed compensatory body fat reduction.

  12. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB.

    PubMed

    Aya, Koichiro; Ueguchi-Tanaka, Miyako; Kondo, Maki; Hamada, Kazuki; Yano, Kentaro; Nishimura, Mikio; Matsuoka, Makoto

    2009-05-01

    Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we examined the physiological functions of GA during anther development through phenotypic analyses of rice (Oryza sativa) GA-deficient, GA-insensitive, and gamyb mutants. The mutants exhibited common defects in programmed cell death (PCD) of tapetal cells and formation of exine and Ubisch bodies. Microarray analysis using anther RNAs of these mutants revealed that rice GAMYB is involved in almost all instances of GA-regulated gene expression in anthers. Among the GA-regulated genes, we focused on two lipid metabolic genes, a cytochrome P450 hydroxylase CYP703A3 and beta-ketoacyl reductase, both of which might be involved in providing a substrate for exine and Ubisch body. GAMYB specifically interacted with GAMYB binding motifs in the promoter regions in vitro, and mutation of these motifs in promoter-beta-glucuronidase (GUS) transformants caused reduced GUS expression in anthers. Furthermore, a knockout mutant for CYP703A3 showed gamyb-like defects in exine and Ubisch body formation. Together, these results suggest that GA regulates exine formation and the PCD of tapetal cells and that direct activation of CYP703A3 by GAMYB is key to exine formation.

  13. Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.

    PubMed

    Lightfoot, J Timothy; DE Geus, Eco J C; Booth, Frank W; Bray, Molly S; DEN Hoed, Marcel; Kaprio, Jaakko; Kelly, Scott A; Pomp, Daniel; Saul, Michael C; Thomis, Martine A; Garland, Theodore; Bouchard, Claude

    2018-04-01

    Physical activity unquestionably maintains and improves health; however, physical activity levels globally are low and not rising despite all the resources devoted to this goal. Attention in both the research literature and the public policy domain has focused on social-behavioral factors; however, a growing body of literature suggests that biological determinants play a significant role in regulating physical activity levels. For instance, physical activity level, measured in various manners, has a genetic component in both humans and nonhuman animal models. This consensus article, developed as a result of an American College of Sports Medicine-sponsored round table, provides a brief review of the theoretical concepts and existing literature that supports a significant role of genetic and other biological factors in the regulation of physical activity. Future research on physical activity regulation should incorporate genetics and other biological determinants of physical activity instead of a sole reliance on social and other environmental determinants.

  14. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development

    PubMed Central

    2012-01-01

    Background During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the protection and dispersal of sexual spores. Fruiting bodies contain a number of cell types not found in vegetative mycelium, and these morphological differences are thought to be mediated by changes in gene expression. However, little is known about the spatial distribution of gene expression in fungal development. Here, we used laser microdissection (LM) and RNA-seq to determine gene expression patterns in young fruiting bodies (protoperithecia) and non-reproductive mycelia of the ascomycete Sordaria macrospora. Results Quantitative analysis showed major differences in the gene expression patterns between protoperithecia and total mycelium. Among the genes strongly up-regulated in protoperithecia were the pheromone precursor genes ppg1 and ppg2. The up-regulation was confirmed by fluorescence microscopy of egfp expression under the control of ppg1 regulatory sequences. RNA-seq analysis of protoperithecia from the sterile mutant pro1 showed that many genes that are differentially regulated in these structures are under the genetic control of transcription factor PRO1. Conclusions We have generated transcriptional profiles of young fungal sexual structures using a combination of LM and RNA-seq. This allowed a high spatial resolution and sensitivity, and yielded a detailed picture of gene expression during development. Our data revealed significant differences in gene expression between protoperithecia and non-reproductive mycelia, and showed that the transcription factor PRO1 is involved in the regulation of many genes expressed specifically in sexual structures. The LM/RNA-seq approach will also be relevant to other eukaryotic systems in which multicellular development is investigated. PMID:23016559

  15. Phenotypic Characterization of Mice Carrying Homozygous Deletion of KLF11, a Gene in Which Mutations Cause Human Neonatal and MODY VII Diabetes

    PubMed Central

    Mathison, Angela; Escande, Carlos; Calvo, Ezequiel; Seo, Seungmae; White, Thomas; Salmonson, Ann; Faubion, William A.; Buttar, Navtej; Iovanna, Juan; Lomberk, Gwen; Chini, Eduardo N.

    2015-01-01

    We have previously shown that amino acid changes in the human Kruppel-Like Factor (KLF) 11 protein is associated with the development of maturity onset diabetes of the young VII, whereas complete inactivation of this pathway by the −331 human insulin mutation causes neonatal diabetes mellitus. Here, we report that Klf11−/− mice have decreased circulating insulin levels, alterations in the control of blood glucose and body weight, as well as serum dyslipidemia, but do not develop diabetes. Functional assays using ex vivo liver tissue sections demonstrate that Klf11−/− mice display increased insulin sensitivity. Genome-wide experiments validated by pathway-specific quantitative PCR arrays reveal that the Klf11−/− phenotype associates to alterations in the regulation of gene networks involved in lipid metabolism, in particular those regulated by peroxisome proliferator-activated receptor-γ. Combined, these results demonstrate that the major phenotype given by the whole-body deletion of Klf11 in mouse is not diabetes but increased insulin sensitivity, likely due to altered transcriptional regulation in target tissues. The absence of diabetes in the Klf11−/− mouse either indicates an interspecies difference for the role of this transcription factor in metabolic homeostasis between mouse and humans, or potentially highlights the fact that other molecular factors can compensate for its absence. Nevertheless, the data of this study, gathered at the whole-organism level, further support a role for KLF11 in metabolic processes like insulin sensitivity, which regulation is critical in several forms of diabetes. PMID:26248217

  16. Aspp2 negatively regulates body growth but not developmental timing by modulating IRS signaling in zebrafish embryos.

    PubMed

    Liu, Chengdong; Luan, Jing; Bai, Yan; Li, Yun; Lu, Ling; Liu, Yunzhang; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Duan, Cunming; Zhou, Jianfeng

    2014-02-01

    The growth and developmental rate of developing embryos and fetus are tightly controlled and coordinated to maintain proper body shape and size. The insulin receptor substrate (IRS) proteins, key intracellular transducers of insulin and insulin-like growth factor signaling, play essential roles in the regulation of growth and development. A short isoform of apoptosis-stimulating protein of p53 2 (ASPP2) was recently identified as a binding partner of IRS-1 and IRS-2 in mammalian cells in vitro. However, it is unclear whether ASPP2 plays any role in vertebrate embryonic growth and development. Here, we show that zebrafish Aspp2a and Aspp2b negatively regulate embryonic growth without affecting developmental rate. Human ASPP2 had similar effects on body growth in zebrafish embryos. Aspp2a and 2b inhibit Akt signaling. This inhibition was reversed by coinjection of myr-Akt1, a constitutively active form of Akt1. Zebrafish Aspp2a and Aspp2b physically bound with Irs-1, and the growth inhibitory effects of ASPP2/Aspp2 depend on the presence of their ankyrin repeats and SH3 domains. These findings uncover a novel role of Aspp2 in regulating vertebrate embryonic growth. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Determinants of Perceived Stress in Individuals with Obesity: Exploring the Relationship of Potentially Obesity-Related Factors and Perceived Stress.

    PubMed

    Junne, Florian; Ziser, Katrin; Giel, Katrin Elisabeth; Schag, Kathrin; Skoda, Eva; Mack, Isabelle; Niess, Andreas; Zipfel, Stephan; Teufel, Martin

    2017-01-01

    Associations of specific types of stress with increased food intake and subsequent weight gain have been demonstrated in animal models as well as in experimental and epidemiological studies on humans. This study explores the research question of to what extent potentially obesity-related factors determine perceived stress in individuals with obesity. N = 547 individuals with obesity participated in a cross-sectional study assessing perceived stress as the outcome variable and potential determinants of stress related to obesity. Based on the available evidence, a five factorial model of 'obesity-related obesogenic stressors' was hypothesized, including the dimensions, 'drive for thinness', 'impulse regulation', 'ineffectiveness', 'social insecurity', and 'body dissatisfaction'. The model was tested using multiple linear regression analyses. The five factorial model of 'potentially obesity-related stressors' resulted in a total variance explanation of adjusted R² = 0.616 for males and adjusted R² = 0.595 for females for perceived stress. The relative variance contribution of the five included factors differed substantially for the two sexes. The findings of this cross-sectional study support the hypothesized, potentially obesity-related factors: 'drive for thinness', 'impulse regulation', 'ineffectiveness', 'social insecurity', and 'body dissatisfaction' as relevant determinants of perceived stress in individuals with obesity. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  18. A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora.

    PubMed

    Nolting, Nicole; Pöggeler, Stefanie

    2006-07-01

    MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Deltamcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development.

  19. [Mathematic concept model of accumulation of functional disorders associated with environmental factors].

    PubMed

    Zaĭtseva, N V; Trusov, P V; Kir'ianov, D A

    2012-01-01

    The mathematic concept model presented describes accumulation of functional disorders associated with environmental factors, plays predictive role and is designed for assessments of possible effects caused by heterogenous factors with variable exposures. Considering exposure changes with self-restoration process opens prospects of using the model to evaluate, analyse and manage occupational risks. To develop current theoretic approaches, the authors suggested a model considering age-related body peculiarities, systemic interactions of organs, including neuro-humoral regulation, accumulation of functional disorders due to external factors, rehabilitation of functions during treatment. General objective setting covers defining over a hundred unknow coefficients that characterize speed of various processes within the body. To solve this problem, the authors used iteration approach, successive identification, that starts from the certain primary approximation of the model parameters and processes subsequent updating on the basis of new theoretic and empirical knowledge.

  20. Shaping nursing profession regulation through history - a systematic review.

    PubMed

    Stievano, A; Caruso, R; Pittella, F; Shaffer, F A; Rocco, G; Fairman, J

    2018-03-23

    The aim of this systematic review was to provide a critical synthesis of the factors that historically shaped the advancements of nursing regulators worldwide. An in-depth examination of the different factors that moulded regulatory changes over time is pivotal to comprehend current issues in nursing. In the light of global health scenarios, the researchers explored the factors that historically influenced the socio-contextual circumstances upon which governments made regulatory changes. A systematic search was performed on the following databases: PubMed, CINAHL, Scopus, OpenGrey and ScienceDirect. The review included papers from January 2000 to October 2016 published in English. The authors used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and an inductive thematic approach for synthesis. Two main themes were identified: factors underpinning current challenges and historical and contextual triggers of regulation. The first theme was composed of three aspects: education, migration and internationalization, and policy and regulation; the second theme consisted of four attributes: demographics, economics, history of registration and wars, and historical changes in nursing practice. Factors that shaped nursing regulation were linked to changing demographics and economics, education, history of nursing registration, shifting patterns of migration and internationalization, nursing practice, policy and regulation and significant societal turns often prompted by wars. A deeper understanding of the developments of the nursing regulatory institutions provides the foundation for portable standards that can be applied across an array of jurisdictions to guarantee a better public safety. Understanding factors that socially, legislatively and politically have influenced the development of regulatory bodies over time helps to mould local, national and international policies that have a stronger impact on health worldwide. To achieve this, there must be effective cooperation among systems of nursing regulations globally. © 2018 International Council of Nurses.

  1. Identification of Two Novel Endoplasmic Reticulum Body-Specific Integral Membrane Proteins1[W][OA

    PubMed Central

    Yamada, Kenji; Nagano, Atsushi J.; Nishina, Momoko; Hara-Nishimura, Ikuko; Nishimura, Mikio

    2013-01-01

    The endoplasmic reticulum (ER) body, a large compartment specific to the Brassicales, accumulates β-glucosidase and possibly plays a role in the defense against pathogens and herbivores. Although the ER body is a subdomain of the ER, it is unclear whether any ER body-specific membrane protein exists. In this study, we identified two integral membrane proteins of the ER body in Arabidopsis (Arabidopsis thaliana) and termed them MEMBRANE PROTEIN OF ENDOPLASMIC RETICULUM BODY1 (MEB1) and MEB2. In Arabidopsis, a basic helix-loop-helix transcription factor, NAI1, and an ER body component, NAI2, regulate ER body formation. The expression profiles of MEB1 and MEB2 are similar to those of NAI1, NAI2, and ER body β-glucosidase PYK10 in Arabidopsis. The expression of MEB1 and MEB2 was reduced in the nai1 mutant, indicating that NAI1 regulates the expression of MEB1 and MEB2 genes. MEB1 and MEB2 proteins localize to the ER body membrane but not to the ER network, suggesting that these proteins are specifically recruited to the ER body membrane. MEB1 and MEB2 physically interacted with ER body component NAI2, and they were diffused throughout the ER network in the nai2 mutant, which has no ER body. Heterologous expression of MEB1 and MEB2 in yeast (Saccharomyces cerevisiae) suppresses iron and manganese toxicity, suggesting that MEB1 and MEB2 are metal transporters. These results indicate that the membrane of ER bodies has specific membrane proteins and suggest that the ER body is involved in defense against metal stress as well as pathogens and herbivores. PMID:23166355

  2. Regulation of Plant Microprocessor Function in Shaping microRNA Landscape.

    PubMed

    Dolata, Jakub; Taube, Michał; Bajczyk, Mateusz; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Bielewicz, Dawid

    2018-01-01

    MicroRNAs are small molecules (∼21 nucleotides long) that are key regulators of gene expression. They originate from long stem-loop RNAs as a product of cleavage by a protein complex called Microprocessor. The core components of the plant Microprocessor are the RNase type III enzyme Dicer-Like 1 (DCL1), the zinc finger protein Serrate (SE), and the double-stranded RNA binding protein Hyponastic Leaves 1 (HYL1). Microprocessor assembly and its processing of microRNA precursors have been reported to occur in discrete nuclear bodies called Dicing bodies. The accessibility of and modifications to Microprocessor components affect microRNA levels and may have dramatic consequences in plant development. Currently, numerous lines of evidence indicate that plant Microprocessor activity is tightly regulated. The cellular localization of HYL1 is dependent on a specific KETCH1 importin, and the E3 ubiquitin ligase COP1 indirectly protects HYL1 from degradation in a light-dependent manner. Furthermore, proper localization of HYL1 in Dicing bodies is regulated by MOS2. On the other hand, the Dicing body localization of DCL1 is regulated by NOT2b, which also interacts with SE in the nucleus. Post-translational modifications are substantial factors that contribute to protein functional diversity and provide a fine-tuning system for the regulation of protein activity. The phosphorylation status of HYL1 is crucial for its activity/stability and is a result of the interplay between kinases (MPK3 and SnRK2) and phosphatases (CPL1 and PP4). Additionally, MPK3 and SnRK2 are known to phosphorylate SE. Several other proteins (e.g., TGH, CDF2, SIC, and RCF3) that interact with Microprocessor have been found to influence its RNA-binding and processing activities. In this minireview, recent findings on the various modes of Microprocessor activity regulation are discussed.

  3. Regulation of Plant Microprocessor Function in Shaping microRNA Landscape

    PubMed Central

    Dolata, Jakub; Taube, Michał; Bajczyk, Mateusz; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Bielewicz, Dawid

    2018-01-01

    MicroRNAs are small molecules (∼21 nucleotides long) that are key regulators of gene expression. They originate from long stem–loop RNAs as a product of cleavage by a protein complex called Microprocessor. The core components of the plant Microprocessor are the RNase type III enzyme Dicer-Like 1 (DCL1), the zinc finger protein Serrate (SE), and the double-stranded RNA binding protein Hyponastic Leaves 1 (HYL1). Microprocessor assembly and its processing of microRNA precursors have been reported to occur in discrete nuclear bodies called Dicing bodies. The accessibility of and modifications to Microprocessor components affect microRNA levels and may have dramatic consequences in plant development. Currently, numerous lines of evidence indicate that plant Microprocessor activity is tightly regulated. The cellular localization of HYL1 is dependent on a specific KETCH1 importin, and the E3 ubiquitin ligase COP1 indirectly protects HYL1 from degradation in a light-dependent manner. Furthermore, proper localization of HYL1 in Dicing bodies is regulated by MOS2. On the other hand, the Dicing body localization of DCL1 is regulated by NOT2b, which also interacts with SE in the nucleus. Post-translational modifications are substantial factors that contribute to protein functional diversity and provide a fine-tuning system for the regulation of protein activity. The phosphorylation status of HYL1 is crucial for its activity/stability and is a result of the interplay between kinases (MPK3 and SnRK2) and phosphatases (CPL1 and PP4). Additionally, MPK3 and SnRK2 are known to phosphorylate SE. Several other proteins (e.g., TGH, CDF2, SIC, and RCF3) that interact with Microprocessor have been found to influence its RNA-binding and processing activities. In this minireview, recent findings on the various modes of Microprocessor activity regulation are discussed. PMID:29922322

  4. Diet and insulinlike growth factor I in relation to body composition in women with exercise-induced hypothalamic amenorrhea.

    PubMed

    Crist, D M; Hill, J M

    1990-06-01

    To assess the potential influence of diet and endogenous peptide anabolic hormone secretion on exercise-related differences in body composition, we compared levels of macronutrient intake, insulinlike growth factor I (IGF-I), and fat-free mass (FFM) and fat mass (FM) in matched groups of exercising women with and without secondary hypothalamic amenorrhea. Women were tightly matched according to somatotype and grouped into those with exercise amenorrhea (EXam, n = 6), exercise eumennorhea (EXeu, n = 5), and sedentary eumennorheic controls (SED, n = 5). Although no between-group difference was observed in FFM, the EXeu subjects had a significantly lower fat fraction and a significantly elevated FFM/FM ratio. Kilocaloric and protein intakes did not differ between groups, but dietary fat intake was lowest and carbohydrate intake highest in the EXam subjects. Dietary macronutrients were not correlated with the FFM/FM ratio. However, levels of insulinlike growth factor I were significantly correlated to the FFM/FM ratio and there was a clear trend for the hormone to be highest in the EXeu subjects. We conclude that differences in body composition between exercising women with and without exercise-induced hypothalamic-pituitary dysfunction were related to an alteration in IGF-I secretion, although differences in macronutrient intake might also be a factor. Further studies are warranted to elaborate upon the dietary and hormonal factors regulating the body composition response to exercise.

  5. Storage and regulated secretion of factor VIII in blood outgrowth endothelial cells

    PubMed Central

    van den Biggelaar, Maartje; Bouwens, Eveline A.M.; Kootstra, Neeltje A.; Hebbel, Robert P.; Voorberg, Jan; Mertens, Koen

    2009-01-01

    Background Gene therapy provides an attractive alternative for protein replacement therapy in hemophilia A patients. Recent studies have shown the potential benefit of directing factor (F)VIII gene delivery to cells that also express its natural carrier protein von Willebrand factor (VWF). In this study, we explored the feasibility of blood outgrowth endothelial cells as a cellular FVIII delivery device with particular reference to long-term production levels, intracellular storage in Weibel-Palade bodies and agonist-induced regulated secretion. Design and Methods Human blood outgrowth endothelial cells were isolated from peripheral blood collected from healthy donors, transduced at passage 5 using a lentiviral vector encoding human B-domain deleted FVIII-GFP and characterized by flow cytometry and confocal microscopy. Results Blood outgrowth endothelial cells displayed typical endothelial morphology and expressed the endothelial-specific marker VWF. Following transduction with a lentivirus encoding FVIII-GFP, 80% of transduced blood outgrowth endothelial cells expressed FVIII-GFP. Levels of FVIII-GFP positive cells declined slowly upon prolonged culturing. Transduced blood outgrowth endothelial cells expressed 1.6±1.0 pmol/1×106 cells/24h FVIII. Morphological analysis demonstrated that FVIII-GFP was stored in Weibel-Palade bodies together with VWF and P-selectin. FVIII levels were only slightly increased following agonist-induced stimulation, whereas a 6- to 8-fold increase of VWF levels was observed. Subcellular fractionation revealed that 15–22% of FVIII antigen was present within the dense fraction containing Weibel-Palade bodies. Conclusions We conclude that blood outgrowth endothelial cells, by virtue of their ability to store a significant portion of synthesized FVIII-GFP in Weibel-Palade bodies, provide an attractive cellular on-demand delivery device for gene therapy of hemophilia A. PMID:19336741

  6. Neurotrophins, growth-factor-regulated genes and the control of energy balance.

    PubMed

    Salton, Stephen R J

    2003-03-01

    Neurotrophic growth factors are proteins that control neuronal differentiation and survival, and consequently play important roles in the developing and adult stages of the nervous system. Study of the genes that are regulated by these growth factors has provided insight into the proteins that are critical to the maturation of the nervous system, suggesting that select neurotrophins may play a role in the control of body homeostasis by the brain and peripheral nervous system. Our understanding of the mechanisms of action of neurotrophic growth factors has increased through experimental manipulation of cultured neurons and neuronal cell lines. In particular, the PC12 pheochromocytoma cell line, which displays many properties of adrenal chromaffin cells and undergoes differentiation into sympathetic neuron-like cells when treated with nerve growth factor, has been extensively investigated to identify components of neurotrophin signaling pathways as well as the genes that they regulate. VGF was one of the first neurotrophin-regulated clones identified in NGF-treated PC12 cells. Subsequent studies indicate that the vgf gene is regulated in vivo in the nervous system by neurotrophins, by electrical activity, in response to injury or seizure, and by feeding and the circadian clock. The vgf gene encodes a polypeptide rich in paired basic amino acids; this polypeptide is differentially processed in neuronal and neuroendocrine cells and is released via the regulated secretory pathway. Generation and analysis of knockout mice that fail to synthesize VGF indicate that this protein plays a critical, non-redundant role in the regulation of energy homeostasis, providing a possible link between neurotrophin function in the nervous system and the peripheral control of feeding and metabolic activity. Future experiments should clarify the sites and mechanisms of action of this neurotrophin-regulated neuronal and neuroendocrine protein.

  7. Somatic awareness in the clinical care of patients with body distress symptoms

    PubMed Central

    Bakal, Donald; Coll, Patrick; Schaefer, Jeffrey

    2008-01-01

    The purpose of this paper is to provide primary care physicians and medical specialists with an experiential psychosomatic framework for understanding patients with body distress symptoms. The framework relies on somatic awareness, a normal part of consciousness, to resolve the dualism inherent in conventional multidisciplinary approaches. Somatic awareness represents a guiding healing heuristic which acknowledges the validity of the patient's physical symptoms and uses body sensations to identify the psychological, physiological, and social factors needed for symptom self-regulation. The experiential approach is based on psychobiologic concepts which include bodily distress disorder, central sensitization, dysfunctional breathing, and contextual nature of mood. PMID:18291028

  8. Contribution made by parabiosis to the understanding of energy balance regulation

    PubMed Central

    Harris, Ruth

    2013-01-01

    Parabiosis is a chronic preparation that allows exchange of whole blood between two animals. It has been used extensively to test for involvement of circulating factors in feedback regulation of physiological systems. The total blood volume of each animal exchanges approximately ten times each day, therefore, factors that are rapidly cleared from the circulation do not reach equilibrium across the parabiotic union whereas those with a long half-life achieve a uniform concentration and bioactivity in both members of a pair. Involvement of a circulating factor in the regulation of energy balance was first demonstrated when one member of a pair of parabiosed rats became hyperphagic and obese following bilateral lesioning of the ventromedial hypothalamus. The non-lesioned partner stopped eating, lost a large amount of weight and appeared to be responding to a circulating “satiety” factor released by the obese rat. These results were confirmed using different techniques to induce obesity in one member of a pair. Studies with phenotypically similar ob/ob obese and db/db diabetic mice indicated that the obese mouse lacked a circulating signal that regulated energy balance, whereas the diabetic mouse appeared insensitive to such a signal. Positional cloning studies identified leptin as the circulating factor and subsequent parabiosis studies confirmed leptin’s ability to exchange effectively between parabionts. These studies also suggest the presence of additional unidentified factors that influence body composition. PMID:23470554

  9. Fluid balance concepts in medicine: Principles and practice

    PubMed Central

    Roumelioti, Maria-Eleni; Glew, Robert H; Khitan, Zeid J; Rondon-Berrios, Helbert; Argyropoulos, Christos P; Malhotra, Deepak; Raj, Dominic S; Agaba, Emmanuel I; Rohrscheib, Mark; Murata, Glen H; Shapiro, Joseph I; Tzamaloukas, Antonios H

    2018-01-01

    The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several illnesses. For these reasons, extracellular volume in severe illness merits a separate third concept of body fluid balance. PMID:29359117

  10. Histone methylations in heart development, congenital and adult heart diseases.

    PubMed

    Zhang, Qing-Jun; Liu, Zhi-Ping

    2015-01-01

    Heart development comprises myocyte specification, differentiation and cardiac morphogenesis. These processes are regulated by a group of core cardiac transcription factors in a coordinated temporal and spatial manner. Histone methylation is an emerging epigenetic mechanism for regulating gene transcription. Interplay among cardiac transcription factors and histone lysine modifiers plays important role in heart development. Aberrant expression and mutation of the histone lysine modifiers during development and in adult life can cause either embryonic lethality or congenital heart diseases, and influences the response of adult hearts to pathological stresses. In this review, we describe current body of literature on the role of several common histone methylations and their modifying enzymes in heart development, congenital and adult heart diseases.

  11. Mitochondrial structure and dynamics as critical factors in honey bee (Apis mellifera L.) caste development.

    PubMed

    Santos, Douglas Elias; Alberici, Luciane Carla; Hartfelder, Klaus

    2016-06-01

    The relationship between nutrition and phenotype is an especially challenging question in cases of facultative polyphenism, like the castes of social insects. In the honey bee, Apis mellifera, unexpected modifications in conserved signaling pathways revealed the hypoxia response as a possible mechanism underlying the regulation of body size and organ growth. Hence, the current study was designed to investigate possible causes of why the three hypoxia core genes are overexpressed in worker larvae. Parting from the hypothesis that this has an endogenous cause and is not due to differences in external oxygen levels we investigated mitochondrial numbers and distribution, as well as mitochondrial oxygen consumption rates in fat body cells of queen and worker larvae during the caste fate-critical larval stages. By immunofluorescence and electron microscopy we found higher densities of mitochondria in queen larval fat body, a finding further confirmed by a citrate synthase assay quantifying mitochondrial functional units. Oxygen consumption measurements by high-resolution respirometry revealed that queen larvae have higher maximum capacities of ATP production at lower physiological demand. Finally, the expression analysis of mitogenesis-related factors showed that the honey bee TFB1 and TFB2 homologs, and a nutritional regulator, ERR, are overexpressed in queen larvae. These results are strong evidence that the differential nutrition of queen and worker larvae by nurse bees affects mitochondrial dynamics and functionality in the fat body of these larvae, hence explaining their differential hypoxia response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    PubMed

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Protective effects of nuclear factor erythroid 2-related factor 2 on whole body heat stress-induced oxidative damage in the mouse testis

    PubMed Central

    2013-01-01

    Background Whole body heat stress had detrimental effect on male reproductive function. It's known that the nuclear factor erythroid 2-related factor 2 (Nrf2) activates expression of cytoprotective genes to enable cell adaptation to protect against oxidative stress. However, it’s still unclear about the exactly effects of Nrf2 on the testis. Here, we investigate the protective effect of Nrf2 on whole body heat stress-induced oxidative damage in mouse testis. Methods Male mice were exposed to the elevated ambient temperature (42°C) daily for 2 h. During the period of twelve consecutive days, mice were sacrificed on days 1, 2, 4, 8 and 12 immediately following heat exposure. Testes weight, enzymatic antioxidant activities and concentrations of malondialdehyde (MDA) and glutathione (GSH) in the testes were determined and immunohistochemical detection of Nrf2 protein and mRNA expression of Nrf2-regulated genes were analyzed to assess the status of Nrf2-antioxidant system. Results Heat-exposed mice presented significant increases in rectal, scrotal surface and body surface temperature. The concentrations of cortisol and testosterone in serum fluctuated with the number of exposed days. There were significant decrease in testes weight and relative testes weight on day 12 compared with those on other days, but significant increases in catalase (CAT) activity on day 1 and GSH level on day 4 compared with control group. The activities of total superoxide dismutase (T-SOD) and copper-zinc SOD (CuZn-SOD) increased significantly on days 8 and 12. Moreover, prominent nuclear accumulation of Nrf2 protein was observed in Leydig cells on day 2, accompanying with up-regulated mRNA levels of Nrf2-regulated genes such as Nrf2, heme oxygenase 1 (HO-1), γ-Glutamylcysteine synthetase (GCLC) and NAD (P) H: quinone oxidoreductase 1 (NQO1)) in heat-treated groups. Conclusions These results suggest that Nrf2 displayed nuclear accumulation and protective activity in the process of heat treated-induced oxidative stress in mouse testes, indicating that Nrf2 might be a potential target for new drugs designed to protect germ cell and Leydig cell from oxidative stress. PMID:23514035

  14. The structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation

    PubMed Central

    Lee, Mihwa; Sadowska, Agata; Bekere, Indra; Ho, Diwei; Gully, Benjamin S.; Lu, Yanling; Iyer, K. Swaminathan; Trewhella, Jill; Fox, Archa H.; Bond, Charles S.

    2015-01-01

    SFPQ, (a.k.a. PSF), is a human tumor suppressor protein that regulates many important functions in the cell nucleus including coordination of long non-coding RNA molecules into nuclear bodies. Here we describe the first crystal structures of Splicing Factor Proline and Glutamine Rich (SFPQ), revealing structural similarity to the related PSPC1/NONO heterodimer and a strikingly extended structure (over 265 Å long) formed by an unusual anti-parallel coiled-coil that results in an infinite linear polymer of SFPQ dimers within the crystals. Small-angle X-ray scattering and transmission electron microscopy experiments show that polymerization is reversible in solution and can be templated by DNA. We demonstrate that the ability to polymerize is essential for the cellular functions of SFPQ: disruptive mutation of the coiled-coil interaction motif results in SFPQ mislocalization, reduced formation of nuclear bodies, abrogated molecular interactions and deficient transcriptional regulation. The coiled-coil interaction motif thus provides a molecular explanation for the functional aggregation of SFPQ that directs its role in regulating many aspects of cellular nucleic acid metabolism. PMID:25765647

  15. Factors Associated with the Serum Myostatin Level in Patients Undergoing Peritoneal Dialysis: Potential Effects of Skeletal Muscle Mass and Vitamin D Receptor Activator Use.

    PubMed

    Yamada, Shunsuke; Tsuruya, Kazuhiko; Yoshida, Hisako; Tokumoto, Masanori; Ueki, Kenji; Ooboshi, Hiroaki; Kitazono, Takanari

    2016-07-01

    Myostatin is a member of the transforming growth factor-β family, which regulates synthesis and degradation of skeletal muscle proteins and is associated with the development of sarcopenia. It is up-regulated in the skeletal muscle of chronic kidney disease patients and is considered to be involved in the development of uremic sarcopenia. However, serum myostatin levels have rarely been determined, and the relationship between serum myostatin levels with clinical and metabolic factors remains unknown. This cross-sectional study investigated the association between serum myostatin level and clinical factors in 69 outpatients undergoing peritoneal dialysis. Serum myostatin level was determined by commercially available enzyme-linked immunosorbent assay (ELISA). Univariable and multivariable analysis were conducted to determine factors associated with serum myostatin levels. The factors included age, sex, diabetes mellitus, dialysis history, body mass index, residual kidney function, peritoneal dialysate volume, serum biochemistries, and the use of vitamin D receptor activators (VDRAs). Mean serum myostatin level was 7.59 ± 3.37 ng/mL. There was no association between serum myostatin level and residual kidney function. Serum myostatin levels were significantly and positively associated with lean body mass measured by the creatinine kinetic method and negatively associated with the use of VDRAs after adjustment for potential confounding factors. Our study indicated that serum myostatin levels are associated with skeletal muscle mass and are lower in patients treated with VDRAs. Further studies are necessary to determine the significance of measuring serum myostatin level in patients undergoing peritoneal dialysis.

  16. Food choking hazards in children.

    PubMed

    Sidell, Douglas R; Kim, Irene A; Coker, Tumaini R; Moreno, Candice; Shapiro, Nina L

    2013-12-01

    To review the literature on pediatric food choking risks, with the long-term goal of supporting legislation regulating the production, labeling, and distribution of high-risk foods. A PubMed search (Keywords: choking, obstruction, asphyxiation, foreign body, food) was conducted in July-September 2010 with publication dates ranging from 1966 to 2010. Articles related to pediatric foreign body aspiration (FBA) were selected by three independent reviewers. 1145 articles were initially identified. Abstracts were then screened utilizing a tool designed to isolate relevant pediatric choking events; this tool helped to only select abstracts which presented data on patients younger than 18 years of age who had choked on food items. Through this, a total of 72 pertinent articles were isolated (55 observational studies, 17 case reports/series). For each study, patient age, sex, foreign body location, presenting signs and symptoms, utility of radiographic studies, and type of foreign body detected in the majority of study participants were determined. A "majority" of patients for each study was predetermined arbitrarily to be 2/3 of the studied population. The majority of patients in each observational study was determined to be: male (87% of all studies) and age <5 years (95% of all studies). Aspirated foreign bodies were mostly detected in the right main bronchus foreign body (72% of all studies), and there were abnormal radiographic signs (81% of all studies) at the time of evaluation. Food-object foreign bodies were the most frequent factors associated with choking (94% of all studies). Childhood aspiration of food-objects is a significant public health issue. Although there is substantial legislation regulating non-food items that pose a choking hazard, equivalent guidelines do not exist for high-risk foods. Our study identifies and confirms several risk factors for pediatric FBA events. In doing so, it echoes the concerns and suggestions of various groups in supporting the development of legislation which may reduce the incidence of food-object aspiration. Copyright © 2013. Published by Elsevier Ireland Ltd.

  17. Wnt/Notum spatial feedback inhibition controls neoblast differentiation to regulate reversible growth of the planarian brain

    PubMed Central

    Hill, Eric M.; Petersen, Christian P.

    2015-01-01

    Mechanisms determining final organ size are poorly understood. Animals undergoing regeneration or ongoing adult growth are likely to require sustained and robust mechanisms to achieve and maintain appropriate sizes. Planarians, well known for their ability to undergo whole-body regeneration using pluripotent adult stem cells of the neoblast population, can reversibly scale body size over an order of magnitude by controlling cell number. Using quantitative analysis, we showed that after injury planarians perfectly restored brain:body proportion by increasing brain cell number through epimorphosis or decreasing brain cell number through tissue remodeling (morphallaxis), as appropriate. We identified a pathway controlling a brain size set-point that involves feedback inhibition between wnt11-6/wntA/wnt4a and notum, encoding conserved antagonistic signaling factors expressed at opposite brain poles. wnt11-6/wntA/wnt4a undergoes feedback inhibition through canonical Wnt signaling but is likely to regulate brain size in a non-canonical pathway independently of beta-catenin-1 and APC. Wnt/Notum signaling tunes numbers of differentiated brain cells in regenerative growth and tissue remodeling by influencing the abundance of brain progenitors descended from pluripotent stem cells, as opposed to regulating cell death. These results suggest that the attainment of final organ size might be accomplished by achieving a balance of positional signaling inputs that regulate the rates of tissue production. PMID:26525673

  18. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    PubMed

    Petrie, Michael A; Kimball, Amy L; McHenry, Colleen L; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.

  19. The role of body-related self-conscious emotions in motivating women's physical activity.

    PubMed

    Sabiston, Catherine M; Brunet, Jennifer; Kowalski, Kent C; Wilson, Philip M; Mack, Diane E; Crocker, Peter R E

    2010-08-01

    The purpose of this study was to test a model where body-related self-conscious emotions of shame, guilt, and pride were associated with physical activity regulations and behavior. Adult women (N = 389; M age = 29.82, SD = 15.20 years) completed a questionnaire assessing body-related pride, shame, and guilt, motivational regulations, and leisure-time physical activity. The hypothesized measurement and structural models were deemed adequate, as was a revised model examining shame-free guilt and guilt-free shame. In the revised structural model, body-related pride was positively significantly related to identified and intrinsic regulations. Body-related shame-free guilt was significantly associated with external, introjected, and identified regulations. Body-related guilt-free shame was significantly positively related to external and introjected regulation, and negatively associated with intrinsic regulation. Identified and intrinsic regulations were significantly positively related to physical activity (R2 = .62). These findings highlight the importance of targeting and understanding the realm of body-related self-conscious emotions and the associated links to regulations and physical activity behavior.

  20. Forkhead, a new cross regulator of metabolism and innate immunity downstream of TOR in Drosophila.

    PubMed

    Varma, Disha; Bülow, Margret H; Pesch, Yanina-Yasmin; Loch, Gerrit; Hoch, Michael

    2014-10-01

    Antimicrobial peptides (AMPs) are conserved cationic peptides which act both as defense molecules of the host immune system and as regulators of the commensal microbiome. Expression of AMPs is induced in response to infection by the Toll and Imd pathway. Under non-infected conditions, the transcription factor dFOXO directly regulates a set of AMP expression at low levels when nutrients are limited. Here we have analyzed whether target of rapamycin (TOR), another major regulator of growth and metabolism, also modulates AMP responses in Drosophila. We found that downregulation of TOR by feeding the drug rapamycin or by overexpressing the negative TOR regulators TSC1/TSC2, resulted in a specific induction of the AMPs Diptericin (Dpt) and Metchnikowin (Mtk). In contrast, overexpression of Rheb, which positively regulates TOR led to a repression of the two AMPs. Genetic and pharmacological experiments indicate that Dpt and Mtk activation is controlled by the transcription factor Forkhead (FKH), the founding member of the FoxO family. Shuttling of FKH from the cytoplasm to the nucleus is induced in the fat body and in the posterior midgut in response to TOR downregulation. The FKH-dependent induction of Dpt and Mtk can be triggered in dFOXO null mutants and in immune-compromised Toll and IMD pathway mutants indicating that FKH acts in parallel to these regulators. Together, we have discovered that FKH is the second conserved member of the FoxO family cross-regulating metabolism and innate immunity. dFOXO and FKH, which are activated upon downregulation of insulin or TOR activities, respectively, act in parallel to induce different sets of AMPs, thereby modulating the immune status of metabolic tissues such as the fat body or the gut in response to the oscillating energy status of the organism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A review of the consequences of fluid and electrolyte shifts in weightlessness

    NASA Technical Reports Server (NTRS)

    Leach, C. S.

    1979-01-01

    This review describes the renal-endocrine mechanisms related to the early losses of fluid-electrolytes from the body during weightlessness as well as their contribution to longer term adaptation of fluid-electrolyte balance. The hypotheses presented were generated by a systematic analysis of body fluid and renal dynamics observed under conditions of actual and simulated spaceflight. These have increased our understanding of the effects of acute headward fluid shifts on renal excretion, the factors promoting excess sodium excretion and the regulation of extracellular fluid composition.

  2. A review of the consequences of fluid and electrolyte shifts in weightlessness

    NASA Technical Reports Server (NTRS)

    Leach, C. S.

    1978-01-01

    This review describes the renal-endocrine mechanisms related to the early losses of fluid-electrolytes from the body during weightlessness as well as their contribution to longer term adaptation of fluid-electrolyte balance. The hypotheses presented were generated by a systematic analysis of body fluid and renal dynamics observed under conditions of actual and simulated spaceflight. These have increased our understanding of the effects of acute headward fluid shifts on renal excretion, the factors promoting excess sodium excretion and the regulation of extracellular fluid composition.

  3. Expression Levels of LCORL Are Associated with Body Size in Horses

    PubMed Central

    Metzger, Julia; Schrimpf, Rahel; Philipp, Ute; Distl, Ottmar

    2013-01-01

    Body size is an important characteristic for horses of various breeds and essential for the classification of ponies concerning the limit value of 148 cm (58.27 inches) height at the withers. Genome-wide association analyses revealed the highest associated quantitative trait locus for height at the withers on horse chromosome (ECA) 3 upstream of the candidate gene LCORL. Using 214 Hanoverian horses genotyped on the Illumina equine SNP50 BeadChip and 42 different horse breeds across all size ranges, we confirmed the highly associated single nucleotide polymorphism BIEC2-808543 (−log10P = 8.3) and the adjacent gene LCORL as the most promising candidate for body size. We investigated the relative expression levels of LCORL and its two neighbouring genes NCAPG and DCAF16 using quantitative real-time PCR (RT-qPCR). We could demonstrate a significant association of the relative LCORL expression levels with the size of the horses and the BIEC2-808543 genotypes within and across horse breeds. In heterozygous C/T-horses expression levels of LCORL were significantly decreased by 40% and in homozygous C/C-horses by 56% relative to the smaller T/T-horses. Bioinformatic analyses indicated that this SNP T>C mutation is disrupting a putative binding site of the transcription factor TFIID which is important for the transcription process of genes involved in skeletal bone development. Thus, our findings suggest that expression levels of LCORL play a key role for body size within and across horse breeds and regulation of the expression of LCORL is associated with genetic variants of BIEC2-808543. This is the first functional study for a body size regulating polymorphism in horses and a further step to unravel the mechanisms for understanding the genetic regulation of body size in horses. PMID:23418579

  4. S-nitrosylation in the regulation of gene transcription☆

    PubMed Central

    Sha, Yonggang; Marshall, Harvey E.

    2015-01-01

    Background Post-translational modification of proteins by S-nitrosylation serves as a major mode of signaling in mammalian cells and a growing body of evidence has shown that transcription factors and their activating pathways are primary targets. S-nitrosylation directly modifies a number of transcription factors, including NF-κB, HIF-1, and AP-1. In addition, S-nitrosylation can indirectly regulate gene transcription by modulating other cell signaling pathways, in particular JNK kinase and ras. Scope of review The evolution of S-nitrosylation as a signaling mechanism in the regulation of gene transcription, physiological advantages of protein S-nitrosylation in the control of gene transcription, and discussion of the many transcriptional proteins modulated by S-nitrosylation is summarized. Major conclusions S-nitrosylation plays a crucial role in the control of mammalian gene transcription with numerous transcription factors regulated by this modification. Many of these proteins serve as immunomodulators, and inducible nitric oxide synthase (iNOS) is regarded as a principal mediatiator of NO-dependent S-nitrosylation. However, additional targets within the nucleus (e.g. histone deacetylases) and alternative mechanisms of S-nitrosylation (e.g. GAPDH-mediated trans-nitrosylation) are thought to play a role in NOS-dependent transcriptional regulation. General significance Derangement of SNO-regulated gene transcription is an important factor in a variety of pathological conditions including neoplasia and sepsis. A better understanding of protein S-nitrosylation as it relates to gene transcription and the physiological mechanisms behind this process is likely to lead to novel therapies for these disorders. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation. PMID:21640163

  5. Compliance with regulations on weight gain 6 months after delivery in active duty military women.

    PubMed

    Chauhan, Suneet P; Johnson, Traci L; Magann, Everett F; Woods, Janine Y; Chen, Han-Yang; Sheldon, Ingrid V; Morrison, John C

    2013-04-01

    To determine factors associated with active duty military women being within Navy weight standards 6 months following childbirth. Inclusion criteria for this study were active duty women who delivered a nonanomalous fetus at a Naval Hospital and who remained in the area and their weight was recorded 6 months following childbirth. Multivariate logistic regressions, adjusted for 14 covariates, determined the factors for achieving acceptable weight. Among 1,009 women who participated in this prospective cohort study, 68% began within Navy body weight standards and 52% had a normal body mass index (BMI) (<25). Six months after childbirth, 48% were within Navy body weight standards and 32% had a BMI <25. Only 2 factors, BMI at first visit and cesarean delivery, significantly influenced the percentage of women who met the weight standards at 6 months. Lowering the prepregnancy BMI and avoiding a cesarean delivery may improve the percentage of active duty women who meet weight standards 6 months after childbirth. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  6. Vascular smooth muscle cell calcification is mediated by regulated exosome secretion.

    PubMed

    Kapustin, Alexander N; Chatrou, Martijn L L; Drozdov, Ignat; Zheng, Ying; Davidson, Sean M; Soong, Daniel; Furmanik, Malgorzata; Sanchis, Pilar; De Rosales, Rafael Torres Martin; Alvarez-Hernandez, Daniel; Shroff, Rukshana; Yin, Xiaoke; Muller, Karin; Skepper, Jeremy N; Mayr, Manuel; Reutelingsperger, Chris P; Chester, Adrian; Bertazzo, Sergio; Schurgers, Leon J; Shanahan, Catherine M

    2015-04-10

    Matrix vesicles (MVs), secreted by vascular smooth muscle cells (VSMCs), form the first nidus for mineralization and fetuin-A, a potent circulating inhibitor of calcification, is specifically loaded into MVs. However, the processes of fetuin-A intracellular trafficking and MV biogenesis are poorly understood. The objective of this study is to investigate the regulation, and role, of MV biogenesis in VSMC calcification. Alexa488-labeled fetuin-A was internalized by human VSMCs, trafficked via the endosomal system, and exocytosed from multivesicular bodies via exosome release. VSMC-derived exosomes were enriched with the tetraspanins CD9, CD63, and CD81, and their release was regulated by sphingomyelin phosphodiesterase 3. Comparative proteomics showed that VSMC-derived exosomes were compositionally similar to exosomes from other cell sources but also shared components with osteoblast-derived MVs including calcium-binding and extracellular matrix proteins. Elevated extracellular calcium was found to induce sphingomyelin phosphodiesterase 3 expression and the secretion of calcifying exosomes from VSMCs in vitro, and chemical inhibition of sphingomyelin phosphodiesterase 3 prevented VSMC calcification. In vivo, multivesicular bodies containing exosomes were observed in vessels from chronic kidney disease patients on dialysis, and CD63 was found to colocalize with calcification. Importantly, factors such as tumor necrosis factor-α and platelet derived growth factor-BB were also found to increase exosome production, leading to increased calcification of VSMCs in response to calcifying conditions. This study identifies MVs as exosomes and shows that factors that can increase exosome release can promote vascular calcification in response to environmental calcium stress. Modulation of the exosome release pathway may be as a novel therapeutic target for prevention. © 2015 American Heart Association, Inc.

  7. Basic Aspects of Tumor Cell Fatty Acid-Regulated Signaling and Transcription Factors

    PubMed Central

    Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martin Ernesto; Pasqualini, Marìa Eugenia

    2012-01-01

    This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P-450 (CYP-450), seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator–activated receptors (PPARs) or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C [PKC]) and other transcription factors (nuclear factor kappa B [NFκB] and sterol regulatory element binding protein [SREBP]). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer, and provide insight into the development of new therapeutic strategies for a better management of whole-body lipid metabolism. PMID:22048864

  8. Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors.

    PubMed

    Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martín Ernesto; Pasqualini, Marìa Eugenia

    2011-12-01

    This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases, cyclooxygenases, and cytochrome P-450, seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator-activated receptors or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C) and other transcription factors (nuclear factor kappa B and sterol regulatory element binding protein). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer and provide insight into the development of new therapeutic strategies for a better management of whole body lipid metabolism.

  9. Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies

    PubMed Central

    Dietrich, Anja; Federbusch, Martin; Grellmann, Claudia; Villringer, Arno; Horstmann, Annette

    2014-01-01

    Behavioral and personality characteristics are factors that may jointly regulate body weight. This study explored the relationship between body mass index (BMI) and self-reported behavioral and personality measures. These measures included eating behavior (based on the Three-Factor Eating Questionnaire; Stunkard and Messick, 1985), sensitivity to reward and punishment (based on the Behavioral Inhibition System/Behavioral Activation System (BIS/BAS) scales) (Carver and White, 1994) and self-reported impulsivity (based on the Barratt Impulsiveness Scale-11; Patton et al., 1995). We found an inverted U-shaped relationship between restrained eating and BMI. This relationship was moderated by the level of disinhibited eating. Independent of eating behavior, BIS and BAS responsiveness were associated with BMI in a gender-specific manner with negative relationships for men and positive relationships for women. Together, eating behavior and BIS/BAS responsiveness accounted for a substantial proportion of BMI variance (men: ∼25%, women: ∼32%). A direct relationship between self-reported impulsivity and BMI was not observed. In summary, our results demonstrate a system of linear and non-linear relationships between the investigated factors and BMI. Moreover, body weight status was not only associated with eating behavior (cognitive restraint and disinhibition), but also with personality factors not inherently related to an eating context (BIS/BAS). Importantly, these relationships differ between men and women. PMID:25368586

  10. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling.

    PubMed

    Yoon, Mee-Sup

    2017-10-27

    The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls a wide spectrum of cellular processes, including cell growth, differentiation, and metabolism. mTOR forms two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which are characterized by the presence of raptor and rictor, respectively. mTOR controls insulin signaling by regulating several downstream components such as growth factor receptor-bound protein 10 (Grb10), insulin receptor substrate (IRS-1), F-box/WD repeat-containing protein 8 (Fbw8), and insulin like growth factor 1 receptor/insulin receptor (IGF-IR/IR). In addition, mTORC1 and mTORC2 regulate each other through a feedback loop to control cell growth. This review outlines the current understanding of mTOR regulation in insulin signaling in the context of whole body metabolism.

  11. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation.

    PubMed

    Obier, Nadine; Bonifer, Constanze

    2016-11-01

    Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development. © 2016 Federation of European Biochemical Societies.

  12. The control of fruiting body formation in the ascomycete Sordaria macrospora Auersw. by regulation of hyphal development : An analysis based on scanning electron and light microscopic observations.

    PubMed

    Hock, B; Bahn, M; Walk, R A; Nitschke, U

    1978-01-01

    The morphological effects of biotin and L-arginine on fruiting body formation of the ascomycete Sordaria macrospora are investigated by scanning electron and light microscopy. Biotin is recognized as an elongation factor and arginine as a branching factor in vegetative and reproductive hyphae. In the absence of exogenous biotin, development is blocked after the ascogonium-core hypha stage of protoperithecial morphogenesis, whereas linear growth of the myceliar front is maintained. The addition of exogenous arginine to a biotin deficient culture induces the formation of numerous side branches even in the older mycelium. Fruiting body formation, however, remains blocked at the protoperithecial stage as before, because of the inability of the side branches to elongate. When biotin and arginine are administered simultaneously, a most vigorous branching and growth are induced in the older mycelium, accompanied by a rapid and maximal formation of fruiting bodies. The results are summarized in a model of the exogenous control of hyphal morphogenesis. The model is designed to explain the relationship between fruiting and hyphal density as well as the edge effect on fruiting body formation.

  13. Primate enamel evinces long period biological timing and regulation of life history.

    PubMed

    Bromage, Timothy G; Hogg, Russell T; Lacruz, Rodrigo S; Hou, Chen

    2012-07-21

    The factor(s) regulating the combination of traits that define the overall life history matrix of mammalian species, comprising attributes such as brain and body weight, age at sexual maturity, lifespan and others, remains a complete mystery. The principal objectives of the present research are (1) to provide evidence for a key variable effecting life history integration and (2) to provide a model for how one would go about investigating the metabolic mechanisms responsible for this rhythm. We suggest here that a biological rhythm with a period greater than the circadian rhythm is responsible for observed variation in primate life history. Evidence for this rhythm derives from studies of tooth enamel formation. Enamel contains an enigmatic periodicity in its microstructure called the striae of Retzius, which develops at species specific intervals in units of whole days. We refer to this enamel rhythm as the repeat interval (RI). For primates, we identify statistically significant relationships between RI and all common life history traits. Importantly, RI also correlates with basal and specific metabolic rates. With the exception of estrous cyclicity, all relationships share a dependence upon body mass. This dependence on body mass informs us that some aspect of metabolism is responsible for periodic energy allocations at RI timescales, regulating cell proliferation rates and growth, thus controlling the pace, patterning, and co-variation of life history traits. Estrous cyclicity relates to the long period rhythm in a body mass-independent manner. The mass-dependency and -independency of life history relationships with RI periodicity align with hypothalamic-mediated neurosecretory anterior and posterior pituitary outputs. We term this period the Havers-Halberg Oscillation (HHO), in reference to Clopton Havers, a 17th Century hard tissue anatomist, and Franz Halberg, a long-time explorer of long-period rhythms. We propose a mathematical model that may help elucidate the underlying physiological mechanism responsible for the HHO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A MADS Box Protein Interacts with a Mating-Type Protein and Is Required for Fruiting Body Development in the Homothallic Ascomycete Sordaria macrospora

    PubMed Central

    Nolting, Nicole; Pöggeler, Stefanie

    2006-01-01

    MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Δmcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development. PMID:16835449

  15. Phospholipid Regulation of the Nuclear Receptor Superfamily

    PubMed Central

    Crowder, Mark K.; Seacrist, Corey D.; Blind, Raymond D.

    2016-01-01

    Nuclear receptors are ligand-activated transcription factors whose diverse biological functions are classically regulated by cholesterol-based small molecules. Over the past few decades, a growing body of evidence has demonstrated that phospholipids and other similar amphipathic molecules can also specifically bind and functionally regulate the activity of certain nuclear receptors, suggesting a critical role for these non-cholesterol-based molecules in transcriptional regulation. Phosphatidylcholines, phosphoinositides and sphingolipids are a few of the many phospholipid like molecules shown to quite specifically regulate nuclear receptors in mouse models, cell lines and in vitro. More recent evidence has also shown that certain nuclear receptors can “present” a bound phospholipid headgroup to key lipid signaling enzymes, which can then modify the phospholipid headgroup with very unique kinetic properties. Here, we review the broad array of phospholipid / nuclear receptor interactions, from the perspective of the chemical nature of the phospholipid, and the cellular abundance of the phospholipid. We also view the data in the light of well established paradigms for phospholipid mediated transcriptional regulation, as well as newer models of how phospholipids might effect transcription in the acute regulation of complex nuclear signaling pathways. Thus, this review provides novel insight into the new, non-membrane associated roles nuclear phospholipids play in regulating complex nuclear events, centered on the nuclear receptor superfamily of transcription factors. PMID:27838257

  16. [Research progress on free radicals in human body].

    PubMed

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  17. The interactive role of eating regulation and stress in the prediction of weight-related outcomes among college students.

    PubMed

    Arsiwalla, Dilbur D; Arnold, Amanda W; Teel, Karla P; Ulrich, Pamela V; Gropper, Sareen S

    2018-02-01

    The interactive role of eating regulation and perceived stress on weight-related outcomes was examined among 319 sophomore year college students (110 males and 209 females). Moderated regressions were used to examine interactions between stress and eating regulation on study outcomes including body mass index (BMI) and body fat. Eating regulation moderated associations between stress and BMI and body fat outcomes. Students reporting high perceived stress, high autonomous eating regulation, low controlled regulation, and low amotivation exhibited higher outcomes (BMI and body fat) than those with similar eating regulation but lower perceived stress. Students with lower autonomous eating regulation and higher controlled regulation had no differences in study outcomes across levels of stress. College students who regulate their eating behaviours for health reasons (specifically showing autonomous regulation) exhibit higher BMI and body fat when they report higher levels of perceived stress. Health promotion programs for college students need to target education efforts towards stress reduction and healthy eating behaviours. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Determinants Affecting Physical Activity Levels In Animal Models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C. L.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play all underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multi-factorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked making it difficult to determine whether a single, combination or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to tile ventral medial hypothalamus and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  19. Determinants affecting physical activity levels in animal models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C L.; Wade, Charles E.

    2002-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play an underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multifactorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked, making it difficult to determine whether a single, combination, or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to the ventral medial hypothalamus, and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  20. Preoptic leptin signaling modulates energy balance independent of body temperature regulation.

    PubMed

    Yu, Sangho; Cheng, Helia; François, Marie; Qualls-Creekmore, Emily; Huesing, Clara; He, Yanlin; Jiang, Yanyan; Gao, Hong; Xu, Yong; Zsombok, Andrea; Derbenev, Andrei V; Nillni, Eduardo A; Burk, David H; Morrison, Christopher D; Berthoud, Hans-Rudolf; Münzberg, Heike

    2018-05-15

    The adipokine leptin acts on the brain to regulate energy balance but specific functions in many brain areas remain poorly understood. Among these, the preoptic area (POA) is well known to regulate core body temperature by controlling brown fat thermogenesis, and we have previously shown that glutamatergic, long-form leptin receptor (Lepr)-expressing neurons in the POA are stimulated by warm ambient temperature and suppress energy expenditure and food intake. Here we further investigate the role of POA leptin signaling in body weight regulation and its relationship to body temperature regulation in mice. We show that POA Lepr signaling modulates energy expenditure in response to internal energy state, and thus contributes to body weight homeostasis. However, POA leptin signaling is not involved in ambient temperature-dependent metabolic adaptations. Our study reveals a novel cell population through which leptin regulates body weight. © 2018, Yu et al.

  1. Different Reasons for One Significant Choice: Factors Influencing Homeschooling Choice in Israel

    ERIC Educational Resources Information Center

    Guterman, Oz; Neuman, Ari

    2017-01-01

    Homeschooling is an alternative to conventional education in many countries all over the world, though legal regulations vary. This article examines why parents opt for homeschooling. The large body of research on the topic (especially from the United States) points to a variety of reasons for making the choice to homeschool. The most common…

  2. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs

    PubMed Central

    Frost, Robert J. A.; Olson, Eric N.

    2011-01-01

    Diabetes mellitus is the most common metabolic disorder worldwide and a major risk factor for cardiovascular disease. MicroRNAs are negative regulators of gene expression that have been implicated in many biological processes, including metabolism. Here we show that the Let-7 family of microRNAs regulates glucose metabolism in multiple organs. Global and pancreas-specific overexpression of Let-7 in mice resulted in impaired glucose tolerance and reduced glucose-induced pancreatic insulin secretion. Mice overexpressing Let-7 also had decreased fat mass and body weight, as well as reduced body size. Global knockdown of the Let-7 family with an antimiR was sufficient to prevent and treat impaired glucose tolerance in mice with diet-induced obesity, at least in part by improving insulin sensitivity in liver and muscle. AntimiR treatment of mice on a high-fat diet also resulted in increased lean and muscle mass, but not increased fat mass, and prevented ectopic fat deposition in the liver. These findings demonstrate that Let-7 regulates multiple aspects of glucose metabolism and suggest antimiR-induced Let-7 knockdown as a potential treatment for type 2 diabetes mellitus. Furthermore, our Cre-inducible Let-7-transgenic mice provide a unique model for studying tissue-specific aspects of body growth and type 2 diabetes. PMID:22160727

  3. Determinants of Human Adipose Tissue Gene Expression: Impact of Diet, Sex, Metabolic Status, and Cis Genetic Regulation

    PubMed Central

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José; Roussel, Balbine; Combes, Marion; Valle, Carine; Villa-Vialaneix, Nathalie; Iacovoni, Jason S.; Martinez, J. Alfredo; Holst, Claus; Astrup, Arne; Vidal, Hubert; Clément, Karine; Hager, Jorg; Saris, Wim H. M.; Langin, Dominique

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases. PMID:23028366

  4. Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies.

    PubMed

    Hoyle, Nathaniel P; Castelli, Lydia M; Campbell, Susan G; Holmes, Leah E A; Ashe, Mark P

    2007-10-08

    Cytoplasmic RNA granules serve key functions in the control of messenger RNA (mRNA) fate in eukaryotic cells. For instance, in yeast, severe stress induces mRNA relocalization to sites of degradation or storage called processing bodies (P-bodies). In this study, we show that the translation repression associated with glucose starvation causes the key translational mediators of mRNA recognition, eIF4E, eIF4G, and Pab1p, to resediment away from ribosomal fractions. These mediators then accumulate in P-bodies and in previously unrecognized cytoplasmic bodies, which we define as EGP-bodies. Our kinetic studies highlight the fundamental difference between EGP- and P-bodies and reflect the complex dynamics surrounding reconfiguration of the mRNA pool under stress conditions. An absence of key mRNA decay factors from EGP-bodies points toward an mRNA storage function for these bodies. Overall, this study highlights new potential control points in both the regulation of mRNA fate and the global control of translation initiation.

  5. Core body temperature in obesity.

    PubMed

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C; Yanovski, Jack A

    2011-05-01

    A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. In study 1, nonobese [body mass index (BMI; in kg/m(2)) <30] and obese (BMI ≥30) adults swallowed wireless core temperature-sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18-25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P < 0.0001). Obesity is not generally associated with a reduced core body temperature. It may be necessary to study individuals with function-altering mutations in core temperature-regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500.

  6. Core body temperature in obesity123

    PubMed Central

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C

    2011-01-01

    Background: A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. Objective: We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. Design: In study 1, nonobese [body mass index (BMI; in kg/m2) <30] and obese (BMI ≥30) adults swallowed wireless core temperature–sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18–25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Results: Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P < 0.0001). Conclusions: Obesity is not generally associated with a reduced core body temperature. It may be necessary to study individuals with function-altering mutations in core temperature–regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500. PMID:21367952

  7. Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms

    PubMed Central

    Adams, Nancy E.; Maurelli, Anthony T.

    2015-01-01

    Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB–RB transitions. PMID:25998263

  8. Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms.

    PubMed

    Fisher, Derek J; Adams, Nancy E; Maurelli, Anthony T

    2015-08-01

    Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB-RB transitions.

  9. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects

    PubMed Central

    Koyama, Takashi; Mendes, Cláudia C.; Mirth, Christen K.

    2013-01-01

    Nutrition, via the insulin/insulin-like growth factor (IIS)/Target of Rapamycin (TOR) signaling pathway, can provide a strong molding force for determining animal size and shape. For instance, nutrition induces a disproportionate increase in the size of male horns in dung and rhinoceros beetles, or mandibles in staghorn or horned flour beetles, relative to body size. In these species, well-fed male larvae produce adults with greatly enlarged horns or mandibles, whereas males that are starved or poorly fed as larvae bear much more modest appendages. Changes in IIS/TOR signaling plays a key role in appendage development by regulating growth in the horn and mandible primordia. In contrast, changes in the IIS/TOR pathway produce minimal effects on the size of other adult structures, such as the male genitalia in fruit flies and dung beetles. The horn, mandible and genitalia illustrate that although all tissues are exposed to the same hormonal environment within the larval body, the extent to which insulin can induce growth is organ specific. In addition, the IIS/TOR pathway affects body size and shape by controlling production of metamorphic hormones important for regulating developmental timing, like the steroid molting hormone ecdysone and sesquiterpenoid hormone juvenile hormone. In this review, we discuss recent results from Drosophila and other insects that highlight mechanisms allowing tissues to differ in their sensitivity to IIS/TOR and the potential consequences of these differences on body size and shape. PMID:24133450

  10. Neprilysin participates in skeletal muscle regeneration and is accumulated in abnormal muscle fibres of inclusion body myositis.

    PubMed

    Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta; Gliubizzi, Carla; Servidei, Tiziana; Pescatori, Mario; Tonali, Pietro A; Ricci, Enzo; Mirabella, Massimiliano

    2006-02-01

    Neprilysin (NEP, EP24.11), a metallopeptidase originally shown to modulate signalling events by degrading small regulatory peptides, is also an amyloid-beta- (Abeta) degrading enzyme. We investigated a possible role of NEP in inclusion body myositis (IBM) and other acquired and hereditary muscle disorders and found that in all myopathies NEP expression was directly associated with the degree of muscle fibre regeneration. In IBM muscle, NEP protein was also strongly accumulated in Abeta-bearing abnormal fibres. In vitro, during the experimental differentiation of myoblasts, NEP protein expression was regulated at the post-transcriptional level with a rapid increase in the early stage of myoblast differentiation followed by a gradual reduction thereafter, coincident with the progression of the myogenic programme. Treatment of differentiating muscle cells with the NEP inhibitor dl-3-mercapto-2-benzylpropanoylglycine resulted in impaired differentiation that was mainly associated with an abnormal regulation of Akt activation. Therefore, NEP may play an important role during muscle cell differentiation, possibly through the regulation, either directly or indirectly, of the insulin-like growth factor I-driven myogenic programme. In IBM muscle increased NEP may be instrumental in (i) reducing the Abeta accumulation in vulnerable fibres and (ii) promoting a repair/regenerative attempt of muscle fibres possibly through the modulation of insulin-like growth factor I-dependent pathways.

  11. Leukemia inhibitory factor: part of a large ingathering family.

    PubMed

    Taupin, J L; Pitard, V; Dechanet, J; Miossec, V; Gualde, N; Moreau, J F

    1998-01-01

    Leukemia Inhibitory Factor (LIF) has a wide variety of biological activities. It regulates the differentiation of embryonic stem cells, neural cells, osteoblasts, adipocytes, hepatocytes and kidney epithelial cells. It also triggers the proliferation of myoblasts, primordial germ cells and some endothelial cells. Many of these biological functions parallel those of interleukin-6, Oncostatin M, ciliary neurotrophic factor, interleukin-11 and cardiotrophin-1. These structurally related cytokines also share subunits of their receptors which could partially explain the redundancy in this system of soluble mediators. In vivo LIF proves important in regulating the inflammatory response by fine tuning of the delicate balance of at least four systems in the body, namely the immune, the hematopoietic, the nervous and the endocrine systems. Although we are far from its therapeutic applications, the fast increasing knowledge in this field may bring new insights for the understanding of the cytokine biology in general.

  12. De Novo Assembly of Auricularia polytricha Transcriptome Using Illumina Sequencing for Gene Discovery and SSR Marker Identification

    PubMed Central

    Zhou, Yan; Chen, Lianfu; Fan, Xiuzhi; Bian, Yinbing

    2014-01-01

    Auricularia polytricha (Mont.) Sacc., a type of edible black-brown mushroom with a gelatinous and modality-specific fruiting body, is in high demand in Asia due to its nutritional and medicinal properties. Illumina Solexa sequenceing technology was used to generate very large transcript sequences from the mycelium and the mature fruiting body of A. polytricha for gene discovery and molecular marker development. De novo assembly generated 36,483 ESTs with an N50 length of 636 bp. A total of 28,108 ESTs demonstrated significant hits with known proteins in the nr database, and 94.03% of the annotated ESTs showed the greatest similarity to A. delicata, a related species of A. polytricha. Functional categorization of the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed the conservation of genes involved in various biological processes in A. polytricha. Gene expression profile analysis indicated that a total of 2,057 ESTs were differentially expressed, including 1,020 ESTs that were up-regulated in the mycelium and 1,037 up-regulated in the fruiting body. Functional enrichment showed that the ESTs associated with biosynthesis, metabolism and assembly of proteins were more active in fruiting body development. The expression patterns of homologous transcription factors indicated that the molecular mechanisms of fruiting body formation and development were not exactly the same as for other agarics. Interestingly, an EST encoding tyrosinase was significantly up-regulated in the fruiting body, indicating that melanins accumulated during the processes of the formation of the black-brown color of the fruiting body in A. polytricha development. In addition, a total of 1,715 potential SSRs were detected in this transcriptome. The transcriptome analysis of A. polytricha provides valuable sequence resources and numerous molecular markers to facilitate further functional genomics studies and genetic researches on this fungus. PMID:24626227

  13. Medication effects on sleep and breathing.

    PubMed

    Seda, Gilbert; Tsai, Sheila; Lee-Chiong, Teofilo

    2014-09-01

    Sleep respiration is regulated by circadian, endocrine, mechanical and chemical factors, and characterized by diminished ventilatory drive and changes in Pao2 and Paco2 thresholds. Hypoxemia and hypercapnia are more pronounced during rapid eye movement. Breathing is influenced by sleep stage and airway muscle tone. Patient factors include medical comorbidities and body habitus. Medications partially improve obstructive sleep apnea and stabilize periodic breathing at altitude. Potential adverse consequences of medications include precipitation or worsening of disorders. Risk factors for adverse medication effects include aging, medical disorders, and use of multiple medications that affect respiration. Published by Elsevier Inc.

  14. Assembly of high-density lipoprotein.

    PubMed

    Yokoyama, Shinji

    2006-01-01

    Mammalian somatic cells do not catabolize cholesterol and need to export it for its homeostasis at the levels of cells and whole bodies. This reaction may reduce intracellularly accumulated cholesterol in excess and would contribute to prevention or regression of the initial stage of atherosclerosis. High-density lipoprotein (HDL) is thought to play a main role in this reaction, and 2 independent mechanisms are proposed for this reaction. First, cholesterol is exchanged in a nonspecific physicochemical manner between cell surface and extracellular lipoproteins, and cholesterol esterification on HDL provides a driving force for net removal of cell cholesterol. Second, apolipoproteins directly interact with cells and generate HDL by removing cellular phospholipid and cholesterol. This reaction is a major source of plasma HDL and is mediated by a membrane protein, ABCA1. Lipid-free or lipid-poor helical apolipoproteins primarily recruit cellular phospholipid to assemble HDL particles, and cholesterol enrichment in these particles is regulated independently. ABCA1 is a rate-limiting factor of the HDL assembly and is regulated by transcriptional factors and posttranscriptional factors. Posttranscriptional regulation of ABCA1 includes modulation of its calpain-mediated degradation.

  15. Associations among eating regulation and body mass index, weight, and body fat in college students: the moderating role of gender.

    PubMed

    Gropper, Sareen S; Arsiwalla, Dilbur D; Lord, Denali C; Huggins, Kevin W; Simmons, Karla P; Ulrich, Pamela V

    2014-04-01

    This study investigated associations between eating regulation behaviors and body mass index (BMI), weight, and percent body fat in male and female students over the first two years of college. Subjects included 328 college students (215 females and 113 males). Height and weight (via standard techniques), body composition (via bioelectrical impedance analysis), and eating regulation behaviors (using the Regulation of Eating Behavior Scale) were conducted two to three times during both the freshman and sophomore years. Significant associations between eating regulation and BMI, weight, and/or percent body fat were shown mostly in females. In females, higher BMI, weight, and/or percent body fat at the end of the second year of college were found in those with low levels of autonomous, intrinsic motivation, and identified regulation, and high levels of amotivation, while lower BMI, weight, and/or percent body fat were associated with high levels of autonomous, intrinsic motivation, and identified regulation, and low levels of amotivation. The findings that specific eating behaviors in females during the first two years of college influence BMI, weight, and/or percent body fat may be useful for inclusion in university programs focused on college student health to help decrease the risk of obesity and disordered eating/eating disorders in female college students. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Body weight homeostat that regulates fat mass independently of leptin in rats and mice

    PubMed Central

    Jansson, John-Olov; Hägg, Daniel A.; Schéle, Erik; Dickson, Suzanne L.; Anesten, Fredrik; Bake, Tina; Montelius, Mikael; Bellman, Jakob; Johansson, Maria E.; Cone, Roger D.; Drucker, Daniel J.; Wu, Jianyao; Aleksic, Biljana; Törnqvist, Anna E.; Sjögren, Klara; Gustafsson, Jan-Åke; Windahl, Sara H.; Ohlsson, Claes

    2018-01-01

    Subjects spending much time sitting have increased risk of obesity but the mechanism for the antiobesity effect of standing is unknown. We hypothesized that there is a homeostatic regulation of body weight. We demonstrate that increased loading of rodents, achieved using capsules with different weights implanted in the abdomen or s.c. on the back, reversibly decreases the biological body weight via reduced food intake. Importantly, loading relieves diet-induced obesity and improves glucose tolerance. The identified homeostat for body weight regulates body fat mass independently of fat-derived leptin, revealing two independent negative feedback systems for fat mass regulation. It is known that osteocytes can sense changes in bone strain. In this study, the body weight-reducing effect of increased loading was lost in mice depleted of osteocytes. We propose that increased body weight activates a sensor dependent on osteocytes of the weight-bearing bones. This induces an afferent signal, which reduces body weight. These findings demonstrate a leptin-independent body weight homeostat (“gravitostat”) that regulates fat mass. PMID:29279372

  17. Body-related self-conscious emotions relate to physical activity motivation and behavior in men.

    PubMed

    Castonguay, Andree L; Pila, Eva; Wrosch, Carsten; Sabiston, Catherine M

    2015-05-01

    The aim of this study was to examine the associations between the body-related self-conscious emotions of shame, guilt, and pride and physical activity motivation and behavior among adult males. Specifically, motivation regulations (external, introjected, indentified, intrinsic) were examined as possible mediators between each of the body-related self-conscious emotions and physical activity behavior. A cross-sectional study was conducted with adult men (N = 152; Mage = 23.72, SD = 10.92 years). Participants completed a questionnaire assessing body-related shame, guilt, authentic pride, hubristic pride, motivational regulations, and leisure-time physical activity. In separate multiple mediation models, body-related shame was positively associated with external and introjected regulations and negatively correlated with intrinsic regulation. Guilt was positively linked to external, introjected, and identified regulations. Authentic pride was negatively related to external regulation and positively correlated with both identified and intrinsic regulations and directly associated with physical activity behavior. Hubristic pride was positively associated with intrinsic regulation. Overall, there were both direct and indirect effects via motivation regulations between body-related self-conscious emotions and physical activity (R(2) shame = .15, guilt = .16, authentic pride = .18, hubristic pride = .16). These findings highlight the importance of targeting and understanding self-conscious emotions contextualized to the body and links to motivation and positive health behavior among men. © The Author(s) 2014.

  18. A role for leptin in sexual maturation and puberty?

    PubMed

    Kiess, W; Reich, A; Meyer, K; Glasow, A; Deutscher, J; Klammt, J; Yang, Y; Müller, G; Kratzsch, J

    1999-01-01

    Leptin, the ob gene product, is involved in the regulation of body weight in rodents, primates and humans. It provides a molecular basis for the lipostatic theory of the regulation of energy balance. White adipose tissue and placenta are the main sites of leptin synthesis. There is also evidence of ob gene expression in brown fat. Leptin seems to play a key role in the control of body fat stores by coordinated regulation of feeding behaviour, metabolic rate, autonomic nervous system regulation and body energy balance. Apart from the function of leptin in the central nervous system on the regulation of energy balance, it may well be one of the hormonal factors that signal to the brain the body's readiness for sexual maturation and reproduction. During late pregnancy and at birth when maternal fat stores have been developed, leptin levels are high. During these developmental stages leptin could be a messenger molecule signalling the adequacy of the fat stores for reproduction and maintenance of pregnancy. At later stages of gestation leptin could signal the expansion of fat stores in order to prepare the expectant mother for the energy requirements of full-term gestation, labour and lactation. Leptin serum concentrations change during pubertal development in rodents, primates and humans. In girls, leptin serum concentrations increase dramatically as pubertal development proceeds. The pubertal rise in leptin levels parallels the increase in body fat mass. In contrast, leptin levels increase shortly before and during the early stages of puberty in boys and decline thereafter. Testosterone has been found to suppress leptin synthesis by adipocytes both in vivo and in vitro. The decline of leptin levels in late puberty in boys accompanies increased androgen production during that time and most likely reflects suppression of leptin by testosterone and a decrease in fat mass and relative increase in muscle mass during late puberty in males. This overview focuses on those topics of leptin research which are of particular interest in reproductive and adolescent medicine. Copyright 1999 S. Karger AG, Basel

  19. [Regulated hypothermia after cardiac arrest. A glimpse into the future].

    PubMed

    Schneider, A; Popp, E; Böttiger, B W

    2006-12-01

    The introduction of therapeutic mild hypothermia after cardiac arrest allows the neuronal damage caused by global cerebral ischemia to be advantageously influenced for the first time. Currently, hypothermia is induced by external or internal cooling of the patient (forced hypothermia). However, this results in activation of counter-regulation mechanisms which could be possible risk factors for the patient. The aim of this article is to give a review of possible, but at present only experimental, methods which could allow the body temperature set point to be decreased pharmacologically (regulated hypothermia). Various classes of substances will be discussed based on their effect on thermoregulation and their performance in animal experiments on cerebral ischemia.

  20. Implications of mitochondrial uncoupling in skeletal muscle in the development and treatment of obesity.

    PubMed

    Thrush, A Brianne; Dent, Robert; McPherson, Ruth; Harper, Mary-Ellen

    2013-10-01

    Understanding the metabolic factors that contribute to obesity development and weight loss success are critical for combating obesity and obesity-related disorders. This review provides an overview of energy metabolism with a particular focus on mitochondrial function in health and in obesity. Mitochondrial proton leak contributes significantly to whole body energy expenditure and the potential role of energy uncoupling in weight loss success is discussed. We provide evidence to support the hypothesis that differences in energy efficiency are important regulators of body weight and weight loss success. © 2013 FEBS.

  1. The translation initiation factor 3 subunit eIF3K interacts with PML and associates with PML nuclear bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salsman, Jayme; Pinder, Jordan; Tse, Brenda

    2013-10-15

    The promyelocytic leukemia protein (PML) is a tumor suppressor protein that regulates a variety of important cellular processes, including gene expression, DNA repair and cell fate decisions. Integral to its function is the ability of PML to form nuclear bodies (NBs) that serve as hubs for the interaction and modification of over 90 cellular proteins. There are seven canonical isoforms of PML, which encode diverse C-termini generated by alternative pre-mRNA splicing. Recruitment of specific cellular proteins to PML NBs is mediated by protein–protein interactions with individual PML isoforms. Using a yeast two-hybrid screen employing peptide sequences unique to PML isoformmore » I (PML-I), we identified an interaction with the eukaryotic initiation factor 3 subunit K (eIF3K), and in the process identified a novel eIF3K isoform, which we term eIF3K-2. We further demonstrate that eIF3K and PML interact both in vitro via pull-down assays, as well as in vivo within human cells by co-immunoprecipitation and co-immunofluorescence. In addition, eIF3K isoform 2 (eIF3K-2) colocalizes to PML bodies, particularly those enriched in PML-I, while eIF3K isoform 1 associates poorly with PML NBs. Thus, we report eIF3K as the first known subunit of the eIF3 translation pre-initiation complex to interact directly with the PML protein, and provide data implicating alternative splicing of both PML and eIF3K as a possible regulatory mechanism for eIF3K localization at PML NBs. - Highlights: • The PML-I C-terminus, encoded by exon 9, interacts with translation factor eIF3K. • We identify a novel eIF3K isoform that excludes exon 2 (eIF3K-2). • eIF3K-2 preferentially associates with PML bodies enriched in PML-I vs. PML-IV. • Alternative splicing of eIF3K regulates association with PML bodies.« less

  2. Hormonal control of euryhalinity

    USGS Publications Warehouse

    Takei, Yoshio; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  3. Smolt physiology and endocrinology

    USGS Publications Warehouse

    McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  4. FGF-21 and skeletal remodeling during and after lactation in C57BL/6J mice.

    PubMed

    Bornstein, Sheila; Brown, Sue A; Le, Phuong T; Wang, Xunde; DeMambro, Victoria; Horowitz, Mark C; MacDougald, Ormond; Baron, Roland; Lotinun, Sutada; Karsenty, Gerard; Wei, Wei; Ferron, Mathieu; Kovacs, Christopher S; Clemmons, David; Wan, Yihong; Rosen, Clifford J

    2014-09-01

    Lactation is associated with significant alterations in both body composition and bone mass. Systemic and local skeletal factors such as receptor activator of nuclear factor κ-B ligand (RANKL), PTHrP, calcitonin, and estrogen are known to regulate bone remodeling during and after lactation. Fibroblast growth factor 21 (FGF-21) may function as an endocrine factor to regulate body composition changes during lactation by inducing gluconeogenesis and fatty acid oxidation. In this study, we hypothesized that the metabolic changes during lactation were due in part to increased circulating FGF-21, which in turn could accentuate bone loss. We longitudinally characterized body composition in C57BL/6J (B6) mice during (day 7 and day 21 of lactation) and after normal lactation (day 21 postlactation). At day 7 of lactation, areal bone density declined by 10% (P < .001), bone resorption increased (P < .0001), percent fat decreased by 20%, energy expenditure increased (P < .01), and markers of brown-like adipogenesis were suppressed in the inguinal depot and in preformed brown adipose tissue. At day 7 of lactation there was a 2.4-fold increase in serum FGF-21 vs baseline (P < .0001), a 8-fold increase in hepatic FGF-21 mRNA (P < .03), a 2-fold increase in undercarboxylated osteocalcin (Glu13 OCn) (P < .01), and enhanced insulin sensitivity. Recovery of total areal bone density was noted at day 21 of lactation, whereas the femoral trabecular bone volume fraction was still reduced (P < .01). Because FGF-21 levels rose rapidly at day 7 of lactation in B6 lactating mice, we next examined lactating mice with a deletion in the Fgf21 gene. Trabecular and cortical bone masses were maintained throughout lactation in FGF-21(-/-) mice, and pup growth was normal. Compared with lactating control mice, lactating FGF-21(-/-) mice exhibited an increase in bone formation, but no change in bone resorption. In conclusion, in addition to changes in calciotropic hormones, systemic FGF-21 plays a role in skeletal remodeling and changes in body composition during lactation in B6 mice.

  5. FGF-21 and Skeletal Remodeling During and After Lactation in C57BL/6J Mice

    PubMed Central

    Bornstein, Sheila; Brown, Sue A.; Le, Phuong T.; Wang, Xunde; DeMambro, Victoria; Horowitz, Mark C.; MacDougald, Ormond; Baron, Roland; Lotinun, Sutada; Karsenty, Gerard; Wei, Wei; Ferron, Mathieu; Kovacs, Christopher S.; Clemmons, David

    2014-01-01

    Lactation is associated with significant alterations in both body composition and bone mass. Systemic and local skeletal factors such as receptor activator of nuclear factor κ-B ligand (RANKL), PTHrP, calcitonin, and estrogen are known to regulate bone remodeling during and after lactation. Fibroblast growth factor 21 (FGF-21) may function as an endocrine factor to regulate body composition changes during lactation by inducing gluconeogenesis and fatty acid oxidation. In this study, we hypothesized that the metabolic changes during lactation were due in part to increased circulating FGF-21, which in turn could accentuate bone loss. We longitudinally characterized body composition in C57BL/6J (B6) mice during (day 7 and day 21 of lactation) and after normal lactation (day 21 postlactation). At day 7 of lactation, areal bone density declined by 10% (P < .001), bone resorption increased (P < .0001), percent fat decreased by 20%, energy expenditure increased (P < .01), and markers of brown-like adipogenesis were suppressed in the inguinal depot and in preformed brown adipose tissue. At day 7 of lactation there was a 2.4-fold increase in serum FGF-21 vs baseline (P < .0001), a 8-fold increase in hepatic FGF-21 mRNA (P < .03), a 2-fold increase in undercarboxylated osteocalcin (Glu13 OCn) (P < .01), and enhanced insulin sensitivity. Recovery of total areal bone density was noted at day 21 of lactation, whereas the femoral trabecular bone volume fraction was still reduced (P < .01). Because FGF-21 levels rose rapidly at day 7 of lactation in B6 lactating mice, we next examined lactating mice with a deletion in the Fgf21 gene. Trabecular and cortical bone masses were maintained throughout lactation in FGF-21−/− mice, and pup growth was normal. Compared with lactating control mice, lactating FGF-21−/− mice exhibited an increase in bone formation, but no change in bone resorption. In conclusion, in addition to changes in calciotropic hormones, systemic FGF-21 plays a role in skeletal remodeling and changes in body composition during lactation in B6 mice. PMID:24914939

  6. Growth factors in urologic tissues: detection, characterization, and clinical applications.

    PubMed

    Mydlo, J H; Macchia, R J

    1992-12-01

    During the last two decades, enormous strides have been made in understanding cellular and molecular biology. The direction of treatment of many neoplasms and other diseases are starting at the microscopic level. Growth factors are polypeptides that play a part in the development and maintenance of living tissues. We, as well as others, have investigated the role that growth factors play particularly in urologic tissues, both benign and malignant. We review several well-known growth factors and their function in prostate, kidney, and bladder tissues, as well as their functions in other regulating processes of the human body, and also the use of growth factors as tumor markers, and antibodies to growth factors as possible treatment of disease.

  7. Gravity and body mass regulation

    NASA Technical Reports Server (NTRS)

    Warren, L. E.; Horwitz, B. A.; Fuller, C. A.

    1997-01-01

    The effects of altered gravity on body mass, food intake, energy expenditure, and body composition are examined. Metabolic adjustments are reviewed in maintenance of energy balance, neural regulation, and humoral regulation are discussed. Experiments with rats indicate that genetically obese rats respond differently to hypergravity than lean rats.

  8. Trophic and neurotrophic factors in human pituitary adenomas (Review).

    PubMed

    Spoletini, Marialuisa; Taurone, Samanta; Tombolini, Mario; Minni, Antonio; Altissimi, Giancarlo; Wierzbicki, Venceslao; Giangaspero, Felice; Parnigotto, Pier Paolo; Artico, Marco; Bardella, Lia; Agostinelli, Enzo; Pastore, Francesco Saverio

    2017-10-01

    The pituitary gland is an organ that functionally connects the hypothalamus with the peripheral organs. The pituitary gland is an important regulator of body homeostasis during development, stress, and other processes. Pituitary adenomas are a group of tumors arising from the pituitary gland: they may be subdivided in functional or non-functional, depending on their hormonal activity. Some trophic and neurotrophic factors seem to play a key role in the development and maintenance of the pituitary function and in the regulation of hypothalamo-pituitary-adrenocortical axis activity. Several lines of evidence suggest that trophic and neurotrophic factors may be involved in pituitary function, thus suggesting a possible role of the trophic and neurotrophic factors in the normal development of pituitary gland and in the progression of pituitary adenomas. Additional studies might be necessary to better explain the biological role of these molecules in the development and progression of this type of tumor. In this review, in light of the available literature, data on the following neurotrophic factors are discussed: ciliary neurotrophic factor (CNTF), transforming growth factors β (TGF‑β), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), vascular endothelial growth inhibitor (VEGI), fibroblast growth factors (FGFs) and epidermal growth factor (EGF) which influence the proliferation and growth of pituitary adenomas.

  9. Brain-derived neurotrophic factor in the nucleus tractus solitarii modulates glucose homeostasis after carotid chemoreceptor stimulation in rats.

    PubMed

    Montero, Sergio; Cuéllar, Ricardo; Lemus, Mónica; Avalos, Reyes; Ramírez, Gladys; de Álvarez-Buylla, Elena Roces

    2012-01-01

    Neuronal systems, which regulate energy intake, energy expenditure and endogenous glucose production, sense and respond to input from hormonal related signals that convey information from body energy availability. Carotid chemoreceptors (CChr) function as sensors for circulating glucose levels and contribute to glycemic counterregulatory responses. Brain-derived neurotrophic factor (BDNF) that plays an important role in the endocrine system to regulate glucose metabolism could play a role in hyperglycemic glucose reflex with brain glucose retention (BGR) evoked by anoxic CChr stimulation. Infusing BDNF into the nucleus tractus solitarii (NTS) before CChr stimulation, showed that this neurotrophin increased arterial glucose and BGR. In contrast, BDNF receptor (TrkB) antagonist (K252a) infusions in NTS resulted in a decrease in both glucose variables.

  10. Can neuropeptides treat obesity? A review of neuropeptides and their potential role in the treatment of obesity

    PubMed Central

    Boughton, C K; Murphy, K G

    2013-01-01

    Obesity is a major worldwide public health issue. The physiological systems that regulate body weight are thus of great interest as targets for anti-obesity agents. Peptidergic systems are critical to the regulation of energy homeostasis by key regions in the hypothalamus and brainstem. A number of neuropeptide systems have therefore been investigated as potential treatments for obesity. Blocking orexigenic peptide signals such as neuropeptide Y, melanin-concentrating hormone, orexins, relaxin-3 and galanin-like peptide or stimulating anorectic signalling pathways used by peptides such as the melanocortins, ciliary neurotrophic factor and brain-derived neurotrophic factor, are approaches that have shown some promise, but which have also highlighted possible concerns. Manipulation of central peptidergic systems poses a number of therapeutic problems, including brain access and side effects. Given that the homeostatic defence of body weight may limit the effectiveness of any single-target therapy developed, a combination therapy approach may offer the best hope for the effective prevention and treatment of obesity. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7 PMID:23121386

  11. Differences in the origin of philosophy between Chinese medicine and Western medicine: Exploration of the holistic advantages of Chinese medicine.

    PubMed

    Sun, Da-zhi; Li, Shao-dan; Liu, Yi; Zhang, Yin; Mei, Rong; Yang, Ming-hui

    2013-09-01

    To explore advantages of Chinese medicine (CM) by analyzing differences in the origin of philosophy for human health between CM and Western medicine (WM). Methodologically, a distinctive feature of CM is its systems theory, which is also the difference between CM and WM. Since the birth of CM, it has taken the human body as a whole from the key concepts of "qi, blood, yin-yang, viscera (Zang-Fu), and meridian and channel", rather than a single cell or a particular organ. WM evolves from the Western philosophic way of thinking and merely uses natural sciences as the foundation. The development of WM is based on human structures, or anatomy, and therefore, research of WM is also based on the way of thinking of decomposing the whole human body into several independent parts, which is the impetus of promoting the development of WM. The core of CM includes the holistic view and the dialectical view. Chinese herbal medicines contain various components and treat a disease from multiple targets and links. Therefore, Chinese herbal medicines treat a diseased state by regulating and mobilizing the whole body rather than just regulating a single factor, since the diseased state is not only a problem in a local part of the body but a local reflection of imbalance of the whole body.

  12. Hibiscus sabdariffa L. aqueous extract attenuates hepatic steatosis through down-regulation of PPAR-γ and SREBP-1c in diet-induced obese mice.

    PubMed

    Villalpando-Arteaga, Edgar Vinicio; Mendieta-Condado, Edgar; Esquivel-Solís, Hugo; Canales-Aguirre, Arturo Alejandro; Gálvez-Gastélum, Francisco Javier; Mateos-Díaz, Juan Carlos; Rodríguez-González, Jorge Alberto; Márquez-Aguirre, Ana Laura

    2013-04-25

    The growing incidence of obesity is a worldwide public health problem leading to a risk factor for non-alcoholic fatty liver disease, which extends from steatosis to steatohepatitis and cirrhosis. We investigated whether the aqueous extract of Hibiscus sabdariffa L. (Hs) reduces body weight gain and protects the liver by improving lipid metabolism in high fat diet-induced obese C57BL/6NHsd mice. We found that oral administration of the Hs extract reduced fat tissue accumulation, diminished body weight gain and normalized the glycemic index as well as reduced dyslipidemia compared to the obese mice group that did not receive Hs treatment. In addition, Hs treatment attenuated liver steatosis, down-regulated SREBP-1c and PPAR-γ, blocked the increase of IL-1, TNF-α mRNA and lipoperoxidation and increased catalase mRNA. Our results suggest that the anti-obesity, anti-lipidemic and hepatoprotective effects of the Hs extract are related to the regulation of PPAR-γ and SREBP-1c in the liver.

  13. Genetics of Variation in Serum Uric Acid and Cardiovascular Risk Factors in Mexican Americans

    PubMed Central

    Voruganti, V. Saroja; Nath, Subrata D.; Cole, Shelley A.; Thameem, Farook; Jowett, Jeremy B.; Bauer, Richard; MacCluer, Jean W.; Blangero, John; Comuzzie, Anthony G.; Abboud, Hanna E.; Arar, Nedal H.

    2009-01-01

    Background: Elevated serum uric acid is associated with several cardiovascular disease (CVD) risk factors such as hypertension, inflammation, endothelial dysfunction, insulin resistance, dyslipidemia, and obesity. However, the role of uric acid as an independent risk factor for CVD is not yet clear. Objective: The aim of the study was to localize quantitative trait loci regulating variation in serum uric acid and also establish the relationship between serum uric acid and other CVD risk factors in Mexican Americans (n = 848; men = 310, women = 538) participating in the San Antonio Family Heart Study. Methods: Quantitative genetic analysis was conducted using variance components decomposition method, implemented in the software program SOLAR. Results: Mean ± sd of serum uric acid was 5.35 ± 1.38 mg/dl. Univariate genetic analysis showed serum uric acid and other CVD risk markers to be significantly heritable (P < 0.005). Bivariate analysis showed significant correlation of serum uric acid with body mass index, waist circumference, waist/hip ratio, total body fat, plasma insulin, serum triglycerides, high-density lipoprotein cholesterol, C-reactive protein, and granulocyte macrophage-colony stimulating factor (P < 0.05). A genome-wide scan for detecting quantitative trait loci regulating serum uric acid variation showed a significant logarithm of odds (LOD) score of 4.72 (empirical LOD score = 4.62; P < 0.00001) on chromosome 3p26. One LOD support interval contains 25 genes, of which an interesting candidate gene is chemokine receptor 2. Summary: There is a significant genetic component in the variation in serum uric acid and evidence of pleiotropy between serum uric acid and other cardiovascular risk factors. PMID:19001525

  14. Regulation of Blood Pressure and Salt Homeostasis by Endothelin

    PubMed Central

    KOHAN, DONALD E.; ROSSI, NOREEN F.; INSCHO, EDWARD W.; POLLOCK, DAVID M.

    2011-01-01

    Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension. PMID:21248162

  15. Body image flexibility moderates the association between disordered eating cognition and disordered eating behavior in a non-clinical sample of women: a cross-sectional investigation.

    PubMed

    Moore, Makeda; Masuda, Akihiko; Hill, Mary L; Goodnight, Bradley L

    2014-12-01

    Body image flexibility, a regulation process of openly and freely experiencing disordered eating thoughts and body dissatisfaction, has been found to be a buffering factor against disordered eating symptomatology. The present cross-sectional study investigates whether body image flexibility accounts for disordered eating behavior above and beyond disordered eating cognition, mindfulness, and psychological inflexibility in a sample of nonclinical women, and whether body image flexibility moderates the associations between these correlates and disordered eating behavior. Participants were 421 women, age 21±5.3 years old on average, who completed a web-based survey that included the self-report measures of interest. Results demonstrate the incremental effects of body image flexibility on disordered eating behavior above and beyond disordered eating cognition, mindfulness, and psychological inflexibility. Women with greater body image flexibility endorse disordered eating behavior less so than those with lower body image flexibility. Body image flexibility moderates the association between disordered eating cognition and disordered eating behavior; for women with greater body image flexibility, disordered eating cognition is not positively associated with disordered eating behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans

    PubMed Central

    Petrie, Michael A.; Kimball, Amy L.; McHenry, Colleen L.; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K.

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. Purpose: The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Methods: Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. Results: We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). Conclusion: These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair. PMID:27486743

  17. Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue.

    PubMed

    Fatima, L A; Campello, R S; Santos, R de Souza; Freitas, H S; Frank, A P; Machado, U F; Clegg, D J

    2017-12-01

    Vascular endothelial growth factor A (VEGFA) is a key factor in the regulation of angiogenesis in adipose tissue. Poor vascularization during adipose tissue proliferation causes fibrosis and local inflammation, and is associated with insulin resistance. It is known that 17-beta estradiol (E2) regulates adipose tissue function and VEGFA expression in other tissues; however, the ability of E2 to regulate VEGFA in adipose tissue is currently unknown. In this study, we showed that, in 3T3-L1 cells, E2 and the estrogen receptor 1 (ESR1) agonist PPT induced VEGFA expression, while ESR1 antagonist (MPP), and selective knockdown of ESR1 using siRNA decreased VEGFA and prevented the ability of E2 to modulate its expression. Additionally, we found that E2 and PPT induced the binding of hypoxia inducible factor 1 alpha subunit (HIF1A) in the VEGFA gene promoter. We further found that VEGFA expression was lower in inguinal and gonadal white adipose tissues of ESR1 total body knockout female mice compared to wild type mice. In conclusion, our data provide evidence of an important role for E2/ESR1 in modulating adipose tissue VEGFA, which is potentially important to enhance angiogenesis, reduce inflammation and improve adipose tissue function.

  18. Intestinal absorption of water-soluble vitamins in health and disease.

    PubMed

    Said, Hamid M

    2011-08-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. © The Authors Journal compilation © 2011 Biochemical Society

  19. Intestinal absorption of water-soluble vitamins in health and disease

    PubMed Central

    Said, Hamid M.

    2014-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. PMID:21749321

  20. Detrimental and protective fat: body fat distribution and its relation to metabolic disease.

    PubMed

    Booth, Andrea; Magnuson, Aaron; Foster, Michelle

    2014-01-01

    Obesity is linked to numerous comorbidities that include, but are not limited to, glucose intolerance, insulin resistance, dyslipidemia, and cardiovascular disease. Current evidence suggests, however, obesity itself is not an exclusive predictor of metabolic dysregulation but rather adipose tissue distribution. Obesity-related adverse health consequences occur predominately in individuals with upper body fat accumulation, the detrimental distribution, commonly associated with visceral obesity. Increased lower body subcutaneous adipose tissue, however, is associated with a reduced risk of obesity-induced metabolic dysregulation and even enhanced insulin sensitivity, thus, storage in this region is considered protective. The proposed mechanisms that causally relate the differential outcomes of adipose tissue distribution are often attributed to location and/or adipocyte regulation. Visceral adipose tissue effluent to the portal vein drains into the liver where hepatocytes are directly exposed to its metabolites and secretory products, whereas the subcutaneous adipose tissue drains systemically. Adipose depots are also inherently different in numerous ways such as adipokine release, immunity response and regulation, lipid turnover, rate of cell growth and death, and response to stress and sex hormones. Proximal extrinsic factors also play a role in the differential drive between adipose tissue depots. This review focuses on the deleterious mechanisms postulated to drive the differential metabolic response between central and lower body adipose tissue distribution.

  1. Identification of a functional element in the promoter of the silkworm (Bombyx mori) fat body-specific gene Bmlp3.

    PubMed

    Xu, Hanfu; Deng, Dangjun; Yuan, Lin; Wang, Yuancheng; Wang, Feng; Xia, Qingyou

    2014-08-01

    30K proteins are a group of structurally related proteins that play important roles in the life cycle of the silkworm Bombyx mori and are largely synthesized and regulated in a time-dependent manner in the fat body. Little is known about the upstream regulatory elements associated with the genes encoding these proteins. In the present study, the promoter of Bmlp3, a fat body-specific gene encoding a 30K protein family member, was characterized by joining sequences containing the Bmlp3 promoter with various amounts of 5' upstream sequences to a luciferase reporter gene. The results indicated that the sequences from -150 to -250bp and -597 to -675bp upstream of the Bmlp3 transcription start site were necessary for high levels of luciferase activity. Further analysis showed that a 21-bp sequence located between -230 and -250 was specifically recognized by nuclear factors from silkworm fat bodies and BmE cells, and could enhance luciferase reporter-gene expression 2.8-fold in BmE cells. This study provides new insights into the Bmlp3 promoter and contributes to the further clarification of the function and developmental regulation of Bmlp3. Copyright © 2014. Published by Elsevier B.V.

  2. Interleukin-15 Modulates Adipose Tissue by Altering Mitochondrial Mass and Activity

    PubMed Central

    Barra, Nicole G.; Palanivel, Rengasamy; Denou, Emmanuel; Chew, Marianne V.; Gillgrass, Amy; Walker, Tina D.; Kong, Josh; Richards, Carl D.; Jordana, Manel; Collins, Stephen M.; Trigatti, Bernardo L.; Holloway, Alison C.; Raha, Sandeep; Steinberg, Gregory R.; Ashkar, Ali A.

    2014-01-01

    Interleukin-15 (IL-15) is an immunomodulatory cytokine that affects body mass regulation independent of lymphocytes; however, the underlying mechanism(s) involved remains unknown. In an effort to investigate these mechanisms, we performed metabolic cage studies, assessed intestinal bacterial diversity and macronutrient absorption, and examined adipose mitochondrial activity in cultured adipocytes and in lean IL-15 transgenic (IL-15tg), overweight IL-15 deficient (IL-15−/−), and control C57Bl/6 (B6) mice. Here we show that differences in body weight are not the result of differential activity level, food intake, or respiratory exchange ratio. Although intestinal microbiota differences between obese and lean individuals are known to impact macronutrient absorption, differing gut bacteria profiles in these murine strains does not translate to differences in body weight in colonized germ free animals and macronutrient absorption. Due to its contribution to body weight variation, we examined mitochondrial factors and found that IL-15 treatment in cultured adipocytes resulted in increased mitochondrial membrane potential and decreased lipid deposition. Lastly, IL-15tg mice have significantly elevated mitochondrial activity and mass in adipose tissue compared to B6 and IL-15−/− mice. Altogether, these results suggest that IL-15 is involved in adipose tissue regulation and linked to altered mitochondrial function. PMID:25517731

  3. Von Willebrand factor regulation of blood vessel formation.

    PubMed

    Randi, Anna M; Smith, Koval E; Castaman, Giancarlo

    2018-06-04

    Several important physiological processes, from permeability to inflammation to haemostasis, take place at the vessel wall and are regulated by endothelial cells (EC). Thus, proteins that have been identified as regulators of one process are increasingly found to be involved in other vascular functions. Such is the case for Von Willebrand Factor (VWF), a large glycoprotein best known for its critical role in haemostasis. In vitro and in vivo studies have shown that lack of VWF causes enhanced vascularisation, both constitutively and following ischemia. This evidence is supported by studies on blood outgrowth endothelial cells (BOEC) from patients with lack of VWF synthesis (type 3 von Willebrand disease [VWD]). The molecular pathways are likely to involve VWF binding partners, such as integrin αvβ3, and components of Weibel Palade bodies (WPB), such as Angiopoietin-2 and Galectin-3, whose storage is regulated by VWF; these converge on the master regulator of angiogenesis and endothelial homeostasis, vascular endothelial growth factor (VEGF) signalling. Recent studies suggest that the roles of VWF may be tissue-specific. The ability of VWF to regulate angiogenesis has clinical implications for a subset of VWD patients with severe, intractable gastrointestinal bleeding due to vascular malformations. In this article, we review the evidence showing that VWF is involved in blood vessel formation, discuss the role of VWF high molecular weight multimers in regulating angiogenesis, and the value of studies on BOEC in developing a precision medicine approach to validate novel treatments for angiodysplasia in congenital VWD and acquired von Willebrand syndrome. Copyright © 2018 American Society of Hematology.

  4. A link between hypothyroidism, obesity and male reproduction.

    PubMed

    Aiceles, Veronica; da Fonte Ramos, Cristiane

    2016-01-01

    Hypothyroidism is a condition in which the serum levels of thyroid hormones are below that necessary to carry out physiological functions in the body. Hypothyroidism is related to obesity as an increase in body weight gain is seen in hypothyroid patients. Moreover, an inverse correlation between free thyroxine values and body mass index has been reported. Leptin, a polypeptide hormone produced by adipocytes, was originally thought to be an antiobesity hormone due its anorexic effects on hypothalamic appetite regulation. However, nowadays it is known that leptin conveys information about the nutritional status to the brain being considered a crucial endocrine factor for regulating several physiological processes including reproduction. Since the identification of thyroid hormone and leptin receptors on the testes, these hormones are being recognized as having important roles in male reproductive functions. A clear link exists among thyroid hormones, leptin and reproduction. Both hormones can negatively affect spermatogenesis and consequently may cause male infertility. The World Health Organization (WHO) estimates the overall prevalence of primary infertility ranging from 8 to 15%. The fact that 30% of couples' inability to conceive is related to a male factor and that the longer hypothyroidism persisted, the greater the damage to the testes, strongly suggest that more studies attempting to clarify both hormones actions directly in the testes need to be conducted specially in cases of congenital hypothyroidism. Therefore, the goal of this review is to highlight the relationship of such hormones in the reproductive system.

  5. Neuroendocrine regulation of somatic growth in fishes.

    PubMed

    Dai, XiangYan; Zhang, Wei; Zhuo, ZiJian; He, JiangYan; Yin, Zhan

    2015-02-01

    Growth is a polygenic trait that is under the influence of multiple physiological pathways regulating energy metabolism and muscle growth. Among the possible growth-regulating pathways in vertebrates, components of the somatotropic axis are thought to have the greatest influence. There is growing body of literature focusing on the somatotropic axis and its role regulating growth in fish. This includes research into growth hormone, upstream hypothalamic hormones, insulin-like growth factors, and downstream signaling molecules. Many of these signals have both somatic effects stimulating the growth of tissues and metabolic effects that play a role in nutrient metabolism. Signals of other endocrine axes exhibit profound effects on the function of the somatotropic axis in vivo. In this review we highlight recent advances in our understanding of the teleost fish endocrine somatotropic axis, including emerging research using genetic modified models. These studies have revealed new aspects and challenges associated with regulation of the important steps of somatic growth.

  6. Mechanisms of tubular sodium chloride transport.

    PubMed

    Venkatesh, S; Schrier, R W; Andreoli, T E

    1998-11-01

    Extracellular fluid volume is determined by sodium and its accompanying anions. There are control mechanisms which regulate sodium balance in the body. These include high and low pressure baroreceptors, intrarenal baroreceptors, renal autoregulation, tubuloglomerular feedback, aldosterone, and numerous other physical and hormonal factors. Sodium transport by the nephron involves active and passive processes which occur in several different nephron segments. Mechanisms of cotransport, Na(+)-H+ exchange, antiporters and ion-specific channels are all utilized by the nephron to maintain sodium balance. These regulatory factors and transport mechanisms for sodium in the kidney will he discussed in detail.

  7. Exploring the factors influencing clinical students' self-regulated learning.

    PubMed

    Berkhout, Joris J; Helmich, Esther; Teunissen, Pim W; van den Berg, Joost W; van der Vleuten, Cees P M; Jaarsma, A Debbie C

    2015-06-01

    The importance of self-regulated learning (SRL) has been broadly recognised by medical education institutions and regulatory bodies. Supporting the development of SRL skills has proven difficult because self-regulation is a complex interactive process and we know relatively little about the factors influencing this process in real practice settings. The aim of our study was therefore to identify factors that support or hamper medical students' SRL in a clinical context. We conducted a constructivist grounded theory study using semi-structured interviews with 17 medical students from two universities enrolled in clerkships. Participants were purposively sampled to ensure variety in age, gender, experience and current clerkship. The Day Reconstruction Method was used to help participants remember their activities of the previous day. The interviews were transcribed verbatim and analysed iteratively using constant comparison and open, axial and interpretive coding. Self-regulated learning by students in the clinical environment was influenced by the specific goals perceived by students, the autonomy they experienced, the learning opportunities they were given or created themselves, and the anticipated outcomes of an activity. All of these factors were affected by personal, contextual and social attributes. Self-regulated learning of medical students in the clinical environment is different for every individual. The factors influencing this process are affected by personal, social and contextual attributes. Some of these are similar to those known from previous research in classroom settings, but others are unique to the clinical environment and include the facilities available, the role of patients, and social relationships pertaining to peers and other hospital staff. To better support students' SRL, we believe it is important to increase students' metacognitive awareness and to offer students more tailored learning opportunities. © 2015 John Wiley & Sons Ltd.

  8. Spatiotemporal intracellular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function.

    PubMed

    Bronfman, F C; Lazo, O M; Flores, C; Escudero, C A

    2014-01-01

    Neurons possess a polarized morphology specialized to contribute to neuronal networks, and this morphology imposes an important challenge for neuronal signaling and communication. The physiology of the network is regulated by neurotrophic factors that are secreted in an activity-dependent manner modulating neuronal connectivity. Neurotrophins are a well-known family of neurotrophic factors that, together with their cognate receptors, the Trks and the p75 neurotrophin receptor, regulate neuronal plasticity and survival and determine the neuronal phenotype in healthy and regenerating neurons. Is it now becoming clear that neurotrophin signaling and vesicular transport are coordinated to modify neuronal function because disturbances of vesicular transport mechanisms lead to disturbed neurotrophin signaling and to diseases of the nervous system. This chapter summarizes our current understanding of how the regulated secretion of neurotrophin, the distribution of neurotrophin receptors in different locations of neurons, and the intracellular transport of neurotrophin-induced signaling in distal processes are achieved to allow coordinated neurotrophin signaling in the cell body and axons.

  9. Associated analysis of single nucleotide polymorphisms found on exon 3 of the IGF-1 gene with Tibetan miniature pig growth traits.

    PubMed

    Yue, M; Tian, Y G; Wang, Y J; Gu, Y; Bayaer, N; Hu, Q; Gu, W W

    2014-02-27

    The IGF-1 gene is an important regulating factor that has a growth-promoting effect on growth hormone. The IGF-1 gene promotes muscle cell differentiation in the muscle cell formation process. The IGF-1 gene also regulates the growth of skeletal muscle during skeletal muscle growth. In addition, the IGF-1 gene plays an important role in the formation of mammals and poultry embryos, and the process of postnatal growth. The IGF-1 gene has been implicated as a candidate gene for the regulation of pig growth traits. We analyzed exon 3 of the IGF-1 gene polymorphism in Tibetan miniature pigs (N = 128) by polymerase chain reaction-single-strand conformation polymorphism and DNA sequencing. One single nucleotide polymorphism (T40C) was found on exon 3 of the IGF-1 gene. Statistical analysis of genotype frequencies revealed that the T allele was dominant in Tibetan miniature pigs at the T40C locus. The association analysis showed that the IGF-1 mutation had an effect on the body weight, body length, and chest circumference of pigs aged 6-8 months. In addition, the IGF-1 mutation had an effect on body weight in pigs aged 9-11 months (P < 0.05). We speculated that the pigs with the TT genotype grow more rapidly compared to those with the TC genotype. The TC genotype of the Tibetan miniature pig has a smaller body type. This information provides a theoretical basis for the genetic background of Tibetan miniature pigs.

  10. Genetic regulation of pre-pubertal development of body mass index: a longitudinal study of Japanese twin boys and girls.

    PubMed

    Silventoinen, Karri; Kaprio, Jaakko; Yokoyama, Yoshie

    2011-03-01

    We analyzed the genetic architecture of prepubertal development of relative weight to height in 216 monozygotic and 159 dizygotic complete Japanese twin pairs (52% girls). Ponderal index at birth (kg/m(3)) and body mass index (BMI, kg/m(2)) from 1 to 11 years of age were used. Additive genetic factors explained the major proportion (52-74%) of the variation of BMI from 1 to 11 years of age. Environmental factors common to both co-twins also showed some effect (7-28%), but at most ages this was not statistically significant. Strong genetic tracking was found for BMI from 1 to 11 years of age, but there was also evidence for a persistent effect of common environmental factors. Our results suggest that the genetic architecture of BMI development in the Japanese population is generally similar to that found in previous twin studies in Caucasian populations.

  11. The carotid body in Sudden Infant Death Syndrome.

    PubMed

    Porzionato, Andrea; Macchi, Veronica; Stecco, Carla; De Caro, Raffaele

    2013-01-01

    The aim of the present study is to provide a review of cytochemical, clinical and experimental data indicating disruption of perinatal carotid body maturation as one of the possible mechanisms underlying SIDS pathogenesis. SIDS victims have been reported to show alterations in respiratory regulation which may partly be ascribed to peripheral arterial chemoreceptors. Carotid body findings in SIDS victims, although not entirely confirmed by other authors, have included reductions in glomic tissue volume and cytoplamic granules of type I cells, changes in cytological composition (higher percentages of progenitor and type II cells) and increases in dopamine and noradrenaline contents. Prematurity and environmental factors, such as exposure to tobacco smoke, substances of abuse, hyperoxia and continuous or intermittent hypoxia, increase the risk of SIDS and are known to affect carotid body functional and structural maturation adversely, supporting a role for peripheral arterial chemoreceptors in SIDS. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. BDNF levels in adipose tissue and hypothalamus were reduced in mice with MSG-induced obesity.

    PubMed

    Jin, Yong Jun; Cao, Peng Juan; Bian, Wei Hua; Li, Ming E; Zhou, Rong; Zhang, Ling Yun; Yang, Mei Zi

    2015-01-01

    To observe the expression of brain-derived neurotrophic factor (BDNF) in hypothalamic and adipose tissue in mice with monosodium glutamate (MSG)-induced obesity. The effects of hypothalamic lesions, specifically arcuate nucleus (ARC) lesions, induced by MSG injection were studied in male ICR mice at the neonatal stage. The following parameters were compared: body weight, body length, Lee's index, food intake, body temperature, fat weight, and levels of total cholesterol (CHOL), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and blood glucose (GLU). The BDNF expression levels in hypothalamic and adipose tissue were measured using western blotting. Results Compared with the control group, the model group body had significantly higher weight, Lee's index, food intake, fat weight, CHOL, TG, LDL, HDL, and GLU levels. BDNF expression levels in hypothalamic and adipose tissue were markedly down-regulated in the model group. BDNF may be closely associated with MSG-induced hypothalamic obesity.

  13. Conscientiousness: Origins in Childhood?

    PubMed Central

    Eisenberg, Nancy; Duckworth, Angela L.; Spinrad, Tracy L.; Valiente, Carlos

    2012-01-01

    In this review, we evaluate developmental and personality research with the aim of determining if the personality trait of conscientiousness can be identified in children and adolescents. After concluding that conscientiousness does emerge in childhood, we discuss the developmental origins of conscientiousness with a specific focus on self-regulation, academic motivation, and internalized compliance/internalization of standards. Based on the accumulated body of evidence, we conclude that self-regulation fosters conscientiousness later in life, both directly and via academic motivation and internalized compliance with norms. We argue that elements of conscientiousness are evident by early childhood, self-regulation skills are likely a core developmental component of conscientiousness, and despite the contribution of heredity to the aforementioned aspects of functioning, environmental factors likely contribute to conscientiousness. PMID:23244405

  14. Self-Esteem Is Relatively Stable Late in Life: The Role of Resources in the Health, Self-Regulation, and Social Domains

    ERIC Educational Resources Information Center

    Wagner, Jenny; Hoppmann, Christiane; Ram, Nilam; Gerstorf, Denis

    2015-01-01

    A large body of research has documented changes in self-esteem across adulthood and individual-difference correlates thereof. However, little is known about whether people maintain their self-esteem until the end of life and what role key risk factors in the health, cognitive, self-regulatory, and social domains play. To examine these questions,…

  15. Microbiota regulate the development and function of the immune cells.

    PubMed

    Yu, Qing; Jia, Anna; Li, Yan; Bi, Yujing; Liu, Guangwei

    2018-03-04

    Microbiota is a group of microbes coexisting and co-evolving with the immune system in the host body for millions of years. There are mutual interaction between microbiota and the immune system. Immune cells can shape the populations of microbiota in the gut of animals and humans, and the presence of microbiota and the microbial products can regulate the development and function of the immune cells in the host. Although microbiota resides mainly at the mucosa, the effect of microbiota on the immune system can be both local at the mucosa and systemic through the whole body. At the mucosal sites, the presences of microbiota and microbial products have a direct effect on the immune cells. Microbiota induces production of effectors from immune cells, such as cytokines and inflammatory factors, influencing the further development and function of the immune cells. Experimental data have shown that microbial products can influence the activity of some key factors in signaling pathways. At the nonmucosal sites, such as the bone marrow, peripheral lymph nodes, and spleen, microbiota can also regulate the development and function of the immune cells via several mechanisms in mice, such as introduction of chromatin-level changes through histone acetylation and DNA methylation. Given the important effect of microbiota on the immune system, many immunotherapies that are mediated by immune system rely on gut microbiota. Thus, the study of how microbiota influences immune system bring a potential therapy prospect in preventing and treating diseases.

  16. Regulated recovery of pulsatile growth hormone secretion from negative feedback: a preclinical investigation

    PubMed Central

    Bowers, Cyril Y.

    2011-01-01

    Although stimulatory (feedforward) and inhibitory (feedback) dynamics jointly control neurohormone secretion, the factors that supervise feedback restraint are poorly understood. To parse the regulation of growth hormone (GH) escape from negative feedback, 25 healthy men and women were studied eight times each during an experimental GH feedback clamp. The clamp comprised combined bolus infusion of GH or saline and continuous stimulation by saline GH-releasing hormone (GHRH), GHRP-2, or both peptides after randomly ordered supplementation with placebo (both sexes) vs. E2 (estrogen; women) and T (testosterone; men). Endpoints were GH pulsatility and entropy (a model-free measure of feedback quenching). Gender determined recovery of pulsatile GH secretion from negative feedback in all four secretagog regimens (0.003 ≤ P ≤ 0.017 for women>men). Peptidyl secretagog controlled the mass, number, and duration of feedback-inhibited GH secretory bursts (each, P < 0.001). E2/T administration potentiated both pulsatile (P = 0.006) and entropic (P < 0.001) modes of GH recovery. IGF-I positively predicted the escape of GH secretory burst number and mode (P = 0.022), whereas body mass index negatively forecast GH secretory burst number and mass (P = 0.005). The composite of gender, body mass index, E2, IGF-I, and peptidyl secretagog strongly regulates the escape of pulsatile and entropic GH secretion from autonegative feedback. The ensemble factors identified in this preclinical investigation enlarge the dynamic model of GH control in humans. PMID:21795635

  17. Mechanistic and regulatory aspects of intestinal iron absorption

    PubMed Central

    Gulec, Sukru; Anderson, Gregory J.

    2014-01-01

    Iron is an essential trace mineral that plays a number of important physiological roles in humans, including oxygen transport, energy metabolism, and neurotransmitter synthesis. Iron absorption by the proximal small bowel is a critical checkpoint in the maintenance of whole-body iron levels since, unlike most other essential nutrients, no regulated excretory systems exist for iron in humans. Maintaining proper iron levels is critical to avoid the adverse physiological consequences of either low or high tissue iron concentrations, as commonly occurs in iron-deficiency anemia and hereditary hemochromatosis, respectively. Exquisite regulatory mechanisms have thus evolved to modulate how much iron is acquired from the diet. Systemic sensing of iron levels is accomplished by a network of molecules that regulate transcription of the HAMP gene in hepatocytes, thus modulating levels of the serum-borne, iron-regulatory hormone hepcidin. Hepcidin decreases intestinal iron absorption by binding to the iron exporter ferroportin 1 on the basolateral surface of duodenal enterocytes, causing its internalization and degradation. Mucosal regulation of iron transport also occurs during low-iron states, via transcriptional (by hypoxia-inducible factor 2α) and posttranscriptional (by the iron-sensing iron-regulatory protein/iron-responsive element system) mechanisms. Recent studies demonstrated that these regulatory loops function in tandem to control expression or activity of key modulators of iron homeostasis. In health, body iron levels are maintained at appropriate levels; however, in several inherited disorders and in other pathophysiological states, iron sensing is perturbed and intestinal iron absorption is dysregulated. The iron-related phenotypes of these diseases exemplify the necessity of precisely regulating iron absorption to meet body demands. PMID:24994858

  18. Cyclophosphamide Alters the Gene Expression Profile in Patients Treated with High Doses Prior to Stem Cell Transplantation

    PubMed Central

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Background Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. Methods We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Results Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. Conclusion This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression. PMID:24466173

  19. Cyclophosphamide alters the gene expression profile in patients treated with high doses prior to stem cell transplantation.

    PubMed

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression.

  20. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3

    PubMed Central

    Lateef, Dalya M.; Abreu-Vieira, Gustavo; Xiao, Cuiying

    2014-01-01

    Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3−/y) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3−/y metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3−/y mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3−/y mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3−/y mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3−/y mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue. PMID:24452453

  1. What Can We Learn About the Processes of Regulation of Tuberculosis Medicines From the Experiences of Health Policy and System Actors in India, Tanzania, and Zambia?

    PubMed

    Sheikh, Kabir; Uplekar, Mukund

    2016-03-09

    The unregulated availability and irrational use of tuberculosis (TB) medicines is a major issue of public health concern globally. Governments of many low- and middle-income countries (LMICs) have committed to regulating the quality and availability of TB medicines, but with variable success. Regulation of TB medicines remains an intractable challenge in many settings, but the reasons for this are poorly understood. The objective of this paper is to elaborate processes of regulation of quality and availability of TB medicines in three LMICs - India, Tanzania, and Zambia - and to understand the factors that constrain and enable these processes. We adopted the action-centred approach of policy implementation analysis that draws on the experiences of relevant policy and health system actors in order to understand regulatory processes. We drew on data from three case studies commissioned by the World Health Organization (WHO), on the regulation of TB medicines in India, Tanzania, and Zambia. Qualitative research methods were used, including in-depth interviews with 89 policy and health system actors and document review. Data were organized thematically into accounts of regulators' authority and capacity; extent of policy implementation; and efficiency, transparency, and accountability. In India, findings included the absence of a comprehensive policy framework for regulation of TB medicines, constraints of authority and capacity of regulators, and poor implementation of prescribing and dispensing norms in the majority private sector. Tanzania had a policy that restricted import, prescribing and dispensing of TB medicines to government operators. Zambia procured and dispensed TB medicines mainly through government services, albeit in the absence of a single policy for restriction of medicines. Three cross-cutting factors emerged as crucially influencing regulatory processes - political and stakeholder support for regulation, technical and human resource capacity of regulatory bodies, and the manner of private actors' influence on regulatory policy and implementation. Strengthening regulation to ensure the quality and availability of TB medicines in LMIC with emerging private markets may necessitate financial and technical inputs to upgrade regulatory bodies, as well as broader political and ethical actions to reorient and transform their current roles. © 2016 by Kerman University of Medical Sciences

  2. Improvements in Cardiovascular Risk Factors in Young Adults in a Randomized Trial of Approaches to Weight Gain Prevention

    PubMed Central

    Wing, Rena R.; Tate, Deborah F.; Garcia, Katelyn R.; Bahnson, Judy; Lewis, Cora E.; Espeland, Mark A.

    2017-01-01

    Objective Weight gain occurs commonly in young adults and increases cardiovascular (CVD) risk. We previously reported that two self-regulation interventions reduced weight gain relative to control. Here we examine whether these interventions also benefit CVD risk factors. Methods SNAP (Study of Novel Approaches to Weight Gain Prevention) was a randomized trial in 2 academic settings (N=599; 18–35 years; body mass index 21–30 kg/m2) comparing two interventions (Self-Regulation with Small Changes; Self-Regulation with Large Changes) and Control. Small Changes taught participants to make daily small changes (approximately 100 calorie) in intake and activity. Large Changes taught participants to initially lose 5–10 pounds to buffer anticipated weight gains. CVD risk factors were assessed at baseline and 2 years in 471 participants. Results Although Large Changes was associated with more beneficial changes in glucose, insulin, and HOMA-IR than Control, these differences were not significant after adjusting for multiple comparisons or 2-year weight change. Comparison of participants grouped by percent weight change baseline to 2 years showed significant differences for several CVD risk factors, with no interaction with treatment condition. Conclusions Magnitude of weight change, rather than specific weight gain prevention interventions, was related to changes in CVD risk factors in young adults. PMID:28782918

  3. Mechanisms affecting neuroendocrine and epigenetic regulation of body weight and onset of puberty: potential implications in the child born small for gestational age (SGA).

    PubMed

    Roth, Christian L; Sathyanarayana, Sheela

    2012-06-01

    Signaling peptides produced in peripheral tissues such as gut, adipose tissue, and pancreas communicate with brain centers, such as hypothalamus and hindbrain to manage energy homeostasis. These regulatory mechanisms of energy intake and storage have evolved during long periods of hunger in the evolution of man to protect the species from extinction. It is now clear that these circuitries are influenced by prenatal and postnatal environmental factors including endocrine disruptive chemicals. Hypothalamic appetite regulatory systems develop and mature in utero and early infancy, and involve signaling pathways that are important also for the regulation of puberty onset. Recent studies in humans and animals have shown that metabolic pathways involved in regulation of growth, body weight gain and sexual maturation are largely affected by epigenetic programming that can impact both current and future generations. In particular, intrauterine and early infantile developmental phases of high plasticity are susceptible to factors that affect metabolic programming that therefore, affect metabolic function throughout life. In children born small for gestational age, poor nutritional conditions during gestation can modify metabolic systems to adapt to expectations of chronic undernutrition. These children are potentially poorly equipped to cope with energy-dense diets and are possibly programmed to store as much energy as possible, leading to later obesity, metabolic syndrome, disturbed regulation of normal puberty and early onset of cardiovascular disease. Most cases of disturbed energy balance are likely a result of a combination of genetics, epigenetics and environment. This review will discuss potential mechanisms linking intrauterine growth retardation with changes in growth, energy homeostasis and sexual maturation.

  4. Central control of body temperature

    PubMed Central

    Morrison, Shaun F.

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289

  5. Central control of body temperature.

    PubMed

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  6. Neonatal immune challenge does not affect body weight regulation in rats.

    PubMed

    Spencer, Sarah J; Mouihate, Abdeslam; Galic, Michael A; Ellis, Shaun L; Pittman, Quentin J

    2007-08-01

    The perinatal environment plays a crucial role in programming many aspects of adult physiology. Myriad stressors during pregnancy, from maternal immune challenge to nutritional deficiency, can alter long-term body weight set points of the offspring. In light of the increasing concern over body weight issues, such as obesity and anorexia, in modern societies and accumulating evidence that developmental stressors have long-lasting effects on other aspects of physiology (e.g., fever, pain), we explored the role of immune system activation during neonatal development and its impact on body weight regulation in adulthood. Here we present a thorough evaluation of the effects of immune system activation (LPS, 100 microg/kg ip) at postnatal days 3, 7, or 14 on long-term body weight, adiposity, and body weight regulation after a further LPS injection (50 microg/kg ip) or fasting and basal and LPS-induced circulating levels of the appetite-regulating proinflammatory cytokine leptin. We show that neonatal exposure to LPS at various times during the neonatal period has no long-term effects on growth, body weight, or adiposity. We also observed no effects on body weight regulation in response to a short fasting period or a further exposure to LPS. Despite reductions in circulating leptin levels in response to LPS during the neonatal period, no long-term effects on leptin were seen. These results convincingly demonstrate that adult body weight and weight regulation are, unlike many other aspects of adult physiology, resistant to programming by a febrile-dose neonatal immune challenge.

  7. Towards an Understanding of Physiological Body Mass Regulation: Seasonal Animal Models.

    PubMed

    Mercer, J G; Adam, C L; Morgan, P J

    2000-01-01

    This review is based around a number of interlinked hypotheses that can be summarised as follows: (i) mammalian body mass is regulated, (ii) the mechanisms that effect this regulation are common to all mammalian species, including humans, (iii) the neurochemical substrates involved in long term body mass regulation and in determining the level of body mass that will be defended may not be the same as those involved in short term energy homeostasis, or body mass defence, or may be differentially engaged, and (iv) "appropriate" body mass is encoded somewhere within the mammalian brain and acts as a comparator to influence both nutritional and reproductive physiology. These issues are of direct relevance to the epidemic of obesity in the Westernised human population and the poor success rate of conventional weight loss strategies. It is our contention that seasonal rodent models, and the Siberian hamster in particular, represent extremely valuable tools for the study of the mechanistic basis of body mass regulation. The Siberian hamster model is often perceived as an unusual mammalian variant that has evolved an almost counter-intuitive strategy for surviving periods of anticipated seasonal food shortage. However, there is compelling evidence that these animals are able to adjust their body mass continually and progressively according to their photoperiodic history, i.e. a seasonally-appropriate body mass. These adjustments to appropriate body mass are memorised even after the animals have been driven away from their normal body mass trajectory by imposed food restriction. Thus, photoperiod, acting through the pineal hormone, melatonin, is able to reset the desired body mass for a given time in the seasonal cycle. Importantly, daylength provides a tool to manipulate the body mass control system in an entirely physiological and stress-free manner. While resetting of body mass by photoperiod represents a level of control apparently confined to seasonal mammals, it has the potential to reveal mechanisms of generic importance in the regulation of energy homeostasis.

  8. Circulating levels of dickkopf-1, osteoprotegerin and sclerostin are higher in old compared with young men and women and positively associated with whole-body bone mineral density in older adults.

    PubMed

    Coulson, J; Bagley, L; Barnouin, Y; Bradburn, S; Butler-Browne, G; Gapeyeva, H; Hogrel, J-Y; Maden-Wilkinson, T; Maier, A B; Meskers, C; Murgatroyd, C; Narici, M; Pääsuke, M; Sassano, L; Sipilä, S; Al-Shanti, N; Stenroth, L; Jones, D A; McPhee, J S

    2017-09-01

    Bone mineral density declines with increasing older age. We examined the levels of circulating factors known to regulate bone metabolism in healthy young and older adults. The circulating levels of dickkopf-1, osteocalcin, osteoprotegerin and sclerostin were positively associated with whole-body bone mineral density (WBMD) in older adults, despite the average WBMD being lower and circulating dickkopf-1, osteoprotegerin and sclerostin being higher in old than young. This study aims to investigate the relationship between whole-body bone mineral density (WBMD) and levels of circulating factors with known roles in bone remodelling during 'healthy' ageing. WBMD and fasting plasma concentrations of dickkopf-1, fibroblast growth factor-23, osteocalcin, osteoprotegerin, osteopontin and sclerostin were measured in 272 older subjects (69 to 81 years; 52% female) and 171 younger subjects (18-30 years; 53% female). WBMD was lower in old than young. Circulating osteocalcin was lower in old compared with young, while dickkopf-1, osteoprotegerin and sclerostin were higher in old compared with young. These circulating factors were each positively associated with WBMD in the older adults and the relationships remained after adjustment for covariates (r values ranging from 0.174 to 0.254, all p < 0.01). In multivariate regression, the body mass index, circulating sclerostin and whole-body lean mass together accounted for 13.8% of the variation with WBMD in the older adults. In young adults, dickkopf-1 and body mass index together accounted for 7.7% of variation in WBMD. Circulating levels of dickkopf-1, osteocalcin, osteoprotegerin and sclerostin are positively associated with WBMD in community-dwelling older adults, despite the average WBMD being lower and circulating dickkopf-1, osteoprotegerin and sclerostin being higher in old than young.

  9. Membrane-association of mRNA decapping factors is independent of stress in budding yeast

    PubMed Central

    Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy

    2016-01-01

    Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation. PMID:27146487

  10. Membrane-association of mRNA decapping factors is independent of stress in budding yeast.

    PubMed

    Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy

    2016-05-05

    Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation.

  11. Regulation of cellular growth by the Drosophila target of rapamycin dTOR

    PubMed Central

    Zhang, Hongbing; Stallock, James P.; Ng, Joyce C.; Reinhard, Christoph; Neufeld, Thomas P.

    2000-01-01

    The TOR protein kinases (TOR1 and TOR2 in yeast; mTOR/FRAP/RAFT1 in mammals) promote cellular proliferation in response to nutrients and growth factors, but their role in development is poorly understood. Here, we show that the Drosophila TOR homolog dTOR is required cell autonomously for normal growth and proliferation during larval development, and for increases in cellular growth caused by activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As in mammalian cells, the kinase activity of dTOR is required for growth factor-dependent phosphorylation of p70 S6 kinase (p70S6K) in vitro, and we demonstrate that overexpression of p70S6K in vivo can rescue dTOR mutant animals to viability. Loss of dTOR also results in cellular phenotypes characteristic of amino acid deprivation, including reduced nucleolar size, lipid vesicle aggregation in the larval fat body, and a cell type-specific pattern of cell cycle arrest that can be bypassed by overexpression of the S-phase regulator cyclin E. Our results suggest that dTOR regulates growth during animal development by coupling growth factor signaling to nutrient availability. PMID:11069888

  12. Evaluation of the Compulsive Exercise Test (CET) in Adolescents with Eating Disorders: Factor Structure and Relation to Eating Disordered Psychopathology.

    PubMed

    Swenne, Ingemar

    2016-07-01

    The aims of this study were to explore the factor structure of the Compulsive Exercise Test (CET) in a clinical sample of Swedish adolescents with eating disorders (ED) and to study the relationship of CET with ED cognitions, body weight and exercise frequency. The compulsive Exercise Test, the Eating Disorders Examination-Questionnaire, body mass index (BMI) and exercise frequency were available at assessment of 210 adolescents (age 14.4 ± 1.6 years) with ED. Factor analysis generated four factors with close similarity to factors previously obtained in a community sample of adolescents samples and supported the use of the original version of CET. Exercise for weight control was strongly related to ED cognitions but less to exercise frequency and BMI. Exercise for regulation of mood was related to ED cognitions and exercise frequency but not to BMI. In adolescents with ED, different aspects of exercise are related to ED cognitions. This needs addressing in the treatment of adolescents with ED. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  13. Angiogenic Deficiency and Adipose Tissue Dysfunction Are Associated with Macrophage Malfunction in SIRT1−/− Mice

    PubMed Central

    Xu, Fen; Burk, David; Gao, Zhanguo; Yin, Jun; Zhang, Xia

    2012-01-01

    The histone deacetylase sirtuin 1 (SIRT1) inhibits adipocyte differentiation and suppresses inflammation by targeting the transcription factors peroxisome proliferator-activated receptor γ and nuclear factor κB. Although this suggests that adiposity and inflammation should be enhanced when SIRT1 activity is inactivated in the body, this hypothesis has not been tested in SIRT1 null (SIRT1−/−) mice. In this study, we addressed this issue by investigating the adipose tissue in SIRT1−/− mice. Compared with their wild-type littermates, SIRT1 null mice exhibited a significant reduction in body weight. In adipose tissue, the average size of adipocytes was smaller, the content of extracellular matrix was lower, adiponectin and leptin were expressed at 60% of normal level, and adipocyte differentiation was reduced. All of these changes were observed with a 50% reduction in capillary density that was determined using a three-dimensional imaging technique. Except for vascular endothelial growth factor, the expression of several angiogenic factors (Pdgf, Hgf, endothelin, apelin, and Tgf-β) was reduced by about 50%. Macrophage infiltration and inflammatory cytokine expression were 70% less in the adipose tissue of null mice and macrophage differentiation was significantly inhibited in SIRT1−/− mouse embryonic fibroblasts in vitro. In wild-type mice, macrophage deletion led to a reduction in vascular density. These data suggest that SIRT1 controls adipose tissue function through regulation of angiogenesis, whose deficiency is associated with macrophage malfunction in SIRT1−/− mice. The study supports the concept that inflammation regulates angiogenesis in the adipose tissue. PMID:22315447

  14. Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens

    PubMed Central

    Liu, Yong; Xu, Zhiqiang; Duan, Xiaohua; Li, Qihua; Dou, Tengfei; Gu, Dahai; Rong, Hua; Wang, Kun; Li, Zhengtian; Talpur, Mir Zulqarnain; Huang, Ying; Wang, Shanrong; Yan, Shixiong; Tong, Huiquan; Zhao, Sumei; Zhao, Guiping; Su, Zhengchang; Ge, Changrong

    2018-01-01

    The growth hormone / insulin-like growth factor-1 (GH/IGF-1) pathway of the somatotropic axis is the major controller for growth rate and body size in vertebrates, but the effect of selection on the expression of GH/IGF-1 somatotropic axis genes and their association with body size and growth performance in farm animals is not fully understood. We analyzed a time series of expression profiles of GH/IGF-1 somatotropic axis genes in two chicken breeds, the Daweishan mini chickens and Wuding chickens, and the commercial Avian broilers hybrid exhibiting markedly different body sizes and growth rates. We found that growth rate and feed conversion efficiency in Daweishan mini chickens were significantly lower than those in Wuding chickens and Avian broilers. The Wuding and Daweishan mini chickens showed higher levels of plasma GH, pituitary GH mRNA but lower levels of hepatic growth hormone receptor (GHR) mRNA than in Avian broilers. Daweishan mini chickens showed significantly lower levels of plasma IGF-1, thigh muscle and hepatic IGF-1 mRNA than did Avian broilers and Wuding chickens. These results suggest that the GH part of the somatotropic axis is the main regulator of growth rate, while IGF-1 may regulate both growth rate and body weight. Selection for growth performance and body size have altered the expression profiles of somatotropic axis genes in a breed-, age-, and tissue-specific manner, and manner, and alteration of regulatory mechanisms of these genes might play an important role in the developmental characteristics of chickens. PMID:29630644

  15. 41 CFR 102-37.560 - What is a public body?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY Donations to Public Bodies in Lieu of Abandonment/Destruction § 102-37.560 What is a public body...

  16. 41 CFR 102-37.560 - What is a public body?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY Donations to Public Bodies in Lieu of Abandonment/Destruction § 102-37.560 What is a public body...

  17. 41 CFR 102-37.560 - What is a public body?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY Donations to Public Bodies in Lieu of Abandonment/Destruction § 102-37.560 What is a public body...

  18. 41 CFR 102-37.560 - What is a public body?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY Donations to Public Bodies in Lieu of Abandonment/Destruction § 102-37.560 What is a public body...

  19. Projectile metallic foreign bodies in the orbit: a retrospective study of epidemiologic factors, management, and outcomes.

    PubMed

    Finkelstein, M; Legmann, A; Rubin, P A

    1997-01-01

    Intraorbital projectile metallic foreign bodies are associated with significant ocular and orbital injuries. The authors sought to evaluate epidemiologic factors, the incidence of associated ocular and orbital injury, and the nature and necessity of surgical intervention in these cases. Charts of all patients with projectile intraorbital metallic foreign bodies seen at our institution (27) over the preceding 7 years were evaluated with respect to age, sex, type of injury, associated ocular and orbital injuries, location of the projectile (anterior, epibulbar, or posterior), postinjury visual acuity, and surgical intervention. The majority of patients were male, between the ages of 11 and 30, and had BB pellet injuries. Thirteen projectiles were lodged anteriorly, 4 were in an epibulbar position, and the remaining 10 were posterior to the equator. Twelve of 13 anterior, and 4 of 4 epibulbar foreign bodies were removed surgically, whereas only 2 of 10 posterior foreign bodies required surgery. No case of surgical intervention resulted in a decrease of visual acuity. Associated ocular injuries were both more common and severe in patients with posteriorly located foreign bodies. Final visual acuity was better at presentation and at discharge in patients with anteriorly located foreign bodies. Intraorbital projectile metallic foreign bodies can be a source of significant ocular morbidity. Management of these cases is dependent on the location of the projectile. Ancillary radiographic studies can be helpful. Surgery to remove the projectile should be considered in each case, but foreign bodies that are not readily accessible often may be left safely in place. Closer regulation of the pellet gun industry, with an emphasis on education and protective eyewear use, would be helpful in reducing these injuries.

  20. Sexual dimorphisms in genetic loci linked to body fat distribution

    PubMed Central

    Pulit, Sara L.; Karaderi, Tugce

    2017-01-01

    Obesity is a chronic condition associated with increased morbidity and mortality and is a risk factor for a number of other diseases including type 2 diabetes and cardiovascular disease. Obesity confers an enormous, costly burden on both individuals and public health more broadly. Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes. Body fat distribution is distinct from overall obesity in measurement, but studies of body fat distribution can yield insights into the risk factors for and causes of overall obesity. Sexual dimorphism in body fat distribution is present throughout life. Though sexual dimorphism is subtle in early stages of life, it is attenuated in puberty and during menopause. This phenomenon could be, at least in part, due to the influence of sex hormones on the trait. Findings from recent large genome-wide association studies (GWAS) for various measures of body fat distribution (including waist-to-hip ratio, hip or waist circumference, trunk fat percentage and the ratio of android and gynoid fat percentage) emphasize the strong sexual dimorphism in the genetic regulation of fat distribution traits. Importantly, sexual dimorphism is not observed for overall obesity (as assessed by body mass index or total fat percentage). Notably, the genetic loci associated with body fat distribution, which show sexual dimorphism, are located near genes that are expressed in adipose tissues and/or adipose cells. Considering the epidemiological and genetic evidence, sexual dimorphism is a prominent feature of body fat distribution. Research that specifically focuses on sexual dimorphism in fat distribution can provide novel insights into human physiology and into the development of obesity and its comorbidities, as well as yield biological clues that will aid in the improvement of disease prevention and treatment. PMID:28073971

  1. Sexual dimorphisms in genetic loci linked to body fat distribution.

    PubMed

    Pulit, Sara L; Karaderi, Tugce; Lindgren, Cecilia M

    2017-02-28

    Obesity is a chronic condition associated with increased morbidity and mortality and is a risk factor for a number of other diseases including type 2 diabetes and cardiovascular disease. Obesity confers an enormous, costly burden on both individuals and public health more broadly. Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes. Body fat distribution is distinct from overall obesity in measurement, but studies of body fat distribution can yield insights into the risk factors for and causes of overall obesity. Sexual dimorphism in body fat distribution is present throughout life. Though sexual dimorphism is subtle in early stages of life, it is attenuated in puberty and during menopause. This phenomenon could be, at least in part, due to the influence of sex hormones on the trait. Findings from recent large genome-wide association studies (GWAS) for various measures of body fat distribution (including waist-to-hip ratio, hip or waist circumference, trunk fat percentage and the ratio of android and gynoid fat percentage) emphasize the strong sexual dimorphism in the genetic regulation of fat distribution traits. Importantly, sexual dimorphism is not observed for overall obesity (as assessed by body mass index or total fat percentage). Notably, the genetic loci associated with body fat distribution, which show sexual dimorphism, are located near genes that are expressed in adipose tissues and/or adipose cells. Considering the epidemiological and genetic evidence, sexual dimorphism is a prominent feature of body fat distribution. Research that specifically focuses on sexual dimorphism in fat distribution can provide novel insights into human physiology and into the development of obesity and its comorbidities, as well as yield biological clues that will aid in the improvement of disease prevention and treatment. © 2017 The Author(s).

  2. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis.

    PubMed

    Hara, Takafumi; Takeda, Taka-Aki; Takagishi, Teruhisa; Fukue, Kazuhisa; Kambe, Taiho; Fukada, Toshiyuki

    2017-03-01

    Zinc (Zn) is an essential trace mineral that regulates the expression and activation of biological molecules such as transcription factors, enzymes, adapters, channels, and growth factors, along with their receptors. Zn deficiency or excessive Zn absorption disrupts Zn homeostasis and affects growth, morphogenesis, and immune response, as well as neurosensory and endocrine functions. Zn levels must be adjusted properly to maintain the cellular processes and biological responses necessary for life. Zn transporters regulate Zn levels by controlling Zn influx and efflux between extracellular and intracellular compartments, thus, modulating the Zn concentration and distribution. Although the physiological functions of the Zn transporters remain to be clarified, there is growing evidence that Zn transporters are related to human diseases, and that Zn transporter-mediated Zn ion acts as a signaling factor, called "Zinc signal". Here we describe critical roles of Zn transporters in the body and their contribution at the molecular, biochemical, and genetic levels, and review recently reported disease-related mutations in the Zn transporter genes.

  3. Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation.

    PubMed

    Fernandéz-Taboada, Enrique; Moritz, Sören; Zeuschner, Dagmar; Stehling, Martin; Schöler, Hans R; Saló, Emili; Gentile, Luca

    2010-04-01

    Planarians are an ideal model system to study in vivo the dynamics of adult pluripotent stem cells. However, our knowledge of the factors necessary for regulating the 'stemness' of the neoblasts, the adult stem cells of planarians, is sparse. Here, we report on the characterization of the first planarian member of the LSm protein superfamily, Smed-SmB, which is expressed in stem cells and neurons in Schmidtea mediterranea. LSm proteins are highly conserved key players of the splicing machinery. Our study shows that Smed-SmB protein, which is localized in the nucleus and the chromatoid body of stem cells, is required to safeguard the proliferative ability of the neoblasts. The chromatoid body, a cytoplasmatic ribonucleoprotein complex, is an essential regulator of the RNA metabolism required for the maintenance of metazoan germ cells. However, planarian neoblasts and neurons also rely on its functions. Remarkably, Smed-SmB dsRNA-mediated knockdown results in a rapid loss of organization of the chromatoid body, an impairment of the ability to post-transcriptionally process the transcripts of Smed-CycB, and a severe proliferative failure of the neoblasts. This chain of events leads to a quick depletion of the neoblast pool, resulting in a lethal phenotype for both regenerating and intact animals. In summary, our results suggest that Smed-SmB is an essential component of the chromatoid body, crucial to ensure a proper RNA metabolism and essential for stem cell proliferation.

  4. Gene Expression Profiling of the Hypoxia Signaling Pathway in Hypoxia-Inducible Factor 1α Null Mouse Embryonic Fibroblasts

    PubMed Central

    Vengellur, Ajith; Woods, Barbara G.; Ryan, Heather E.; Johnson, Randall S.; Lapres, John J.

    2003-01-01

    Hypoxia is defined as a deficiency of oxygen reaching the tissues of the body, and it plays a critical role in development and pathological conditions, such as cancer. Once tumors outgrow their blood supply, their central portion becomes hypoxic and the tumor stimulates angiogenesis through the activation of the hypoxia-inducible factors (HIFs). HIFs are transcription factors that are regulated in an oxygen-dependent manner by a group of prolyl hydroxylases (known as PHDs or HPHs). Our understanding of hypoxia signaling is limited by our incomplete knowledge of HIF target genes. cDNA microarrays and a cell line lacking a principal HIF protein, HIF1α, were used to identify a more complete set of hypoxia-regulated genes. The microarrays identified a group of 286 clones that were significantly influenced by hypoxia and 54 of these were coordinately regulated by cobalt chloride. The expression profile of HIF1α −/− cells also identified a group of downregulated genes encoding enzymes involved in protecting cells from oxidative stress, offering an explanation for the increased sensitivity of HIF1α −/− cells to agents that promote this type of response. The microarray studies confirmed the hypoxia-induced expression of the HIF regulating prolyl hydroxylase, PHD2. An analysis of the members of the PHD family revealed that they are differentially regulated by cobalt chloride and hypoxia. These results suggest that HIF1α is the predominant isoform in fibroblasts and that it regulates a wide battery of genes critical for normal cellular function and survival under various stresses. PMID:14686790

  5. Bacterial body plans

    PubMed Central

    Rieger, Tomáš; Neubauer, Zdeněk; Blahůšková, Anna; Cvrčková, Fatima

    2008-01-01

    The bacterium Serratia marcescens produces a plethora of multicellular shapes of different colorations on solid substrates, allowing immediate visual detection of varieties. Such a plasticity allows studies on multicellular community scale spanning two extremes, from well-elaborated individual colonies to undifferentiated cell mass. For a single strain and medium, we obtained a range of different multicellular bodies, depending on the layout of initial plating. Four principal factors affecting the morphogenetic pathways of such bodies can be distinguished: (1) amount, density and distribution pattern of founder cells; (2) the configuration of surrounding free medium; (3) the presence and character of other bacterial bodies sharing the same niche; and (4) self-perception, resulting in delimitation towards other bodies. The last feature results in an ability of well-formed multicellular individuals to maintain their identity upon a close mutual contact, as well as in spontaneous separation of cell masses in experimental chimeras. We propose an “embryo-like” colony model where multicellular bacterial bodies develop along genuine ontogenetic pathways inherent to the given species (clone), while external shaping forces (like nutrient gradients, pH, etc.,) exert not formative, but only regulative roles in the process. PMID:19513204

  6. Bacterial body plans: Colony ontogeny in Serratia marcescens.

    PubMed

    Rieger, Tomás; Neubauer, Zdenek; Blahůsková, Anna; Cvrcková, Fatima; Markos, Anton

    2008-01-01

    The bacterium Serratia marcescens produces a plethora of multicellular shapes of different colorations on solid substrates, allowing immediate visual detection of varieties. Such a plasticity allows studies on multicellular community scale spanning two extremes, from well-elaborated individual colonies to undifferentiated cell mass.For a single strain and medium, we obtained a range of different multicellular bodies, depending on the layout of initial plating. Four principal factors affecting the morphogenetic pathways of such bodies can be distinguished: (1) amount, density and distribution pattern of founder cells; (2) the configuration of surrounding free medium; (3) the presence and character of other bacterial bodies sharing the same niche; and (4) self-perception, resulting in delimitation towards other bodies. The last feature results in an ability of well-formed multicellular individuals to maintain their identity upon a close mutual contact, as well as in spontaneous separation of cell masses in experimental chimeras. We propose an "embryo-like" colony model where multicellular bacterial bodies develop along genuine ontogenetic pathways inherent to the given species (clone), while external shaping forces (like nutrient gradients, pH, etc.,) exert not formative, but only regulative roles in the process.

  7. Recent genetic discoveries in osteoporosis, sarcopenia and obesity.

    PubMed

    Urano, Tomohiko; Inoue, Satoshi

    2015-01-01

    Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and an increased susceptibility to fractures. Evidence from genetic studies indicates that BMD, a complex quantitative trait with a normal distribution, is genetically controlled. Genome-wide association studies (GWAS) as well as studies using candidate gene approaches have identified single-nucleotide polymorphisms (SNPs) that are associated with BMD, osteoporosis and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding WNT/β-catenin signaling proteins. Understanding the genetics of osteoporosis will help to identify novel candidates for diagnostic and therapeutic targets. Genetic factors are also important for the development of sarcopenia, which is characterized by a loss of lean body mass, and obesity, which is characterized by high fat mass. Hence, in this review, we discuss the genetic factors, identified by genetic studies, which regulate the body components related to osteoporosis, sarcopenia, and obesity.

  8. Regulation of body mass in rats exposed to chronic acceleration

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Bull, L. S.; Oyama, J.

    1975-01-01

    Female rats approximately 6 mo old were chronically centrifuged for up to 30 days at 2.76 G or 3.18 G and sacrificed at intervals for body-composition study. Both fat and the fat-free body mass (FFBM) were reduced during the 1st wk of centrifugation, with the fat showing considerably more variation both within and between groups. The FFBM was reduced below control level to the same extent in rats fed commercial chow, a high-fat diet, or a high-protein diet or in rats prefasted to produce a body-mass deficit at the start of centrifugation. There were no centrifugation-associated changes in body water content. It was concluded that body fat showed no evidence of regulation, FFBM is regulated at any constant level of acceleration between 1 and 4.15 G, and the change in FFBM induced by a change in acceleration is probably not regulated.

  9. Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken.

    PubMed

    Tattersall, Rebecca J; Prashar, Ankush; Singh, Krish D; Tokarczuk, Pawel F; Erichsen, Jonathan T; Hocking, Paul M; Guggenheim, Jeremy A

    2010-02-02

    A reduction in the power of the crystalline lens during childhood is thought to be important in the emmetropization of the maturing eye. However, in humans and model organisms, little is known about the factors that determine the dimensions of the crystalline lens and in particular whether these different parameters (axial thickness, surface curvatures, equatorial diameter, and volume) are under a common source of control or regulated independently of other aspects of eye size and shape. Using chickens from a broiler-layer experimental cross as a model system, three-dimensional magnetic resonance imaging (MRI) scans were obtained at 115-microm isotropic resolution for one eye of 501 individuals aged 3-weeks old. After fixation with paraformaldehyde, the excised eyes were scanned overnight (16 h) in groups of 16 arranged in a 2x2x4 array. Lens dimensions were calculated from each image by fitting a three-dimensional mesh model to the lens, using the semi-automated analysis program mri3dX. The lens dimensions were compared to measures of eye and body size obtained in vivo using techniques that included keratometry and A-scan ultrasonography. A striking finding was that axial lens thickness measured using ex vivo MRI was only weakly correlated with lens thickness measured in vivo by ultrasonography (r=0.19, p<0.001). In addition, the MRI lens thickness estimates had a lower mean value and much higher variance. Indeed, about one-third of crystalline lenses showed a kidney-shaped appearance instead of the typical biconvex shape. Since repeat MRI scans of the same eye showed a high degree of reproducibility for the scanning and mri3dX analysis steps (the correlation in repeat lens thickness measurements was r=0.95, p<0.001) and a recent report has shown that paraformaldehyde fixation induces a loss of water from the human crystalline lens, it is likely that the tissue fixation step caused a variable degree of shrinkage and a change in shape to the lenses examined here. Despite this serious source of imprecision, we found significant correlations between lens volume and eye/body size (p<0.001) and between lens equatorial diameter and eye/body size (p<0.001) in these chickens. Our results suggest that certain aspects of lens size (specifically, lens volume and equatorial diameter) are controlled by factors that also regulate the size of the eye and body (presumably, predominantly genetic factors). However, since it has been shown previously that axial lens thickness is regulated almost independently of eye and body size, these results suggest that different systems might operate to control lens volume/diameter and lens thickness in normal chickens.

  10. Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken

    PubMed Central

    Tattersall, Rebecca J.; Prashar, Ankush; Singh, Krish D.; Tokarczuk, Pawel F.; Erichsen, Jonathan T.; Hocking, Paul M.

    2010-01-01

    Purpose A reduction in the power of the crystalline lens during childhood is thought to be important in the emmetropization of the maturing eye. However, in humans and model organisms, little is known about the factors that determine the dimensions of the crystalline lens and in particular whether these different parameters (axial thickness, surface curvatures, equatorial diameter, and volume) are under a common source of control or regulated independently of other aspects of eye size and shape. Methods Using chickens from a broiler-layer experimental cross as a model system, three-dimensional magnetic resonance imaging (MRI) scans were obtained at 115-µm isotropic resolution for one eye of 501 individuals aged 3-weeks old. After fixation with paraformaldehyde, the excised eyes were scanned overnight (16 h) in groups of 16 arranged in a 2×2×4 array. Lens dimensions were calculated from each image by fitting a three-dimensional mesh model to the lens, using the semi-automated analysis program mri3dX. The lens dimensions were compared to measures of eye and body size obtained in vivo using techniques that included keratometry and A-scan ultrasonography. Results A striking finding was that axial lens thickness measured using ex vivo MRI was only weakly correlated with lens thickness measured in vivo by ultrasonography (r=0.19, p<0.001). In addition, the MRI lens thickness estimates had a lower mean value and much higher variance. Indeed, about one-third of crystalline lenses showed a kidney-shaped appearance instead of the typical biconvex shape. Since repeat MRI scans of the same eye showed a high degree of reproducibility for the scanning and mri3dX analysis steps (the correlation in repeat lens thickness measurements was r=0.95, p<0.001) and a recent report has shown that paraformaldehyde fixation induces a loss of water from the human crystalline lens, it is likely that the tissue fixation step caused a variable degree of shrinkage and a change in shape to the lenses examined here. Despite this serious source of imprecision, we found significant correlations between lens volume and eye/body size (p<0.001) and between lens equatorial diameter and eye/body size (p<0.001) in these chickens. Conclusions Our results suggest that certain aspects of lens size (specifically, lens volume and equatorial diameter) are controlled by factors that also regulate the size of the eye and body (presumably, predominantly genetic factors). However, since it has been shown previously that axial lens thickness is regulated almost independently of eye and body size, these results suggest that different systems might operate to control lens volume/diameter and lens thickness in normal chickens. PMID:20142845

  11. Growth at puberty.

    PubMed

    Rogol, Alan D; Roemmich, James N; Clark, Pamela A

    2002-12-01

    Somatic growth and maturation are influenced by a number of factors that act independently or in concert to modify an individual's genetic potential. The secular trend in height and adolescent development is further evidence for the significant influence of environmental factors on an individual's genetic potential for linear growth. Nutrition, including energy and specific nutrient intake, is a major determinant of growth. Paramount to normal growth is the general health and well-being of an individual; in fact, normal growth is a strong testament to the overall good health of a child. More recently the effect of physical activity and fitness on linear growth, especially among teenage athletes, has become a topic of interest. Puberty is a dynamic period of development marked by rapid changes in body size, shape, and composition, all of which are sexually dimorphic. One of the hallmarks of puberty is the adolescent growth spurt. Body compositional changes, including the regional distribution of body fat, are especially large during the pubertal transition and markedly sexually dimorphic. The hormonal regulation of the growth spurt and the alterations in body composition depend on the release of the gonadotropins, leptin, the sex-steroids, and growth hormone. It is very likely that interactions among these hormonal axes are more important than their main effects, and that alterations in body composition and the regional distribution of body fat actually are signals to alter the neuroendocrine and peripheral hormone axes. These processes are merely magnified during pubertal development but likely are pivotal all along the way from fetal growth to the aging process.

  12. Identification of differentially expressed genes affecting hair and cashmere growth in the Laiwu black goat by microarray.

    PubMed

    Zhao, Jinshan; Li, Hegang; Liu, Kaidong; Zhang, Baoxun; Li, Peipei; He, Jianning; Cheng, Ming; De, Wei; Liu, Jifeng; Zhao, Yaofeng; Yang, Lihua; Liu, Nan

    2016-10-01

    Goats are an important source of fibers. In the present study microarray technology was used to investigate the potential genes primarily involved in hair and cashmere growth in the Laiwu black goat. A total of 655 genes differentially expressed in body (hair‑growing) and groin (hairless) skin were identified, and their potential association with hair and cashmere growth was analyzed. The majority of genes associated with hair growth regulation could be assigned to intracellular, intracellular organelle, membrane‑bound vesicle, cytoplasmic vesicle, pattern binding, heparin binding, polysaccharide binding, glycosaminoglycan binding and cytoplasmic membrane‑bound vesicle categories. Numerous genes upregulated in body compared with groin skin contained common motifs for nuclear factor 1A, Yi, E2 factor (E2F) and cyclic adenosine monophosphate response element binding (CREB)/CREBβ binding sites in their promoter region. The promoter region of certain genes downregulated in body compared with groin skin contained three common regions with LF‑A1, Yi, E2F, Collier/Olfactory‑1/early B‑cell factor 1, peroxisome proliferator‑activated receptor α or U sites. Thus, the present study identified molecules in the cashmere‑bearing skin area of the Laiwu black goat, which may contribute to hair and cashmere traits.

  13. Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway.

    PubMed

    Zhou, Yi; Guan, Xiaoxu; Liu, Tie; Wang, Xinhua; Yu, Mengfei; Yang, Guoli; Wang, Huiming

    2015-02-01

    Due to the reduction in bone mass and deterioration in bone microarchitecture, osteoporosis is an important risk factor for impairing implant osseointegration. Recently, low-magnitude, high-frequency (LMHF) vibration (LM: <1×g; HF: 20-90Hz) has been shown to exhibit anabolic, but anti-resorptive effects on skeletal homeostasis. Therefore, we hypothesized that LMHF loading, in terms of whole body vibration (WBV), may improve implant fixation under osteoporotic status. In the in vivo study, WBV treatment (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h, 5days/week) was applied after hydroxyapatite-coated titanium implants were inserted in the bilateral tibiae of ovariectomized rats. The bone mass and the osteospecific gene expressions were measured at 12weeks post implantation. In the in vitro study, the cellular and molecular mechanisms underlying osteoblastic and osteoclastic activities were fully investigated using various experimental assays. Micro-CT examination showed that WBV could enhance osseointegration by improving microstructure parameters surrounding implants. WBV-regulated gene levels in favor of bone formation over resorption may be the reason for the favorable adaptive bone remolding on bone-implant surface. The in vitro study showed that vibration (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h) up-regulated osteoblast differentiation, matrix synthesis and mineralization. However, mechanically regulated osteoclastic activity was mainly through the effect on osteoblastic cells producing osteoclastogenesis-associated key soluble factors, including RANKL and M-CSF. Osteoblasts were therefore the direct target cells during the mechanotransduction process. The ERK1/2 pathway was demonstrated to play an essential role in vibration-induced enhancement of bone formation and decreased bone resorption. Our data suggests that WBV was a helpful non-pharmacological intervention for improving osseointegration under osteoporosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Coprinus comatus Cap Inhibits Adipocyte Differentiation via Regulation of PPARγ and Akt Signaling Pathway

    PubMed Central

    Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon

    2014-01-01

    This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3-L1 cells and HFD adipose tissue. PMID:25181477

  15. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity

    PubMed Central

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Furukawa, Takahisa

    2017-01-01

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity. PMID:28900001

  16. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity.

    PubMed

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Nakagawa, Atsushi; Furukawa, Takahisa

    2017-09-26

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7- null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7 -deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.

  17. Aqueous extract of Allium sativum L bulbs offer nephroprotection by attenuating vascular endothelial growth factor and extracellular signal-regulated kinase-1 expression in diabetic rats.

    PubMed

    Shiju, T M; Rajkumar, R; Rajesh, N G; Viswanathan, Pragasam

    2013-02-01

    To investigate the nephroprotective effect of garlic and elucidate the mechanism by which it prevents the progression of diabetic nephropathy in diabetic rats, diabetes was induced by a single ip injection of streptozotocin (45 mg/kg body weight). Garlic extract (500 mg/kg body weight) and aminoguanidine (1 g/L) were supplemented in the treatment groups. Histopathological examination using H&E, PAS staining and the immunohistochemical analysis of vascular endothelial growth factor (VEGF) and extracellular signal-regulated kinase-1 (ERK-1) expression were performed on kidney sections at the end of 12 weeks. Significant change in both, the urine and serum biochemistry confirmed kidney damage in diabetic animals which was further confirmed by the histological changes such as mesangial expansion, glomerular basement membrane thickening, glycosuria and proteinuria. However, the diabetic animals treated with garlic extract showed a significant change in urine and serum biochemical parameters such as albumin, urea nitrogen and creatinine compared to that of diabetic rats. Further, the garlic supplemented diabetic rats showed a significant decrease in the expression of VEGF and ERK-1 compared to diabetic rats, attenuating mesangial expansion and glomerulosclerosis. Thus, garlic extract rendered nephroprotection in diabetic rats.

  18. Determinants of lifetime reproduction in female brown bears: early body mass, longevity, and hunting regulations.

    PubMed

    Zedrosser, Andreas; Pelletier, Fanie; Bischof, Richard; Festa-Bianchet, Marco; Swenson, Jon E

    2013-01-01

    In iteroparous mammals, conditions experienced early in life may have long-lasting effects on lifetime reproductive success. Human-induced mortality is also an important demographic factor in many populations of large mammals and may influence lifetime reproductive success. Here, we explore the effects of early development, population density, and human hunting on survival and lifetime reproductive success in brown bear (Ursus arctos) females, using a 25-year database of individually marked bears in two populations in Sweden. Survival of yearlings to 2 years was not affected by population density or body mass. Yearlings that remained with their mother had higher survival than independent yearlings, partly because regulations prohibit the harvest of bears in family groups. Although mass as a yearling did not affect juvenile survival, it was positively associated with measures of lifetime reproductive success and individual fitness. The majority of adult female brown bear mortality (72%) in our study was due to human causes, mainly hunting, and many females were killed before they reproduced. Therefore, factors allowing females to survive several hunting seasons had a strong positive effect on lifetime reproductive success. We suggest that, in many hunted populations of large mammals, sport harvest is an important influence on both population dynamics and life histories.

  19. Can neuropeptides treat obesity? A review of neuropeptides and their potential role in the treatment of obesity.

    PubMed

    Boughton, C K; Murphy, K G

    2013-12-01

    Obesity is a major worldwide public health issue. The physiological systems that regulate body weight are thus of great interest as targets for anti-obesity agents. Peptidergic systems are critical to the regulation of energy homeostasis by key regions in the hypothalamus and brainstem. A number of neuropeptide systems have therefore been investigated as potential treatments for obesity. Blocking orexigenic peptide signals such as neuropeptide Y, melanin-concentrating hormone, orexins, relaxin-3 and galanin-like peptide or stimulating anorectic signalling pathways used by peptides such as the melanocortins, ciliary neurotrophic factor and brain-derived neurotrophic factor, are approaches that have shown some promise, but which have also highlighted possible concerns. Manipulation of central peptidergic systems poses a number of therapeutic problems, including brain access and side effects. Given that the homeostatic defence of body weight may limit the effectiveness of any single-target therapy developed, a combination therapy approach may offer the best hope for the effective prevention and treatment of obesity. This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  20. Development, regulation, metabolism and function of bone marrow adipose tissues.

    PubMed

    Li, Ziru; Hardij, Julie; Bagchi, Devika P; Scheller, Erica L; MacDougald, Ormond A

    2018-05-01

    Most adipocytes exist in discrete depots throughout the body, notably in well-defined white and brown adipose tissues. However, adipocytes also reside within specialized niches, of which the most abundant is within bone marrow. Whereas bone marrow adipose tissue (BMAT) shares many properties in common with white adipose tissue, the distinct functions of BMAT are reflected by its development, regulation, protein secretion, and lipid composition. In addition to its potential role as a local energy reservoir, BMAT also secretes proteins, including adiponectin, RANK ligand, dipeptidyl peptidase-4, and stem cell factor, which contribute to local marrow niche functions and which may also influence global metabolism. The characteristics of BMAT are also distinct depending on whether marrow adipocytes are contained within yellow or red marrow, as these can be thought of as 'constitutive' and 'regulated', respectively. The rBMAT for instance can be expanded or depleted by myriad factors, including age, nutrition, endocrine status and pharmaceuticals. Herein we review the site specificity, age-related development, regulation and metabolic characteristics of BMAT under various metabolic conditions, including the functional interactions with bone and hematopoietic cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation

    PubMed Central

    Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-01-01

    Thermal conductance measures the ease with which heat leaves or enters  an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915

  2. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation.

    PubMed

    Naya, Daniel E; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-09-22

    Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)-in such a way that a scale-invariant ratio between both variables is equal to one-as could be expected from the Scholander-Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs.

  3. Reproductive hormones and menstrual changes with exercise in female athletes.

    PubMed

    Arena, B; Maffulli, N; Maffulli, F; Morleo, M A

    1995-04-01

    The endocrine equilibrium which regulates reproductive function in women can be affected by physical and psychological factors. Blood levels of hormones depend on a balance between production, metabolism and clearance rates. Intensive physical exercise may affect this balance via different mechanisms, such as stress associated with competition, dieting, reduction of body fat and body weight, production of heat or hypoxia. Women who engage in regular high intensity exercise may be at risk, as a consequence of these hormonal changes, of developing menstrual disturbances such as oligomenorrhoea, delayed menarche and amenorrhoea. Impaired production of gonadotrophins, which leads to luteal phase deficiency and anovulation, is a common hormonal finding with exercise-induced menstrual disturbances, but several other hormones may show significant alterations. In this article we have reviewed the recent literature on the effects of intensive physical exercise on the menstrual cycle, on some important physical parameters such as bone mineral density and bodyweight, and on those hormones (gonadotrophins, prolactin, melatonin, opioid peptides and steroids) which regulate, directly or indirectly, the reproductive function in women.

  4. Regulation of Aedes aegypti Population Dynamics in Field Systems: Quantifying Direct and Delayed Density Dependence

    PubMed Central

    Walsh, Rachael K.; Aguilar, Cristobal L.; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2013-01-01

    Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230

  5. SMED-TLX-1 (NR2E1) is critical for tissue and body plan maintenance in Schmidtea mediterranea in fasting/feeding cycles.

    PubMed

    Raška, O; Kostrouchová, V; Behenský, F; Yilma, P; Saudek, V; Kostrouch, Z; Kostrouchová, M

    2011-01-01

    Nuclear receptors (NRs), or nuclear hormone receptors (NHRs), are transcription factors that regulate development and metabolism of most if not all animal species. Their regulatory networks include conserved mechanisms that are shared in-between species as well as mechanisms that are restricted to certain phyla or even species. In search for conserved members of the NHR family in Schmidtea mediterranea, we identified a molecular signature of a class of NRs, NR2E1, in the S. mediterranea genome and cloned its complete cDNA coding sequence. The derived amino acid sequence shows a high degree of conservation of both DNA-binding domain and ligand- binding domain and a remarkably high homology to vertebrate NR2E1 and C. elegans NHR-67. Quantitative PCR detected approximately ten-fold higher expression of Smed-tlx-1 in the proximal part of the head compared to the tail region. The expression of Smed-tlx-1 is higher during fed state than during fasting. Smed-tlx-1 down-regulation by RNA interference affects the ability of the animals to maintain body plan and induces defects of brain, eyes and body shape during fasting and re-growing cycles. These results suggest that SMED-TLX-1 is critical for tissue and body plan maintenance in planaria.

  6. Time-dependent inhibitory effects of Tris(1, 3-dichloro-2-propyl) phosphate on growth and transcription of genes involved in the GH/IGF axis, but not the HPT axis, in female zebrafish.

    PubMed

    Zhu, Ya; Su, Guanyong; Yang, Dandong; Zhang, Yongkang; Yu, Liqin; Li, Yufei; Giesy, John P; Letcher, Robert J; Liu, Chunsheng

    2017-10-01

    Growth curves were used to determine sensitive exposure windows for evaluation of developmental toxicity of chemicals to zebrafish. Dose- and time-dependent effects on body mass, body length and expression of genes involved in the growth hormone/insulin-like growth factor (GH/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis were examined after exposure to environmentally relevant concentrations of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP). Based on growth curves, zebrafish grew most rapidly between 60 and 90 days post fertilization (dpf). Exposure to environmentally relevant concentrations of TDCIPP significantly decreased body mass and body length and down-regulated expression of several genes involved in the GH/IGF axis of female zebrafish, but no such effects were observed in male zebrafish. Exposure to TDCIPP did not change concentrations of thyroid hormones or expression of genes along the HPT axis in female and male zebrafish. These results suggest that growth stages of zebrafish between 60 and 90 dpf might be most appropriate for evaluation of developmental toxicity of chemicals, and down-regulation of genes involved in the GH/IGF axis, but not the HPT axis, might be responsible for the observed growth inhibition in females exposed to TDCIPP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Myostatin-like proteins regulate synaptic function and neuronal morphology.

    PubMed

    Augustin, Hrvoje; McGourty, Kieran; Steinert, Joern R; Cochemé, Helena M; Adcott, Jennifer; Cabecinha, Melissa; Vincent, Alec; Halff, Els F; Kittler, Josef T; Boucrot, Emmanuel; Partridge, Linda

    2017-07-01

    Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. © 2017. Published by The Company of Biologists Ltd.

  8. Physiology of temperature regulation: comparative aspects.

    PubMed

    Bicego, Kênia C; Barros, Renata C H; Branco, Luiz G S

    2007-07-01

    Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia.

  9. Computer simulation analysis of the behavior of renal-regulating hormones during hypogravic stress

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1982-01-01

    A computer simulation of a mathematical circulation model is used to study the alterations of body fluids and their electrolyte composition that occur in weightlessness. The behavior of the renal-regulating hormones which control these alterations is compared in simulations of several one-g analogs of weightlessness and space flight. It is shown that the renal-regulating hormones represent a tightly coupled system that responds acutely to volume disturbances and chronically to electrolyte disturbances. During hypogravic conditions these responses lead to an initial suppression of hormone levels and a long-term effect which varies depending on metabolic factors that can alter the plasma electrolytes. In addition, it is found that if pressure effects normalize rapidly, a transition phase may exist which leads to a dynamic multiphasic endocrine response.

  10. [Obesity studies in candidate genes].

    PubMed

    Ochoa, María del Carmen; Martí, Amelia; Martínez, J Alfredo

    2004-04-17

    There are more than 430 chromosomic regions with gene variants involved in body weight regulation and obesity development. Polymorphisms in genes related to energy expenditure--uncoupling proteins (UCPs), related to adipogenesis and insulin resistance--hormone-sensitive lipase (HLS), peroxisome proliferator-activated receptor gamma (PPAR gamma), beta adrenergic receptors (ADRB2,3), and alfa tumor necrosis factor (TNF-alpha), and related to food intake--ghrelin (GHRL)--appear to be associated with obesity phenotypes. Obesity risk depends on two factors: a) genetic variants in candidate genes, and b) biographical exposure to environmental risk factors. It is necessary to perform new studies, with appropriate control groups and designs, in order to reach relevant conclusions with regard to gene/environmental (diet, lifestyle) interactions.

  11. Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans

    PubMed Central

    Stieglitz, Jon; Locke, Tiffany T.; Zhang, Ying K.; Schroeder, Frank C.; Srinivasan, Supriya

    2017-01-01

    It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels. PMID:28545126

  12. Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans.

    PubMed

    Hussey, Rosalind; Stieglitz, Jon; Mesgarzadeh, Jaleh; Locke, Tiffany T; Zhang, Ying K; Schroeder, Frank C; Srinivasan, Supriya

    2017-05-01

    It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels.

  13. Aquaporin-4 polymorphisms and brain/body weight ratio in sudden infant death syndrome (SIDS).

    PubMed

    Studer, Jacqueline; Bartsch, Christine; Haas, Cordula

    2014-07-01

    Failure in the regulation of homeostatic water balance in the brain is associated with severe cerebral edema and increased brain weights and may also play an important role in the pathogenesis of sudden infant death syndrome (SIDS). We genotyped three single-nucleotide polymorphisms in the aquaporin-4 water channel-encoding gene (AQP4), which were previously shown to be associated with (i) SIDS in Norwegian infants (rs2075575), (ii) severe brain edema (rs9951307), and (iii) increased brain water permeability (rs3906956). We also determined whether the brain/body weight ratio is increased in SIDS infants compared with sex- and age-matched controls. Genotyping of the three AQP4 single-nucleotide polymorphisms was performed in 160 Caucasian SIDS infants and 181 healthy Swiss adults using a single-base extension method. Brain and body weights were measured during autopsy in 157 SIDS and 59 non-SIDS infants. No differences were detected in the allelic frequencies of the three AQP4 single-nucleotide polymorphisms between SIDS and adult controls. The brain/body weight ratio was similarly distributed in SIDS and non-SIDS infants. Variations in the AQP4 gene seem of limited significance as predisposing factors in Caucasian SIDS infants. Increased brain weights may only become evident in conjunction with environmental or other genetic risk factors.

  14. Body-Cooling Paradigm in Sport: Maximizing Safety and Performance During Competition.

    PubMed

    Adams, William M; Hosokawa, Yuri; Casa, Douglas J

    2016-12-01

    Although body cooling has both performance and safety benefits, knowledge on optimizing cooling during specific sport competition is limited. To identify when, during sport competition, it is optimal for body cooling and to identify optimal body-cooling modalities to enhance safety and maximize sport performance. A comprehensive literature search was conducted to identify articles with specific context regarding body cooling, sport performance, and cooling modalities used during sport competition. A search of scientific peer-reviewed literature examining the effects of body cooling on exercise performance was done to examine the influence of body cooling on exercise performance. Subsequently, a literature search was done to identify effective cooling modalities that have been shown to improve exercise performance. The cooling modalities that are most effective in cooling the body during sport competition depend on the sport, timing of cooling, and feasibility based on the constraints of the sports rules and regulations. Factoring in the length of breaks (halftime substitutions, etc), the equipment worn during competition, and the cooling modalities that offer the greatest potential to cool must be considered in each individual sport. Scientific evidence supports using body cooling as a method of improving performance during sport competition. Developing a strategy to use cooling modalities that are scientifically evidence-based to improve performance while maximizing athlete's safety warrants further investigation.

  15. Neuronal hypothalamic regulation of body metabolism and bone density is galanin dependent.

    PubMed

    Idelevich, Anna; Sato, Kazusa; Nagano, Kenichi; Rowe, Glenn; Gori, Francesca; Baron, Roland

    2018-06-01

    In the brain, the ventral hypothalamus (VHT) regulates energy and bone metabolism. Whether this regulation uses the same or different neuronal circuits is unknown. Alteration of AP1 signaling in the VHT increases energy expenditure, glucose utilization, and bone density, yet the specific neurons responsible for each or all of these phenotypes are not identified. Using neuron-specific, genetically targeted AP1 alterations as a tool in adult mice, we found that agouti-related peptide-expressing (AgRP-expressing) or proopiomelanocortin-expressing (POMC-expressing) neurons, predominantly present in the arcuate nucleus (ARC) within the VHT, stimulate whole-body energy expenditure, glucose utilization, and bone formation and density, although their effects on bone resorption differed. In contrast, AP1 alterations in steroidogenic factor 1-expressing (SF1-expressing) neurons, present in the ventromedial hypothalamus (VMH), increase energy but decrease bone density, suggesting that these effects are independent. Altered AP1 signaling also increased the level of the neuromediator galanin in the hypothalamus. Global galanin deletion (VHT galanin silencing using shRNA) or pharmacological galanin receptor blockade counteracted the observed effects on energy and bone. Thus, AP1 antagonism reveals that AgRP- and POMC-expressing neurons can stimulate body metabolism and increase bone density, with galanin acting as a central downstream effector. The results obtained with SF1-expressing neurons, however, indicate that bone homeostasis is not always dictated by the global energy status, and vice versa.

  16. Does body mass play a role in the regulation of food intake?

    PubMed

    Speakman, John R; Stubbs, R James; Mercer, Julian G

    2002-11-01

    It is widely believed that body fatness (and hence total body mass) is regulated by a lipostatic feedback system. This system is suggested to involve at least one peripheral signalling compound, which signals to the brain the current size of body fat stores. In the brain the level of the signal is compared with a desirable target level, and food intake and energy expenditure are then regulated to effect changes in the size of body fat stores. There is considerable support for this theory at several different levels of investigation. Patterns of body-mass change in subjects forced into energy imbalance seem to demonstrate homeostasis, and long-term changes in body mass are minor compared with the potential changes that might result from energy imbalance. Molecular studies of signalling compounds have suggested a putative lipostatic signal (leptin) and a complex network of downstream processing events in the brain, polymorphisms of which lead to disruption of body-mass regulation. This network of neuropeptides provides a rich seam of potential pharmaceutical targets for the control of obesity. Despite this consistent explanation for the observed phenomena at several different levels of enquiry, there are alternative explanations. In the present paper we explore the possibility that the existence of lipostatic regulation of body fatness is an illusion generated by the links between body mass and energy expenditure and responses to energy imbalance that are independent of body mass. Using computer-based models of temporal patterns in energy balance we show that common patterns of change in body mass following perturbation can be adequately explained by this 'non-lipostatic' model. This model has some important implications for the interpretations that we place on the molecular events in the brain, and ultimately in the search for pharmaceutical agents for alleviation of obesity.

  17. Motivation and body-related factors as discriminators of change in adolescents' exercise behavior profiles.

    PubMed

    Gillison, Fiona B; Standage, Martyn; Skevington, Suzanne M

    2011-01-01

    A prospective study was conducted to explore the relative contributions of weight-related self-perceptions and exercise-related motivation variables in predicting change in leisure-time exercise within a sample of adolescents in the United Kingdom. A cohort of 310 adolescents (51% male, Mean age = 14.08 ± .32 years at baseline) was classified into four groups on the basis of reported change in leisure-time exercise over 10-months: those who maintain, drop out from exercise, take up exercise, and those who were continually inactive. Discriminant function analyses were conducted to predict group membership from adolescents' profiles of motivational and weight-related perceptions at baseline. For boys, the first discriminant function (DF1) revealed that exercise maintainers reported higher identified regulation, introjected regulation, competence, relatedness, and body satisfaction than all other groups (between-group R(2) = .45). DF2 was more indicative of current exercise levels than change, indicating higher intrinsic motivation and lower amotivation for both active groups at baseline (between-group R(2) = .40). In girls, DF1 showed that exercise maintainers reported higher intrinsic motivation, identified regulation, autonomy, competence, relatedness, and lower external regulation than all other groups (between-group R(2) = .58). DF2 indicated that higher body mass index, and perceiving greater pressure to lose weight positively predicted drop out, and negatively predicted exercise uptake (between-group R(2) = .26). Fostering autonomous (self-determined) motivation seems a key determinant to maintaining leisure-time exercise for both boys and girls. Additionally, reducing perceptions of pressure to lose weight and promoting positive interactions with others during exercise may be particularly useful to prevent dropout in girls. Copyright © 2011 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  18. Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death.

    PubMed

    Truong-Tran, A Q; Ho, L H; Chai, F; Zalewski, P D

    2000-05-01

    The maintenance of discrete subcellular pools of zinc (Zn) is critical for the functional and structural integrity of cells. Among the important biological processes influenced by Zn is apoptosis, a process that is important in cellular homeostasis (an important cellular homeostatic process). It has also been identified as a major mechanism contributing to cell death in response to toxins and in disease, offering hope that novel therapies that target apoptotic pathways may be developed. Because Zn levels in the body can be increased in a relatively nontoxic manner, it may be possible to prevent or ameliorate degenerative disorders that are associated with high rates of apoptotic cell death. This review begins with brief introductions that address, first, the cellular biology of Zn, especially the critical labile Zn pools, and, second, the phenomenon of apoptosis. We then review the evidence relating Zn to apoptosis and address three major hypotheses: (1) that a specific pool or pools of intracellular labile Zn regulates apoptosis; (2) that systemic changes in Zn levels in the body, due to dietary factors, altered physiological states or disease, can influence cell susceptibility to apoptosis, and (3) that this altered susceptibility to apoptosis contributes to pathophysiological changes in the body. Other key issues are the identity of the molecular targets of Zn in the apoptotic cascade, the types of cells and tissues most susceptible to Zn-regulated apoptosis, the role of Zn as a coordinate regulator of mitosis and apoptosis and the apparent release of tightly bound intracellular pools of Zn during the later stages of apoptosis. This review concludes with a section highlighting areas of priority for future studies.

  19. A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina

    PubMed Central

    Ait Benkhali, Jinane; Coppin, Evelyne; Brun, Sylvain; Peraza-Reyes, Leonardo; Martin, Tom; Dixelius, Christina; Lazar, Noureddine; van Tilbeurgh, Herman; Debuchy, Robert

    2013-01-01

    High-mobility group (HMG) B proteins are eukaryotic DNA-binding proteins characterized by the HMG-box functional motif. These transcription factors play a pivotal role in global genomic functions and in the control of genes involved in specific developmental or metabolic pathways. The filamentous ascomycete Podospora anserina contains 12 HMG-box genes. Of these, four have been previously characterized; three are mating-type genes that control fertilization and development of the fruit-body, whereas the last one encodes a factor involved in mitochondrial DNA stability. Systematic deletion analysis of the eight remaining uncharacterized HMG-box genes indicated that none were essential for viability, but that seven were involved in the sexual cycle. Two HMG-box genes display striking features. PaHMG5, an ortholog of SpSte11 from Schizosaccharomyces pombe, is a pivotal activator of mating-type genes in P. anserina, whereas PaHMG9 is a repressor of several phenomena specific to the stationary phase, most notably hyphal anastomoses. Transcriptional analyses of HMG-box genes in HMG-box deletion strains indicated that PaHMG5 is at the hub of a network of several HMG-box factors that regulate mating-type genes and mating-type target genes. Genetic analyses revealed that this network also controls fertility genes that are not regulated by mating-type transcription factors. This study points to the critical role of HMG-box members in sexual reproduction in fungi, as 11 out of 12 members were involved in the sexual cycle in P. anserina. PaHMG5 and SpSte11 are conserved transcriptional regulators of mating-type genes, although P. anserina and S. pombe diverged 550 million years ago. Two HMG-box genes, SOX9 and its upstream regulator SRY, also play an important role in sex determination in mammals. The P. anserina and S. pombe mating-type genes and their upstream regulatory factor form a module of HMG-box genes analogous to the SRY/SOX9 module, revealing a commonality of sex regulation in animals and fungi. PMID:23935511

  20. Thermal regulation in Macaca mulatta during space flight

    NASA Technical Reports Server (NTRS)

    Klimovitsky, V. Y.; Alpatov, A. M.; Hoban-Higgins, T. M.; Utekhina, E. S.; Fuller, C. A.

    2000-01-01

    The results of studies of body temperature and thermal regulation in Macaca mulatta flown on biosatellites Bion 6-11 are presented. The effect of microgravity on deep body temperature as compared to skin temperature was investigated. In most animals, deep body temperature declined moderately and then tended to return to normal. Brain temperature/ankle temperature correlation changed. The system of thermal regulation was found to function adequately in space.

  1. Less Contact Ballistogram Recording during Sleep as a Perspective Technology for the Medical Monitoring System in a Mission to Mars

    NASA Astrophysics Data System (ADS)

    Baevsky, R. M.; Bogomolov, V. V.; Funtova, I. I.

    strong argument for success of a future Martian mission is absence of pathologies developed in cosmonauts following one-year or longer space flights that might forbid further gradual extension of piloted missions. However, functional shifts in the neurohormonal regulation revealed during the long-term Mir missions suggest that homeostasis of the vital important body systems is maintained owing to active functioning of the regulatory mechanisms (Grigoriev A.I. et al., 1998). Since overstrain of these mechanisms constitutes one of the main factors of risk of diseases, it is important to provide unfailing and systematic monitoring of the body regulation functional reserves. night ballistocardiography, made it possible to obtain data on super-slow heart rhythm fluctuations reflective of activation of the neurohormonal regulation (Baevsky R.M. et al., 1999). Analysis of the data showed that on a background of extended exposure of the human organism to various stressful factors the cardiovascular homeostasis is maintained through consecutive recruitment in adaptation of higher levels of regulation of the physiological systems (Grigoriev A.I., Baevsky R.M., 2001). This validates the hypothesis concerning the role of the higher autonomous centers in long-term adaptation to the spaceflight factors and opens up the new way to diagnosis and prediction of the human body functional reserves. It was first demonstrated in space during the Mir primary mission 9 in 1991. Sensor-accelerometer secured to cosmonaut's sleeping bag registered micromovements conditioned by the heart, respiratory and motor activities of a sleeping cosmonaut. The joint Russian-Austrian space investigations in 1992-1995 resulted in technology refinement and enhancement. Advantages of medical monitoring during sleep are obvious not only because of the time saving and opportunity to receive systematically information pertaining to the crew health. Records allow, to begin with, evaluate the functional state in relatively stable conditions without impacts of working loads. Secondly, 6 to 8-hr records enable studies of the ultradian rhythms which characterize functioning of the higher autonomous centers. Thirdly, night ballistocardiography offers an opportunity to regularly assess quality of sleep which is of criticality for qualification of the psychoemotional status of space crew and identification of early symptoms of overstrain and fatigue. purpose to test effectiveness and applicability of the lesscontact night ballistocardiography as a part of the spacecrew medical monitoring system. It is hoped that based on results of the experiment another step will be made toward development of a system that will supply crew with important diagnostic and predictive information immediately on board the space vehicle.

  2. Dietary Isoflavone-Dependent and Estradiol Replacement Effects on Body Weight in the Ovariectomized (OVX) Rat.

    PubMed

    Russell, Ashley L; Grimes, Jamie Moran; Cruthirds, Danette F; Westerfield, Joanna; Wooten, Lawren; Keil, Margaret; Weiser, Michael J; Landauer, Michael R; Handa, Robert J; Wu, T John; Larco, Darwin O

    2017-06-01

    17β-Estradiol is known to regulate energy metabolism and body weight. Ovariectomy results in body weight gain while estradiol administration results in a reversal of weight gain. Isoflavones, found in rodent chow, can mimic estrogenic effects making it crucial to understand the role of these compounds on metabolic regulation. The goal of this study is to examine the effect of dietary isoflavones on body weight regulation in the ovariectomized rat. This study will examine how dietary isoflavones can interact with estradiol treatment to affect body weight. Consistent with previous findings, animals fed an isoflavone-rich diet had decreased body weight (p<0.05), abdominal fat (p<0.05), and serum leptin levels (p<0.05) compared to animals fed an isoflavone-free diet. Estradiol replacement resulted in decreased body weight (p<0.05), abdominal fat (p<0.05), and serum leptin (p<0.05). Current literature suggests the involvement of cytokines in the inflammatory response of body weight gain. We screened a host of cytokines and chemokines that may be altered by dietary isoflavones or estradiol replacement. Serum cytokine analysis revealed significant (p<0.05) diet-dependent increases in inflammatory cytokines (keratinocyte-derived chemokine). The isoflavone-free diet in OVX rats resulted in the regulation of the following cytokines and chemokines: interleukin-10, interleukin-18, serum regulated on activation, normal T cell expressed and secreted, and monocyte chemoattractant protein-1 (p<0.05). Overall, these results reveal that estradiol treatment can have differential effects on energy metabolism and body weight regulation depending on the presence of isoflavones in rodent chow. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Body-Related Shame and Guilt Predict Physical Activity in Breast Cancer Survivors Over Time.

    PubMed

    Castonguay, Andrée L; Wrosch, Carsten; Pila, Eva; Sabiston, Catherine M

    2017-07-01

    To test body-related shame and guilt as predictors of breast cancer survivors' (BCS') moderate to vigorous intensity physical activity (MVPA) during six months and to examine motivational regulations as mediators of this association.
. Prospective study.
. Survivors were recruited through advertisements and oncologist referrals from medical clinics and hospitals in Montreal, Quebec, Canada.
. 149 female BCS.
. Self-reports of body-related shame and guilt, motivational regulations, and MVPA were measured among BCS at baseline. MVPA was assessed a second time six months later. Residual change scores were used.
. Body-related shame and guilt; external, introjected, and autonomous (identified and intrinsic) motivational regulations; MVPA.
. In the multiple mediation models, body-related shame was associated with low levels of MVPA, as well as external, introjected, and autonomous motivational regulations. Guilt was related to high levels of MVPA and introjected and autonomous motivational regulations. Indirect effects linked shame, guilt, and MVPA via autonomous motivation. Only body-related shame was a significant predictor of six-month changes in MVPA.
. Based on these results, the specific emotions of shame and guilt contextualized to the body differentially predict BCS' health motivations and behavior over time.
. Survivorship programs may benefit from integrating intervention strategies aimed at reducing body-related shame and helping women manage feelings of guilt to improve physical activity.

  4. Adipose Deficiency of Nrf2 in ob/ob Mice Results in Severe Metabolic Syndrome

    PubMed Central

    Xue, Peng; Hou, Yongyong; Chen, Yanyan; Yang, Bei; Fu, Jingqi; Zheng, Hongzhi; Yarborough, Kathy; Woods, Courtney G.; Liu, Dianxin; Yamamoto, Masayuki; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-01-01

    Nuclear factor E2–related factor 2 (Nrf2) is a transcription factor that functions as a master regulator of the cellular adaptive response to oxidative stress. Our previous studies showed that Nrf2 plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β and peroxisome proliferator–activated receptor γ. To determine the role of Nrf2 in the development of obesity and associated metabolic disorders, the incidence of metabolic syndrome was assessed in whole-body or adipocyte-specific Nrf2-knockout mice on a leptin-deficient ob/ob background, a model with an extremely positive energy balance. On the ob/ob background, ablation of Nrf2, globally or specifically in adipocytes, led to reduced white adipose tissue (WAT) mass, but resulted in an even more severe metabolic syndrome with aggravated insulin resistance, hyperglycemia, and hypertriglyceridemia. Compared with wild-type mice, WAT of ob/ob mice expressed substantially higher levels of many genes related to antioxidant response, inflammation, adipogenesis, lipogenesis, glucose uptake, and lipid transport. Absence of Nrf2 in WAT resulted in reduced expression of most of these factors at mRNA or protein levels. Our findings support a novel role for Nrf2 in regulating adipose development and function, by which Nrf2 controls the capacity of WAT expansion and insulin sensitivity and maintains glucose and lipid homeostasis. PMID:23238296

  5. SAM68 is a physiological regulator of SMN2 splicing in spinal muscular atrophy

    PubMed Central

    Pagliarini, Vittoria; Pelosi, Laura; Bustamante, Maria Blaire; Nobili, Annalisa; Berardinelli, Maria Grazia; D’Amelio, Marcello; Musarò, Antonio

    2015-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. The almost identical SMN2 gene is unable to compensate for this deficiency because of the skipping of exon 7 during pre–messenger RNA (mRNA) processing. Although several splicing factors can modulate SMN2 splicing in vitro, the physiological regulators of this disease-causing event are unknown. We found that knockout of the splicing factor SAM68 partially rescued body weight and viability of SMAΔ7 mice. Ablation of SAM68 function promoted SMN2 splicing and expression in SMAΔ7 mice, correlating with amelioration of SMA-related defects in motor neurons and skeletal muscles. Mechanistically, SAM68 binds to SMN2 pre-mRNA, favoring recruitment of the splicing repressor hnRNP A1 and interfering with that of U2AF65 at the 3′ splice site of exon 7. These findings identify SAM68 as the first physiological regulator of SMN2 splicing in an SMA mouse model. PMID:26438828

  6. Changing Faces of Transcriptional Regulation Reflected by Zic3

    PubMed Central

    Winata, Cecilia Lanny; Kondrychyn, Igor; Deddens, J.C.; Korzh, Vladimir

    2015-01-01

    The advent of genomics in the study of developmental mechanisms has brought a trove of information on gene datasets and regulation during development, where the Zic family of zinc-finger proteins plays an important role. Genomic analysis of the modes of action of Zic3 in pluripotent cells demonstrated its requirement for maintenance of stem cells pluripotency upon binding to the proximal regulatory regions (promoters) of genes associated with cell pluripotency (Nanog, Sox2, Oct4, etc.) as well as cell cycle, proliferation, oncogenesis and early embryogenesis. In contrast, during gastrulation and neurulation Zic3 acts by binding the distal regulatory regions (enhancers, etc) associated with control of gene transcription in the Nodal and Wnt signaling pathways, including genes that act to break body symmetry. This illustrates a general role of Zic3 as a transcriptional regulator that acts not only alone, but in many instances in conjunction with other transcription factors. The latter is done by binding to adjacent sites in the context of multi-transcription factor complexes associated with regulatory elements. PMID:26085810

  7. WRKY transcription factors in plant responses to stresses.

    PubMed

    Jiang, Jingjing; Ma, Shenghui; Ye, Nenghui; Jiang, Ming; Cao, Jiashu; Zhang, Jianhua

    2017-02-01

    The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. © 2016 Institute of Botany, Chinese Academy of Sciences.

  8. Comparative analysis of the IGF2 and ZBED6 gene variants and haplotypes reveals significant effect of growth traits in cattle.

    PubMed

    Huang, Yong-Zhen; Zhan, Zhao-Yang; Sun, Yu-Jia; Wang, Jing; Li, Ming-Xun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Chen, Hong

    2013-06-01

    Muscle growth is a complex phenomenon regulated by many factors, whereby net growth results from the combined action of synthesis and turnover. Insulin-like growth factor 2 (IGF2) is a fetal growth and differentiation factor that plays an important role in muscle growth and in myoblast proliferation and differentiation; Zinc finger, BED-type containing 6 (ZBED6) is a novel transcription factor that was identified and shown to act as a repressor of IGF2 transcription in skeletal muscle. In this study, a total of seven single nucleotide polymorphisms (SNPs) were identified, four SNPs in intron 8 of IGF2 and one promoter SNP and two missense mutations in the coding region of ZBED6, two of which were in complete linkage disequilibrium (LD) in the bovine IGF2. The 58 haplotypes were inferred in 1522 individuals representing four purebred cattle breeds from China. The seven SNPs, 79 and 66 combined diplotypes were revealed for association with body mass in Nanyang and Jiaxian cattle populations at five different ages (P < 0.05 or 0.01). The mutant-type variants and haplotype 58 (likely in LD with the beneficial quantitative trait nucleotide allele) was superior for body mass; the heterozygote diplotype of the most common haplotypes 58 was associated with higher body mass compared to either heterozygote or homozygote. The statistical analyses indicated that the mutant-type variants and haplotypes are significantly associated with body mass in study cattle populations at different ages. These data demonstrate that variants and haplotypes are associated with growth traits, and these results may provide important biological insights into the phenotypic differentiation that is associated with adaptation and specialization of cattle breeds.

  9. Validation of the Spanish version of the Drive for Muscularity Scale (DMS) among males: Confirmatory factor analysis.

    PubMed

    Sepulveda, Ana R; Parks, Melissa; de Pellegrin, Yolanda; Anastasiadou, Dimitra; Blanco, Miriam

    2016-04-01

    Drive for Muscularity (DM) has been shown to be a relevant construct for measuring and understanding male body image. For this reason, it is important to have reliable and valid instruments with which to measure DM, and to date no such instruments exist in Spain. This study analyzes the psychometric and structural properties of the Drive for Muscularity Scale (DMS) in a sample of Spanish adolescent males (N=212), with the aim of studying the structural validity of the scale by using a confirmatory factor analysis (CFA), as well as analyzing the internal consistency and construct (convergent and discriminant) and concurrent validity of the instrument. After testing three models, results indicated that the best structure was a two-dimensional model, with the factors of muscularity-oriented body image (MBI) and muscularity behavior (MB). The scale showed good internal consistency (α=.90) and adequate construct validity. Furthermore, significant associations were found between DM and increased difficulties in emotional regulation (rho=.37) and low self-esteem (rho=-.19). Findings suggest that the two-factor structure may be used when assessing drive for muscularity among adolescent males in Spain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Body image change and improved eating self-regulation in a weight management intervention in women

    PubMed Central

    2011-01-01

    Background Successful weight management involves the regulation of eating behavior. However, the specific mechanisms underlying its successful regulation remain unclear. This study examined one potential mechanism by testing a model in which improved body image mediated the effects of obesity treatment on eating self-regulation. Further, this study explored the role of different body image components. Methods Participants were 239 overweight women (age: 37.6 ± 7.1 yr; BMI: 31.5 ± 4.1 kg/m2) engaged in a 12-month behavioral weight management program, which included a body image module. Self-reported measures were used to assess evaluative and investment body image, and eating behavior. Measurements occurred at baseline and at 12 months. Baseline-residualized scores were calculated to report change in the dependent variables. The model was tested using partial least squares analysis. Results The model explained 18-44% of the variance in the dependent variables. Treatment significantly improved both body image components, particularly by decreasing its investment component (f2 = .32 vs. f2 = .22). Eating behavior was positively predicted by investment body image change (p < .001) and to a lesser extent by evaluative body image (p < .05). Treatment had significant effects on 12-month eating behavior change, which were fully mediated by investment and partially mediated by evaluative body image (effect ratios: .68 and .22, respectively). Conclusions Results suggest that improving body image, particularly by reducing its salience in one's personal life, might play a role in enhancing eating self-regulation during weight control. Accordingly, future weight loss interventions could benefit from proactively addressing body image-related issues as part of their protocols. PMID:21767360

  11. Body image change and improved eating self-regulation in a weight management intervention in women.

    PubMed

    Carraça, Eliana V; Silva, Marlene N; Markland, David; Vieira, Paulo N; Minderico, Cláudia S; Sardinha, Luís B; Teixeira, Pedro J

    2011-07-18

    Successful weight management involves the regulation of eating behavior. However, the specific mechanisms underlying its successful regulation remain unclear. This study examined one potential mechanism by testing a model in which improved body image mediated the effects of obesity treatment on eating self-regulation. Further, this study explored the role of different body image components. Participants were 239 overweight women (age: 37.6 ± 7.1 yr; BMI: 31.5 ± 4.1 kg/m²) engaged in a 12-month behavioral weight management program, which included a body image module. Self-reported measures were used to assess evaluative and investment body image, and eating behavior. Measurements occurred at baseline and at 12 months. Baseline-residualized scores were calculated to report change in the dependent variables. The model was tested using partial least squares analysis. The model explained 18-44% of the variance in the dependent variables. Treatment significantly improved both body image components, particularly by decreasing its investment component (f² = .32 vs. f² = .22). Eating behavior was positively predicted by investment body image change (p < .001) and to a lesser extent by evaluative body image (p < .05). Treatment had significant effects on 12-month eating behavior change, which were fully mediated by investment and partially mediated by evaluative body image (effect ratios: .68 and .22, respectively). Results suggest that improving body image, particularly by reducing its salience in one's personal life, might play a role in enhancing eating self-regulation during weight control. Accordingly, future weight loss interventions could benefit from proactively addressing body image-related issues as part of their protocols.

  12. Regulation of neuroendocrine cells and neuron factors in the ovary by zinc oxide nanoparticles.

    PubMed

    Liu, Xin-Qi; Zhang, Hong-Fu; Zhang, Wei-Dong; Zhang, Peng-Fei; Hao, Ya-Nan; Song, Ran; Li, Lan; Feng, Yan-Ni; Hao, Zhi-Hui; Shen, Wei; Min, Ling-Jiang; Yang, Hong-Di; Zhao, Yong

    2016-08-10

    The pubertal period is an important window during the development of the female reproductive system. Development of the pubertal ovary, which supplies the oocytes intended for fertilization, requires growth factors, hormones, and neuronal factors. It has been reported that zinc oxide nanoparticles (ZnO NPs) cause cytotoxicity of neuron cells. However, there have been no reports of the effects of ZnO NPs on neuronal factors and neuroendocrine cells in the ovary (in vivo). For the first time, this in vivo study investigated the effects of ZnO NPs on gene and protein expression of neuronal factors and the population of neuroendocrine cells in ovaries. Intact NPs were detected in ovarian tissue and although ZnO NPs did not alter body weight, they reduced the ovary organ index. Compared to the control or ZnSO4 treatments, ZnO NPs treatments differentially regulated neuronal factor protein and gene expression, and the population of neuroendocrine cells. ZnO NPs changed the contents of essential elements in the ovary; however, they did not alter levels of the steroid hormones estrogen and progesterone. These data together suggest that intact ZnO NPs might pose a toxic effect on neuron development in the ovary and eventually negatively affect ovarian developmental at puberty. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. HIF-2α is essential for carotid body development and function

    PubMed Central

    Cowburn, Andrew S; Torres-Torrelo, Hortensia; Ortega-Sáenz, Patricia; López-Barneo, José

    2018-01-01

    Mammalian adaptation to oxygen flux occurs at many levels, from shifts in cellular metabolism to physiological adaptations facilitated by the sympathetic nervous system and carotid body (CB). Interactions between differing forms of adaptive response to hypoxia, including transcriptional responses orchestrated by the Hypoxia Inducible transcription Factors (HIFs), are complex and clearly synergistic. We show here that there is an absolute developmental requirement for HIF-2α, one of the HIF isoforms, for growth and survival of oxygen sensitive glomus cells of the carotid body. The loss of these cells renders mice incapable of ventilatory responses to hypoxia, and this has striking effects on processes as diverse as arterial pressure regulation, exercise performance, and glucose homeostasis. We show that the expansion of the glomus cells is correlated with mTORC1 activation, and is functionally inhibited by rapamycin treatment. These findings demonstrate the central role played by HIF-2α in carotid body development, growth and function. PMID:29671738

  14. Association of a behaviorally based high school health education curriculum with increased exercise.

    PubMed

    Annesi, James J; Trinity, John; Mareno, Nicole; Walsh, Stephanie M

    2015-06-01

    Increasing exercise in children and adolescents through academic classes is an understudied area. Potential benefits include associated improvements in health, psychosocial, and quality-of-life factors. A sample of 98 students (M(age) = 14.3) from high school health education classes received six, 40-min lessons incorporating cognitive-behavioral methods to increase exercise over 6 weeks. Significant within-group improvements in exercise, mood, and body satisfaction were found, with slightly larger effect sizes identified for the boys. Increase in exercise was significantly associated with reduced mood distress (β = -.17, p < .001). For the girls only, change in body satisfaction significantly mediated that relationship, and a reciprocal relationship between changes in mood and body satisfaction was also identified. Incorporation of lessons emphasizing goal setting and self-regulation within high school health education classes may foster increased exercise and associated improvements in mood and body satisfaction. For girls, the positive effects may reinforce one another. © The Author(s) 2014.

  15. Olive oil has a beneficial effect on impaired glucose regulation and other cardiometabolic risk factors. Di@bet.es study.

    PubMed

    Soriguer, F; Rojo-Martínez, G; Goday, A; Bosch-Comas, A; Bordiú, E; Caballero-Díaz, F; Calle-Pascual, A; Carmena, R; Casamitjana, R; Castaño, L; Castell, C; Catalá, M; Delgado, E; Franch, J; Gaztambide, S; Girbés, J; Gomis, R; Gutiérrez, G; López-Alba, A; Teresa Martínez-Larrad, M; Menéndez, E; Mora-Peces, I; Ortega, E; Pascual-Manich, G; Serrano-Rios, M; Urrutia, I; Valdés, S; Antonio Vázquez, J; Vendrell, J

    2013-09-01

    Despite the marked increase in cardiovascular risk factors in Spain in recent years, the prevalence and incidence of cardiovascular diseases have not risen as expected. Our objective is to examine the association between consumption of olive oil and the presence of cardiometabolic risk factors in the context of a large study representative of the Spanish population. A population-based, cross-sectional, cluster sampling study was conducted. The target population was the whole Spanish population. A total of 4572 individuals aged ≥ 18 years in 100 clusters (health centers) were randomly selected with a probability proportional to population size. The main outcome measures were clinical and demographic structured survey, lifestyle survey, physical examination (weight, height, body mass index, waist, hip and blood pressure) and oral glucose tolerance test (OGTT) (75 g). Around 90% of the Spanish population use olive oil, at least for dressing, and slightly fewer for cooking or frying. The preference for olive oil is related to age, educational level, alcohol intake, body mass index and serum glucose, insulin and lipids. People who consume olive oil (vs sunflower oil) had a lower risk of obesity (odds ratio (OR)=0.62 (95% confidence interval (CI)=0.41-0.93, P=0.02)), impaired glucose regulation (OR=0.49 (95% CI=0.28-0.86, P=0.04)), hypertriglyceridemia (OR=0.53 (95% CI=0.33-0.84, P=0.03)) and low HDL cholesterol levels (OR=0.40 (95% CI=0.26-0.59, P=0.0001)). The results show that consumption of olive oil has a beneficial effect on different cardiovascular risk factors, particularly in the presence of obesity, impaired glucose tolerance or a sedentary lifestyle.

  16. The weight management strategies inventory (WMSI). Development of a new measurement instrument, construct validation, and association with dieting success.

    PubMed

    Keller, Carmen; Siegrist, Michael

    2015-09-01

    In an obesogenic environment, people have to adopt effective weight management strategies to successfully gain or maintain normal body weight. Little is known about the strategies used by the general population in daily life. Due to the lack of a comprehensive measurement instrument to assess conceptually different strategies with various scales, we developed the weight management strategies inventory (WMSI). In study 1, we collected 19 weight management strategies from research on self-regulation of food intake and successful weight loss and maintenance, as well as from expert interviews. We classified them under the five main categories of health self-regulation strategies - goal setting and monitoring, prospection and planning, automating behavior, construal, and inhibition. We formulated 93 items. In study 2, we developed the WMSI in a random sample from the general population (N = 658), using reliability and exploratory factor analysis. This resulted in 19 factors with 63 items, representing the 19 strategies. In study 3, we tested the 19-factor structure in a quota (age, gender) sample from the general population (N = 616), using confirmatory factor analysis. A good model fit (CFI = .918; RMSEA = .043) was revealed. Reliabilities and construct validity were high. Positive correlations of most strategies with dieting success and negative correlations of some strategies with body mass index were found among dieters (N = 292). Study 4 (N = 162) revealed a good test-retest reliability. The WMSI assesses theoretically derived, evidence-based, and conceptually different weight management strategies with different scales that have good psychometric characteristics. The scales can also be used for pre- and post measures in intervention studies. The scales provide insights into the general population's weight management strategies and facilitate tailoring and evaluating health communication. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Insulin and 20-hydroxyecdysone action in Bombyx mori: Glycogen content and expression pattern of insulin and ecdysone receptors in fat body.

    PubMed

    Keshan, Bela; Thounaojam, Bembem; Kh, Sanathoibi D

    2017-01-15

    Insulin and ecdysone signaling play a critical role on the growth and development of insects including Bombyx mori. Our previous study showed that Bombyx larvae reached critical weight for metamorphosis between day 3.5 and 4 of the fifth larval instar. The present study showed that the effect of insulin on the accumulation of glycogen in fat body of Bombyx larvae depends on the critical growth period. When larvae are in active growth period (before reaching critical weight), insulin caused increased accumulation of glycogen, while its treatment in larvae at terminal growth period (after critical period) resulted in an increased mobilization of glycogen. During terminal growth period, insulin and 20-hydroxyecdysone (20E) showed an antagonistic effect on the accumulation of fat body glycogen in fed, food deprived and decapitated larvae as well as in isolated abdomens. Insulin treatment decreased the glycogen content, whereas, 20E increased it. Food deprivation and decapitation caused an increase in the transcript levels of insulin receptor (InR) and this increase in InR expression might be attributed to a decrease in synthesis/secretion of insulin-like peptides, as insulin treatment in these larvae showed a down-regulation in InR expression. However, insulin showed an up-regulation in InR in isolated abdomens and it suggests that in food deprived and decapitated larvae, the exogenous insulin may interact with some head and/or thoracic factors in modulating the expression of InR. Moreover, in fed larvae, insulin-mediated increase in InR expression indicates that its regulation by insulin-like peptides also depends on the nutritional status of the larvae. The treatment of 20E in fed larvae showed an antagonistic effect on the transcript levels since a down-regulation in InR expression was observed. 20E treatment also led to a decreased expression of InR in food deprived and decapitated larvae as well as in isolated abdomens. Insulin and 20E also modulated the expression level of ecdysone receptors (EcRB1 and USP1). 20E treatment showed an up-regulation in expression of ecdysone receptors, but only in fed larvae, whereas insulin treatment showed a down-regulation in the expression of EcRB1 and USP1 in all the experimental larvae studied. Further, the data indicates that an up-regulation of ecdysone receptors is associated with an increase in fat body glycogen content, whereas an up-regulation of insulin receptor expression causes glycogen mobilization. The study, therefore, suggests that the insulin and ecdysone signaling are linked to each other and that both insulin and ecdysone are involved in regulating the carbohydrate reserves in B. mori. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.

    PubMed

    Sarwar, Zaara; Garza, Anthony G

    2016-02-01

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Ablation of Sim1 Neurons Causes Obesity through Hyperphagia and Reduced Energy Expenditure

    PubMed Central

    Xi, Dong; Gandhi, Nilay; Lai, Meizan; Kublaoui, Bassil M.

    2012-01-01

    Single-minded 1 (Sim1) is a transcription factor necessary for development of the paraventricular nucleus of the hypothalamus (PVH). This nucleus is a critical regulator of appetite, energy expenditure and body weight. Previously we showed that Sim1+/− mice and conditional postnatal Sim1−/− mice exhibit hyperphagia, obesity, increased linear growth and susceptibility to diet-induced obesity, but no decrease in energy expenditure. Bilateral ablation of the PVH causes obesity due to hyperphagia and reduced energy expenditure. It remains unknown whether Sim1 neurons regulate energy expenditure. In this study, Sim1cre mice were bred to homozygous inducible diphtheria toxin receptor (iDTR) mice to generate mice expressing the simian DTR in Sim1 cells. In these mice, Sim1 neuron ablation was performed by intracerebroventricular (ICV) injection of diphtheria toxin. Compared to controls, mice with Sim1 neuron ablation became obese (with increased fat mass) on a chow diet due to increased food intake and reduced energy expenditure. In post-injection mice, we observed a strong inverse correlation between the degree of obesity and hypothalamic Sim1 expression. The reduction in baseline energy expenditure observed in these mice was accompanied by a reduction in activity. This reduction in activity did not fully account for the reduced energy expenditure as these mice exhibited decreased resting energy expenditure, decreased body temperature, decreased brown adipose tissue temperature, and decreased UCP1 expression suggesting an impairment of thermogenesis. In injected mice, hypothalamic gene expression of Sim1, oxytocin (OXT) and thyrotropin releasing hormone (TRH) was reduced by about 50%. These results demonstrate that Sim1 neurons in adult mice regulate both food intake and energy expenditure. Based on the body of work in the field, feeding regulation by Sim1 neurons likely occurs in both the PVH and medial amygdala, in contrast to energy expenditure regulation by Sim1 neurons, which likely is localized to the PVH. PMID:22558467

  20. Ablation of Sim1 neurons causes obesity through hyperphagia and reduced energy expenditure.

    PubMed

    Xi, Dong; Gandhi, Nilay; Lai, Meizan; Kublaoui, Bassil M

    2012-01-01

    Single-minded 1 (Sim1) is a transcription factor necessary for development of the paraventricular nucleus of the hypothalamus (PVH). This nucleus is a critical regulator of appetite, energy expenditure and body weight. Previously we showed that Sim1(+/-) mice and conditional postnatal Sim1(-/-) mice exhibit hyperphagia, obesity, increased linear growth and susceptibility to diet-induced obesity, but no decrease in energy expenditure. Bilateral ablation of the PVH causes obesity due to hyperphagia and reduced energy expenditure. It remains unknown whether Sim1 neurons regulate energy expenditure. In this study, Sim1cre mice were bred to homozygous inducible diphtheria toxin receptor (iDTR) mice to generate mice expressing the simian DTR in Sim1 cells. In these mice, Sim1 neuron ablation was performed by intracerebroventricular (ICV) injection of diphtheria toxin. Compared to controls, mice with Sim1 neuron ablation became obese (with increased fat mass) on a chow diet due to increased food intake and reduced energy expenditure. In post-injection mice, we observed a strong inverse correlation between the degree of obesity and hypothalamic Sim1 expression. The reduction in baseline energy expenditure observed in these mice was accompanied by a reduction in activity. This reduction in activity did not fully account for the reduced energy expenditure as these mice exhibited decreased resting energy expenditure, decreased body temperature, decreased brown adipose tissue temperature, and decreased UCP1 expression suggesting an impairment of thermogenesis. In injected mice, hypothalamic gene expression of Sim1, oxytocin (OXT) and thyrotropin releasing hormone (TRH) was reduced by about 50%. These results demonstrate that Sim1 neurons in adult mice regulate both food intake and energy expenditure. Based on the body of work in the field, feeding regulation by Sim1 neurons likely occurs in both the PVH and medial amygdala, in contrast to energy expenditure regulation by Sim1 neurons, which likely is localized to the PVH.

  1. Evaluating thermoregulation in reptiles: the fallacy of the inappropriately applied method.

    PubMed

    Seebacher, Frank; Shine, Richard

    2004-01-01

    Given the importance of heat in most biological processes, studies on thermoregulation have played a major role in understanding the ecology of ectothermic vertebrates. It is, however, difficult to assess whether body temperature is actually regulated, and several techniques have been developed that allow an objective assessment of thermoregulation. Almost all recent studies on reptiles follow a single methodology that, when used correctly, facilitates comparisons between species, climates, and so on. However, the use of operative temperatures in this methodology assumes zero heat capacity of the study animals and is, therefore, appropriate for small animals only. Operative temperatures represent potentially available body temperatures accurately for small animals but can substantially overestimate the ranges of body temperature available to larger animals whose slower rates of heating and cooling mean that they cannot reach equilibrium if they encounter operative temperatures that change rapidly through either space or time. This error may lead to serious misinterpretations of field data. We derive correction factors specific for body mass and rate of movement that can be used to estimate body temperature null distributions of larger reptiles, thereby overcoming this methodological problem.

  2. Comparative proteomic analysis of Bombyx mori hemolymph and fat body after calorie restriction.

    PubMed

    Chen, Huiqing; Li, Yijia; Chen, Keping; Yao, Qin; Li, Guohui; Wang, Lin

    2010-01-01

    Calorie restriction (CR) is known to extend life span from yeast to mammals. To gain an insight into the effects of CR on growth and development of the silkworm Bombyx mori at protein level, we employed comparative proteomic approach to investigate proteomic differences of hemolymph and fat body of the silkworm larvae subjected to CR. Thirty-nine differentially expressed proteins were identified by MALDI TOF/TOF MS. Among them, 19 were from the hemolymph and 20 from the fat body. The hemolymph of the CR group contained two down-regulated and 17 up-regulated proteins, whereas the fat body contained 15 down-regulated and five up-regulated ones. These proteins belonged to those functioning in immune system, in signal transduction and apoptosis, in regulation of growth and development, and in energy metabolism. Our results suggest that CR can alter the expression of proteins related to the above four aspects, implying that these proteins may regulate life span of the silkworm through CR.

  3. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    PubMed

    Judah, David; Chang, Wing Y; Dagnino, Lina

    2010-11-10

    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  4. Tissue Specific Expression Of Sprouty1 In Mice Protects Against High Fat Diet Induced Fat Accumulation, Bone Loss, And Metabolic Dysfunction

    PubMed Central

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J.; Liaw, Lucy

    2012-01-01

    We recently characterized Sprouty1 (Spry1), a growth factor signaling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue specific Spry1 expression in mice resulted in increased bone mass and reduced body fat while conditional knockout of Spry1 had the opposite effect with decreased bone and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high fat diet-induced obesity, bone loss, and associated lipid abnormalities and demonstrate that Spry1 has a long-term protective effect on mice fed a high caloric diet. We studied diet-induced obesity in mice with fatty acid binding promoter (aP2)-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1 null mice, high fat diet increased body fat by 40%, impaired glucose regulation, and led to liver steatosis. However, over-expression of Spry1 led to 35% lower body fat, reduced bone loss, and normal metabolic function compared to single transgenics. This protective phenotype was associated with decreased circulating insulin (70%) and leptin (54%) compared to controls on a high fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45%. We show that conditional Spry1 expression in adipose tissue protects against high fat diet-induced obesity and associated bone loss. PMID:22142492

  5. Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction.

    PubMed

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J; Liaw, Lucy

    2012-09-28

    We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.

  6. Emotional reactivity and emotion regulation among adults with a history of self-harm: laboratory self-report and functional MRI evidence.

    PubMed

    Davis, Tchiki S; Mauss, Iris B; Lumian, Daniel; Troy, Allison S; Shallcross, Amanda J; Zarolia, Paree; Ford, Brett Q; McRae, Kateri

    2014-08-01

    Intentionally hurting one's body (deliberate self-harm; DSH) is theorized to be associated with high negative emotional reactivity and poor emotion regulation ability. However, little research has assessed the relationship between these potential risk factors and DSH using laboratory measures. Therefore, we conducted 2 studies using laboratory measures of negative emotional reactivity and emotion regulation ability. Study 1 assessed self-reported negative emotions during a sad film clip (reactivity) and during a sad film clip for which participants were instructed to use reappraisal (regulation). Those with a history of DSH were compared with 2 control groups without a history of DSH matched on key demographics: 1 healthy group low in depression and anxiety symptoms and 1 group matched to the DSH group on depression and anxiety symptoms. Study 2 extended Study 1 by assessing neural responding to negative images (reactivity) and negative images for which participants were instructed to use reappraisal (regulation). Those with a history of DSH were compared with a control group matched to the DSH group on demographics, depression, and anxiety symptoms. Compared with control groups, participants with a history of DSH did not exhibit greater negative emotional reactivity but did exhibit lower ability to regulate emotion with reappraisal (greater self-reported negative emotions in Study 1 and greater amygdala activation in Study 2 during regulation). These results suggest that poor emotion regulation ability, but not necessarily greater negative emotional reactivity, is a correlate of and may be a risk factor for DSH, even when controlling for mood disorder symptoms. (c) 2014 APA, all rights reserved.

  7. Emotional Reactivity and Emotion Regulation among Adults with a History of Self-Harm: Laboratory Self-Report and fMRI Evidence

    PubMed Central

    Davis, Tchiki S.; Mauss, Iris B.; Lumian, Daniel; Troy, Allison S.; Shallcross, Amanda J.; Zarolia, Paree; Ford, Brett Q.; McRae, Kateri

    2014-01-01

    Intentionally hurting one’s own body (deliberate self-harm; DSH) is theorized to be associated with high negative emotional reactivity and poor emotion regulation ability. However, little research has assessed the relationship between these potential risk factors and DSH using laboratory measures. Therefore, we conducted two studies using laboratory measures of negative emotional reactivity and emotion regulation ability. Study 1 assessed self-reported negative emotions during a sad film clip (Reactivity) and during a sad film clip for which participants were instructed to use reappraisal (Regulation). Those with a history of DSH were compared to two control groups without a history of DSH matched on key demographics: one healthy group low in depression and anxiety symptoms and one group matched to the DSH group on depression and anxiety symptoms. Study 2 extended Study 1 by assessing neural responding to negative images (Reactivity) and negative images for which participants were instructed to use reappraisal (Regulation). Those with a history of DSH were compared to a control group matched to the DSH group on demographics, depression, and anxiety symptoms. Compared to control groups, participants with a history of DSH did not exhibit greater negative emotional reactivity but did exhibit lower ability to regulate emotion with reappraisal (greater self-reported negative emotions in Study 1 and greater amygdala activation in Study 2 during regulation). These results suggest that poor emotion regulation ability, but not necessarily greater negative emotional reactivity, is a correlate of and may be a risk factor for DSH, even when controlling for mood disorder symptoms. PMID:24865373

  8. The influence of Argonaute proteins on alternative RNA splicing.

    PubMed

    Batsché, Eric; Ameyar-Zazoua, Maya

    2015-01-01

    Alternative splicing of precursor RNAs is an important process in multicellular species because it impacts several aspects of gene expression: from the increase of protein repertoire to the level of expression. A large body of evidences demonstrates that factors regulating chromatin and transcription impact the outcomes of alternative splicing. Argonaute (AGO) proteins were known to play key roles in the regulation of gene expression at the post-transcriptional level. More recently, their role in the nucleus of human somatic cells has emerged. Here, we will discuss some of the nuclear functions of AGO, with special emphasis on alternative splicing. The AGO-mediated modulation of alternative splicing is based on several properties of these proteins: their binding to transcripts on chromatin and their interactions with many proteins, especially histone tail-modifying enzymes, HP1γ and splicing factors. AGO proteins may favor a decrease in the RNA-polymerase II kinetics at actively transcribed genes leading to the modulation of alternative splicing decisions. They could also influence alternative splicing through their interaction with core components of the splicing machinery and several splicing factors. We will discuss the modes of AGO recruitment on chromatin at active genes. We suggest that long intragenic antisense transcripts (lincRNA) might be an important feature of genes containing splicing events regulated by AGO. © 2014 John Wiley & Sons, Ltd.

  9. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation.

    PubMed

    Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku

    2017-01-01

    One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Regulatory states in the developmental control of gene expression.

    PubMed

    Peter, Isabelle S

    2017-09-01

    A growing body of evidence shows that gene expression in multicellular organisms is controlled by the combinatorial function of multiple transcription factors. This indicates that not the individual transcription factors or signaling molecules, but the combination of expressed regulatory molecules, the regulatory state, should be viewed as the functional unit in gene regulation. Here, I discuss the concept of the regulatory state and its proposed role in the genome-wide control of gene expression. Recent analyses of regulatory gene expression in sea urchin embryos have been instrumental for solving the genomic control of cell fate specification in this system. Some of the approaches that were used to determine the expression of regulatory states during sea urchin embryogenesis are reviewed. Significant developmental changes in regulatory state expression leading to the distinct specification of cell fates are regulated by gene regulatory network circuits. How these regulatory state transitions are encoded in the genome is illuminated using the sea urchin endoderm-mesoderms cell fate decision circuit as an example. These observations highlight the importance of considering developmental gene regulation, and the function of individual transcription factors, in the context of regulatory states. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks. PMID:18460914

  12. Candy or apple? How self-control resources and motives impact dietary healthiness in women.

    PubMed

    Sproesser, Gudrun; Strohbach, Stefanie; Schupp, Harald; Renner, Britta

    2011-06-01

    People can choose between a virtually endless array of food items rising the question, which factors determine healthy or unhealthy food choice. The present study examines the impact of two contrasting motives for food choice (affect regulation and body weight control) and self-regulatory competences on healthy eating within a sample of women (N=761). The data show that a relative lack of self-regulatory resources combined with a high tendency to regulate negative affect through comfort eating was associated with an unfavorable dietary pattern. Accordingly, a healthy dietary pattern requires not only self-regulatory capacities but also a facilitating motive structure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    A new Postdoctoral Fellow position is immediately available in the laboratory of Dr. Terry Yamaguchi at the National Cancer Institute. Dr.Yamaguchi's lab investigates how secreted growth factors regulate the gene regulatory networks that control the fate of embryonic and adult stem cells. Current projects focus on understanding how Wnts and Fgfs regulate the formation and differentiation of the neuromesodermal progenitor (NMP), a multipotent embryonic cell that generates the spinal cord neurons and musculoskeletal system of the body. Using a combination of mouse genetics, mouse and human embryonic stem cell in vitro differentiation, and genomic, proteomic and biochemical approaches, Dr. Yamaguchi’s lab is investigating the molecular mechanisms underlying the activity of key transcriptional determinants of NMP development.

  14. Body temperature norms

    MedlinePlus

    Morrison SF. Regulation of body temperature. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 59. Sajadi MM, Mackowiak PA. Temperature regulation and the pathogenesis ...

  15. Ketone bodies as epigenetic modifiers.

    PubMed

    Ruan, Hai-Bin; Crawford, Peter A

    2018-07-01

    Ketone body metabolism is a dynamic and integrated metabolic node in human physiology, whose roles include but extend beyond alternative fuel provision during carbohydrate restriction. Here we discuss the most recent observations suggesting that ketosis coordinates cellular function via epigenomic regulation. Ketosis has been linked to covalent modifications, including lysine acetylation, methylation, and hydroxybutyrylation, to key histones that serve as dynamic regulators of chromatin architecture and gene transcription. Although it remains to be fully established whether these changes to the epigenome are attributable to ketone bodies themselves or other aspects of ketotic states, the regulated genes mediate classical responses to carbohydrate restriction. Direct regulation of gene expression may occur in-vivo via through ketone body-mediated histone modifications during adherence to low-carbohydrate diets, fasting ketosis, exogenous ketone body therapy, and diabetic ketoacidosis. Additional convergent functional genomics, metabolomics, and proteomics studies are required in both animal models and in humans to identify the molecular mechanisms through which ketosis regulates nuclear signaling events in a myriad of conditions relevant to disease, and the contexts in which the benefits of ketosis might outweigh the risks.

  16. Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila.

    PubMed

    Liu, Ying; Sheng, Zhentao; Liu, Hanhan; Wen, Di; He, Qianyu; Wang, Sheng; Shao, Wei; Jiang, Rong-Jing; An, Shiheng; Sun, Yaning; Bendena, William G; Wang, Jian; Gilbert, Lawrence I; Wilson, Thomas G; Song, Qisheng; Li, Sheng

    2009-06-01

    Juvenile hormone (JH) regulates many developmental and physiological events in insects, but its molecular mechanism remains conjectural. Here we report that genetic ablation of the corpus allatum cells of the Drosophila ring gland (the JH source) resulted in JH deficiency, pupal lethality and precocious and enhanced programmed cell death (PCD) of the larval fat body. In the fat body of the JH-deficient animals, Dronc and Drice, two caspase genes that are crucial for PCD induced by the molting hormone 20-hydroxyecdysone (20E), were significantly upregulated. These results demonstrated that JH antagonizes 20E-induced PCD by restricting the mRNA levels of Dronc and Drice. The antagonizing effect of JH on 20E-induced PCD in the fat body was further confirmed in the JH-deficient animals by 20E treatment and RNA interference of the 20E receptor EcR. Moreover, MET and GCE, the bHLH-PAS transcription factors involved in JH action, were shown to induce PCD by upregulating Dronc and Drice. In the Met- and gce-deficient animals, Dronc and Drice were downregulated, whereas in the Met-overexpression fat body, Dronc and Drice were significantly upregulated leading to precocious and enhanced PCD, and this upregulation could be suppressed by application of the JH agonist methoprene. For the first time, we demonstrate that JH counteracts MET and GCE to prevent caspase-dependent PCD in controlling fat body remodeling and larval-pupal metamorphosis in Drosophila.

  17. The Histone Deacetylase HDAC4 Regulates Long-Term Memory in Drosophila

    PubMed Central

    Fitzsimons, Helen L.; Schwartz, Silvia; Given, Fiona M.; Scott, Maxwell J.

    2013-01-01

    A growing body of research indicates that pharmacological inhibition of histone deacetylases (HDACs) correlates with enhancement of long-term memory and current research is concentrated on determining the roles that individual HDACs play in cognitive function. Here, we investigate the role of HDAC4 in long-term memory formation in Drosophila. We show that overexpression of HDAC4 in the adult mushroom body, an important structure for memory formation, resulted in a specific impairment in long-term courtship memory, but had no affect on short-term memory. Overexpression of an HDAC4 catalytic mutant also abolished LTM, suggesting a mode of action independent of catalytic activity. We found that overexpression of HDAC4 resulted in a redistribution of the transcription factor MEF2 from a relatively uniform distribution through the nucleus into punctate nuclear bodies, where it colocalized with HDAC4. As MEF2 has also been implicated in regulation of long-term memory, these data suggest that the repressive effects of HDAC4 on long-term memory may be through interaction with MEF2. In the same genetic background, we also found that RNAi-mediated knockdown of HDAC4 impairs long-term memory, therefore we demonstrate that HDAC4 is not only a repressor of long-term memory, but also modulates normal memory formation. PMID:24349558

  18. Functional Analysis of Developmentally Regulated Genes chs7 and sec22 in the Ascomycete Sordaria macrospora.

    PubMed

    Traeger, Stefanie; Nowrousian, Minou

    2015-04-14

    During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the generation and dispersal of spores. In previous studies, we identified genes with evolutionary conserved expression patterns during fruiting body formation in several fungal species. Here, we present the functional analysis of two developmentally up-regulated genes, chs7 and sec22, in the ascomycete Sordaria macrospora. The genes encode a class VII (division III) chitin synthase and a soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) protein, respectively. Deletion mutants of chs7 had normal vegetative growth and were fully fertile but showed sensitivity toward cell wall stress. Deletion of sec22 resulted in a reduced number of ascospores and in defects in ascospore pigmentation and germination, whereas vegetative growth was normal in the mutant. A SEC22-EGFP fusion construct under control of the native sec22 promoter and terminator regions was expressed during different stages of sexual development. Expression of several development-related genes was deregulated in the sec22 mutant, including three genes involved in melanin biosynthesis. Our data indicate that chs7 is dispensable for fruiting body formation in S. macrospora, whereas sec22 is required for ascospore maturation and germination and thus involved in late stages of sexual development. Copyright © 2015 Traeger and Nowrousian.

  19. Functional Analysis of Developmentally Regulated Genes chs7 and sec22 in the Ascomycete Sordaria macrospora

    PubMed Central

    Traeger, Stefanie; Nowrousian, Minou

    2015-01-01

    During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the generation and dispersal of spores. In previous studies, we identified genes with evolutionary conserved expression patterns during fruiting body formation in several fungal species. Here, we present the functional analysis of two developmentally up-regulated genes, chs7 and sec22, in the ascomycete Sordaria macrospora. The genes encode a class VII (division III) chitin synthase and a soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) protein, respectively. Deletion mutants of chs7 had normal vegetative growth and were fully fertile but showed sensitivity toward cell wall stress. Deletion of sec22 resulted in a reduced number of ascospores and in defects in ascospore pigmentation and germination, whereas vegetative growth was normal in the mutant. A SEC22-EGFP fusion construct under control of the native sec22 promoter and terminator regions was expressed during different stages of sexual development. Expression of several development-related genes was deregulated in the sec22 mutant, including three genes involved in melanin biosynthesis. Our data indicate that chs7 is dispensable for fruiting body formation in S. macrospora, whereas sec22 is required for ascospore maturation and germination and thus involved in late stages of sexual development. PMID:25873638

  20. Insights into the Roles of Gut Microbes in Obesity

    PubMed Central

    Sanz, Yolanda; Santacruz, Arlette; De Palma, Giada

    2008-01-01

    Obesity is a major public health issue as it enhances the risk of suffering several chronic diseases of increasing prevalence. Obesity results from an imbalance between energy intake and expenditure, associated with a chronic low-grade inflammation. Gut microbes are considered to contribute to body weight regulation and related disorders by influencing metabolic and immune host functions. The gut microbiota as a whole improves the host's ability to extract and store energy from the diet leading to body weight gain, while specific commensal microbes seem to exert beneficial effects on bile salt, lipoprotein, and cholesterol metabolism. The gut microbiota and some probiotics also regulate immune functions, protecting the host form infections and chronic inflammation. In contrast, dysbiosis and endotoxaemia may be inflammatory factors responsible for developing insulin resistance and body weight gain. In the light of the link between the gut microbiota, metabolism, and immunity, the use of dietary strategies to modulate microbiota composition is likely to be effective in controlling metabolic disorders. Although so far only a few preclinical and clinical trials have demonstrated the effects of specific gut microbes and prebiotics on biological markers of these disorders, the findings indicate that advances in this field could be of value in the struggle against obesity and its associated-metabolic disorders. PMID:19259329

  1. A murine retrovirus co-Opts YB-1, a translational regulator and stress granule-associated protein, to facilitate virus assembly.

    PubMed

    Bann, Darrin V; Beyer, Andrea R; Parent, Leslie J

    2014-04-01

    The Gag protein of the murine retrovirus mouse mammary tumor virus (MMTV) orchestrates the assembly of immature virus particles in the cytoplasm which are subsequently transported to the plasma membrane for release from the cell. The morphogenetic pathway of MMTV assembly is similar to that of Saccharomyces cerevisiae retrotransposons Ty1 and Ty3, which assemble virus-like particles (VLPs) in intracytoplasmic ribonucleoprotein (RNP) complexes. Assembly of Ty1 and Ty3 VLPs depends upon cellular mRNA processing factors, prompting us to examine whether MMTV utilizes a similar set of host proteins to facilitate viral capsid assembly. Our data revealed that MMTV Gag colocalized with YB-1, a translational regulator found in stress granules and P bodies, in intracytoplasmic foci. The association of MMTV Gag and YB-1 in cytoplasmic granules was not disrupted by cycloheximide treatment, suggesting that these sites were not typical stress granules. However, the association of MMTV Gag and YB-1 was RNA dependent, and an MMTV RNA reporter construct colocalized with Gag and YB-1 in cytoplasmic RNP complexes. Knockdown of YB-1 resulted in a significant decrease in MMTV particle production, indicating that YB-1 plays a role in MMTV capsid formation. Analysis by live-cell imaging with fluorescence recovery after photobleaching (FRAP) revealed that the population of Gag proteins localized within YB-1 complexes was relatively immobile, suggesting that Gag forms stable complexes in association with YB-1. Together, our data imply that the formation of intracytoplasmic Gag-RNA complexes is facilitated by YB-1, which promotes MMTV virus assembly. Cellular mRNA processing factors regulate the posttranscriptional fates of mRNAs, affecting localization and utilization of mRNAs under normal conditions and in response to stress. RNA viruses such as retroviruses interact with cellular mRNA processing factors that accumulate in ribonucleoprotein complexes known as P bodies and stress granules. This report shows for the first time that mouse mammary tumor virus (MMTV), a mammalian retrovirus that assembles intracytoplasmic virus particles, commandeers the cellular factor YB-1, a key regulator of translation involved in the cellular stress response. YB-1 is essential for the efficient production of MMTV particles, a process directed by the viral Gag protein. We found that Gag and YB-1 localize together in cytoplasmic granules. Functional studies of Gag/YB-1 granules suggest that they may be sites where virus particles assemble. These studies provide significant insights into the interplay between mRNA processing factors and retroviruses.

  2. Effects of biomotor structures on performance of competitive gymnastics elements in elementary school male sixth-graders.

    PubMed

    Delas, Suncica; Zagorac, Nebojsa; Katić, Ratko

    2008-06-01

    In order to identify the biomotor systems that determine performance of competitive gymnastics elements in elementary school male sixth-graders, factor structures of morphological characteristics and basic motor abilities were determined first, followed by relations of the morphological-motor system factors obtained with a set of criterion variables evaluating specific motor skills in competitive gymnastics in 110 male children aged 12 years +/- 3 months. Factor analysis of 17 morphological measures produced three morphological factors: factor of mesoectoendomorphy (general morphological factor) and factor of pronounced endomorphy, i.e. excessive adipose tissue, along with low skeleton longitudinality. Factor analysis of 16 motor variables yielded four motor factors: factor of general motoricity; factor integrating leg flexibility and arm explosiveness; factor juxtaposing body flexibility and repetitive leg strength; and factor predominantly defining leg movement frequency. Three significant canonical correlations, i.e. linear combinations, explained the association between the set of six latent variables of the morphological and basic motor system, and five variables assessing the knowledge in competitive gymnastics. The first canonical linear combination was based on the favorable and predominant impact of the general motor factor (a system integrating leg explosiveness, whole body coordination, relative arm and trunk strength, and arm movement frequency), along with unfavorable effect of morphological factors on the gymnastics elements performance, squat vault and handstand in particular The relation of the second pair of canonical factors pointed to the effects of leg flexibility and arm explosiveness on the cartwheel and backward pullover mount performance, whereas the relation of the third pair of canonical factors showed a favorable impact of the general morphological factor and leg movement frequency regulator on the forward shoulderkip from increase, cartwheel and handstand performance.

  3. Role of macrophage migration inhibitory factor in age-related lung disease

    PubMed Central

    Sauler, Maor; Bucala, Richard

    2015-01-01

    The prevalence of many common respiratory disorders, including pneumonia, chronic obstructive lung disease, pulmonary fibrosis, and lung cancer, increases with age. Little is known of the host factors that may predispose individuals to such diseases. Macrophage migration inhibitory factor (MIF) is a potent upstream regulator of the immune system. MIF is encoded by variant alleles that occur commonly in the population. In addition to its role as a proinflammatory cytokine, a growing body of literature demonstrates that MIF influences diverse molecular processes important for the maintenance of cellular homeostasis and may influence the incidence or clinical manifestations of a variety of chronic lung diseases. This review highlights the biological properties of MIF and its implication in age-related lung disease. PMID:25957294

  4. Effects of aluminum trichloride on the cartilage stimulatory growth factors in rats.

    PubMed

    Zhang, Fan; Sun, Xudong; Yu, Hongyan; Yang, Xu; Song, Miao; Han, Yanfei; Li, Yanfei; Zhu, Yanzhu

    2017-02-01

    Aluminum (Al) is considered to be a potentially toxic metal and inhibits cartilage formation. Transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) are cartilage stimulatory growth factors, which play important roles in regulating the cartilage formation. To investigate the effects of aluminum trichloride (AlCl 3 ) on the regulation of cartilage formation. Eighty Wistar rats were orally exposed to 0 (control group), 0.4 g/L (low-dose group), 0.8 g/L (mid-dose group) and 1.6 g/L (high-dose group) AlCl 3 for 120 days, respectively. The rats body weight were decreased, the cartilage histological structure were disrupted, the cartilage and serum contents of Al and the serum level of C-telopeptide of type II collagen were all increased, the serum level of type II collagen (Col II) and alkaline phosphatase (ALP), and the mRNA expressions of TGF-β1, BMP-2, ALP and Col II were all decreased in the AlCl 3 -treated groups compared with those in control group. These results indicate that AlCl 3 inhibits the cartilage formation through inhibition of the cartilage stimulatory growth factors expressions.

  5. Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    PubMed Central

    Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl

    2008-01-01

    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875

  6. Gasotransmitter Regulation of Ion Channels: A Key Step in O2 Sensing By the Carotid Body

    PubMed Central

    Prabhakar, Nanduri R.

    2014-01-01

    Carotid bodies detect hypoxia in arterial blood, translating this stimulus into physiological responses via the CNS. It is long established that ion channels are critical to this process. More recent evidence indicates that gasotransmitters exert powerful influences on O2 sensing by the carotid body. Here, we review current understanding of hypoxia-dependent production of gasotransmitters, how they regulate ion channels in the carotid body, and how this impacts carotid body function. PMID:24382871

  7. Juvenile hormone mediates developmental integration between exaggerated traits and supportive traits in the horned flour beetle Gnatocerus cornutus.

    PubMed

    Okada, Yasukazu; Gotoh, Hiroki; Miura, Toru; Miyatake, Takahisa; Okada, Kensuke

    2012-07-01

    Sexually selected exaggerated traits are often coupled with modifications in other nontarget traits. In insects with weapons, enlargements of nontarget characters that functionally support the weapon often occur (i.e. supportive traits). The support of sexual traits requires developmental coordination among functionally related multiple traits-an explicit example of morphological integration. The genetic theory predicts that developmental integration among different body modules, for which development is regulated via different sets of genes, is likely to be coordinated by pleiotropic factors. However, the developmental backgrounds of morphological integrations are largely unknown. We tested the hypothesis that the juvenile hormone (JH), as a pleiotropic factor, mediates the integration between exaggerated and supportive traits in an armed beetle Gnatocerus cornutus. During combat, males of this beetle use exaggerated mandibles to lift up their opponents with the supportive traits, that is, the head and prothoracic body parts. Application of methoprene, a JH analog (JHA), during the larval to prepupal period, induced the formation of large mandibles relative to the body sizes in males. Morphometric examination of nontarget traits elucidated an increase in the relative sizes of supportive traits, including the head and prothoracic body parts. In addition, reductions in the hind wing area and elytra length, which correspond to flight and reproductive abilities, were detected. Our findings are consistent with the genetic theory and support the idea that JH is a key pleiotropic factor that coordinates the developmental integration of exaggerated traits and supportive characters, as well as resource allocation trade-offs. © 2012 Wiley Periodicals, Inc.

  8. Factors influencing aquatic-to-terrestrial contaminant transport to terrestrial arthropod consumers in a multiuse river system.

    PubMed

    Alberts, Jeremy M; Sullivan, S Mažeika P

    2016-06-01

    Emerging aquatic insects are important vectors of contaminant transfer from aquatic to terrestrial food webs. However, the environmental factors that regulate contaminant body burdens in nearshore terrestrial consumers remain largely unexplored. We investigated the relative influences of riparian landscape composition (i.e., land use and nearshore vegetation structure) and contaminant flux via the emergent aquatic insect subsidy on selenium (Se) and mercury (Hg) body burdens of riparian ants (Formica subsericea) and spiders of the family Tetragnathidae along 11 river reaches spanning an urban-rural land-use gradient in Ohio, USA. Model-selection results indicated that fine-scale land cover (e.g., riparian zone width, shrub cover) in the riparian zone was positively associated with reach-wide body burdens of Se and Hg in both riparian F. subsericea and tetragnathid spiders (i.e., total magnitude of Hg and Se concentrations in ant and spider populations, respectively, for each reach). River distance downstream of Columbus, Ohio - where study reaches were impounded and flow through a large urban center - was also implicated as an important factor. Although stable-isotope analysis suggested that emergent aquatic insects were likely vectors of Se and Hg to tetragnathid spiders (but not to F. subsericea), emergent insect contaminant flux did not emerge as a significant predictor for either reach-wide body burdens of spider Hg or Se. Improved understanding of the pathways and influences that control aquatic-to-terrestrial contaminant transport will be critical for effective risk management and remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Factor for adipocyte differentiation 158 gene disruption prevents the body weight gain and insulin resistance induced by a high-fat diet.

    PubMed

    Hayashi, Takahiro; Nozaki, Yuriko; Nishizuka, Makoto; Ikawa, Masahito; Osada, Shigehiro; Imagawa, Masayoshi

    2011-01-01

    To clarify the molecular mechanism of adipocyte differentiation, we previously isolated a novel gene, factor for adipocyte differentiation (fad) 158, whose expression was induced during the earliest stages of adipogenesis, and its product was localized to the endoplasmic reticulum. We found that the knockdown of fad158 expression prevented the differentiation of 3T3-L1 cells into adipocytes. In addition, over-expression of fad158 promoted the differentiation of NIH-3T3 cells, which do not usually differentiate into adipocytes. Although these findings strongly suggest that fad158 has a crucial role in regulating adipocyte differentiation, the physiological role of the gene is still unclear. In this study, we generated mice in which fad158 expression was deleted. The fad158-deficient mice did not show remarkable changes in body weight or the weight of white adipose tissue on a chow diet, but had significantly lower body weights and fat mass than wild-type mice when fed a high-fat diet. Furthermore, although the disruption of fad158 did not influence insulin sensitivity on the chow diet, it improved insulin resistance induced by the high-fat diet. These results indicate that fad158 is a key factor in the development of obesity and insulin resistance caused by a high-fat diet.

  10. Krüppel-like factors: three fingers in control.

    PubMed

    Swamynathan, Shivalingappa K

    2010-04-01

    Krüppel-like factors (KLFs), members of the zinc-finger family of transcription factors capable of binding GC-rich sequences, have emerged as critical regulators of important functions all over the body. They are characterised by a highly conserved C-terminal DNA-binding motif containing three C2H2 zinc-finger domains, with variable N-terminal regulatory domains. Currently, there are 17 KLFs annotated in the human genome. In spite of their structural similarity to one another, the genes encoding different KLFs are scattered all over the genome. By virtue of their ability to activate and/or repress the expression of a large number of genes, KLFs regulate a diverse array of developmental events and cellular processes, such as erythropoiesis, cardiac remodelling, adipogenesis, maintenance of stem cells, epithelial barrier formation, control of cell proliferation and neoplasia, flow-mediated endothelial gene expression, skeletal and smooth muscle development, gluconeogenesis, monocyte activation, intestinal and conjunctival goblet cell development, retinal neuronal regeneration and neonatal lung development. Characteristic features, nomenclature, evolution and functional diversities of the human KLFs are reviewed here.

  11. The Hippo signal transduction network for exercise physiologists

    PubMed Central

    Hamilton, D. Lee; Tremblay, Annie M.

    2016-01-01

    The ubiquitous transcriptional coactivators Yap (gene symbol Yap1) and Taz (gene symbol Wwtr1) regulate gene expression mainly by coactivating the Tead transcription factors. Being at the center of the Hippo signaling network, Yap and Taz are regulated by the Hippo kinase cassette and additionally by a plethora of exercise-associated signals and signaling modules. These include mechanotransduction, the AKT-mTORC1 network, the SMAD transcription factors, hypoxia, glucose homeostasis, AMPK, adrenaline/epinephrine and angiotensin II through G protein-coupled receptors, and IL-6. Consequently, exercise should alter Hippo signaling in several organs to mediate at least some aspects of the organ-specific adaptations to exercise. Indeed, Tead1 overexpression in muscle fibers has been shown to promote a fast-to-slow fiber type switch, whereas Yap in muscle fibers and cardiomyocytes promotes skeletal muscle hypertrophy and cardiomyocyte adaptations, respectively. Finally, genome-wide association studies in humans have linked the Hippo pathway members LATS2, TEAD1, YAP1, VGLL2, VGLL3, and VGLL4 to body height, which is a key factor in sports. PMID:26940657

  12. Lipolysis-Stimulating Peptide from Soybean Protects Against High Fat Diet-Induced Apoptosis in Skeletal Muscles.

    PubMed

    Marthandam Asokan, Shibu; Hung, Tsu-Han; Chiang, Wen-Dee; Lin, Wan-Teng

    2018-03-01

    Obesity is generally associated with low-grade chronic inflammation that involves the recruitment of macrophages and other inflammation factors to the adipocytes of obese individuals. Tumor necrosis factor-alpha (TNF-α), a cytokine associated with systemic inflammation, is elevated in conditions of obesity. TNF-α is an important factor that plays an important role in skeletal muscle wasting. Apoptosis of myonuclei contributes to the loss of muscle mass and therefore plays an important role in skeletal muscle atrophy. In mouse models that were fed a high fat diet (HFD), a lipolysis-stimulating peptide-VHVV (purified from hydrolysate resulting from flavourzyme treatment of soy protein) was found to reduce HFD-related apoptotic effects in mice skeletal muscle and potentially control atrophy. HFD fed mice had heavier body weight than those fed with normal chow, and VHVV administration restricted lipid accumulation in muscle tissues of mice fed with HFD but increased nutrient uptake. Moreover, specific concentrations of VHVV regulated TNF-α expression that was elevated by HFD, suppressed apoptosis-related proteins and regulated the proteins of lipid metabolism.

  13. PPARγ2Pro12Ala Polymorphism and Human Health

    PubMed Central

    He, Weimin

    2009-01-01

    The nuclear hormone receptor peroxisome proliferator activated receptor gamma (PPARγ) is an important transcription factor regulating adipocyte differentiation, lipid and glucose homeostasis, and insulin sensitivity. Numerous genetic mutations of PPARγ have been identified and these mutations positively or negatively regulate insulin sensitivity. Among these, a relatively common polymorphism of PPARγ, Pro12Ala of PPARγ2, the isoform expressed only in adipose tissue has been shown to be associated with lower body mass index, enhanced insulin sensitivity, and resistance to the risk of type 2 diabetes in human subjects carrying this mutation. Subsequent studies in different ethnic populations, however, have revealed conflicting results, suggesting a complex interaction between the PPARγ2 Pro12Ala polymorphism and environmental factors such as the ratio of dietary unsaturated fatty acids to saturated fatty acids and/or between the PPARγ2 Pro12Ala polymorphism and genetic factors such as polymorphic mutations in other genes. In addition, this polymorphic mutation in PPARγ2 is associated with other aspects of human diseases, including cancers, polycystic ovary syndrome, Alzheimer disease and aging. This review will highlight findings from recent studies. PMID:19390629

  14. Neural guidance molecules regulate vascular remodeling and vessel navigation.

    PubMed

    Eichmann, Anne; Makinen, Taija; Alitalo, Kari

    2005-05-01

    The development of the embryonic blood vascular and lymphatic systems requires the coordinated action of several transcription factors and growth factors that target endothelial and periendothelial cells. However, according to recent studies, the precise "wiring" of the vascular system does not occur without an ordered series of guidance decisions involving several molecules initially discovered for axons in the nervous system, including ephrins, netrins, slits, and semaphorins. Here, we summarize the new advances in our understanding of the roles of these axonal pathfinding molecules in vascular remodeling and vessel guidance, indicating that neuronal axons and vessel sprouts use common molecular mechanisms for navigation in the body.

  15. Tissue engineering in endodontics.

    PubMed

    Saber, Shehab El-Din M

    2009-12-01

    Tissue engineering is the science of design and manufacture of new tissues to replace impaired or damaged ones. The key ingredients for tissue engineering are stem cells, the morphogens or growth factors that regulate their differentiation, and a scaffold of extracellular matrix that constitutes the microenvironment for their growth. Recently, there has been increasing interest in applying the concept of tissue engineering to endodontics. The aim of this study was to review the body of knowledge related to dental pulp stem cells, the most common growth factors, and the scaffolds used to control their differentiation, and a clinical technique for the management of immature non-vital teeth based on this novel concept.

  16. Rho-guanine nucleotide exchange factors during development

    PubMed Central

    Mulinari, Shai

    2010-01-01

    The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems. PMID:21686118

  17. Sexual Dimorphism of Body Size Is Controlled by Dosage of the X-Chromosomal Gene Myc and by the Sex-Determining Gene tra in Drosophila.

    PubMed

    Mathews, Kristina Wehr; Cavegn, Margrith; Zwicky, Monica

    2017-03-01

    Drosophila females are larger than males. In this article, we describe how X -chromosome dosage drives sexual dimorphism of body size through two means: first, through unbalanced expression of a key X -linked growth-regulating gene, and second, through female-specific activation of the sex-determination pathway. X -chromosome dosage determines phenotypic sex by regulating the genes of the sex-determining pathway. In the presence of two sets of X -chromosome signal elements (XSEs), Sex-lethal ( Sxl ) is activated in female ( XX ) but not male ( XY ) animals. Sxl activates transformer ( tra ), a gene that encodes a splicing factor essential for female-specific development. It has previously been shown that null mutations in the tra gene result in only a partial reduction of body size of XX animals, which shows that other factors must contribute to size determination. We tested whether X dosage directly affects animal size by analyzing males with duplications of X -chromosomal segments. Upon tiling across the X chromosome, we found four duplications that increase male size by >9%. Within these, we identified several genes that promote growth as a result of duplication. Only one of these, Myc , was found not to be dosage compensated. Together, our results indicate that both Myc dosage and tra expression play crucial roles in determining sex-specific size in Drosophila larvae and adult tissue. Since Myc also acts as an XSE that contributes to tra activation in early development, a double dose of Myc in females serves at least twice in development to promote sexual size dimorphism. Copyright © 2017 by the Genetics Society of America.

  18. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia.

    PubMed

    Biolo, Gianni; Cederholm, Tommy; Muscaritoli, Maurizio

    2014-10-01

    Skeletal muscle is the most abundant body tissue accounting for many physiological functions. However, muscle mass and functions are not routinely assessed. Sarcopenia is defined as skeletal muscle loss and dysfunction in aging and chronic diseases. Inactivity, inflammation, age-related factors, anorexia and unbalanced nutrition affect changes in skeletal muscle. Mechanisms are difficult to distinguish in individual subjects due to the multifactorial character of the condition. Sarcopenia includes both muscle loss and dysfunction which induce contractile impairment and metabolic and endocrine abnormalities, affecting whole-body metabolism and immune/inflammatory response. There are different metabolic trajectories for muscle loss versus fat changes in aging and chronic diseases. Appetite regulation and physical activity affect energy balance and changes in body fat mass. Appetite regulation by inflammatory mediators is poorly understood. In some patients, inflammation induces anorexia and fat loss in combination with sarcopenia. In others, appetite is maintained, despite activation of systemic inflammation, leading to sarcopenia with normal or increased BMI. Inactivity contributes to sarcopenia and increased fat tissue in aging and diseases. At the end of the metabolic trajectories, cachexia and sarcopenic obesity are paradigms of the two patient categories. Pre-cachexia and cachexia are observed in patients with cancer, chronic heart failure or liver cirrhosis. Sarcopenic obesity and sarcopenia with normal/increased BMI are observed in rheumatoid arthritis, breast cancer patients with adjuvant chemotherapy and in most of patients with COPD or chronic kidney disease. In these conditions, sarcopenia is a powerful prognostic factor for morbidity and mortality, independent of BMI. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Relationships between serum leptin levels and bone mineral parameters in school-aged children: a 3-year follow-up study.

    PubMed

    Kouda, Katsuyasu; Ohara, Kumiko; Fujita, Yuki; Nakamura, Harunobu; Tachiki, Takahiro; Iki, Masayuki

    2018-02-02

    Leptin regulates bone cell differentiation and functions via direct and indirect actions in experimental settings. Epidemiologically, however, the impact of leptin on the regulation of bone metabolism remains unclear. While some studies have reported a positive relationship between leptin and bone mineral parameters, other studies found an inverse or no association. We analyzed data from a population-based follow-up survey of community-dwelling children in Hamamatsu, Japan, to investigate relationships between leptin levels and bone mineral parameters. Multiple regression analysis was performed. Multicollinearity was quantified using the variance infiltration factor (VIF). Among 408 children who participated in the baseline survey (at age 11.2 years), 254 (121 boys and 133 girls) completed the follow-up survey (at age 14.2 years). Leptin levels were strongly related to fat mass (r = 0.87 in boys, r = 0.80 in girls). Leptin levels at baseline were significantly (P < 0.05) positively related to total body less head (TBLH) areal bone mineral density (aBMD) at follow-up in girls (standardized partial regression coefficient: β = 0.302, VIF = 2.246), after adjusting for body fat percentage (%). On the other hand, leptin levels were inversely related to TBLH aBMD in boys (β = - 0.395, VIF = 4.116), after adjusting for body fat mass (kg). Positive relationships between leptin levels and bone mineral parameters were observed with VIF values < 4.0, whereas inverse relationships were observed with VIF values ≥ 4.0. These findings suggest that positive relationships between leptin levels and bone mineral parameters are weak, or not always observed, due to statistical problems (i.e., multicollinearity) and other factors derived from adipose tissue.

  20. Circadian CLOCK gene polymorphisms in relation to sleep patterns and obesity in African Americans: findings from the Jackson heart study.

    PubMed

    Riestra, Pia; Gebreab, Samson Y; Xu, Ruihua; Khan, Rumana J; Gaye, Amadou; Correa, Adolfo; Min, Nancy; Sims, Mario; Davis, Sharon K

    2017-06-23

    Circadian rhythms regulate key biological processes and the dysregulation of the intrinsic clock mechanism affects sleep patterns and obesity onset. The CLOCK (circadian locomotor output cycles protein kaput) gene encodes a core transcription factor of the molecular circadian clock influencing diverse metabolic pathways, including glucose and lipid homeostasis. The primary objective of this study was to evaluate the associations between CLOCK single nucleotide polymorphisms (SNPs) and body mass index (BMI). We also evaluated the association of SNPs with BMI related factors such as sleep duration and quality, adiponectin and leptin, in 2962 participants (1116 men and 1810 women) from the Jackson Heart Study. Genotype data for the selected 23 CLOCK gene SNPS was obtained by imputation with IMPUTE2 software and reference phase data from the 1000 genome project. Genetic analyses were conducted with PLINK RESULTS: We found a significant association between the CLOCK SNP rs2070062 and sleep duration, participants carriers of the T allele showed significantly shorter sleep duration compared to non-carriers after the adjustment for individual proportions of European ancestry (PEA), socio economic status (SES), body mass index (BMI), alcohol consumption and smoking status that reach the significance threshold after multiple testing correction. In addition, we found nominal associations of the CLOCK SNP rs6853192 with longer sleep duration and the rs6820823, rs3792603 and rs11726609 with BMI. However, these associations did not reach the significance threshold after correction for multiple testing. In this work, CLOCK gene variants were associated with sleep duration and BMI suggesting that the effects of these polymorphisms on circadian rhythmicity may affect sleep duration and body weight regulation in Africans Americans.

  1. Acquired alterations of hypothalamic gene expression of insulin and leptin receptors and glucose transporters in prenatally high-glucose exposed three-week old chickens do not coincide with aberrant promoter DNA methylation.

    PubMed

    Rancourt, Rebecca C; Schellong, Karen; Ott, Raffael; Bogatyrev, Semen; Tzschentke, Barbara; Plagemann, Andreas

    2015-01-01

    Prenatal exposures may have a distinct impact for long-term health, one example being exposure to maternal 'diabesity' during pregnancy increasing offspring 'diabesity' risk. Malprogramming of the central nervous regulation of body weight, food intake and metabolism has been identified as a critical mechanism. While concrete disrupting factors still remain unclear, growing focus on acquired epigenomic alterations have been proposed. Due to the independent development from the mother, the chicken embryo provides a valuable model to distinctively establish causal factors and mechanisms. The aim of this study was to determine the effects of prenatal hyperglycemia on postnatal hypothalamic gene expression and promoter DNA methylation in the chicken. To temporarily induce high-glucose exposure in chicken embryos, 0.5 ml glucose solution (30 mmol/l) were administered daily via catheter into a vessel of the chorioallantoic egg membrane from days 14 to 17 of incubation. At three weeks of postnatal age, body weight, total body fat, blood glucose, mRNA expression (INSR, LEPR, GLUT1, GLUT3) as well as corresponding promoter DNA methylation were determined in mediobasal hypothalamic brain slices (Nucleus infundibuli hypothalami). Although no significant changes in morphometric and metabolic parameters were detected, strongly decreased mRNA expression occurred in all candidate genes. Surprisingly, however, no relevant alterations were observed in respective promoter methylation. Prenatal hyperglycemia induces strong changes in later hypothalamic expression of INSR, LEPR, GLUT1, and GLUT3 mRNA. While the chicken provides an interesting approach for developmental malprogramming, the classical expression regulation via promoter methylation was not observed here. This may be due to alternative/interacting brain mechanisms or the thus far under-explored bird epigenome.

  2. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation.

    PubMed

    Ouyang, Liliang; Yao, Rui; Mao, Shuangshuang; Chen, Xi; Na, Jie; Sun, Wei

    2015-11-04

    With the ability to manipulate cells temporarily and spatially into three-dimensional (3D) tissue-like construct, 3D bioprinting technology was used in many studies to facilitate the recreation of complex cell niche and/or to better understand the regulation of stem cell proliferation and differentiation by cellular microenvironment factors. Embryonic stem cells (ESCs) have the capacity to differentiate into any specialized cell type of the animal body, generally via the formation of embryoid body (EB), which mimics the early stages of embryogenesis. In this study, extrusion-based 3D bioprinting technology was utilized for biofabricating ESCs into 3D cell-laden construct. The influence of 3D printing parameters on ESC viability, proliferation, maintenance of pluripotency and the rule of EB formation was systematically studied in this work. Results demonstrated that ESCs were successfully printed with hydrogel into 3D macroporous construct. Upon process optimization, about 90% ESCs remained alive after the process of bioprinting and cell-laden construct formation. ESCs continued proliferating into spheroid EBs in the hydrogel construct, while retaining the protein expression and gene expression of pluripotent markers, like octamer binding transcription factor 4, stage specific embryonic antigen 1 and Nanog. In this novel technology, EBs were formed through cell proliferation instead of aggregation, and the quantity of EBs was tuned by the initial cell density in the 3D bioprinting process. This study introduces the 3D bioprinting of ESCs into a 3D cell-laden hydrogel construct for the first time and showed the production of uniform, pluripotent, high-throughput and size-controllable EBs, which indicated strong potential in ESC large scale expansion, stem cell regulation and fabrication of tissue-like structure and drug screening studies.

  3. The Role of Extra-Vestibular Inputs in Maintaining Spatial Orientation in Military Vehicles

    DTIC Science & Technology

    2003-02-01

    flow contribute to spatial orientation. Disordered regulation of any of these factors can be identified in land based tests and allows us to study pre...adaptation disorders . 1,2 The sensory conflict theory of motion sickness states that motion sickness arises when one or several inputs from the body’s sensory...several episodes of severe motion sickness during an operational military assignment (usually aboard ship), but demonstrate no balance disorder or ear

  4. miR-133 is a key negative regulator of CDC42-PAK pathway in gastric cancer.

    PubMed

    Cheng, Zhenguo; Liu, Funan; Wang, Guanqiao; Li, Yanshu; Zhang, Hongyan; Li, Feng

    2014-12-01

    Cell division cycle 42 (CDC42), an important member of the Ras homolog (Rho) family, plays a key role in regulating multiple cellular processes such as cell cycle progression, migration, cell cytoskeleton organization, cell fate determination and differentiation. Among the downstream effectors of CDC42, P21-activated kinases (PAKs) obtain the most attention. Although a large body of evidence indicates that CDC42/PAKs pathway plays important role in tumor growth, invasion and metastasis, the mechanism of their negative regulation remains unclear. Here, we identified CDC42, a PAKs activating factor, was a target of miR-133. Ectopic overexpression of miRNAs not only downregulated CDC42 expression and PAKs activation, but also inhibited cancer cell proliferation and migration. We also found that miR-133 was down-regulated in 180 pairs gastric cancer tissues. miR-133 expression was negatively associated with tumor size, invasion depth and peripheral organ metastasis. Besides, dysfunction of miR-133 was an independent prognosis factor for overall survival. Our findings could provide new insights into the molecular mechanisms of gastric carcinogenesis, and may help facilitating development of CDC42/PAK-based therapies for human cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. NRF2-regulation in brain health and disease: implication of cerebral inflammation

    PubMed Central

    Sandberg, Mats; Patil, Jaspal; D’Angelo, Barbara; Weber, Stephen G; Mallard, Carina

    2014-01-01

    The nuclear factor erythroid 2 related factor 2 (NRF2) is a key regulator of endogenous inducible defense systems in the body. Under physiological conditions NRF2 is mainly located in the cytoplasm. However, in response to oxidative stress, NRF2 translocates to the nucleus and binds to specific DNA sites termed “anti-oxidant response elements” or “electrophile response elements” to initiate transcription of cytoprotective genes. Acute oxidative stress to the brain, such as stroke and traumatic brain injury is increased in animals that are deficient in NRF2. Insufficient NRF2 activation in humans has been linked to chronic diseases such as Parkinson’s disease, Alzheimer’s disease and amyotrophic lateral sclerosis. New findings have also linked activation of the NRF2 system to anti-inflammatory effects via interactions with NF-κB. Here we review literature on cellular mechanisms of NRF2 regulation, how to maintain and restore NRF2 function and the relationship between NRF2 regulation and brain damage. We bring forward the hypothesis that inflammation via prolonged activation of key kinases (p38 and GSK-3β) and activation of histone deacetylases gives rise to dysregulation of the NRF2 system in the brain, which contributes to oxidative stress and injury. PMID:24262633

  6. Dietary proteins in the regulation of food intake and body weight in humans.

    PubMed

    Anderson, G Harvey; Moore, Shannon E

    2004-04-01

    This review presents 4 lines of evidence supporting a role for proteins in the regulation of food intake and maintenance of healthy body weights. It is concluded that the protein content of food, and perhaps its source, is a strong determinant of short-term satiety and of how much food is eaten. Although the role of protein in the regulation of long-term food intake and body weight is less clear, the evidence reviewed suggests that further research to define its role is merited. Such research has the potential to lead to new functional foods, food formulations, and dietary recommendations for achieving healthy body weights.

  7. Erythropoietin-Mediated Regulation of Central Respiratory Command.

    PubMed

    Seaborn, Tommy; Caravagna, Céline

    2017-01-01

    Erythropoietin (Epo) is a cytokine expressed throughout the body, including in the central nervous system where it can act as a breathing modulator in the central respiratory network. In vitro, Epo allows maintaining the activity of respiratory neurons during acute hypoxia, resulting in inhibition of the hypoxia-induced rhythm depression. In vivo, Epo action on the central respiratory command results in enhancement of the acute hypoxic ventilatory response, allowing a better oxygenation of the body by improvement of gases exchanges in the lungs. Importantly, this effect of Epo is age-dependent, being observed at adulthood and at both early and late postnatal ages, but not at middle postnatal ages, when an important setup of the central respiratory command occurs. Epo regulation of the central respiratory command involves at least two intracellular signaling pathways, PI3K-Akt and MEK-ERK pathways. However, the exact mechanism underlying the action of Epo on the central respiratory control remains to be deciphered, as well as the exact cell types and nuclei involved in this control. Epo-mediated effect on the central respiratory command is regulated by several factors, including hypoxia, sex hormones, and an endogen antagonist. Although more knowledge is needed before reaching the clinical trial step, Epo seems to be a promising therapeutic treatment, notably against newborn breathing disorders. © 2017 Elsevier Inc. All rights reserved.

  8. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice.

    PubMed

    Le Foll, Christelle; Dunn-Meynell, Ambrose; Musatov, Serguei; Magnan, Christophe; Levin, Barry E

    2013-08-01

    Hypothalamic "metabolic-sensing" neurons sense glucose and fatty acids (FAs) and play an integral role in the regulation of glucose, energy homeostasis, and the development of obesity and diabetes. Using pharmacologic agents, we previously found that ~50% of these neurons responded to oleic acid (OA) by using the FA translocator/receptor FAT/CD36 (CD36). For further elucidation of the role of CD36 in neuronal FA sensing, ventromedial hypothalamus (VMH) CD36 was depleted using adeno-associated viral (AAV) vector expressing CD36 short hairpin RNA (shRNA) in rats. Whereas their neuronal glucosensing was unaffected by CD36 depletion, the percent of neurons that responded to OA was decreased specifically in glucosensing neurons. A similar effect was seen in total-body CD36-knockout mice. Next, weanling rats were injected in the VMH with CD36 AAV shRNA. Despite significant VMH CD36 depletion, there was no effect on food intake, body weight gain, or total carcass adiposity on chow or 45% fat diets. However, VMH CD36-depleted rats did have increased plasma leptin and subcutaneous fat deposition and markedly abnormal glucose tolerance. These results demonstrate that CD36 is a critical factor in both VMH neuronal FA sensing and the regulation of energy and glucose homeostasis.

  9. Self-administered nicotine differentially impacts body weight gain in obesity-prone and obesity-resistant rats.

    PubMed

    Rupprecht, Laura E; Smith, Tracy T; Donny, Eric C; Sved, Alan F

    2017-07-01

    Obesity and tobacco smoking represent the largest challenges to public health, but the causal relationship between nicotine and obesity is poorly understood. Nicotine suppresses body weight gain, a factor impacting smoking initiation and the failure to quit, particularly among obese smokers. The impact of nicotine on body weight regulation in obesity-prone and obesity-resistant populations consuming densely caloric diets is unknown. In the current experiment, body weight gain of adult male rats maintained on a high energy diet (31.8% kcal from fat) distributed into obesity-prone (OP), obesity-resistant (OR) and an intermediate group, which was placed on standard rodent chow (Chow). These rats were surgically implanted with intravenous catheters and allowed to self-administer nicotine (0 or 60μg/kg/infusion, a standard self-administration dose) in 1-h sessions for 20 consecutive days. Self-administered nicotine significantly suppressed body weight gain but not food intake in OP and Chow rats. Self-administered nicotine had no effect on body weight gain in OR rats. These data suggest that: 1) OR rats are also resistant to nicotine-induced suppression of body weight gain; and 2) nicotine may reduce levels of obesity in a subset of smokers prone to obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Identification of differentially expressed genes associated with differential body size in mandarin fish (Siniperca chuatsi).

    PubMed

    Tian, Changxu; Li, Ling; Liang, Xu-Fang; He, Shan; Guo, Wenjie; Lv, Liyuan; Wang, Qingchao; Song, Yi

    2016-08-01

    Body size is an obvious and important characteristic of fish. Mandarin fish Siniperca chuatsi (Basilewsky) is one of the most valuable perciform species widely cultured in China. Individual differences in body size are common in mandarin fish and significantly influence the aquaculture production. However, little is currently known about its genetic control. In this study, digital gene expression profiling and transcriptome sequencing were performed in mandarin fish with differential body size at 30 and 180 days post-hatch (dph), respectively. Body weight, total length and body length of fish with big-size were significantly higher than those with small-size at both 30 and 180 dph (P < 0.05). 2171 and 2014 differentially expressed genes were identified between small-size and big-size fish at 30 and 180 dph, respectively. RT quantitative PCR (qPCR) analysis showed that the differential expression of 10 selected genes in mandarin fish that went through the same training procedure. The genes were involved in the growth hormone-insulin-like growth factor axis, cell proliferation and differentiation, appetite control, glucose metabolism, reproduction and sexual size dimorphism pathways. This study will help toward a comprehensive understanding of the complexity of regulation of body size in mandarin fish individuals and provide valuable information for future research.

  11. Estrogen Receptor 1 ( ESR1) Gene Polymorphisms and Obesity Phenotypes in a Population of Young Adults.

    PubMed

    Correa-Rodríguez, María; Schmidt-RioValle, Jacqueline; González-Jiménez, Emilio; Rueda-Medina, Blanca

    2017-06-01

    Obesity is considered an increasingly serious health problem determined by multiple genetic and environmental factors. Estrogens have been found to play a major role in body weight and adiposity regulation through estrogen receptor 1 ( ESR1). The aim of this study was to determine whether genotype and haplotype frequencies of ESR1 polymorphisms are associated with body composition measures in a population of 572 young adults. A lack of significant association between genotypes of ESR1 gene polymorphisms and obesity phenotypes was seen after adjustment for confounding factors. Linkage disequilibrium (LD) analysis identified a single LD block for the ESR1 gene including PvuII and XbaI single-nucleotide polymorphisms (SNPs) (pairwise r 2 = .66). None of the haplotypes identified revealed statistically significant associations with any of the obesity phenotypes. Our results suggest that polymorphisms of the ESR1 gene do not contribute significantly to the genetic risk for obesity phenotypes in a population of young Caucasian adults.

  12. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism

    PubMed Central

    Lee, Kevin Y.; Singh, Manvendra K.; Ussar, Siegfried; Wetzel, Petra; Hirshman, Michael F.; Goodyear, Laurie J.; Kispert, Andreas; Kahn, C. Ronald

    2015-01-01

    Skeletal muscle is composed of both slow-twitch oxidative myofibers and fast-twitch glycolytic myofibers that differentially impact muscle metabolism, function and eventually whole-body physiology. Here we show that the mesodermal transcription factor T-box 15 (Tbx15) is highly and specifically expressed in glycolytic myofibers. Ablation of Tbx15 in vivo leads to a decrease in muscle size due to a decrease in the number of glycolytic fibres, associated with a small increase in the number of oxidative fibres. This shift in fibre composition results in muscles with slower myofiber contraction and relaxation, and also decreases whole-body oxygen consumption, reduces spontaneous activity, increases adiposity and glucose intolerance. Mechanistically, ablation of Tbx15 leads to activation of AMPK signalling and a decrease in Igf2 expression. Thus, Tbx15 is one of a limited number of transcription factors to be identified with a critical role in regulating glycolytic fibre identity and muscle metabolism. PMID:26299309

  13. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    PubMed Central

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  14. Two cell-counting factors regulate the aggregate size of the cellular slime mold Dictyostelium discoideum.

    PubMed

    Okuwa, T; Katayama, T; Takano, A; Kodaira, K; Yasukawa, H

    2001-12-01

    Countin, a cell-counting factor in Dictyostelium discoideum, is considered to limit the maximum size of the multicellular structure, because a countin null strain forms a huge fruiting body compared to that of the wild-type. A novel gene, countin2, that is highly homologous to countin (40% identity in amino acid sequence) was identified in the D. discoideum genome. The countin2 null strain formed a 1.7-fold higher number of the aggregates, resulting in smaller fruiting bodies compared with those of wild-type cells. Thus, the Countin2 protein is thought to limit the minimum size of the multicellular structure. The size and number of aggregates formed by a mixture of countin null and countin2 null strains were the same as those of the wild-type. These findings demonstrate that a combination of Countin and Countin2 proteins determines the appropriate size of the multicellular structure of D. discoideum.

  15. Impact of body size, nutrition and socioeconomic position in early life on the epigenome: a systematic review protocol.

    PubMed

    Maddock, Jane; Wulaningsih, Wahyu; Hardy, Rebecca

    2017-07-05

    Body size, nutrition and socioeconomic position (SEP) in early life have been associated with a range of later life health outcomes. Epigenetic regulation is one mechanism through which these early life factors may impact later life health. The aim of this review protocol is to outline procedures to document the influence of body size, nutrition and SEP in early life on the epigenome. MEDLINE, Embase and BIOSIS will be systematically searched using pre-defined keywords. Additional studies will be identified through manual searching of reference lists. Two independent researchers will assess the eligibility and quality of each study, with disagreements being resolved through discussion or a third reviewer. Studies will be included if they have epigenetic markers measured either at the same time as, or after, the early life exposure and, have a measure of body size, nutrition or SEP in early life (up to 12 years), are in the English language and are from a sample of community-dwelling participants. This protocol will be used to collate the evidence for the effect of early life factors on the epigenome. Findings will form a component of a wider research study examining epigenetic responses to exposures in early life and over the life course and its impact on healthy ageing using data from population-based cohort studies. PROSPERO CRD42016050193.

  16. Use of factor scores for predicting body weight from linear body measurements in three South African indigenous chicken breeds.

    PubMed

    Malomane, Dorcus Kholofelo; Norris, David; Banga, Cuthbert B; Ngambi, Jones W

    2014-02-01

    Body weight and weight of body parts are of economic importance. It is difficult to directly predict body weight from highly correlated morphological traits through multiple regression. Factor analysis was carried out to examine the relationship between body weight and five linear body measurements (body length, body girth, wing length, shank thickness, and shank length) in South African Venda (VN), Naked neck (NN), and Potchefstroom koekoek (PK) indigenous chicken breeds, with a view to identify those factors that define body conformation. Multiple regression was subsequently performed to predict body weight, using orthogonal traits derived from the factor analysis. Measurements were obtained from 210 chickens, 22 weeks of age, 70 chickens per breed. High correlations were obtained between body weight and all body measurements except for wing length in PK. Two factors extracted after varimax rotation explained 91, 95, and 83% of total variation in VN, NN, and PK, respectively. Factor 1 explained 73, 90, and 64% in VN, NN, and PK, respectively, and was loaded on all body measurements except for wing length in VN and PK. In a multiple regression, these two factors accounted for 72% variation in body weight in VN, while only factor 1 accounted for 83 and 74% variation in body weight in NN and PK, respectively. The two factors could be used to define body size and conformation of these breeds. Factor 1 could predict body weight in all three breeds. Body measurements can be better selected jointly to improve body weight in these breeds.

  17. 20-hydroxyecdysone positively regulates the transcription of the antimicrobial peptide, lebocin, via BmEts and BmBR-C Z4 in the midgut of Bombyx mori during metamorphosis.

    PubMed

    Mai, Taoyi; Chen, Shuna; Lin, Xianyu; Zhang, Xiaojuan; Zou, Xiaopeng; Feng, Qili; Zheng, Sichun

    2017-09-01

    Metamorphosis is an essential physiological process in insects. This process is triggered by 20-hydroxyecydsone (20E). Lebocin, an antimicrobial peptide of Lepidoptera insects, was significantly up-regulated in the midgut, but not in the fat body of Bombyx mori during metamorphosis. In this study, the expression regulation of lebocin in B. mori midgut was studied. The results showed that B. mori lebocin and its activator BmEts were not responsive to bacterial infection in the midgut, instead, the expression of both genes was up-regulated by 20E treatment. The transcription factor BR-C Z4 in the 20E signal pathway enhanced lebocin promoter activity by directly binding to an upstream cis-response element of the promoter. In the fat body, the mRNA level of B. mori lebocin was decreased when the insect transformed from larval to pupal stage and was increased by immune challenge. The expression profiles of lebocin in Lepidopteran Spodoptera litura was also analyzed and the similar results were observed, S. litura lebocin was significantly up-regulated during midgut regeneration and mainly present in the new-formed intestinal cells of the midgut. All results together suggest that during metamorphosis 20E may activate lebocin expression via BmBR-C Z4 and BmEts in the midgut, where the antimicrobial peptide was produced to protect the midgut from infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. RNA-Mediated Thermoregulation of Iron-Acquisition Genes in Shigella dysenteriae and Pathogenic Escherichia coli

    PubMed Central

    Kouse, Andrew B.; Righetti, Francesco; Kortmann, Jens; Narberhaus, Franz; Murphy, Erin R.

    2013-01-01

    The initiation, progression and transmission of most bacterial infections is dependent upon the ability of the invading pathogen to acquire iron from each of the varied environments encountered during the course of a natural infection. In total, 95% of iron within the human body is complexed within heme, making heme a potentially rich source of host-associated nutrient iron for invading bacteria. As heme is encountered only within the host, pathogenic bacteria often regulate synthesis of heme utilization factors such that production is maximal under host-associated environmental conditions. This study examines the regulated production of ShuA, an outer-membrane receptor required for the utilization of heme as a source of nutrient iron by Shigella dysenteriae, a pathogenic bacterium that causes severe diarrheal diseases in humans. Specifically, the impact of the distinct environmental temperatures encountered during infection within a host (37°C) and transmission between hosts (25°C) on shuA expression is investigated. We show that shuA expression is subject to temperature-dependent post-transcriptional regulation resulting in increased ShuA production at 37°C. The observed thermoregulation is mediated by nucleic acid sequences within the 5′ untranslated region. In addition, we have identified similar nucleotide sequences within the 5′ untranslated region of the orthologous chuA transcript of enteropathogenic E. coli and have demonstrated that it also functions to confer temperature-dependent post-transcriptional regulation. In both function and predicted structure, the regulatory element within the shuA and chuA 5′ untranslated regions closely resembles a FourU RNA thermometer, a zipper-like RNA structure that occludes the Shine-Dalgarno sequence at low temperatures. Increased production of ShuA and ChuA in response to the host body temperature allows for maximal production of these heme acquisition factors within the environment where S. dysenteriae and pathogenic E. coli strains would encounter heme, a host-specific iron source. PMID:23704938

  19. Regulations for Child Day Care Centers Operated by Religious Bodies or Groups.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Social Services, Columbia.

    As set forth in this manual, the regulations for child day care centers operated by religious bodies or groups constitute the minimum requirements to be met and maintained by each such facility in South Carolina. Regulation 114-5-20 sets out definitions and procedures for preapplication consultation, original registration, inspection, and…

  20. Kindergarten Self-Regulation as a Predictor of Body Mass Index and Sports Participation in Fourth Grade Students

    ERIC Educational Resources Information Center

    Piche, Genevieve; Fitzpatrick, Caroline; Pagani, Linda S.

    2012-01-01

    Identifying early precursors of body mass index (BMI) and sports participation represents an important concern from a public health perspective and can inform the development of preventive interventions. This article examines whether kindergarten child self-regulation, as measured by classroom engagement and behavioral regulation, predicts healthy…

  1. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    PubMed

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. UK: the current state of regulation of complementary and alternative medicine.

    PubMed

    Walker, L A; Budd, S

    2002-03-01

    There is no legislation that restricts the practice of CAM in the UK apart from the practice of chiropractic and osteopathy and limits on advertising the treatments of certain conditions such as cancer and tuberculosis. The UK government has increasingly recognised the need for comprehensive regulation of CAM, though it abandoned its original plan for a single overarching regulatory body. Initiatives to examine and hasten the process of regulation have included setting up a central, well-recognised charitable body to facilitate progress for individual professions, and an authoritative survey of the existing professional organisations. One pathway open to individual professions is statutory self-regulation, which requires a single governing body, a systematic corpus of knowledge, recognised training courses and demonstrated efficacy. The other pathway is voluntary self-regulation. Chiropractic and osteopathy have adopted statutory self-regulation, though this has proved expensive for individual members of these professions. A recent House of Lords report on CAM has recommended that the herbal medicine and acupuncture professions should also develop a system of statutory regulation. Other professions, such as aromatherapy, are in the process of establishing single professional bodies as a first step towards self-regulation. Among the issues that remain to be resolved is the relationship between the CAM professions and statutory registered practitioners who also practise CAM.

  3. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.

    PubMed

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-03-14

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as 'redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.

  4. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation

    PubMed Central

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as ‘redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology. PMID:23492768

  5. A diffusible signal derived from hematopoietic cells supports the survival and proliferation of regenerative cells during zebrafish fin fold regeneration.

    PubMed

    Hasegawa, Tomoya; Nakajima, Teruhiro; Ishida, Takashi; Kudo, Akira; Kawakami, Atsushi

    2015-03-01

    Multicellular organisms maintain body integrity by constantly regenerating tissues throughout their lives; however, the overall mechanism for regulating regeneration remains an open question. Studies of limb and fin regeneration in teleost fish and urodeles have shown the involvement of a number of locally activated signals at the wounded site during regeneration. Here, we demonstrate that a diffusible signal from a distance also play an essential role for regeneration. Among a number of zebrafish mutants, we found that the zebrafish cloche (clo) and tal1 mutants, which lack most hematopoietic tissues, displayed a unique regeneration defect accompanying apoptosis in primed regenerative tissue. Our analyses of the mutants showed that the cells in the primed regenerative tissue are susceptible to apoptosis, but their survival is normally supported by the presence of hematopoietic tissues, mainly the myeloid cells. We further showed that a diffusible factor in the wild-type body fluid mediates this signal. Thus, our study revealed a novel mechanism that the hematopoietic tissues regulate tissue regeneration through a diffusible signal. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Modeling homeorhetic trajectories of milk component yields, body composition and dry-matter intake in dairy cows: Influence of parity, milk production potential and breed.

    PubMed

    Daniel, J B; Friggens, N C; van Laar, H; Ingvartsen, K L; Sauvant, D

    2018-06-01

    The control of nutrient partitioning is complex and affected by many factors, among them physiological state and production potential. Therefore, the current model aims to provide for dairy cows a dynamic framework to predict a consistent set of reference performance patterns (milk component yields, body composition change, dry-matter intake) sensitive to physiological status across a range of milk production potentials (within and between breeds). Flows and partition of net energy toward maintenance, growth, gestation, body reserves and milk components are described in the model. The structure of the model is characterized by two sub-models, a regulating sub-model of homeorhetic control which sets dynamic partitioning rules along the lactation, and an operating sub-model that translates this into animal performance. The regulating sub-model describes lactation as the result of three driving forces: (1) use of previously acquired resources through mobilization, (2) acquisition of new resources with a priority of partition towards milk and (3) subsequent use of resources towards body reserves gain. The dynamics of these three driving forces were adjusted separately for fat (milk and body), protein (milk and body) and lactose (milk). Milk yield is predicted from lactose and protein yields with an empirical equation developed from literature data. The model predicts desired dry-matter intake as an outcome of net energy requirements for a given dietary net energy content. The parameters controlling milk component yields and body composition changes were calibrated using two data sets in which the diet was the same for all animals. Weekly data from Holstein dairy cows was used to calibrate the model within-breed across milk production potentials. A second data set was used to evaluate the model and to calibrate it for breed differences (Holstein, Danish Red and Jersey) on the mobilization/reconstitution of body composition and on the yield of individual milk components. These calibrations showed that the model framework was able to adequately simulate milk yield, milk component yields, body composition changes and dry-matter intake throughout lactation for primiparous and multiparous cows differing in their production level.

  7. Body condition and suckling as factors influencing the duration of postpartum anestrus in cattle: a review.

    PubMed

    Montiel, F; Ahuja, C

    2005-01-01

    Prolonged postpartum anestrus is a main factor limiting reproductive efficiency in cattle, particularly in Bos indicus and Bos taurus/Bos indicus cows from tropical regions, because it prevents achievement of a 12 month calving interval. During anestrus, ovulation does not occur despite ovarian follicular development, because growing follicles do not mature. Although many factors affect postpartum anestrus, nutrition and suckling are the major factors influencing the resumption of postpartum ovarian cycles, as they affect hypothalamic, pituitary and ovarian activity and thus inhibit follicular development. Under-nutrition contributes to prolonged postpartum anestrus, particularly among cows dependent upon forages to meet their feed requirements and it apparently interacts with genetic, environmental or management factors to influence the duration of anestrus. The nutritional status or balance of an animal is evaluated through body condition score (BCS), as it reflects the body energy reserves available for metabolism, growth, lactation and activity. There is a converse relationship between energy balance and time to resumption of postpartum ovarian activity; inadequate nutrient intake results in loss of weight and BCS and finally cessation of estrous cycles. Suckling interferes with hypothalamic release of GnRH, provoking a marked suppression in pulsatile LH release, resulting in extended postpartum anestrus. The effects of suckling on regulation of tonic LH release are determined by the ability of the cow to identify a calf as her own or as unrelated. Vision and olfaction play critical roles in the development of the maternal-offspring bond, allowing the cow to identify her own calf, and abolition of both senses attenuates the negative effects of suckling on LH secretion. Thus, the maternal-offspring bond is essential for prolonged postpartum suckling-induced anovulation, and the suppressive influence of suckling is independent of neurosensory pathways within the teat or udder.

  8. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41).

    PubMed

    Kimura, Ikuo; Inoue, Daisuke; Maeda, Takeshi; Hara, Takafumi; Ichimura, Atsuhiko; Miyauchi, Satoshi; Kobayashi, Makio; Hirasawa, Akira; Tsujimoto, Gozoh

    2011-05-10

    The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.

  9. Biosynthesis, Trafficking and Secretion of Pro-opiomelanocortin-derived peptides

    PubMed Central

    Cawley, Niamh X.; Li, Zhaojin; Loh, Y. Peng

    2016-01-01

    Pro-opiomelanocortin (POMC) is a prohormone that encodes multiple smaller peptide hormones within its structure. These peptide hormones can be generated by cleavage of POMC at basic-residue cleavage sites by prohormone converting enzymes in the regulated secretory pathway of POMC synthesizing endocrine cells and neurons. The peptides are stored inside the cells in dense core secretory granules until released in a stimulus dependent manner. The complexity of the regulation of the biosynthesis, trafficking and secretion of POMC and its peptides reflect an impressive level of control over many factors involved in the ultimate role of POMC expressing cells, i.e. to produce a range of different biologically active peptide hormones ready for action when signaled by the body. From the discovery of POMC as the precursor to ACTH and β-Lipotropin in the late 1970s to our current knowledge, the understanding of POMC physiology remains a monumental body of work that has provided insight into many aspects of molecular endocrinology. In this chapter, we describe the intracellular trafficking of POMC in endocrine cells, its sorting into dense core secretory granules and transport of these granules to the regulated secretory pathway. Additionally, we review the enzymes involved in the maturation of POMC to its various peptides and the mechanisms involved in the differential processing of POMC in different cell types. Finally, we highlight studies pertaining to the regulation of ACTH secretion in the anterior and intermediate pituitary and POMC neurons of the hypothalamus. PMID:26880796

  10. [Effect of repeated fasting/refeeding on body weight control and energy balance regulation in rats].

    PubMed

    Wu, Bo; Du, Youai; Liu, Chongbin; Du, Zhou; Xiao, Min; Lu, Bo

    2010-09-01

    To investigate the changes of expression on leptin, a series of neuroendocrine factors and hormones associated with body weight control and energy balance regulation of rats, which were treated with repeated fasting/refeeding and followed by fed with high fat diet. Designing a repeated fasting/refeeding rats model (RFR) fed with basic stock diet on repeated cycles of 1 d fasting and 1 d refeeding for 6 weeks. The rats in RFR-LF/ HF group were switched to a high fat diet and fed the diet every day for another 6 weeks. The control rats were randomly divided into 3 groups, control group, high-fat diet (HF) group and common fat diet (CF) group. The rats in HF and CF group were killed by the end of the 12th week. The body weight, Lee's index, body fat content and serum lipid, GH, T4, leptin, insulin, and plasma ACTH levels were measured. The expression of NPY and POMC mRNA in hypothalamus were detected by reverse transcription chain reaction (RT-PCR). The Lee's index, body fat content, serum TC, TG, LDL, leptin and insulin levels of RFR-LF/HF group were lower significantly than those of HF group whereas higher significantly than those of CF group. The expression of NPY mRNA of RFR-LF/HF group were higher significantly than those of HF and CF groups, while the expression of POMC mRNA was lower significantly than that of HF and CF groups. The feeding pattern of repeated fasting/refeeding can decrease the degree of obesity induced by high fat diet, and also reduce the leptin and insulin resistance, but cause serious disturbance of the expression of neuroendocrine peptides in the central nervous system of rat.

  11. Resveratrol (Trans-3,5,4′-trihydroxystilbene) Induces Silent Mating Type Information Regulation-1 and Down-Regulates Nuclear Transcription Factor-κB Activation to Abrogate Dextran Sulfate Sodium-Induced Colitis

    PubMed Central

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Hofseth, Lorne J.; Price, Robert L.; Nagarkatti, Mitzi

    2010-01-01

    Inflammatory bowel disease is a chronic, relapsing, and tissue-destructive disease. Resveratrol (3,4,5-trihydroxy-trans-stilbene), a naturally occurring polyphenol that exhibits beneficial pleiotropic health effects, is recognized as one of the most promising natural molecules in the prevention and treatment of chronic inflammatory disease and autoimmune disorders. In the present study, we investigated the effect of resveratrol on dextran sodium sulfate (DSS)-induced colitis in mice and found that it effectively attenuated overall clinical scores as well as various pathological markers of colitis. Resveratrol reversed the colitis-associated decrease in body weight and increased levels of serum amyloid A, tumor necrosis factor-α, interleukin (IL-6), and IL-1β. After resveratrol treatment, the percentage of CD4+ T cells in mesenteric lymph nodes (MLN) of colitis mice was restored to normal levels, and there was a decrease in these cells in the colon lamina propria (LP). Likewise, the percentages of macrophages in MLN and the LP of mice with colitis were decreased after resveratrol treatment. Resveratrol also suppressed cyclooxygenase-2 (COX-2) expression induced in DSS-exposed mice. Colitis was associated with a decrease in silent mating type information regulation-1 (SIRT1) gene expression and an increase in p-inhibitory κB expression and nuclear transcription factor-κB (NF-κB) activation. Resveratrol treatment of mice with colitis significantly reversed these changes. This study demonstrates for the first time that SIRT1 is involved in colitis, functioning as an inverse regulator of NF-κB activation and inflammation. Furthermore, our results indicate that resveratrol may protect against colitis through up-regulation of SIRT1 in immune cells in the colon. PMID:19940103

  12. Hypoxia regulates microRNA expression in the human carotid body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkrtchian, Souren, E-mail: souren.mkrtchian@ki.se; Lee, Kian Leong, E-mail: csilkl@nus.edu.sg; Kåhlin, Jessica

    The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentiallymore » regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins. - Highlights: • Hypoxia triggers differential expression of many miRNAs in the human carotid body. • This can lead to the upregulation of proliferation and immune response functions. • CB expression profile in the carotid body resembles the miRNA expression pattern in the brain. • miRNAs are involved in the regulation of carotid body functions including oxygen sensing.« less

  13. Differences in trabecular bone of leptin-deficient ob/ob mice in response to biomechanical loading.

    PubMed

    Heep, Hansjoerg; Wedemeyer, Christian; Wegner, Alexander; Hofmeister, Sebastian; von Knoch, Marius

    2008-06-15

    It is known that bone mineral density (BMD) and the strength of bone is predicted by body mass. Fat mass is a significant predictor of bone mineral density which correlates with body weight. This suggests that body fat regulates bone metabolism first by means of hormonal factors and second that the effects of muscle and loading are signaling factors in mechanotransduction. Leptin, a peptide hormone produced predominantly by white fat cells, is one of these hormonal factors. The aim of this study was to investigate and measure by micro-CT the different effects of weight-bearing on trabecular bone formation in mice without the stimulation of leptin. Animals with an ad-libitum-diet (Group A) were found to increase body weight significantly at the age of six weeks in comparison with lean mice (Group B). From this point on, the difference increased constantly. At the age of twenty weeks the obese mice were almost twice as heavy as the lean mice. Significant statistical differences are shown between the two groups for body weight and bone mineral density. Examination of trabecular bone (BV/TV, trabecular number (Tb.N.), trabecular thickness (Tb.Th.)) revealed that the only statistically significant difference between the two groups was the Tb.N. for the proximal femur. High weight-bearing insignificantly improved all trabecular bone parameters in the obese mice. Compared with the control-diet Group B, the BV/TV and Tb.N. were slightly higher in the controlled-diet Group A, but not the Tb.Th.. However, correlation was found between Tb.N. and BMD on the one hand and body weight on the other hand. biomechanical loading led to decreased bone mineral density by a decrease in the number of trabeculae. Trabecular thickness was not increased by biomechanical loading in growing mice. Decreased body weight in leptin-deficient mice protects against bone loss. This finding is consistent with the principle of light-weight construction of bone. Differences in cortical and trabecular bone will be examined in later studies. It is not possible to conclude that these results also apply to human beings.

  14. Regulation of Epithelial Sodium Transport via Epithelial Na+ Channel

    PubMed Central

    Marunaka, Yoshinori; Niisato, Naomi; Taruno, Akiyuki; Ohta, Mariko; Miyazaki, Hiroaki; Hosogi, Shigekuni; Nakajima, Ken-ichi; Kusuzaki, Katsuyuki; Ashihara, Eishi; Nishio, Kyosuke; Iwasaki, Yoshinobu; Nakahari, Takashi; Kubota, Takahiro

    2011-01-01

    Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane. PMID:22028593

  15. MicroRNAs and the metabolic hallmarks of aging.

    PubMed

    Victoria, Berta; Nunez Lopez, Yury O; Masternak, Michal M

    2017-11-05

    Aging, the natural process of growing older, is characterized by a progressive deterioration of physiological homeostasis at the cellular, tissue, and organismal level. Metabolically, the aging process is characterized by extensive changes in body composition, multi-tissue/multi-organ insulin resistance, and physiological declines in multiple signaling pathways including growth hormone, insulin/insulin-like growth factor 1, and sex steroids regulation. With this review, we intend to consolidate published information about microRNAs that regulate critical metabolic processes relevant to aging. In certain occasions we uncover relationships likely relevant to aging, which has not been directly described before, such as the miR-451/AMPK axis. We have also included a provocative section highlighting the potential role in aging of a new designation of miRNAs, namely fecal miRNAs, recently discovered to regulate intestinal microbiota in mammals. Copyright © 2016. Published by Elsevier B.V.

  16. Coming Full Circle: Contributions of Central and Peripheral Oxytocin Actions to Energy Balance

    PubMed Central

    Blevins, James E.

    2013-01-01

    The neuropeptide oxytocin has emerged as an important anorexigen in the regulation of energy balance. Its effects on food intake have largely been attributed to limiting meal size through interactions in key regulatory brain regions such as the hypothalamus and hindbrain. Pharmacologic and pair-feeding studies indicate that its ability to reduce body mass extends beyond that of food intake, affecting multiple factors that determine energy balance such as energy expenditure, lipolysis, and glucose regulation. Systemic administration of oxytocin recapitulates many of its effects when administered centrally, raising the questions of whether and to what extent circulating oxytocin contributes to energy regulation. Its therapeutic potential to treat metabolic conditions remains to be determined, but data from diet-induced and genetically obese rodent models as well as application of oxytocin in humans in other areas of research have revealed promising results thus far. PMID:23270805

  17. Beyond gut feelings: how the gut microbiota regulates blood pressure.

    PubMed

    Marques, Francine Z; Mackay, Charles R; Kaye, David M

    2018-01-01

    Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.

  18. Effect of Notch and PARP Pathways' Inhibition in Leukemic Cells.

    PubMed

    Horvat, Luka; Antica, Mariastefania; Matulić, Maja

    2018-06-14

    Differentiation of blood cells is one of the most complex processes in the body. It is regulated by the action of transcription factors in time and space which creates a specific signaling network. In the hematopoietic signaling system, Notch is one of the main regulators of lymphocyte development. The aim of this study was to get insight into the regulation of Notch signalization and the influence of poly(ADP-ribose)polymerase (PARP) activity on this process in three leukemia cell lines obtained from B and T cells. PARP1 is an enzyme involved in posttranslational protein modification and chromatin structure changes. B and T leukemia cells were treated with Notch and PARP inhibitors, alone or in combination, for a prolonged period. The cells did not show cell proliferation arrest or apoptosis. Analysis of gene and protein expression set involved in Notch and PARP pathways revealed increase in JAGGED1 expression after PARP1 inhibition in B cell lines and changes in Ikaros family members in both B and T cell lines after γ-secretase inhibition. These data indicate that Notch and PARP inhibition, although not inducing differentiation in leukemia cells, induce changes in signaling circuits and chromatin modelling factors.

  19. Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage.

    PubMed

    Xie, Chunliang; Gong, Wenbing; Zhu, Zuohua; Yan, Li; Hu, Zhenxiu; Peng, Yuande

    2018-05-01

    Blue light is an important environmental factor which could induce mushroom primordium differentiation and fruiting body development. However, the mechanisms of Pleurotus eryngii primordium differentiation and development induced by blue light are still unclear. The CAZymes (carbohydrate-active enzymes) play important roles in degradation of renewable lignocelluloses to provide carbohydrates for fungal growth, development and reproduction. In the present research, the expression profiles of genes were measured by comparison between the Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation and dark using high-throughput sequencing approach. After assembly and compared to the Pleurotus eryngii reference genome, 11,343 unigenes were identified. 539 differentially expressed genes including white collar 2 type of transcription factor gene, A mating type protein gene, MAP kinase gene, oxidative phosphorylation associated genes, CAZymes genes and other metabolism related genes were identified during primordium differentiated into fruiting body stage after blue light stimulation. KEGG results showed that carbon metabolism, glycolysis/gluconeogenesis and biosynthesis of amino acids pathways were affected during blue light inducing primordia formation. Most importantly, 319 differentially expressed CAZymes participated in carbon metabolism were identified. The expression patterns of six representative CAZymes and laccase genes were further confirmed by qRT-PCR. Enzyme activity results indicated that the activities of CAZymes and laccase were affected in primordium differentiated into fruiting body under blue light stimulation. In conclusion, the comprehensive transcriptome and CAZymes of Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation were obtained. The biological insights gained from this integrative system represent a valuable resource for future genomic studies on this commercially important mushroom. Copyright © 2017. Published by Elsevier Inc.

  20. Novel insights into redox system and the mechanism of redox regulation.

    PubMed

    Wang, Xin; Hai, Chunxu

    2016-07-01

    In view of the critical role of redox system in numerous physiological and pathophysiological processes, it is important to clearly understand the family members and regulatory mechanism of redox system. In this work, we will systematically review the current data detailing the reactive oxygen species (ROS), enzymatic and non-enzymatic antioxidants and redox sensitive transcription factors and we give a brief description of redox-mediated epigenetic and post-translational regulation. We propose that the redox system functions as a "Redox Chain", consisting of "ROS-generating Enzyme Chain", "Combined Antioxidant Chain" and "Transcription Factor Chain". We suggest that an individualized assessment of the redox status in the body should be conducted for the redox intervention of a patient. The strategy of intervention is to maintain redox homeostasis via either facilitation of ROS signaling or enhancement of antioxidant defense. These findings provide valuable new insights into redox system and open up new paths for the control of redox-related disorders.

  1. The CIDEA gene V115F polymorphism is associated with obesity in Swedish subjects.

    PubMed

    Dahlman, Ingrid; Kaaman, Maria; Jiao, Hong; Kere, Juha; Laakso, Markku; Arner, Peter

    2005-10-01

    The cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector A (CIDEA) gene is implicated as an important regulator of body weight in mice and humans and is therefore a candidate gene for human obesity. Here, we characterize common CIDEA gene polymorphisms and investigate them for association with obesity in two independent Swedish samples; the first comprised 981 women and the second 582 men. Both samples display a large variation in BMI. The only detected coding polymorphism encodes an exon 4 V115F amino acid substitution, which is associated with BMI in both sexes (P = 0.021 for women, P = 0.023 for men, and P = 0.0015 for joint analysis). These results support a role for CIDEA alleles in human obesity. CIDEA-deficient mice display higher metabolic rate, and the gene cross-talks with tumor necrosis factor-alpha (TNF-alpha) in fat cells. We hypothesize that CIDEA alleles regulate human obesity through impact on basal metabolic rate and adipocyte TNF-alpha signaling.

  2. Cnidarian Cell Type Diversity and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq.

    PubMed

    Sebé-Pedrós, Arnau; Saudemont, Baptiste; Chomsky, Elad; Plessier, Flora; Mailhé, Marie-Pierre; Renno, Justine; Loe-Mie, Yann; Lifshitz, Aviezer; Mukamel, Zohar; Schmutz, Sandrine; Novault, Sophie; Steinmetz, Patrick R H; Spitz, François; Tanay, Amos; Marlow, Heather

    2018-05-31

    The emergence and diversification of cell types is a leading factor in animal evolution. So far, systematic characterization of the gene regulatory programs associated with cell type specificity was limited to few cell types and few species. Here, we perform whole-organism single-cell transcriptomics to map adult and larval cell types in the cnidarian Nematostella vectensis, a non-bilaterian animal with complex tissue-level body-plan organization. We uncover eight broad cell classes in Nematostella, including neurons, cnidocytes, and digestive cells. Each class comprises different subtypes defined by the expression of multiple specific markers. In particular, we characterize a surprisingly diverse repertoire of neurons, which comparative analysis suggests are the result of lineage-specific diversification. By integrating transcription factor expression, chromatin profiling, and sequence motif analysis, we identify the regulatory codes that underlie Nematostella cell-specific expression. Our study reveals cnidarian cell type complexity and provides insights into the evolution of animal cell-specific genomic regulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Tocotrienols: The lesser known form of natural vitamin E

    PubMed Central

    Patel, Viren; Rink, Cameron; Khanna, Savita; Sen, Chandan K

    2014-01-01

    A recent and growing body of research has shown that members of this vitamin E family posses unique biologic functions. Tocotrienols have garnered much of this recent attention, and in particular α-tocotrienol has been shown to be the most potent neuroprotective form of vitamin E. Protection exclusively mediated through tocotrienols has been arbitrated to many mechanisms including inhibition of 12-LOX, c-Src, PLA2 and through up-regulation of MRP1. Further, tocotrienols have recently been shown to induce arteriogenesis through induction of TIMP1 and decreased activation of MMP2. However, the unique therapeutic potential of tocotrienols is not limited to neuroprotection. Tocotrienols have been shown to have molecular targets including: apoptotic regulators, cytokines, adhesion molecules, enzymes, kinases, receptors, transcription factors, and growth factors. In spite of this large and unique therapeutic potential, scientific literature on tocotrienols only accounts for approximately 1% of vitamin E research. Given the potential of tocotrienols and relatively scant literature, further investigation is warranted. PMID:22013739

  4. Impaired Regeneration: A Role for the Muscle Microenvironment in Cancer Cachexia

    PubMed Central

    Talbert, Erin E.; Guttridge, Denis C.

    2016-01-01

    While changes in muscle protein synthesis and degradation have long been known to contribute to muscle wasting, a body of literature has arisen which suggests that regulation of the satellite cell and its ensuing regenerative program are impaired in atrophied muscle. Lessons learned from cancer cachexia suggest that this regulation is simply not a consequence, but a contributing factor to the wasting process. In addition to satellite cells, evidence from mouse models of cancer cachexia also suggests that non-satellite progenitor cells from the muscle microenvironment are also involved. This chapter in the series reviews the evidence of dysfunctional muscle repair in multiple wasting conditions. Potential mechanisms for this dysfunctional regeneration are discussed, particularly in the context of cancer cachexia. PMID:26385617

  5. Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans.

    PubMed

    Sugi, Takuma; Nishida, Yukuo; Mori, Ikue

    2011-06-26

    Animals cope with environmental changes by altering behavioral strategy. Environmental information is generally received by sensory neurons in the neural circuit that generates behavior. However, although environmental temperature inevitably influences an animal's entire body, the mechanism of systemic temperature perception remains largely unknown. We show here that systemic temperature signaling induces a change in a memory-based behavior in C. elegans. During behavioral conditioning, non-neuronal cells as well as neuronal cells respond to cultivation temperature through a heat-shock transcription factor that drives newly identified gene expression dynamics. This systemic temperature signaling regulates thermosensory neurons non-cell-autonomously through the estrogen signaling pathway, producing thermotactic behavior. We provide a link between systemic environmental recognition and behavioral plasticity in the nervous system.

  6. The liver in regulation of iron homeostasis.

    PubMed

    Rishi, Gautam; Subramaniam, V Nathan

    2017-09-01

    The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism. Copyright © 2017 the American Physiological Society.

  7. Estrogen: A master regulator of bioenergetic systems in the brain and body

    PubMed Central

    Rettberg, Jamaica R; Yao, Jia; Brinton, Roberta Diaz

    2014-01-01

    Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer’s disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions. PMID:23994581

  8. DNA microarray‐based analysis of voluntary resistance wheel running reveals novel transcriptome leading robust hippocampal plasticity

    PubMed Central

    Lee, Min Chul; Rakwal, Randeep; Shibato, Junko; Inoue, Koshiro; Chang, Hyukki; Soya, Hideaki

    2014-01-01

    Abstract In two separate experiments, voluntary resistance wheel running with 30% of body weight (RWR), rather than wheel running (WR), led to greater enhancements, including adult hippocampal neurogenesis and cognitive functions, in conjunction with hippocampal brain‐derived neurotrophic factor (BDNF) signaling (Lee et al., J Appl Physiol, 2012; Neurosci Lett., 2013). Here we aimed to unravel novel molecular factors and gain insight into underlying molecular mechanisms for RWR‐enhanced hippocampal functions; a high‐throughput whole‐genome DNA microarray approach was applied to rats performing voluntary running for 4 weeks. RWR rats showed a significant decrease in average running distances although average work levels increased immensely, by about 11‐fold compared to WR, resulting in muscular adaptation for the fast‐twitch plantaris muscle. Global transcriptome profiling analysis identified 128 (sedentary × WR) and 169 (sedentary × RWR) up‐regulated (>1.5‐fold change), and 97 (sedentary × WR) and 468 (sedentary × RWR) down‐regulated (<0.75‐fold change) genes. Functional categorization using both pathway‐ or specific‐disease‐state‐focused gene classifications and Ingenuity Pathway Analysis (IPA) revealed expression pattern changes in the major categories of disease and disorders, molecular functions, and physiological system development and function. Genes specifically regulated with RWR include the newly identified factors of NFATc1, AVPR1A, and FGFR4, as well as previously known factors, BDNF and CREB mRNA. Interestingly, RWR down‐regulated multiple inflammatory cytokines (IL1B, IL2RA, and TNF) and chemokines (CXCL1, CXCL10, CCL2, and CCR4) with the SYCP3, PRL genes, which are potentially involved in regulating hippocampal neuroplastic changes. These results provide understanding of the voluntary‐RWR‐related hippocampal transcriptome, which will open a window to the underlying mechanisms of the positive effects of exercise, with therapeutic value for enhancing hippocampal functions. PMID:25413326

  9. A Self-determination Theory approach to the study of body image concerns, self-presentation and self-perceptions in a sample of aerobic instructors.

    PubMed

    Thøgersen-Ntoumani, Cecilie; Ntoumanis, Nikos

    2007-03-01

    This study examined motivational predictors of body image concerns, self-presentation and self-perceptions using Self-determination Theory as a guiding framework. Aerobic instructors (N = 149) completed questionnaires measuring general need satisfaction, exercise motivational regulations, body image concerns, social physique anxiety and self-perceptions. Introjected regulation predicted all outcome variables in the expected direction. Intrinsic motivation positively predicted physical self-worth. Further, autonomy need satisfaction negatively predicted body image concerns. Finally, differences existed in need satisfaction, introjected regulation, self-perceptions and social physique anxiety between those at risk of developing eating disorders and those not at risk. The results underline the importance of overall and exercise-specific feelings of self-determination in dealing with body image concerns and low self-perceptions of aerobics instructors.

  10. A self-determination theory approach to adults' healthy body weight motivation: A longitudinal study focussing on food choices and recreational physical activity.

    PubMed

    Hartmann, Christina; Dohle, Simone; Siegrist, Michael

    2015-01-01

    This study focuses on body weight motivation based on self-determination theory. The impact of body weight motivation on longitudinal changes in food choices, recreational physical activity and body mass index was explored. A sample of adults (N = 2917, 47% men), randomly selected from the telephone book, completed a questionnaire in two consecutive years (2012, 2013), self-reporting food choices, recreational physical activity and body weight motivation. Types of body weight motivation at T1 (autonomous regulation, introjected regulation, and external regulation) were tested with regard to their predictive potential for changes in food choices, recreational physical activity and body mass index (BMI). Autonomous motivation predicted improvements in food choices and long-term adherence to vigorous recreational physical activity in both genders. Introjected motivation predicted long-term adherence to vigorous recreational physical activity only in women. External motivation predicted negative changes in food choices; however, the type of body weight motivation had no impact on BMI in overweight adults in the long term. Autonomous goal-setting regarding body weight seems to be substantial for healthy food choices and adherence to recreational physical activity.

  11. Eating regulation styles, appearance schemas, and body satisfaction predict changes in body fat for emerging adults.

    PubMed

    Morgan, Ali Zaremba; Keiley, Margaret K; Ryan, Aubrey E; Radomski, Juliana Groves; Gropper, Sareen S; Connell, Lenda Jo; Simmons, Karla P; Ulrich, Pamela V

    2012-09-01

    Obesity and high body fat percentages are a major public health issue. The percentage of obese and overweight Americans has increased over the past 30 years. On average, overweight individuals with higher percent body fat than normal weight individuals are at increased risk for numerous negative outcomes both physically and mentally. A prime time to investigate changes in body composition and associated psychological influences on decision making is during the emerging adulthood period. The first few years of college are a time when adolescents begin to regulate for themselves their own eating behaviors. Previous research shows that freshmen gain weight and increase in percent body fat during their first year of college. The current study addresses the limitations of previous research by investigating (1) individual growth in percent body fat over a longer period of time in college than previous available research and (2) important psychological and sex differences in this growth. This study measures percent body fat across the first 3 years of college at 8 time points for 542 undergraduates (351 females, 65 %; 191 males, 35 %). Longitudinal data analysis was conducted to identify changes in percent body fat, psychological predictors of those changes, and how changes differ for males and females. Our study found that significant increases exist in percent body fat during undergraduates' college years and that change differs for males and females. In addition, through the use of nested hierarchical models, eating regulation style (autonomous or controlled regulation), appearance schema (self-evaluative salience or motivational salience), and body satisfaction were identified as influential predictors of change in percent body fat. For example, young females, who do not feel in control of their physical appearance yet spend a great deal of time maintaining their appearance, have the highest initial body fat percentage and the steepest increase in percent body fat. Overall, males and females with high autonomous regulation and high motivational salience are likely to maintain (instead of increase) percent body fat over the college years. Knowing the influence of these predictors can be useful for promoting health and intervening with young adults in the college setting and other emerging adults who are not enrolled in postsecondary institutions.

  12. The guanosine nucleotide (p)ppGpp initiates development and A-factor production in myxococcus xanthus.

    PubMed

    Harris, B Z; Kaiser, D; Singer, M

    1998-04-01

    Guanosine 3'-di-5'-(tri)di-phosphate nucleotides [(p)ppGpp], synthesized in response to amino acid limitation, induce early gene expression leading to multicellular fruiting body formation in Myxococcus xanthus. A mutant (DK527) that fails to accumulate (p)ppGpp in response to starvation was found to be blocked in development prior to aggregation. By use of a series of developmentally regulated Tn5lac transcriptional fusion reporters, the time of developmental arrest in DK527 was narrowed to within the few hours of development, the period of starvation recognition. The mutant is also defective in the production of A-factor, an early extracellular cell-density signal. The relA gene from Escherichia coli, which encodes a ribosome-dependent (p)ppGpp synthetase, rescues this mutant. We also demonstrate that inactivation of the M. xanthus relA homolog blocks development and the accumulation of (p)ppGpp. Moreover, the wild-type allele of Myxococcus relA rescues DK527. These observations support a model in which accumulation of (p)ppGpp, in response to starvation, initiates the program of fruiting body development, including the production of A-factor.

  13. Emerging role of PLAG1 as a regulator of growth and reproduction.

    PubMed

    Juma, Almas R; Damdimopoulou, Pauliina E; Grommen, Sylvia V H; Van de Ven, Wim J M; De Groef, Bert

    2016-02-01

    Pleomorphic adenoma gene 1 (PLAG1) belongs to the PLAG family of zinc finger transcription factors along with PLAG-like 1 and PLAG-like 2. The PLAG1 gene is best known as an oncogene associated with certain types of cancer, most notably pleomorphic adenomas of the salivary gland. While the mechanisms of PLAG1-induced tumorigenesis are reasonably well understood, the role of PLAG1 in normal physiology is less clear. It is known that PLAG1 is involved in cell proliferation by directly regulating a wide array of target genes, including a number of growth factors such as insulin-like growth factor 2. This is likely to be a central mode of action for PLAG1 both in embryonic development and in cancer. The phenotype of Plag1 knockout mice suggests an important role for PLAG1 also in postnatal growth and reproduction, as PLAG1 deficiency causes growth retardation and reduced fertility. A role for PLAG1 in growth and reproduction is further corroborated by genome-wide association studies in humans and domestic animals in which polymorphisms in the PLAG1 genomic region are associated with body growth and reproductive traits. Here we review the current evidence for PLAG1 as a regulator of growth and fertility and discuss possible endocrine mechanisms involved. © 2016 Society for Endocrinology.

  14. [Nutrigenomics--bioactive dietary components].

    PubMed

    Gętek, Monika; Czech, Natalia; Fizia, Katarzyna; Białek-Dratwa, Agnieszka; Muc-Wierzgoń, Małgorzata; Kokot, Teresa; Nowakowska-Zajdel, Ewa

    2013-04-05

    Nutrigenomics analyzes relations between diet and genes, and identifies mechanisms in which food and nutrition affect health and lifestyles and noncommunicable diseases (R. Chadwick, 2004). Bioactive dietary components are signal molecules that carry information from the external environment and affect in terms of quantity and quality in the process of gene expression. The biological effect of bioactive dietary components depends on various of physiological processes that can occur within a few genes. Polymorphism of genes can change their function and physiological response of the body for nutrients. Bioactive dietary components work on at least two levels of the expression of genes as factors regulating chromatin structure and as factors directly regulate the activity of nuclear receptors. The processes of synthesis and DNA repair are regulated by some of vitamins, macro-and micro-elements. They provide, among others, cofactors of enzymes that catalyze the replication of DNA methylation and its repair. DNA methylation profile may change under the influence of diet, single nucleotide polymorphisms and environmental factors. Bioactive dietary components may directly affect the process of gene expression by acting as ligands for nuclear receptors. Sensitive to dietary group of nuclear receptors are sensory receptors. This group includes, among others receptor PPAR (peroxisome proliferator activated), responsible for energy metabolism and receptors LXR (liver X receptor), FXR (farnesoid X receptor) and RXR, which is responsible for the metabolism of cholesterol.

  15. Crataegus oxycantha extract attenuates apoptotic incidence in myocardial ischemia-reperfusion injury by regulating Akt and HIF-1 signaling pathways.

    PubMed

    Jayachandran, Kesavan S; Khan, Mahmood; Selvendiran, Karuppaiyah; Devaraj, S Niranjali; Kuppusamy, Periannan

    2010-11-01

    The objective of the present study was to evaluate the efficacy and mechanism of Crataegus oxycantha (COC) extract in preventing ischemia-reperfusion (IR) injury in an in vivo rat model of acute myocardial infarction induced by a 30-minute regional ischemia followed by 72 hours of reperfusion. The COC extract [100 mg/(kg body weight)] was administered 12 hours after the surgical procedure and then at 24-hour intervals for 3 days. Animals treated with COC extract showed a significant decrease in creatine kinase activity and infarct size. At the molecular level, COC administration resulted in a significant attenuation of PTEN (phosphatase and tensin homolog deleted on chromosome 10) and upregulation of phospho-Akt and c-Raf levels in the heart. As a consequence, cleaved caspase-9 and cleaved caspase-7 levels were significantly downregulated, indicating negative regulation of apoptosis by COC extract. In part with the hypoxia-inducible factor (HIF) signaling pathway, COC extract administration significantly upregulated the prolyl hydroxylase-2 level. In contrast, other proapoptotic proteins such as nuclear factor-κB, cytochrome c, apoptosis-inducing factor, and cleaved poly(adenosine diphosphate-ribose) polymerase levels were significantly downregulated in the COC-treated group when compared with the untreated control group. The results suggested that COC extract attenuated apoptotic incidence in the experimental myocardial ischemia-reperfusion model by regulating Akt and HIF-1 signaling pathways.

  16. Considering an Affect Regulation Framework for Examining the Association Between Body Dissatisfaction and Positive Body Image in Black Older Adolescent Females: Does Body Mass Index Matter?

    PubMed Central

    Butler-Ajibade, Phoebe; Robinson, Seronda A.

    2014-01-01

    The present study provided an initial evaluation of an affect regulation model describing the association between body dissatisfaction and two contemporary measures of positive body image among 247 Black college-bound older adolescent females. We further tested whether possessing a higher body mass index (BMI) would strengthen these associations. Self-reported height and weight were used to calculate BMI. Respondents also completed a culturally-sensitive figure rating scale along with assessments of body appreciation and body image flexibility. Results indicated a robust positive association between the two measures of positive body image; BMI was the strongest predictor of both body appreciation and body image flexibility with body size discrepancy (current minus ideal) contributing incremental variance to both models tested. Implications for improving our understanding of the association between positive and negative body image and bolstering positive body image to promote health-protective behaviors among Black young women at this developmental juncture are discussed. PMID:25079011

  17. Fork head transcription factor is required for ovarian mature in the brown planthopper, Nilaparvata lugens (Stål)

    PubMed Central

    2011-01-01

    Background The brown planthopper (BPH), Nilaparvata lugens, is the most devastating rice pest in many areas throughout Asia. The reproductive system of female N. lugens consists of a pair of ovaries with 24-33 ovarioles per ovary in most individuals which determine its fecundity. The fork head (Fox) is a transcriptional regulatory molecule, which regulates and controls many physiological processes in eukaryotes. The Fox family has several subclasses and members, and several Fox factors have been reported to be involved in regulating fecundity. Results We have cloned a fork head gene in N. lugens. The full-length cDNA of NlFoxA is 1789 bp and has an open reading frame of 1143 bp, encoding a protein of 380 amino acids. Quantitative real-time PCR (RT-qPCR) and Reverse Transcription- PCR (RT-PCR) analysis revealed that NlFoxA mRNA was mainly expressed in the fat body, midgut, cuticle and Malpighian tube, and was expressed continuously with little change during all the developmental stages. NlFoxA belongs to the FoxA subfamily of the Fox transcription factors. Knockdown of NlFoxA expression by RNAi using artificial diet containing double-stranded RNA (dsRNA) significantly decreased the number of offspring and impacted the development of ovaries. ELISA and Western blot analyses showed that feeding-based RNAi of NlFoxA gene also resulted in decreased expression of vitellogenin (Vg) protein. Conclusion NlFoxA plays an important role in regulation of fecundity and development of ovaries in the BPH via regulating vitellogenin expression. PMID:22208615

  18. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblastsmore » from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.« less

  19. Sleep and emotion regulation: An organizing, integrative review.

    PubMed

    Palmer, Cara A; Alfano, Candice A

    2017-02-01

    A growing body of research suggests that disrupted sleep is a robust risk and maintenance factor for a range of psychiatric conditions. One explanatory mechanism linking sleep and psychological health is emotion regulation. However, numerous components embedded within this construct create both conceptual and empirical challenges to the study of emotion regulation. These challenges are reflected in most sleep-emotion research by way of poor delineation of constructs and insufficient distinction among emotional processes. Most notably, a majority of research has focused on emotions generated as a consequence of inadequate sleep rather than underlying regulatory processes that may alter these experiences. The current review utilizes the process model of emotion regulation as an organizing framework for examining the impact of sleep upon various aspects of emotional experiences. Evidence is provided for maladaptive changes in emotion at multiple stages of the emotion generation and regulation process. We conclude with a call for experimental research designed to clearly explicate which points in the emotion regulation process appear most vulnerable to sleep loss as well as longitudinal studies to follow these processes in relation to the development of psychopathological conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Cosmetic Regulations: A Comparative Study.

    PubMed

    Suhag, Jyoti; Dureja, Harish

    2015-01-01

    The regulatory framework, compliance requirement, efficacy, safety, and marketing of cosmetic products are considered the most important factors for growth of the cosmetic industry. There are different regulatory bodies across the globe that have their own insights for regulation; moreover, governments such as the United States, European Union, and Japan follow a stringent regulatory framework, whereas cosmetics are not so much strictly regulated in countries such as India, Brazil, and China. The alignment of a regulatory framework will play a significant role in the removal of barriers to trade, growth of market at an international level, innovation in the development and presentation of new products, and most importantly safety and efficacy of the marketed products. The present contribution gives insight into the important cosmetic regulations in areas of premarket approval, ingredient control, and labeling and warnings, with a special focus on the cosmetic regulatory environments in the United States, European Union, Japan, and India. Most importantly, the authors highlight the dark side of cosmetics associated with allergic reactions and even skin cancer. The importance of cosmetic regulations has been highlighted by dint of which the society can be healthier, accomplished by more stringent and harmonized regulations.

  1. GRAY: a program to calculate gray-body radiation heat-transfer view factors from black-body view factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, R. L.

    1976-06-14

    Program GRAY is written to perform the matrix manipulations necessary to convert black-body radiation heat-transfer view factors to gray-body view factors as required by thermal analyzer codes. The black-body view factors contain only geometric relationships. Program GRAY allows the effects of multiple gray-body reflections to be included. The resulting effective gray-body factors can then be used with the corresponding fourth-power temperature differences to obtain the net radiative heat flux. The program is written to accept a matrix input or the card image output generated by the black-body view factor program CNVUFAC. The resulting card image output generated by GRAY ismore » in a form usable by the TRUMP thermal analyzer.« less

  2. Inositol-phosphate signaling as mediator for growth and sexual reproduction in Podospora anserina.

    PubMed

    Xie, Ning; Ruprich-Robert, Gwenaël; Chapeland-Leclerc, Florence; Coppin, Evelyne; Lalucque, Hervé; Brun, Sylvain; Debuchy, Robert; Silar, Philippe

    2017-09-01

    The molecular pathways involved in the development of multicellular fruiting bodies in fungi are still not well known. Especially, the interplay between the mycelium, the female tissues and the zygotic tissues of the fruiting bodies is poorly documented. Here, we describe PM154, a new strain of the model ascomycetes Podospora anserina able to mate with itself and that enabled the easy recovery of new mutants affected in fruiting body development. By complete genome sequencing of spod1, one of the new mutants, we identified an inositol phosphate polykinase gene as essential, especially for fruiting body development. A factor present in the wild type and diffusible in mutant hyphae was able to induce the development of the maternal tissues of the fruiting body in spod1, but failed to promote complete development of the zygotic ones. Addition of myo-inositol in the growth medium was able to increase the number of developing fruiting bodies in the wild type, but not in spod1. Overall, the data indicated that inositol and inositol polyphosphates were involved in promoting fruiting body maturation, but also in regulating the number of fruiting bodies that developed after fertilization. The same effect of inositol was seen in two other fungi, Sordaria macrospora and Chaetomium globosum. Key role of the inositol polyphosphate pathway during fruiting body maturation appears thus conserved during the evolution of Sordariales fungi. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Intermittent fasting could ameliorate cognitive function against distress by regulation of inflammatory response pathway.

    PubMed

    Shojaie, Marjan; Ghanbari, Farzane; Shojaie, Nasrin

    2017-11-01

    Undesirable and desirable effects of stressors on the body are assigned to distress and eustress, respectively. Immune system and brain are the most susceptible parts to stressful conditions, whereas long-lasting alterations in putative immune proteins involved in tension such as corticosterone (CORT), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) can impact learning and memory. Intermittent fasting (IF) is a repeated regular cycle of dietary restriction with well-known beneficial properties on the body. The aim of this study was to identify the eustress effects of IF on cognitive function by assessing the critical inflammatory factors in chronic distress. Forty male mice were divided into four groups (n = 10/group). Distress and control normally received food and water, whereas IF and IF with distress groups were daily deprived of food and water for two hours. In the second week, the electrical foot shock was induced to distress and IF with distress groups. Finally, the cognitive functions of all mice were evaluated by Barnes maze, their blood samples were taken to determine the plasma level of CORT, IL-6 and TNF-α, and the removed brain and adrenal glands were weighed in the third week. A significant gain in plasma level of CORT, IL-6 and TNF-α with a considerable brain hypotrophy and adrenal hypertrophy was found in distress group, whereas IF caused a remarkable reduction of the plasma inflammatory factors, especially in IF with distress mice ( P  ≤ 0.05). In conclusion, IF could improve cognitive function and preserve the brain against distress by regulation of inflammatory response pathway.

  4. Journey of oocyte from metaphase-I to metaphase-II stage in mammals.

    PubMed

    Sharma, Alka; Tiwari, Meenakshi; Gupta, Anumegha; Pandey, Ashutosh N; Yadav, Pramod K; Chaube, Shail K

    2018-08-01

    In mammals, journey from metaphase-I (M-I) to metaphase-II (M-II) is important since oocyte extrude first polar body (PB-I) and gets converted into haploid gamete. The molecular and cellular changes associated with meiotic cell cycle progression from M-I to M-II stage and extrusion of PB-I remain ill understood. Several factors drive oocyte meiosis from M-I to M-II stage. The mitogen-activated protein kinase3/1 (MAPK3/1), signal molecules and Rho family GTPases act through various pathways to drive cell cycle progression from M-I to M-II stage. The down regulation of MOS/MEK/MAPK3/1 pathway results in the activation of anaphase-promoting complex/cyclosome (APC/C). The active APC/C destabilizes maturation promoting factor (MPF) and induces meiotic resumption. Several signal molecules such as, c-Jun N-terminal kinase (JNK2), SENP3, mitotic kinesin-like protein 2 (MKlp2), regulator of G-protein signaling (RGS2), Epsin2, polo-like kinase 1 (Plk1) are directly or indirectly involved in chromosomal segregation. Rho family GTPase is another enzyme that along with cell division cycle (Cdc42) to form actomyosin contractile ring required for chromosomal segregation. In the presence of origin recognition complex (ORC4), eccentrically localized haploid set of chromosomes trigger cortex differentiation and determine the division site for polar body formation. The actomyosin contractile activity at the site of division plane helps to form cytokinetic furrow that results in the formation and extrusion of PB-I. Indeed, oocyte journey from M-I to M-II stage is coordinated by several factors and pathways that enable oocyte to extrude PB-I. Quality of oocyte directly impact fertilization rate, early embryonic development, and reproductive outcome in mammals. © 2018 Wiley Periodicals, Inc.

  5. IGFBP-4 regulates adult skeletal growth in a sex-specific manner.

    PubMed

    Maridas, David E; DeMambro, Victoria E; Le, Phuong T; Nagano, Kenichi; Baron, Roland; Mohan, Subburaman; Rosen, Clifford J

    2017-04-01

    Insulin-like growth factor-1 (IGF-1) and its binding proteins are critical mediators of skeletal growth. Insulin-like growth factor-binding protein 4 (IGFBP-4) is highly expressed in osteoblasts and inhibits IGF-1 actions in vitro Yet, in vivo studies suggest that it could potentiate IGF-1 and IGF-2 actions. In this study, we hypothesized that IGFBP-4 might potentiate the actions of IGF-1 on the skeleton. To test this, we comprehensively studied 8- and 16-week-old Igfbp4 -/- mice. Both male and female adult Igfbp4 -/- mice had marked growth retardation with reductions in body weight, body and femur lengths, fat proportion and lean mass at 8 and 16 weeks. Marked reductions in aBMD and aBMC were observed in 16-week-old Igfbp4 -/- females, but not in males. Femoral trabecular BV/TV and thickness, cortical fraction and thickness in 16-week-old Igfbp4 -/- females were significantly reduced. However, surprisingly, males had significantly more trabeculae with higher connectivity density than controls. Concordantly, histomorphometry revealed higher bone resorption and lower bone formation in Igfbp4 -/- females. In contrast, Igfbp4 -/- males had lower mineralized surface/bone surface. Femoral expression of Sost and circulating levels of sclerostin were reduced but only in Igfbp4 -/- males. Bone marrow stromal cultures from mutants showed increased osteogenesis, whereas osteoclastogenesis was markedly increased in cells from Igfbp4 -/- females but decreased in males. In sum, our results indicate that loss of Igfbp4 affects mesenchymal stromal cell differentiation, regulates osteoclastogenesis and influences both skeletal development and adult bone maintenance. Thus, IGFBP-4 modulates the skeleton in a gender-specific manner, acting as both a cell autonomous and cell non-autonomous factor. © 2017 The authors.

  6. The anti-obesity effect of starch in a whole grain-like structural form.

    PubMed

    Luo, Kaiyun; Wang, Xufeng; Zhang, Genyi

    2018-06-13

    Obesity is a risk factor for many chronic diseases, and the anti-obesity effect of starch in a whole grain-like structural form (WGLSF) prepared through co-gelation with oat β-glucan and alginate was studied using high-fat (HF) induced obese male C57BL/6J mice. In vitro human fecal fermentation of WGLSF-starch showed a slower rate of fermentation and a higher production of butyric acid (132.0 μmol per 50 mg sample) when compared to the physical mixture counterpart of starch, β-glucan, and alginate (PM) (110.5 μmol per 50 mg) or β-glucan itself (96.2 μmol per 50 mg). The body weight gain of obese mice fed with a HF-WGLSF diet was significantly reduced (42.0% lower than the HF group, 30.2% lower than the physical mixture) with decreased cell size in white adipose tissue and similar levels of serum lipid profiles to the control of the low-fat (LF) group. Western blotting experiments showed the down-regulated lipogenic transcription factor of SREBP-1c and fatty acid synthase (FAS), but the lipid-oxidation related transcription factors of peroxisome proliferator-activated receptor-α (PPAR-α) and phosphorylated AMP-activated protein kinase (p-AMPK) were up-regulated. Energy metabolism analysis revealed increased lipid-sourced energy expenditure with higher heat production and respiratory exchange ratios. Consistently, the expression of hypothalamic pro-opiomelanocortin (POMC), favoring energy expenditure, was increased significantly while the neuropeptide Y (NPY) was reduced. Thus, the increased energy expenditure stimulated by starch in a whole-grain-like structural form is responsible for the reduced body weight gain of obese mice fed with a high fat-based diet.

  7. "I just feel so guilty": The role of introjected regulation in linking appearance goals for exercise with women's body image.

    PubMed

    Hurst, Megan; Dittmar, Helga; Banerjee, Robin; Bond, Rod

    2017-03-01

    Appearance goals for exercise are consistently associated with negative body image, but research has yet to consider the processes that link these two variables. Self-determination theory offers one such process: introjected (guilt-based) regulation of exercise behavior. Study 1 investigated these relationships within a cross-sectional sample of female UK students (n=215, 17-30 years). Appearance goals were indirectly, negatively associated with body image due to links with introjected regulation. Study 2 experimentally tested this pathway, manipulating guilt relating to exercise and appearance goals independently and assessing post-test guilt and body anxiety (n=165, 18-27 years). The guilt manipulation significantly increased post-test feelings of guilt, and these increases were associated with increased post-test body anxiety, but only for participants in the guilt condition. The implications of these findings for self-determination theory and the importance of guilt for the body image literature are discussed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Polysaccharide peptide induces a tumor necrosis factor-α-dependent drop of body temperature in rats.

    PubMed

    Jedrzejewski, Tomasz; Piotrowski, Jakub; Wrotek, Sylwia; Kozak, Wieslaw

    2014-08-01

    Polysaccharide peptide (PSP) extracted from the Coriolus versicolor mushroom is frequently suggested as an adjunct to the chemo- or radiotherapy in cancer patients. It improves quality of the patients' life by decreasing pain, fatigue, loss of appetite, nausea, and vomiting. However, the effect of PSP on body temperature has not thus far been studied, although it is well known that treatment with other polysaccharide adjuvants, such as lipopolysaccharides, may induce fever. The aim of the present study, therefore, was to investigate the influence of PSP on temperature regulation in rats. We report that intraperitoneal injection of PSP provoked a dose-dependent decrease of temperature in male Wistar rats equipped with biotelemetry devices to monitor deep body temperature (Tb). The response was rapid (i.e., with latency of 15-20min), transient (lasting up to 5h post-injection), and accompanied by a significant elevation of the blood tumor necrosis factor-α (TNF-α) level. Pretreatment of the rats with anti-TNF-α antibody prevented the PSP-induced drop in Tb. Based on these data, we conclude that rats may develop an anapyrexia-like response to the injection of peptidopolysaccharide rather than fever, and the response was TNF-α-dependent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Energy-related parameters and their association with age, gender, and morphometric measurements in healthy donkeys.

    PubMed

    Mendoza, F J; Estepa, J C; Gonzalez-De Cara, C A; Aguilera-Aguilera, R; Toribio, R E; Perez-Ecija, A

    2015-05-01

    Donkeys are commonly afflicted by endocrine and metabolic disturbances but few studies have investigated endocrine variables involved in energy regulation and their association with morphometric indices, age or gender in this species. Hemostatic and clinical differences have been demonstrated between horses and donkeys, so to consider both species as metabolically and endocrinologically similar could lead to misdiagnosis. In this study, plasma concentrations of glucose, triglycerides and endocrine factors involved in energy homeostasis (insulin, glucagon, leptin, adiponectin, ghrelin and insulin-like growth factor [IGF]-1) were measured and their association with morphometric variables (body condition score, neck scoring and body mass index), gender and age was determined in 62 healthy donkeys. In addition, a neck scoring system specific for donkeys was developed. Insulin, glucagon, leptin and IGF-1 concentrations were found to be similar between donkeys and other species, but adiponectin and active ghrelin were lower in donkeys than horses. Donkeys with larger neck scores and body mass indices had higher triglyceride, leptin and IGF-1 concentrations. A sexual dimorphism was observed on all morphometric measurements and plasma glucose concentrations independent of adiposity. Younger animals had lower morphometric measurements and triglyceride and leptin concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Central irisin administration suppresses thyroid hormone production but increases energy consumption in rats.

    PubMed

    Tekin, Suat; Erden, Yavuz; Ozyalin, Fatma; Onalan, Ebru Etem; Cigremis, Yilmaz; Colak, Cemil; Tekedereli, Ibrahim; Sandal, Suleyman

    2018-05-01

    Irisin, which is secreted from the skeletal muscle in response to physical exercise and defined as a thermogenic peptide, may play an important role in energy metabolism. Thyroid hormones, which are one of the other influential factors on the metabolic status, increase heat production and are the main regulators of energy metabolism. This study was conducted to determine the possible effects of irisin administration on thyroid hormones. Forty adult male Wistar albino rats were used in the study. The rats were equally divided into 4 groups (n = 10). The brain infusion kit was implanted in the groups, and irisin (or solvent as control) was centrally administered to the rats via osmotic mini pumps for 7 days. During the experiment, food consumption, body weights, and body temperatures of the animals were recorded. Food intake was significantly increased in the groups treated with irisin (p < 0.05), but their body weights were not changed. Hypothalamic TRH gene expression, serum TSH, fT3, and fT4 levels were significantly lower in the groups treated with irisin as compared to the naive and control groups (p < 0.05). In addition, irisin increased UCP1 mRNA expression in white and brown adipose tissue and UCP3 mRNA expression in muscle tissue in rats and also raised their body temperature (p < 0.05). Consequently, although central irisin administration has inhibitory effects on the hypothalamic-pituitary-thyroid axis, it seems to be an important agent in the regulation of food intake and energy metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A Genome-Wide Identification of Basic Helix-Loop-Helix Motifs in Pediculus humanus corporis (Phthiraptera: Pediculidae)

    PubMed Central

    Wang, Xu-Hua; Wang, Yong; Zhang, De-Bao; Liu, A-Ke; Yao, Qin; Chen, Ke-Ping

    2014-01-01

    Abstract Basic helix-loop-helix (bHLH) proteins comprise a large superfamily of transcription factors, which are involved in the regulation of various developmental processes. bHLH family members are widely distributed in various eukaryotes including yeast, fruit fly, zebrafish, mouse, and human. In this study, we identified 55 bHLH motifs encoded in genome sequence of the human body louse, Pediculus humanus corporis (Phthiraptera: Pediculidae). Phylogenetic analyses of the identified P. humanus corporis bHLH (PhcbHLH) motifs revealed that there are 23, 11, 9, 1, 10, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Examination to GenBank annotations of the 55 PhcbHLH members indicated that 29 PhcbHLH proteins were annotated in consistence with our analytical result, 8 were annotated different with our analytical result, 12 were merely annotated as hypothetical protein, and the rest 6 were not deposited in GenBank. A comparison on insect bHLH gene composition revealed that human body louse possibly has more hairy and E(spl) genes than other insect species. Because hairy and E(spl) genes have been found to negatively regulate the differentiation of insect preneural cells, it is suggested that the existence of additional hairy and E(spl) genes in human body louse is probably the consequence of its long period adaptation to the relatively dark and stable environment. These data provide good references for further studies on regulatory functions of bHLH proteins in the growth and development of human body louse. PMID:25434030

  12. Nesfatin-1-like peptide is a novel metabolic factor that suppresses feeding, and regulates whole-body energy homeostasis in male Wistar rats

    PubMed Central

    Gawli, Kavishankar; Ramesh, Naresh

    2017-01-01

    Nucleobindin-1 has high sequence similarity to nucleobindin-2, which encodes the anorectic and metabolic peptide, nesfatin-1. We previously reported a nesfatin-1-like peptide (NLP), anorectic in fish and insulinotropic in mice islet beta-like cells. The main objective of this research was to determine whether NLP is a metabolic regulator in male Wistar rats. A single intraperitoneal (IP) injection of NLP (100 μg/kg BW) decreased food intake and increased ambulatory movement, without causing any change in total activity or energy expenditure when compared to saline-treated rats. Continuous subcutaneous infusion of NLP (100 μg/kg BW) using osmotic mini-pumps for 7 days caused a reduction in food intake on days 3 and 4. Similarly, water intake was also reduced for two days (days 3 and 4) with the effect being observed during the dark phase. This was accompanied by an increased RER and energy expenditure. However, decreased whole-body fat oxidation, and total activity were observed during the long-term treatment (7 days). Body weight gain was not significantly different between control and NLP infused rats. The expression of mRNAs encoding adiponectin, resistin, ghrelin, cholecystokinin and uncoupling protein 1 (UCP1) were significantly upregulated, while leptin and peptide YY mRNA expression was downregulated in NLP-treated rats. These findings indicate that administration of NLP at 100 μg/kg BW reduces food intake and modulates whole body energy balance. In summary, NLP is a novel metabolic peptide in rats. PMID:28542568

  13. The Role of Hypothalamic Estrogen Receptors in Metabolic Regulation

    PubMed Central

    Frank, Aaron; Brown, Lynda M.; Clegg, Deborah J.

    2014-01-01

    Estrogens regulate key features of metabolism, including food intake, body weight, energy expenditure, insulin sensitivity, leptin sensitivity, and body fat distribution. There are two ”classical“ estrogen receptors (ERs): estrogen receptor alpha (ERS1) and estrogen receptor beta (ERS2). Human and murine data indicate ERS1 contributes to metabolic regulation more so than ESR2. For example, there are human inactivating mutations of ERS1 which recapitulate aspects of the metabolic syndrome in both men and women. Much of our understanding of the metabolic roles of ERS1 was initially uncovered in estrogen receptor α-null mice (ERS1−/−); these mice display aspects of the metabolic syndrome, including increased body weight, increased visceral fat deposition and dysregulated glucose intolerance. Recent data further implicate ERS1 in specific tissues and neuronal populations as being critical for regulating food intake, energy expenditure, body fat distribution and adipose tissue function. This review will focus predominantly on the role of hypothalamic ERs and their critical role in regulating all aspects of energy homeostasis and metabolism. PMID:24882636

  14. The role of hypothalamic estrogen receptors in metabolic regulation.

    PubMed

    Frank, Aaron; Brown, Lynda M; Clegg, Deborah J

    2014-10-01

    Estrogens regulate key features of metabolism, including food intake, body weight, energy expenditure, insulin sensitivity, leptin sensitivity, and body fat distribution. There are two 'classical' estrogen receptors (ERs): estrogen receptor alpha (ERS1) and estrogen receptor beta (ERS2). Human and murine data indicate ERS1 contributes to metabolic regulation more so than ESR2. For example, there are human inactivating mutations of ERS1 which recapitulate aspects of the metabolic syndrome in both men and women. Much of our understanding of the metabolic roles of ERS1 was initially uncovered in estrogen receptor α-null mice (ERS1(-/-)); these mice display aspects of the metabolic syndrome, including increased body weight, increased visceral fat deposition and dysregulated glucose intolerance. Recent data further implicate ERS1 in specific tissues and neuronal populations as being critical for regulating food intake, energy expenditure, body fat distribution and adipose tissue function. This review will focus predominantly on the role of hypothalamic ERs and their critical role in regulating all aspects of energy homeostasis and metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Semaphorin 3A is a retrograde cell death signal in developing sympathetic neurons

    PubMed Central

    Wehner, Amanda B.; Abdesselem, Houari; Dickendesher, Travis L.; Imai, Fumiyasu; Yoshida, Yutaka; Giger, Roman J.; Pierchala, Brian A.

    2016-01-01

    ABSTRACT During development of the peripheral nervous system, excess neurons are generated, most of which will be lost by programmed cell death due to a limited supply of neurotrophic factors from their targets. Other environmental factors, such as ‘competition factors' produced by neurons themselves, and axon guidance molecules have also been implicated in developmental cell death. Semaphorin 3A (Sema3A), in addition to its function as a chemorepulsive guidance cue, can also induce death of sensory neurons in vitro. The extent to which Sema3A regulates developmental cell death in vivo, however, is debated. We show that in compartmentalized cultures of rat sympathetic neurons, a Sema3A-initiated apoptosis signal is retrogradely transported from axon terminals to cell bodies to induce cell death. Sema3A-mediated apoptosis utilizes the extrinsic pathway and requires both neuropilin 1 and plexin A3. Sema3A is not retrogradely transported in older, survival factor-independent sympathetic neurons, and is much less effective at inducing apoptosis in these neurons. Importantly, deletion of either neuropilin 1 or plexin A3 significantly reduces developmental cell death in the superior cervical ganglia. Taken together, a Sema3A-initiated apoptotic signaling complex regulates the apoptosis of sympathetic neurons during the period of naturally occurring cell death. PMID:27143756

  16. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene.

    PubMed

    Qi, Weiwei; Sun, Fan; Wang, Qianjie; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Luo, Xiaojin; Yang, Jinshui

    2011-09-01

    Plant height is a decisive factor in plant architecture. Rice (Oryza sativa) plants have the potential for rapid internodal elongation, which determines plant height. A large body of physiological research has shown that ethylene and gibberellin are involved in this process. The APETALA2 (AP2)/Ethylene-Responsive Element Binding Factor (ERF) family of transcriptional factors is only present in the plant kingdom. This family has various developmental and physiological functions. A rice AP2/ERF gene, OsEATB (for ERF protein associated with tillering and panicle branching) was cloned from indica rice variety 9311. Bioinformatic analysis suggested that this ERF has a potential new function. Ectopic expression of OsEATB showed that the cross talk between ethylene and gibberellin, which is mediated by OsEATB, might underlie differences in rice internode elongation. Analyses of gene expression demonstrated that OsEATB restricts ethylene-induced enhancement of gibberellin responsiveness during the internode elongation process by down-regulating the gibberellin biosynthetic gene, ent-kaurene synthase A. Plant height is negatively correlated with tiller number, and higher yields are typically obtained from dwarf crops. OsEATB reduces rice plant height and panicle length at maturity, promoting the branching potential of both tillers and spikelets. These are useful traits for breeding high-yielding crops.

  17. Unique associations between young adult men's emotional functioning and their body dissatisfaction and disordered eating.

    PubMed

    Griffiths, Scott; Angus, Douglas; Murray, Stuart B; Touyz, Stephen

    2014-03-01

    Research on emotional functioning, body dissatisfaction, and disordered eating in males is predominated by studies of negative affect and emotion regulation. Other aspects of emotional functioning, namely emotion recognition and attentional biases toward emotional stimuli, have received little empirical attention. The present study investigated the unique associations between different aspects of men's emotional functioning and their disordered eating attitudes, muscularity dissatisfaction, and body fat dissatisfaction. Results from 132 male undergraduates showed that muscularity dissatisfaction was uniquely associated with both emotion regulation difficulties and an attentional bias toward rejecting faces. Body fat dissatisfaction was not uniquely associated with any aspect of emotional functioning. Disordered eating was uniquely associated with emotion regulation difficulties. Collectively, the results indicate differences in the patterns of associations between men's emotional functioning and their body dissatisfaction and disordered eating. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    PubMed

    Cai, Huan; Cong, Wei-Na; Daimon, Caitlin M; Wang, Rui; Tschöp, Matthias H; Sévigny, Jean; Martin, Bronwen; Maudsley, Stuart

    2013-01-01

    Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin(-/-)), and GOAT knockout (GOAT(-/-)) mice. Ghrelin(-/-) mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/-) mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/-) and GOAT(-/-) mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/-) mice, yet potentiated in GOAT(-/-) mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/-) mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/-) and GOAT(-/-) mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  19. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms.

    PubMed

    Seebacher, Frank; Little, Alexander G

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.

  20. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms

    PubMed Central

    Seebacher, Frank; Little, Alexander G.

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits. PMID:28824463

  1. Resveratrol ameliorates diet-induced dysregulation of lipid metabolism in zebrafish (Danio rerio)

    PubMed Central

    Li, Lin; Yan, Qiaoqiao; Yi, Weijie; Ying, Chenjiang; Wu, Hongmei

    2017-01-01

    Defective lipid metabolism is associated with increased risk of various chronic diseases, such as obesity, cardiovascular diseases, and diabetes. Resveratrol (RSV), a natural polyphenol, has been shown the potential of ameliorating disregulations of lipid metabolism. The objective of this study was to investigate the effects of feed intake and RSV on lipid metabolism in zebrafish (Danio rerio). The adult males were randomly allocated to 6 groups: control (Con, 8 mg cysts/fish/day), control with 20 μmol/L RSV (Con+RSV), calorie restriction (CR, 5 mg cysts/fish/day), calorie restriction with RSV (CR+RSV), overfeed (OF, 60 mg cysts/fish/day), and overfeed with RSV (OF+RSV) groups. The treatment period was 8 weeks. Results showed that CR reduced body length, body weight, and condition factor of zebrafish. CR reduced levels of plasma triglyceride (TG) and induced protein expression of phosphorylated AMP-activated protein kinase-α (pAMPKα), silent information regulator 2 homolog 1 (Sirt1), and peroxisome proliferator activated receptor gamma coactivator-1α (PGC1α). RSV attenuated CR-induced pAMPKα/AMPKαincreases. RSV increased levels of Sirt1 protein in the OF zebrafish, and decreased OF-induced increase in peroxisome proliferator-activated receptor-γ (PPARγ) protein level. Additionally, RSV down-regulated caveolin-1 and up-regulated microtubule-associated protein 1 light chain 3 -II (LC3-II) protein levels in OF zebrafish. In conclusion, these results suggest that 1) CR reduces plasma TG level through activation of the AMPKα-Sirt1- PGC1α pathway; 2) under different dietary stress conditions RSV might regulate AMPK phosphorylation bi-directionally; 3) RSV might regulate lipid metabolism through the AMPKα-Sirt1-PPARγ pathway in OF zebrafish. PMID:28686680

  2. Recent identification of an ERK signal gradient governing planarian regeneration.

    PubMed

    Agata, Kiyokazu; Tasaki, Junichi; Nakajima, Elizabeth; Umesono, Yoshihiko

    2014-06-01

    Planarians have strong regenerative abilities derived from their adult pluripotent stem cell (neoblast) system. However, the molecular mechanisms involved in planarian regeneration have long remained a mystery. In particular, no anterior-specifying factor(s) could be found, although Wnt family proteins had been successfully identified as posterior-specifying factors during planarian regeneration (Gurley et al., 2008; Petersen and Reddien, 2008). A recent textbook of developmental biology therefore proposes a Wnt antagonist as a putative anterior factor (Gilbert, 2013). That is, planarian regeneration was supposed to be explained by a single decreasing gradient of the β-catenin signal from tail to head. However, recently we succeeded in demonstrating that in fact the extracellular-signal regulated kinases (ERK) form a decreasing gradient from head to tail to direct the reorganization of planarian body regionality after amputation (Umesono et al., 2013). Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. The determinants of alternative RNA splicing in human cells.

    PubMed

    Ramanouskaya, Tatsiana V; Grinev, Vasily V

    2017-12-01

    Alternative splicing represents an important level of the regulation of gene function in eukaryotic organisms. It plays a critical role in virtually every biological process within an organism, including regulation of cell division and cell death, differentiation of tissues in the embryo and the adult organism, as well as in cellular response to diverse environmental factors. In turn, studies of the last decade have shown that alternative splicing itself is controlled by different mechanisms. Unfortunately, there is no clear understanding of how these diverse mechanisms, or determinants, regulate and constrain the set of alternative RNA species produced from any particular gene in every cell of the human body. Here, we provide a consolidated overview of alternative splicing determinants including RNA-protein interactions, epigenetic regulation via chromatin remodeling, coupling of transcription-to-alternative splicing, effect of secondary structures in pre-RNA, and function of the RNA quality control systems. We also extensively and critically discuss some mechanistic insights on coordinated inclusion/exclusion of exons during the formation of mature RNA molecules. We conclude that the final structure of RNA is pre-determined by a complex interplay between cis- and trans-acting factors. Altogether, currently available empirical data significantly expand our understanding of the functioning of the alternative splicing machinery of cells in normal and pathological conditions. On the other hand, there are still many blind spots that require further deep investigations.

  4. The Mediator complex and transcription regulation

    PubMed Central

    Poss, Zachary C.; Ebmeier, Christopher C.

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064

  5. Cryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation

    PubMed Central

    Chaudhari, Amol; Gupta, Richa; Patel, Sonal; Velingkaar, Nikkhil; Kondratov, Roman

    2017-01-01

    Insulin-like growth factor (IGF) signaling plays an important role in cell growth and proliferation and is implicated in regulation of cancer, metabolism, and aging. Here we report that IGF-1 level in blood and IGF-1 signaling demonstrates circadian rhythms. Circadian control occurs through cryptochromes (CRYs)—transcriptional repressors and components of the circadian clock. IGF-1 rhythms are disrupted in Cry-deficient mice, and IGF-1 level is reduced by 80% in these mice, which leads to reduced IGF signaling. In agreement, Cry-deficient mice have reduced body (∼30% reduction) and organ size. Down-regulation of IGF-1 upon Cry deficiency correlates with reduced Igf-1 mRNA expression in the liver and skeletal muscles. Igf-1 transcription is regulated through growth hormone–induced, JAK2 kinase–mediated phosphorylation of transcriptional factor STAT5B. The phosphorylation of STAT5B on the JAK2-dependent Y699 site is significantly reduced in the liver and skeletal muscles of Cry-deficient mice. At the same time, phosphorylation of JAK2 kinase was not reduced upon Cry deficiency, which places CRY activity downstream from JAK2. Thus CRYs link the circadian clock and JAK-STAT signaling through control of STAT5B phosphorylation, which provides the mechanism for circadian rhythms in IGF signaling in vivo. PMID:28100634

  6. Chelidonic acid evokes antidepressant-like effect through the up-regulation of BDNF in forced swimming test.

    PubMed

    Jeong, Hyun-Ja; Yang, Shi-Young; Kim, Hee-Yun; Kim, Na-Rae; Jang, Jae-Bum; Kim, Hyung-Min

    2016-08-01

    Depression is usually accompanied by neuro-inflammatory reactions. Chelidonic acid, in particular, has shown anti-inflammatory effects. The objective of this study was to evaluate the anti-depressant effects of chelidonic acid and to discuss the potential mechanisms of a forced swimming test. Chelidonic acid was administered orally once a day for 14 days. On the 14th day, chelidonic acid resulted in a significant decrease in immobility time during the forced swimming test without alteration of locomotor activity, in an open field test. Chelidonic acid also increased the number of nissl bodies in the hippocampus. Brain-derived neurotrophic factor expression and extracellular signal-regulated protein kinase phosphorylation in the hippocampus were up-regulated by the administration of chelidonic acid. Chelidonic acid administration significantly increased the mRNA expression of hippocampal estrogen receptor-β. The levels of hippocampal interleukin (IL)-1β, IL-6, and tumor necrosis factor-α were effectively attenuated by the administration of chelidonic acid. In addition, chelidonic acid significantly increased the levels of 5-hydroxytryptamine (serotonin), dopamine, and norepinephrine compared with those levels for the mice that were administered distilled water in the hippocampus. These results suggest that chelidonic acid might serve as a new therapeutic strategy for the regulation of depression associated with inflammation. © 2016 by the Society for Experimental Biology and Medicine.

  7. What`s normal?: Body condition in Great Lakes herring gulls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebert, C.E.; Shutt, J.L.

    1994-12-31

    The Canadian Wildlife Service`s herring gull (Larus argentatus) surveillance program has demonstrated the usefulness of this species as a monitor of spatial and temporal trends in contaminant levels. However, the effects of environmental contaminants on gulls are difficult to distinguish from the effects of other anthropogenic stressors such as the introduction of exotic species, overfishing and habitat loss. To understand the relative importance of these factors in regulating the success of individual gulls and, hence, gull populations, the authors must first have a better understanding of what constitutes a ``normal`` bird. Improving the ability to differentiate between normal and abnormalmore » birds is crucial in any health assessment of Great Lakes gulls. Body condition has been shown to be an important measure of a bird`s ability to provide energy for egg production, migration etc. Numerous approaches have been used to assess condition, most of which required that the bird be sacrificed. In this study, the authors describe a nonlethal technique to quantify body condition in herring gulls. Multivariate statistics are used to quantify body size, relate body size to total mass and from that, determine relative body condition. Initially, body condition is assessed in gulls from a reference colony where reproductive success is normal and anthropogenic influences are limited. This reference population is then used as a baseline against which other gull populations are compared.« less

  8. Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses

    PubMed Central

    Chen, Qian-Qian; Yan, Li; Wang, Chang-Zheng; Wang, Wei-Hua; Shi, Hui; Su, Bin-Bin; Zeng, Qing-Huan; Du, Hai-Tao; Wan, Jun

    2013-01-01

    AIM: To investigate the potential therapeutic effects of mesenchymal stem cells (MSCs) in inflammatory bowel disease (IBD), we transplanted MSCs into an experimental model of IBD. METHODS: A rectal enema of trinitrobenzene sulfonic acid (TNBS) (100 mg/kg body weight) was administered to female BALB/c mice. Bone marrow mesenchymal stem cells (BMSCs) were derived from male green fluorescent protein (GFP) transgenic mice and were transplanted intravenously into the experimental animals after disease onset. Clinical activity scores and histological changes were evaluated. GFP and Sex determining region Y gene (SRY) expression were used for cell tracking. Ki67 positive cells and Lgr5-expressing cells were determined to measure proliferative activity. Inflammatory response was determined by measuring the levels of different inflammatory mediators in the colon and serum. The inflammatory cytokines included tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-6, IL-17, IL-4, IL-10, and transforming growth factor (TGF-β). Master regulators of Th1 cells (T-box expressed in T cells, T-bet), Th17 cells (retinoid related orphan receptor gamma(t), RORγt), Th2 cells (GATA family of transcription factors 3, GATA3) and regulatory T cells (forkhead box P3, Foxp3) were also determined. RESULTS: Systemic infusion of GFP-BMSCs ameliorated the clinical and histopathologic severity of colitis, including body weight loss, diarrhea and inflammation, and increased survival (P < 0.05). The cell tracking study showed that MSCs homed to the injured colon. MSCs promoted proliferation of intestinal epithelial cells and differentiation of intestinal stem cells (P < 0.01). This therapeutic effect was mainly mediated by down-regulation of both Th1-Th17-driven autoimmune and inflammatory responses (IL-2, TNF-α, IFN-γ, T-bet; IL-6, IL-17, RORγt), and by up-regulation of Th2 activities (IL-4, IL-10, GATA-3) (P < 0.05). MSCs also induced activated CD4+CD25+Foxp3+ regulatory T cells (TGF-β, IL-10, Foxp3) with a suppressive capacity on Th1-Th17 effecter responses and promoted Th2 differentiation in vivo (P < 0.05). CONCLUSION: MSCs are key regulators of immune and inflammatory responses and may be an attractive candidate for cell-based therapy of IBD. PMID:23922467

  9. Adrenal gland involvement in the regulation of renal 11beta-hydroxysteroid dehydrogenase 2.

    PubMed

    Zallocchi, Marisa Laura; Matkovic, Laura; Calvo, Juan Carlos; Damasco, María Cristina

    2004-06-01

    Renal 11beta-hydroxysteroid dehydrogenase 2 (HSD2) catalyzes the conversion of active glucocorticoids to inert 11beta-keto compounds, thereby preventing the illicit binding of these hormones to mineralocorticoid receptors (MRs) and, thus, conferring aldosterone specificity. Absence or inhibition of HSD2 activity, originates a hypertensive syndrome with sodium retention and increased potassium elimination. Recent studies from our laboratory reported an increment of HSD2 activity in intact-stressed rats. To evaluate the adrenal involvement in this increase, we analyzed HSD2 activity and protein abundance in Intact, Sham-operated, and adrenalectomized rats under stress situations (gavage with an overload of 200 mM HCl (10 ml) and simulated gavage) or with corticosterone replacement. HSD2 activity was assessed in renal microsomal preparations obtained from different groups of animals. HSD2 protein abundance was measured by Western-blot. Circulating corticosterone was determined by radioimmunoassay. Sham-operated animals showed an increase in HSD2 activity and abundance compared to Intact and adrenalectomized rats suggesting the involvement of stress-related adrenal factors in HSD2 regulation. In the case of acidotic adrenalectomized animals, there was an increase in renal HSD2 activity when, along with the HCl overload, the rats were injected with corticosterone. This increment occurred without an increase in enzyme abundance. These results suggest the importance of circulating levels of glucocorticoids to respond to a metabolic acidosis, through regulation of HSD2 stimulation. The group subjected to a simulated gavage showed an increase in enzyme activity and protein abundance, thus demonstrating the need for both adrenal and extra-factors in the modulation of renal HSD2. The adrenalectomized animals injected with different doses of corticosterone, produced a progressive increase in enzyme activity and abundance, being significant for the dose of 68 microg corticosterone/100 g body weight. The highest dose (308 microg/100 g body weight) did not show any variation in activity and abundance compared to the control group. This biphasic effect of glucocorticoids could be explained taking into account their permissive and suppressive actions, depending on their blood levels. Knowing that stress induces multifactorial responses, it should not be surprising to observe a differential regulation in renal HSD2, confirming that different stressors act through different factors of both, adrenal and extra-adrenal origin. Copyright 2004 Wiley-Liss, Inc.

  10. IGF-1: an endogenous link between traumatic brain injury and Alzheimer disease?

    PubMed

    Zheng, Ping; Tong, Wusong

    2017-08-01

    There is a growing body of evidence that the insulin-like growth factor-1 (IGF-1) is dynamically involved in the regulation of body homeostasis and glucose regulation. Traumatic brain injury (TBI) is considered to be a risk factor for Alzheimer's disease (AD). As alterations of IGF-1 have been implicated in both TBI and AD and the IGF-1 signaling also mediates the neuronal excitability and synaptic plasticity in both diseases, we propose that IGF-1 may act as the endogenous connection between TBI and AD. Growing evidence suggests that dysfunction of this pathway contributes to the progressive loss of neurons in Alzheimer's disease (AD), one of the most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting IGF-1 signaling with currently available antidiabetics. These studies have shown that exogenous administration of IGF-1 reverses signaling abnormalities and has neuroprotective effects. In the first part of this review, we discuss physiological functions of IGF-1 signaling pathway including its distribution within the brain and its relationship with TBI and AD. In the second part, we undertake a comprehensive overview of IGF-1 signaling in TBI and AD, respectively. We then detail targeted IGF-1 in preclinical models of neurodegeneration and the design of clinical trials that have used anti-diabetics for treating AD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into clinical sessions.

  11. RNA granules: the good, the bad and the ugly

    PubMed Central

    Thomas, María Gabriela; Loschi, Mariela; Desbats, María Andrea; Boccaccio, Graciela Lidia

    2010-01-01

    Processing bodies (PBs) and Stress granules (SGs) are the founding members of a new class of RNA granules, known as mRNA silencing foci, as they harbor transcripts circumstantially excluded from the translationally active pool. PBs and SGs are able to release mRNAs thus allowing their translation. PBs are constitutive, but respond to stimuli that affect mRNA translation and decay, whereas SGs are specifically induced upon cellular stress, which triggers a global translational silencing by several pathways, including phosphorylation of the key translation initiation factor elF2alpha, and tRNA cleavage among others. PBs and SGs with different composition may coexist in a single cell. These macromolecular aggregates are highly conserved through evolution, from unicellular organisms to vertebrate neurons. Their dynamics is regulated by several signaling pathways, and depends on microfilaments and microtubules, and the cognate molecular motors myosin, dynein, and kinesin. SGs share features with aggresomes and related aggregates of unfolded proteins frequently present in neurodegenerative diseases, and may play a role in the pathology. Virus infections may induce or impair SG formation. Besides being important for mRNA regulation upon stress, SGs modulate the signaling balancing apoptosis and cell survival. Finally, the formation of nuclear stress bodies (nSBs), which share components with SGs, and the assembly of additional cytosolic aggregates containing RNA—the UV granules and the Ire1 foci—, all them induced by specific cell damage factors, contribute to cell survival. PMID:20813183

  12. Brain-derived neurotrophic factor and hypothalamic-pituitary-adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress.

    PubMed

    Naert, Gaelle; Ixart, Guy; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent

    2011-01-01

    Depression is potentially life-threatening. The most important neuroendocrine abnormality in this disorder is hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. Recent findings suggest that all depression treatments may boost the neurotrophin production especially brain-derived neurotrophic factor (BDNF). Moreover, BDNF is highly involved in the regulation of HPA axis activity. The aim of this study was to determine the impact of chronic stress (restraint 3h/day for 3 weeks) on animal behavior and HPA axis activity in parallel with hippocampus, hypothalamus and pituitary BDNF levels. Chronic stress induced changes in anxiety (light/dark box test) and anhedonic states (sucrose preference test) and in depressive-like behavior (forced swimming test); general locomotor activity and body temperature were modified and animal body weight gain was reduced by 17%. HPA axis activity was highly modified by chronic stress, since basal levels of mRNA and peptide hypothalamic contents in CRH and AVP and plasma concentrations in ACTH and corticosterone were significantly increased. The HPA axis response to novel acute stress was also modified in chronically stressed rats, suggesting adaptive mechanisms. Basal BDNF contents were increased in the hippocampus, hypothalamus and pituitary in chronically stressed rats and the BDNF response to novel acute stress was also modified. This multiparametric study showed that chronic restraint stress induced a depressive-like state that was sustained by mechanisms associated with BDNF regulation. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. [Biological function of trophology and the pathogenesis of metabolic syndrome--syndrome of overeating. Phylogenetically theory of general pathology, role of leptin and adiponectin].

    PubMed

    Titov, V N

    2014-01-01

    Metabolic syndrome (overeating) is a phylogenetically-determined succession of symptoms with the same pathogenesis. There is only one etiological factor, namely, increased consumption of physiologically optimal food. Enterocytes and omental fat cells are a phylogenetically early paracrine-regulated cell community that realizes the biological reactions of exo- and endotrophy. Visceral obesity, high levels of unesterified fatty acids (FA), formation of a pool of micellar FA in the blood, integration of these FA into endothelial cell plasma membrane and enlargement of adipocytes are the causes of hydrodynamic pressure elevation. Toll-like receptors recognize the associates between albumin and greater than physiological number of FA as "foreing" and initiate inflammatory response. "Endoplasm stress" develops in lipid-overloaded cells, protein synthesis (folding) in them is impaired and apoptosis-like cell death is activated. Visceral fat is a phylogenetically early depot of FA to fulfill the biological function of homeostasis, trophology, endoecology and adaptation; it is regulated at the level of paracrine communities and is anatomically limited. The subcutaneous fat depot fulfills the phylogenetically late function of locomotion; the depot size is not anatomically limited. Visceral fat cells have no receptors for phylogenetically late insulin (INS); specialized adipocyes bearing INS and GLUT4 receptors are cells that form the subcutaneous depot. These cells are regulated by phylogenetically late humoral factors at the entire body level. Leptin is an initiator of humoral hypothalamic regulation of in vivo number of ontogenetically programmed number of visceral INS-insensitive fat cells. It prevents "endoplasm stress" and apoptosis, being designed to regulate the amount of consumed food. Leptin initiates storage of FA from visceral pool into subcutaneous pool. Adiponectin is a phylogenetically late humoral hypothalamic regulatory factor that controls optimal number of fat cells in vivo. Its biological role consists in regulation of the number (proliferation) of insulin-dependent adipocytes in subcutaneous fatty tissue.

  14. Nesfatin-1: a novel inhibitory regulator of food intake and body weight.

    PubMed

    Stengel, A; Goebel, M; Taché, Y

    2011-04-01

    The protein nucleobindin 2 (NUCB2) or NEFA (DNA binding/EF-hand/acidic amino acid rich region) was identified over a decade ago and implicated in intracellular processes. New developments came with the report that post-translational processing of hypothalamic NUCB2 may result in nesfatin-1, nesfatin-2 and nesfatin-3 and convergent studies showing that nesfatin-1 and full length NUCB2 injected in the brain potently inhibit the dark phase food intake in rodents including leptin receptor deficient Zucker rats. Nesfatin-1 also reduces body weight gain, suggesting a role as a new anorexigenic factor and modulator of energy balance. In light of the obesity epidemic and its associated diseases, underlying new mechanisms regulating food intake may be promising targets in the drug treatment of obese patients particularly as the vast majority of them display reduced leptin sensitivity or leptin resistance while nesfatin-1's mechanism of action is leptin independent. Although much progress on the localization of NUCB2/nesfatin-1 in the brain and periphery as well as on the understanding of nesfatin-1's anorexic effect have been achieved during the past three years, several important mechanisms have yet to be unraveled such as the identification of the nesfatin-1 receptor and the regulation of NUCB2 processing and nesfatin-1 release. © 2010 The Authors. obesity reviews © 2010 International Association for the Study of Obesity.

  15. Psychosocial predictors of emotional eating and their weight-loss treatment-induced changes in women with obesity.

    PubMed

    Annesi, James J; Mareno, Nicole; McEwen, Kristin

    2016-06-01

    This study aimed at assessing whether psychosocial predictors of controlled eating and weight loss also predict emotional eating, and how differing weight-loss treatment methods affect those variables. Women with obesity (M = 47.8 ± 7.9 years; BMI = 35.4 ± 3.3 kg/m(2)) were randomized into groups of either phone-supported self-help (Self-Help; n = 50) or in-person contact (Personal Contact; n = 53) intended to increase exercise, improve eating behaviors, and reduce weight over 6 months. A multiple regression analysis indicated that at baseline mood, self-regulating eating, body satisfaction, and eating-related self-efficacy significantly predicted emotional eating (R (2) = 0.35), with mood and self-efficacy as independent predictors. Improvements over 6 months on each psychosocial measure were significantly greater in the Personal Contact group. Changes in mood, self-regulation, body satisfaction, and self-efficacy significantly predicted emotional eating change (R (2) = 0.38), with all variables except self-regulation change being an independent predictor. Decreased emotional eating was significantly associated with weight loss. Findings suggest that weight-loss interventions should target specific psychosocial factors to improve emotional eating. The administration of cognitive-behavioral methods through personal contact might be more beneficial for those improvements than self-help formats.

  16. Ghrelin affects stopover decisions and food intake in a long-distance migrant.

    PubMed

    Goymann, Wolfgang; Lupi, Sara; Kaiya, Hiroyuki; Cardinale, Massimiliano; Fusani, Leonida

    2017-02-21

    Billions of birds migrate long distances to either reach breeding areas or to spend the winter at more benign places. On migration, most passerines frequently stop over to rest and replenish their fuel reserves. To date, we know little regarding how they decide that they are ready to continue their journey. What physiological signals tell a bird's brain that its fuel reserves are sufficient to resume migration? A network of hormones regulates food intake and body mass in vertebrates, including the recently discovered peptide hormone, ghrelin. Here, we show that ghrelin reflects body condition and influences migratory behavior of wild birds. We measured ghrelin levels of wild garden warblers ( Sylvia borin ) captured at a stopover site. Further, we manipulated blood concentrations of ghrelin to test its effects on food intake and migratory restlessness. We found that acylated ghrelin concentrations of garden warblers with larger fat scores were higher than those of birds without fat stores. Further, injections of unacylated ghrelin decreased food intake and increased migratory restlessness. These results represent experimental evidence that appetite-regulating hormones control migratory behavior. Our study lays a milestone in migration physiology because it provides the missing link between ecologically dependent factors such as condition and timing of migration. In addition, it offers insights in the regulation of the hormonal system controlling food intake and energy stores in vertebrates, whose disruption causes eating disorders and obesity.

  17. Ghrelin affects stopover decisions and food intake in a long-distance migrant

    PubMed Central

    Lupi, Sara; Kaiya, Hiroyuki; Cardinale, Massimiliano

    2017-01-01

    Billions of birds migrate long distances to either reach breeding areas or to spend the winter at more benign places. On migration, most passerines frequently stop over to rest and replenish their fuel reserves. To date, we know little regarding how they decide that they are ready to continue their journey. What physiological signals tell a bird’s brain that its fuel reserves are sufficient to resume migration? A network of hormones regulates food intake and body mass in vertebrates, including the recently discovered peptide hormone, ghrelin. Here, we show that ghrelin reflects body condition and influences migratory behavior of wild birds. We measured ghrelin levels of wild garden warblers (Sylvia borin) captured at a stopover site. Further, we manipulated blood concentrations of ghrelin to test its effects on food intake and migratory restlessness. We found that acylated ghrelin concentrations of garden warblers with larger fat scores were higher than those of birds without fat stores. Further, injections of unacylated ghrelin decreased food intake and increased migratory restlessness. These results represent experimental evidence that appetite-regulating hormones control migratory behavior. Our study lays a milestone in migration physiology because it provides the missing link between ecologically dependent factors such as condition and timing of migration. In addition, it offers insights in the regulation of the hormonal system controlling food intake and energy stores in vertebrates, whose disruption causes eating disorders and obesity. PMID:28167792

  18. Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight.

    PubMed

    Trujillo Viera, Jonathan; El-Merahbi, Rabih; Nieswandt, Bernhard; Stegner, David; Sumara, Grzegorz

    2016-01-01

    Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1-/- and Pld2-/- mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes.

  19. Implication of gut microbiota in human health.

    PubMed

    Khan, Imran; Yasir, Muhammad; Azhar, Esam I; Kumosani, Taha; Barbour, Elie K; Bibi, Fehmida; Kamal, Mohammad A

    2014-01-01

    Gut-microbiota (GM) is considered a hidden metabolic organ of the human body, providing biochemical pathways which are absent in the host. Balanced diet with calorie restriction (CR) promotes growth of healthy microbiota, leading to longevity by down-regulating inflammatory responses. While, dysbiosis leads to body dysfunction, inducing metabolic disorders, causing poor epithelial architecture, and impeding the development of mucosal-associated lymphoid tissue, resulting in with reduced T and B cell populations, rendering the body prone to infections, cancer and allergy. The GM enzymes activity is a new risk factor for cancer while gut-derived interleukin-6 is associated with hepatocellular carcinoma development. GM can also influence the brain biochemistry and emotional behavior. The altered GM affects the genes involved in second messenger pathway and long-term potentiation, leading to their differential expression in the hippocampus, cortex, striatum and cerebellum. In addition, the dysbiotic GM is associated with autistic disorder. Living with dysbiotic GM is possible with consequences of serious impairments.

  20. Allometric relationship of postmolt net ion uptake, ventilation, and circulation in the freshwater crayfish Procambarus clarkii: intraspecific scaling.

    PubMed

    Zanotto, F P; Wheatly, M G; Reiber, C L; Gannon, A T; Jalles-Filho, E

    2004-01-01

    There are few intraspecific studies relating physiological parameters to body mass. This study relates scaling of ionic regulation and respiratory parameters with body mass in crayfish (Procambarus clarkii). These animals were chosen because of their direct development, spanning four orders of magnitude in body mass. Usually, these animals are hyperregulators and must maintain hemolymph electrolyte levels above those in the ambient freshwater. This is especially important in the postmolt, when ion imbalance can occur. Maintaining hemolymph ion levels above ambient involves active processes that are independently related to metabolic rate, ventilation, and circulation. Therefore, this study investigates relationships among size and ionic regulation, heart rate, and ventilation in crayfish, spanning a size range of 0.003-24 g. Postmolt net ion uptake of Ca, titratable base, Na, Cl, and NH4 increase with body mass (positive allometry) with slopes of 0.92, 0.79, 0.90, 0.84, and 0.87, respectively. Between 72% and 97% of variation in ionic regulation was related to body mass. The slopes differed from each other for Ca and titratable base but not for Na, Cl, and NH4. For heart rate and ventilation rate, different relationships were derived for animals smaller and larger than 0.01 g (between first and third instar). Animals larger than 0.01 g show a negative allometric relationship between heart rate and body size ([body mass](0.15)), while smaller animals show positive allometry with body size, but only 29% of variation in heart rate is explained by body size alone. For ventilation rates, the negative allometry with body size for animals larger than 0.01 g is present, but less than 15% of variation in ventilation rate is explained by size, while for smaller animals the size dependency disappears. Based on these results, predictions of physiological parameters such as ionic regulation based on body size are useful in crayfish, but estimates of respiratory parameters and body size should be used with caution.

  1. Eating Self-Regulation in Overweight and Obese Adults: A Concept Analysis.

    PubMed

    Reed, Jill R; Yates, Bernice C; Houfek, Julia; Pullen, Carol H; Briner, Wayne; Schmid, Kendra K

    2016-04-01

    Poor eating behaviors greatly influence the development of becoming overweight or obese. Learning to better self-regulate eating is one area in which individuals can positively influence their own health. The purpose of this concept analysis is to provide an in-depth analysis of the concept eating self-regulation as it pertains to overweight and obese adults using Walker and Avant's method. The definition for eating self-regulation formulated as a result of this concept analysis and based on the critical attributes is the ability to initiate goal-related behaviors, to consistently self-monitor dietary intake, to regularly apply willpower to resist temptations, to self-evaluate where one stands in relationship to goal attainment, and finally to maintain motivation to positively change eating behaviors. Cognitive restraint, moderation, mindfulness, disinhibition, delayed gratification, emotions and moods, self-efficacy, social support, the environment, and physical activity are the antecedents that may influence eating self-regulation. Examining an individual's weight, body mass index, lipid levels, or blood pressure are some ways to determine if self-regulation of eating behavior is achieved. With a consistent definition of self-regulation and a better understanding of the critical factors that influence eating behaviors, research can better explore how to help individuals change their eating behaviors more effectively. © 2015 Wiley Periodicals, Inc.

  2. Definition and structure of body-relatedness from the perspective of patients with severe somatoform disorder and their therapists.

    PubMed

    Kalisvaart, Hanneke; van Broeckhuysen, Saskia; Bühring, Martina; Kool, Marianne B; van Dulmen, Sandra; Geenen, Rinie

    2012-01-01

    How a patient is connected with one's body is core to rehabilitation of somatoform disorder but a common model to describe body-relatedness is missing. The aim of our study was to investigate the components and hierarchical structure of body-relatedness as perceived by patients with severe somatoform disorder and their therapists. Interviews with patients and therapists yielded statements about components of body-relatedness. Patients and therapists individually sorted these statements according to similarity. Hierarchical cluster analysis was applied to these sortings. Analysis of variance was used to compare the perceived importance of the statements between patients and therapists. The hierarchical structure included 71 characteristics of body-relatedness. It consisted of three levels with eight clusters at the lowest level: 1) understanding, 2) acceptance, 3) adjustment, 4) respect for the body, 5) regulation, 6) confidence, 7) self-esteem, and 8) autonomy. The cluster 'understanding' was considered most important by patients and therapists. Patients valued 'regulating the body' more than therapists. According to patients with somatoform disorders and their therapists, body-relatedness includes awareness of the body and self by understanding, accepting and adjusting to bodily signals, by respecting and regulating the body, by confiding and esteeming oneself and by being autonomous. This definition and structure of body-relatedness may help professionals to improve interdisciplinary communication, assessment, and treatment, and it may help patients to better understand their symptoms and treatment. (German language abstract, Abstract S1; Spanish language abstract, Abstract S2).

  3. Factor structure of the Body Appreciation Scale among Malaysian women.

    PubMed

    Swami, Viren; Chamorro-Premuzic, Tomas

    2008-12-01

    The present study examined the factor structure of a Malay version of the Body Appreciation Scale (BAS), a recently developed scale for the assessment of positive body image that has been shown to have a unidimensional structure in Western settings. Results of exploratory and confirmatory factor analyses based on data from community sample of 591 women in Kuala Lumpur, Malaysia, failed to support a unidimensional structure for the Malay BAS. Results of a confirmatory factor analysis suggested two stable factors, which were labelled 'General Body Appreciation' and 'Body Image Investment'. Multi-group analysis showed that the two-factor structure was invariant for both Malaysian Malay and Chinese women, and that there were no significant ethnic differences on either factor. Results also showed that General Body Appreciation was significant negatively correlated with participants' body mass index. These results are discussed in relation to possible cross-cultural differences in positive body image.

  4. Estrogen: a master regulator of bioenergetic systems in the brain and body.

    PubMed

    Rettberg, Jamaica R; Yao, Jia; Brinton, Roberta Diaz

    2014-01-01

    Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer's disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Cardiomyocyte Regulation of Systemic Lipid Metabolism by the Apolipoprotein B-Containing Lipoproteins in Drosophila

    PubMed Central

    Ishikawa, Zachary

    2017-01-01

    The heart has emerged as an important organ in the regulation of systemic lipid homeostasis; however, the underlying mechanism remains poorly understood. Here, we show that Drosophila cardiomyocytes regulate systemic lipid metabolism by producing apolipoprotein B-containing lipoproteins (apoB-lipoproteins), essential lipid carriers that are so far known to be generated only in the fat body. In a Drosophila genetic screen, we discovered that when haplo-insufficient, microsomal triglyceride transfer protein (mtp), required for the biosynthesis of apoB-lipoproteins, suppressed the development of diet-induced obesity. Tissue-specific inhibition of Mtp revealed that whereas knockdown of mtp only in the fat body decreases systemic triglyceride (TG) content on normal food diet (NFD) as expected, knockdown of mtp only in the cardiomyocytes also equally decreases systemic TG content on NFD, suggesting that the cardiomyocyte- and fat body-derived apoB-lipoproteins serve similarly important roles in regulating whole-body lipid metabolism. Unexpectedly, on high fat diet (HFD), knockdown of mtp in the cardiomyocytes, but not in fat body, protects against the gain in systemic TG levels. We further showed that inhibition of the Drosophila apoB homologue, apolipophorin or apoLpp, another gene essential for apoB-lipoprotein biosynthesis, affects systemic TG levels similarly to that of Mtp inhibition in the cardiomyocytes on NFD or HFD. Finally, we determined that HFD differentially alters Mtp and apoLpp expression in the cardiomyocytes versus the fat body, culminating in higher Mtp and apoLpp levels in the cardiomyocytes than in fat body and possibly underlying the predominant role of cardiomyocyte-derived apoB-lipoproteins in lipid metabolic regulation. Our findings reveal a novel and significant function of heart-mediated apoB-lipoproteins in controlling lipid homeostasis. PMID:28095410

  6. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology.

    PubMed

    Nilsen, Kari-Anne; Ihle, Kate E; Frederick, Katy; Fondrk, M Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V

    2011-05-01

    Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.

  7. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology

    PubMed Central

    Nilsen, Kari-Anne; Ihle, Kate E.; Frederick, Katy; Fondrk, M. Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V.

    2011-01-01

    SUMMARY Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain. PMID:21490257

  8. Impaired regeneration: A role for the muscle microenvironment in cancer cachexia.

    PubMed

    Talbert, Erin E; Guttridge, Denis C

    2016-06-01

    While changes in muscle protein synthesis and degradation have long been known to contribute to muscle wasting, a body of literature has arisen which suggests that regulation of the satellite cell and its ensuing regenerative program are impaired in atrophied muscle. Lessons learned from cancer cachexia suggest that this regulation is simply not a consequence, but a contributing factor to the wasting process. In addition to satellite cells, evidence from mouse models of cancer cachexia also suggests that non-satellite progenitor cells from the muscle microenvironment are also involved. This chapter in the series reviews the evidence of dysfunctional muscle repair in multiple wasting conditions. Potential mechanisms for this dysfunctional regeneration are discussed, particularly in the context of cancer cachexia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Brain nuclear receptors and body weight regulation

    PubMed Central

    O’Malley, Bert W.; Elmquist, Joel K.

    2017-01-01

    Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essential roles in the regulation of energy homeostasis. Understanding the role and the underlying mechanisms of NRs in the context of energy balance control may facilitate the identification of novel targets to treat obesity. Notably, NRs are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of energy balance, including feeding, energy expenditure and physical activity. In this Review we summarize some of the recent literature regarding effects of brain NRs on body weight regulation and discuss mechanisms underlying these effects. PMID:28218618

  10. Considering an affect regulation framework for examining the association between body dissatisfaction and positive body image in Black older adolescent females: does body mass index matter?

    PubMed

    Webb, Jennifer B; Butler-Ajibade, Phoebe; Robinson, Seronda A

    2014-09-01

    The present study provided an initial evaluation of an affect regulation model describing the association between body dissatisfaction and two contemporary measures of positive body image among 247 Black college-bound older adolescent females. We further tested whether possessing a higher body mass index (BMI) would strengthen these associations. Self-reported height and weight were used to calculate BMI. Respondents also completed a culturally-sensitive figure rating scale along with assessments of body appreciation and body image flexibility. Results indicated a robust positive association between the two measures of positive body image; BMI was the strongest predictor of both body appreciation and body image flexibility with body size discrepancy (current minus ideal) contributing incremental variance to both models tested. Implications for improving our understanding of the association between positive and negative body image and bolstering positive body image to promote health-protective behaviors among Black young women at this developmental juncture are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Is It Really a Matter of Simple Dualism? Corticotropin-Releasing Factor Receptors in Body and Mental Health

    PubMed Central

    Janssen, Donny; Kozicz, Tamás

    2013-01-01

    Physiological responses to stress coordinated by the hypothalamo-pituitary-adrenal axis are concerned with maintaining homeostasis in the presence of real or perceived challenges. Regulators of this axis are corticotrophin releasing factor (CRF) and CRF related neuropeptides, including urocortins 1, 2, and 3. They mediate their actions by binding to CRF receptors (CRFR) 1 and 2, which are located in several stress-related brain regions. The prevailing theory has been that the initiation of and the recovery from an elicited stress response is coordinated by two elements, viz. the (mainly) opposing, but well balanced actions of CRFR1 and CRFR2. Such a dualistic view suggests that CRF/CRFR1 controls the initiation of, and urocortins/CRFR2 mediate the recovery from stress to maintain body and mental health. Consequently, failed adaptation to stress can lead to neuropathology, including anxiety and depression. Recent literature, however, challenges such dualistic and complementary actions of CRFR1 and CRFR2, and suggests that stress recruits CRF system components in a brain area and neuron specific manner to promote adaptation as conditions dictate. PMID:23487366

  12. Psychometric Evaluation and Norms for the Multidimensional Assessment of Interoceptive Awareness (MAIA) in a Clinical Eating Disorders Sample.

    PubMed

    Brown, Tiffany A; Berner, Laura A; Jones, Michelle D; Reilly, Erin E; Cusack, Anne; Anderson, Leslie K; Kaye, Walter H; Wierenga, Christina E

    2017-09-01

    Altered interoceptive awareness (IA) has been implicated in the pathophysiology of eating disorders; however, few comprehensive self-report measures of IA exist in eating disorders. The present study sought to validate the Multidimensional Assessment of Interoceptive Awareness (MAIA), originally developed to assess IA in individuals practicing mind-body therapies, in an eating disorder sample. Adult and adolescent patients (n = 376) completed assessments upon admission to a partial hospital programme. Analyses examined the factor structure of the MAIA, scale means, scale-scale correlations, internal consistency and construct validity. Analyses also examined associations between MAIA subscales and eating disorder symptoms. Results supported the original eight-factor structure of the MAIA. Internal consistency was acceptable, and the scales converged with associated measures. Importantly, Not Distracting, Self-regulation, Body Listening and Trusting were most strongly associated with eating disorder symptoms. Results support use of the MAIA among eating disorders and provide further support for the relevance of IA in eating disorders. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  13. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors.

    PubMed

    Deshmukh, Atul S; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T; Cox, Jürgen; Mann, Matthias

    2015-04-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Kynurenine Pathway Pathologies: do Nicotinamide and Other Pathway Co-Factors have a Therapeutic Role in Reduction of Symptom Severity, Including Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM)

    PubMed Central

    Blankfield, Adele

    2013-01-01

    The definition of dual tryptophan pathways has increased the understanding of the mind-body, body-mind dichotomy. The serotonergic pathway highlights the primary (endogenous) psychiatric disorders. The up-regulation of the kynurenine pathway by physical illnesses can cause neuropathic and immunological disorders1 associated with secondary neuropsychiatric symptoms. Tryptophan and nicotinamide deficiencies fall within the protein energy malnutrition (PEM) spectrum. They can arise if the kynurenine pathway is stressed by primary or secondary inflammatory conditions and the consequent imbalance of available catabolic/anabolic substrates may adversely influence convalescent phase efficiency. The replacement of depleted or reduced NAD+ levels and other cofactors can perhaps improve the clinical management of these disorders. Chronic fatigue syndrome (CFS) and fibromyalgia (FM) appear to meet the criteria of a tryptophan-kynurenine pathway disorder with potential neuroimmunological sequelae. Aspects of some of the putative precipitating factors have been previously outlined.2,3 An analysis of the areas of metabolic dysfunction will focus on future directions for research and management. PMID:23922501

  15. Sequencing analysis of ghrelin gene 5' flanking region: relations between the sequence variants, fasting plasma total ghrelin concentrations, and body mass index.

    PubMed

    Vartiainen, Johanna; Kesäniemi, Y Antero; Ukkola, Olavi

    2006-10-01

    Ghrelin is a 28-amino-acid peptide with several functions linked to energy metabolism. Low ghrelin plasma concentrations are associated with obesity, hypertension, and type 2 diabetes mellitus, whereas high concentrations reflect states of negative energy balance. Several studies addressing the hormonal and neural regulation of ghrelin gene expression have been carried out, but the role of genetic factors in the regulation of ghrelin plasma levels remains unclear. To elucidate the role of genetic factors in the regulation of ghrelin expression, we screened 1657 nucleotides of the ghrelin gene 5' flanking region (promoter and possible regulatory sites) for new sequential variations from patient samples with low (n = 50) and high (n = 50) fasting plasma total ghrelin concentrations (low- and high-ghrelin groups). Eleven single nucleotide polymorphisms (SNPs), 3 of which were rare variants (allelic frequency less than 1%) were found in our population. The genotype distribution patterns of the SNPs did not differ between the study groups, except for SNP-501A>C (P = .039). In addition, the SNP-01A>C was associated with body mass index (BMI) (P = .018). This variant was studied further in our large and well-defined Oulu Project Elucidating Risk for Atherosclerosis (OPERA) cohort (n = 1045) by the restriction fragment length polymorphism (RFLP) technique. No significant association of SNP-501A>C genotypes with fasting ghrelin plasma concentrations was found in the whole OPERA population. However, the association of this SNP with BMI and with waist circumference reached statistical significance in OPERA (P = .047 and .049, respectively), remaining of borderline significance for BMI after adjustments (P = .055). The results indicate that factors other than the 11 SNPs found in this study in the 5' flanking region of ghrelin gene are the main determinants of ghrelin plasma levels. However, SNP-501 A>C genotype distribution seems to be different in subjects having the highest compared with those with the lowest ghrelin levels, and the SNP may be associated with BMI and waist circumference.

  16. Rcan2 and estradiol independently regulate body weight in female mice

    PubMed Central

    Ding, Ling-Cui; Gong, Qian-Qian; Li, Shi-Wei; Fu, Xiao-Long; Jin, Ye-Cheng; Zhang, Jian; Gao, Jian-Gang; Sun, Xiao-Yang

    2017-01-01

    Rcan2 increases food intake and plays an important role in the development of age- and diet- induced obesity in male mice. However, in females, wild-type mice grow almost at a similar rate as Rcan2−/− mice on normal chow diet from 6 weeks of age. Here we showed that the ability of Rcan2 to promote weight gain was attenuated by energy expenditure mediated by 17β-estradiol in female mice. Using ovariectomy-operated models, we found that 17β-estradiol deprivation did not alter food intake, but induced more weight gain in wild-type mice than Rcan2−/− mice. If wild-type mice ingested equally as Rcan2−/− mice, in the same ovarian state they exhibited similar weight changes, but the mice in ovariectomized groups were significantly heavier than the ovarian-intact mice, suggesting that body weight is not only regulated by Rcan2, but also by 17β-estradiol. Furthermore, we demonstrated that Rcan2 and 17β-estradiol independently regulated body weight even on high-fat diets. Therefore, our findings indicate that Rcan2 and 17β-estradiol regulate body weight through different mechanisms. Rcan2 increases food intake, whereas 17β-estradiol promotes energy expenditure. These findings provide novel insights into the sexual dimorphism of body weight regulation. PMID:28624805

  17. Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP)

    PubMed Central

    Sato, Shogo; Jung, Hunmin; Nakagawa, Tsutomu; Pawlosky, Robert; Takeshima, Tomomi; Lee, Wan-Ru; Sakiyama, Haruhiko; Laxman, Sunil; Wynn, R. Max; Tu, Benjamin P.; MacMillan, John B.; De Brabander, Jef K.; Veech, Richard L.; Uyeda, Kosaku

    2016-01-01

    The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis. PMID:26984404

  18. Mechanisms of the anorexia of aging-a review.

    PubMed

    Wysokiński, Adam; Sobów, Tomasz; Kłoszewska, Iwona; Kostka, Tomasz

    2015-08-01

    Many, even healthy, older people fail to adequately regulate food intake and experience loss of weight. Aging-associated changes in the regulation of appetite and the lack of hunger have been termed as the anorexia of aging. The etiology of the anorexia of aging is multi-factorial and includes a combination of physiological changes associated with aging (decline in smell and taste, reduced central and peripheral drive to eat, delayed gastric emptying), pathological conditions (depression, dementia, somatic diseases, medications and iatrogenic interventions, oral-health status), and social factors (poverty, loneliness). However, exact mechanisms of the anorexia of aging remain to be elucidated. Many neurobiological mechanisms may be secondary to age-related changes in body composition and not associated with anorexia per se. Therefore, further studies on pathophysiological mechanisms of the anorexia of aging should employ accurate measurement of body fat and lean mass. The anorexia of aging is associated with protein-energy malnutrition, sarcopenia, frailty, functional deterioration, morbidity, and mortality. Since this symptom can lead to dramatic consequences, early identification and effective interventions are needed. One of the most important goals in the geriatric care is to optimize nutritional status of the elderly.

  19. Functional asymmetry of posture and body system regulation

    NASA Technical Reports Server (NTRS)

    Boloban, V. N.; Otsupok, A. P.

    1980-01-01

    The manifestation of functional asymmetry during the regulation of an athlete's posture and a system of bodies and its effect on the execution of individual and group acrobatic exercises were studied. Functional asymmetry of posture regulation was recorded in acrobats during the execution of individual and group exercises. It was shown that stability is maintained at the expense of bending and twisting motions. It is important to consider whether the functional asymmetry of posture regulation is left or right sided in making up pairs and groups of acrobats.

  20. Exploring self-compassion as a refuge against recalling the body-related shaming of caregiver eating messages on dimensions of objectified body consciousness in college women.

    PubMed

    Daye, Chesnee A; Webb, Jennifer B; Jafari, Nadia

    2014-09-01

    Guided by an overarching body-related shame regulation framework, the present investigation examined the associations between caregiver eating messages and dimensions of objectified body consciousness and further explored whether self-compassion moderated these links in a sample of 322 U.S. college women. Correlational findings indicated that retrospective accounts of restrictive/critical caregiver eating messages were positively related to body shame and negatively related to self-compassion and appearance control beliefs. Recollections of experiencing pressure to eat from caregivers were positively correlated with body shame and inversely associated with appearance control beliefs. Higher self-compassion was associated with lower body shame and body surveillance. Self-compassion attenuated the associations between restrictive/critical caregiver eating messages and both body surveillance and body shame. Implications for advancing our understanding of the adaptive properties of a self-compassionate self-regulatory style in mitigating recall of familial body-related shaming on the internalized body-related shame regulating processes of body objectification in emerging adulthood are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Apoptosis of Limb Innervating Motor Neurons and Erosion of Motor Pool Identity Upon Lineage Specific Dicer Inactivation

    PubMed Central

    Chen, Jun-An; Wichterle, Hynek

    2012-01-01

    Diversification of mammalian spinal motor neurons into hundreds of subtypes is critical for the maintenance of body posture and coordination of complex movements. Motor neuron differentiation is controlled by extrinsic signals that regulate intrinsic genetic programs specifying and consolidating motor neuron subtype identity. While transcription factors have been recognized as principal regulators of the intrinsic program, the role of posttranscriptional regulations has not been systematically tested. MicroRNAs produced by Dicer mediated cleavage of RNA hairpins contribute to gene regulation by posttranscriptional silencing. Here we used Olig2-cre conditional deletion of Dicer gene in motor neuron progenitors to examine effects of miRNA biogenesis disruption on postmitotic spinal motor neurons. We report that despite the initial increase in the number of motor neuron progenitors, disruption of Dicer function results in a loss of many limb- and sympathetic ganglia-innervating spinal motor neurons. Furthermore, it leads to defects in motor pool identity specification. Thus, our results indicate that miRNAs are an integral part of the genetic program controlling motor neuron survival and acquisition of subtype specific properties. PMID:22629237

  2. Zinc uptake and regulation by the sublittoral prawn Pandalus montagui (Crustacea: Decapoda)

    NASA Astrophysics Data System (ADS)

    Nugegoda, D.; Rainbow, P. S.

    1988-06-01

    The sublittoral decapod crustacean Pandalus montagui Leach in artificial seawater at 10°C regulates the total body zinc concentration to a constant level in dissolved zinc concentrations up to ca. 22 μg Zn l -1, beyond which there is net accumulation of body zinc. This threshold of zinc regulation breakdown is lower than that in the littoral decapods Palaemon elegans (ca. 93 μg Zn l -1) and Palaemonetes varians (ca. 190 μg Zn l -1) under the same physico-chemical conditions. Correspondingly, zinc uptake rates of the three species of decapods decrease in the order P. montagui > P. elegans > P. varians. It is concluded that regulation of total body zinc concentration is more efficient in decapods adapted to the fluctuating environments of littoral habitats, possibly as a result of changes in permeability of uptake surfaces in combination with improved zinc excretion systems. The moult cycle is important in determining the ability of an individual prawn to regulate zinc. Body zinc in Pandalus montagui consists of at least two pools of zinc exchanging at different rates which the environment. Zinc and copper are not evenly distributed in the tissues of P. montagui.

  3. Energy Density, Energy Intake, and Body Weight Regulation in Adults12345

    PubMed Central

    Karl, J. Philip; Roberts, Susan B.

    2014-01-01

    The role of dietary energy density (ED) in the regulation of energy intake (EI) is controversial. Methodologically, there is also debate about whether beverages should be included in dietary ED calculations. To address these issues, studies examining the effects of ED on EI or body weight in nonelderly adults were reviewed. Different approaches to calculating dietary ED do not appear to alter the direction of reported relations between ED and body weight. Evidence that lowering dietary ED reduces EI in short-term studies is convincing, but there are currently insufficient data to determine long-term effectiveness for weight loss. The review also identified key barriers to progress in understanding the role of ED in energy regulation, in particular the absence of a standard definition of ED, and the lack of data from multiple long-term clinical trials examining the effectiveness of low-ED diet recommendations for preventing both primary weight gain and weight regain in nonobese individuals. Long-term clinical trials designed to examine the impact of dietary ED on energy regulation, and including multiple ED calculation methods within the same study, are still needed to determine the importance of ED in the regulation of EI and body weight. PMID:25398750

  4. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease.

    PubMed

    Smith, Aaron G; Muscat, George E O

    2005-10-01

    Skeletal muscle is a major mass peripheral tissue that accounts for approximately 40% of the total body mass and a major player in energy balance. It accounts for >30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the patho-physiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidemia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease.

  5. Energy balance, physical activity, and cancer risk.

    PubMed

    Fair, Alecia Malin; Montgomery, Kara

    2009-01-01

    This chapter posits that cancer is a complex and multifactorial process as demonstrated by the expression and production of key endocrine and steroid hormones that intermesh with lifestyle factors (physical activity, body size, and diet) in combination to heighten cancer risk. Excess weight has been associated with increased mortality from all cancers combined and for cancers of several specific sites. The prevalence of obesity has reached epidemic levels in many parts of the world; more than 1 billion adults are overweight with a body mass index (BMI) exceeding 25. Overweight and obesity are clinically defined indicators of a disease process characterized by the accumulation of body fat due to an excess of energy intake (nutritional intake) relative to energy expenditure (physical activity). When energy intake exceeds energy expenditure over a prolonged period of time, the result is a positive energy balance (PEB), which leads to the development of obesity. This physical state is ideal for intervention and can be modulated by changes in energy intake, expenditure, or both. Nutritional intake is a modifiable factor in the energy balance-cancer linkage primarily tested by caloric restriction studies in animals and the effect of energy availability. Restriction of calories by 10 to 40% has been shown to decrease cell proliferation, increasing apoptosis through anti-angiogenic processes. The potent anticancer effect of caloric restriction is clear, but caloric restriction alone is not generally considered to be a feasible strategy for cancer prevention in humans. Identification and development of preventive strategies that "mimic" the anticancer effects of low energy intake are desirable. The independent effect of energy intake on cancer risk has been difficult to estimate because body size and physical activity are strong determinants of total energy expenditure. The mechanisms that account for the inhibitory effects of physical activity on the carcinogenic process are reduction in fat stores, activity related changes in sex-hormone levels, altered immune function, effects in insulin and insulin-like growth factors, reduced free radical generation, and direct effect on the tumor. Epidemiologic evidence posits that the cascade of actions linking overweight and obesity to carcinogenesis are triggered by the endocrine and metabolic system. Perturbations to these systems result in the alterations in the levels of bioavailable growth factors, steroid hormones, and inflammatory markers. Elevated serum concentrations of insulin lead to a state of hyperinsulinemia. This physiological state causes a reduction in insulin-like growth factor-binding proteins and promotes the synthesis and biological activity of insulin-like growth factor (IGF)-I, which regulates cellular growth in response to available energy and nutrients from diet and body reserves. In vitro studies have clearly established that both insulin and IGF-I act as growth factors that promote cell proliferation and inhibit apoptosis. Insulin also affects on the synthesis and biological availability of the male and female sex steroids, including androgens, progesterone, and estrogens. Experimental and clinical evidence also indicates a central role of estrogens and progesterone in regulating cellular differentiation, proliferation, and apoptosis induction. Hyperinsulinemia is also associated with alterations in molecular systems such as endogenous hormones and adipokines that regulate inflammatory responses. Obesity-related dysregulation of adipokines has the ability to contribute to tumorigenesis and tumor invasion via metastatic potential. Given the substantial level of weight gain in industrialized countries in the last two decades, there is great interest in understanding all of the mechanisms by which obesity contributes to the carcinogenic process. Continued focus must be directed to understanding the various relationships between specific nutrients and dietary components and cancer cause and prevention. A reductionist approach is not sufficient for the basic biological mechanisms underlying the effect of diet and physical activity on cancer. The joint association between energy balance and cancer risk are hypothesized to share the same underlying mechanisms, the amplification of chemical mediators that modulate cancer risk depending on the responsiveness to those hormones to the target tissue of interest. Disentangling the connection between obesity, the insulin-IGF axis, endogenous hormones, inflammatory markers, and their molecular interaction is vital.

  6. 7 CFR 1230.8 - Delegate Body.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Delegate Body. 1230.8 Section 1230.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Body. Delegate Body means the National Pork Producers Delegate Body established pursuant to § 1230.30. ...

  7. 7 CFR 1230.8 - Delegate Body.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Delegate Body. 1230.8 Section 1230.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Body. Delegate Body means the National Pork Producers Delegate Body established pursuant to § 1230.30. ...

  8. The Regulation and Function of Fibroblast Growth Factor 8 and Its Function during Gonadotropin-Releasing Hormone Neuron Development.

    PubMed

    Chung, Wilson C J; Linscott, Megan L; Rodriguez, Karla M; Stewart, Courtney E

    2016-01-01

    Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus-pituitary-gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success.

  9. Alpha2delta-1 in SF1+ Neurons of the Ventromedial Hypothalamus Is an Essential Regulator of Glucose and Lipid Homeostasis.

    PubMed

    Felsted, Jennifer A; Chien, Cheng-Hao; Wang, Dongqing; Panessiti, Micaella; Ameroso, Dominique; Greenberg, Andrew; Feng, Guoping; Kong, Dong; Rios, Maribel

    2017-12-05

    The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus (VMH). These effects are body weight independent and involve regulation of SF1 + neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. REGULATION OF OBESITY AND INSULIN RESISTANCE BY NITRIC OXIDE

    PubMed Central

    Sansbury, Brian E.; Hill, Bradford G.

    2014-01-01

    Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a world-wide pandemic with few tangible and safe treatment options. While it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—appear to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PMID:24878261

  11. [Accidental falls in the elderly].

    PubMed

    Heinimann, Niklas B; Kressig, Reto W

    2014-06-18

    Falls in the elderly are common with consecutive high mortality and morbidity. Recent consecutive data focus on identification and therapy of intrinsic risk factors. Sarcopenia, imbalance and gait disorders represent the major risk factors. Sarcopenia is caused by a disequilibrium of protein synthesis and breakdown, probably in consequence of age-related changes in protein metabolism. Protein supplements in combination with strength training shows the best benefit. Disorders in balance and gait are caused by age-related or pathologic changes in a complex regulation system of gait. The individual fall risk correlates with the gait variability and even increases with bad dual task performance. Activities with high requirements of attention and body awareness are the most effective prevention for falls in the elderly (-50%).

  12. Estrogen receptor-a in medial amygdala neurons regulates body weight

    USDA-ARS?s Scientific Manuscript database

    Estrogen receptor–a (ERa) activity in the brain prevents obesity in both males and females. However, the ERa-expressing neural populations that regulate body weight remain to be fully elucidated. Here we showed that single-minded–1 (SIM1) neurons in the medial amygdala (MeA) express abundant levels ...

  13. Bioassay of body fluids, experiment M073. [biochemical changes caused by space flight conditions

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Rambaut, P. C.

    1973-01-01

    Body fluids were assayed in this experiment to demonstrate changes which might have occurred during the 56-day chamber study in fluid and electrolyte balance, in regulation of calcium metabolism, in overall physiological and emotional adaptation to the environment, and in regulation of metabolic processes.

  14. Genetics of leptin and obesity: a HuGE review.

    PubMed

    Paracchini, Valentina; Pedotti, Paola; Taioli, Emanuela

    2005-07-15

    Leptin is an important regulator of the mass of adipose tissue and of body weight; it operates by inhibiting food intake and stimulating energy expenditure. Some polymorphic genes involved in the regulation of leptin-the leptin gene (LEP A19G), the leptin receptor gene (LEPR Q223R, K109R, and K656N), and the peroxisome proliferator-activated receptor-gamma gene (PPARG P12A and C161T)--have been investigated as possible factors associated with obesity. Allelic frequencies of these polymorphisms show ethnic variation. The authors performed a meta-analysis of the available data on the association between these polymorphisms and obesity based on case-control studies. Odds ratios and 95% confidence intervals for obesity associated with leptin polymorphisms were calculated by using both fixed- and random-effects models. Results suggest no evidence of association between the genes under study and obesity. The lack of association could be due to the complex pathogenesis of obesity, which involves a number of genetic and environmental factors. Large studies including testing of multiple genes in both obese and lean subjects, with epidemiologic data on dietary habits in different ethnic groups, are necessary to better understand the role of leptin in regulating weight in human populations.

  15. Fibroblast growth factor (Fgf) signaling pathway regulates liver homeostasis in zebrafish.

    PubMed

    Tsai, Su-Mei; Liu, Da-Wei; Wang, Wen-Pin

    2013-04-01

    In mammals, fibroblast growth factor (FGF) signaling controls liver specification and regulates the metabolism of lipids, cholesterol, and bile acids. FGF signaling also promotes hepatocyte proliferation, and helps detoxify hepatotoxin during liver regeneration after partial hepatectomy. However, the function of Fgf in zebrafish liver is not yet well understood, specifically for postnatal homeostasis. The current study analyzed the expression of fgf receptors (fgfrs) in the liver of zebrafish. We then investigated the function of Fgf signaling in the zebrafish liver by expressing a dominant-negative Fgf receptor in hepatocytes (lfabp:dnfgfr1-egfp, lf:dnfr). Histological analysis showed that our genetic intervention resulted in a small liver size with defected medial expansion of developing livers in transgenic (Tg) larvae. Morphologically, the liver lobe of lf:dnfr adult fish was shorter than that of control. Ballooning degeneration of hepatocytes was observed in fish as young as 3 months. Further examination revealed the development of hepatic steatosis and cholestasis. In adult Tg fish, we unexpectedly observed increased liver-to-body-weight ratios, with higher percentages of proliferating hepatocytes. Considering all these findings, we concluded that as in mammals, in adult zebrafish the metabolism of lipid and bile acids in the liver are regulated by Fgf signaling. Disruption of the Fgf signal-mediated metabolism might indirectly affect hepatocyte proliferation.

  16. Egr-1: A Candidate Transcription Factor Involved in Molecular Processes Underlying Time-Memory.

    PubMed

    Shah, Aridni; Jain, Rikesh; Brockmann, Axel

    2018-01-01

    In honey bees, continuous foraging is accompanied by a sustained up-regulation of the immediate early gene Egr-1 (early growth response protein-1) and candidate downstream genes involved in learning and memory. Here, we present a series of feeder training experiments indicating that Egr-1 expression is highly correlated with the time and duration of training even in the absence of the food reward. Foragers that were trained to visit a feeder over the whole day and then collected on a day without food presentation showed Egr-1 up-regulation over the whole day with a peak expression around 14:00. When exposed to a time-restricted feeder presentation, either 2 h in the morning or 2 h in the evening, Egr-1 expression in the brain was up-regulated only during the hours of training. Foragers that visited a feeder in the morning as well as in the evening showed two peaks of Egr-1 expression. Finally, when we prevented time-trained foragers from leaving the colony using artificial rain, Egr-1 expression in the brains was still slightly but significantly up-regulated around the time of feeder training. In situ hybridization studies showed that active foraging and time-training induced Egr-1 up-regulation occurred in the same brain areas, preferentially the small Kenyon cells of the mushroom bodies and the antennal and optic lobes. Based on these findings we propose that foraging induced Egr-1 expression can get regulated by the circadian clock after time-training over several days and Egr-1 is a candidate transcription factor involved in molecular processes underlying time-memory.

  17. Nutritional modulation of IGF-1 in relation to growth and body condition in Sceloporus lizards.

    PubMed

    Duncan, Christine A; Jetzt, Amanda E; Cohick, Wendie S; John-Alder, Henry B

    2015-05-15

    Nutrition and energy balance are important regulators of growth and the growth hormone/insulin-like growth factor (GH/IGF) axis. However, our understanding of these functions does not extend uniformly to all classes of vertebrates and is mainly limited to controlled laboratory conditions. Lizards can be useful models to improve our understanding of the nutritional regulation of the GH/IGF-1 axis because many species are relatively easy to observe and manipulate both in the laboratory and in the field. In the present study, the effects of variation in food intake on growth, body condition, and hepatic IGF-1 mRNA levels were measured in (1) juveniles of Sceloporus jarrovii maintained on a full or 1/3 ration and (2) hatchlings of Sceloporus undulatus subjected to full or zero ration with or without re-feeding. These parameters plus plasma IGF-1 were measured in a third experiment using adults of S. undulatus subjected to full or zero ration with or without re-feeding. In all experiments, plasma corticosterone was measured as an anticipated indicator of nutritional stress. In S. jarrovii, growth and body condition were reduced but lizards remained in positive energy balance on 1/3 ration, and hepatic IGF-1 mRNA and plasma corticosterone were not affected in comparison to full ration. In S. undulatus, growth, body condition, hepatic IGF-1 mRNA, and plasma IGF-1 were all reduced by zero ration and restored by refeeding. Plasma corticosterone was increased in response to zero ration and restored by full ration in hatchlings but not adults of S. undulatus. These data indicate that lizards conform to the broader vertebrate model in which severe food deprivation and negative energy balance is required to attenuate systemic IGF-1 expression. However, when animals remain in positive energy balance, reduced food intake does not appear to affect systemic IGF-1. Consistent with other studies on lizards, the corticosterone response to reduced food intake is an unreliable indicator of nutritional stress. Further studies on ecologically relevant variation in food intake are required to establish the importance of nutrition as an environmental regulator of the GH/IGF axis. Within the range of positive energy balance, the potential involvement of molecular signals in growth regulation requires further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants

    PubMed Central

    Sulak, Michael; Fong, Lindsey; Mika, Katelyn; Chigurupati, Sravanthi; Yon, Lisa; Mongan, Nigel P; Emes, Richard D; Lynch, Vincent J

    2016-01-01

    A major constraint on the evolution of large body sizes in animals is an increased risk of developing cancer. There is no correlation, however, between body size and cancer risk. This lack of correlation is often referred to as 'Peto's Paradox'. Here, we show that the elephant genome encodes 20 copies of the tumor suppressor gene TP53 and that the increase in TP53 copy number occurred coincident with the evolution of large body sizes, the evolution of extreme sensitivity to genotoxic stress, and a hyperactive TP53 signaling pathway in the elephant (Proboscidean) lineage. Furthermore, we show that several of the TP53 retrogenes (TP53RTGs) are transcribed and likely translated. While TP53RTGs do not appear to directly function as transcription factors, they do contribute to the enhanced sensitivity of elephant cells to DNA damage and the induction of apoptosis by regulating activity of the TP53 signaling pathway. These results suggest that an increase in the copy number of TP53 may have played a direct role in the evolution of very large body sizes and the resolution of Peto's paradox in Proboscideans. DOI: http://dx.doi.org/10.7554/eLife.11994.001 PMID:27642012

  19. Cooler biologically compatible core body temperatures may prolong longevity and combat neurodegenerative disorders.

    PubMed

    Salerian, Alen J; Saleri, Nansen G

    2006-01-01

    Scientific evidence suggests the critical role of temperature in regulating three mechanisms contributing to cellular damage: Oxidative stress, oxygen demand overload and inflammation. In this article, we propose that the Arrhenius rate law has a profound impact on aging and a variety of neurodegenerative disorders including Alzheimer's disease, and we review the supporting evidence. Published studies suggest empirical correlations between temperature and lifespan of various organisms, bolstering the hypothesis that variations in lifespan may stem from differences in the mitochondrial production rates of radicals - a process also influenced by temperature. Given the exponential temperature dependency of all biochemical factors, cooler body temperatures may promote longevity and combat neurodegenerative disorders. This promises to offer extraordinary yet unexplored weapons against two formidable enemies of the human body: aging and neurodegenerative disorders. Stated in the form of a thesis referred to as Salerian and Saleri Temperature Thesis (SSTT): "Cooler biologically compatible core body temperatures prolong lifespan and are of value to combat illness". Double blind studies of SSTT in therapeutic strategies against amyotrophic lateral sclerosis (ALS) or early-stage Alzheimer's disease may offer a reasonable first stage to validate SSTT. In view of the known rapid progressive neurodegeneration associated with ALS, minute variations in core body temperature may, in fact, demonstrate statistically significant differences in disease progression.

  20. FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells.

    PubMed

    Chen, Ao; Chen, Xiaodong; Cheng, Shiqiang; Shu, Le; Yan, Meiping; Yao, Lun; Wang, Binyu; Huang, Shuguang; Zhou, Lei; Yang, Zaiqing; Liu, Guoquan

    2018-05-01

    The fat mass and obesity-associated (FTO) gene is tightly related to body weight and fat mass, and plays a pivotal role in regulating lipid accumulation in hepatocytes. However, the mechanisms underlying its function are poorly understood. Sterol regulatory element binding protein-1c (SREBP1c) is a transcription factor that regulates lipogenesis. Cell death-inducing DFFA (DNA fragmentation factor-α)-like effector c (CIDEC) plays a crucial role in lipid droplets (LDs) size controlling and lipid accumulation. In this report, we first observed that FTO overexpression in HepG2 cells resulted in an increase of lipogenesis and up-regulation of SREBP1c and CIDEC, two key regulatory factors in lipogenesis. In contrast, FTO knockdown in HepG2 cells resulted in a decrease of lipogenesis and down-regulation of SREBP1c and CIDEC expression. Moreover, SREBP1c knockdown resulted in a decrease of lipogenesis in HepG2 cells with FTO overexpression. In addition, FTO demethylation defect mutant presented less transcription of the key genes, and less nuclear translocation and maturation of SREBP1c. Further investigation demonstrated that overexpression of SREBP1c in HepG2 cells also promoted high CIDEC expression. Luciferase reporter assays showed that SREBP1c significantly stimulated CIDEC gene promoter activity. Finally, CIDEC knockdown reduced SREBP1c-induced lipogenesis. In conclusion, our studies suggest that FTO increased the lipid accumulation in hepatocytes by increasing nuclear translocation of SREBP1c and SREBP1c maturation, thus improving the transcriptional activity of LD-associated protein CIDEC. Our studies may provide new mechanistic insight into nonalcoholic fatty liver disease (NAFLD) mediated by FTO. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Perceived autonomy support, motivation regulations and the self-evaluative tendencies of student dancers.

    PubMed

    Quested, Eleanor; Duda, Joan L

    2011-03-01

    Limited research has considered the social-environmental and motivational processes predictive of self evaluations and body-related concerns. Evidence suggests that low self-esteem, poor body evaluations, and associated anxieties are particularly prevalent among the student dance population. Grounded in self-determination theory (SDT), this study examined the relationships among perceptions of autonomy support, motivation regulations, and self-evaluations of body-related concerns in the context of vocational dance. Three hundred and ninety-two dancers completed questionnaires regarding their perceptions of autonomy support in their dance school, reasons for engaging in dance, self-esteem, social physique anxiety (SPA), and body dissatisfaction. Structural equation modeling analyses revealed that perceived autonomy support predicted intrinsic motivation (+) and amotivation (-). Extrinsic regulation positively predicted SPA. Amotivation mediated the associations between perceptions of autonomy support and dancers' self-esteem, SPA, and body dissatisfaction. The utility of SDT in understanding predictors of self-worth, physical evaluations, and associated concerns was supported. Moreover, this study provides preliminary evidence supporting the applicability of SDT in dance contexts.

  2. The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression

    PubMed Central

    Wolfram, Verena; Southall, Tony D.; Günay, Cengiz; Prinz, Astrid A.; Brand, Andrea H.

    2014-01-01

    Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K+ channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca2+, the fast K+ current is carried solely by Sh channels (unlike neurons in which a second fast K+ current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression. PMID:24523544

  3. How the embryo makes a limb: determination, polarity and identity

    PubMed Central

    Tickle, Cheryll

    2015-01-01

    The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity – wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions – the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity – determined by Pitx1 in hindlimbs – and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk – with Hox gene activity inhibiting the formation of forelimbs in the interlimb region – and also along the dorso-ventral axis. PMID:26249743

  4. How the embryo makes a limb: determination, polarity and identity.

    PubMed

    Tickle, Cheryll

    2015-10-01

    The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity - wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions - the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity - determined by Pitx1 in hindlimbs - and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk - with Hox gene activity inhibiting the formation of forelimbs in the interlimb region - and also along the dorso-ventral axis. © 2015 Anatomical Society.

  5. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration

    PubMed Central

    Hollborn, Margrit; Kohen, Leon; Wiedemann, Peter

    2016-01-01

    Purpose Systemic hypertension is a risk factor of age-related retinal diseases such as diabetic retinopathy and age-related macular degeneration. High intake of dietary salt and low intake of water increase extracellular osmolality resulting in hypertension, in particular in salt-sensitive individuals. This review summarizes the present knowledge regarding the impact of salt and water intake on the regulation of blood pressure, retinal function, and the development of age-related retinal diseases. Methods A literature search of the Medline database and a summary of recent studies that used human RPE cells. Results The salt sensitivity of the blood pressure and plasma osmolality increase with age, and body water deficits are common in older individuals. High plasma osmolality has adverse effects in the retina. In RPE cells, high osmolality induces expression and secretion of angiogenic factors, such as vascular endothelial growth factor (VEGF), placental growth factor, and basic fibroblast growth factor, and expression of aquaporin-5, a water channel implicated in transepithelial water transport. The transcriptional activities of hypoxia-inducible factor-1 (HIF-1) and nuclear factor of activated T cell 5 (NFAT5) are critical for the production of VEGF in response to salt-induced osmotic stress. Salt-induced osmotic stress also induces priming of the NLRP3 inflammasome and activates inflammatory enzymes in RPE cells. Conclusions Raised plasma osmolality may aggravate age-related retinal diseases by stimulation of local inflammation and angiogenic factor production in the RPE. Alterations in salt and water consumption, and of minerals that stimulate renal salt excretion, may offer nutritional approaches to prevent age-related retinal disorders, in particular in salt-sensitive individuals and individuals who show signs of body dehydration. PMID:28031693

  6. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration.

    PubMed

    Bringmann, Andreas; Hollborn, Margrit; Kohen, Leon; Wiedemann, Peter

    2016-01-01

    Systemic hypertension is a risk factor of age-related retinal diseases such as diabetic retinopathy and age-related macular degeneration. High intake of dietary salt and low intake of water increase extracellular osmolality resulting in hypertension, in particular in salt-sensitive individuals. This review summarizes the present knowledge regarding the impact of salt and water intake on the regulation of blood pressure, retinal function, and the development of age-related retinal diseases. A literature search of the Medline database and a summary of recent studies that used human RPE cells. The salt sensitivity of the blood pressure and plasma osmolality increase with age, and body water deficits are common in older individuals. High plasma osmolality has adverse effects in the retina. In RPE cells, high osmolality induces expression and secretion of angiogenic factors, such as vascular endothelial growth factor (VEGF), placental growth factor, and basic fibroblast growth factor, and expression of aquaporin-5, a water channel implicated in transepithelial water transport. The transcriptional activities of hypoxia-inducible factor-1 (HIF-1) and nuclear factor of activated T cell 5 (NFAT5) are critical for the production of VEGF in response to salt-induced osmotic stress. Salt-induced osmotic stress also induces priming of the NLRP3 inflammasome and activates inflammatory enzymes in RPE cells. Raised plasma osmolality may aggravate age-related retinal diseases by stimulation of local inflammation and angiogenic factor production in the RPE. Alterations in salt and water consumption, and of minerals that stimulate renal salt excretion, may offer nutritional approaches to prevent age-related retinal disorders, in particular in salt-sensitive individuals and individuals who show signs of body dehydration.

  7. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.

    PubMed

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N

    2014-08-12

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level.

  8. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    PubMed Central

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  9. Genetic determination of adiponectin and its relationship with body fat topography in multigenerational families of African heritage.

    PubMed

    Miljkovic-Gacic, Iva; Wang, Xiaojing; Kammerer, Candace M; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Kuller, Lewis H; Evans, Rhobert W; Zmuda, Joseph M

    2007-02-01

    Adiponectin, an adipose-specific protein, is negatively associated with adiposity, insulin sensitivity, and diabetes. Very few studies have examined the role of heredity in the regulation of adiponectin and its association with body fat among individuals of African heritage. Thus, we measured fasting serum adiponectin levels by radioimmunoassay and body composition by dual-energy x-ray absorptiometry (DEXA) in 402 individuals aged 18 to 103 years belonging to 7 multigenerational families of African heritage in the relatively homogeneous island population of Tobago. Heritability of adiponectin was 33.2% (P < .01), and age, sex, and body mass index explained 23.4% of the variance in adiponectin. Sex-specific heritability was significant in men (heritability, 34%; P < .05), but not in women. The inverse associations between body mass index and percentage of body fat and adiponectin, independent of age and height, were much stronger in women (all P values <.001) than in men. However, percentage of trunk fat was consistently strongly associated with adiponectin in both men (r = -0.40, P < .001) and women (r = -0.44, P < .001), independent of age and height. This study suggests that genetic factors are a significant source of interindividual differences in circulating adiponectin among Afro-Caribbeans. Adiponectin may serve as a promising quantitative intermediate trait in studies designed to map the genes underlying diabetes and obesity in this population.

  10. Manipulating central nervous mechanisms of food intake and body weight regulation by intranasal administration of neuropeptides in man.

    PubMed

    Hallschmid, Manfred; Benedict, Christian; Born, Jan; Fehm, Horst-Lorenz; Kern, Werner

    2004-10-30

    Maintaining a stable body weight set-point is assumed to rely on a homeostatic central nervous system (CNS) regulation of body fat with the particular involvement of hypothalamic pathways. The peripheral adiposity signals insulin and leptin convey information on the amount of energy stored as body fat to the arcuate nucleus of the hypothalamus, where anabolic/orexigenic and catabolic/anorexigenic pathways interact to regulate food intake and energy expenditure. One of the most prominent orexigenic messengers is neuropeptide Y (NPY), whereas melanocortins, including alpha-melanocyte-stimulating hormone (alpha-MSH), are essential for inducing anorexigenic effects. The melanocortin receptor 4 (MC4-R) plays the most important role in mediating catabolic effects of alpha-MSH. In this review, we present a series of own studies on NPY, insulin and MSH/ACTH4-10, an MC4-R agonist. The studies were all based on the intranasal route of administration which enables a direct access of the peptides to hypothalamic functions. NPY acutely attenuated electrocortical signs of meal-related satiety. Prolonged intranasal administration of insulin as well as of MSH induced weight loss in healthy human subjects. However, overweight subjects did not lose body fat after MSH administration. The results corroborate in humans the significance of all three messengers for the central nervous regulation of adiposity and might contribute to the future development of medical strategies against body-weight-related disorders.

  11. Metabolome and fecal microbiota in monozygotic twin pairs discordant for weight: a Big Mac challenge.

    PubMed

    Bondia-Pons, Isabel; Maukonen, Johanna; Mattila, Ismo; Rissanen, Aila; Saarela, Maria; Kaprio, Jaakko; Hakkarainen, Antti; Lundbom, Jesper; Lundbom, Nina; Hyötyläinen, Tuulia; Pietiläinen, Kirsi H; Orešič, Matej

    2014-09-01

    Postprandial responses to food are complex, involving both genetic and environmental factors. We studied postprandial responses to a Big Mac meal challenge in monozygotic co-twins highly discordant for body weight. This unique design allows assessment of the contribution of obesity, independent of genetic liability. Comprehensive metabolic profiling using 3 analytical platforms was applied to fasting and postprandial serum samples from 16 healthy monozygotic twin pairs discordant for weight (body mass index difference >3 kg/m(2)). Nine concordant monozygotic pairs were examined as control pairs. Fecal samples were analyzed to assess diversity of the major bacterial groups by using 5 different validated bacterial group specific denaturing gradient gel electrophoresis methods. No differences in fecal bacterial diversity were detected when comparing co-twins discordant for weight (ANOVA, P<0.05). We found that within-pair similarity is a dominant factor in the metabolic postprandial response, independent of acquired obesity. Branched chain amino acids were increased in heavier as compared with leaner co-twins in the fasting state, but their levels converged postprandially (paired t tests, FDR q<0.05). We also found that specific bacterial groups were associated with postprandial changes of specific metabolites. Our findings underline important roles of genetic and early life factors in the regulation of postprandial metabolite levels. © FASEB.

  12. Lipid-load in peripheral blood mononuclear cells: Impact of food-consumption, dietary-macronutrients, extracellular lipid availability and demographic factors.

    PubMed

    Ameer, Fatima; Munir, Rimsha; Usman, Hina; Rashid, Rida; Shahjahan, Muhammad; Hasnain, Shahida; Zaidi, Nousheen

    2017-04-01

    Lipid-load in peripheral blood mononuclear cells (PBMCs) has recently gained attention of the researchers working on nutritional regulation of metabolic health. Previous works have indicated that the metabolic circuitries in the circulating PBMCs are influenced by dietary-intake and macronutrient composition of diet. In the present work, we analyzed the impact of diet and dietary macronutrients on PBMCs' lipid-load. The overall analyses revealed that dietary carbohydrates and fats combinatorially induce triglyceride accumulation in PBMCs. On the other hand, dietary fats were shown to induce significant decrease in PBMCs' cholesterol-load. The effects of various demographic factors -including age, gender and body-weight- on PBMCs' lipid-load were also examined. Body-weight and age were both shown to affect PBMC's lipid-load. Our study fails to provide any direct association between extracellular lipid availability and cholesterol-load in both, freshly isolated and cultured PBMCs. The presented work significantly contributes to the current understanding of the impact of food-consumption, dietary macronutrients, extracellular lipid availability and demographic factors on lipid-load in PBMCs. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. Potential role of meal frequency as a strategy for weight loss and health in overweight or obese adults.

    PubMed

    Kulovitz, Michelle G; Kravitz, Len R; Mermier, Christine; Gibson, Ann L; Conn, Carole A; Kolkmeyer, Deborah; Kerksick, Chad M

    2014-04-01

    Improved dietary strategies for weight loss are necessary to decrease metabolic disease risk in overweight or obese adults. Varying meal frequency (MF; i.e., increasing or decreasing eating occasions beyond the traditional pattern of three meals daily) has been thought to have an influence on body weight regulation, hunger control, and blood markers of health. It is common practice for weight management clinicians to recommend increasing MF as a strategy for weight management and to improve metabolic parameters. However, limited research exists investigating the effect of MF during controlled hypocaloric dietary interventions. Furthermore, MF literature often speculates with regard to efficacy of MF treatments based on research using normal weight, overweight/obese, or some combination, where much diversity exists within these various populations. In this review, we suggest that normal-weight and overweight/obese populations, as well as free-living versus investigator-controlled research trials, should be studied independently. Therefore, the objective of the present review is to survey the literature to assess whether the alteration of MF influences body weight regulation, hunger control, and/or blood markers of health in overweight/obese participants undergoing a controlled hypocaloric diet to induce weight loss. Findings of this review indicate that there is uncertainty in the literature when interpreting the optimal MF for obesity treatment, where reduced MF may even show more favorable lipid profiles in obese individuals compared with increased MF. Furthermore, the simple relationship of comparing MF with body fatness or body mass index should also consider whether eating frequency is associated with other healthy factors (e.g., increased physical activity). Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Effect of food restriction on energy budget in warm-acclimated striped hamsters.

    PubMed

    Zhao, Zhi-Jun; Chi, Qing-Sheng; Zhao, Liang; Zhu, Qiao-Xia; Cao, Jing; Wang, De-Hua

    2015-08-01

    The capacity of small mammals to sustain periods of food shortage largely depends on the adaptive regulation of energy budget in response to the decrease in food supply. In addition to food availability, ambient temperature (Ta) is an important factor affecting the rates of both energy intake and expenditure. To examine the effect of Ta on energy strategy and the capacity to sustain food shortage, striped hamsters were exposed to a warm condition (30°C) and were then restricted to 70% of ad libitum food intake. Body mass, energy intake and expenditure and physiological markers indicative of thermogenesis were measured. Warm exposure had no effect on body mass and digestibility, but decreased energy intake, basal metabolic rate and maximum nonshivering thermogenesis. The mitochondria protein content, cytochrome c oxidase activity and uncoupling protein 1 level of brown adipose tissue were significantly lower in hamsters at 30°C than at 21°C. Food restriction induced a significant decrease in body mass, but the decreased body mass was attenuated at 30°C relative to 21°C. This suggests that striped hamsters could not compensate for the limited food supply by decreasing daily energy expenditure at 21°C, whereas they could at 30°C. The significant reductions in the rates of metabolism and thermogenesis in warm-acclimated hamsters increase the capacity to cope with food shortage. Although, it remains uncertain whether this response represents some generalized evolutionary adaptation, the Ta-dependent adjustment in the capacity to survive food restriction may reflect that warm acclimation plays an important role in adaptive regulation of both physiology and behavior in response to the variations of food availability. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A genome-wide identification of basic helix-loop-helix motifs in Pediculus humanus corporis (Phthiraptera: Pediculidae).

    PubMed

    Wang, Xu-Hua; Wang, Yong; Zhang, De-Bao; Liu, A-Ke; Yao, Qin; Chen, Ke-Ping

    2014-01-01

    Basic helix-loop-helix (bHLH) proteins comprise a large superfamily of transcription factors, which are involved in the regulation of various developmental processes. bHLH family members are widely distributed in various eukaryotes including yeast, fruit fly, zebrafish, mouse, and human. In this study, we identified 55 bHLH motifs encoded in genome sequence of the human body louse, Pediculus humanus corporis (Phthiraptera: Pediculidae). Phylogenetic analyses of the identified P. humanus corporis bHLH (PhcbHLH) motifs revealed that there are 23, 11, 9, 1, 10, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Examination to GenBank annotations of the 55 PhcbHLH members indicated that 29 PhcbHLH proteins were annotated in consistence with our analytical result, 8 were annotated different with our analytical result, 12 were merely annotated as hypothetical protein, and the rest 6 were not deposited in GenBank. A comparison on insect bHLH gene composition revealed that human body louse possibly has more hairy and E(spl) genes than other insect species. Because hairy and E(spl) genes have been found to negatively regulate the differentiation of insect preneural cells, it is suggested that the existence of additional hairy and E(spl) genes in human body louse is probably the consequence of its long period adaptation to the relatively dark and stable environment. These data provide good references for further studies on regulatory functions of bHLH proteins in the growth and development of human body louse. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  16. Mind-Body Skills Training to Improve Distress Tolerance in Medical Students: A Pilot Study.

    PubMed

    Kraemer, Kristen M; Luberto, Christina M; O'Bryan, Emily M; Mysinger, Erica; Cotton, Sian

    2016-01-01

    Medical students face rigorous and stressful work environments, resulting in high rates of psychological distress. However, there has been a dearth of empirical work aimed at modifying risk factors for psychopathology among this at-risk group. Distress tolerance, defined as the ability to withstand emotional distress, is one factor that may be important in promoting psychological well-being in medical students. Thus, the aim of the current mixed-methods study was (a) to describe changes in facets of distress tolerance (i.e., emotional tolerance, absorption, appraisal, regulation) for medical students who completed a mind-body skills training group, and a no-intervention control group of students; (b) to examine the relationship between changes in psychological variables and changes in distress tolerance; and (c) to report students' perceptions of the mind-body group, with an emphasis on how the group may have affected personal and professional functioning due to improvements in distress tolerance. The mind-body program was an 11-week, 2-hour skills training group that focused on introducing, practicing, and processing mind-body skills such as biofeedback, guided imagery, relaxation, several forms of meditation (e.g., mindfulness), breathing exercises, and autogenic training. Participants were 52 first- and second-year medical students (62.7% female, Mage = 23.45, SD = 1.51) who participated in a mind-body group or a no-intervention control group and completed self-report measures before and after the 11-week period. Students in the mind-body group showed a modest improvement in all distress tolerance subscales over time (ΔM = .42-.53, p = .01-.03, d = .44-.53), whereas the control group showed less consistent changes across most subscales (ΔM = .11-.42, p = .10-.65, d = .01-.42). Students in the mind-body group qualitatively reported an improved ability to tolerate affective distress. Overall, improvements in psychological symptoms were associated with improvements in distress tolerance in the mind-body group but not in the control group. These preliminary findings provide support for the notion that improving distress tolerance through mind-body skills training might serve to protect medical students from becoming functionally impaired by psychological distress. Thus, implementing mind-body skills training into medical school education may help to improve the psychological well-being of medical students. Future studies utilizing more methodologically rigorous designs are warranted.

  17. Arab American college students' physical activity and body composition: reconciling Middle East-West differences using the socioecological model.

    PubMed

    Kahan, David

    2011-03-01

    In this study, I conducted focus group interviews with 21 Arab American college students (9 men, 12 women; 9 Muslims, 12 non-Muslims), who were selected for extreme manifestation of religiosity or acculturation, to explore their beliefs and attitudes toward socioecological (SE) factors that facilitated and hindered their individual physical activity (PA) and body composition (I also considered body image and food and eating behavior). To analyze responses, I used a combination of deductive coding, which used levels of the SE model and demographic variable groupings, and inductive coding, to search for common themes among participants within and between research questions. Results revealed that (a) the context of physical activity participation differed by gender; (b) ideal body image was conflicted and varied by gender; and (c) consumption of cultural foods diminished along with Arab social customs related to eating. Interpersonal and cultural/community levels of the SE model were identified as primary influences, with parents regulating and instilling values backed by cultural norms to preserve Arab identity, especially in women. Finally, I identified an indeterminate adjustment period, during which immigrants transitioned between physical activity purpose/form in the Middle East and the United States.

  18. Distinct Hypothalamic Neurons Mediate Estrogenic Effects on Energy Homeostasis and Reproduction

    PubMed Central

    Xu, Yong; Nedungadi, Thekkethil P.; Zhu, Liangru; Sobhani, Nasim; Irani, Boman G.; Davis, Kathryn E.; Zhang, Xiaorui; Zou, Fang; Gent, Lana M.; Hahner, Lisa D.; Khan, Sohaib A.; Elias, Carol F.; Elmquist, Joel K.; Clegg, Deborah J.

    2011-01-01

    Summary Estrogens regulate body weight and reproduction primarily through actions on estrogen receptor-α (ERα). However, ERα-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERα in female mice causes abdominal obesity stemming from both hyperphagia and hypometabolism. Hypometabolism and abdominal obesity, but not hyperphagia, are recapitulated in female mice lacking ERα in hypothalamic steroidogenic factor-1 (SF1) neurons. In contrast, deletion of ERα in hypothalamic pro-opiomelanocortin (POMC) neurons leads to hyperphagia, without directly influencing energy expenditure or fat distribution. Further, simultaneous deletion of ERα from both SF1 and POMC neurons causes hypometabolism, hyperphagia and increased visceral adiposity. Additionally, female mice lacking ERα in SF1 neurons develop anovulation and infertility, while POMC-specific deletion of ERα inhibits negative feedback regulation of estrogens and impairs fertility in females. These results indicate that estrogens act on distinct hypothalamic ERα neurons to regulate different aspects of energy homeostasis and reproduction. PMID:21982706

  19. Identification and association of relationships between selected personal and environmental factors and formal components of temperament and strategies of coping with stress in asthmatic patients.

    PubMed

    Panek, Michał; Pietras, Tadeusz; Witusik, Andrzej; Wieteska, Łukasz; Małachowska, Beata; Mokros, Łukasz; Fendler, Wojciech; Szemraj, Janusz; Kuna, Piotr

    2015-10-01

    Background: Personal and environmental factors might have an impact on strategies of coping with stress and temperamental traits according to the Regulative Theory of Temperament in asthmatic patients. They can modify the clinical picture, the course of a disease and effectiveness of treatment. Personal variables are key factors in determining formal characteristic of behavior and effective management method in asthmatic patients. Aim of study: The aim of the study was to identify selected personal and environmental factors, as well as factors inducing attacks and asthma exacerbations or maintaining them in a complex of personal traits of patients. Methods: Two hundred and eighty one participants were included in the study. Of this number 122 subjects were healthy volunteers and 159 were asthmatic patients. In all the subjects the authors applied the Formal Characteristic of Behaviour – FCZ-KT – Temperament Inventory, Coping Inventory for Stressful Situations (CISS), Beck Depression Inventory, State-Trait Anxiety Inventory and Borg Rating of Perceived Exertion (RPE) Scale. Genotyping of polymorphic forms of NR3C1 gene was conducted with PCR-RFLP and PCR-HRM methods. Expression of TGFβ1 gene was measured with the use of qRT-PCR. Results: The authors confirmed a significant influence of personal and environmental factors, such as: age, height, body weight, sex, asthma exacerbations, drugs administered by patients, allergy and psychopathological variables on strategies of coping with stress by asthmatic patients (Task-Oriented Coping, Emotion-Oriented Coping, Avoidance-Oriented Coping, distraction seeking, social diversion). Temperamental traits (Briskness, Perseverance, Sensory Sensitivity, Emotional Reactivity, Endurance, Activity) depend on age, sex, body weight, genetic predispositions and they are modified by asthma exacerbations, allergy, drugs administered by patients, depression and anxiety (state and trait). The authors confirmed a correlation between Tth111I polymorphic form of NR3C1 gene and perseverance (p= 0.0450). It was noted that an increase in the TGFβ1 expression level led to a decrease in the patients' emotional reactivity (p= 0.0212). Conclusions: Strategies of coping with stress and temperamental traits according to the Regulative Theory of Temperament in asthmatic patients are determined by personal and environmental factors.

  20. Physiologic regulation of body energy storage

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1978-01-01

    Both new and published data (rats, mice, and human beings) on three parameters - fat mass, fat-free body mass (FFBM), and total body mass in some cases - are evaluated. Steady state values of the parameters are analyzed for changes in response to specific perturbing agents and for their frequency distributions. Temporal sequences of values on individuals are examined for evidence of regulatory responses. The results lead to the hypothesis that the FFBM is regulated, but probably not as a unit, and that mass of fat is regulated with a high priority near the range extremes but with a much lower priority in the mid-range. Properties and advantages of such a mechanism are discussed.

  1. Activation of intestinal hypoxia-inducible factor 2α during obesity contributes to hepatic steatosis.

    PubMed

    Xie, Cen; Yagai, Tomoki; Luo, Yuhong; Liang, Xianyi; Chen, Tao; Wang, Qiong; Sun, Dongxue; Zhao, Jie; Ramakrishnan, Sadeesh K; Sun, Lulu; Jiang, Chunmei; Xue, Xiang; Tian, Yuan; Krausz, Kristopher W; Patterson, Andrew D; Shah, Yatrik M; Wu, Yue; Jiang, Changtao; Gonzalez, Frank J

    2017-11-01

    Nonalcoholic fatty liver disease is becoming the most common chronic liver disease in Western countries, and limited therapeutic options are available. Here we uncovered a role for intestinal hypoxia-inducible factor (HIF) in hepatic steatosis. Human-intestine biopsies from individuals with or without obesity revealed that intestinal HIF-2α signaling was positively correlated with body-mass index and hepatic toxicity. The causality of this correlation was verified in mice with an intestine-specific disruption of Hif2a, in which high-fat-diet-induced hepatic steatosis and obesity were substantially lower as compared to control mice. PT2385, a HIF-2α-specific inhibitor, had preventive and therapeutic effects on metabolic disorders that were dependent on intestine HIF-2α. Intestine HIF-2α inhibition markedly reduced intestine and serum ceramide levels. Mechanistically, intestine HIF-2α regulates ceramide metabolism mainly from the salvage pathway, by positively regulating the expression of Neu3, the gene encoding neuraminidase 3. These results suggest that intestinal HIF-2α could be a viable target for hepatic steatosis therapy.

  2. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network

    PubMed Central

    Gubelmann, Carine; Schwalie, Petra C; Raghav, Sunil K; Röder, Eva; Delessa, Tenagne; Kiehlmann, Elke; Waszak, Sebastian M; Corsinotti, Andrea; Udin, Gilles; Holcombe, Wiebke; Rudofsky, Gottfried; Trono, Didier; Wolfrum, Christian; Deplancke, Bart

    2014-01-01

    Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.03346.001 PMID:25163748

  3. Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila

    PubMed Central

    Marshall, Lynne; Rideout, Elizabeth J; Grewal, Savraj S

    2012-01-01

    The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth. PMID:22367393

  4. LORCASERIN FOR THE TREATMENT OF OBESITY

    PubMed Central

    Redman, L.M.; Ravussin, E.

    2013-01-01

    SUMMARY Obesity is a worldwide epidemic and there is an urgent need for the development of effective pharmacological therapies that target the metabolic and behavioral factors of body weight regulation. Serotonin (5-HT) has been implicated as a critical factor in the short-term (meal-by-meal) regulation of food intake and pharmaceutical companies have invested millions of dollars to discover and develop drug targets for the serotonergic pathway Lorcaserin is a novel selective agonist of the 5-HT2C receptor for weight loss therapy Preclinical and clinical studies indicate lorcaserin is well tolerated and not associated with cardiac valvulopathy or pulmonary hypertension suggesting that lorcaserin is a selective 5-HT2C receptor agonist and has little or no activation of the 5-HT2B and 5-HT2A receptors, respectively Lorcaserin acts to alter energy balance through a reduction in energy intake and without an increase in energy expenditure and achieved the U.S. Food and Drug Administration guidelines for weight loss efficacy. It remains to be determined whether or not lorcaserin will be approved for the long-term management of obesity. PMID:21589947

  5. FoxO Transcription Factors and Regenerative Pathways in Diabetes Mellitus

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Mammalian forkhead transcription factors of the O class (FoxO) are exciting targets under consideration for the development of new clinical entities to treat metabolic disorders and diabetes mellitus (DM). DM, a disorder that currently affects greater than 350 million individuals globally, can become a devastating disease that leads to cellular injury through oxidative stress pathways and affects multiple systems of the body. FoxO proteins can regulate insulin signaling, gluconeogenesis, insulin resistance, immune cell migration, and cell senescence. FoxO proteins also control cell fate through oxidative stress and pathways of autophagy and apoptosis that either lead to tissue regeneration or cell demise. Furthermore, FoxO signaling can be dependent upon signal transduction pathways that include silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), Wnt, and Wnt1 inducible signaling pathway protein 1 (WISP1). Cellular metabolic pathways driven by FoxO proteins are complex, can lead to variable clinical outcomes, and require in-depth analysis of the epigenetic and post-translation protein modifications that drive FoxO protein activation and degradation. PMID:26256004

  6. Arrest is a regulator of fiber-specific alternative splicing in the indirect flight muscles of Drosophila

    PubMed Central

    Oas, Sandy T.

    2014-01-01

    Drosophila melanogaster flight muscles are distinct from other skeletal muscles, such as jump muscles, and express several uniquely spliced muscle-associated transcripts. We sought to identify factors mediating splicing differences between the flight and jump muscle fiber types. We found that the ribonucleic acid–binding protein Arrest (Aret) is expressed in flight muscles: in founder cells, Aret accumulates in a novel intranuclear compartment that we termed the Bruno body, and after the onset of muscle differentiation, Aret disperses in the nucleus. Down-regulation of the aret gene led to ultrastructural changes and functional impairment of flight muscles, and transcripts of structural genes expressed in the flight muscles became spliced in a manner characteristic of jump muscles. Aret also potently promoted flight muscle splicing patterns when ectopically expressed in jump muscles or tissue culture cells. Genetically, aret is located downstream of exd (extradenticle), hth (homothorax), and salm (spalt major), transcription factors that control fiber identity. Our observations provide insight into a transcriptional and splicing regulatory network for muscle fiber specification. PMID:25246617

  7. Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Zhang, R.; Levine, B. D.

    2000-01-01

    The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.

  8. Primer on Preemies

    MedlinePlus

    ... the body fat needed to maintain their body temperature, even when swaddled with blankets. So incubators or ... to the baby's skin senses his/her body temperature and regulates the heat. Nutrition and Growth Premature ...

  9. Rice Ethylene-Response AP2/ERF Factor OsEATB Restricts Internode Elongation by Down-Regulating a Gibberellin Biosynthetic Gene1[W][OA

    PubMed Central

    Qi, Weiwei; Sun, Fan; Wang, Qianjie; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Luo, Xiaojin; Yang, Jinshui

    2011-01-01

    Plant height is a decisive factor in plant architecture. Rice (Oryza sativa) plants have the potential for rapid internodal elongation, which determines plant height. A large body of physiological research has shown that ethylene and gibberellin are involved in this process. The APETALA2 (AP2)/Ethylene-Responsive Element Binding Factor (ERF) family of transcriptional factors is only present in the plant kingdom. This family has various developmental and physiological functions. A rice AP2/ERF gene, OsEATB (for ERF protein associated with tillering and panicle branching) was cloned from indica rice variety 9311. Bioinformatic analysis suggested that this ERF has a potential new function. Ectopic expression of OsEATB showed that the cross talk between ethylene and gibberellin, which is mediated by OsEATB, might underlie differences in rice internode elongation. Analyses of gene expression demonstrated that OsEATB restricts ethylene-induced enhancement of gibberellin responsiveness during the internode elongation process by down-regulating the gibberellin biosynthetic gene, ent-kaurene synthase A. Plant height is negatively correlated with tiller number, and higher yields are typically obtained from dwarf crops. OsEATB reduces rice plant height and panicle length at maturity, promoting the branching potential of both tillers and spikelets. These are useful traits for breeding high-yielding crops. PMID:21753115

  10. Loss of heme oxygenase-1 accelerates mesodermal gene expressions during embryoid body development from mouse embryonic stem cells.

    PubMed

    Lai, Yan-Liang; Lin, Chen-Yu; Jiang, Wei-Cheng; Ho, Yen-Chun; Chen, Chung-Huang; Yet, Shaw-Fang

    2018-05-01

    Heme oxygenase (HO)-1 is an inducible stress response protein and well known to protect cells and tissues against injury. Despite its important function in cytoprotection against physiological stress, the role of HO-1 in embryonic stem cell (ESC) differentiation remains largely unknown. We showed previously that induced pluripotent stem (iPS) cells that lack HO-1 are more sensitive to oxidant stress-induced cell death and more prone to lose pluripotent markers upon LIF withdrawal. To elucidate the role of HO-1 in ESC differentiation and to rule out the controversy of potential gene flaws in iPS cells, we derived and established mouse HO-1 knockout ESC lines from HO-1 knockout blastocysts. Using wild type D3 and HO-1 knockout ESCs in the 3-dimensional embryoid body (EB) differentiation model, we showed that at an early time point during EB development, an absence of HO-1 led to enhanced ROS level, concomitant with increased expressions of master mesodermal regulator brachyury and endodermal marker GATA6. In addition, critical smooth muscle cell (SMC) transcription factor serum response factor and its coactivator myocardin were enhanced. Furthermore, HO-1 deficiency increased Smad2 in ESCs and EBs, revealing a role of HO-1 in controlling Smad2 level. Smad2 not only mediates mesendoderm differentiation of mouse ESCs but also SMC development. Collectively, loss of HO-1 resulted in higher level of mesodermal and SMC regulators, leading to accelerated and enhanced SMC marker SM α-actin expression. Our results reveal a previously unrecognized function of HO-1 in regulating SMC gene expressions during ESC-EB development. More importantly, our findings may provide a novel strategy in enhancing ESC differentiation toward SMC lineage. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats

    PubMed Central

    2013-01-01

    Background The effects of curcumin on the activities and gene expression of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (G-ST), B-cell CLL/lymphoma 2 (Bcl-2) and insulin like growth factor-1 (IGF-1) in diabetic rats were studied. Methods Twenty four rats were assigned to three groups (8 rats for each). Rats of first group were non diabetic and rats of the second group were rendered diabetic by streptozotocin (STZ). Both groups received vehicle, corn oil only (5 ml/kg body weight) and served as negative and positive controls, respectively. Rats of the third group were rendered diabetic and received oral curcumin dissolved in corn oil at a dose of 15 mg/5 ml/kg body weight for 6 weeks. Results Diabetic rats showed significant increase of blood glucose, thiobarbituric acid reactive substances (TBARS) and activities of all antioxidant enzymes with significant reduction of reduced glutathione (GSH) compare to the control non diabetic group. Gene expression of Bcl2, SOD, CAT, GPX and GST was increased significantly in diabetic untreated rats compare to the control non diabetic group. The administration of curcumin to diabetic rats normalized significantly their blood sugar level and TBARS values and increased the activities of all antioxidant enzymes and GSH concentration. In addition, curcumin treated rats showed significant increase in gene expression of IGF-1, Bcl2, SOD and GST compare to non diabetic and diabetic untreated rats. Conclusion Curcumin was antidiabetic therapy, induced hypoglycemia by up-regulation of IGF-1 gene and ameliorate the diabetes induced oxidative stress via increasing the availability of GSH, increasing the activities and gene expression of antioxidant enzymes and Bcl2. Further studies are required to investigate the actual mechanism of action of curcumin regarding the up regulation of gene expression of examined parameters. PMID:24364912

  12. The Contribution of Upper Body Movements to Dynamic Balance Regulation during Challenged Locomotion

    PubMed Central

    Boström, Kim J.; Dirksen, Tim; Zentgraf, Karen; Wagner, Heiko

    2018-01-01

    Recent studies suggest that in addition to movements between ankle and hip joints, movements of the upper body, in particular of the arms, also significantly contribute to postural control. In line with these suggestions, we analyzed regulatory movements of upper and lower body joints supporting dynamic balance regulation during challenged locomotion. The participants walked over three beams of varying width and under three different verbally conveyed restrictions of arm posture, to control the potential influence of arm movements on the performance: The participants walked (1) with their arms stretched out perpendicularly in the frontal plane, (2) spontaneously, i.e., without restrictions to the arm movements, and (3) with their hands on their thighs. After applying an inverse-dynamics analysis to the measured joint kinematics, we investigated the contribution of upper and lower body joints to balance regulation in terms of torque amplitude and variation. On the condition with the hands on the thighs, the contribution of the upper body remains significantly lower than the contribution of the lower body irrespective of beam widths. For spontaneous arm movements and for outstretched arms we find that the upper body (including the arms) contributes to the balancing to a similar extent as the lower body. Moreover, when the task becomes more difficult, i.e., for narrower beam widths, the contribution of the upper body increases, while the contribution of the lower body remains nearly constant. These findings lend further support to the hypothetical existence of an “upper body strategy” complementing the ankle and hip strategies especially during challenging dynamic balance tasks. PMID:29434544

  13. 5-epi-Sinuleptolide induces cell cycle arrest and apoptosis through tumor necrosis factor/mitochondria-mediated caspase signaling pathway in human skin cancer cells.

    PubMed

    Liang, Chia-Hua; Wang, Guey-Horng; Chou, Tzung-Han; Wang, Shih-Hao; Lin, Rong-Jyh; Chan, Leong-Perng; So, Edmund Cheung; Sheu, Jyh-Horng

    2012-07-01

    Skin cancers are reportedly increasing worldwide. Developing novel anti-skin cancer drugs with minimal side effects is necessary to address this public health issue. Sinuleptolide has been demonstrated to possess anti-cancer cell activities; however, the mechanisms underlying the anti-skin cancer effects of 5-epi-sinuleptolide and sinuleptolide remain poorly understood. Apoptosis cell, cell-cycle-related regulatory factors, and mitochondria- and death receptor-dependent caspase pathway in 5-epi-sinuleptolide-induced cell apoptosis were examined using SCC25 cells. 5-epi-Sinuleptolide inhibited human skin cancer cell growth more than did sinuleptolide. Treatment of SCC25 cells with 5-epi-sinuleptolide increased apoptotic body formation, and induced cell-cycle arrest during the G2/M phase. Notably, 5-epi-sinuleptolide up-regulated p53 and p21 expression and inhibited G2/M phase regulators of cyclin B1 and cyclin-dependent kinease 1 (CDK1) in SCC25 cells. Additionally, 5-epi-sinuleptolide induced apoptosis by mitochondria-mediated cytochrome c and Bax up-expression, down-regulated Bcl-2, and activated caspase-9 and -3. 5-epi-Sinuleptolide also up-regulated tBid, which is associated with up-regulation of tumor necrosis factor-α (TNF-α) and Fas ligand (FasL) and their cognate receptors (i.e., TNF-RI, TNF-R2 and Fas), downstream adaptor TNF-R1-associated death domain (TRADD) and Fas-associated death domain (FADD), and activated caspase-8 in SCC25 cells. The analytical results indicate that the death receptor- and mitochondria-mediated caspase pathway is critical in 5-epi-sinuleptolide-induced apoptosis of skin cancer cells. This is the first report suggesting that the apoptosis mediates the anti-tumor effect of 5-epi-sinuleptolide. The results of this study might provide useful suggestions for designing of anti-tumor drugs for skin cancer patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6

    PubMed Central

    Von Stetina, Stephen E.; Liang, Jennifer; Marnellos, Georgios; Mango, Susan E.

    2017-01-01

    To establish the animal body plan, embryos link the external epidermis to the internal digestive tract. In Caenorhabditis elegans, this linkage is achieved by the arcade cells, which form an epithelial bridge between the foregut and epidermis, but little is known about how development of these three epithelia is coordinated temporally. The arcade cell epithelium is generated after the epidermis and digestive tract epithelia have matured, ensuring that both organs can withstand the mechanical stress of embryo elongation; mistiming of epithelium formation leads to defects in morphogenesis. Using a combination of genetic, bioinformatic, and imaging approaches, we find that temporal regulation of the arcade cell epithelium is mediated by the pioneer transcription factor and master regulator PHA-4/FoxA, followed by the cytoskeletal regulator and kinesin ZEN-4/MKLP1 and the polarity protein PAR-6. We show that PHA-4 directly activates mRNA expression of a broad cohort of epithelial genes, including junctional factor dlg-1. Accumulation of DLG-1 protein is delayed by ZEN-4, acting in concert with its binding partner CYK-4/MgcRacGAP. Our structure–function analysis suggests that nuclear and kinesin functions are dispensable, whereas binding to CYK-4 is essential, for ZEN-4 function in polarity. Finally, PAR-6 is necessary to localize polarity proteins such as DLG-1 within adherens junctions and at the apical surface, thereby generating arcade cell polarity. Our results reveal that the timing of a landmark event during embryonic morphogenesis is mediated by the concerted action of four proteins that delay the formation of an epithelial bridge until the appropriate time. In addition, we find that mammalian FoxA associates with many epithelial genes, suggesting that direct regulation of epithelial identity may be a conserved feature of FoxA factors and a contributor to FoxA function in development and cancer. PMID:28539408

  15. Homeostasis in Primates in the Hyperdynamic Environment. [circadian timekeeping and effects of lower body positive pressure on sleep

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1985-01-01

    The influence of chronic centrifugation upon the homestatic regulation of the circadian timekeeping system was examined. The interactions of body temperature regulation and the behavioral state of arousal were studied by evaluating the influence of cephalic fluid shifts induced by lower body positive air pressure (LBPP), upon these systems. The small diurnal squirrel monkey (Saimiri sciureus) was used as the non-human primate model. Results show that the circadian timekeeping system of these primates is functional in the hyperdynamic environment, however, some of its components appear to be regulated at different homeostatic levels. The LBPP resulted in an approximate 0.7 C decrease in DBT (p 0.01). However, although on video some animals appeared drowsy during LBPP, sleep recording revealed no significant changes in state of arousal. Thus, the physiological mechanisms underlying this lowering of body temperature can be independent of the arousal state.

  16. Regulation of body fluid and salt homeostasis--from observations in space to new concepts on Earth.

    PubMed

    Gerzer, R; Heer, M

    2005-08-01

    The present manuscript summarizes recent discoveries that were made by studying salt and fluid homeostasis in weightlessness. These data indicate that 1. atrial natriuretic peptide appears not to play an important role in natriuresis in physiology, 2. the distribution of body fluids appears to be tightly coupled with hunger and thirst regulation, 3. intrathoracic pressure may be an important co-regulator of body fluid homeostasis, 4. a so far unknown low-affinity, high capacity osmotically inactive sodium storage mechanism appears to be present in humans that is acting through sodium/hydrogen exchange on glycosaminoglycans and might explain the pathophysiology, e.g., of salt sensitive hypertension. The surprising and unexpected data underline that weightlessness is an excellent tool to investigate the physiology of our human body: If we knew it, we should be able to predict changes that occur when gravity is absent. But, as data from space demonstrate, we do not.

  17. Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in Solanaceae plants.

    PubMed

    López-Galiano, María José; González-Hernández, Ana I; Crespo-Salvador, Oscar; Rausell, Carolina; Real, M Dolores; Escamilla, Mónica; Camañes, Gemma; García-Agustín, Pilar; González-Bosch, Carmen; García-Robles, Inmaculada

    2018-01-01

    SlyWRKY75: gene expression was induced in response to biotic stresses, especially in Botrytis cinerea-infected tomato plants, in which Sly-miR1127-3p is a putative SlyWRKY75 regulator and epigenetic marks were detected. WRKY75 transcription factor involved in Pi homeostasis was recently found also induced in defense against necrotrophic pathogens. In this study, we analyzed by RT-qPCR the expression of SlyWRKY75 gene in tomato plants in response to abiotic stresses (drought or heat) and biotic stresses (Colorado potato beetle larvae infestation, Pseudomonas syringae or Botrytis cinerea infection) being only differentially expressed following biotic stresses, especially upon B. cinerea infection (55-fold induction). JA and JA-Ile levels were significantly increased in tomato plants under biotic stresses compared with control plants, indicating that SlyWRKY75 might be a transcriptional regulator of the JA pathway. The contribution of miRNAs and epigenetic molecular mechanisms to the regulation of this gene in B. cinerea-infected tomato plants was explored. We identified a putative Sly-miR1127-3p miRNA predicted to bind the intronic region of the SlyWRKY75 genomic sequence. Sly-miR1127-3p miRNA was repressed in infected plants (0.4-fold) supporting that it might act as an epigenetic regulation factor of SlyWRKY75 gene expression rather than via the post-transcriptional mechanisms of canonical miRNAs. It has been proposed that certain miRNAs can mediate DNA methylation in the plant nucleus broadening miRNA functions with transcriptional gene silencing by targeting intron-containing pre-mRNAs. Histone modifications analysis by chromatin immunoprecipitation (ChIP) demonstrated the presence of the activator histone modification H3K4me3 on SlyWRKY75 transcription start site and gene body. The induction of this gene in response to B. cinerea correlates with the presence of an activator mark. Thus, miRNAs and chromatin modifications might cooperate as epigenetic factors to modulate SlyWRKY75 gene expression.

  18. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain

    PubMed Central

    Granger, Jill I.; Ratti, Pietro-Luca; Datta, Subhash C.; Raymond, Richard M.; Opp, Mark R.

    2012-01-01

    Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24 – 48 hours. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6–72 hour post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are impaired for long periods in animals that survive. PMID:23146654

  19. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    PubMed

    Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S

    2014-10-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  20. TIF-IA-Dependent Regulation of Ribosome Synthesis in Drosophila Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth

    PubMed Central

    Ghosh, Abhishek; Rideout, Elizabeth J.; Grewal, Savraj S.

    2014-01-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis. PMID:25356674

Top